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Summary

This book provides detailed insight to the theory of abstract geometric

algebra on sheaves in the framework of Abstract Differential Geometry

(ADG). This is a new approach to geometric algebra based on sheaf

theoretic methods to describe physical theories of geometric character

without the use of ordinary algebra. Instead, an axiomatic treatment

of geometric algebra is presented via sheaf theory (geometry).

Starting with a brief survey of the required sheaf theory, the expo-

sition then moves on to pairings of sheaves of A-modules (the abstrac-

tion of pairings of vector spaces): orthogonally convenient A-pairings

and theorems on ranks of free A-modules, biorthogonality in pairings

of A-modules (the abstraction of biorthogonality in pairings of vector

spaces), universal property of quotient A-modules; and Witt’s hyper-

bolic decomposition theorem for A-modules (the abstraction of Witt’s

hyperbolic decomposition theorem for vector spaces). Having laid the

basic groundwork, the main part of this work is devoted to the theory

of symplectic and orthogonal geometry with their structures. A char-

acterization of A-transvections, in terms of A-hyperplanes is given

together with the associated matrix definition by taking the domain

of the coefficients A to be a PID-algebra sheaf. Important topics such

as affine Darboux theorem, orthosymmetric A-bilinear forms, special

features of orthogonal geometry, Witt’s extension theorem, symplec-

tic orthogonally convenient A-modules, Lagrangian sub-A-modules,
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symplectic A-transvections, and A-symplectomorphisms as products

of symplectic A-transvections for vector spaces are also treated within

the context of ADG.

In the course of our investigation, this study formulates more

interesting results about the PID sheaf A ≡ C∞X which is not the

requirement for manifolds in Classical Differential Geometry (CDG).

The book contains a wealth of detailed and interesting but rig-

orous computations which will appeal to researchers in mathematics,

physicists, advanced undergraduate students and graduate students

interested in applications of differential geometry to physical theories.

 
 
 



Preface

Several aspects of differential geometry with exposition to the treat-

ment of classical geometry of C∞-manifolds range from the standard

theory of infinite-dimensional C∞-manifolds to the more sophisticated

aspects of “differential geometry” on topological spaces have developed

into great independent theories. Linear algebra, topology, differential,

algebraic geometry and algebraic topology are indispensable tools of

the mathematician of our time.

The notion and theory of A-module on an arbitrary topological

space X are obtained essentially by a generalization of sheaves of C-

vector spaces (or else a C-vector space sheaves) on X. The space X

plays the secondary rôle as the carrier of the generalized “smooth”

functions, which can be thought of as the sections of the structure

sheaf A, whereas the entire differential-geometric apparatus lives in

A. We refer to A. Mallios − E. E. Rosinger [58] for an application of

these ideas to the multi-foam algebra, in problems of non-linear PDE’s.

Now, concerning the relevance of the foregoing to the classical the-

ory of differential geometry, referred to as smooth viz., C∞-manifolds

(CDG), A ←↩ε C is expressed in terms of smooth differentiable C∞-

functions, sections of the respective classical “structure sheaf”, (see,

[57]), of the theory:

A ≡ C∞X .

Hence, our axiomatic approach uses the basis tools of sheaves of mod-
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ules on X over an appropriate sheaf of C-algebras (alias, C-algebra

sheaf ) by analogy with the classical case. Our study is quite gen-

eral and essentially of an algebraic topological nature based on sheaf

theory. Thus, it contains very special results from the classical as-

pect of finite and, partly, of infinite dimensional differential geometry

of C∞-manifolds with several other generalizations. More beautifully,

each chapter of this thesis ushers in the reader with a very good brief

introduction of what follows.

In order to make the whole treatment of “Geometric Algebra via

Sheaf Theory: A View Towards Symplectic Geometry”, as self con-

tained as possible in Chapter I, we cover nearly all elements from sheaf

and module theory for embarkation on advanced courses, specializ-

ing to the pertinent notions of Sheaves and Presheaves with Algebraic

Structures. This is the type of sheaves we exclusively consider through-

out the sequel. Concerning the prerequisite algebraic background for

this, we mention that any standard course on algebra, groups, rings,

fields, module and linear algebra will suffice. Most importantly, a good

background on topological spaces at under graduate level is needed.

Although we have kept the discussion as self-contained as possible,

there are places where references to standard results are unavoidable;

readers who are unfamiliar with such results should consult a standard

text on abstract algebra and sheaf theory.

In Chapter II, we examine the theorems on ranks of free A-

modules including that for it’s quotient. Next, we develop the foun-

dations of pairings of sheaves of A-modules. This situation serves

as another example of the motto that says “any good class of func-

tions can be represented as continuous cross sections of an appropriate

sheaf”. The A-pairings are eventually orthogonally convenient, so that

orthogonal reflexivity for free A-modules can be applied; we further

present this important case, to the extent that is necessary for the
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ensuing discussion. Furthermore, having in mind an application given

in Chapter III, we also examine in the same the necessary material for

Biothorgonality.

We apply the fundamental structure theorems to obtain impor-

tant decomposition theorems for A-modules in Chapter III.

In Chapter IV, we discuss in detail the structure of orthosymmet-

ric pairings (alias, bilinear morphisms), φ, on modules over a unital

commutative torsion-free C-algebra sheaf A to obtain the only two

types of geometry on φ; viz, orthogonal and symplectic geometry. Fur-

ther detailed observation and application leads to special features of

orthogonal geometry with further assumption that A be a PID C-

algebra sheaf.

Finally, in Chapter V, transvections in terms of A-hyperplanes,

and special features of symplectic A-modules in the setting of Ab-

stract Geometric Algebra is also given over an ordered C-algebraized

space (X,A,P). Also, analogue of Witt’s extension theorem concern-

ing A-symplectomorphisms defined of appropriate Lagrangian sub-A-

modules is given, extensively.

This serves as a further application of the respective classical no-

tion in finite-dimensional geometry linear and multilinear within the

present abstract geometric framework.

Pretoria A.C. Anyaegbunam

May 2010
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Chapter 1

Introduction

Sheaves were introduced more than 60 years ago by Jean Leray and

their major useful virtue is that they unify and give a mechanism

for dealing with many problems concerned with passage from local

information to global information. This is very useful when dealing

with, say, differential manifolds, since locally these look like Euclidean

spaces, and hence localized problems can be dealt with by means of

all tools of classical analysis. “Piecing together “solutions” of such

local problems in a coherent manner to describe, e.g. global invari-

ants, is most easily accomplished via sheaf theory and its associated

cohomology theory”. Most problems could be phrased and perhaps

solved without sheaf theory, but notation would be enormously more

complicated and difficult to comprehend, (see Wells [75]).

In this chapter we shall introduce the basic concepts of sheaves

and presheaves to beginners, and shall give many of the fundamentals

to be used throughout the thesis. Our major point of reference to the

definitions is mostly from [50]. To write a few lines of introduction

on a real corner stone of mathematics like sheaf theory is not an easy

task. So, let us try with ... this introduction [67].

 
 
 



First Introduction: for students(and everybody else). 5

1.1 First Introduction: for students(and every-

body else).

In the study of ordinary differential equations, when you face a Cauchy

problem of the form

{y(n) = f(x, y, y′, ..., y(n−1)), y(i)(x0) = y
(i)
0 },

you know that the continuity of f is enough to get a local solution,

i.e., a solution defined on an open neighbourhoood Ux0 of x0. But,

to guarantee the existence of a global solution, the stronger Lipschitz

condition on f is required.

In complex analysis, we know that a power series
∑
an(z − z0)n

uniformly converges on any compact space strictly contained in the

interior of the convergence disc. This is equivalent to local uniform

convergence: for any z in the open disc, there is an open neighbour-

hood Uz of z on which the series converges uniformly. But local uni-

form convergence does not imply uniform convergence on the whole

disc. This gap between local uniform convergence and global uniform

convergence is the reason why the theory of Weierstrass analytical

functions exists.

These are only two simple examples, which are part of every-

body’s basic knowledge in mathematics, of the passage from local to

global. Sheaf theory is precisely meant to encode and study such a

passage.

Sheaf theory has its origin in complex analysis (see, for example,

[26]) and in the study of cohomology of spaces [7] (see also, [30] for

a historical survey of sheaf theory). Since local-to-global situations

are pervasive in Mathematics, nowadays, sheaf theory deeply inter-

acts also with mathematical logic [4, 29, 42, 48], algebraic geometry

 
 
 



6 Introduction

[31, 32, 35, 36, 37], algebraic group theory [21], ring theory [28, 71],

homological algebra [19, 27, 74] and, of course, category theory [44].

The references mentioned above are not at all exhaustive. Each

item is a standard textbook in the corresponding area and the reader

probably has already been in touch with some of them. We have

listed them here because, just by having a quick glance at them, one

can realize that sheaves play a relevant (sometimes crucial) role. In

this way, we have no doubt that the reader will find motivations to

attack sheaf theory directly from his favorite mathematical point of

view.

1.2 Sheaves. Basic Notions

We begin this section with the fundamentals of sheaf theory that we

need in the sequel. We also consider sheaves with algebraic structure

in their fibres, as we will be working with these algebraic structures

throughout this discussion, as well as, the basic geometries. Apart

from the standard sources where this material can be found, we also

refer to [50, Chapters I-II] for a full, self-contained and easy reading

thereof, to the extent that this is needed in the present treatise.

We say that a map

π : E −→ X (1.1)

between topological spaces E and X is a sheaf, whenever π is a lo-

cal homeomorphism. Explicitly, we mean that, for every z ∈ E , there

exists an (open) neighborhood V of z in E , with π(V ) an (open) neigh-

borhood of π(z) ≡ x in X and such that the restriction of π to V

π|V : V −→ π(V ) (1.2)

 
 
 



Sheaves. Basic Notions 7

is a homeomorphism. It is easy to see that any local homeomorphism

is a continuous and open map.

Example 1: Let E = (0, 1) in R equipped with the usual topology and

S ′ = X be the unit circle in R2 with the induced topology. Define

π : R −→ S ′ by π(z) = (cosz, sinz) = x ∈ S ′. Then for every

z ∈ (0, 1), there exists an open set U containing z such that π(U) is

open in S ′ and π|U : U −→ π(U) is a homeomorphism.

Example 2: Let E = (−1, 0) ∪ (0, 1) and X = (0, 1) all with the usual

topology on R. Define π : E −→ X by π(z) = |z| = x ∈ X. Clearly, π

is a local homeomorphism: let z ∈ E then we have two cases. Case 1:

If z ∈ (−1, 0), then π|(−1,0) is a homeomorphism. Case 2: If z ∈ (1, 0),

then π|(1,0) is a homeomorphism.

In this context, instead of π, we refer just to E , by simply saying that

E is a sheaf over X, the latter being now the base space and E the

sheaf space, while π is still called the projection map.

On the other hand, given an element x ∈ X (we assume, of course,

that x ∈ im π), the set

Ex := π−1({x}) ≡ π−1(x) (1.3)

is called the fiber(or even stalk) of E at x ∈ X. Hence, E is displayed

as a disjoint union of its stalks, the relative topology from E on each

fiber will then be the discrete one, by the hypothesis for π.

From Example 2 above, the Ex = {−x, x}.

By the foregoing we have singled out a certain category, which is

thus associated with a given topological space X, i.e., the category of

sheaves over X, denoted in the following by

ShX .

The objects of ShX are triples

(E , π,X),

 
 
 



8 Introduction

with π as in (1.1), while the morphisms of ShX are the continuous

maps between any two given objects, say, (E , π,X) and (F , ρ,X) in

ShX such that the maps are “fiber preserving”’ in the sense that

ρ ◦ φ = π

or equivalently,

φ(Ex) ⊆ Fx, x ∈ X .

Thus, the last relation defines, for every x ∈ X, a corresponding

restriction map on each fiber of E

φx := φ|Ex : Ex −→ Fx, x ∈ X, (1.4)

so that the given continuous map φ, as in (1.4), may also be construed

as a family of maps (φx)x∈X , with φx : Ex −→ Fx, x ∈ X, in such a

way that the resulting map φ : E −→ F defined by the relation

φ(z) := φx(z), with z ∈ Ex ⊆ E and π(z) = x

be continuous. It is proved that a sheaf morphism φ : E −→ F ,

displays E again as a sheaf over F , that is, φ is still a local homeomor-

phism. On the other hand, φ is one-to-one and/or onto if, and only

if, this holds true fiber-wise (viz. for each one of the maps (1.4)).

Now, a continuous map s : U −→ E over an open U ⊆ X is called

a continuous local section of a given sheaf E over X, whenever, we

have

φ ◦ s = idU = idX |U . (1.5)

When U = X, one then speaks of a continuous global section of E . We

denote the corresponding sets of sections of E , as above, by Γ(U, E) ≡
E(U) and Γ(X, E) ≡ E(X), respectively.

A continuous section s, as before, is always an (one-to-one, any

section, whatsoever, here of π, according to (1.5), is one-to-one) open

 
 
 



Presheaves. Sheafification 9

map, defining thus a (local) homeomorphism of the open set U ⊆ X

onto the open set s(U) ⊆ E . Furthermore, sets of the form s(U),

where U runs over the open subsets of X and s ∈ Γ(U, E), provide a

basis of the topology of E . On the other hand, for every z ∈ E , there

exists an open U ⊆ X, with π(z) = x ∈ U , and a section s ∈ Γ(U, E),

such that

z = s(x) (≡ sx) . (1.6)

In this regard, we usually call s(x) ≡ sx the germ of s at x (terminology

that will be justified later on), so that, in view of (1.6), one can also

speak of E , as the sheaf of sections of germs of its sections ; here it

is important to notice that if two local sections of E agree (viz. take

the same value) at a point, then they also do so on a whole (open)

neighborhood of that point.

1.3 Presheaves. Sheafification

A presheaf on a topological space X is a variable set indexed by the

open subsets of X. More precisely, it is a contravariant functor

S : Open(X)op −→ Sets,

where Open(X)op is the ordered set of open subsets of X considered

as a category and the Sets is the category of sets.

The intuition comes from the case where S(U) is the set of smooth (in

some sense) functions defined on U an open subset of the topological

space X, while an inclusion V ⊆ U gives map S(U) −→ S(V ) which

restricts a function on U to one on V .

Think, also, of the presheaf of continuous functions C : Open(X)op −→
Sets; and let C(U) denote the set of all continuous real-values functions

h : U −→ R; the assignment h 7→ h|V restricting each h to the

 
 
 



10 Introduction

subset V is a function C(U) −→ C(V ) for each V ⊆ U . This makes

C a contravariant functor on Open(X)op to Sets. This presheaf of R-

valued continuous functions on X is called the sheaf of germs CX of

continuous R-valued functions on X.

Roughly speaking, a presheaf S is a sheaf when we can move from

local elements to global elements, i.e., when we can paste together

(compatible) elements {fi ∈ S(Ui)}I to get a unique element f ∈
S(
⋃
I Ui). The above-mentioned presheaf C is a sheaf, whereas the

presheaf K is not a sheaf. The first important result we want to

discuss is the fact that the abstract notion of sheaf can be concretely

represented by variable sets of the form ”continuous functions“. More

precisely, any sheaf is isomorphic to the sheaf of continuous sections

of a suitable étale map (= a local homoemorphism).

There is another equivalent way of giving the notion of a sheaf

that also proves, several times more tractable, while the first definition

given above is from a historical point of view, (in this respect, see the

so-called “sheaf of coefficients”, Leray, Cartan, Oka, or even Weies-

trass). Thus, one defines, firstly, a presheaf of sets on a topological

space X, as contravariant functor from the category of open subsets

of X to that one of the sets; so to every open U ⊆ X, one associates

a set E(U) and to any pair U ⊇ V of open sets in X a (“restriction”)

map ρUV : E(U) −→ E(V ), such that ρUU = idU and ρUW = ρVW ◦ ρUV ,

for any open sets U ⊇ V ⊇ W in X. Such a presheaf is said to be, a

complete presheaf of sets, whenever (i) for any open U ⊆ X and open

covering U = (Uα)α∈I of U , two elements (“sections”) in E(U), with

sα := ρUUα(s) ≡ s|Uα = t|Uα ≡ tα := ρUUα(t), α ∈ I, are in fact equal,

viz. we then have that s = t, and (ii) with U and Uα, as before, if

(sα) ∈
∏

αE(Uα), with sα = sβ, for any Uαβ ≡ Uα ∩ Uβ 6= ∅ (viz.

ρ
Uβ
Uαβ

(sα) = ρ
Uβ
Uαβ

(sβ)), then sα = ρUUα(s), for some uniquely (due to (i))

defined s ∈ E(U).

 
 
 



Presheaves. Sheafification 11

Thus, the sections of a sheaf (local homeomorphism), as defined

above, over the open subsets of X constitute a complete presheaf, while

this is, in effect a characteristic property, namely, the only way (up to

an isomorphism) that complete presheaves arise; that is, one proves

that any given complete presheaf of sets on a topological space X is

isomorphic (we explain right below the definition of the later concept)

to that one defined by the sections of a sheaf on X (cf., for instance

[50, Chapt. I, Theorem 11.2]). Now, the latter sheaf, called also the

sheafification of the given presheaf (completeness is not necessary to

define the sheaf, we are seeking) is provided by the fibers of the given

presheaf ; thus, for every x ∈ X, we define

Ex := lim−→
U∈ V(x)

E(U) . (1.7)

(Here, when U varies over a basis V(x) of open neighborhoods of x,

the sets E(U) of the given presheaf, due to its very definition, provide

an inductive system of sets, cf. Bourbaki ([8, p. 88]), hence, (1.7).

Therefore, we further define the sheaf

E :=
∑
x∈X

Ex, (1.8)

with the obvious projection map onto X, as π(Ex) := x, x ∈ X, while

a basis of the topology of E is given by the family

B := {s̃(V ) : s ∈ E(U), for any open V ⊆ U} (1.9)

such that

s̃(x) := ρxU(s), with s ∈ E(U) and x ∈ U, (1.10)

where ρxU : E(U) −→ Ex ⊆ E is the corresponding canonical map

provided by (1.7). Indeed, the topology of E is the strongest one (“final

topology”), making the maps s̃ : U −→ E , for the various open U ⊆ X

and s ∈ E(U), continuous, in this regard, cf. [50, Chapt. I; (7.12) and

Theorem 3.1].

 
 
 



12 Introduction

Thus, we have an identification of the notions of sheaves and

complete presheaves, this correspondence is supplied by the section

functor Γ and the sheafification functor S, respectively; yet, each one

of these two functors is adjoint to the other, so that we have the

following isomorphism of sets (cf. also (1.15) below for the notation

applied)

HomShX(E ,F) = HomCoPShX(Γ(E),Γ(F)), (1.11)

for any two given sheaves E , F on X. In this context, we define a

morphism between two given presheaves of sets on X, say,

E ≡ (E(U), ρUV ) and F ≡ (F (U), λUV ), (1.12)

as a family of maps

φ ≡ (φU) ∈
∏
U

Hom(E(U), F (U)), (1.13)

with U ranging over the open sets in X, such that we have

λUV ◦ φU = φV ◦ ρUV , (1.14)

for any open sets U ⊇ V in X. Thus, a morphism of presheaves is

an injection, or surjection, or a bijection (viz. isomorphism), respec-

tively, if this is the case for each one of the individual maps φU , as

above. The notation “Hom” in (1.13) stands for sets of maps between

the pertinent sets, while that one in (1.11) stands for sets of morphisms

of the respective objects of the categories involved, namely, categories

of sheaves, ShX , and categories of complete presheaves, CoPShX , both

on X. In this concern, it is very important to note that in the case

of a given complete presheaf E on X (cf. (1.12)) and the respective

complete presheaf of sections of its sheafification S(E) ≡ E , denoted

henceforth by

Γ(E) ≡ (E(U), τUV ), (1.15)
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one has the following canonical isomorphisms (set-theoretic bijections)

ρU : E(U) −→ E(U) ≡ Γ(U, E), (1.16)

for any open U ⊆ X ( by setting ρU(s) := s̃, s ∈ E(U); cf. (1.10)

above). Truly, the previous isomorphisms constitute, another char-

acterization of making the given presheaf E complete (see e.g., [50,

Chapt. I; p. 51, Proposition 11.1]). ( We refer also to [72], [73], [69],

[70], [11], [46], [30], [23], [22], [13], and [67] e.t.c.)

The category CoPShX of complete presheaves on X is a full sub-

category of the category PShX of presheaves on X. The CoPShX is

reflective in ShX since the section (inclusion) functor Γ : ShX −→
CoPShX which is fully faithful and essentially surjective has a left ad-

joint S : CoPShX −→ ShX . The functor S may be called a reflector,

and it preserves finite limits.

This makes sheaves “behave like sets”, allows considering CoPShX
as a model of set theory without the axiom of choice in an appropri-

ate non-classical logic, and therefore suggests to develop “sheaf-based

mathematics”, where all sets are replaced with sheaves over a fixed

space − good comment by G. Janelidze, external examiner.

