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Abstract 
 

Recent advances in space geodetic techniques such as Very Long Baseline Interferometry, 

Global Navigation Satellite Services, Satellite Laser Ranging and advanced numerical weather- 

prediction model simulations, provide huge tropospheric data sets with improved spatial-

temporal resolution. These data sets exhibit unique fluctuations that have a spatial-temporal 

structure which are thought to mimic the complex behaviour of the atmosphere. As a result, the 

analysis of nonstationary structure in the tropospheric parameters derived from geodetic and 

numerical model simulations could be used to probe the extent of universality in the dynamics 

of the atmosphere, with applications in space geodesy. In order to identify the physical causes of 

variability of tropospheric parameters, parametric and nonparametric data analyses strategies 

which are investigated and reported in this thesis, are used to inform on the geophysical signals 

embedded in the data structure. In the first task of this research work, it is shown that the 

fluctuations of atmospheric water vapour over southern Africa are non-linear and nonstationary. 

Secondly, the tropospheric data sets are transformed to stationarity and the stochastic behaviour 

of water vapour fluctuations are assessed by use of an automatic algorithm that estimates the 

model parameters. By using a data adaptive modelling algorithm, an autoregressive-moving-

average model was found to sufficiently characterise the derived stationary water vapour 

fluctuations. Furthermore, the non-linear and nonstationary properties of tropospheric delay due 

to water vapour were investigated by use of robust and tractable non-linear approaches such as 

detrended fluctuation analysis, independent component analysis, wavelet transform and 

empirical mode decomposition. The use of non-linear approaches to data analysis is objective 

and tractable because they allow data to speak for themselves during analysis and also because 

of the non-linear components embedded in the atmosphere system. In the thesis, we establish 

that the non-linear and nonstationary properties in the tropospheric data sets (i.e., tropospheric 

delay due to water vapour and delay gradients) could be triggered from strongly non-linear 

stochastic processes that have a local signature (e.g. local immediate topography, weather and 

associated systems) and/or exogenous. In addition, we explore and report on the presence of 

scaling properties (and therefore memory) in tropospheric parameters. This self-similar 

behaviour exhibit spatial-temporal dependence and could be associated with geophysical 

processes that drive atmosphere dynamics. Satellite Laser Ranging data are very sensitive to 

atmospheric conditions, which causes a delay of the laser pulse, hence an apparent range 

increase. A test for non-linearity is applied within specialised software for these data; it is found 

that the range residuals (i.e., the observed minus computed residuals) are improved when 

possible non-linearity of the locally measured meteorological parameters as applied to a range 

delay model are considered.  
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Preface 
Geodetic time series analysis is a necessary procedure of extracting statistical properties 

and other characteristics of the data and is therefore an important process in modern 

space geodesy. In general, the analysis involves pre-processing of raw observations 

from various geodetic techniques, enhancing signals in the raw data, actual analysis 

(e.g., detection of nonlinearities and nonstationarities, statistical characterisation of the 

series) and prediction. While different methods are often applied to analyse the geodetic 

time series, estimating the deterministic (e.g., periodic variations and trend) and 

stochastic (mostly aperiodic variations) components as well as extracting specific 

oscillatory modes (which could be linked to geophysical signals) have not received 

much attention. In this current research work, the stochastic and multiscale properties in 

tropospheric parameters (hereafter Water Vapour (WV), tropospheric delay and delay 

gradients) derived from geodetic and numerical weather prediction models are assessed 

and modelled. The results indicate that WV/tropospheric delay due to WV exhibit self-

similar behaviour and that their fluctuations are non-linear and nonstationary. 

The layout of this thesis is intended to provide a logical flow of this research 

endeavour. After the general introduction in Chapter 1, the literature review (Chapter 2) 

provides an overview of space geodetic techniques, principle operation of Global 

Navigation Satellite System (GNSS) and Very Long Baseline Interferometry (VLBI) 

techniques, their applications (e.g., Earth‟s crustal deformation, plate tectonics, and 

maintenance of Terrestrial Reference Frames (TRF) as well as atmospheric remote 

sensing). Current measurements and analysis strategies of tropospheric parameters with 

application in geodetic analyses are also reviewed in this chapter. In Chapter 3, the 

sources of data that are studied in this thesis are explained. The spatial-temporal 

resolution of the geodetic (VLBI and GNSS), Numerical Weather Prediction (NWP) 

model simulations (e.g. NCEP/NCAR), radiosonde (e.g. the Southern Hemisphere 

ADditional OZonesondes (SHADOZ) network) and the HALOgen Occultation 

Experiment (HALOE) satellite data sets are described. The methods used to pre-process 

these data records are also described briefly.  

Chapter 4 examines the stationarity in geodetic WV and adaptively fits a time 

series ARMA model that describes the stochastic pattern, to the geodetic WV 

transformed from nonstationary to stationary. Chapter 5 deals with the analysis of WV 

fluctuations. The SHADOZ radiosonde network is also used to infer the multiscale 
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structure of WV in low- and mid-tropical Africa. Furthermore, a model for the vertical 

profile of WV in the southern hemisphere based on the HALOE satellite and the 

SHADOZ network data is developed. In Chapter 6, firstly the scaling behaviour (testing 

the underlying memory processes) of tropospheric WV is assessed using wavelets. 

Secondly, a noise-assisted data analysis methodology is applied to the geodetic 

tropospheric zenith delay and surface temperature to determine the dominant modes of 

oscillation in data. Further, WV and surface temperature have been shown to be 

temporally correlated because the instantaneous phase differences among the associated 

modes of the Intrinsic Mode Functions (IMFs) derived from the Ensemble Empirical 

Mode Decomposition (EEMD) of WV and surface temperature have a high degree of 

synchronisation. Additionally, the benefit of introducing non-linearity and 

nonstationarity in atmospheric correction to the Satellite Laser Ranging (SLR) range is 

investigated by introducing a nonlinear function to model the azimuth dependent 

atmospheric range correction. In Chapter 7, a summary of the findings are presented and 

recommendations and future research proposed. 
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1. Introduction 

Those among us who are unwilling to expose their ideas to the 

hazard of refutation do not take part in the scientific game. 

Sir Karl Popper (1902-1994 

 

This chapter provides a brief background and overview of 

space geodetic observations and the associated errors. The 

focus is on understanding and characterisation of geodetic 

data from the point of view of appropriately applying robust 

quantitative analysis strategies of tropospheric water vapour 

and tropospheric delay due to water vapour time series. The 

aim, objectives, research questions and scope of the study are 

also described. 

  

1.1. Background 

Measures of physical observables (which change over time) to study natural phenomena is of 

extraordinary importance for comprehending and characterisation of the underlying physical 

process. In particular, measurements from space geodetic techniques provide observational 

data that are used to depict the global picture of the Earth. The geodetic observations have a 

wide range of scientific applications such as fluctuations of the Earth (including precession, 

polar motion, nutation etc.,) and all types of height changes and deformation due to mass 

transfer between the solid Earth, the atmosphere and hydrosphere. However, these 

measurements are influenced by many geophysical processes such as weather and climate 

encompassing the atmospheric structure and dynamics, mass fluctuations, large water mass 

circulations and sea level fluctuations, postglacial rebound and, tide of solid Earth and 

Oceans; are often embedded with measurement error and are often corrupted by unknown 

noise sources. All the physical processes and noise introduce biases to the geophysical signal 

structure that are embedded in the parameters derived from data. It is crucial that these 

processes are therefore understood in data analysis. Key auxiliary parameters associated with 

all the primary geodetic target parameters are the tropospheric WV or the tropospheric delay 

of radio signals induced by WV and meteorological parameters. Geodetic time series often 

exhibits irregular, nonstationary and wide-band signals due to the complex interaction 

between different components of the Earth system. In the majority of the applications of 

studying time series of geodetic data, the underlying structure is often assumed to be 
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stationary. It is unlikely therefore that analysis techniques developed to reliably display the 

spatial-temporal variability of geodetic data are robust. Applying non-linear time series 

techniques to geodetic observations provide new information about the complex dynamics of 

the atmosphere-Earth system. In order to extract and characterise the relevant geophysical 

signals embedded in the data, a variety of measures (especially those that are data adaptive) 

are welcome. 

 

1.2. Significance of the study 

The significance of this research is in the realm of atmospheric modelling for space geodetic 

applications. The concept of non-linear and nonstationary time series analysis in space 

geodesy is relatively new. Therefore, research which explores data adaptive analysis methods 

will contribute to the understanding of the signal structure embedded in geodetic data from 

the point of view of displaying the spatial-temporal features present in the data. The analysis 

framework reported in this thesis envisage  geodetic time series in different frequency bands 

thereby allowing for individual modes of oscillation to be linked to the different geophysical 

processes (or systematic variations of technical origin) by use of a variety of different 

measures that characterise their dynamical characteristics. 

 The goal of tropospheric geodetic modelling is to mitigate the contribution of 

tropospheric delays to the delay observable. Estimating the deterministic and stochastic 

components of the tropospheric delay due to WV using data adaptive techniques contributes 

to a more realistic robust geodetic parameter estimates. Therefore, the findings from this 

research have the capacity to impact on the tropospheric modelling strategies taking 

cognisance of the evolutionary second-order structure and self-similar behaviour in the 

geodetic data. In addition, this work creates awareness of the non-linearity and 

nonstationarity problem, as linearity and stationarity is always assumed within current 

models. A further logical step, which is briefly explored in the current work, will be to 

incorporate a non-linear component as an estimate and additional tropospheric correction, for 

instance to the range component of Satellite SLR. This should improve the observed minus 

computed residuals (as demonstrated herein) and allow for improved precise orbit 

determination and consequently, an improvement in the estimates of other modelled 

variables. This is true in general for all the space geodetic techniques, therefore this work 

paves the way forward for the development and inclusion into analysis software, of advanced 

 
 
 



3 

 

models which can be realised in software algorithms, thereby contributing to global geodetic 

science and atmospheric/geodetic water vapour modelling. 

  

1.3. Aim and objectives 

The overall aim of this study is to apply pragmatic analyses strategies to quantitatively 

investigate and understand the variability of the geodetic tropospheric WV over southern 

Africa and other parameters associated to the geodetic delay observable. In order to achieve 

this goal, the following specific objectives of the research are upheld; 

a. To investigate the nature of geodetic WV time series (e.g., linear trends, 

periodic and non-periodic transients) and determine the appropriate model that 

describes the variability pattern. 

b. To characterise the multiscale behaviour of tropospheric WV in southern 

Africa. 

c. To detect and characterise the non-linear and nonstationary properties of 

tropospheric geodetic WV and understand the associated geophysical causes. 

d. Incorporate non-linearity in atmospheric range correction and therefore 

evaluate its contribution to the Observed minus Computed (O-C) residuals in 

geodetic (e.g., SLR) analysis. 

 

In this work, when the term geodetic WV is used, it refers to the contribution of atmospheric 

water vapour to the geodetic delay observable and does not refer to water vapour as a 

meteorological variable. However when the term water vapour (WV) is used, it refers to 

meteorological water vapour, which can be determined by meteorological instruments or can 

be inferred from the geodetic delay models, i.e., by separating the true delay from the total 

delay, so that the difference is in effect the water vapour contribution. 

 

1.4. Research questions 

There have been much theoretical and modelling work done on the methods and validation of 

geodetic WV derived from different data sources.  Statistical methods have been used to 

analyse the spatial-temporal structure of long-term variations of WV. Additionally, a number 

of different studies to measure trends in WV have been reported by Nilsson and Elgered, 

(2008) and references therein. Despite these efforts, this research sought to address the 

following key questions;  
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a) What is the appropriate model that could describe a stochastic geodetic WV? 

b) What is the scaling behaviour of geodetic WV data records?  

c) Are the fluctuations of geodetic WV driven by stationary or nonstationary non-

linear tropospheric processes? 

d) If non-linearity is inferred, what would be the contribution for incorporating non-

linear models to the correction of atmospheric range bias, in geodetic data 

analysis?  

It is vital for these questions to be answered to enable the space geodesy research community 

to fine-tune the existing tropospheric models so as to accommodate the dynamic 

characteristics and contributions of WV to the geodetic delay observable estimation. Our 

interest in this research reported herein lies with the usage of time series analysis and the 

description of the general time series characteristic of WV based on an automatic data-driven 

model selection process. 

  

1.5. Hypothesis 

This study hypothesizes that tropospheric WV and other geodetic parameters exhibit non-

linear and nonstationary properties with memory. 

