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ABSTRACT 

Sorghum (Sorghum bicolor L. Moench) ranks fifth worldwide in production among cereals. It 

is a major staple food for millions in Africa and Asia, and a major livestock feed grain in 

developed countries.  However, the sorghum grain is poor in lysine content, limiting its value 

as food and feed. In this study, I hypothesize that reduction of some of the major storage 

proteins that are inherently poor in lysine through in vitro manipulation will  result in the 

enhanced expression of proteins with a better lysine profile and, thus, increased overall grain 

lysine content. Sorghum genotypes were screened for in vitro amenability and a sorghum 

genotype-tissue culture medium combination that yielded the highest somatic embryo callus 

formation and regeneration potential, was identified. This resulted in the establishment of a 

sorghum biolistic transformation method with a transformation efficiency of 3.36%, the 

highest reported to date. Using genetic engineering tools, the enhancement of the nutritional 

quality of grain sorghum was achieved by increasing the seed lysine content. An RNAi co-

suppression strategy was employed and resulted in 45.23 and 77.55% increase in whole seed 

and endosperm lysine increase, respectively. The co-suppression RNAi constructs targeted 

the endosperm specific suppression of three lysine-poor storage proteins, namely δ-kaf-2, γ-

kaf-1 and -2,  and an enzyme that catalyzes seed lysine degradation, lysine keto-gluterate 

reductase (LKR).  Seven independent transgenic events displayed successful transgene 

integration for both the selectable marker gene and the target constructs. However, the 

Southern blot hybridization analysis revealed two transgenic events that displayed transgene 

re-arrangement at the 5’promoter end, thus resulting in a lack of suppression of target 

proteins. Variations in target proteins co-suppression was observed with Western blot 

analysis and RT-PCR for both the target kafirins and LKR suppression, and no lysine 

improvement was observed where no kafirin suppression occurred. The transgenic co-

suppression of the target kafirins resulted in the endosperm structural change from a hard, 
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corneous endosperm to a soft, floury endosperm, consistent with γ-zein suppression in the 

Opaque-2 maize mutant.  

 

THESIS COMPOSITION 

This thesis comprises of five chapters of a PhD study that aimed at improving the nutritional 

value of sorghum grain for food and feed consumption. Chapter 1 is an introduction to the 

morphology and physiology of the sorghum plant, its commercial and domestic usage. This 

chapter also reviews the nutritional deficiency of sorghum grain due to its inherently low 

content of the essential amino acids lysine and methionine. The chapter concludes by 

formulating a genetic engineering strategy that aims at improving the seed lysine content. The 

first technical effort towards achieving the main aims is covered in Chapter 2. This involves 

in vitro screening of five sorghum genotypes in three tissue culture solid media formulations. 

This served to identify the most amenable genotype for subsequent transformation efforts. 

The second transformation optimization step involved a comparison of two transgenic tissue 

selection systems (Chapter 3). Also covered in Chapter 3 was the application of the 

optimized transformation conditions to generate stable transgenic sorghum plants expressing 

the RNAi construct for targeted endosperm proteins suppression. This is followed by 

characterization of the transgenic lines for target protein suppression and amino acid content 

analysis to examine seed lysine improvements (Chapter 4). Chapter 5 is a global discussion 

on the impact this study exerts in cereal nutrition. At the end of each chapter, the list of 

references cited is provided. Finally the Annexure covers recipes of solutions and tissue 

culture media contents that were used in this thesis. 
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