1.4 Sheaves and Presheaves with Algebraic Struc-

tures

The sheaves and presheaves that will be encountered in the sequel will

have algebraic structure in their fibers, usually the one of a C-algebra.

Thus, as a generic example of such an object, we consider first that

one of sheaf of groups (or else group sheaf ) G on a topological space X.

This means that G ≡ (G, π,X) is a sheaf on X whose fibers are groups,

in such a manner that “the group operation is continuous” or by taking
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the “fiber product” G×X G := {(z, z′) ∈ G×G : π(z) = π(z′)} ≡ G ◦G,

the map G ◦ G 3 (z, z′) 7−→ z + z′ ∈ Gx ⊆ G, with π(z) = π(z′) =

x ∈ X, is continuous. Yet, ones proves that the operations of “taking

opposites” and that of subtraction are also continuous maps, “fiber-

wise”, as above (for more details see for instance, [50, Chapt. II;

Lemma 1.2]). Furthermore, one defines the zero-section of G, x 7−→
0x ∈ Gx (viz. the neutral element of Gx, x ∈ X), which is, in fact,

continuous. Hence, its image, denoted just by 0 is a subsheaf of G,

that is, an open subset of G, (also see e.g., [50, Chapt. II; Lemma

1.1]).

Analogously, one defines a sheaf of rings or even ring sheaf (with

identity) on X, as being a sheaf of (abelian) groups on X, whose fibers

are (unital) rings, such that the ring multiplication is “continuous”

in the above sense, while the identity section, x 7−→ 1x, x ∈ X, is

continuous, defining thus a global continuous section. In the same

manner one defines a sheaf of C-algebras, or even C-algebra sheaf A ≡
(A, τ,X) on X (with an identity or not), as being a sheaf of rings on X,

such that the “scalar multiplication” C×A 3 (λ, z) 7−→ λ·z ∈ Ax ⊆ A
be continuous, where x = τ(z) ∈ X, while C carries the discrete

topology.

A basic notion for the sequel that emerges here is thus that one

of a pair

(X,A), (1.17)

consisting of a topological space X and a C-algebra sheaf on X, such

that the stalks Ax, x ∈ X are, particularly, associative commuta-

tive and unital C-algebras; we shall call hence forth such a pair C-

algebraized space.

On the other hand, given a C-algebra sheaf A ≡ (A, τ,X) as
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before, an A-module E on X (called also sheaf of A-modules) is a sheaf

E ≡ (E , π,X) whose individual stalks Ex, x ∈ X, are, particularly,

Ax-modules of abelian groups on X, such that the “exterior module

multiplication” A ◦ E 3 (α, z) 7−→ α · z ∈ Ex ⊂ E is also continuous,

where τ(α) = π(z) = x ∈ X.

Now, if we have a sheaf, as above, equipped with a particular

algebraic structure, this is actually inherited (point-wise) on any in-

dividual set of local sections of the sheaf over an open set of the base

space. Thus, for any C-algebra sheaf A, as before, and every open

U ⊆ X, the set A(U) ≡ Γ(U,A) is, in fact, a (unital commutative

associative) C-algebra. Indeed, a given sheaf of sets E on a topological

space X is endowed with a particular algebraic structure if, and only

if, this is the case for its complete presheaf of sections Γ(E) on X (see

[50, Chapt.II; (1.67) p. 104]).

Hence, one actually proves, in general, that if a given presheaf

carries some particular algebraic structure in the sense that individual

sets carry it, then this passes over to the corresponding stalks and also

to its sheafification. In particular, if

A ≡ (A(U), τUV ) and E ≡ (E(U), ρUV ) (1.18)

is a presheaf of (unital) C-algebras and of A(U)-modules on X, respec-

tively, then by considering the corresponding sheafifications A ≡ S(A)

and E ≡ S(E), we conclude that E is an A−module on X (loc. cit.

[50, Chapt. II; Proposition 1.1, p. 104]).

Now, by considering morphisms of sheaves with algebraic struc-

tures, we require, in addition to the usual definition of such maps,

as above, that they also preserve the algebraic structures concerned

“fiber-wise”. Thus, given a morphism φ : E −→ F between A-

modules, we can consider the A-modules im φ ⊆ E and ker φ ⊆ F .
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We also speak of such a morphism φ as an A-morphism.

In the case of presheaves with algebraic structures, the correspond-

ing morphisms (of presheaves, cf. (1.13)) are decreed to preserve the

algebraic structure concerned via each one of their constituent maps.

1.5 Vector Sheaves. HomA

Given the A-modules E ≡ (E , π,X) and F ≡ (F , ρ,X), we define their

Whitney or direct sum by the relation

E ⊕ F := {(z, z′) ∈ E × F : π(z) = ρ(z′)}.

Therefore, the map σ : E⊕F 3 (z, z′) 7−→ σ(z, z′) := π(z) = ρ(z′) ∈ X
is a local homeomorphism, such that we have, fiber-wise, (E ⊕ F)x =

Ex ⊕ Fx, x ∈ X, hence, E ⊕ F is an A-module on X too. Thus, a

given A-module E , as before, is said to be a free A-module of finite

rank n ∈ N, whenever we have

E = An,

within an A− isomorphism, where An stands for the n-fold Whitney

sum of A with itself. Hence, we set the following basic

Definition 1.1 A given A-module E on X is said to be locally free

of finite rank n ∈ N, whenever for any point x ∈ X, there exists

an (open) neighborhood U of x, such that we have the following A|U -

isomorphisms;

E|U = An|U = (A|U)n. (1.19)

We shall also write for the rank of E , n = rankA (E) ≡ rank E .

Henceforth, a locally free sheaf of finite rank will be called a vector
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sheaf on X. In particular, if the rank is 1, then our vector sheaf is

named a line sheaf on X.

Thus, given a vector sheaf E on X, with rank E = n, we actually

obtain an open covering of X, on the individual members of which

(1.19) holds true. We call such an open covering of X a local frame

of E . Furthermore, every open set U ⊆ X of the covering in question,

for which (1.19) is valid, is called a local gauge of E .

On the other hand, for any two A-modules E and F on X, we

define the sheaf of germs of A-morphisms of E in F , denoted by

HomA(E ,F), as the sheaf on X, generated by the complete presheaf

U 7−→ HomA|U (E|U ,F|U), for any open U ⊆ X.

In this context, one obtains the following A|U -isomorphism

HomA(E ,F)|U = HomA|U (E|U ,F|U), for any open U ⊆ X.

Thus, for two vector sheaves E ,F on X, HomA(E ,F) is a vector sheaf

on X too, with rank the product of those of the factors.

Of particular importance for the sequel, is the sheaf on X, that

is provided when, for any given A-module E on X, we consider its

corresponding endomorphism A-algebra sheaf on X, defined by

EndA E ≡ End E := HomA(E , E).

In particular, if E is a vector sheaf on X, with rankAE = n ∈ N,

then End E is a vector sheaf too, with rank n2. Moreover, the same

A-algebra sheaf End E is self dual, a property that exhibits, otherwise,

a free A-module on X. On the other hand, in the case of a line sheaf

L on X, the above A-algebra sheaf is (A-isomorphic to) A itself, viz.

we have

End L = A. (1.20)
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When considering (continuous) sections of the above, one defines

HomA(E ,F) := HomA(E ,F)(X).

In particular, we thus set;

End E := (End E)(X) and (End L)(X) ≡ End L = A(X),

the last equality which is an A(X)-isomorphism is valid for L, a given

line sheaf on X (cf. (1.20)).

1.6 Quotients of A-modules

Given two A-modules E ≡ (E , π,X) and F ≡ (F , ρ,X) on a topolog-

ical space X such that E is a sub-A-module of F , let S be the sheaf

generated by the presheaf U → F(U)/E(U), for each U open in X .

Then S is called the quotient sheaf of F by E and is denoted by F/E .

1.7 Riemannian A-metrics

Now, according to our general pattern, every classical function that is

of importance to us should be replaced by a section of an appropriate

sheaf; “any good class of functions can be represented simply as con-

tinuous cross sections” (S. Mac Lane [47, p. 357]). “In particular, if

the classical function involved is “numerical”, in our case the corre-

sponding section should take values from our “arithmetic”, that is, it

has to be a section of our structure sheaf A” (Mallios [49]).

We assume from here onwards, even if it is not explicitly stated, that

we are given a fixed ordered R-algebraized space

(X,A := P ∪ −P)
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with A a sheaf of R-algebras, commutative and unital on a given

topological space X, and P ∪−P := A∪A− ⊆ A, a subsheaf of A on

X, see ([50], p. 316).

Thus, to provide substance to the latter expression, we introduce

the notion of an ordered algebraized space, which, by definition, is a

C-algebraized space (X,A) for which there also exists a subsheaf (viz.

an open subset) P of A, defining a preorder in A; that is, one has i)

λ ·P ⊆ P , λ ∈ R+ ↪→ A, ii) P+P ⊆ P and iii) P ·P ⊆ P . The same P
yields a (partial) order in A, if, moreover, one has iv) P∩(−P) = {0}.
(The previous relations are meant fiber(or section-)wise). Hence, the

elements of P ⊆ A are, by definition, considered as the positive ele-

ments of A, denoting their set by A+ := P , and analogously for the

negative elements of A, by setting A− := −P .

Having introduced the latter notion, we come now to the very

important case of symmetric A-bilinear morphisms over an ordered

C-algebraized space (X,A := P ∪ −P) which follows from the corre-

sponding formulae of the classical theory of modules (cf. e.g. [1], p.

371; [3], p. 148; [33], p. 97; [9], p. 22; [16], p.17; [43], p. 577; as well

as, [6], p. 353.)

Definition 1.2 Suppose we are given an ordered C-algebraized space

(X,A); and let E be an A-module on X, and suppose φ is a symmetric

A-bilinear morphism over (X,A) on E, then φ is called

1. positive semi-definite; if for any local section s ∈ E(U) over

an open U ⊆ X, we have φ(s, s) ∈ P(U) ≡ A+(U) ⊆ A(U) such

that φ(s, s) = 0, if s = 0.

2. negative semi-definite; if for any local section s ∈ E(U) over

an open U ⊆ X, we have φ(s, s) ∈ −P(U) ≡ A−(U) ⊆ A(U)
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such that φ(s, s) = 0, if s = 0.

3. positive definite; if for any local section s ∈ E(U) over an

open U ⊆ X, we have φ(s, s) ∈ P(U) ≡ A+(U) ⊆ A(U) such

that φ(s, s) = 0, if, and only if s = 0.

4. negative definite; if for any local section s ∈ E(U) over an

open U ⊆ X, we have φ(s, s) ∈ −P(U) ≡ A−(U) ⊆ A(U) such

that φ(s, s) = 0, if, and only if s = 0.

A given A-module E on X equipped with an A-metric φ, as above,

is said to be a Riemannian A-module whenever φ is strongly non-

degenerate; this means that

φ̃ : E ∼= E∗ ≡ HomA(E ,A),

up to an A-isomorphism of the A-modules concerned, the map φ̃ is

defined by φ according to the relation;

φ̃(s)(t) ≡ φs(t) := φ(s, t),

for any s, t ∈ E(U) and open U ⊆ X.

Now, we are ready for what follows in the following chapters.

 
 
 



Chapter 2

Pairings of sheaves of modules

In this chapter, we generalize the notion of pairings of vector spaces to

the category A-ModX of sheaves of modules over a topological space

X. Pairings of vector spaces are studied extensively in [3]; most of our

results are modelled on corresponding results in [3]. Particular care is

taken when defining left or right kernels and orthogonality of sub-A-

modules in pairings of sheaves of modules. Kernels and orthogonal to

given sub-A-modules turn out to be sub-A-modules.

In the context of pairings of vector spaces, under certain condi-

tions, orthogonality is reflexive, i.e., given a bilinear map φ : V ⊕
W −→ K, where V and W are K-vector spaces, then if φ is non-

degenerate and G and H subspaces of V and W , respectively, one has:

G⊥> = G and H>⊥ = H. It is a standard result, see for instance [15,

p. 365, Corollaire 2], [16, p. 6, Proposition 1.2.1], or [33, p. 95, The-

orem 1]. For convenience, we recall that G⊥ is called the orthogonal

of G (with respect to φ) and is the subspace of W consisting of all

vectors w ∈ W such that φ(G,w) = 0, and, similarly, H> is called

the orthogonal of H and is the subspace of V made up of all vectors

v ∈ V such that φ(v,H) = 0. It is an open question to see whether

this very important classical property of orthogonality is preserved
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for any non-degenerate bilinear A-morphism; we shall however show

that in the subclass of orthogonally convenient pairings of A-modules,

orthogonality is reflexive for non-degenerate bilinear A-morphisms.

2.1 Theorems on ranks of free A-modules

We shall assume that the reader is familiar with basic properties of

module theory as the latter is part of the required background for our

dissertation. Our main references for module theory include [1] and

[6].

Definition 2.1 Let E and F be A-modules on a topological space X

and F : A-ModX −→ Set the forgetful functor. An A-bilinear form

on E ⊕ F is a sheaf morphism

φ : F (E)⊕ F (F) −→ F (A)

satisfying

(1) φU(α1s1 + α2s2, t) = α1φU(s1, t) + α2φU(s2, t), and

(2) φU(s, α1t1 + α2t2) = α1φU(s, t1) + α2φU(s, t2)

for any open U ⊆ X and sections α1, α2 ∈ A(U), s, s1, s2 ∈ E(U), and

t, t1, t2 ∈ F(U).

Lemma 2.2 Let φ : E ⊕F −→ A be an A-bilinear form on E and F ,

then φ induces an A-valued sheaf morphism ( or A-morphism), viz.

φE : F −→ E∗ := HomA(E ,A), (2.1)

given by

φEU(t)(s) := φV (s, t|V ), (2.2)
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where U runs over the open subsets of X, t ∈ F(U) and s ∈ E(V ), with

V an open subset of U . Likewise, φ gives rise to a similar A-morphism

φF : E −→ F∗. (2.3)

One obtains that

φE ∈ HomA(F , E∗) and φF ∈ HomA(E ,F∗).

Proof. Assume that (F(U), σUV ) and (E∗(U), κUV ) are the (com-

plete) presheaves of sections of F and E∗, respectively. It is easy to

see that

κUV ◦ φEU = φEV ◦ σUV ,

where U, V are open in X and such that V ⊆ U . In fact, for t ∈ F(U)

and s ∈ E(W ), where W ⊆ V is an open subset of X, κUV (φEU(t))(s) =

φW (s, t|W ). On the other hand, φEV (t|V )(s) = φW (s, t|W ). The preced-

ing shows the correctness of our assertion for (2.1). In a similar way,

one shows that φF is an A-morphism.

The pair ((E ,F ;φ);A) ≡ (E ,F ;A) is called a pairing of A-

modules E and F or just anA-pairing of E and F . TheA-morphisms

φE ≡ φL and φF ≡ φR are sometimes called left and right insertion

A-morphisms, respectively.

Theorem 2.3 If F and G are sub-A-modules of an A-module E, then

S(Γ(G)/Γ(F ∩ G)) ' S((ΓF + ΓG)/ΓF). (2.4)

Proof. Let ΓE ≡ (E(U), ρUV ) be the complete presheaf of sections

of E ,

Γ(E)/Γ(F) ≡ (E(U)/F(U), σUV )

a generating presheaf of the quotient A-module E/F , and

φ : Γ(E) −→ Γ(E)/Γ(F)
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the canonical Γ(A)-morphism. For every open U ⊆ X, the restriction

ψU of φU to the sub-A(U)-module G(U) of E(U) is theA(U)-morphism

ψU : G(U) −→ E(U)/F(U) given by ψU(r) := r + F(U), r ∈ G(U).

Clearly,
⋃
{r + F(U) : r ∈ G(U)} = G(U) + F(U), where G(U) +

F(U) means the sub-A(U)-module of E(U), generated by G(U)∪F(U).

(In this regard, cf. Adkins-Weintraub [1, p.116, Definition 2.13] or

Blyth [6, p.11, Theorem 2.3].) If r, s ∈ G(U) such that r − s ∈ F(U),

we obviously have r+F(U) = s+F(U). Therefore the cosets r+F(U)

are the stratification of G(U)+F(U) by cosets of the sub-A(U)-module

F(U). This shows that ψU(G(U)) = (G(U) + F(U))/F(U). Now, let

us find the kernel, kerψU , of ψU . For all elements r ∈ G(U), we

have ψU(r) = φU(r). But kerφU = F(U), so that kerψU = F(U) ∩
G(U) ≡ (F ∩ G)(U). Applying the First Isomorphism Theorem (cf.

Adkins-Weintraub [1, p.113, Theorem 2.4]), which says that given

two modules M and N over a ring R, and f : M −→ N an R-module

homomorphism, then M/ ker f ∼= Imf, we have an A(U)-isomorphism

ψU : G(U)/(F ∩ G)(U) −→ (F(U) + G(U))/F(U). (2.5)

On the other hand, correspondences

U 7−→ G(U)/(F ∩ G)(U), U 7−→ (F(U) + G(U))/F(U),

where U runs over the open subsets of X, along with obvious restric-

tion maps, respectively, yield A-presheaves, denoted Γ(G)/Γ(F ∩ G)

and (Γ(F) + Γ(G)/ΓF , respectively. Since (2.5) holds for any open

U ⊆ X, Γ(G)/Γ(F ∩ G) is A-isomorphic to (Γ(F) + Γ(G))/Γ(F). Fi-

nally, applying the sheafification functor S to the Γ(A)-isomorphism

ψ : Γ(G)/Γ(F ∩ G) −→ (Γ(F) + Γ(G)/Γ(F), we get

S(Γ(G)/Γ(F ∩ G)) := G/(F ∩ G)

= S(Γ(F) + Γ(G))/F

=: S(Γ(F) + Γ(G)/Γ(F))

within an A-isomorphism. The proof is finished.
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Corollary 2.4 Let E be an A-module, F and G sub-A-modules of E
such that E = F ⊕ G. Then

E/F = G

within an A-isomorphism.

Proof. Given that E = F ⊕ G, Equation (2.4) becomes

S(Γ(G))/0 ∼= S(Γ(G)) ∼= G ∼= S(Γ(E))/F ∼= E/F ,

i.e.

E/F ∼= G.

Before proceeding to some particular theorems regarding free A-

modules, we recall here from [51, p. 401, Definition 1.1] the notion of

a free sub-A-module F of a given free A-module E .

Definition 2.5 Let E be a free A-module isomorphic to the standard

free A-module A(I) := ⊕IA, where I is an arbitrary indexing set. A

sub-A-module F of E is called free if it is isomorphic to a standard

free A-module A(J), where J ⊆ I. A free sub-A-module G of E such

that G ∼= A(I\J) (so that E = F ⊕ G) is called supplementary to F
in E . We also say that F is complemented by G in E .

Lemma 2.6 If F is a free sub-A-module of a free A-module E, then,

for every open U ⊆ X,

(E/F)(U) = E(U)/F(U)

with an A(U)-isomorphism.
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Proof. Suppose that E ' A(I) and F ' A(K), withK ⊆ I. Then,

by Corollary 2.4 and Definition 2.5, the quotientA-module E/F is free;

whence E/F ' A(J), where I = J ⊕K. On the other hand, since for

any open U ⊆ X, E(U) ' A(I)(U) ' A(U)(I) and F(U) ' A(K)(U)

with F(U) ⊆ E(U), it follows that E(U)/F(U) ' A(J)(U). Hence, the

proof is finished.

Now, let us make the following definition, patterned after the

standard notion of corank in the setting of vector spaces.

Definition 2.7 Let E be a free A-module, and F a free sub-A-module

of E complemented in E by a free sub-A-module G. The rank of

G ' E/F is called the corank of F , viz.

corankE F = rank E/F .

Then, we have the following results, cf. [51].

Theorem 2.8 Let E be a free A-module, and F and G free sub-A-

modules of E such that F ∩ G and F + G are free. Then,

rank F + corankE F = rank E
rank (F + G) + rank (F ∩ G) = rank F + rankG

corankE (F + G) + corankE (F ∩ G) = corankE F + corankE G.

Theorem 2.9 Let E be a free A-module of arbitrary rank. Then, for

any open subset U ⊆ X, rank E∗(U) = rank E(U). Fix an open set U

in X. If ψ ≡ (ψV )U⊇V, open ∈ E∗(U) and ψU(s) = 0 ( which implies

that ψV (s|V ) = 0 for any open V ⊆ U ) for all s ∈ E(U), then ψ = 0;

on the other hand if ψU(s) = 0 for all ψ ∈ E∗(U), then s = 0. Finally,

let rank E(U) = n. To a given basis {si} of E(U), we can find a dual

basis {ψi} of E∗(U) ' E(U), where

ψi,V (sj|V ) = δij,V ∈ A(V )
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for any open V ⊆ U.

Now, we introduce kernels and orthogonal sub-A-modules in A-

pairings.