 

1.6. Scope of the study 

The only International VLBI Service (IVS) station in Africa (Hartebeesthoek Radio 

Astronomy Observatory, HartRAO) is located at 25.89
0 

S; 27.090 E, South Africa. This is a 

fiducial geodetic station that has been contributing to the space geodesy community geodetic 

observations for nearly three decades. The current research covers quantitative analyses of 

stochastic, non-linear and nonstationary properties of geodetic WV and associated parameter 

tropospheric delay due to WV (e.g., tropospheric delay and tropospheric delay linear 

gradients) over and around HartRAO and WV derived from NWP model simulations. In the 

analysis, the non-parametric time series analysis methodologies such as Detrended 

Fluctuation Analysis (DFA), Wavelet Transform (WT) and EEMD are used. In order to 

evaluate the theoretical concepts developed throughout this work within the context of space 

geodetic techniques, an application was developed for SLR. This approach utilised an 

enhancement of existing software (Combrinck, 2010) to include non-linear effects not 

provided for in the current modelling of the additional range delay due to the atmosphere. 
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2. Tropospheric modelling for space geodetic applications 

… by observing the most distant objects of the Universe 

(Quasars), we can learn things that happen around the corner, 

here on Earth.  

Miguel T. (1999). 

 

A review of the literature on geodetic tropospheric modelling is 

presented in this Chapter. In particular, the existing literature 

focussing on the analyses strategies for the derived 

tropospheric parameters from geodetic measurements and 

recent developments in tropospheric TD/WV modelling is 

reviewed. 

 

2.1. Introduction 

Over the last three decades, Space Geodetic Techniques (SGT) such as VLBI, GNSS, SLR, 

Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and Water 

Vapour Radiometry (WVR) have continued to improve the accuracy, timely and continuous 

provision of geodetic products, which have benefits to both science and society (Niell, 2005). 

Some of the unique products from SGT, such as Earth Orientation Parameters (EOP), Earth 

gravity fields, sea surface and sea level changes, solid surface geometry and kinematics have 

been provided reliably and consistently. These products form the basis for scientific 

application in areas such as geodynamics, global change, land management, engineering and 

navigation. In addition, these products have been used in surveying, global spatial data 

infrastructure as well as in rural and urban development. Geodetic data have applications in 

monitoring surface deformation (e.g., GPS, VLBI and SLR), navigation (e.g., GPS), natural 

hazards like volcanic eruptions and stress levels for earthquake hazard assessment (see for 

example Nyst et al., 2006).  A summary of geodetic parameters related to the system Earth 

reported by Rothacher, (2002) is tabulated in Table 2.1. 
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Table 2.1. Geodetic parameter groups related to system Earth as reported in Rothacher, 

(2002). 

Parameter type VLBI GPS SLR DORIS 

 

RS 

 

Quasar positions x    

Orbits (Satellites, Moon)  x x x 

 

 

 

EOP 

 

Nutation x x  

 

 

Nutation rates x x x x 

UT1-UTC x    

LOD x x x x 

Polar motion x x x x 

TRF Station positions x x x x 

 

Gravity field 

Geocenter  x x x 

Low degree  x x x 

 

Atmosphere  

                      

  

Troposphere x x  x 

Ionosphere x x  x 

 

The scientific application of geodetic data has been fundamental in the understanding of the 

structure and deformations of the Earth's crust (Sansò and Gil, 2006), mantle and core. 

Geodetic data have also been applied in the analysis of geophysical fluids (Wolfgang and 

Richter, 2008), the coupling between the free atmosphere and solid earth. For instance, 

Davies et al., (2004), in an analysis of GRACE and GPS data, identified a climate-driven 

deformation signal of the solid earth. Seasonal variations in gravity fields were positively 

correlated with climate-driven fluxes of surface water.  

Current VLBI community under the auspices of the IVS working groups have 

redefined the target accuracy goals in their products. For instance, the next generation VLBI 

system (termed VLBI2010) ought to provide a 1 mm positional and 1 mm per annum velocity 

accuracies within the ITRF. The VLBI network is depicted in Figure 2.1 where a number of 

these stations have collocated GNSS, SLR or DORIS instruments, which have applications in 

 
 
 



geodesy and atmospheric studies. Continuous measurement of EOP and the rapid generation 

and distribution of geodetic products (Niell, 2005) are additional targets. Since the 

atmospheric structure and dynamics influences the accuracy of the estimated geodetic 

products, these applications require that atmospheric biases in the geodetic products ought to 

be minimised. 

Figure 2.1 The current global VLBI network.

Research that focuses on geodetic tropospheric modelling involves the development of 

strategies for improving the atmospheric models that reduce random and systematic bias 

components of the Tropospheric Delay (TD) observable. The TD observable is the extra path 

length covered by the radio wave due to a delay caused by the change in the direction of 

propagation of the radio signal in the troposphere (ionosphere, see Ho et al., (1997); Hobiger et 

al., (2006)) and troposphere (Saastamoinen, 1972; Haase et al., 2003). 

Modelling and analyses strategies of the tropospheric contribution to the delay 

observable ought to be improved  if  the goal of one millimetre accuracy in the estimation of 
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EOP, station positions and velocities is to be achieved. To measure the improvement in 

modelling accuracy, the secular signals associated with crustal deformations are monitored 

regularly. Other non-secular geophysical deformations (resulting from atmospheric loading, 

groundwater level seasonal fluctuations etc.) may be seen in the repeatability of baseline 

length between two stations.  

The TD component is the most dominant bias contributor in GNSS and VLBI 

geodetic measurements (Gradinarsky et al., 2000; Behrend et al., 2008). As the signal 

traverses the neutral atmosphere, it experiences a change in the effective path length and 

direction of propagation. The change in the geometric path of the microwave signal occurs 

due to spatial-temporal variability of the refractive index. One major contributor to variability 

of the refractive index is tropospheric WV. In the troposphere, WV induces the highly 

fluctuating tropospheric delay observable, commonly referred to as the wet delay. 

Current tropospheric modelling strategies do not accurately capture actual stochastic 

and non-homogeneous properties of geodetic WV or TD due to WV. Although a lot of effort 

has been made to improve the modelling and analysis of the atmospheric contribution to the 

geodetic TD observable, the envisioned accuracy constraints, as reported by for instance 

Niell, (2005), require better and in addition regional (rather than just global) modelling 

techniques that ould correct for the random and systematic components of the geodetic TD 

observable biases (e.g., troposphere and instrumental). There is need for improved geodetic 

site specific model analysis strategies of the anisotropic atmosphere and error budgets. 

The VLBI2010 project in particular focuses on addressing key constraints, which 

undermine the attempts to meet mm accuracy geodetic station positions through simulations 

(Wresnik et al., 2008).  Research in appropriate geometry, sky coverage, system constraints, 

tropospheric modelling and software have been reported by Niell, (2005); Boehm et al., 

(2006); Nilsson and Haas, (2008). Notwithstanding all these efforts, the current modelling 

strategies do not consider possible stand-alone station dependent strategies that might 

constrain (to some extent) the empirical and systematic biases in geodetic parameters. The 

next section describes measurements and empirical formulation of tropospheric parameters 

(e.g., delay gradients, WV) that influence the accuracy of the geodetic TD observable. 

 

2.2. Structure of the atmosphere 

Different conventions or physical parameters are used to describe atmosphere layers. In space 

geodesy, the atmosphere would be classified into troposphere; mesosphere, stratosphere and 
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ionosphere (see Table 2.2). The troposphere is the neutral part of the atmosphere which 

includes the troposphere, tropopause and stratosphere as defined in meteorology. The 

troposphere has a quasi-frequency independent refractive index at microwave signals below 

30 GHz. The neutral layer (0 to 15 km height) has a high concentration of neutral particles. 

This part of the atmosphere is dominated by physical processes which characterise the 

dynamics of the atmosphere determined by turbulent molecular viscosity. Due to spatial-

temporal variability of temperature and pressure, mass re-distribution in the atmosphere 

causes local and global circulation systems which are affected by Earth rotation, large water 

bodies and other extra-terrestrial forces.  This coupling is often captured in the correlation of 

EOP and the Atmospheric Angular Momentum (AAM), see for example Zhang et al., (2003) 

and references therein. 

Table 2.2. Geodetic view of the atmosphere 

Height, km 0 to 50 ≥ 50 ≤ 80 ≥ 80 

Temperature Troposphere 

Stratosphere 

Stratopause 

Mesosphere 

 Thermosphere 

Exosphere 

Refractivity Troposphere  

Mixing ratio Homosphere Heterosphere 

Magneto- 

electronic 

structure 

Neutral 

atmosphere 

Ionosphere  Ionosphere 

Plasmasphere 

Magnetosphere 

 

The troposphere exhibits turbulent processes and therefore the mixing ratio of its 

constituent‟s undergoes subtle changes, except for WV which experiences a marked change. 

However, at high altitudes, > 80 km, the kinetic molecular processes dominate the turbulence 

processes. Below 80 km, the atmosphere is called the homosphere. The heterosphere is part 

of the atmosphere medium above 80 km. Furthermore, based on the dynamic processes, the 

troposphere can be divided into the atmospheric boundary layer (layer adjacent to the Earth's 

surface with characteristic high Reynolds number, implying high turbulent flow) and the free 

troposphere. 

The ionosphere layer consists of mainly ionised atmospheric constituents. In this 

layer, the Ultra Violet (UV) and the X-ray radiation produce non-vanishing ionisation 

density. The ionosphere is conventionally characterised by the Total Electron Content (TEC) 

and scale height (H). These parameters exhibit spatial-temporal variability caused by 
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underlying processes. The speed and attenuation of microwave signals traversing the 

ionosphere and troposphere are affected by the refractive index of the atmosphere. In the 

neutral atmosphere, the optical and radio frequencies are related to the ( ,  t)n r  using the 

Cauchy Equation given in Equation (1) as reported by Griffiths, 1999): 

 
2

B
( ,  t) 1 1 ;an N



 
   

 
r  (1) 

where aN  and B are the refractivity and dispersion coefficient respectively. Following Riepl 

and Schluter, (2000), B= 1.7× 10
14

 m
2
 for the atmosphere. Note that, at optical and radio 

wavelengths, λ
2
~ B and B < λ or B << λ

2
.  As a result, the signal propagation in the 

atmosphere will experience a time delay relative to it's propagation in vacuum due to n < 1.  

In Space Geodetic measurements, the microwave signals experience bending due to 

the gradients, see Equation (2), of the troposphere (Davis, 1992; Davis et al., 1993) and this 

is commonly called the geometric delay. Further, the microwave signals are slowed down and 

therefore causes an excess delay which is a function of the refractivity given in Equation (2); 

   0( ,  ,  t) ( ) ( ) ;n z n z z   r r  (2) 

where 0n (z)=n(r=0, z) is the horizontal invariant component of the refractive index and 

 ( ) ( , ,  =0, t)z n z r r r  is the horizontal gradient. According to Rocken et al., (1993), the 

summation of the geometric and excess delay could be expressed as shown in Equation (3) ; 

  ( , ,  t)d ;G
l

ZTD n z r   r  (3) 

where r l  and ZTD, l  and G  are the total tropospheric delay in the zenith direction, the 

curved ray path and the straight-geometric delay through the atmosphere. Equation (3) can 

also be expressed in terms of the slowing and bending terms in Equation (4), 

    , ,  t d ;G
l

ZTD n z r S      r  (4) 

where S   is the curved path length along L. The slowing and bending components are given 

by first and second terms of the right hand side of Equation (4). The bending term 

(  10GS   mm) is elevation dependent and vanishes if the ray path is in the zenith (in the 

absence of gradients). 

The temperature and density of the tropospheric constituents affect the geodetic ZTD 

observable, which in turn determines its spatial-temporal distribution. The stochastic 

behaviour of ZTD is still one of the limiting factors that restrict the accuracy of space 
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geodetic techniques as reported by Boehm et al., (2006). Since ZTD is caused by the dry and 

wet part of the atmospheric constituents, the delay could be separated into the hydrostatic 

(referred to as the dry part in the literature as it is caused by the refractivity of the dry gases in 

the troposphere, but in fact contains the non-dipole component of water vapour refractivity) 

and wet (non-hydrostatic) components: 

 ( ) ( ) ( ) ;z z

h h w wZTD TD TD      (5) 

where ,w h  are the elevation ( )  dependent (and azimuth independent) mapping functions 

which are determined independently from numerical weather prediction models, see Boehm 

et al., (2006) or radiosonde data (Niell, 2000; Niell, 2001). The predictable ZTD are often 

estimated from empirical models using unbiased surface meteorological data to mm accuracy 

(Janes et al., 1991). The wet delay component z

wTD   is related to the quantity of WV in the 

atmosphere and is often used as a passive tracer for atmospheric studies. For instance it can 

be used to reveal the structure of the atmosphere at all temporal and spatial scales. In the next 

section, we focus on the characteristics of the troposphere using refractivity, (N{r, z}, t) and 

the relationship between N, TD and tropospheric precipitable WV. 

 

2.3. Refractivity, tropospheric delay and precipitable WV 

The refractive index,  ( ,  ,  t)n zr  of the troposphere is often expressed in terms of 

  ,  ,  tN zr  i.e.     6,  ,  t 10 ( ,  ,  t)N z n z r r . Expressed as a function of temperature, 

T , the partial pressure of dry air, pd  and the partial pressure of WV, pv (e.g., Smith and 

Weintraub 1953; Thayer, 1974; Bevis et al., 1994), the compact form of   ,  ,  tN zr  is 

given in Equation form as,  

 
1 1 1

1 2 3 4

2 2

· · · · · · ·
;d d v v v v ck Z p k Z p k Z p k p

N
T T T T

  

     (6) 

where the symbols denoting the spatial-temporal dependence have been dropped for 

simplicity. The corrections from the departures of moist air from the ideal gas are given by 

the inverse compressibility factors, 1

dZ   and 1

vZ   for air and water respectively. The 

coefficients , 1,2,3ik i   and their associated errors are given in Table 2.3 according to 

Bevis et al., (1994). If temperatures T  and t  are measured in Kelvin and Celsius and using 

James, (1967), the compressibility factors can be expressed as: 

 
 
 



12 

 

 

 

 

1 8 4

2

1 4 2 6 3

3

0.52
1 57.97·10 ·( ) 94611·10 · ,

1650·
1 · 1 0.01317· 1.75·10 · 1.44·10 · .

d d

v
v

T t
Z p

T T

p
Z t t t

T

  

  

 
   

 

    

 (7) 

 

Table 2.3. Nominal atmospheric refractivity constants and their standard errors. 

Refractivity constant k1 [Kmb
-1

]  k2 [Kmb
-1

]  k3[K
2
mb

-1
]   510  

Smith & Weintraub, 

(1953) 

77.607 0.013  71.60 8.500  3.7470 0.0310  

Thayer, (1974) 77.604 0.014  64.79 0.080  3.7760 0.0040  

Bevis et al., (1994) 77.600 0.005  70.40 2.200  3.7390 0.0012  

 

From Equation (6), the dry and wet refractivity can also be obtained, which is analogous to 

the z

hTD  and z

wTD   derived from the geodetic TD observable. The first term on the right hand 

side of Equation (6) denotes dry refractivity, dN  and is often compared to the z

hTD . The error 

in dN  is less than 0.5% (ITU, 2003). The second and last terms of Equation (6) are called the 

wet refractivity wN . While dN  is about 0.75N , wN  is the largest contributor to the variability 

of tropospheric refractivity. The zenith delay components given in Equation (5) can then be 

obtained by the integration of the vertical profiles of ,w dN  (see Equations (8) and (9)) which 

could be computed from radiosonde and numerical weather prediction simulation data sets. 

 

6

6

1

10 d ,

10 d ;

z

h d

d

TD N

k R 





 

 





r

r

r

r
 (8) 

 

6

1 1
6 2 3

2

10 d ,

10 ;

z

w w

v v v v

N

k p Z k p Z

TD

T T



 


 

 
   

 





r

r

r

 (9) 

where [0 0 ]zr =  and 2 2 1 22.1 2.2d d wM k M k k M   1 K mb  (Bevis et al., 1994). wM  

and dM  are the molar weight of wet and dry air respectively. Here, dR  and   are the 

specific gas constant and the mass density of dry air respectively. 
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Using the hydrostatic equilibrium assumption reported by Houghton, (1986);  

dp = -g(z)×ρ(z)dz , (here, z denotes the vertical coordinate) and a standard atmosphere 

profile, z

hTD can be re-written as: 

 
3 72.2768 10 5 10

,
1 0.00266 cos 2 0.00028

z s
hTD

p

H

    


  
 (10) 

where   and H is the latitude and height, in km over the geoid respectively. The bias in z

hTD  

due to the surface pressure, sp  hPa,   and H can be derived using Equation (10) as follows; 

the delay, surface pressure, latitude and height biases are defined as , ,p H    respectively 

such that: 

,

,

.

p

H



 



 

 

 







 

 

Tropospheric integrated WV (hereafter IWV) 2kg m  of the column above height 0z  can be 

derived from z

wTD  using mean temperature, Tm of WV in the atmospheric column using 

Equations (11) and (12) respectively, see for instance Askne and Nordius, (1987) and Bevis 

et al., (1992).
 1

 

 0

0

d
,

d

T

T

z

z

m z

z

z
T

z

T








 (11) 

 
6

3
1 2

10
.

z

w

v

m

IWV
k

R k

T

k

D

T


 
   
 

 (12) 

The IWV derived from pressure and mean tropospheric temperature measurements suffer 

from measurement errors.
 2

  One way to eliminate propagating these errors is to use z

wTD  in 

the data assimilation for numerical weather prediction. In geodetic applications, IWV is only a 

                                                 
1
 Radiosonde profiles have been used by Bevis et al., (1992) and Emardson and  Derks, (1998),  to derive linear 

and quadratic relation between surface temperature sT  and mT  

2
 Using Equation (12), ZWD IWV and therefore ~1 mbar ~ 0.4 mm 

sp IWV .  
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derived quantity while z

wTD   is more directly used to improve on the accuracy of the delay 

observable.
 3

 

 

2.4. Overview of geodetic VLBI, GNSS and SLR 

In the geodetic VLBI technique, extragalactic radio signals (at 2.3 and 8.36 GHz) from 

Quasars are received simultaneously by a network of terrestrial telescopes, from which very 

accurate estimates of distances between telescopes and estimates of Earth rotation can be 

made. Radio signals from Quasars or Quasi-Stellar Objects (QSO) are highly variable and do 

not suffer from parallax or proper motion since the radio sources are very distant. In fact, they 

are the furthest known objects. In astronomy, the VLBI measurement principle is based on 

interferometry where pairs of telescopes from various locations observe/receive and combine 

simultaneously the signals in-phase from the same object to reveal detail structure of the 

object. For the purposes of geodesy, sources are selected that exhibit little or no structure 

(even with the high resolution possible with VLBI) so as to use the quasars as point sources, 

effectively fixed points realising the International Celestial Reference Frame (ICRF). 

Simultaneous combination of geodetic VLBI signals in real time is not possible; instead, the 

signals measured at each station are recorded onto some storage media (magnetic tapes, 

disks) together with a very accurate time-keeping signal from a high-precision atomic clock. 

The recorded observations and the time signal are later retrieved at various correlators 

stations at selected data centers. 

The time shift in the arrival time of the signal (hereafter the delay) at the relative 

positions of the VLBI telescopes is used to determine, with high accuracy, the positions and 

velocities of each station relative to each other and the positions of the radio sources. These 

measurements have application in the determination and maintenance of the International 

Terrestrial Reference Frame (ITRF) and ICRF, EOP and atmospheric parameters. In addition, 

during further processing of the time history of baselines between stations, three dimensional 

motions of the stations are obtained. Horizontal motion carries information regarding plate 

tectonics and, in addition, the vertical component could contain information related to 

geophysical processes such as post-glacial rebound. 

Unfortunately, geodetic VLBI measurements contain complex signals that could be 

translated as biases
4
.  Some of these errors are as a result of non-synchronised measurements, 

                                                 
3
 For normal atmospheric conditions, it is expected that 10 kg/m

2
~ 65 mm of the zenith tropospheric delay. 
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hardware constraints like:-(i) changes in the hardware or (ii) mechanical response of the 

hardware to weather; e.g. thermal expansion (Wresnik et al., 2005), wind, precipitation and 

atmospheric delay due to variations in the refractivity (Haase et al., 2003; Boehm et al., 

2006) and geophysical factors such as ocean loading (Ray, 1999; Scherneck, 1991), crustal 

motion (Haas et al., 2000; Haas et al., 2003) and atmospheric pressure loading (Petrov and 

Boy, 2004). To determine geodetic VLBI parameters with very high accuracy, all these 

signals ought to be modelled and accounted for during processing of the data. 

In general, the working principle of GNSS (e.g. GPS, GLONASS, GALILEO and the 

planned COMPASS system) is similar to VLBI (e.g. radio waves traversing through the 

ionosphere).  However, the major difference is that GNSS uses artificial satellites, while the 

VLBIs use distant radio sources. In VLBI the main observable is the phase delay, whereas in 

GNSS it is the range. The American GPS navigation system consists of a constellation of 

more than 30 satellites orbiting at approximately 20 000 km at 55
˚
 inclination. This geometry 

allows simultaneous visibility of at least four satellites by any receiver on the surface of the 

Earth (Hofmann-Wellenhoff et al. 1997). The Russian GLONASS currently has about 20 

satellites in its constellation. The GLONASS satellites orbit at a 64.8
˚
 inclination and at an 

altitude of about 19 000 km. 

Radio signals (at different frequencies) from transmitters onboard GNSS satellites are 

continuously transmitted and received by GNSS receivers. GPS uses different codes; CDMA
5
 

to separate signals from different satellites, while GLONASS satellites transmit their radio 

signals at different frequencies, the FDMA
6
. The GPS satellites transmit right-handed 

polarized radio signals at two frequencies; L1~ 1.57542 GHz and L2~ 1.2276 GHz, that are 

modulated with two Pseudorandom noise, PRN codes (C/A and P(Y)) and with a navigation 

message. GLONASS transmit right-hand circular polarized radio signals with band 

specifications of 1.6025625 < L1 < 1.6155 and 1.240 < L2 < 1.260 GHz as well as the C/A 

and P carrier band widths of 1.0 and 10.0 MHz respectively.  

The travel time or distance between the receiver and the satellite is calculated by 

comparing the time the signal was transmitted to the time the signal was received (based on 

                                                                                                                                                        
4
 The description of errors in geodetic analysis should be treated with caution. Most of the signals that were 

initially treated as biases have recently found significant scientific applications. In geodetic VLBI, for 

astrometric and geodetic applications, the delays other than the geometric delay are regarded as biases. 

5
 Code Division Multiple Access 

6
 Frequency Division Multiple Access 
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the receiver clock). The Pseudo distances calculated in this way have ~ 10 m accuracy. Using 

the carrier phases (measured with an order of accuracy of millimetres), centimetre level of 

position accuracy could be obtained but for the inherent integer ambiguity (Hofmann-

Wellenhoff et al., 2001). Just like the measurement errors in VLBI, GNSS error sources such 

as clock, orbital, receiver noise, multipath, ionospheric and tropospheric errors have to be 

accounted for to obtain an optimal delay observable. The ionospheric delay is often removed 

based on the concept of double-differencing
7
. 

 

2.4.1 . GPS delay observable 

In GPS observations, measurements are often carried out using the pseudo-range (or code 

range) and carrier phase. The primary measurement is the phase measurement, which has 

applications for high precision positioning. Pseudo-ranges are only accurate to a meter and 

are therefore considered as ancillary observations to be used for eliminating synchronization, 

clock, integer ambiguity and cycle slip biases. The basic form of carrier phase observation 

(also zero difference observation, )z is given by Equation (13) 

 0 ,z ion trop cl hw syn or apc relN                       (13) 

where 0 ,   and N are the geometrical distance from the satellite to the receiver, wavelength 

of the carrier signal and the ambiguity integer. The ionospheric delay is ion and the 

tropospheric delay is trop , with ,  ,  ,  cl hw syn or     and apc  the combined receiver and 

transmitter clock biases, the hardware bias of the receiver, synchronisation error, the 

receiver/transmitter antenna orientation error and the antenna phase centre offset respectively. 

A relativistic contribution is denoted by rel  while  describes residual errors. 

The satellite transmitter and receiver clock errors in Equation (13) require double-

differencing, see Equation (15), for their elimination (Alber et al., 2000). The satellite clock 

error is often eliminated using single-differences, which are formed by differencing the 

simultaneous one-way measurements from the satellite to two ground receivers given by 

Equation (14). Furthermore, ionospheric and tropospheric delays are also eliminated (or at 

                                                 
7
 In double-differencing, single differences are first formed by subtracting observation equations from two 

separate receivers to a single satellite. Taking the difference between these two single differences for a specific 

receiver pair gives the carrier phase double difference (Alber et al., 2000). 
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least reduced) if the receivers are closely spaced. In double-differencing, the difference 

between two single-differences is computed and this eliminates the two receiver clock biases. 