Definition 2.10 Let ((E ,F ;φ);A) be a pairing of A-modules E and

F , and G and H be sub-A-modules of E and F , respectively. The φ-

orthogonal (or just the orthogonal if there is no confusion to fear)

of G, denoted G⊥φ ≡ G⊥, is the sub-A-module of F such that, for

every open U ⊆ X,

G⊥(U) := {t ∈ F(U) : φV (G(V ), t|V ) = 0, for any openV ⊆ U}.

Similarly, one defines the orthogonal of H to be the sub-A-module,

denoted H>φ ≡ H>, given by

H>(U) := {s ∈ E(U) : φV (s|V ,H(V )) = 0, for any open V ⊆ U},

where U is any open subset of X. The orthogonal of E (resp. F)

is also called the kernel of E (resp. F). The A-bilinear morphism

φ is said to be non-degenerate if E⊥ = F> = 0, and degenerate

otherwise.

It is immediate that if G and H are as in Definition 2.10, then G⊥

and H> are sub-A-modules of F and E , respectively.

Definition 2.11 Let (E , φ) be a self A-pairing such that E⊥φ = E>φ.
We call E⊥φ the radical sheaf (or sheaf of A-radicals, or simply A-

radical) of E , and denote it by radAE ≡ rad E . An A-module E such

that rad E = 0 is called non-isotropic; E is called totally isotropic if

φ is identically zero, i.e., φ(E , E) = 0. Analogously, a sub-A-module

F ⊆ E is called totally isotropic if φ = 0 on F . For any open U ⊆ X, a
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non-zero section s ∈ E(U) is called isotropic if φU(s, s) = 0. Finally,

the A-radical of a sub-A-module F of E is defined as

rad F := F ∩ F⊥φ = F ∩ F>φ,

under the assumption that G⊥φ = G>φ for every sub-A-module G of E .

A sub-A-module F is said to be isotropic if rad F 6= 0.

In the sequel, whenever there is no fear of confusion we will simply

use ⊥ (resp., >) instead of the more accurate ⊥φ (resp. >φ) to avoid

useless cumbersomeness.

Lemma 2.12 If (E ,F ;φ) is an A-pairing of free A-modules of finite

rank, then for every open subset U of X,

E⊥(U) = E(U)⊥, F⊥(U) = F(U)⊥, (2.6)

where

E(U)⊥ := {t ∈ F(U) : φU(E(U), t) = 0} (2.7)

and, similarly,

F(U)⊥ := {t ∈ E(U) : φU(t,F(U)) = 0}. (2.8)

Proof. That E⊥(U) ⊆ E(U)⊥ is clear. Now, let t ∈ E(U)⊥

and {eUi }ni=1 be a basis of E(U). Since φU(eUi , t)|V = φV (eUi |V , t|V ) =

0 and {eUi |V }ni=1 being a basis of E(V ), we have φV (s, t|V ) = 0, for

any s ∈ E(V ). Therefore, E(U)⊥ ⊆ E⊥(U), and hence the equality

E⊥(U) = E(U)⊥.

The second equality in (2.6) is shown in a similar way.

A particular case of A-pairings is the following:
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Definition 2.13 The A-pairing (E , E∗; ν) such that, for every open

U ⊆ X,

νU(r, ψ) := ψU(r),

where ψ ∈ E∗(U) := HomA|U (E|U ,A|U) and r ∈ E(U), is called the

canonical A-pairing of E and E∗. (E , E∗; ν) is called the canonical

free A-pairing if E is a free A-module.

For every open U ⊆ X, let (εUi ) and (ε∗Ui ) be bases (of sections)

of E(U) and E∗(U), respectively, where E and E∗ are free A-modules

of finite rank canonically paired into A. The family φ ≡ (φU)X⊇U, open

such that

φU(εUi ) := ε∗Ui

is an A-isomorphism of E onto E∗. Furthermore, the kernel of φ is ex-

actly the same as the left kernel of the canonical A-pairing (E∗, E ;A).

Indeed, kerφ = 0 = E∗>.

While the notion of orthogonality with respect to arbitrary A-

bilinear forms generalizes orthogonality in canonical A-pairings, the

former may be related with the latter through Lemma 2.14 below, in

which we use > to indicate the left orthogonal of sub-A-modules in

the canonical free A-pairing (E , E∗; νE ≡ ν) as well as in (F ,F∗; νF ≡
ν), a practice which will be applied in subsequent chapters for right

orthogonal in canonical free A-pairings as well.

Lemma 2.14 Let (E ,F ;φ) be a free A-pairing, G and H free sub-A-

modules of E and F , respectively. Then,

G⊥φ ' (φF(G))>, (2.9)

and

H>φ ' (φE(H))>. (2.10)
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Proof. Let U be an open subset of X. Since G is free, we have

from (2.6) that G⊥φ(U) = G(U)⊥φ; so for a section t ∈ F(U) to be in

G⊥φ(U) it is necessary and sufficient that

φU(G(U), t) = 0.

But

(φRU(G(U)))> = {t ∈ F(U) : φRU(G(U))(t) := φU(G(U), t) = 0},

therefore (2.9) holds as required.

In a similar way, one shows (2.10).

We end this section with a theorem that relates orthogonality to

duality. We refer the reader to [51] for the proof of the theorem.

Theorem 2.15 Let F and E be A-modules paired into a C-algebra

sheaf A, and assume that E⊥ = 0. Moreover, let F0 be a sub-A-module

of F and E0 a sub-A-module of E. There exist natural A-isomorphisms

into:

E/F⊥0 −→ F∗0 , (2.11)

and

E⊥0 −→ (E/E0)∗. (2.12)

2.2 Orthogonally convenient A-pairings

We shall now focus on a particular subfamily of the family of A-

pairings, which grants orthogonal reflexivity for free A-modules. The

members of the afore-mentioned subfamily are called orthogonally con-

venient A-pairings; the latter are characterized among other things by

a very important result that complements Theorem 2.15 of the previ-

ous section. This result consists, on one hand, of the A-isomorphism
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E/F>0 ' F∗0 , where (E ,F ;φ) is orthogonally convenient and F0 a

sub-A-module of F , and, on the other hand, of the A-isomorphism

E⊥0 ' (E/E0)∗, where (E , E∗; ν) is the canonical free A-pairing. There

is an analog of this result in the setting of vector spaces; to this effect,

see, for instance, [3, p. 21, Theorem 1.11, and p. 23, Theorem 1.12].

Definition 2.16 A pairing (E ,F ;φ) of free A-modules E and F into

the C-algebra sheaf A is called an orthogonally convenient pair-

ing if given free sub-A-modules E0 and F0 of E and F , respectively,

their orthogonal E⊥0 and F>0 are free sub-A-modules of F and E , re-

spectively.

Lemma 2.17 Let (E ,F ;φ) be an orthogonally convenient A-pairing,

E0 and F0 free sub-A-modules of the (free A-modules) E and F , re-

spectively. Then E/F>0 and F/E⊥0 are free sub-A-modules of E and F
respectively, and for every open U ⊆ X,

(E/F>0 )(U) = E(U)/F>0 (U) (2.13)

and

(F/E⊥0 )(U) = F(U)/E⊥0 (U). (2.14)

Proof. Since F>0 is a free sub-A-module of E , Lemma 2.6 applies

and one obtains the A(U)-isomorphism (2.13). In a similar way, one

shows (2.14) .

Theorem 2.18 Let E be a free A-module of finite rank. The canonical

pairing (E , E∗;φ) is orthogonally convenient.

Proof. First, we notice by Theorem 2.8 that both kernels, i.e. E⊥

and (E>)⊥, are 0. Let E0 be a free sub-A-module of E , and consider the
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map (2.12) of Theorem 2.15: E⊥0 −→ (E/E0)∗. It is an A-isomorphism

into, and we shall show that it is onto. Fix an open set U in X, and

let ψ ∈ (E/E0)∗(U) := HomA|U ((E/E0)|U ,A|U) . Let us consider the

family ψ ≡ (ψV )U⊇V, open where if V , W are open in U with W ⊆ V ,

then

τVW ◦ ψV = ψW ◦ ρVW
(the {ρUV } and {τUV } are the restriction maps for the (complete) presheaf

of sections of E and A, respectively) and

ψV (r) := ψV (r + E0(V )), r ∈ E(V ). (2.15)

It is easy to see that ψV is A(V )-linear for any open V ⊆ U . Thus,

ψ ∈ HomA|U (E|U ,A|U) =: E∗(U).

Suppose r ∈ E0(V ), where V is open in U . Then

ψV (r) = ψV (r + E0(V )) = ψV (E0(V )) = 0,

therefore

νV (E0(V ), ψ|V ) = ψV (E0(V )) = 0,

i.e. ψ ∈ E⊥0 (U). We contend that ψ has the given ψ as image under

the map (2.12), and this will show the ontoness of (2.12) and that E⊥0
is a free sub-A-module of E∗.

Let us find the image of ψ. Consider the pairing (E/E0, E⊥0 ; Θ)

such that for any open V ⊆ X, we have

ΘV (r + E0(V ), α) := νV (r, α) = αV (r),

where α ∈ E⊥0 (V ) ⊆ E∗(V ), r ∈ E(V ). Clearly, the right kernel of this

new pairing is 0. For α = ψ ∈ E⊥0 (U) ⊆ E∗(U), we have

ΘU(r + E0(U), ψ) = ψU(r)

where r ∈ E(U), and the map

ΘU : E⊥0 (U) −→ (E/E0)∗(U)
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given by

ψ 7−→ ΘU,ψ ≡
(
(ΘU,ψ)V

)
U⊇V, open

and such that for any r ∈ E(V )

(ΘU,ψ)V (r + E0(V )) := ΘV (r + E0(V ), ψ|V ) = ψV (r) = ψV (r + E0(V ))

is the image. Thus the image of ψ is ψ, hence the map

E⊥0 (U) −→ (E/E0)∗(U), derived from (2.12), is onto, and therefore an

A(U)-isomorphism. Since E/E0 is free by Theorem 2.15, so are (E/E0)∗

and E⊥0 free.

Now, let F0 be a free sub-A-module of E∗ ∼= E (cf. Mallios [50,

p.298, (5.2)]); on considering F0 as a free sub-A-module of E , according

to all that precedes above F>0 is free in E∗ ∼= E , and so the proof is

finished.

Now, if (E ,F ;φ) is an orthogonally convenient pairing, E0 and F0

free sub-A-modules of E and F , respectively, by Theorem 2.15, E/F>0
and E/E0 are free A-modules. Since the maps in Theorem 2.15 are

A-isomorphisms into,

rank(E/F>0 ) ≤ rank F∗0 = rank F0 (2.16)

and

rank E⊥0 ≤ rank(E/E0)∗ = rank(E/E0). (2.17)

Inequalities in (2.16) and (2.17) can also be written in the form

corank F>0 ≤ rank F0

and

rank E⊥0 ≤ corank E0.

If we put E0 = F>0 in the last inequality and combine it with the first

one, we get

rank F>⊥0 ≤ corank F>0 ≤ rank F0. (2.18)
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But F0 is a free sub-A-module of F>⊥0 , so that rank F0 ≤ rank F>⊥0 ,

and (3.11) becomes

rank F>⊥0 = corank F>0 = rank F0. (2.19)

Let us consider formula (2.19) in the case where rank F0 is finite. We

clearly have F>⊥0 = F0 within an A-isomorphism. The A-module F0

is said to be orthogonally reflexive. In A-morphism (2.11), both free

A-modules have the same finite dimension, the A-isomorphism into

is, therefore, onto and thus

E/F>0 = F∗0

within an A-isomorphism. Hence, E/F>0 may be regarded naturally

as the dual A-module of F0. For A-morphism (2.12), put E0 = F>0 ;

thus (2.12) becomes an A-isomorphism

F>⊥0 ' (E/F>0 )∗.

Putting F0 = F in (3.12), we obtain

corank F> = rank F . (2.20)

Now, assume in our orthogonally convenient pairing (E ,F ;φ) that

the right kernel E⊥ is not 0. Let Ψ ∈ HomA(E ⊕ (F/E⊥),A) such that

ΨU(s, t+ E⊥(U)) := φU(s, t),

where U is an open subset of X, s ∈ E and t+E⊥(U) ∈ (F/E⊥)(U) '
F(U)/E⊥(U), (cf. Lemma 2.17).

The element t + E⊥(U) lies in the right kernel E⊥(U) ∼= E(U)⊥,

if φU(s, t) = 0, for all s ∈ E(U). But this means t ∈ E⊥(U), so that

t + E⊥(U) = E⊥(U). It follows that the right kernel of the A-pairing

(E ,F/E⊥; Ψ) is 0. The left kernel is obviously the old F>. Applying

(2.20), we have

rank(E/F>) = rank(F/E⊥). (2.21)
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Suppose now that both kernels E⊥ and F> are zero, and that

rank F is finite. (2.21) shows that rank E is also finite and rank E =

rank F . So whenever E⊥ = 0 = F>, by Theorem 2.15, we see that

each of the free A-modules F and E is naturally the dual of the other.

Now, still under the condition E⊥ = 0 = F> for the orthogo-

nally convenient A-pairing (E ,F ;φ), let us look at the correspondence

F0 7−→ F>0 of a free sub-A-module F0 of F and the free sub-A-module

F>0 of E . Any free sub-A-module E0 of E is obtainable from an F0; in-

deed we merely have to put F0 = E⊥0 . And if F0 � F1, then F>0 � F>1 .
The correspondence F0 ←→ F>0 , where F0 is any free sub-A-module

of F , is one-to-one, and also if F0 ⊆ F1 then F>0 ⊇ F>1 .

Let us collect all our results.

Theorem 2.19 Let (E ,F ;φ) be an orthogonally convenient A-pairing.

Then,

(a) rank (F/E⊥) = rank (E/F>); in particular if one of the free A-

modules F/E⊥ and E/F> has finite rank, so has the other one,

and the ranks are equal.

(b) If the right kernel E⊥ is zero, and F0 ⊆ F is a free sub-A-module,

then

rank F0 = corank F>0 = rank F>⊥0 . (2.22)

If rank F0 is finite, then F>⊥0 = F0 and E/F>0 = F∗0 within an

A-isomorphism, i.e. each of the free A-modules F0 and E/F>0 is

naturally the dual of the other.

(c) If both kernels are zero, and rank F is finite, then F = E within

an A-isomorphism. The correspondence F0 7−→ F>0 is a bijection

between the free sub-A-modules of F and the free sub-A-modules

of E, and it reverses any inclusion relation.
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In case our orthogonally convenient A-pairing is the canonical

pairing (E , E∗; ν) we observe the following. First, as mentioned in the

proof of Theorem 2.18, E⊥ and (E∗)> are 0. Then, let E0 be a free

sub-A-module of E of arbitrary rank; as in the proof of Theorem 2.18,

one shows that E⊥0 = (E/E0)∗ with an A-isomorphism.

Fix an open set U in X. Let r /∈ E0(U), so r + E0(U) is not

the zero section of E(U)/E0(U). By Theorem 2.18, there exists a ψ ≡
(ψV )U⊇V, open in (E/E0)∗(U) such that

φU(ψ, r + E0(U)) ≡ ψU(r + E0(U)) 6= 0.

Referring to (2.15), the corresponding ψ ≡ (ψV )U⊇V, open in E⊥0 (U)

gives

ψU(r) := ψU(r + E0(U)) 6= 0.

This section r is, therefore, not orthogonal to all of E⊥0 (U), and we

deduce that a section orthogonal to all of E⊥0 (U) must necessarily lie

in E0(U). The latter implies that E⊥>0 (U) ⊆ E0(U). But, E0(U) is

obviously contained in E⊥>0 (U), therefore E⊥>0 (U) = E0(U). Since U is

arbitrary, E⊥>0 = E0. Finally, set F0 := E⊥0 in (2.22); so

rank E⊥0 = corank E0.

Thus, we see in our special case that there is a bijection F0 7−→ F>0
between free sub-A-modules F0 ⊆ E∗ of finite rank and free sub-A-

modules of E with finite corank. Indeed, if F0 is given and of finite

rank, then by (2.22) corank F>0 = rank F0 is finite. Besides, if corank

E0 is finite, then rank E⊥0 = corank E0 is finite, and F0 = E⊥0 up to an

A-isomorphism. Again let us collect our results.
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Theorem 2.20 Let (E , E∗; ν) be the canonical free A-pairing, and let

E0 be a free A-module of E. Then E⊥>0 = E0 and E⊥0 = (E/E0)∗ within

an A-isomorphism, and rankE⊥0 = corank E0. The correspondence

F0 7−→ F>0 is a bijection between free sub-A-modules F0 ⊆ E∗ of finite

rank and all the free sub-A-modules of E with finite corank.

 
 
 



Chapter 3

Biorthogonality and hyperbolic

decomposition theorem

In this chapter, we show that results pertaining to biorthogonality in

pairings of vector spaces, see to this end, for instance [15], do hold

for biorthogonality in pairings of A-modules. However, for the rank

formula, the algebra sheafA is assumed to be a PID sheaf, that is, for

every open U ⊆ X, the algebra A(U) is a PID-algebra; in other words,

given a free A-module E and a sub-A-module F of E , F is section-wise

free. See [61]. The rank formula relates the rank of an A-morphism

and the rank of the kernel (sheaf) of the same A-morphism with the

rank of the source free A-module of the A-morphism concerned. Also,

in order to obtain an analog of the Witt’s hyperbolic decomposition

theorem, we assume that A is a PID.

Notation. We assume throughout this chapter, unless otherwise

mentioned, that the pair (X,A) is an algebraized space ([50, p. 96]),

where A is a unital C-algebra sheaf such that every nowhere-zero sec-

tion of A is invertible. Furthermore, all free A-modules are considered

to be torsion-free, that is, for any open subset U ⊆ X and nowhere-

zero section s ∈ E(U), if as = 0, where a ∈ A(U), then necessarily
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a = 0. Finally, left and right kernels in a canonical A-pairing (E , E∗; ν)

are simply denoted using superscripts ⊥ and > instead of the more

conventional ones ⊥ν and >ν.

3.1 Universal property of quotient A-modules

The universal property of quotient vector spaces (cf. [15, p. 15,

Théorème]) is generalized to the category of A-modules. From this

result, we show in Theorem 3.6 that duality and orthogonality in the

category of A-modules do relate. Finally, in Theorem 3.8, we obtain

that in a canonical free A-pairing orthogonality is reflexive for any free

sub-A-module of the defining free A-module of the A-pairing.

Theorem 3.1 Let E, F and G be A-modules.

1. Let φ ∈ HomA(E ,F) be a surjective A-morphism. Then, if

ψ ∈ HomA(E ,G) such that kerφ ⊆ kerψ, there exists a unique θ ∈
HomA(F ,G) such that the diagram

E
φ //

ψ ��?
??

??
??

? F
θ

��
G

commutes. In other words, the mapping θ 7→ θ◦φ is an A-isomorphism

from HomA(F ,G) onto the sub-A(X)-module of HomA(E ,G) consist-

ing of A-morphisms whose kernel contains kerφ.

2. Let φ ∈ HomA(F ,G) be an injective A-morphism. Then, if

ψ ∈ HomA(E ,G) such that Imψ ⊆ Imφ, there exists a unique θ ∈
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HomA(E ,F) making the diagram

E
θ

��

ψ

��?
??

??
??

?

F
φ

// G

commute. More precisely, the mapping θ 7→ φ◦θ is an A-isomorphism

from HomA(E ,F) onto the sub-A(X)-module of HomA(E ,G) consist-

ing of A-morphisms whose image is contained in Imφ.

Proof. Assertion 1. Uniqueness. Let θ1, θ2 ∈ HomA(F ,G) be

such that ψ = θ1 ◦ φ and ψ = θ2 ◦ φ. Fix an open subset U in X;

since φU is surjective, the equation θ1,U ◦ φU = θ2,U ◦ φU implies that

θ1,U = θ2,U . Thus, θ1 = θ2.

Existence. Fix an open subset U in X and consider an element

(section) t ∈ F(U). Since φU is surjective, there exists an element

s ∈ E(U) such that t = φU(s). Now, suppose there exists a r ∈ F(U)

with u ∈ kerψU and v /∈ kerψU as its pre-images by φU , i.e.

φU(v) = r = φU(u)

with u ∈ kerψU and v /∈ kerψU . Since φU is linear, φU(v − u) = 0;

so v − u ∈ kerφU ⊆ kerψU . But u ∈ kerψU , so v ∈ kerψU , which

yields a contradiction. We conclude that such a situation cannot occur.

Furthermore, the element ψU(s) does only depend on t. Let θU be the

A(U)-morphism sending F(U) into G(U) and such that

θU(t) = ψU(s);

that

ψU = θU ◦ φU

is clear.
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Next, let us consider the complete presheaves of sections of E , F
and G, respectively, viz.

Γ(E) ≡ (Γ(U, E), αUV ), Γ(F) ≡ (Γ(U,F), βUV ), Γ(G) ≡ (Γ(U,G), δUV ).