 
1 2 2 1

1 2 2 1

1 1 1

r ,r r r

2 2 2

r ,r r r

Δτ = τ - τ ,

Δτ = τ - τ ,
 (14) 

 
1 2 1 2

2 1

dd r , r r , rΔτ = Δτ -Δτ  (15) 

Here 
1

1

rτ and 
1

2

rτ   are the observations of satellites 1 and 2 by receiver 1r  and 
2

1

rτ , and 
2

2

rτ   the 

observations of satellites 1 and 2 by receiver 2r , ddΔτ  is the double-difference delay 

observation component. Optimal correction of receiver clock errors is only possible, firstly, if 

the measurements are taken at the same time or a priori knowledge of antenna position, 

satellite position, and the pseudo-range measurements are used to constrain the offset of the 

station clock to within a  s. 

For original carrier phases 
1Lτ  and 

2Lτ , a combined phase measurement with 

combination factors, 1κ  and 2κ  is given by Equation (16), 

 
1, 2 1 2L 1 L 2 Lτ = κ τ + κ τ  (16) 

If the carriers phases 
1Lτ  and 

2Lτ  have systematic errors 
1Lδτ  and 

2Lδτ , the combined 

observation will have a systematic error given by Equation (17); 

 
1, 2 1 2L 1 L 2 Lδτ = κ δτ + κ δτ  (17) 

For a dispersive ionosphere, 2 1
2 2

L L2 1δτ .f =δτ .f  , for which Equation (18) could be written as  

 
1, 2 1L ion Lδτ = Γ δτ , (18) 

Where 2 2 2
2 ion 2 1 12. .f Γ =f k κ + . f , quantifies the first-order ionospheric contribution in linear 

combination. Ionospheric contribution would therefore be reduced with the selection of 

optimal values of 1κ  and 2κ ; e.g. in GPS observations, an ionospheric free measurement 

would be described based on 2 2 2
1 2 1 1f -f κ =f ~. 2.25  and 2 2 2

1 2 2 2f -f κ =-f ~. 5 1.5 . In this case the 

combined noise level could be given by 2.7322σ. 
8
 

 

                                                 
8
 According to error propagation law, given the   of independent measurements x, y,z , related as 

r = ax + by +cz , the combined error in r , r is given by 
2 2 2

rσ = (aσ) + (bσ) + (cσ)  or 

2 2 2

rσ = σ (a + b + c ) . 
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2.4.2 . The geodetic VLBI delay observable 

The VLBI observables (Shapiro 1976; Cannon, 1978; Thompson et al., 2001), such as the 

phase delay, delay rate and the group delay, carry positional information of extraterrestrial 

radio sources and terrestrial telescopes, which have vital geodetic and astrometry 

applications. The phase delay, though unambiguous, is the most accurate VLBI observable. It 

is used to determine the quasi-inertial reference frame to sub-milliarcsecond (mas) precision 

using the method of VLBI differential astrometry. 
9
 

The physical system of the geodetic VLBI could be represented by the schematic 

diagram shown in Figure 2.2 (Cannon, 1978). In the Figure 2.2, vector r is a unit vector, LO 

is the local oscillator and RF AMP is the radio frequency amplifier. As depicted in the Figure 

the signal (with frequency, ) from a distance radio source arrives at antenna 2 after a time 

delay, g with respect to antenna 1.  

 

 

Figure 2.2. Schematic of a long baseline interferometer 

 

                                                 

9
 In VLBI differential astrometry, the interferometric phases of two radio sources are alternately sampled once 

every few seconds for a given period of time. The different contributions to the phase delays are removed, 

thereby isolating the geometric contribution, which is finally modelled using the weighted-least squares 

algorithm of the geometrical parameter adjustment. 
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In an ideal case, contributions from the propagation medium and instrumentation are 

neglected and therefore the geometric delay is given by Equation (19),  

 ˆ
g r

c
 

B
 (19) 

where ,c B  and r̂  are the speed of light, the baseline vector and direction unit vector of the 

radio source from the centre of the Earth. The interferometer response, ( , ) r assuming 

accurate delay tracking with respect to angular position,
0r , is given by: 

 
02 2 ·( )

( , ) ,
j j

c cS e e

 
 



   
   
     

B· B0 0r r -r

r  (20) 

where S  is the total flux density of the source at the observing frequency,  . 

For extended radio sources, the interferometer response will have two components 

given in Equation (21); a rapidly varying and time dependent response (this is equivalent to 

the point source response) but centred at 0r  at the observing frequency, 0 , and a slow-

varying component called the visibility function, ( )V B , which describes the amplitude and 

phase offsets. The visibility function is a complex function that depends on the bandwidth of 

the radio source, the emission content of the radio sources and the baseline geometry. 

 

 
02 ·

( , ) ( ).
j

cS e V






 
 
  

B

Br
0r

 (21) 

However, for simplicity, Equation (20) could be interpreted as sinusoidal response patterns 

(also called the fringes), which are formed as a result of the continuous variation of the 

geometric delay caused by the diurnal motion of the point radio sources, and therefore the 

interferometer response function could be expressed as: 

 ( , ) cos(2 · ),S    B rr  (22) 

where the interferometer fringe phase (due to the quasi-sinusoidal response) is defined as 

2g g  .
10

 

In general, the interferometer phase equation, taking into account the contributions 

from the source structure and contributions from the propagation medium (e.g. the 

atmosphere) as reported in Thompson et al. (2001), is given by:  

   0

2
( ) cos cos cos sin sin ( ) ( ) ( ),at ins strL
t D A t D t t t


       


        (23) 

                                                 
10

 Fringe phases are the spatial-temporal patterns of the interferometer response 
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where | |L B , 0A and D  are the right ascension and declination of the baseline vector, B, 

respectively. The angular velocity of the Earth is denoted as   rad/sec while   and  are the 

right ascension and declination of the radio source respectively. The propagation medium, the 

instrumentation and source structure contributions to the fringe phase pattern are denoted by 

at , ins and str respectively. From Equation(23), the geodetic parameters relevant to the 

thesis reported here are the B, 0A , D  and at . 

The phase delay  , is the ratio of the observed fringe phase (with phase ambiguities), 

which is an integral number of 2 ‟s and the reference angular frequency is given by 

Equation (24). 

 
( ) 2

; 2 .
t n



 
  




   (24) 

The group delay g is the derivative of the fringe phase with respect to angular frequency and 

is given by Equation (25),  

 

 

d d ,

1 d
.

2 2

g  



 




 (25) 

The time derivative of the phase delay is given by: 

 

. d
,

d

1 d
.

2 d

t

t











 



 (26) 

The uncertainties in the VLBI observations are dependent on temperature of the antenna 

( antT ) and of the receiver ( sT  ), the observing frequency and band width ( ) of the radio 

signal. According to Thompson et al. (2001), the uncertainty in the phase delay  , group 

delay g , and the phase delay rate, ˙


 are given by Equations (27), (28) and (29) 

respectively. 

 

 
2

.
2 2

s

ant

T N

tT

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 
  
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 (27) 
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 ˙

3 1
.

2

s

ant

T

T t


 

   
   

   
 (29) 

Here, t  and N are the single source scan period and sampling frequency over t . The root 

mean square band width is .
12

rms



 Using Equations (27) and  (28), the relationship between 

phase delay and group delay standard deviation could be written as: 

 

 ~ .
12

g

N




 

 


 (30) 

 

2.4.3 .  The geodetic SLR delay observable  

Geodetic VLBI and GNSS systems described above operate in the radio wavelengths. The 

SLR is the only SGT that operates in the optical region with a good ranging accuracy of 1 to 

2 cm (Combrinck, 2010). Some of the applications of SLR data include measurement of 

small scale geodetic station position variations that arise from geophysical processes, the 

contribution to the development of gravity field models, and the establishment and 

maintenance of ITRF.  

The SLR observable is the Time-of-Flight (ToF) of a laser pulse between the SLR 

station and target satellite that can be translated to the range to the target satellite; this is often 

corrected for system delay. The range to the satellite is used to derive other parameters such 

as EOP, station position, gravity coefficients, etc. The range Equation (31), often used in SLR 

processing, takes into account atmospheric effects (Δa), Centre-of-Mass (ΔCoM), correction 

of the satellite, station range bias (ΔRb) and a relativistic correction (ΔGR). 

  
1

12
2

10

i

i

TOF

i i i b i i

c NP
NPR a CoM R GR 

 
      
 

 (31) 

Here, NPR and Δε are the normal point range or the observed range and the correction for 

unknown systematic and random errors respectively. The systematic errors (which are mainly 

from tropospheric influence) in the SLR observations are contained in Equation (31) and 

therefore critically influence the absolute ranging accuracy.  
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SLR operates at optical wavelengths where the atmosphere is dispersive. Therefore, during 

the processing of SLR data, a correction for the additional delay due to the atmosphere is 

required. Mendes and Pavlis (2004) reported closed-form expressions in Equation (32) and 

suitable for calculating the additional zenith SLR ranges due to troposphere; 
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 (33) 

Here, Ps and fh(λ) are the surface barometric pressure and the hydrostatic dispersion equation 

respectively. The geodetic latitude and height are denoted by   and H respectively while 

k0=238.0185 μm
-2

, k2=57.562 μm
-2

; * *

1 3 and k k  are 19990.975 μm
-2 

and 579.55174 μm
-2

 

respectively. The WV pressure (es) at the surface is calculated from Relative Humidity (RH). 

Further, the dispersion component of the non-hydrostatic is denoted by fnh(λ) and ω0,1,2&3 are 

given as 295.235, 2.6422 μm
2
, -0.032380 μm

4
  and 0.004028 μm

6
. 

 The atmospheric model of Mendes and Pavlis (2004) adopted by the Analysis 

Working Group of the International Laser Ranging Service (ILRS) is currently used in the 

SLR data satellite analysis software package developed at HartRAO (Combrinck, 2010). In 

order to demonstrate the bias contribution of the troposphere to the range measurements in 

SLR, the tropospheric zenith delay derived from LAser GEOdynamics Satellite-1 (LAGEOS 

I) satellite data is plotted as a function of elevation (left panel) and azimuth (right panel) in 

Figure 2.3. Figure 2.3 illustrates a band of corrections derived from laser wavelengths 423 

nm, 532 nm and 846 nm and a range of ground level measurements of relative humidity (%), 

pressure and temperature. In this example, the elevation angle of 15°; where the delays were 

more than 8 m, was set as the cut-off angle. As depicted in the right panel, the azimuth angle 
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only influences the geometry of the satellite orientation as determined by their orbital 

parameters.  

 

 

Figure 2.3. Mendes and Pavlis (2004) model of the absolute change in the SLR range 

measurement due to atmospheric delays 

 

2.5. Derived tropospheric parameters in geodetic analyses 

The presence of the dynamic troposphere along the lines of sight from each antenna to the 

radio source will affect the propagation of the radio signal due to variations of the refractive 

index of the traversed medium. This geodetic radio signal interaction with troposphere 

induces a bias in the geometric delay measurement. In addition, the rate of change of phase 

delay over short time spans will also be affected. Therefore, geodetic parameters such as 

baseline length and orientation, position of radio signal receivers and transmitters as well as 

clock offsets; which are estimated from the group delay and phase delay rate observables 

would be biased due to the fluctuating troposphere.   

Tropospheric delay parameters are often estimated in most GNSS and intercontinental 

VLBI data reduction. In the analysis strategies employed by various geodetic analysis groups, 

only the spatial-temporal average-troposphere-parameter component (e.g., ZTD) is estimated 
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for each station over the measurement period. As a result, the z

wTD fluctuations around these 

averages are the dominant tropospheric errors, which in turn map into biases in geodetic 

parameters. To improve the accuracies in the geodetic observables, the deviations from the 

spatial-temporal z

wTD  average ought to be identified and quantified so as to understand the 

character and effect of WV fluctuations on the estimated geodetic parameters. 

Biases due to the modelling of tropospheric delays of microwave signals from 

satellites or radio sources due to the neutral atmosphere lower the accuracy of the delay 

observable in GPS and VLBI analyses. The parameterisations often used to compute the total 

delay, TD is given by Equation (34) according to Davis et al., (1985). 

 

     ( , ) ( ) ( ) ( ) cot( ) c os( ) sin( )z z
h w g n ewhTZTD G GD TD               (34) 

 

Here g is either the wet or hydrostatic gradient mapping function, nG and eG are the North 

and East gradients respectively. The tropospheric mapping functions and gradients form a set 

of derived parameters that influence proper modelling of the tropospheric delay. As a result, 

the mapping functions and gradients affect the accuracy of the geodetic parameters such as 

station coordinates and velocities computed from space geodetic techniques (Petrov et al., 

2009). In particular, biases in the station height component are directly related to tropospheric 

biases using a rule-of-thumb reported in Niell et al., (2001) and Boehm and Schuh (2004). 

Both of these derived parameters aid in characterising the azimuthally symmetric component 

of the tropospheric delay. 

Due to the Earth's surface (and therefore troposphere) asymmetry, the second-order 

terms of the refractivity,   , 0( ) ( , | ),tz n z  r rr  given by Equation (2) often emerge. Though 

their contribution to the delay observable is arguably minimal, correcting them would 

certainly play an important role in meeting the goals of 1 mm and 0.1 mm/year accuracy of 

station positions and velocities respectively. These goals are described in the Global Geodetic 

Observing System (GGOS) of the International Association of Geodesy (IAG). 

 

Mapping functions 

Many mapping functions have been suggested (Niell 2000; Niell 2001; Boehm et al., 2006) 

in many geodetic tropospheric modelling works. Among them, the Niell Mapping Function 

(NMF) is the most common mapping function used in many geodetic software packages. 
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Mapping functions ( )h  and ( )w   are computed by fitting the coefficients ,a b and c in 

Equation (35) to the standard atmospheres, to in-situ radiosonde measurements or to NWP 

models (Niell, 2001; Boehm and Schuh, 2007).  

 ,
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 (35) 

The NMF are provided at five latitude bands and are quasi-symmetric (they have a seasonal 

dependency with inherent half-year phase shift) with an annual signal. Tropospheric delays 

are usually separated into hydrostatic and wet components; computed as a product of the 

delay in the zenith direction and the corresponding hydrostatic and wet mapping functions. 

Later, mapping functions based on the NWP models, the Isobaric Mapping Functions (IMF) 

were developed (Niell, 2000). The hydrostatic IMF ( ( )h  ) uses a height of 200 hPa 

pressure level while the wet IMF ( ( )w  ) is based on a coarse ray-trace at 3.3
°
elevation 

through the NWP pressure levels. 

Boehm and Schuh, (2007) reported on the new Vienna Mapping Function (VMF) 

which are dependent only on the elevation angle, ,  assuming a symmetric atmosphere 

around the stations. The values of the b and c coefficients of Equation (35) are obtained from 

the IMF and NMF for the hydrostatic and wet components respectively. Updated VMFs 

(hereafter VMF1) were developed based on new values of b and c coefficients of the h . The 

coefficients c were derived from ray tracing and fitted to a function of latitude and day of 

year to remove systematic errors. The systematic station height improvement of up to ~10 

mm (which is equivalent to 2 mm improvement in the station height) is obtained on 

application of VMF1 (Boehm et al., 2006; Niell, 2006). Therefore, using VMF1 improves the 

precision of geodetic parameters. Global Mapping Functions (GMF) that are comparable to 

the VMF1 have also been developed based on the global ECMWF numerical weather model 

data sets. The coefficients b and c are obtained from the spherical harmonics expansion of the 

VMF1 and then mapped onto a global grid. 

Tropospheric gradient 
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To consider the four dimensional structure of the tropospheric parameters, nG and eG are used 

(Boehm and Schuh, 2007). The gradient components nG and eG are mapped by ( )g   to the 

slant direction of the observation. In this way, the tropospheric delay and gradient 

asymmetries are accounted for. Current geodetic analysis approaches model nG and eG  using 

the assumption that the atmosphere is driven by stationary processes and two gradients per 

station which are the North-South and East-West components. These components are used to 

describe the tilting of the zenith as described by the mapping functions. 

The gradient components nG and eG  are estimated using two methods. These are 

using priori hydrostatic gradients that have no temporal dependence or by determining the 

time dependent gradients from a 200 hPa tilted pressure level (see for instance in Boehm and 

Schuh, (2007) and others therein). Notice that  ,n eG G G  could also be determined from 

NWP as the vertical integral of ( )z weighted with height (hereafter linear horizontal 

gradients (Boehm and Schuh, 2007; Davis et al., 1993), see Equation (36)). The linear 

horizontal gradients are computed based on the assumption that the vertical refractivity 

gradient ( )z  is constant over some finite distance around a geodetic station. 
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0
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G z z z
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
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      (36) 

Figure 2.4 illustrates that the hydrostatic linear horizontal gradients (North-South and East-

West) have very minimal fluctuations of > 0.5 mm. However, the North-South linear 

horizontal gradient contains fluctuations of ~ 1.5 mm. Similarly, the East-West linear 

horizontal gradient exhibits amplitude of ~1.0 mm. 
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Figure 2.4.  The linear horizontal gradients at HartRAO estimated from ECMWF data. 

 

 2.6. Recent developments in modelling TD and WV 

Ray-tracing has been used to derive mapping functions and also assess the theoretical models 

used in many geodetic applications. Over a long-term period, the theoretical assessments of 

these models exhibit reasonable accuracy for both the z

wTD and z

hTD assuming accurate surface 

meteorological measurements. There is however larger scatter in the geodetic path delay and 

position estimates in the short-term atmospheric fluctuations. A number of factors could be 

attributed to this scatter. Firstly, though the mm-level accuracy in the delay observable is 

achievable with precise meteorological sensors, surface measurements are often not 

representative of the vertical profiles through the whole troposphere; for instance in the 

boundary layer, the humidity and temperature reveal strong evolution during the day and are 

stable in the free atmosphere (Stull, 1994). Secondly, empirical meteorological models yield 

better results with standard atmosphere parameters instead of with measured meteorological 

parameters (Wang et al., 2008). Furthermore, the presence of horizontal gradients in the 

refractivity field induces the errors when mapping the delay observable onto the line-of-sight. 

To address this gap, parametric estimation and external correction strategies have been 

suggested. 
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Arguably, the meteorological models have not been able to predict the geodetic delay 

observable with sufficient accuracy. As a result, the parameter estimation approach has been 

developed which involves a post acquisition processing approach that uses geodetic 

measurements to constrain the parameters of a meteorological model for determining the 

geodetic TD observable (Tralli, 1988; Bock and Doerflinger, 2001). In this approach, the path 

delay is corrected for a priori with a meteorological model using ZTD and mapping 

functions. This methodology has inherent theoretical accuracy limitations due to clock 

offsets, orbit and multipath offsets (e.g., in GNSS) in the delay observable. 

Deterministic parameter estimation by least squares adjustment and stochastic 

estimation based on Kalman filtering (Pacione and Vespe, 2003; Jin and Park, 2005) are the 

two common strategies used for the parameter estimation of the TD. In deterministic 

parameter estimation, the tropospheric delay is modelled either as a series of piecewise 

independent constant terms or correlated parameter which are closely related to a random 

model. This approach is computationally demanding in large geodetic networks or over long 

observing periods.  

In the Kalman filtering, arbitrary values of the TD with high turn-around time can be 

estimated. However, this method suffers from increased multipath and tropospheric mis-

modelling of the gradients and small-scale in-homogeneities due to low elevation angle 

observations. Nevertheless, parameter estimation has improved the estimation of the TD 

observable; e.g., a few parts in ~10
8
; improvement in the VLBI baseline repeatabilities 

(Tralli, 1988). Recently, improvement in parameter estimation is based on the turbulent 

atmosphere model (Nilsson and Haas, 2008). In this model, the ZTD is simulated through a 

turbulent atmosphere. The delays are simulated to vary both as a function of direction of 

observation and time. This approach yields more realistic delays as compared to those 

simulated from random walk processes.  

For high accuracy geodetic positioning, external correction strategies are used. 

External correction strategies rely on the use of independent techniques for measurements of 

the z

hTD  and z

wTD  (Bock and Doerflinger, 2001). In this strategy, the wet path delays are 

retrieved by remote sensing the troposphere, in order to correct the geodetic delay observable 

a priori. The z

hTD  is modelled by empirical meteorological models and evaluated from either 

surface meteorological measurements or standard atmosphere data. Thereafter, this 

 
 
 



29 

 

component is mapped onto the path of the geodetic radio signal using a mapping function. 

The wet path delay is derived from integrated water vapour content that is remotely sensed. 

The WV in the zenith direction is expressed as either the IWV or Precipitable Water Vapour 

(PWV) and are formulated in Equations (37): 
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Here, l is the density of liquid air. WV radiometers and infrared solar hygrometers were the 

early instruments developed mainly for meteorologists and astronomers respectively for 

remote sensing PWV. Ground microwave radiometers have been extensively developed for 

correcting tropospheric path delay in geodetic analysis (Nilsson et al., 2006). These 

radiometers are however limited to sensing the wet part of the delay only. Ground-based 

WVRs measure the sky brightness temperatures at a given frequency, , see Equation (38). 

 ( , ) ( , )

, 0, ( ) ( , ) d ,s

b b
S

T T e T s s e s   

        (38) 

where S  is the straight path from the radiometer to the top of the atmosphere. The frequency, 

the cosmic background temperature and total attenuation coefficient (due to WV, oxygen and 

liquid water) are denoted by 0,, ~ 2.8KbT  and ( , )s   respectively. Whereupon 

0
( , ) ( , )d

s

s s s       is the opacity between location s  and the radiometer. The total 

atmospheric attenuation along path S is denoted by ( , )e  . 

In the estimation of WV, an observational frequency where the WV content 

influences the brightness temperature; in most cases one of the water absorption lines is often 

used. Further, contribution by other gases and liquid water to the brightness temperature 

ought to be accounted for to obtain accurate WV. Accounting for the cloud liquid water is not 

an easy task. Nevertheless, liquid water contribution can be removed by combining two 

measurements at two frequencies (22.225 GHz and 30 GHz WV line) since the contribution 

to the absorption coefficient 2 2;    .r f     

The relation between brightness temperature and WV is fairly non-linear due to the 

( , ).e     Using a linearised brightness temperature 
,

( )
b

T
  or introducing a new parameter 

expressed in terms of the brightness temperature solves the problem of separating water 
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vapour from brightness temperature. Here, ( , )  is often derived from Equation (39) using 

the effective temperature :eT  
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where ( ,1) ( , )( ) 1 ( ) ( , ) ds

e
S

T e T s s e s          . An approximate model expressing eT  as a 

function of surface temperature and elevation angle of the path S  can be used thereafter and 

the amount of WV in the atmosphere would be retrieved from ( , ).  Some of the biases in 

the estimated WV could therefore be as a result of error propagation from the eT  bias. 

Similarly, by defining 
,b

T
   and using the opacities, the linearised effective temperature eT  

could be obtained based on Equations (40): 
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The relationship between opacity and WV has been reported by Deuber et al., (2005). As can 

be deduced, surface temperature could therefore be used to derive ( ).eT   Biases in 
,b

T
  due to 

eT  are cancelled out by the errors in ( )eT  due to the correlation between ( )eT  and 
,b

T
   

(Jarlemark, 1997). As reported by Jarlemark, (1997), the model that is used to convert the 

linearised brightness temperature to z

wTD  is given by Equation (41): 
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 (41) 

Here, 
2bOT is the cosmic microwave background radiation and oxygen contribution to the 

linearised brightness temperatures. Contribution of the cloud liquid water to the linearised 

brightness temperature is eliminated in the two frequencies by double differencing during the 

analysis process. The conversion factors bc  are determined in two possible ways. Firstly, 

simultaneous measurements of brightness temperatures with the radiometer are used together 

with z

wTD  from either GNSS or radiosondes measurements. Secondly, z

wTD and brightness 

temperatures could be simulated from radiosonde data and models of the attenuation 

coefficients and thereafter use these values to determine bc . As a result, the brightness 
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temperature and z

wTD  biases emanate from the systematic errors in radiosonde measurements. 

These errors are minimal owing to the fact that they cancel out when estimating bc  and
2bOT . 

However, models that are used to compute ( , )s  from radiosonde measurements may 

introduce systematic biases in the derived algorithm parameters. 

Space-borne microwave and Infrared (IR) radiometers have also been used for 

measuring WV and water profiles; these provide accurate tropospheric vertical WV 

structures. In addition, Raman LIDARS have also been used for external correction of both 

the wet and hydrostatic path delay by measuring the inelastic backscatter of WV incident on 

the laser pulse over large scales (Tarniewicz et al., 2002). The Raman LIDARS have been 

particularly useful in sensing the lower atmosphere where gradients are highly pronounced. 

In general, active and passive remote sensing techniques (on different platforms) have been 

used to obtain n-D fields of WV each employing different retrieval methods (e.g., GPS 

occultation (Ao, 2007) and rapid WV retrieval using Raman and differential absorption 

LIDAR (Dinoev et al., 2006). Some of the global monitoring campaigns of WV have been 

carried out on space-borne platforms such as Moderate Resolution Imaging 

Spectroradiometer (MODIS), CHAllenging Minisatellite Payload (CHAMP)- Constellation 

Observing System for Meteorology, Ionosphere & Climate (COSMIC) and Upper 

Atmosphere Research Satellite (UARS) (Banks et al., 1978) while others are terrestrial based 

(e.g., SHADOZ). Retrieval of WV over regional scales and short time scales based on 

dedicated campaigns has recently increased. 