Given open subsets U and V of X such that V ⊆ U , since ψ ∈
HomA(E ,G), one has

ψV ◦ αUV = δUV ◦ ψU . (3.1)

But ψU = θU ◦ φU and ψV = θV ◦ φV , therefore, (4.9) becomes

θV ◦ φV ◦ αUV = δUV ◦ θU ◦ φU

or

θV ◦ βUV ◦ φU = δUV ◦ θU ◦ φU . (3.2)

Since φU is surjective, it follows from (3.2) that

θV ◦ βUV = δUV ◦ θU ,

which means that θ ≡ (θU)X⊇U, open is an A-morphism of F into G
such that

ψ = θ ◦ φ,

as required.

Assertion 2. Uniqueness. Let θ1, θ2 ∈ HomA(E ,F) be such that

ψ = φ ◦ θ1 and ψ = φ ◦ θ2. As φ is injective, the relation

φ ◦ θ1 = φ ◦ θ2

implies that θ1 = θ2, so uniqueness is obtained.

Existence. Fix an open subset U in X and consider an element

s ∈ E(U); since Imψ ⊆ Imφ, there exists a t ∈ F(U) such that

φU(t) = ψU(s). (3.3)
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But φU is injective, therefore such an element t is unique. Now, let θU

be the mapping of E(U) into F(U) sending an element s ∈ E(U) to

an element t ∈ F(U) such that (3.3) is satisfied. It is immediate that

θU is A(U)-linear, and one has

ψU = φU ◦ θU .

Finally, let Γ(E) ≡ (Γ(U, E), αUV ), Γ(F) ≡ (Γ(U,F), βUV ), Γ(G) ≡
(Γ(U,G), δUV ) be as above the complete presheaves of sections of E ,

F and G, respectively. Given open subsets U and V of X such that

V ⊆ U, since ψ ∈ HomA(E ,G), one has

ψV ◦ αUV = δUV ◦ ψU . (3.4)

But ψU = φU ◦ θU and ψV = φV ◦ θV , therefore, we deduce from (3.4)

that

φV ◦ θV ◦ αUV = δUV ◦ φU ◦ θU
or

φV ◦ θV ◦ αUV = φV ◦ βUV ◦ θU . (3.5)

Since φV is injective, it is clear from (3.5) that

θV ◦ αUV = βUV ◦ θU ,

which is to say that θ ≡ (θU)X⊇U, open is an A-morphism of E into F
such that

ψ = φ ◦ θ,

and the proof is complete.

The universal property of quotient A-modules is then obtained as

a corollary of Theorem 3.1. More precisely, one has

Corollary 3.2 (Universal property of quotient A-modules) Let

E be an A-module, E ′ a sub-A-module of E, and φ the canonical A-

morphism of E onto E/E ′. The pair (E/E ′, φ) satisfies the following

universal property:
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Given any pair (F , ψ) consisting of an A-module F and an A-

morphism ψ ∈ HomA(E ,F) such that E ′ ⊆ kerψ, there exists a unique

A-morphism ψ̃ ∈ HomA(E/E ′,F) such that the diagram

E
φ //

ψ !!CC
CC

CC
CC

C E/E ′

ψ̃
��
F

commutes, i.e.

ψ = ψ̃ ◦ φ.

The kernel of ψ̃ equals the image by φ of the kernel of ψ, and the

image of ψ̃ equals the image of ψ.

The mapping

θ 7→ θ ◦ φ

is an A-isomorphism of the A(X)-module HomA(E/E ′,F) onto the

sub-A(X)-module of HomA(E ,F) consisting of A-morphisms of E into

F whose kernel contains E ′.

Proof. Apply assertion 1 of Theorem 3.1.

Similarly to the classical case (cf. [15, p. 15, Corollary 1]), we

also have the following corollary, the proof of which is an easy exercise

and is, for that reason, omitted.

Corollary 3.3 Let E and F be A-modules and φ ∈ HomA(E ,F).

Then,

(1) E/ kerφ = Im φ within an A-isomorphism.

(2) Given a sub-A-module F ′ of F , E ′ ≡ φ−1(F ′) is a sub-A-module

of E containing kerφ; moreover, F ′ = φ(E ′) if φ is surjective.
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(3) Conversely, if E ′ is a sub-A-module of E containing kerφ, then

F ′ ≡ Im E ′ is a sub-A-module of F such that E ′ = φ−1(F ′).

As a further application of the universal property of quotient A-

modules, we have

Corollary 3.4 Let E be a free A-module, and E1 a free sub-A-module

of E. Then, the A-morphism φ ≡ (φU)X⊇U, open ∈ HomA(E∗, E∗1 ) such

that every φU maps an element (ψV )U⊇V, open of E∗(U) onto its restric-

tion

(ψV |E1(V ))U⊇V, open ∈ E∗1 (U)

is surjective, and has E⊥1 ⊆ E∗ as its kernel. Moreover,

E∗/E⊥1 = E∗1

within an A-isomorphism.

Proof. That kerφ = E⊥1 is clear. Now, let E2 be a free sub-A-

module of E complementing E1. It follows (cf. [50, p. 137, relations

(6.21), (6.22)] that

E∗ = E∗1 ⊕ E∗2 ,

so that if U is open in X and

ψ ≡ (ψV )U⊇V, open ∈ E∗1 (U) and θ ≡ (θV )U⊇V, open ∈ E∗2 (U),

then

Ω ≡ ψ + θ ∈ E∗(U).

If V is open in U and s ∈ E(V ), so s is uniquely written as s = r + t

where r ∈ E1(V ) and t ∈ E2(V ), then

ΩV (s) = ψV (r) + θV (t).
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Consequently,

φU(Ω) = (ΩV |E1(V ))U⊇V, open = ψ;

thus φU is surjective. Hence, applying Corollary 3.3 (1), we obtain an

A-isomorphism

E∗/E⊥1 ' E∗1 .

Now, let us introduce the notion of A-projection.

Definition 3.5 Let E be an A-module, F and G two supplementary

sub-A-modules of E . The A-endomorphism

πF ≡ (πFU )X⊇U, open ∈ HomA(E , E) := EndA(E)

such that, for any section s ∈ E(U) ≡ Γ(E)(U) := Γ(U, E),

πFU (s) ≡ πFU (r + t) := r,

where s = r + t with r ∈ F(U) and t ∈ G(U), is called the A-

projection onto F (parallel to G). In a similar way, one defines

the A-projection onto G (parallel to F).

Theorem 3.6 Let E be a free A-module, E1 and E2 two free sub-A-

modules of E the direct sum of which is A-isomorphic to E, π1 ≡ πE1,

π2 ≡ πE2 the corresponding A-projections. Then,

E∗ = E⊥1 ⊕ E⊥2 ,

and the A-projections π′1 ≡ πE
⊥
1 , π′2 ≡ πE

⊥
2 associated with this direct

decomposition are given by setting

π′1,U(α) := (αV ◦ π2,V )U⊇V, open and π′2,U(α) := (αV ◦ π1,V )U⊇V, open

for any α ≡ (αV )U⊇V, open ∈ E∗(U).
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As a precaution, we signal that the proof of this theorem requires

results pertaining to Theorem 2.9.

Proof. Fix an open set U in X. That (αV ◦ π2,V )U⊇V, open and

(αV ◦ π1,V )U⊇V, open belong to E⊥1 (U) and E⊥2 (U), respectively, is obvi-

ous. For any open V ⊆ U, the relation

αV = αV ◦ π1,V + αV ◦ π2,V

shows that

E∗(U) = E⊥1 (U) + E⊥2 (U).

Finally, suppose that there exists β ≡ (βV )U⊇V, open in E⊥1 (U) ∩
E⊥2 (U); since βV (s) = 0 for any open V ⊆ U and any s ∈ E(V ) =

E1(V )⊕ E2(V ), it follows that β = 0 (cf. Theorem 2.9). Thus,

E∗(U) = E⊥1 (U)⊕ E⊥2 (U)

and hence

E∗ = E⊥1 ⊕ E⊥2
as claimed.

An interesting result may be derived from Theorem 2.15, viz.:

Theorem 3.7 Let E be a free A-module, E1 a free sub-A-module of

E, and φ the canonical A-morphism of E onto (the free sub-A-module)

E/E1. The A-morphism

Λ ≡ (ΛU)X⊇U, open : (E/E1)∗ −→ E∗

such that, given any open subset U ⊆ X and a section ψ ≡ (ψV )U⊇V, open ∈
(E/E1)∗(U) := HomA|U ((E/E1)|U ,A|U),

ΛU(ψ) := (ψV ◦ φV )U⊇V, open

is an A-isomorphism of (E/E1)∗ onto E⊥1 , where E⊥1 is the A-orthogonal

of E1 in the canonical A-pairing (E , E∗;A).
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Proof. It is clear that Λ is indeed an A-morphism. Now, let us fix

an open set U in X and let us consider a section ψ ≡ (ψV )U⊇V, open ∈
(E/E1)∗(U). Then, ΛU(ψ) = 0 if for any open V in U and s ∈ E(V ),

ΛU(ψ)(s) = 0.

But

ΛU(ψ)(s) = (ψV ◦ φV )(s) = ψV (φV (s)) = 0,

therefore, by Theorem 2.8 ,

ψV = 0.

It follows that

ker ΛU = 0,

and consequently

ker Λ = 0;

in other words, Λ is injective.

Next, for every ψ ≡ (ψV )U⊇V, open ∈ (E/E1)∗(U), where U is a

fixed open set in X,

ΛU(ψ)(s) = (ψV ◦ φV )(s) = 0,

where s is any element in E1(V ); that is

ΛU(ψ) ∈ E⊥1 (U),

from which we deduce that

Im Λ ⊆ E⊥1 .

Finally, let us consider, for every open V ⊆ U, the following

commutative diagram

E(V )
φV//

ψV ◦φV &&MMMMMMMMMM
(E/E1)(V )

ψV
��

A(V )

.

 
 
 



48 Biorthogonality and hyperbolic decomposition theorem

The universal property of quotient A-modules (cf. Corollary 3.2) shows

that, given an element σV ∈ HomA(V )(E(V ),A(V )) such that

kerφV ⊆ kerσV , i.e., σV (E1(V )) = 0, there is a unique

ψV ∈ HomA(V )((E/E1)(V ),A(V )) such that

σV = ψV ◦ φV .

It is clear that the family σ ≡ (σV )U⊇V, open is an A-morphism E|U −→
A|U satisfying the property:

σ = ψ ◦ φ.

Thus, Λ is surjective and the proof is finished.

As a result, based essentially on everything above, we have

Theorem 3.8 Let (E , E∗;A) be the canonical free A-pairing and E1 a

free sub-A-module of E. Then,

(1) (E⊥1 )> = E1 within an A-isomorphism.

(2) E1 has finite rank if and only if E⊥1 has finite corank in E∗, and

then one has

rank E1 = corankE∗ E⊥1 .

(3) E1 has finite corank in E if and only if E⊥1 has finite rank, and

corankE E1 = rank E⊥1 .

Proof. Assertion (1). Let E2 be a free sub-A-module of E , com-

plementing E1. By Theorem 3.6,

E∗ ' E⊥1 ⊕ E⊥2 .

We already know that E1 ⊆ (E⊥1 )>. Now, consider a section s ∈
(E⊥1 )>(U); there exist r ∈ E1(U) and t ∈ E2(U) such that s = r+t. The
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section t is orthogonal to E⊥2 (U), and since r and s are orthogonal to

E⊥1 (U), we then have that t is orthogonal to E⊥1 (U)⊕E⊥2 (U) ' E∗(U).

It follows from Theorem 2.8 that t = 0; thus (E⊥1 )>(U) ⊆ E1(U), and

hence (E⊥1 )> ⊆ E1.

Assertion (2). Since E1 is free, it follows that E∗1 ' E1 (cf. [50, p.

298, (5.2)]). Thus, E1 has finite rank if and only if E∗1 has finite rank,

and

rank E∗1 = rank E1.

But, by Corollary 3.4, E∗/E⊥1 is A-isomorphic to E∗1 , therefore

rank E1 = corankE∗E⊥1 .

Assertion (3). Let E2 be a free sub-A-module of E complementing

E1. But E/E1 is A-isomorphic to E2 (cf. Corollary 2.4), therefore E/E1
is free; consequently E/E1 has finite rank if and only if (E/E1)∗ has

finite rank, and one has

(E/E1)∗ ' E/E1

so that

corankEE1 = rank E/E1 = rank (E/E1)∗.

But, by Theorem 3.7, (E/E1)∗ ' E⊥1 within an A-isomorphism, so the

assertion is corroborated.

3.2 Biorthogonality with respect to arbitrary A-

bilinear forms

In this section, we investigate usual results pertaining to biorthogo-

nality in pairings of vector space in the setting of A-pairings defined
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by arbitrary A-bilinear morphisms. The section ends with the Witt’s

hyperbolic decomposition theorem for A-modules.

Let us introduce a set of notions we will be concerned with in the

sequel.

Definition 3.9 An A-module E is called a generalized locally free

A-module if there exist an open covering U ≡ (Uα)α∈I of X and a

number n(α) ∈ N for every open set Uα such that

E|Uα = An(α)|Uα.

The open covering U is called a local frame.

Example 3.10 Consider a freeA-module E , whereA is a PID-algebra

sheaf. Then, every sub-A-module of E is a generalized locally free A-

module.

Definition 3.11 Let (E ,F ;φ) be a freeA-pairing. The triple (E ,F ;φ)

is called a generalized orthogonally convenient A-pairing if for

all generalized locally free sub-A-modules E0 and F0 of E and F , re-

spectively, their orthogonal E⊥φ0 and F>φ0 are generalized locally free

sub-A-modules of F and E , respectively. If for all free sub-A-modules

E0 ⊆ E and F0 ⊆ F , E⊥φ0 and F>φ0 are free sub-A-modules of F and

E , (E ,F ;φ) is called an orthogonally convenient A-pairing.

Definition 3.12 Let E and F be free A-modules. An A-morphism

φ ∈ HomA(E ,F) is called free if Im φ is a free sub-A-module of F .

The rank of Im φ is called the rank of φ, and is denoted rank φ.

We may now state the counterpart of the fundamental theorem of

the classical theory, see [15, p. 54, Théorème 6.4].
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Theorem 3.13 Let φ ∈ HomA(E ,F) be a free A-morphism. Then,

the rank of φ is finite if and only if the kernel of φ has finite corank

in E. Moreover, one has

rank φ := rank Im φ = corankE kerφ.

Proof. Corollary 3.3(1) shows that the quotient free A-module

E/ kerφ is A-isomorphic to Im φ.

Corollary 3.14 Let A be a PID algebra sheaf and E, F free A-

modules. Then, if rank E is finite, every free A-morphism

φ ∈ HomA(E ,F) has finite rank, and

rank(φ) + rank ker(φ) = rank E . (3.6)

The formula above is called the rank formula.

Proof. Indeed, given that every A(U), where U is open in X, is

a PID algebra, it follows that ker(φU) is a free sub-A(U)- module of

the free A(U)-module E(U). By elementary module theory (see, for

instance, [1, p. 173, Proposition 8.8] or [6, p. 105, Corollary 2]), we

have

rank ker(φU) + rank Im(φU) = rank E(U).

Since for any subsets U and V of X, rank ker(φU) = rank ker(φV ), it

follows that ker(φ) is a free sub-A-module of E , and therefore

rank ker(φ) + rank Im(φ) = rank E ,

or

rank ker(φ) + rank(φ) = rank E .
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Theorem 3.15 Let (E , E∗;A) be the canonical free A-pairing, and F
a free sub-A-module of E∗. F has finite rank if and only if F> has

finite corank in E; moreover, one has

rank F = corankEF>; (F>)⊥ = F .

Proof. The case F = 0 is trivial.

Suppose that F has finite rank; let U be an open subset of X,

(eU∗1 , . . . , eU∗n ) a canonical (local) gauge of F (cf. [50, p. 291, (3.11)

along with p. 301, (5.17) and (5.18)]), and φ ∈ HomA(E ,An) be such

that if s ∈ E(U),

φU(s) := (eU∗1 (s), . . . , eU∗n (s)).

It is clear that φ is indeed an A-morphism of E into An whose kernel

is F>, which is a free sub-A-module of E for the simple reason that

canonical free A-pairings are orthogonally convenient, (see Chap. II,

Theorem 2.1). It is also clear that Im φ is A-isomorphic to the free

A-module An; thus, by Theorem 3.13, one has

rank(φ) := corankEF> = rank F . (3.7)

According to Theorem 3.8(3), (F>)⊥ has finite rank, and

rank (F>)⊥ = corankEF>. (3.8)

Since F is contained in (F>)⊥, we deduce from (3.7) and (3.8) that

F = (F>)⊥.

Conversely, suppose that F> has finite corank in E ; then (F>)⊥

has finite rank, and thus F as well, as F is contained in (F>)⊥.

Given an A-pairing (E ,F ;φ), if φ is non-degenerate (cf. Defini-

tion 2.10), then both insertion A-morphisms φR and φL are injective.
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Moreover, if E and F are both free A-modules of finite rank, then,

E = F within an A-isomorphism.

The case where ((E ,F ;φ);A) is an orthogonally convenient pair-

ing and φ is degenerate is interesting, for it yields the following result.

Theorem 3.16 Given an orthogonally convenient pairing

((E ,F ;φ);A), where E and F are free A-modules of finite rank, the

free quotient A-modules E/F>φ and F/E⊥φ have the same rank, i.e.

E/F>φ = F/E⊥φ

within an A-isomorphism.

Proof. Since ((E ,F ;φ);A) is orthogonally convenient, kernels

E⊥φ and F>φ are free sub-A-modules of F and E , respectively. By

[52], it follows that the quotient A-modules E/F>φ and F/E⊥φ are

free, and for any open subset U of X,

(E/F>φ)(U) = E(U)/F>φ(U) = E(U)/F(U)>
φ

and

(F/E⊥φ)(U) = F(U)/E⊥φ(U) = F(U)/E(U)⊥φ

within A(U)-isomorphism. Clearly, for a fixed open U ⊆ X, if s ∈
E(U) and t, t1 ∈ F(U) such that t− t1 ∈ E⊥φ(U), then

φU(s, t) = φU(s, t1).

In the same vein, if s = s1 mod F>φ(U) and t = t1 mod E⊥φ(U),

then

φU(s, t) = φU(s1, t1).

Now, let us consider the A-bilinear morphism

φ ≡ (φU)X⊇U, open ≡ ((φ)U)X⊇U, open : E/F>φ ⊕F/E⊥φ −→ A,
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induced by theA-bilinear morphism φ, which is such that, for any open

U ⊆ X and sections s := cl(s) mod F>φ(U), t := cl(t) mod E⊥φ(U)

(cl(s) stand for the equivalence class containing s), one has

φU(s, t) := φU(s, t).

It is clear that φU(s, t) = 0 for any s ∈ (E/F>φ)(U) = E(U)/F>φ(U) is

equivalent to φU(s, t) = 0 for any s ∈ E(U); therefore t ∈ E⊥φ(U) = 0

and hence t = 0. This implies that (E/F>φ)⊥φ = 0. Similarly, that

φU(s, t) = 0 for any t ∈ (F/E⊥φ)(U) = F(U)/E⊥φ(U) is equivalent

to s = 0, from which we deduce that (F/E⊥φ)>φ = 0. Hence, φ is

non-degenerate; so

E/F>φ = F/E⊥φ

within an A-isomorphism.

Theorem 3.17 Let A be a PID algebra sheaf, (E ,F ;φ) an orthogo-

nally convenient A-pairing with rank E and rank F finite. Moreover,

let φL and φR be the left and right insertion A-morphisms associated

with φ. Then,

(1) For every free sub-A-modules G and H of E and F , respectively,

one has

1.1) φR(G) ' (G⊥φ)⊥ and φL(H) ' (H>φ)⊥.

1.2) rank φR(G) = corankFG⊥φ and rank φL(H) = corankEH>
φ

.

(2) A-morphisms φL and φR have the same rank:

rank(φL) = rank(φR), (3.9)

which is the rank of φ.

Proof. Assertion (1). Since (E ,F ;φ) is orthogonally convenient,

the sub-A-module G⊥φ is free, and thus

G⊥φ(U) ' G(U)⊥φ
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for every open U ⊆ X. By Lemma 2.14,

G⊥φ = (φL(G))>

within an A-isomorphism. Applying Theorem 3.15, and since rank F
is finite, we have

(G⊥φ)⊥ = φLG

within an A-isomorphism. By the same theorem along with Theorem

3.8, it follows that

rank G⊥φ + rank φLG = rank F ,

from which we deduce that

rank φLG = corankFG⊥φ.

In particular,

rank(φL) = corankFE⊥φ. (3.10)

In a similar way, one shows the claims related to the induced A-

morphism φR by using the fact that rank E is finite. The analog of

(3.10) is

rank(φL) = corankEF>
φ

. (3.11)

Assertion (2). That

ker(φL) ' E⊥φ and ker(φR) ' F>φ

is immediate. Applying the rank formula (Corollary 3.14), we obtain

rank(φR) := rank φR(F) = rank F − rank E⊥φ = corankFE⊥φ, (3.12)

and

rank(φL) := rank φL(E) = rank E − rank F>φ = corankEF>
φ

. (3.13)

From (3.10), (3.11), (3.12) and (3.13), one gets (3.9).
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Corollary 3.18 Let A be a PID algebra sheaf and (E ,F ;φ) an or-

thogonally convenient A-pairing with free A-modules E and F both of

finite rank.

(1) For every free sub-A-modules G and H of E and F , respectively,

one has

1.1) rank G⊥φ ≥ rank F−rank G and rank H>φ ≥ rank E−rank H

1.2) (G⊥φ)>φ ⊇ G and (H>φ)⊥φ ⊇ H.

(2) If φ is nondegenerate, then

2.1) rank G⊥φ + rank G = rank F = rank E = rank H>φ + rank H

2.2) (G⊥φ)>φ ' G and (H>φ)⊥φ ' H.

Proof. Assertion (1). Theorem 3.20 shows that

rank φL(G) = corankFG⊥φ = rank F − rank G⊥φ.

On the other hand, by virtue of Corollary 3.14, one has

rank φL(G) = rank G − rank (kerφL ∩ G).

It follows, in particular, that

rank G ≥ rank φL(G),

from which we have

rank G⊥φ ≥ rank F − rank G.

Likewise, one shows the second inequality of 1.1).

Assertion (2). If φ is nondegenerate, rank E = rank F ; therefore

φL is an A-isomorphism of E onto F∗. Thus, rank φL(G) = rank G,

and

rank G⊥φ = rank F − rank G.
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Likewise, one has

rank H>φ = rank E − rank H.

Applying relation 2.1) of Corollary 3.18 to the free sub-A-modules

G and G⊥φ of E and F , respectively, we see that

rank (G⊥φ)>φ = rank G.

Since G is contained in (G⊥φ)>φ, it follows that

(G⊥φ)>φ = G

within an A-isomorphism. In a similar way, we show that (H>φ)⊥φ =

H within an A-isomorphism.

We will soon turn to the hyperbolic decomposition theorem for A-

modules. However, the so-called theorem requires some preparations.

Lemma 3.19 Let (E , φ) be a symplectic A-module (An A-module with

a symplectic A-morphism (cf. Definition4.1)), U an open subset of

X and (r1, . . . , rn) ⊆ E(U) an arbitrary (local) gauge of E. For any

r ≡ ri, 1 ≤ i ≤ n, there exists a nowhere-zero section s ∈ E(U) such

that φU(r, s) is nowhere zero.

Proof. Without loss of generality, assume that r1 = r. On the

other hand, since the induced A-morphism φ̃ ∈ HomA(E , E∗) is one-

to-one and both E and E∗ have the same finite rank, it follows that the

matrix D representing φU (see also [1, p. 357, Theorem 2.21, along

with p. 356, Definition 2.19] or [15, p. 343, Proposition 20.3]), with

respect to the basis (r1, . . . , rn), has a nowhere-zero determinant ; so

since

detD =
n∑
i=1

(−1)1+iφ(r1, ri) detD1i = φ(r1,
n∑
i=1

(−1)1+i detD1iri),
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whereD1i is the minor of the corresponding φ(r1, ri), and detD nowhere

zero, we thus have a section s :=
∑n

i=1(−1)1+i detD1iri ∈ E(U) such

that φ(r, s) is nowhere zero.

For the purpose of Theorem 3.21 below, we require the following

result, see [52].

Theorem 3.20 Let E be a free A-module of finite rank, equipped with

an A-bilinear morphism φ : E ⊕ E −→ A. Then, every non-isotropic

free sub-A-module F of E is a direct summand of E; viz.

E = F⊥F⊥φ.

So, we have

Theorem 3.21 (Hyperbolic Decomposition Theorem) Let A a

PID algebra sheaf on X and (E , E ;φ) an orthogonally convenient self-

pairing, where φ is non-degenerate and skew-symmetric. Then, if F
is a totally isotropic (free) sub-A-module of rank k, there is a non-

isotropic sub-A-module H of E of the form

H := H1⊥ · · ·⊥Hk,

where if (r1,U , . . . , rk,U) is a basis of F(U) (with U an open subset of

X), then ri,U ∈ Hi(U) for 1 ≤ i ≤ k.

Proof. Suppose that k = 1, i.e. F = A, within anA-isomorphism.

If F(X) = [rX ] with rX ∈ E(X) a nowhere-zero section, then for every

open U ⊆ X, rU ≡ rX |U generates the A(U)-module F(U). Since φX

is non-degenerate, by Lemma 3.19, there exists a nowhere-zero section

sX ∈ E(X) such that φX(rX , sX) is nowhere zero. The correspondence

U 7−→ H(U) := [rU , sU ] ≡ [rX |U , sX |U ],
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where U runs over the open sets in X, along with the obvious restric-

tion maps yields a complete presheaf of A(U)-modules on X. Clearly,

the pair (H, φ), where φ is the A-bilinear φ : H⊕H −→ A such that

(r, s) 7−→ φU(r, s) := φU(r, s),

where r, s ∈ H(U), is non-isotropic. Hence, the theorem holds for the

case k = 1. Let us now proceed by induction to k > 1. To this end, put

Fk−1 ' Ak−1 and Fk := F ' Ak. Then, Fk−1 & Fk, so F⊥φk & F⊥φk−1.
Since orthogonals of free sub-A-modules in an orthogonally convenient

A-module are free sub-A-modules, the inclusion F⊥φk & F⊥φk−1 implies

that, if F⊥φk−1 ' Am and F⊥φk ' An with n < m, then there exists a

sub-A-module G ⊆ F⊥φk−1 such that G ' Am−n. For every open U ⊆ X,

pick a nowhere-zero section sk,U ∈ G(U), and put Hk(U) = [rk,U , sk,U ].

The correspondence

U 7−→ Hk(U),

where U is open in X, along with the obvious restriction maps, is

a complete presheaf of A(U)-modules. Since φU(ri,U , sk,U) = 0 for

1 ≤ i ≤ k − 1, φU(rk,U , sk,U) is nowhere zero. Hence, Hk(U) is a non-

isotropic A(U)-plane containing rk,U . By Theorem 3.20 E = Hk⊥H
⊥φ
k .

Since rk,U , sk,U ∈ F
⊥φ
k−1(U), Hk(U) ⊆ F⊥φk−1(U) for every open U ⊆ X;

so Hk ⊆ F
⊥φ
k−1, which in turn implies that Fk−1 ⊆ H

⊥φ
k . Apply an

inductive argument to Fk−1 regarded as a sub-A-module of the non-

isotropic A-module H⊥φk .

 
 
 



Chapter 4

Symplectic and orthogonal

A-modules

The study of a finite dimensional vector space with respect to a non-

degenerate skew-symmetric form is called symplectic geometry. See

[39, pp 372-384]. In the same vein, we call the study of a free A-

module E of finite rank, endowed with a symplectic A-bilinear form

φ abstract symplectic geometry, i.e., symplectic geometry within the

setting of abstract differential geometry. If the A-bilinear form is or-

thosymmetric (the definition of an orthosymmetric A-bilinear form is

adapted from the classical one) on an A-module E (E is not here neces-

sarily free), then φ is section-wise either symmetric (the corresponding

geometry is called orthogonal) or skew-symmetric (the corresponding

geometry is called symplectic), cf Theorem 4.4. The chapter ends with

the structure of orthogonal geometry, of which the Cartan-Dieudonné

theorem is the main result. Briefly, Cartan-Dieudonné’s theorem stip-

ulates that A-isometries are products of symmetries with respect to

non-isotropic hyperplanes. The structure of symplectic geometry is

carried out in Chapter 5.

We will assume in this chapter that the pair (X,A) is an ordered
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algebraized space with A a unital commutative torsion-free C-algebra

sheaf such that all its nowhere-zero sections are invertible, viz. if

s ∈ A(U), where U is open in X, is such that s|V 6= 0 for every open

V ⊆ U , then s ∈ A(U)• ' A•(U) (A• denotes the sheaf generated

by the complete presheaf U 7−→ A(U)•, where U runs over the open

subsets of X, and A(U)• consists of the invertible elements of the

unital C-algebra A(U); (cf. [50]). By a torsion-free C-algebra sheaf

A, we mean that if s, t ∈ A(U) are nowhere zero and U arbitrary,

then s · t is nowhere zero.

4.1 Affine Darboux theorem

Definition 4.1 Let E be an A-module. A symplectic A-morphism

(or symplectic A-form) on E is a skew-symmetric and

non-degenerate A-bilinear form on E .

Theorem 4.2 Let E be a free A-module of rank 2n, φ a skew-symmetric

non-degenerate A-bilinear form on E, and I and J two (possibly empty)

subsets of {1, . . . , n}. Moreover, let A = {ri ∈ E(U) : i ∈ I} and

B = {sj ∈ E(U) : j ∈ J} be such that ri, sj (i ∈ I, j ∈ J) are

nowhere zero, and

φU(ri, rj) = φU(si, sj) = 0, φU(ri, sj) = δij, (i, j) ∈ I × J. (4.1)

Then, there exists a basis B of (E(U), φU) containing A ∪B.

Proof. As in [25, pp. 12, 13, Theorem 1.15], we have three cases.

With no loss of generality, we assume that U = X.

(1) Case: I = J = ∅. Since A2n 6= 0 ( we already assumed that

C ≡ CX ⊆ A), there exists an element

0 6= r1 ∈ E(X) ' A2n(X) ' A(X)2n
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(take e.g. the image (by the isomorphism E(X) ' A2n(X)) of an el-

ement in the canonical basis of (sections) of A2n(X)). By virtue of

Lemma 3.19, there exists a section s1 ∈ E(X) such that φV (r1|V , s1|V ) 6=
0 for any open subset V in X. Thus, based on the hypothesis on

A, φX(r1, s1) is invertible in A(X). Putting s1 := u−1s1, where

u ≡ φX(r1, s1) ∈ A(X), one gets

φX(r1, s1) = 1.

Now, let us consider

S1 := [r1, s1],

that is, the A(X)-plane, spanned by r1 and s1 in E(X), along with its

orthogonal complement in E(X), i.e.,

S⊥1 ≡ T1 := {t ∈ E(X) : φX(t, z) = 0, for all z ∈ S1}.

The sections r1 and s1 are linearly independent, for if s1 = ar1, with

a ∈ A(X), then

1 = φX(r1, s1) = φX(r1, ar1) = aφX(r1, r1) = 0,

a contradiction. So, {r1, s1} is a basis of S1. Furthermore, we prove

that

(i) S1 ∩ T1 = 0, (ii) S1 + T1 = E(X).

Indeed, (i) since φX(r1, s1) 6= 0, we have S1 ∩ T1 = 0. On the other

hand, (ii) for every z ∈ E(X), one has

z = (−φX(z, r1)s1 + φX(z, s1)r1) + (z + φX(z, r1)s1 − φX(z, s1)r1),

with

−φX(z, r1)s1 + φX(z, s1)r1 ∈ S1,

and

z + φX(z, r1)s1 − φX(z, s1)r1 ∈ T1.

Thus,

E(X) = S1 ⊕ T1.
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The restriction φ1 ≡ φ1,X of φX to T1 is non-degenerate as E (in

particular, E(X)) is non-isotropic. (T1, φ1) is thus a symplectic free

A(X)-module of rank 2(n − 1). Repeating the construction above

n− 1 times, we obtain a strictly decreasing sequence

(E(X), φX) ⊇ (T1, φ1) ⊇ · · · ⊇ (Tn−1, φn−1)

of symplectic free A(X)-modules with rank Tk = 2(n − k), k =

1, . . . , n− 1, and also an increasing sequence

{r1, s1} ⊆ {r1, r2; s1, s2} ⊆ · · · ⊆ {r1, . . . , rn; s1, . . . , sn}

of gauges; each satisfying relations (4.1).

(2) Case I = J 6= ∅. We may assume without loss of generality

that I = J = {1, 2, . . . , k}, and let S be the submodule spanned by

{r1, . . . , rk; s1, . . . , sk}. Clearly, φX |S is non-degenerate; by Adkins-

Weintraub [1, Lemma (2.31), p.360], it follows that S ∩ S⊥ = 0. On

the other hand, let z ∈ E(X). One has

z = (−
k∑
i=1

φX(z, ri)si +
k∑
i=1

φX(z, si)ri)

+(z +
k∑
i=1

φX(z, ri)si −
k∑
i=1

φX(z, si)ri),

with

−
k∑
i=1

φX(z, ri)si +
k∑
i=1

φX(z, si)ri ∈ S,

and

z +
k∑
i=1

φX(z, ri)si −
k∑
i=1

φX(z, si)ri ∈ S⊥.

Thus,

S ⊕ S⊥ = E(X).
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Based on the hypothesis on S1 the restriction φX |S is a symplectic A-

bilinear form. (It is also easily seen that the restriction φX |S⊥ is skew-

symmetric.) Moreover, since S ⊕ S⊥ and E(X)⊥ = 0, if there exist

z1 ∈ S⊥ such that φX(z1, z) = 0 for all z ∈ S⊥, then z1 ∈ E(X)⊥ = 0,

i.e., z1 = 0. Thus, φX |S⊥ is non-degenerate and hence a symplectic A-

form. Applying Case (1) , we obtain a symplectic basis of S⊥, which

we denote as

{rk+1, . . . , rn; sk+1, . . . , sn}.

Then,

B = {r1, . . . , rn; s1, . . . , sn}

is a symplectic basis of E(X) with the required property.

(3) Case J \ I 6= ∅ (or I \ J 6= ∅). Suppose that k ∈ J \ I; since

φX is non-degenerate there exists rk ∈ E(X) such that φX(rk, sk) 6= 0

in the sense that φV (rk|V , sk|V ) 6= 0 for any open V ⊆ X. In other

words, the section v ≡ φX(rk, sk) ∈ A(X) is nowhere zero, and is

therefore invertible. So, if rk := v−1rk, we have φX(rk, sk) = 1. Next,

let us consider the sub-A(X)-module R, spanned by rk and sk, viz.

R = [rk, sk]. As in Case (1), we have

E(X) = R⊕R⊥.

Clearly, for every i ∈ I, ri ∈ R⊥. To show this, fix i in I, and assume

that ri = ark + bsk + x, where a, b ∈ A(X) and x ∈ R⊥. So, one has

0 = φX(ri, sk) = a, 0 = φX(ri, rk) = b,

which corroborates the claim that ri ∈ R⊥ for all i ∈ I. Furthermore,

we also clearly have that for every j 6= k in J , sj ∈ R⊥. Then A∪B ∪
{rk} is a family of linearly independent sections: the equality

akrk +
∑
i∈I

airi +
∑
j∈J

bjsj = 0
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implies that ak = ai = bj = 0. Repeating this process as many times

as necessary, we are lead back to Case (2), and the proof is finished.

Referring to Theorem 4.2, the basis B is called a symplectic

A(U)-basis of (E(U), φU).

4.2 Orthosymmetric A-bilinear forms

The purpose of this section is to characterize the kinds of geometries

defined by symmetric and skew-symmetric A-bilinear morphisms on

A-modules. In classical theory, given a vector space E and a bilinear

form B : E ⊕ E −→ K, where K is either R or C, if B is orthosym-

metric (that is B(x, y) = 0 if and only if B(y, x) = 0, for all x, y ∈ E),

then B must either be symmetric or skew-symmetric. Cf. [16, pp. 4, 5]

and [33, pp. 90, 91]. If B is symmetric, the geometry is called orthogo-

nal. On the other hand, if B is skew-symmetric, the geometry is called

symplectic. No other case can occur if B is to be orthosymmetric.

In the present setting, this classical result above is verifiable

section-wise. We will elaborate on the afore-mentioned result, but

first we need the following definition.

Definition 4.3 An A-bilinear form φ : E ⊕ E −→ A on an A-module

E is called orthosymmetric if the following is true:

E⊥ = E>. (4.2)

Equivalently, Equation (4.2) means that, for every open U ⊆ X

and (local) sections t ∈ E(U), s ∈ E(V ), with V an open subset of U ,
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we have

φV (s, t|V ) = 0 if, and only if, φV (t|V , s) = 0.

It is clear that if φ is symmetric or skew-symmetric, then φ is

orthosymmetric. The following theorem shows that the converse of

the preceding statement is true section-wise.

Theorem 4.4 Let E be an A-module and φ : E ⊕ E −→ A an or-

thosymmetric A-bilinear form. Then, section-wise φ is either symmet-

ric or skew-symmetric.

Proof. Let U be an open subset of X, and r, s, t ∈ E(U). Clearly,

we have

φU(r, φU(r, t)s)− φU(r, φU(r, s)t) =

φU(r, t)φU(r, s)− φU(r, s)φU(r, t) = 0,

but

φU(r, φU(r, t)s− φU(r, s)t) = 0

is equivalent to

φU(φU(r, t)s− φU(r, s)t, r) = 0;

thus we obtain

φU(r, t)φU(s, r) = φU(r, s)φU(t, r). (4.3)

For t = r, φU(r, r)φU(s, r) = φU(r, s)φU(r, r). If

φV (r|V , s|V ) 6= φV (s|V , r|V ), for any open V ⊆ U, (4.4)

then, since A is torsion-free,

φU(r, r) = 0.
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(We note in passing that (4.4) suggests that both φV (r|V , s|V ) and

φV (s|V , r|V ) are nowhere zero on V , because if, for instance,

φV (r|V , s|V )(x) = 0 for some x ∈ V then φV (r|V , s|V ) = 0 on some

open neighborhood R ⊆ V of x (cf. Mallios [50, (3.7), p.13]), i.e., as-

suming that (ρUV ) and (σUV ) are the restriction maps for the presheaves

of sections of E and A, respectively, we have

σUR(φU(s, r)) = φR(ρUR(s), ρUR(r)) ≡ φR(s|R, r|R) = 0,

which, by hypothesis, is equivalent to φR(r|R, s|R) = 0. That is a

contradiction to (4.4).)

Similarly, as

φU(s, φU(s, t)r)− φU(s, φU(s, r)t) = 0,

which, obviously, leads to

φU(s, t)φU(r, s) = φU(s, r)φU(t, s); (4.5)

one has, for t = s,

φU(s, s)φU(r, s) = φU(s, r)φU(s, s).

Using (4.4) and since A is torsion-free, we have

φU(s, s) = 0.

We actually have more than just what we have obtained so far. Indeed,

if (4.4) holds, then φU(t, t) = 0 for all t ∈ E(U). We prove this

statement as follows.

(A) Let φV (r|V , t|V ) 6= φV (t|V , r|V ) for any open V ⊆ U . Since

φU(t, r)φU(s, t) = φU(t, s)φU(r, t), (4.6)

by putting s = t, we have φU(t, t) = 0.
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(B) Suppose that there exists an open W ⊆ U such that

φW (r|W , t|W ) = φW (t|W , r|W ). Then, by virtue of (4.3) and

since φW (r|W , s|W ) 6= φW (s|W , r|W ) everywhere on W , it follows that

φW (r|W , t|W ) = 0.

On the other hand, suppose that φV (s|V , t|V ) 6= φV (t|V , s|V ) for any

open V ⊆ U . Putting r = t in (4.6), one gets φU(t, t) = 0. Now,

assume that there exists an open T ⊆ U such that φT (s|T , t|T ) =

φU(t|T , s|T ) and for any open subset V ⊆ U \T , where T is the closure

of T in X, φV (s|V , t|V ) 6= φV (t|V , s|V ). By virtue of (4.5) and of

φT (s|T , r|T ) 6= φT (r|T , s|T ),

it follows that

φT (s|T , t|T ) = φT (t|T , s|T ) = 0.

Hence,

φT (r|T + t|T , s|T ) = φT (r|T , s|T ) 6= φT (s|T , r|T ) = φT (s|T , r|T + t|T ),

and if we substitute r|T + t|T and s|T for t|V and r|V respectively in

(A), we get

φT (r|T + t|T , r|T + t|T ) = 0.

But φT (r|T , r|T ) = 0 (since φU(r, r) = 0 and T ⊆ U is open), then if

φT (r|T , t|T ) = φT (t|T , r|T ) = 0, one has

φT (t|T , t|T ) = 0. (4.7)

If φT (r|T , t|T ) 6= 0 6= φT (t|T , r|T ) everywhere on T , and φT (r|T , t|T ) 6=
φT (t|T , r|T ), we deduce from (4.6), by putting s = t, φT (t|T , t|T ) = 0.

If instead we have φT (r|T , t|T ) = φT (t|T , r|T ), we will end up with

φT (r|T , t|T ) = φT (t|T , r|T ) = 0,

which leads to (4.7) as previously shown.