All the efforts (this includes the development of measurement systems and retrieval 

techniques) to monitor tropospheric WV take cognisance of the difficulties in modelling the 

spatial temporal variability and evolution of WV. In particular, the fluctuations of WV 

exhibit complex modes, each associated with different (coupled) physical processes that act 

as a feedback system in Earth's climate system (useful in climate modelling and meteorology) 

and imposes the accuracy limitation to the geodetic delay observable (vital to the space 

geodesy research community). 

 

2.7. Analysis strategies for TD/WV in space geodesy 

Tropospheric WV rarely attains a permanent hydrostatic equilibrium but continuously 

changes into or from ice, liquid and WV (which dominates). It is primarily in the vapour 

phase that water is globally transported into the air. Though WV constitutes 1 part per million 
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of water on Earth, it transports and redistributes huge amount of moisture and energy (latent 

heat). The two week life-span of WV in the atmosphere is characterised by vertical and 

horizontal transports, mixing, condensation, precipitation and evaporation. WV is therefore a 

key element in climate of the Earth and the hydrological cycle. It is the most variable 

amongst the major components of the Earth and a vital element in numerical weather 

prediction as reported in Cucurull, (2000).  

Treuhaft and Lanyi, (1987) used a statistical model to quantify the effect of the 

dynamic wet atmosphere on radio interferometry measurements. The statistical model 

employed had two major assumptions: a) that a simplified Kolomogorov theory could be 

used to approximate the spatial structure of the refractivity fluctuations and, b) the temporal 

fluctuations are caused by spatial patterns driven by wind. In addition, the model assumed 

that the WV spatial structure and the wind vector were independent of atmosphere height up 

to some predefined effective height. The structure function given by Equation (42) was then 

used to describe the spatial characteristics of the wet troposphere. 

  
2

wvD ( , Δ ) = wv( + Δ ) - wv( )r r r r r  (42) 

In Equation (42), wv wvD (.) D ( ) r and therefore can be written in the form 
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where the spatial in-homogeneity of WV is characterised by C. For geodetic VLBI, the 

general expression for the spatial structure function of the slant delay, ,   (here,  ;  are 

elevation and azimuth respectively) between two VLBI antennas separated by baseline vector 

b for an atmosphere of effective height, h is given by Equation (44), see Treuhaft and Lanyi, 

(1987)  for further details.  
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where D Dwv f . Additionally, based on the frozen spatial structure assumption, the temporal 

structure function given by Equation (45) could be derived by settingb vt , where v is the 

wind speed at time t .  
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Using Equations (44) and (45), the differential fluctuations between two geodetic stations and 

the per-station dependent temporal fluctuations can be captured based on the equality 

constraint given by Equation (46). 

 D =Dt b v t    (46) 

In the above description of WV fluctuations, the Kolmogorov turbulence model is suited for 

representing the local spectrum of WV fluctuations. Jarlemark et al., (1998) used the 

structure function given by Equation (47) to describe changes over time of the zenith total 

delay depending on the time lag, tτ. The linear dependence between D ztd
and τ was suggested 

as a special case of random walk process. 

 
det

D ( )ztd

ztd ztd

t t tt


 
     (47) 

This representation has several complicating properties such as nonstationarity and the 

passage of fronts. As a result, it is difficult to reconcile the changes associated with the 

passage of synoptic scale systems with the apparent observed Kolmogorov behaviour. In 

Hogg et al., (1981), the determinations of WV from most geodetic techniques are modelled in 

terms of atmospheric turbulence. As a result, WV could be viewed as a passive tracer that is 

blown turbulently and the methods used to analyze the WV observations are therefore 

statistical. The spatial characteristics of WV fluctuations based on the inherent statistical 

properties could be probed directly using a network of instruments such as GPS network. In 

addition, Zhang et al., (2003) surveyed satellite and in situ observations and reported that the 

probability distribution functions of the troposphere WV in the tropics was predominantly 

bimodal due to the spatial-temporal gradients components. 

Bevis et al., (1992) reported that the geodetic z

wTD could be estimated through two 

approaches. Firstly, a simple estimation method where the geodetic WV could be kept 

constant for a given time interval and its value obtained as part of the overall least-squares 

inversion. In this approach, the geodetic WV was assumed constant for a time period ranging 

from 1 to 24-hours. This deterministic approach implies that the WV is constrained to some 

value and its space-time derivative kept over some bounds. Secondly, Bevis et al., (1992) 

used an estimation method where the analysis of geodetic WV utilises the statistical 

properties of the spatio-temporal variability of geodetic WV. In this approach, the fluctuation 

of geodetic WV is assumed to be driven by a stochastic process. This implies that process 
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parameters could be estimated using a Kalman filter or other related class of optimal filters 

based on the state-space time domain formulation. 

It worthy to note that, geodetic WV and/or alternative geodetic troposphere quantities 

estimated via stochastic filtering would require a specific class of stochastic processes to be 

selected to capture the inherent fluctuations. This option would be based on a priori 

knowledge of the underlying process. However, the current practice of selecting the 

representative class of stochastic processes involves the visual inspection of the power 

spectrum. Documented evidence on the early efforts to model the variability of z

wTD /WV 

using a random walk process or a first-order Gauss-Markov process was reported by Herring 

et al., (1990) and other references therein. As reported in the literature, the variation of z

wTD is 

space-time constrained to 1-20 mm/year using a specific stochastic process noise model. 

Stoev and Elgered, (2005) used realisations of random walk stochastic process to 

characterise the spatial-temporal variation of TD using a ground network of GPS receivers in 

Europe with a time interval of 1 to 3-hours. In their study, using monthly TD data between 

1997 and 1998, a standard deviation < 50 mm without a clearly visible seasonal component 

was reported. To capture the excursions present in the data, temporal structure functions were 

computed. It is vital to remark that using random walk processes to model the nature of TD 

above a given geodetic site is a first order approximation that is useful for geodetic inter-

technique comparisons. The absorbing barriers model (see Grimmett and Stirzaker, 2001) 

was introduced as an extension to the random walk paradigm to capture local TD fluctuations 

associated with the passage of atmospheric fronts, thunderstorms and other local weather 

systems.   

Recently, the work reported by Boehm et al., (2007) used the turbulence strategy 

reported by Nilsson et al., (2007) to estimate z

wTD via simulations. In the simulations, the 

asymmetry in z

wTD variations is taken into account by the covariance information between all 

observations at each station. As a result, a time series of equivalent z

wTD are derived that 

includes the elevation and azimuth dependency as opposed to the random walk or Gauss-

Markov simulations. The turbulent framework reported hinged on the following factors; a) 

initial zenith wet delay ( ,0

z

wTD ), b) the wind speed and direction,  ;  , c) the structure 

constant parameter ( nC ), d) the troposphere effective height ( h ) and e) the height increment 

( h ). A typical simulation scenario of z

wTD and clock biases based at HartRAO, as described 
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by Boehm et al., (2007) is given in Figure 2.5. The parameterisations in the simulation of the 

24-hour equivalent z

wTD variability illustrated in Figure 2.5 were as follows: a) 0 128zwd  , b) 

72.4 10nC   m
-1/3

, c) { ; } {1000;100}h h  m and d)   -1ms; ; 1  802 1   . In the simulations 

of integrated and random walk clock excitations, the Allan standard deviation, 

15( 2 10 )asd   set at 50 minutes was used.  The Allan variance (defined as the average 

fractional deviation stability) is used here to characterise the fluctuations of the noise 

contribution from the geodetic system clock offsets. 

 

 

Figure 2.5. Simulation of equivalent zenith wet delay (top panel) and clock (bottom) 

variability using the random walk process. 

 

A stochastic mathematical model of the combined solution of TD was formulated by 

Heinkelmann et al., (2007). This methodology was based on the assumption of zero 

correlation between the solutions of the individual VLBI analysis centres (ACs); implying 

that the solutions of the individual ACs are independent. However, the presence of 

inhomogeneous structure of the standard deviations of the ACs imply that weighting of 

individual observations among the ACs would be unrealistic and therefore the standard 

deviations ought to be ignored in further analysis. As an alternative to the stochastic model, a 

functional approach was proposed. In this functional form, the trend and seasonal 

components of z

wTD time series is incorporated into the model.  The combined IVS time series 
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of TD given by Equation (48) are determined for each station separately by a weighting mean 

of hourly delay values of the ACs using the relative weighting factors derived from the 

variance component estimation given by Equation (48) 
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 (48) 

Here, k and N are the individual AC and total number of ACs respectively, which contribute 

troposphere delay solutions, to the combined solution. The weighting scheme follows the 

rigorous Bounded Influence by Standardised Residual (BIBER) estimator reported by Wicki, 

(2001). The BIBER estimator reported (Heinkelmann et al., 2007) neglects the standard 

deviation computed by each AC.  
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3. Data and methodology 

I often say that when you can measure what you are speaking 

about, and express it in numbers, you know something about 

it; but when you cannot express it in numbers, your knowledge 

is of meagre and unsatisfactory kind; it may be the beginning 

of knowledge, but you have scarcely, in your thoughts, 

advanced to the stage of science, whatever matter may be. 

- Lord Kelvin, W. T., 1866. 

 

 

Chapter 3 outlines the research method, data used, their 

sources and method of analysis. The schematic framework of 

the research is discussed. The Chapter focuses on the geodetic 

and model simulated data sub-sampled at the geodetic VLBI 

stations and the NWP grid cells over the SHADOZ network. In 

addition, the non-parametric techniques used in data analyses 

are also described.  

 

3.1  Introduction 

In this thesis, investigation of tropospheric delays due to geodetic WV and WV fluctuations 

over the Southern Africa region by geodetic and simulation data are reported. The stochastic 

behaviour of local WV time series is investigated by use of Auto-Regressive Moving 

Average (ARMA). In addition, the multi-scale variability and scaling behaviour of WV is 

studied in the time-frequency domain (wavelets) as well as using a data adaptive (noise 

assisted) methodology (i.e. EMD methods). All these methods take into account the inherent 

nonlinearity and nonstationary characteristics based on the local time scales of the data. This 

chapter describes the sources and different types of data that were used in the present 

research work. In addition, methods used to pre-process these data records are briefly 

described. In the analysis section, a general and brief description of the mutual information 

concept, often used in information theory, is discussed and its linkage to the correlation 

paradigm is presented. Further, for the purpose of studying the scaling behaviour in the WV 

fluctuations a general description of the wavelet transform, DFA and HHT techniques are 

also presented. Specific applications of each of these methods, which have been presented in 

 
 
 



38 

 

various international conferences, peer reviewed and published are presented in the 

subsequent chapters. 

 

3.2. Research methodology 

In order to investigate the nature of WV fluctuations over Southern Africa, this research was 

undertaken from three important viewpoints as depicted in Figure 3.1. Firstly, geodetic data 

(VLBI and GPS ZTD and delay gradients) at the HartRAO fiducial geodetic station were 

used to compute a long time series of geodetic WV. Troposphere gradients, VMF and WV 

derived from ECMWF data were used to investigate the nature of stochastic processes in the 

time series. Thereafter, the parameters of the ARMA model that characterise the stationarity 

of WV were adaptively estimated from geodetic tropospheric delay time series. 

 

 

Figure 3.1. Flow diagramme of the research framework. 

Secondly, the multi-scale structure of WV in the low- and mid-tropical Africa is investigated 

by use of in situ radiosonde observations of the SHADOZ station network comprising of 

Ascension, Irene (South Africa), Reunion (Reunion) and Nairobi (Kenya) and the numerical 

model simulations for the period from 1998 to 2006. Thereafter, the vertical model of 
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tropospheric WV over southern Africa is developed by use of radiosonde and NCEP/NCAR 

reanalysis data. Finally, the scaling properties of WV fluctuations were identified and 

measured using wavelet-based and DFA (DFA is described by Chen et al., 2002) approaches. 

Wavelet analyses could be viewed as a microscope and telescope. This is due to the high-

frequency/low-time resolution in the low-frequency part and low-frequency/high-time 

resolution in high-frequency part characteristic of this technique. In addition, it uses a 

predefined wavelet basis; the mother wavelet. This implies that the wavelet analysis results 

are limited by the mother wavelet. Nevertheless, this nonparametric estimate of scaling 

behaviour is computationally efficient (e.g., the discrete wavelet transformation) and is robust 

because it has low variance and negligible bias. Further, the Hilbert-Huang transforms, HHT 

(Huang et al., (1998)) and the EEMD reported by Zhaohua and Huang, (2009) were used to 

adaptively analyse the nonlinear and nonstationary processes in WV. The HHT is built on the 

assumption that any data set consists of different, simple and intrinsic modes of oscillations 

(ranging from low to high frequency) that are derived from the observations objectively 

(adaptively). As a result, this methodology is suited for presenting the WV distributions 

(derived from observations) in time-energy-frequency distributions. 