Next, φV (s|V , t|V ) 6= φV (t|V , s|V ) for every open V ⊆ U \ T , so
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φV (t|V , t|V ) = 0 for every such V ; coupling the latter observation

with (4.7) and the fact that sections are continuous, one gets in this

case too that φU(t, t) = 0.

We have shown that there are only two cases: either φU(r, r) = 0

for all r ∈ E(U), or for some r ∈ E(U), φU(r, r) 6= 0, from which we

deduce that φU(r, s) = φU(s, r) for all r, s ∈ E(U).

Finally, we notice in ending the proof that if φU(r, r) = 0 for all

r ∈ E(U), then

φU(r, s) = −φU(s, r)

for all r, s ∈ E(U).

Scholium 4.5 In connection with the proof of Theorem 4.4, if there

exists an open subset L ⊆ T such that φL(r|L, t|L) = φL(t|L, r|L) = 0

and φV (r|V , t|V ) 6= φV (t|V , r|V ) for every V ⊆ T \ L, where L is the

closure of L in X, then φL(t|L, t|L) = 0 and φV (t|V , t|V ) = 0 for every

open V ⊆ T \ L. Hence, φT (t|T , t|T ) = 0.

Referring still to Theorem 4.4, if φU is symmetric, the geometry

is called orthogonal. If φU is skew-symmetric, the geometry is called

symplectic. No other case can occur if φ must be orthosymmetric.

A pairing (E , φ) is called symmetric if every φU is symmetric, and

skew-symmetric if every φU is skew-symmetric. Suppose φ is skew-

symmetric and r, s ∈ E(U) with φU(r, s) = 1. Then φU(s, r) = −1. If

we restrict φU to H = span{r, s}, its matrix has the form(
0 1

−1 0

)
.

Such a pair of sections are called hyperbolic pair and H is called a

hyperbolic plane.
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4.3 Special features of orthogonal geometry

In this section, A will be a PID C-algebra sheaf, whereas E will stand

for a special kind of A-modules. But first let us recall the following

notion.

Definition 4.6 (Mallios). A subpresheaf F of a presheaf of modules

(or more precisely, A(U)-modules) E (cf. [50, p. 99, Definition 1.6])

is called a free subpresheaf if for every open U in X, F (U) is a free

sub-A(U)-module of E(U).

Definition 4.7 A convenient A-module is a self-pairing (E , φ), where

E is a free A-module of finite rank and φ an orthosymmetric A-bilinear

form, such that the following conditions are satisfied:

(i) If F is a free subpresheaf of A(U)-modules of E , then F⊥ ≡ F⊥φ

is a free subpresheaf of A(U)-modules of E ;

(ii) Every free subpresheaf F of A(U)-modules of E is orthogonally

reflexive, i.e., F⊥> = F>⊥ = F ;

(iii) The intersection of any two free subpresheaves of A(U)-modules

of E is a free subpresheaf of A(U)-modules.

Note. Concerning the above definition of convenient A-modules,

by supposing that the (coefficient-) algebra sheaf A is a PID-algebra

sheaf, we obtain that every subpresheaf of A(U)-modules of a free

A-module is free. So in that context, conditions (i) and (iii) in Def-

inition 4.7 are satisfied. Now, concerning condition (ii) of the same

definition, the reflexivity at hand is a known situation in ordinary

Functional Analysis: see, for instance, Hilbert spaces and structures
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having similar properties; so we do have the so-called complemented

topological algebras, Hilbert algebras and the likes with the aforemen-

tioned property for ideals (: modules), and also analogous examples

in infinite-dimensional Hamiltonian mechanics. (I am indebted to A.

Mallios for this comment on convenient A-modules.)

Definition 4.8 Let φ and ψ be A-bilinear morphisms on free A-modules

E and F respectively. Then φ and ψ are A-isometric if for every open

subset U of X there is an A(U)-module isomorphism σU : E(U) −→
F(U) with

ψU(σU(s), σU(t)) = φU(s, t) for all s, t ∈ E(U). (4.8)

The family of maps σ ≡ (σU)U∈τ is called an A(U)-isometry and we

will often say that E(U) and F(U) are A(U)-isometric.

Note that if φU is non-degenerate for every open subset U of X and

σU(s) = 0, then ψU(σU(s), σU(t)) = 0 for every t ∈ E and 4.8 implies

that φU(s, t) = 0, so s is an element of the kernel of E , hence, s = 0

and σU is injective. Also, if σU : E(U) −→ F(U) is an A(U)-isometry,

φU(ei, ej) = αi,j = φU(σU(ei), σU(ej)) = αi′,j′

where {ei} is the basis and ei′ = σU(ei), so (detUσU)2 = 1. The A(U)-

isometry for which (detUσU) = 1 are called rotations and those for

which (detUσU) = −1 are called reversions. In certain cases, all

A(U)-isometries are called rotations.

Lemmas 4.9, 4.10, and 4.11, below, are essential for the Cartan-

Dieudonné theorem, which will be proved in the next section. Proofs

of these lemmas are found in [52].

Lemma 4.9 Let (E , φ) be a free A-module of rank 2, endowed with a

non-degenerate symmetric or antisymmetric A-bilinear form φ. For an
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open subset U ⊆ X, the non-isotropic A(U)-plane E(U) is hyperbolic

if it contains a nowhere-zero isotropic section r.

Lemma 4.10 Let (E , φ) be a non-isotropic convenient A-module, and

F any free sub-A-module of E. Moreover, let U be an open subset of

X, let the sections s1, s2, . . . , sk ∈ F(U) form a basis of (rad F)(U) =

rad F(U), and G be a free sub-A-module of F such that F = rad F⊥ G.
Then, there are isotropic sections t1, t2, . . . , tk ∈ E(U) such that the

planes Pi := [si, ti] are hyperbolic, pairwise orthogonal and also orthog-

onal to G(U). The A(U)-module

P1⊥ P2⊥ . . .⊥ Pk⊥ G(U)

contains F(U).

For the sake of Lemma 4.11, we recall that the sheaf of germs of

A-automorphisms of E is denoted Aut E , cf. [50, p. 294].

Lemma 4.11 Let Hi, 1 ≤ i ≤ k, be hyperbolic A-planes, E = H1 ⊥
H2 ⊥ · · ·⊥Hk within an A-isomorphism, and σ ∈ Aut E an A-

isometry such that if Hi(U) = [ri, si], then σU(ri) = ri for every open

U ⊆ X. Then σ is a rotation.

Proof. For every 1 ≤ i ≤ k and open U in X, the relations

σU(si) =
∑j

i rj +
∑j

i sj

φU(σU(ri), σU(si)) = φU(ri, si)

φU(σU(si), σU(sj)) = φU(si, sj)

immediately corroborate the claim.

We are now ready to state the sheaf-theoretical version of Cartan-

Dieudonné. To this end, the following notion is required.
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Definition 4.12 Let E be a non-isotropic convenient A-module of

rank n, and H a non-isotropic free sub-A-module of E of rank 1.

The orthogonal symmetry of E with respect to H⊥ is the element

uH ∈ EndAE such that

uH|H⊥ = 1H⊥

and

uH|H = −1H

where U is any open subset of X. The free sub-A-module H⊥ (whose

rank is n− 1) is called a hyperplane of E .

Theorem 4.13 Let A be a PID C-algebra sheaf and φ a non-degenerate

A-bilinear form on a convenient A-module E of rank n, having nowhere-

zero (local) isotropic sections. Then, every A-isometry σ ≡ (σU) ∈
EndAE is a product of at most n orthogonal symmetries with respect

to (local) non-isotropic hyperplanes.

Proof. The proof is by induction on n. If n = 1, then σ = ±1.

In fact, for n = 1, every A(U)-module E(U) has the form E(U) = [sU ]

where [sU ] stands for the A(U)-module generated by the (nowhere-

zero) section sU , such that if V is an open set contained in U , then

sV = ρUV (sU), with the {ρUV } being the restriction maps for the (com-

plete) presheaf of sections of E . So suppose now, for some fixed

open U ⊆ X, that σU(sU) = aUsU , with aU ∈ A(U), then since

φU(σU(sU), σU(sU)) = φU(sU , sU) and

τUV (φU(sU , sU)) ≡ φU(sU , sU)|V := φV (sV , sV ) 6= 0

for every open V ⊆ U , a2U = 1 (the τUV are the restriction maps for

ΓA). It is clear that if aU = 1 (resp. aU = −1) i.e. σU(sU) = sU (resp.

σU(sU) = −sU), then σV (sV ) = sV (resp. σV (sV ) = −sV ) for any open

V contained in U . Therefore, if σX(sX) = sX (resp. σX(sX) = −sX),
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then σU(sU) = sU (resp. σU(sU) = −sU) for every open U ⊆ X. Since

1 is a product of 0 A-symmetries and −1 is the unique A-symmetry,

the result clearly follows for n = 1.

Now, we shall consider four cases.

Case 1. There exists a non-isotropic section s ∈ E(X) such that

σXs = s. Let F = [s], i.e. the sub-A(X)-module of E(X) of rank

1, generated by s. Clearly, F⊥ is a sub-A(X)-module of E(X); but

A(X) is a PID C-algebra, therefore F⊥ is free. For any t ∈ F⊥, we

have

φX(σX(t), s) = φX(σX(t), σX(s)) = φX(t, s) = 0;

which implies that σX(t) ∈ F⊥. Thus, we have the inclusion σX(F⊥) ⊆
F⊥. Since σX : E(X) −→ E(X) is an A(X)-isomorphism, the restric-

tion σX |F⊥ : F⊥ −→ σX(F⊥) ⊆ F⊥ is an A(X)-isomorphism; so

σX(F⊥) = F⊥. Let ψ be the restriction of σX to F⊥, a free A(X)-

module of rank n− 1 (because E(X) = F ⊥ F⊥ with both F and F⊥

free); we may by the induction hypothesis write

ψ = τ1τ2 · · · τk

with k ≤ n− 1, where every τi is a symmetry of the A(X)-module F⊥

with respect to some hyperplane Hi of F⊥. Now, let Gi be the free

sub-A(X)-module of F⊥ of rank 1 which determines the symmetry τi,

so F⊥ = Gi ⊥ Hi, and let τ i : E(X) −→ E(X) be an A(X)-morphism

given by the prescription

τ i = −1Gi, τ i|F⊥Hi
= 1F⊥Hi

(obviously, τ i is an extension of the (corresponding) τi to all the A(X)-

module E(X)). By its very definition, τ i is a symmetry of E(X) with

respect to F ⊥ Hi. A tedious calculation shows that

τ 1τ 2 · · · τ k = 1F ⊥ ψ.
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But

1F ⊥ ψ = σX ,

so we have expressed σX by at most n− 1 symmetries.

Case 2. There exists a non-isotropic section s ∈ E(X) such that

σXs − s is non-isotropic. Let H := [σXs − s]⊥, and let τ be the

symmetry of E(X) with respect to H. Since

φX(σXs+ s, σXs− s) = φX(σXs, σXs)− φX(s, s) = 0

we have σXs+ s ∈ H. Therefore

τ(σXs+ s) = σXs+ s, τ(σXs− s) = s− σXs,

whence τσX(s) = s; so we are led back to Case 1 because τσX is an

isometry E(X) −→ E(X) which leaves s fixed. By Case 1, τσX =

τ1τ2 · · · τk with k ≤ n−1, where τi is a symmetry of E(X) with respect

to some hyperplane of E(X). Since τ is an involution (so τ 2 = 1), it

is easy to see that

σX = ττ1τ2 · · · τk,

which is a product of k + 1 (k + 1 ≤ n) symmetries.

Case 3. Suppose n = 2, and let r be a nowhere-zero isotropic

section in E(X). By Lemma 4.9, we may assume that E(X) = [r, s],

where (r, s) is a hyperbolic pair. Then, there exist ai ∈ A(X), 1 ≤
i ≤ 4, such that

σXr = a1r + a2s, σXs = a3r + a4s.

Since (r, s) is hyperbolic, there are only two possibilities:

(a) σXr = αs, σXs = α−1r, α ∈ A(X). Therefore, σX(r + αs) =

r + αs is a fixed non-isotropic section. Hence, Case 1 applies.
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(b) σXr = αr, σXs = α−1s, α ∈ A(X). We may assume that α 6=
1, since α = 1 means that σX is the identity 1E(X). Put t := r+ s;

t and σXt− t = (α− 1)r+ (α−1− 1)s are both non-isotropic, and

this evokes Case 2.

Case 4. We can assume the following: n ≥ 3 (we are not in

Case 3), if s ∈ E(X) is non-isotropic, then σXs − s is isotropic (we

are not in Case 2) and not zero (we are not in Case 1).

Let t be a nowhere-zero isotropic section in E(X). The sub-A(X)-

module [t]⊥ ⊆ E(X) is free and such that rank [t]⊥ ≥ 2 and rad

[t]⊥ = [t]. On another hand, we observe that [t]⊥ contains a non-

isotropic section r (otherwise [t]⊥ would be totally isotropic, and as

rad [t]⊥ = [t], [t] would be equal to [t]⊥).

We have φX(r, r) 6= 0 and for a ∈ A(X), φX(r + at, r + at) =

φX(r, r) 6= 0. We deduce by the hypothesis of Case 4 that σXr− r as

well as the sections

σX(r + at)− (r + at) = (σXr − r) + a(σXt− t)

are isotropic. Therefore,

2aφX(σXr − r, σXt− t) + a2φX(σXt− t, σXt− t) = 0.

Putting first a = 1, then a = −1, and adding the results thus obtained,

we have

φX(σXt− t, σXt− t) = 0,

i.e. σXt− t is isotropic.

We have established that σXs − s will be isotropic whether s is

isotropic or not. The set G consisting of all σXs− s, where s ∈ E(X),

has the structure of an A(X)-module as G = im (σX − 1E(X)) ≡
im (σX − 1) := (σX − 1)E(X). G contains only isotropic sections and
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is consequently an isotropic free sub-A(X)-module of E(X). It is easily

seen that for all s, t ∈ E(X), φX(σXs− s, σXt− t) = 0.

Let now s ∈ E(X) and u ∈ G⊥. One has

φX(σXs−s, σXu−u) = φX(σXs, σXu)−φX(s, σXu)−φX(σXs−s, u) = 0.

Since σXs− s ∈ G, u ∈ G⊥ and σX an isometry, it follows that

φX(s, u− σXu) = 0.

This equality is true for all s ∈ E(X), so that u−σXu ∈ rad E(X) = 0,

i.e. u = σXu.

We have established that every section in G⊥ is left fixed. By the

assumption which defines Case 4, every section in G⊥ is isotropic;

therefore G⊥ is totally isotropic. On account of Theorem 3.20, we

have rank G + rank G⊥ = n; since both G and G⊥ are isotropic,

it follows, by virtue of Lemma 4.10, that rank G ≤ n/2 and rank

G⊥ ≤ n/2. We deduce that rank G = rank G⊥ = n/2. The A(X)-

module E(X) is, therefore, a hyperbolic A(X)-module H2l, n = 2l and

G⊥ a maximal isotropic sub-A(X)-module of H2l. The isometry σX

leaves every element of G⊥ fixed, and Lemma 4.11 shows that σX is a

rotation. Therefore Case 4 cannot occur if σX is a reflection, and the

proof is complete for a reflection. If σX is a rotation in H2l, and s any

symmetry, then sσX is a reflection. Hence, sσX = τ1τ2 · · · τk, k ≤ 2l

with k an odd number, so σX = sτ1τ2 · · · τk with at most 2l = n

symmetries.

But for a Riemannian convenient A-module E of finite rank,

equipped with a non-degenerate A-bilinear form φ, the condition that

for every open U ⊆ X, E(U) have nowhere-zero isotropic sections does

not play any role, and may thus be dropped. Hence,
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Theorem 4.14 Let A be a PID C-algebra sheaf and E a convenient

Riemannian A-module (i.e., still equipped with a Riemannian A-metric

φ ) of rank n. Then, every A-isometry of E is a product of at most

n orthogonal symmetries with respect to (local) non-isotropic hyper-

planes.

Proof. Here as well, we distinguish 4 cases, of which Case 1 is

the same as Case 1 of Theorem 4.13.

Case II. If there exists a non-isotropic section r ∈ E(X) such

that σX(r) = −r, and that τr is the orthogonal symmetry defined by

r, one has: (τr ◦ σX)(r) = r; so we are back to Case I since τr ◦ σX is

an A(X)-isometry.

If σX has no eigen-section in E(X), let us consider a non-isotropic

section r and its image s := σX(r). Since φX(r, r) = φX(s, s),

φX(r + s, r − s) = 0,

i.e. r + s and r − s are orthogonal, and

φX(r + s, r + s) + φX(r − s, r − s) = 4φX(r, r) 6= 0.

Consequently at least one of the sections r+s and r−s is non-isotropic.

We will distinguish the following cases:

Case III (of which Case II is a particular instance.) There

exists a non-isotropic section r such that t ≡ r − σX(r) := r − s is

non-isotropic. Therefore, (τt ◦ σX)(r) = r. In fact,

τt(σX(r) + r) := τt(s+ r) = r + s,

τt(−r + σX(r)) := τt(−r + s) = r − s,

whence the expected result. Here too, we are back to Case I.
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Case IV For any non-isotropic section r ∈ E(X), the section

r−σX(r) is isotropic (we are not in Case III) and non-zero (we are not

in Case I). In other words, the kernel ker(σX−IX) is a totally isotropic

(free) sub-A(X)-module of E(X), and the image im(σX − IX) is such

that any non-isotropic section r ∈ E(X) has as image an isotropic

section. Let us consider a section u ≡ r + σX(r) := r + s. Based

on Case II and since r − s is isotropic, r + s is non-isotropic. The

orthogonal symmetry τu swaps r and −s. In fact, this follows from

τu(r + s) = −r − s, τu(r − s) = r − s.

Furthermore,

(τu ◦ σX)(r) = −r and σ′X(r) ≡ (τr ◦ τu ◦ σX)(r) = r.

By virtue of Theorem 3.20, E(X) = [r]⊥[r]⊥; if σ′H , the restriction of

σ′X to H ≡ [r]⊥, is a product of p orthogonal symmetries, then σX is

a product of (p+ 2) orthogonal symmetries.

Now, we need to show that σX is a product of at most n orthog-

onal symmetries. For the sake of brevity, the property:

for any non-isotropic section r ∈ E(X), σX(r)−r is isotropic

and non-zero

is called Property (P ). We have

φX(σX(r)− r, σX(r)− r) = 2[φX(r, r)− φX(r, σX(r))].

Condition (P ) implies that φX(r, r) = φX(r, σX(r)) for any non-isotropic

section r.

If r, s ∈ E(X) are non-isotropic, then for some λ, µ ∈ E(X),

λr + µs is non-isotropic. For this purpose, note that

φX(r + s, r + s) + φX(r − s, r − s) = 2φX(r, r) + 2φX(s, s).
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If φX(r, r) = −φX(s, s), then clearly φX(r + s, r + s) + φX(r − s, r −
s) = 0. Assume further that φX(r − s, r − s) = 0 (then obviously

φX(r + s, r = s) = 0). Then, φX(r − 2s, r − 2s) = −3φX(s, s) 6= 0, so

that r − 2s is non-isotropic. Since

φX(λr + µs, λr + µs) = φX(λr + µs, σX(λr + µs)),

we deduce that

2φX(r, s) = φX(r, σX(s)) + φX(s, σX(r))

for any pair of non-isotropic sections r, s ∈ E(X).

As there is associated with φX an orthogonal basis of non-isotropic

sections (cf. Mallios [50, pp.335-340]), it follows that φX(r, r) =

φX(r, σX(r)) for any r ∈ E(X), and

2φX(r, s) = φX(r, σX(s)) + φX(s, σX(r)) for all r, s ∈ E(X). Thus,

φX(σX(r)− r, σX(s)− s) =

φX(σX(r), σX(s)) + φX(r, s)− φX(r, σX(s)) = 0 (4.9)

for all r, s ∈ E(X). Put θ := σ − I, where I := IdE ;

im θ ≡ θ(E) := (θ(E), ρ|θ(E), X) is a (free) sub-A-module of E . Based

on (4.9), the image θX(E(X)) is a totally isotropic (free)

sub-A(X)-module of E(X).

But by Condition (P ), we deduce that ker θX is a totally isotropic

(free) sub-A(X)-module of E(X). The kernel ker θX is a maximal

totally isotropic (free) sub-A(X)-module of E(X). One has

r ∈ ker θX iff θX(r) = r

and

φX(r, σX(s)− s) = φX(σX(r), σX(s))− φX(r, s) = 0

for any r ∈ ker θX and s ∈ E(X); every σX(s) − s is therefore an

element of (ker θX)⊥. In other words, one has

im θX := {σX(s)− s; s ∈ E(X)} ⊆ (ker θX)⊥.
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But E(X) = ker θX⊥(ker θX)⊥, so (ker θX)⊥ is totally isotropic, and

rank E(X) = rank ker θX + rank (ker θX)⊥.

On the other hand, since ker θX and (ker θX)⊥ are both totally isotropic,

rank ker θX ≤ 1
2rank E(X) and rank (ker θX)⊥ ≤ 1

2rank E(X), it fol-

lows that

ker θX = im θX = (ker θX)⊥.

If S is a maximal totally isotropic (free) sub-A(X)-module of E(X)

such that E(X) = ker θX ⊕ S, the union of any basis of ker θX and of

any basis of S yields a basis of E(X) with respect to which the matrix

representing the A(X)-morphism θX is triangular and has zeros on the

main diagonal. In fact, σX(s)− s ∈ ker θX , for any s ∈ S. Therefore,

detXσX = detX(IX + θX) = 1X ,

so that σX can only be a product of an even number of symmetries.

Let τ be an arbitrary orthogonal symmetry of E(X); then

detX(τ ◦ σX) = −1X

and consequently τ ◦σX cannot satisfy Condition (P ). Therefore Case

I or II or III applies: τ ◦ σX is a product of at most n symmetries,

and σX a product of at most n + 1 symmetries. Since n is even and

σX is a product of an even number of symmetries, it follows that σX

is a product of at most n symmetries, and the proof is finished.

 
 
 



Chapter 5

A-transvections

Building on prior joint work by Mallios and Ntumba, we study transvec-

tions (Dieudonné) in the realm of Abstract Geometric Algebra, re-

ferring herewith to symplectic A-modules. A characterization of A-

transvections in terms of A-hyperplanes is given together with the as-

sociated matrix definition. By taking the domain of coefficients A to

be a PID algebra sheaf, we also consider the analogue of a form of the

classical Witt’s extension theorem, concerning A-symplectomorphisms

defined on appropriate Lagrangian sub-A-modules. The chapter ends

with a counterpart of the classical factorization theorem of symplec-

tomorphisms of symplectic vector spaces of finite dimension into sym-

plectic transvections, cf. [16] and [18]; more accurately, this counter-

part concerns A-symplectomorphisms of symplectic orthogonally con-

venient A-modules of finite rank, where A is a torsion-free PID C-

algebra sheaf, having the usual additional property that all its nowhere-

zero sections are invertible.
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5.1 Symplectic A-transvections

We notice that if E is a free A-module and F an A-hyperplane of

E , then every A-endomorphism φ of E that leaves F stable induces

on the line A-module E/F an A-homothecy, which we denote by φ̃.

More explicitly, if U is open in X and s a section of E/F over U , then

φ̃(s) ≡ φ̃U(s) = aUs ≡ as

for some aU ≡ a ∈ A(U). The coefficient sections aU are such that

aV = aU |V whenever V is contained in U . The global section aX ≡ a

is called the ratio of the A-homothecy φ̃.

Lemma 5.1 Let E be a free A-module, and F a proper free sub-A-

module of E. Then, the following assertions are equivalent.

(1) F is an A-hyperplane of E.

(2) For every (local) section s ∈ E(U) such that s|V /∈ F(V ) for every

open V ⊆ U ,

E(U) = A(U)s⊕F(U).

(3) For every open U ⊆ X, there exists a section s ∈ E(U) with

s|V /∈ F(V ), where V is any open subset contained in U , such

that

E(U) = A(U)s⊕F(U).

(4) The free sub-A-module F is a maximal sub-A-module in the

inclusion-ordered set of proper free sub-A-modules of E.

Proof. (1) ⇒ (2): For every open U ⊆ X and section s ∈ E(U)

such that s|V /∈ F(V ) for any open V ⊆ U , it is clear that A(U)s +
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F(U) is a direct sum. On the other hand, the equivalence class con-

taining s is a nowhere-zero section of E/F ; it spans E(U)/F(U) since

E(U)/F(U) has rank 1. It thus follows that E(U) = A(U)s+ F(U).

(2)⇒ (3): Evident.

(3)⇒ (1): Since rank(E/F)(U) = rank(E(U)/F(U)) =

rank(A(U)s) = 1 for every open U ⊆ X and s ∈ E(U) with s|V /∈
F(V ), where V is any open subset contained in U .

(2)⇒ (4): Let F ′ be a free sub-A-module of E containing F and

such that rank F ′ > rank F . For every open U there exists a section

s ∈ F ′(U) such that s|V /∈ F(V ) for every open V ⊆ U . By (2), for

every open U ⊆ X, E(U) = A(U)s ⊕ F(U); but A(U)s ⊕ F(U) is

contained in F ′(U), therefore F ′ = E .

(4) ⇒ (2): Let U be an open set in X. There exists a section

s ∈ E(U) with s|V /∈ F(V ) for any open V ⊆ U ; then A(U)s ⊕
F(U) contains strictly F(U), thus A(U)s⊕F(U) = E(U), since F is

maximal.

Lemma 5.1 will be referred to in the proof of Theorem 5.4, which

characterizes the kind of A-transvections dealt with in the course of

this paper. For the classical notion of transvection, see [3], [15, p. 152,

Proposition 12.9], [16], [18, p. 419 ff], [20], [43, p. 542- 544]. To this

end, we require some preparations.

Definition 5.2 (Mallios) Let E be an A-module. An element φ ∈
End E ≡ EndAE := HomA(E , E) is called a homothecy of ratio

α ∈ EndAA =: A∗(X) ' A(X) if

φ = α · I, (5.1)

where I stands for the identity of the group End E := HomA(E , E).
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Section-wise, Equation (5.1) means that, given any section s ∈
E(U), one has

φU(s) = α|U · s ≡ α · s.

Now, suppose we have a free A-module E and F an A-hyperplane

of E , so that one has

E/F ' A, (5.2)

cf. [51]. Moreover, let φ ∈ End E such that

φ(F) ⊆ F ; (5.3)

then, φ gives rise to an element, say φ̃, of End (E/F); viz.

φ̃ ∈ End(E/F),

such that, in view of (5.3),

φ̃ ◦ q = q ◦ φ,

where q : E −→ E/F is the canonical A-epimorphism. However, due

to (5.2), one has

φ̃ ∈ End(E/F) ' End A =: A∗(X) ' A(X),

viz. one obtains

φ̃ = α ∈ A(X) ' End A,

thus

φ̃ = α · I,

so that α is the ratio of φ̃. Hence, φ induces a homothecy of E/F(' A)

of ratio α. Furthermore, by the rank formula (cf. [64]), viz.

rank(Imφ̃) + rank(ker φ̃) = rank(E/F) = rank A = 1,

one sees that α is either zero or nowhere zero on X.
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Definition 5.3 (Mallios) Let E be an A-module. An element φ ∈
End E is called an A-transvection if:

(i) There exists a sub-A-module H in E such that E/H ' A.

(ii) φ|H = I.

(iii) Im(φ− I) ⊆ H.

More accurately, we say that φ is an A-transvection with respect to

the sub-A-module H.

Clearly, an element φ ∈ End E , where E is an A-module, is an

A-transvection if and only if it is locally so.

In the light of [3, p. 160, Definition 4.1], Definition 5.3 can

be rephrased as follows. An A-transvection (with respect to an A-

hyperplane H, par abus de language) of an A-module E is an A-

endomorphism of E , which keeps every section of H fixed and moves

any other section s ∈ E(U) by some section of H(U), namely φ(s)−s ∈
H(U).

Theorem 5.4 Let E be a free A-module, H an A-hyperplane of E,

φ an A-endomorphism of E that fixes every section of H, and φ̃ the

A-homothecy, of ratio α, induced by φ on the line A-module E/H.

Then,

(1) If α is nowhere 1, there exists a unique line A-module L ⊆ E such

that E = H⊕L and L is stable by φ, i.e. φ(L) ∼= L.

(2) If α = 1, then for every A-morphism θ ∈ HomA(E ,A) with

ker θ ∼= H, there exists, for every open subset U ⊆ X, a unique
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section r ∈ H(U) such that

φ(s) = s+ θ(s)r (5.4)

for every s ∈ E(U).

Proof. Assertion (1). Uniqueness. Let L be a line A-module

satisfying the hypotheses of the assertion, and s a nowhere-zero global

section of L (such a section s does exist because L ∼= A and A is

unital). Therefore, there exists b ∈ A(X) such that φ(s) = βs. Next,

assume that q is the canonical A-morphism of E onto E/H. It is clear

that φ̃X(qX(s)) = βqX(s) ≡ βq(s); thus φ̃X is a homothecy of ratio

α = b, hence, by hypothesis, β is nowhere 1. Now, let u be an element

of E(X) such that u /∈ H(X); then there exists a non-zero λ ∈ A(X)

and an element t ∈ H(X) such that

u = λs+ t.

It follows that

φ(u) = λβs+ t.

Of course, φ(u) and u are colinear if and only if t = 0. Thus, we have

proved that every section u ∈ E(X) which is colinear with its image

φ(u) belongs to L(X). A similar argument holds should we consider

the decomposition E(U) = H(U) ⊕ L(U), where U is any other open

subset U of X. Hence, L is the unique complement of H in E , up to

A-isomorphism, and stable by φ.

Existence. Since α is nowhere 1 on X, there exists a nowhere-zero

section s ∈ E(X) such that

φ̃U(qU(s|U)) := φ̃U(qU(sU)) 6= qU(sU) =: qU(s|U)

for any open U ⊆ X. As φ̃◦q = q◦φ, it follows that rU := φU(sU)−sU
does not belong to H(U), for any open U ⊆ X. The line A-module
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L := [rU ]X⊇U, open clearly complements H. It remains to show that

L is stable by φ: To this end, we first observe that every sU does

not belong to the corresponding H(U), and, by Lemma 5.1, E(U) ∼=
A(U)sU ⊕ H(U). So, since rU /∈ H(U) for every open U ⊆ X, there

exists for every rU sections αU ∈ A(U) and tU ∈ H(U) such that

rU = αUsU + tU . (5.5)

We deduce from (5.5) that

φU(rU) = (αU + 1)rU ,

and the proof is complete.

Assertion 2. Uniqueness. Let us fix an open set U in X. The

uniqueness of r such that (5.4) holds is immediate, as θU(s) ≡ θ(s) 6= 0

for some s ∈ E(U). Relation (5.4) also shows that if s ∈ E(U) and θ(s)

is nowhere zero, then necessarily

r = (θ(s))−1(φ(s)− s).

Existence. Suppose given a section s0 ∈ E(U) such that s0|V /∈
H(V ) for any open V ⊆ U . Let us consider the section

r = (θ(s0))
−1(φ(s0)− s0). Clearly, r ∈ H(U); indeed

(q ◦ φ)(s0)− q(s0) = (φ̃ ◦ q)(s0)− q(s0) = 0.

The two A(U)-morphisms s 7−→ φ(s) and s 7−→ s + θ(s)r are equal,

since they take on, on one hand, the same value at s0, and, on the

other hand, the same value at every s ∈ H(U).

In the course of this chapter, we are interested in A-transvections

of free A-modules of finite rank E such that locally for Condition (iii)

of Definition 5.3, one has one and only one section sU0 ∈ H(U) such

that

φU(s) := s+ θU(s)sU0 ,
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for every s ∈ E(U), and where θ ∈ HomA(E ,A) is such that ker θ is A-

isomorphic to H. SuchA-transvections shall be calledA-transvections

of classical type.

So, assume E is free and of rank n and (e1, . . . , en) a basis for

E(U), where U is a fixed open subset of X, such that (e1, . . . , en−1) is

a basis for H(U). The matrix representing φU is given by

(φijU ) :=


1 0 · · · 0 0 λs10

0 1 · · · 0 0 λs20
...

...
...

...
...

0 0 · · · 0 1 λsn−10

0 0 · · · 0 0 1

 ∈Mn(A(U)) 'Mn(A)(U),

where λ := θU(en) ∈ A(U) and sU0 ≡ s0 := s10e1 + · · ·+ sn−10 en−1. If we

consider the determinant A-morphism ∂et : Mn(A) −→ A (cf. [50, p.

294]), it follows that

∂etU(φijU ) ≡ ∂etU(φijU ) =: det U(φijU ) = 1

(we have assumed that ∂et : Γ(Mn(A)) −→ Γ(A) is the Γ(A)-morphism

of complete presheaves of sections of sheaves Mn(A) and A that cor-

responds to ∂et); hence, A-transvections are invertible.

Keeping with the notations above, the inverse of anA-transvection

φ is the A-transvection φ−1 such that

φ−1U (s) := s− θU(s)sU0

for every open U ⊆ X and section s ∈ E(U).

Fix an open subset U ofX and let φ ∈ EndAE be anA-transvection.

If s0 ≡ sU0 ∈ E(U) is nowhere zero, we may assume it to be one of

the basis elements of H(U); therefore the matrix of φU will just be

the identity natrix with one non-zero element off the main diagonal.
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Conversely, any A-endomorphism φ of a free A-module of finite rank

E such that, for every open U ⊆ X, the matrix representing φU with

respect to some basis is the identity matrix with one non-zero entry

off the main diagonal is an A-transvection.

We formalize the above argument in the following

Corollary 5.5 Let E be a free A-module of rank n, H an A-hyperplane

of E, and φ an A-transvection of classical type. Then, for every open

U ⊆ X, there exists a basis of E(U) such that the matrix (φU) of φU

in this basis is of the form

(φU) = In + λM ij, i 6= j, (5.6)

where λ ∈ A(U) and (M ij)1≤i,j≤n represents a canonical basis of

Mn(A(U)). Matrix (5.6) is called an A(U)-transvection matrix.

For the need of what follows, we make the following important

observation (cf. Lemma 3.19), concerning symplectic A-modules of

finite rank, the proof of which is based on the following concept.

Definition 5.6 Let E and E ′ be A-modules, φ and φ′ non-degenerate

A-bilinear forms on E and E ′, respectively. Moreover, let ψ be an

A-morphism of E into E ′. An A-morphism θ ∈ HomA(E ′, E) such that

φ′ ◦ (ψ, Id) = φ ◦ (Id, θ). (5.7)

is called an adjoint of ψ, and is denoted ψ∗.

Section-wise, Equation (5.7) means that for every open subset

U ⊆ X and sections s ∈ E(U), t ∈ E ′(U),

φ′(ψ(s), t) ≡ φ′U(ψU(s), t) = φU(s, θU(t)) ≡ φ(s, θ(t)).

Keeping with the notations of Definition 5.6 above, we have
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Proposition 5.7 θ is unique whenever it exists.

Proof. Suppose that θ1 and θ2 are adjoint of ψ, so given any open

subset U ⊆ X and sections s ∈ E(U), t ∈ E ′(U),

φLU(θ1,U(t))(s) = φLU(θ2,U(t))(s),

where φL ∈ HomA(E , E ′∗) is given by

φLU(u)(v) ≡ (φL)U(u)(v) := φV (u|V , v)

for sections u ∈ E(U) and v ∈ E ′(V ). Since s is arbitrary in E(U),

φLU(θ1,U(t)) = φLU(θ2,U(t)).

But φL is injective, therefore

θ1,U = θ2,U .

Finally, since U is arbitrary, θ1 = θ2.

Let us now enquire on the existence of the adjoint of an A-

morphism ψ ∈ HomA(E , E ′), where E and E ′ are A-modules equipped

with A-bilinear forms φ and φ′, respectively.

Proposition 5.8 Let E and E ′ be A-modules, equipped with

non-degenerate A-bilinear forms φ and φ′, respectively. If E is free

and of finite rank, then for every A-morphism ψ ∈ HomA(E , E ′) there

exists an adjoint, denoted ψ∗, which is given by

ψ∗ = (φL)−1 ◦ tψ ◦ φ′L,

where tψ : (E ′)∗ −→ E∗ is the transpose of ψ.

Proof. Let U be an open subset of X, s ∈ E(U) and t ∈ E ′(U).

Using the right insertion A-morphism φ′L, one has

φ′U(ψU(s), t) = φ′
L
U(t)(ψU(s)) = (tψ)U(φ′

L
U(t))(s). (5.8)
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Since E has finite rank and φ is non-degenerate, φL is anA-isomorphism

of E onto E∗; so tψ ◦ φ′L may be written

tψ ◦ φ′L = φL ◦ ((φL)−1 ◦ tψ ◦ φ′L).

It follows from (5.8) that

φ′U(ψU(s), t) = [φLU(((φLU)−1 ◦ (tψ)U ◦ φ′LU)(t))](s)

= φU(s, ((φLU)−1 ◦ (tψ)U ◦ φ′LU)(t)),

which ends the proof.

Corollary 5.9 Adjoints commute with restrictions.

Proof. Let E and E ′ be A-modules, φ and φ′ non-degenerate A-

bilinear forms on E and E ′, respectively. Assume that ψ ∈ HomA(E , E ′).
Let U be an open subset of X, and s, t be sections of E and E ′ on U ,

respectively. By Definition 5.6, we have

φ′U(ψU(s), t) = φU(s, (ψ∗)U(t)).

On the other hand, since φU and φ′U are non-degenerate and

ψU ∈ HomA(U)(E(U), E ′(U)),

then by virtue of [15, pp. 385, 386], we have

φ′U(ψU(s), t) = φU(s, (ψU)∗(t)).

On account of uniqueness of adjoints, we have

(ψ∗)U = (ψU)∗,

as desired.

Definition 5.10 An A-transvection of classical type is called a

nowhere-identity A-transvection if locally it differs from the iden-

tity map.
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There is an interesting relationship between nowhere-identity sym-

plectic A-transvections and A-symplectomorphisms as is the case with

the respective counterparts in the classical theory, see, for instance,

[18, pp. 418-420].

For this purpose we need the following

Lemma 5.11 Let (E , ω) be a symplectic A-module of finite rank, and

f an A-endomorphism of E. Then, if f satisfies two of the three

following conditions, it satisfies all of them three, and Id + f is called

a singular A-symplectomorphism of (E , ω):

(1) Id + f is an A-automorphism of E;

(2) f is ω-skewsymmetric, i.e., for any open U ⊆ X and sections

s, t ∈ E(U),

ωU(fU(s), t) + ωU(s, fU(t)) = 0;

(3) Im f ≡ f(E) is totally isotropic, i.e.,

ω|f(E) = 0.

Proof. Using the equality

ωU(s+fU(s), t+fU(t))−ωU(s, t) = ωU((fU+f ∗U)(s), t)+ωU(fU(s), fU(t)),

where U is any open subset of X, s and t sections of E over U , one

easily checks the implications: (1), (2) ⇒ (3); (1), (3) ⇒ (2); and

(2), (3)⇒ (1).

Theorem 5.12 Let (E , ω) be a symplectic orthogonally convenient A-

module of rank 2n, and f a A-endomorphism of E. If f is skewsym-

metric and Id + f an A-automorphism of E, then
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(1) f 2 = 0;

(2) ker f ' (Im f)⊥;

(3) For every open subset U ⊆ X, there exists a symplectic basis

of E(U), whose first k elements (sections), k ≤ n, form a basis

of (Im f)(U) := Im fU ≡ fU(E(U)), with respect to which the

A(U)-morphism

(Id + f)U := IdU + fU

is represented by the matrix(
In H

0 In

)

with tH = H.

Proof. (1) From Lemma 5.11, Imf is totally isotropic. Therefore,

for any open subset U of X and sections s, t ∈ E(U),

ωU(fU(s), fU(t)) = 0.

Since

ωU((f ∗)UfU(s), t) = ωU((fU)∗fU(s), t)

= ωU(fU(s), fU(t))

= 0

and ω is symplectic, it follows that

(f ∗)UfU = (f ∗U)fU = 0.

Thus,

f ∗f = 0;

since f ∗ = −f, one reaches the desired property that f 2 = 0.
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(2) Fix an open set U in X and s ∈ (ker f)(U) = ker fU , see [70,

p. 37, Definition 3.1]. Moreover, let t ∈ E(U); then

ωU(s, fU(t)) = −ωU(fU(s), t) = 0.

Thus,

s ∈ (Imf)(U)⊥ ≡ fU(E(U))⊥

and hence

(ker f)(U) = ker fU ⊆ (Imf)(U)⊥ = (Imf)⊥(U)

or

ker f ⊆ (Imf)⊥ ≡ f(E)⊥.

Conversely, let t ∈ (Imf)⊥(U) = (Imf)(U)⊥. Then, for any s ∈
(Imf)(U) ≡ ImfU := fU(E(U)) ≡ f(E)(U), one has

ωU(t, s) = 0.

But s = fU(r) for some r ∈ E(U), therefore

ωU(t, fU(r)) = −ωU(fU(t), r) = 0. (5.9)

Since (5.9) is true for any r ∈ E(U),

fU(t) = 0,

i.e.

t ∈ (ker f)(U) := ker fU .

Hence,

(Imf)⊥(U) ⊆ (ker f)(U)

or

(Imf)⊥ ⊆ ker f.