 

3.3. Data 

Troposphere parameters (N, WV, ZTD and delay gradients) that were analysed and presented 

in this thesis were derived from geodetic, radiosonde, other space-borne measurements and 

NWP model simulations. For clarity, Figure 3.1 depicts the data, processing and analysis 

methods that have been used to study the fluctuations of troposphere parameters (ZTD and 

WV). 

  

Geodetic data 

The central theme in geodetic processing is to derive the delay observable which has position 

information of the geodetic receiver and the source of the radio signal. For geodetic VLBI, 

the delay observable also has the structure information of the radio source. To derive this 

information with high accuracy, the troposphere contribution to the delay observable must be 

removed. This thesis addresses an inverse problem: 

a) The results of actual geodetic observations are used to assess and compute 

the inherent properties of the fluctuating troposphere parameters that 

characterise the tropospheric structure and dynamics.  
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b) It also addresses the effect of the atmosphere on the geodetic observations, 

through the use of actual observations and numerical simulations of 

meteorological parameters.  

The IVS for Geodesy and Astronomy provides tropospheric products such as zenith total 

delay and zenith wet delay, /

atm

ztd zwd  for all IVS-R1 and IVS-R4 sessions since January 2002 

(Schuh and Boehm 2003). All available VLBI observations are processed by the IVS ACs 

with three main analysis software packages, OCCAM (maintained by the Institute of Applied 

Astronomy, Russia), CALC/SOLVE (maintained by NASA Goddard Space Flight Centre, 

GSFC) and Steel Breeze (maintained by Main Astronomical Observatory-MAO, the National 

Academy of Sciences, Ukraine). The corresponding products such as /

atm

ztd zwd  are transferred 

to the IGG (Institute of Geodesy and Geophysics, Vienna University of Technology, Austria) 

for comparison and combination. The motivation for combining the tropospheric parameters 

is to average out the systematic differences in /

atm

ztd zwd arising from the use of the different 

analysis software packages  using different parameterisation and models, such as the 

thresholds of outlier detection, or elevation cut-off angles. For further details, please refer to 

Schuh and Boehm (2003) and Heinkelmann et al., (2007). The combined long time-series 

of /

atm

ztd zwd is determined from all geodetic VLBI sessions and can conveniently be obtained 

from all IVS data centres (see, ftp://cddis.gsfc.nasa.gov/vlbi/ivsproducts/trop).  

The geodetic delay and other derived parameters such as troposphere gradients, WV, 

mean atmospheric temperature and VMF derived from the ECMWF were obtained from 

IGG. The data is archived at http://mars.hg.tuwien.ac.at. The archive consists of files which 

contain a record of the global geodetic VLBI, GPS and DORIS station names. The temporal 

resolution for troposphere parameters archived is six hours corresponding to the NWP model 

simulations. Since our concern is to assess the local and regional fluctuations of troposphere 

WV, we study WV (and those parameters that influence WV) variability over a geodetic 

station; HartRAO-South Africa (see Figure 3.2). 

 
 
 

ftp://cddis.gsfc.nasa.gov/vlbi/ivsproducts/trop
http://mars.hg.tuwien.ac.at/
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. 

Figure 3.2.  Fiducial geodetic site: Hartebeesthoek Radio Astronomy Observatory. 

 

In addition to geodetic VLBI data, troposphere delays derived from GNSS observations were 

also analysed. The International GNSS Service (IGS) which was formally established in 1993 

by the IAG, began routine operations in January 1994 (Beutler et al., 1999). The IGS 

operates a global network of more than 350 permanent GPS tracking stations, each equipped 

with a GPS receiver that provides raw GPS tracking data in a Receiver Independent 

Exchange (RINEX) data format. All available near-real time global IGS observation data are 

transmitted to the global IGS data centres from where a combined tropospheric product (e.g., 

weekly files containing /

atm

ztd zwd  in a 2-h time interval from the IGS tracking stations and 

archived for instance at ftp://cddis.gsfc.nasa.gov/gps/products/trop_new) can be downloaded. 

Other data sets used in VLBI and GPS processing are presented in Table 3.1. 

 

 

 

 

 

 

 

 

 
 
 

ftp://cddis.gsfc.nasa.gov/gps/products/trop_new
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Table 3.1. Data products and sources used in VLBI analysis. 

Geodetic data Description Source 

Ephemerides 

& Earth 

orientation 

parameters 

 Current series: EOP 

0504 (Standish, 1990) 

http://hpiers.obspm.fr/eop-c  

Atmospheric 

loading 

coefficients 

 Tidal and non-tidal  

atmospheric tides 

(Petrov and Boy, 2004) 

- http://www.ecgs.lu/atm (tidal S1/S2 

sine and cosine components) 

 

Thermal 

deformation 
 Thermal deformation 

of VLBI antennas 

(Wresnik et al., 2005) 

- 

http://mars.hg.tuwien.ac.at~vlbi/thermal  

Ocean loading  Ocean tide model 

GOT00.2 based on the 

global ocean tide 

model from TOPEX/ 

Poseidon Altimetry/ 

GOT99.2 (Ray, 1999) 

Source, H.G. Scherneck 

 

 

Numerical prediction model simulations, satellite and Ozonesonde data 

NWP model simulated pressure, temperature, and specific and relative humidity fields 

derived from the reanalysis project of the NCEP / NCAR (Kalnay et al., 1996) in the United 

States (US)); which is the NCEP/NCAR data set were also used to compute WV. These data 

sets were obtained from NASA‟s website at http://www.cdc.noaa.gov. In addition, surface 

temperature measurements based on the automatic weather stations over the HCB were 

provided by the South Africa Weather Service (SAWS).  

The vertical profile of WV model for southern Africa reported in this thesis was 

derived from Ozonesonde data sets based on the SHADOZ network (i.e. Nairobi - Kenya, 

Malindi - Kenya, Irene – South Africa, Reunion - Reunion and Ascension–Ascension Islands 

stations); the data is archived at http://croc.gsfc.nasa.gov/shadoz/. Refer to Thompson et al., 

(2003) for a detailed and technical description of the data sets. In addition, data from the 

HALOE on board the upper atmosphere research satellite were from HALOE server. 

 

 
 
 

http://hpiers.obspm.fr/eop-c
http://www.ecgs.lu/atm
http://mars.hg.tuwien.ac.at~vlbi/thermal
http://www.cdc.noaa.gov/
http://croc.gsfc.nasa.gov/shadoz/
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3.4. Data pre-processing 

Both Geodetic data and those derived from model simulations utilised in the present research 

exhibit inherent systematic biases. For instance, geodetic data sets are often acquired by use 

of geodetic instruments that have measurement biases. In addition, bias contribution from 

external environment such as changing weather systems is a known problem among the space 

geodesy community. Furthermore, the difference in the analysis schemes employed by 

different software packages is known to bias geodetic parameters such as geodetic WV. On 

the other hand, model simulated data sets are often constrained by the inherent 

parameterization schemes.  

While the analysis strategies employed in this research are robust and some-worth 

data adaptive, the data sets considered were pre-processed before analysis. A static 

transformation function was applied to most of the data sets analysed in the thesis in order to 

ensure a symmetric frequency distribution and also to obtain a more Gaussian-like shape. 

This transformation is particularly important in assessing the stationary processes in the 

geodetic data. In addition, the periodic cycles and polynomial trends were estimated and 

subtracted from the original data sets as a method of disintegrating the time series into 

inherent components from which the stochastic characteristics of each component would be 

deduced. In particular, the data sets were transformed using Box-Cox transformation (Box 

and Cox, 1964) while second order statistics were adaptively subtracted from the data using 

the Wessel et al, (2000) adaptive filtering methodology. 

 

3.4.1 Box-Cox transformation 

The Box-Cox transformation is a non-linear static transformation function which converts 

non-normal datasets to a set of data which approximates a Gaussian distribution. Though the 

Box-Cox transformation is a family of power transformation, in this thesis, a geodetic data 

record  
1,2, ,j j N

Y


 for which 0jY    1, ,j N  is Box-Cox transformed by Equation(49),  
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The power parameter,  is often selected based on the maximising logarithm of the 

likelihood function given by Equation  (50), 
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1 1
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 
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   

  
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where geometric mean, 
1

1
( ) ( )

N

j

j

Y Y
N

 


  .  

 

3.4.2. Estimation of periodic cycles and adaptive filtering 

Geodetic tropospheric data exhibit periodic components. A periodic component can be 

obtained by estimating the mean and the variance for a particular time span over some 

reference epoch, refT in the cycle. If the geodetic data record has p cycles of length N , 

according to Hipel and Mcleod (1994), the mean can be calculated from Equation (51); 

 

 ,

1

1
ref ref

p

T T j

k

Y
p




     1,2, ,refT N  (51) 

 

where refT  is the reference time epoch and k indexes the successful cycles. Note that N=365 

for daily measurements over one year cycle. The variance is given by Equation  (52); 

 

  
2

2

,

1

1
,

1ref ref ref

p

T T k T

k

Y
p

 


 

     1,2, ,refT N  (52) 

 

The normalised anomalies time series can be calculated by Equation (53) 

 

 
,

,' .
ref ref

ref

ref

T k T

T k

T

Y Y
Y




  (53) 

The main objective in the current analysis of geodetic data is to investigate the characteristics 

of the fluctuations of the WV and the nature of the underlying processes that drive this 

variability. However, some amount of noise is always expected to be embedded in the 

geodetic data records. Analysis of such data records in the presence of noise often fail to give 

the required accurate spatial-temporal structures of interest to the space geodesy community. 
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It is therefore necessary to exclude the artifacts, systematic and manual errors by use of a 

robust cleaning tool. A robust platform for denoising the data which is used in this thesis is 

based on Wessel et al., (2000). The advantage of using this methodology stems from the fact 

that the filter coefficients are spontaneously adapted in the event of the sudden changes in the 

time series.  

 Apart from the ordinary gap filling of data with missing data records, adaptive 

filtering proceeds via two important steps; the adaptive filtering and adaptive control 

procedures. In the adaptive filtering procedure, the adaptive second order properties such as 

the mean, n

a  and standard deviation, n

a  given in Equations (54) are computed from a 

reconstructed time series *kY (wherein the obvious errors such as gaps due to missing values) 

have been removed or filled. 

 

 

1 *( 1) ( 1)     k=1, 2, ... nk k k

a a a

k k k

a a a

k q Y  

  

    

 
 (54) 

 

where  0,1q is the controlling coefficient and the adaptive second moment 

 1 1 * 1 * 1k k k k k

a a aq Y Y         . Outliers are often identified using a filter constraint 

imposed on the raw data. The data point is an outlier if; 
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 (55) 

 

where  is the proportionality constant ( 0.1), f aq   is the generalised 3  sigma rule. The 

last valid observation is denoted by vY  while a  is the average of n

a . A random number 

generated from Equation (56) is used for gap filling (replace all those values recognised as 

outliers). 

 

 
1 1
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2 2

k k k k

a a a a   
 
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This gap filling procedure is used to avoid the false decreased variability that is often noticed 

after the adaptive filtering phase. In the adaptive control procedure, a percentage time series 

is build from the adaptively filtered time series. Thereafter, a new adaptive mean and 

standard deviation of the reconstructed percentage time series,  %

kY ; 1,2, ,k n   of the 

adaptive filter and binomial-filtered series are calculated. Then, a constraint is imposed on the 

binomial-filtered series such that an outlier data point is detected using the following 

inequality: 

 

 
1

%

0.
k k

a a f aY q       (57) 

 

Here, 
1f

q and 0 are the filter coefficient and parameter that accounts for basic variability 

respectively. Equation (57) is introduced to dampen filtering errors due to minimal variability 

in the geodetic time series.  