(3) As Imf ⊆ ker f = (Imf)⊥, so the sub-A-module Imf is totally

isotropic. Therefore, for any open U ⊆ X,

rank(Imf)(U) := rank ImfU ≤ n.
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Now, let us fix an open set U in X and consider a basis (s1, . . . , sk),

k ≤ n, of (Imf)(U) ≡ ImfU . By [52, Lemma 7], there exists a totally

isotropic sub-A(U)-module S of E(U), equipped with a basis, which

we denote

(sk+1, . . . , sn+k)

such that

ωU(si, sn+j) = δij, for i, j = 1, . . . , k.

Clearly,

S ∩ (Imf)⊥(U) = S ∩ (ker f)(U) = 0. (5.10)

As a result of (5.10), the sum S + ImfU is direct and S⊕ ImfU is

non-isotropic; therefore, one has

E(U) = (S ⊕ ImfU)⊥F

for some sub-A(U)-module F of E(U), (cf. [52, Theorem 1]). Since

F = (S⊕ImfU)⊥, F is contained in (ImfU)⊥ = (Imf)⊥(U) = (ker f)(U)

and

F⊥ = (Imf)(U) := ImfU ;

i.e. F is an orthogonal supplementary of (Imf)(U) in (ker f)(U).

Since F is free, non-isotropic and of rank 2n− 2k, it can be equipped

with a symplectic basis, say (sk+1, . . . , sn, sn+k+1, . . . , s2n), see [62]. As

s1, . . . , sn ∈ (ker f)(U), it follows that

(IdU + fU)(sj) = sj, j = 1, . . . , n.

Therefore, if H is the matrix representing fU , IdU + fU is represented

by the matrix (
In H

0 In

)
,

and this is a sympletic matrix if and only if tH = H, ie. H is sym-

metric.
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On account of Theorem 5.12, we have the following. Let (E , ω)

be a symplectic orthogonally convenient A-module of finite rank, and

φ ∈ End E a (symplectic) A-transvection of (E , ω). Suppose that

φ = I + ψ,

where I = IdE and ψ ∈ End E . Then, necessarily, if Im ψ is a free

sub-A-module of E , then rank ψ := rank Im ψ = 1, i.e., φ is a nowhere-

identityA-transvection. This necessary condition for nowhere-identity

A-transvections is not sufficient, for if H is the sub-A-module of E
defining φ, one must have

ψ(E/H) = 0,

i.e.

ψ2 = 0.

Using Theorem 5.12, we thus obtain

Corollary 5.13 Let (E , ω) be a symplectic orthogonally convenient A-

module of finite rank. There is a bijection between A-symplectomorphisms

of the form I + ψ such that Im ψ is a free sub-A-module of E and the

nowhere-identity symplectic A-transvections.

Let us describe precisely nowhere-identity symplecticA-transvections.

For this purpose, we fix an open subset U of X and suppose that rank

ψU = 1 : it follows that, for every s ∈ E(U),

ψU(s) = αU(s)sU0 ,

where sU0 is nowhere zero and α ∈ E∗(U). Based on Theorem 5.12,

the necessary and sufficient condition for IE(U) + ψU to be symplectic

is that

ωU(ψU(s), t) + ωU(s, ψU(t)) = ωU(sU0 , αU(s)t− αU(t)s) = 0, (5.11)
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for all sections s, t ∈ E(U). Since ω is non-degenerate, we may asso-

ciate with αU a nowhere-zero section r ∈ E(U) such that

αU(s) = ωU(r, s), s ∈ E(U);

therefore (5.10) becomes

ωU(sU0 , ωU(r, s)t− ωU(r, t)s) = 0. (5.12)

Since A is a PID algebra sheaf and (E , ω) is orthogonally conve-

nient, hence, by [64, Corollary 3.2(2)], if G is a free sub-A-module of

E , then

rank G + rank G⊥ = rank E .

Consequently, r⊥ is a hyperplane of E(U); whence if we take t in r⊥,

(5.12) reduces to

ωU(sU0 , t) = 0.

Applying [64, Corollary 3.2(2)], here as well, and since ω is non-

degenerate, one has

sU0 ∈ (r⊥)⊥;

therefore, there exists λU ∈ A(U) such that

r = λUs
U
0 .

Thus, the symplectic A(U)-transvection φU := IE(U) + ψU is of the

form:

φU(s) = s+ λUωU(sU0 , s)s
U
0

for every s ∈ E(U).

We have thus proved:

Theorem 5.14 Let (E , ω) be a symplectic A-module of finite rank,

where A is a PID algebra sheaf, and φ a symplectic A-transvection of

E. Then, for every open subset U of X and s ∈ E(U),

φU(s) = s+ λUωU(sU0 , s)s
U
0
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for some sU0 ∈ E(U). sU0 is called the base section of φU .

5.2 A-symplectomorphisms as products of sym-

plectic A-transvections

The results below generalize their classical counterparts; see for in-

stance [16, pp. 18-20] and [18, pp. 422-424]. We will assume for each

of these results that (X,A,P) is an ordered algebraized space (cf. [50,

pp. 316-318]), with A a torsion-free PID algebra sheaf such that all

its nowhere-zero sections are invertible, and (E , ω) a symplectic (free)

A-module of finite rank. (Sheaves of continuous, smooth and holo-

morphic functions have the property that every nowhere-zero section

is invertible.)

Lemma 5.15 If s, t ∈ E(U) are sections of E, everywhere, on U ,

non orthogonal, then, there exists a symplectic transvection τ on E(U)

such that τ(s) = t. On the other hand, if ωU(s, t)|V = ωV (s|V , t|V ) = 0

and s|V 6= t|V for some open V ⊆ U , there is no nowhere-identity

symplectic transvection on E(U) carrying s onto t.

Proof. Since ωU(s, t) is nowhere zero, and every nowhere-zero

section of A is invertible, it suffices to take

τ(u) = u− 1

ωU(s, t)
ωU(t− s, u)(t− s).

As for the second part of the lemma, suppose there exists a sym-

plectic transvection τ , of base section a ∈ E(U), mapping s onto t.

Then, on V , we have

c|V ωV (a|V , s|V )2 = 0
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or, since A is torsion-free and c is everywhere no zero,

ωV (a|V , s|V ) = 0

which implies that

τV (s|V ) = s|V = t|V .

Lemma 5.16 Let τ be a symplectomorphism of E(U) and Fτ the free

sub-A(U)-module of E(U) consisting of all fixed sections in E(U) (by

τ). Then, the necessary and sufficient condition for the existence of a

nowhere-identity transvection α such that the free sub-A(U)-module of

fixed sections of φ ≡ α◦τ, Fφ, with the property that rank Fφ > rank Fτ ,

is that there exists a section s1 such that ωU(τ(s1), s1) is nowhere zero,

(which implies that τ(s1)|V 6= s1|V for any open V ⊆ U , which, in turn,

implies that s1 /∈ Fτ).

Proof. Suppose there exists s1 with ωU(τ(s1), s1) nowhere zero;

it follows that

ωU(τ(s1)− s1, s1)|V 6= 0

for any open V ⊆ U . Clearly, (τ(s1) − s1)
⊥ is an A(U)-hyperplane

and contains Fτ , for, if τ(s) = s,

ωU(τ(s1)− s1, s) = ωU(τ(s1), s)− ωU(s1, s)

= ωU(τ(s1), τ(s))− ωU(s1, s) = 0.

Considering the transvection

α(s) = s− 1

ωU(τ(s1), s1)
ωU(s1 − τ(s1), s)(s1 − τ(s1)),

one has

α(τ(s1)) = s1.

 
 
 



A-symplectomorphisms as products of symplectic A-transvections 101

Its fixed sections yield the A(U)-hyperplane (s1− τ(s1))
⊥, which con-

tains Fτ . Since

φ(s1) = (α ◦ τ)(s1) = s1

and s1 is nowhere zero and is contained in Fφ, so rank Fφ > rank Fτ .

Conversely, if φ = α ◦ τ for some nowhere-identity transvection

α and rank Fφ > rank Fτ , it follows that there exists a nowhere-zero

section s1 ∈ E(U) such that φ(s1) = (α◦τ)(s1) = s1 and τ(s1)|V 6= s1|V
for any open V ⊆ U . Assume that the transvection α is given by

α(s) = s+ cωU(a, s)a,

where c ∈ A(U) and a ∈ E(U) (since α is a nowhere-identity transvec-

tion, therefore, of necessity, ωU(a, s) is nowhere zero). Then,

(α ◦ τ)(s1) = τ(s1) + cωU(a, τ(s1))a = s1,

which implies that

τ(s1)− s1 = cωU(a, τ(s1))a.

Since (τ(s1) − s1)|V 6= 0 for any open V ⊆ U , ωU(a, τ(s1))|V 6= 0 for

any open V ⊆ U. But, for any open V ⊆ U ,

ωU(a, τ(s1))|V = ωU(α(a), α(τ(s1)))|V = ωU(a, s1)|V 6= 0

and

ωU(s1, τ(s1)) = ωU(α(s1), α(τ(s1)))

= ωU(s1 + cωU(a, s1)a, s1) = cωU(a, s1)
2,

therefore

ωU(s1, τ(s1))|V 6= 0

for any open V ⊆ U .

By Lemma 5.15, for open sets U and V such that V ⊆ U , there

exists no nowhere-identity symplectic transvection mapping s1 to τ(s1)
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and such that ωU(τ(s1), s1)|V = 0 and s1|V 6= τ(s1)|V . Therefore, the

only case of exception of Lemma 5.16, that is, when ωU(τ(s), s) = 0 for

any s ∈ E(U), is to be ruled out as, by Lemma 5.15, if α is a symplectic

transvection of E(U), mapping s to τ(s) and ωU(τ(s), s) = 0 then

τ(s) = α(s) = s. In this instance α is the identity, a contradiction to

the wish that α should be a nowhere-identity symplectic transvection.

When put together, Lemmas 5.15 and 5.16 are a proof of the

following theorem.

Theorem 5.17 Let (E , ω) be a symplectic A-module of rank 2n, and

σ an A-symplectomorphism of E. Then, σ is a product of at most

(4n− 2) nowhere-identity symplectic A-transvections.

Proof. The proof is done by induction on the rank of the free

sub-A(X)-module FσX of fixed sections of σX , by showing that if σX

is not the identity map, there exist at most two A(X)-transvections

α and β of E(X) such that, if φ = α ◦ β ◦ σX , rank Fφ > rank FσX .

Beside, if rank FσX = 2n − 1, by Corollary 5.13, σX is an A-

transvection. Otherwise, there exist m A-transvections, m ≤ (4n−2),

such that

αm ◦ αm−1 ◦ · · · ◦ α1 ◦ σ = I.

5.3 Witt’s theorem and symplectic orthogonally

convenient A-modules

As suggested in the title of this section, our first aim is to find an

analogue of the Witt’s theorem (cf. [68, pp. 46-48]) for symplectic A-
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modules. For this purpose, we refer the reader to [53], [62] and Chap-

ter 4 for useful details regarding symplectic A-modules and symplectic

bases (of sections). Sheaves of symplectic groups arise in a natural way

when one considers A-isomorphisms between symplectic A-modules

which respect the symplectic structures involved, see [53]. For some

other versions of the Witt’s theorem, see [52] and [65]. Finally, the sec-

tion ends with a characterization of singular A-symplectomorphisms

of symplectic orthogonally convenient A-modules of finite rank. Or-

thogonally convenient A-modules were introduced in Chapter 2.

For the classical Witt’s theorem, see [1, pp. 368-387], [3, pp. 121,

122], [5, p. 21], [68], [16, pp. 11, 12], [18, pp. 148- 152], [43, pp. 591,

592], [66, p. 9]. But, first we need the following definition (cf. [65]).

Definition 5.18 Let (E , ω) be symplectic orthogonally convenient A-

module of finite rank.

(i) A free sub-A-module F ⊆ E with ω|F non-degenerate is called a

symplectic orthogonally convenient sub-A-module of E .

(ii) A free sub-A-module F ⊆ E with F⊥ is isotropic is called

coisotropic.

(iii) A free sub-A-module F ⊆ E which is both isotropic and coisotropic

is called a Lagrangian sub-A-module.

From [64, Corollary 4.1], if F is Lagrangian, then

rank F = rank F⊥.

Theorem 5.19 Let A be a PID algebra sheaf, E a symplectic free A-

module of rank 2n (ω is the symplectic structure on E), F a Lagrangian
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(free) sub-A-module of E and G any sub-A-module of E such that F
and G are supplementary. Then, using G we can

construct a Lagrangian sub-A-module H of E such that E ' F ⊕H.

Proof. The restriction ω′ of ω to F ⊕ G ⊆ E ⊕ E is also non-

degenerate. In fact, let F⊥ω′ and G⊥ω′ denote the kernels of F and G
respectively. More precisely, for every open U ⊆ X,

F⊥ω′(U) = {r ∈ G(U)| ω′(F(V ), r|V ) = 0 for any open V ⊆ U}

and similarly

G⊥ω′(U) = {r ∈ F(U)| ω′(r|V ,G(V )) = 0 for any open V ⊆ U}.

Analogously we denote by F⊥ω and G⊥ω the kernels of F and G respec-

tively with respect to the A-bilinear morphism ω : E ⊕ E −→ A, i.e.

for every open U ⊆ X,

F⊥ω (U) = {r ∈ E(U)| ω(F(V ), r|V ) = 0 for any open V ⊆ U}

and

G⊥ω (U) = {r ∈ E(U)| ω(G(V ), r|V ) = 0 for any open V ⊆ U}.

It is obvious that F⊥ω = F>ω and G⊥ω = G>ω . By hypothesis, we are

given that F = F⊥ω . Clearly, for every open U ⊆ X, F⊥ω′(U) ⊆
F⊥ω (U) and G⊥ω′(U) ⊆ G⊥ω (U). But since F⊥ω (U) = F(U) and F(U) ∩
G(U) = 0, F⊥ω′(U) = 0. Thus, F⊥ω′ = 0. On the other hand, let

r ∈ G⊥ω′(U) ⊆ F(U) ∩ G⊥ω (U). As E(U) = F(U) ⊕ G(U), we de-

duce that r ∈ rad E(U) = 0, therefore r = 0. Hence, G⊥ω′ = 0. Since

ω′ : F ⊕ G −→ A is non-degenerate, the A-morphism ω̃′ : F −→ G∗

such that for every open U ⊆ X, and sections r ∈ F(U) and s ∈ G(U),

ω̃′(r)(s) := ω′(r, s) is bijective.

Let us construct the sought Lagrangian complement H of F in

E . For every open U ⊆ X, we let

H(U) := {r + φ(r)| r ∈ G(U)},
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where φ : G −→ F is some A-morphism. It is clear that H is a sub-

A-module of E . For H to be Lagrangian, it takes the following: For

every open U ⊆ X and sections r, s ∈ G(U)

ω(r + φ(r), s+ φ(s)) = 0

i.e.

ω(r, s) = ω̃′(φ(s))(r)− ω̃′(φ(r))(s). (5.10)

Let φ′ := ω̃′ ◦ φ : G −→ G∗, so that (5.10) becomes

ω(r, s) = φ′(s)(r)− φ′(r)(s). (5.11)

Clearly, by taking φ′(r) = −1
2ω(r,−) for every r ∈ G(U), (5.11) is

satisfied. By setting φ := (ω̃′)−1 ◦φ′, we contend that the claim holds.

In fact, fix an open subset U of X, and suppose that (r1, . . . , rn) is a

basis of G(U). If a1, . . . , an ∈ A(U) such that

a1(r1 + φ(r1)) + . . .+ an(rn + φ(rn)) = 0,

one has that

a1r1 + . . .+ anrn︸ ︷︷ ︸
∈G(U)

= −φ(a1r1 + . . .+ anrn)︸ ︷︷ ︸
∈F(U)

.

Since F(U) ∩ G(U) = 0, it follows that

φ(a1r1 + . . .+ anrn) = 0.

As the chosen φ′ is injective and ω̃′ is an A-isomorphism, φ is injective;

thence

a1r1 + . . .+ anrn = 0;

so that a1 = · · · = an = 0. Now, let us show that F(U)∩H(U) = 0. For

this purpose, suppose that r ∈ F(U)∩H(U). Then for some s ∈ G(U)

r = s+ φ(s).
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It follows that

r − φ(s)︸ ︷︷ ︸
∈F(U)

= s︸︷︷︸
∈G(U)

from which we deduce that s = 0, and hence r = 0. That E(U) ∼=
F(U)⊕H(U) is now clear. Since U is arbitrary, E ∼= F⊕H as desired.

Theorem 5.20 (Witt’s Theorem) Let A be a PID algebra sheaf,

let E be a free A-module of rank 2n, equipped with two symplectic

A-morphisms ω0 and ω1, and finally let F be a sub-A-module of E,

Lagrangian with respect to both ω0 and ω1. Then, there exists an A-

symplectomorphism φ : (E , ω0) −→ (E , ω1) such that φ|F = IdF .

Proof. Let G be any complement of F in E . By Theorem 5.19,

given symplectic A-morphisms ω0 and ω1, there exist Lagrangian com-

plements G0 and G1 of F respectively. Again by the proof of Theorem

5.19, the restrictions ω′0, ω
′
1 of ω0, ω1 to G0 ⊕ F and G1 ⊕ F respec-

tively are nondegenerate and yield A-isomorphisms ω̃′0 : G0 −→ F∗

and ω̃′1 : G1 −→ F∗ respectively. Since G0 and G1 are free and of the

same finite rank, there exists an A-isomorphism ψ : G0 −→ G1 such

that ω̃′1 ◦ ψ = ω̃′0, i.e. for any sections r ∈ G0(U) and s ∈ F(U)

ω0(r, s) = ω1(ψ(r), s).

Let us extend ψ to the rest of E by setting it to be the identity on F :

φ := IdF ⊕ ψ : F ⊕ G0 −→ F ⊕ G1

and we have for any sections r, r′ ∈ G0(U) and s, s′ ∈ F(U)

ω1(φ(s+ r), φ(s′ + r′)) = ω1(s+ ψ(r), s′ + ψ(r′))

= ω1(s, ψ(r′)) + ω1(ψ(r), s′)

= ω0(s, r
′) + ω0(r, s

′)

= ω0(s+ r, s′ + r′).
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5.4 Conclusion

Our attempt to obtain a complete abstract analog of the book “Ge-

ometric Algebra” by [3] was not completely possible because some of

the geometric approach employed therein were not easily obtainable

in our context. Therefore, the following selected problems present a

research interest, and complement some of the ideas expounded in this

work.

• The geometry of quadratic forms and the structure of the general

linear group sheaf.

• Geometry over ordered algebraized space − Sylvester’s theorem.

• The Structure of symplectic and orthogonal A-modules, (see [3,

Chapter V ]): Investigate questions similar to those of the pre-

ceding chapters where we consider an A-module with either a

symplectic or an orthogonal geometry and try to determine in-

variant sub-A-modules of the symplectic (respectively, orthogo-

nal) A-module. Furthermore, for deeper results on orthogonal

A-modules we shall need to construct a certain C-algebraized

space called the Clifford algebra C(A) of A.

• In CDG, the sheaf A ≡ C∞X is not a PID sheaf do not hold for

manifolds. It would be very interesting to see how these results

are formulated, for arbitrary algebra sheaf− (good comment from

M. H. Papatriantafillou, external examiner).

• In Chapter 2 and the later, sheaves of free A-modules are stud-

ied. What can we say about the case when we consider finitely

generated A-modules or generalized locally free A-modules in-

stead of free A-modules? Would it become impossible to obtain

similar results if we drop the demand of freeness and replace it
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with finite generation− (good comment from Mart Abel, external

examiner).

• It will be useful to compare the results not only with their clas-

sical counterparts in the classical linear and geometric algebra of

finite-dimensional vector spaces, but also with the results of linear

algebra of free modules over general commutative rings (some of

which are given e.g. in Bourbaki’s “Commutative Algebra”) and

especially over von Neumann regular commutative rings. Sheaves

of modules naturally occur there with the ground topological

space being the Zariski spectrum of the ground ring. Moreover,

one can move further towards algebraic geometry by considering

“nice” modules over schemes − expecting better properties than

one can get for modules over arbitrary sheaves of rings − (good

comment from G. Janelidze, external examiner).

• It would also be interesting to analyze the obtained results from

the point of view of mathematical logic: in principal, as we know

from topos theory, they should be the same as what one would

get with “choice-free arguments” intuitively − G. Janelidze.

Further investigation of these problems would be a worthwhile contri-

bution towards the same direction of research. The interested readers

are kindly invited to explore the new territory opened by Abstract

Geometric Algebra.
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sorielle, Dunod, Paris, 1968.

[16] A. Crumeyrolle: Orthogonal and Symplectic Clifford Algebras.

Spinor Structures, Kluwer Academic Publishers, Dordrecht, 1990.

[17] C. W. Curtis: Linear Algebra. An Introductory Approach. Third

edition, Allyn and Bacon, Inc. Boston, 1974.

[18] R. Deheuvels: Formes quadratiques et groupes classiques, Presses

Universitaires de France, 1981.
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