 

  3.5. Data analysis strategies 

The only links we have with the unexplained reality are the data and therefore the only way 

of investigating the underlying processes of any given phenomena is through data analysis, 

refer for example Lin et al., (2009). Geodetic tropospheric parameter time series, such as 

tropospheric delay (and delay gradients), WV, tropospheric mean temperature and pressure 

consist of complex components which are manifestations of non-linear processes. The 

dynamics of the troposphere often evolve as a complex system with various spatio-temporal 

correlation scales that are either discrete (e.g., precipitation) or continuous (e.g., tele-

connection patterns). These correlations often embed different components with, perhaps a 

wealth of unique statistical information about the interactions among the inherent 

tropospheric constituents: the geophysical signals. Traditional methods of determining 

characteristic time-frequency scales (e.g., Fourier and Principal Component Analysis) for 

each component involve decomposing the time series into component basis functions that 

satisfy two conditions; completeness of the basis and orthogonality. In terms of Fourier 

analysis, a given time series „ ( )Y t ‟ is decomposed into global sinusoidal components of fixed 

amplitude ja given by Equations (58) , 
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Equations (58) imply that the spectral amplitudes, ja  represent the energy contributed by a 

sinusoidal basis with frequency j  that spans the whole time series. The Fourier 

representation is most useful when the underlying geophysical process which causes 

variability in the time series is linear and therefore the superposition of the sinusoidal signals 

would make physical sense. As alluded to earlier, ja  remains time invariant thus ( )Y t is 

fairly constant. However, most of the geodetic time series do not meet this stationarity 

condition (they are non-uniform, non-linear and nonstationary). This would mean that the 

time series exhibits a broad spectral energy. In order to reconstruct the time series, global 

(e.g., harmonic) sinusoids are often required. Fourier transforms do not provide local features 

and therefore not suited for local description of the embedded dynamical structure of the 

observations.  

 

3.5.1. Detrended fluctuation analysis 

In this thesis, the presence or absence of random walk-type behaviour in troposphere WV is 

assessed using the DFA. The DFA methodology has been proven useful in revealing the 

extent of long-range correlations in diverse time series (e.g., Talkner and Weber, 2000; 

Király and Jánosi, 2005; Qian et al., 2008; Peña et al., 2009; Rybski and Bunde, 2009 and 

Varotsos et al., 2009). The DFA method is used to analyse WV fluctuations and also provide 

characteristics of the correlated stochastic components as well as effectively filtering out slow 

trends. The DFA approach handles nonstationary trends and also amplifies the intrinsic 

correlation structure of WV fluctuations of different time scales for analysis. The most 

important advantage of DFA over conventional methods such as autocorrelation and spectral 

analysis is that it has provision for the detection of intrinsic self-similarity that is embedded 

in the nonstationary WV. In the following, the general procedure of the DFA methodology is 

presented. 
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 Step 1: A fluctuating WV time series tY   1 , 2 , ,t T  is integrated to 

determine the profile: 

 
1

( )
i

t t

t

Y Y


   (59) 

 

In Equation (59); 

 
1

1 T

t

i

Y Y
T 

   (60) 

 

 Step 2: t is segmented into 1intK T   non-overlapping time intervals, k  

of equal size   where 1, ,k K . The above procedure is repeated from the 

other side of the series (from t=T, T-1, ..., T-(T-1)) in order to include all parts 

of the profile. This yields 2K segments. 

 Step 3: For each of 2K segments, a local trend is calculated and a polynomial 

function of the form 'k  is determined by the least-squares fit to the series. 

Thereafter, the variance is calculated using Equation (61) 
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for each segment, 1, ,k K  and 
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for 1, ,2k K K  . 

 Step 4: An m
th

 order fluctuation is calculated by averaging each scale over all 

segments using Equation (63)  
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In this report, m=2. Steps 2, 3 and 4 are repeated for several time scales in 

order to assess the dependence of (:)F on the time scales. 

 Step 5: The scaling behaviour of the WV fluctuations is then determined by 

analysing the log-log plots of (:)F  versus τ. Note that a power law 

relationship between mF  and τ indicates the scaling with an exponent  given 

by; 

 .mF   (64) 

 

Here, ν is a self-similarity parameter that represents the long-range power-law 

correlation in the data record. It is worth noting that if WV exhibits  self-

similar behaviour with  ν > 0 the fluctuations would grow with the window 

size in a power law way. This implies that the fluctuations on large 

observation windows exponentially grow faster than those with small 

windows. This would mean that WV fluctuations are unbounded. If 

0.5,  the fluctuations are uncorrelated and are expected to be driven by 

processes that are a random walk and WV exhibit a Gaussian distribution; 

however, if 0.5,  the fluctuations are anti-correlated and for 0.5,   the 

signal is correlated. Processes exhibiting this behaviour have a power-law 

autocorrelation function expressed as; 

 

   .t tC YY 

   

  (65) 

 

Here, 0 1  . According to Talker and Weber, (2000), the relationship 

between the correlation exponents could be given by; 

 

 1
2


   (66). 

3.5.2. Wavelet transform 

The WT has been introduced and developed to study a large class of phenomena such as 

image processing, data compression, chaos, fractals, etc (Whitcher, 1998). Mallat, (1989) 

proposed a concept of multi-resolution analysis for constructing an orthonormal wavelet basis 

and further illustrated the wavelet multiresolution characteristic from the space aspect. As a 
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result, the works demonstrated the functions of wavelet theory in the frequency analysis of 

various data signals. Though recently developed, wavelets analyses techniques provide a 

powerful and insightful representation of the structure in data appropriate to both linear and 

nonlinear systems. The basic functions of the WT are related to the property of spatial-

temporal-frequency localisation, contrary to what happens with trigonometric functions. The 

WT works as a mathematical microscope on a specific part of a signal to extract local 

structures and singularities. This makes the wavelets ideal for handling non-stationary and 

transient signals, as well as fractal-type structures. 

Let 2 ( )L denote the two dimensional space of all square integral functions, ( )t  

with finite energy. If 2(t) ( )L   is a fixed function, then the ( )t  is said to be a wavelet if 

and only if its Fourier Transform (FT), ( )w  satisfies the permitted admissibility condition 

(also called complete reconstruction condition) given by Equation  (67), 
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Here, ( )t  is the mother or basic wavelet. Equation (67) implies that the wavelet value is 

centred on the mean (see Equation(68)) 
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and therefore is oscillatory (some sort of a wave) as described by Daubechies, (1992), Mallat, 

(1999) and Qian, (2002).  

If the flex (also called the dilation) and translation transform is applied to the mother 

wavelet ( )t , then ( )t  can be decomposed into some wavelet series  ,a b
  defined such that;  
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Here, b  is the translation parameter and ( 0)a a  is the flex/dilation or scale 

parameter (this is the scaling in frequency range). The normalisation factor a
0.5

 ensures that 

 ,a b
  has the same energy along all the scales.  Given that tropospheric WV data sets are 

represented by finite number of observations or measurements, the orthogonal (discrete) 

wavelets associated with orthonormal bases of 2 ( )L  are often appropriately used for their 

analysis. Therefore, WT is performed only on a discrete grid of the tropospheric WV over 

some dilation and translation. This implies that a  and b  parameters take only integral values, 

where in general terms, the expansion of the WV time series, ( )Y t  can be expressed by 

Equation  (70) 

 

 ,Y(t)= ( )m

n m n

n m

Y t  (70) 

 

From Equation  (70) the orthonormal wavelet basis functions are related according to; 

 

  2
, ( ) 2 2 ,

m

m

m n t t n    (71) 

 

where m  and n  are the dilation and translation indices respectively.  Equation (71) is derived 

from equation (69) when 2 ma   and 2mb n  . At any particular wavelet level m , the 

contribution of a time series could be given by Equation (72), 

 

 ,( ) ( )m

m n m n

n

Y t Y t  (72) 

 

The significance of Equation (72) is that it provides temporal behaviour of the time series 

within different scales as well their contribution to the total energy WV time series. As 

discussed in Qian, (2002), the wavelet function ( )t is related to scaling function ( )t and 

scaling coefficients m

na .  

For a given wavelet basis to be as representative as possible, some degree of 

regularity is often desired. This condition is met by wavelets that exhibit n  vanishing 

moments; 
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 ( ) 0k

nY y dx




  ; 0,1, , 1,k n       and (73) 

   

 ( ) 0k

nY y dx




 ;  .k n   (74) 

 

Equations (73) and (74) imply that a wavelet with n  vanishing moments is orthogonal to 

polynomials up to order 1n . Note that the admissibility condition imposes the condition 

that a wavelet ought to have at least one vanishing moment. In general, a wavelet transform 

of ( )Y t with a wavelet ( )n y  and n  vanishing moments is simply a smoothed version of the 

thn  derivative of ( )Y t on various scales. 

Here, we have employed the Haar wavelet as the analysing signal where a set of non-

continuous (and therefore non-differentiable) functions whose mother wavelet takes the form 

of: 
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with a scaling function )(t described as, 
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 (76). 

Important features of the Haar wavelet include:   

a) the basis functions are often expressed by linear combinations: 

0 1 2(2 ), (2 ), (2 ), , (2 ),kt t t t     and their shifted functions,  

b) the constant functions,  0 1 2(2 ), (2 ), (2 ), , (2 ),kt t t t    and their shifted 

function form are used for approximations, 

c) they exhibit the orthogonality, 1

1 11 , ,2 (2 ) (2 )mm m

m m n nt n t n dt   



   , where ,i j  

is the Kronecker delta and  

d) the wavelet and scaling functions are related as shown in equations (77) ;  
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The Haar wavelet transform cross-multiplies a function against the Haar mother wavelet with 

various shifts and stretches which are derived from the Haar matrix. See Equation (78)  for a 

2 by 2 Haar matrix sample; 
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1 1

1 1
H

 
  
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 (78) 

The Haar WT therefore aids the sampling processing in which rows of the transform matrix 

act as samples of the finest resolution (this is the basis for multi-resolution analysis in 

wavelet methodology). 

 In the analysis of scaling behaviour in WV, nonparametric estimators (e.g. DFA 

described above) were considered in this thesis. These estimators are based on fitting a 

power-law on the thn order moment of the data values themselves or of their variations as a 

function of some scale/lag parameter. The approach has however two presuppositions for 

scaling processes. For long memory processes:-  

a) a statistically sufficient evidence that the relevant points on the curve do indeed 

represent a straight is required, and  

b) that the line‟s slope is such that 0.5 1H  , where H is the Hurst parameter. 

 If WV data (of length N ) is assumed to be stationary, then a simple sample estimator of the 

mean, Y  of a second order process tY is a reasonable choice. However, as N  , Y  

follows a normal distribution with; 
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If tY  exhibits self-similar behaviour, the sample mean is asymptotically and normally 

distributed with Y  but the variance is expressed according to Beran, (1994) by Equation 

(80),  
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where  0,1  and  0,rC   parameters describe self-similar behaviour. Equation (80) 

implies that the variance of the sample mean decreases with sample size at a slower rate than 

the classical one with the ratio 2 2:Y LRD    quickly with N . Clearly, computing any 

confidence interval of Y  would be biased. A robust approach that is capable of handling 

self-similar behaviour in WV time series could therefore be required. The wavelet estimator 

is one of the methods chosen in this thesis. Using the wavelet based approach; scaling 

properties in the data sets could be detected, identified and quantified. This is because, the 

WT often utilises an analysing a priori mother wavelet such as the Haar basic wavelet; which 

has inherent scale invariant properties. These semi-parametric estimators are computationally 

efficient and allow data analysis of arbitrary length. In addition, the estimators can also detect 

and isolate the deterministic components (trends) in the data.  

There are many classes of scaling processes (Beran, 1994). In this thesis, it is 

desirable to distinguish between self-similarity and long range dependent processes. Self-

similar (SS) processes (e.g. Fractional Brownian motion) are stochastic processes that are 

invariant in distribution under suitable scaling of time and space. A stochastic process 

( , 0)tY t   is SS with exponent H  of SS if and only if all 0c  , 

 

    , 0 , 0
d

H

ct tY t c Y t    (81) 

where 
d

  indicates an equality in the statistical and/or distribution sense. For Gaussian 

processes with finite variance (these processes exhibit stationary increments), the following 

properties hold: 

1. If 0H  , then 0tY   0t  , 

2. If 0H   and ( , 0)tY t   is continuous probability, then 0t  , 0( ) 1tP Y Y  , 

which implies that 0H   for this particular SS processes. 

3. If for some 0 1  ,  1tE Y


  , then 0 1H  . 

Some processes exhibit inbuilt memory which is dependent upon widely separated values that 

are significant even across large time shifts. Such stochastic processes are referred to as 

Long-Range Dependent (LRD) and their autocorrelations decay to zero slowly such that their 
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sum does not converge. Processes with long memory (or LRD) are stationary processes and 

contain spectral density that satisfies, 

 

 fc


 


   as 0   (82) 

 

where 0 1     (this describes the quantitative nature of the scaling) and 0fc   (is the 

measure of the size of the LRD and has the dimension of variance). Equation (82) implies 

that the auto-covariance,  t tr E YY  satisfies, 

 

 1

rr c 

    as 0   (83) 

 

where    12 1 sin 2r fc c     , and  is the Gamma function (Beran, 1994). Equations 

(82) and (83) imply that the covariances, r decays slowly. Increments of finite variances of 

SS processes have LRD as long as 0.5 1H  , where H  and   are related through 

 

 2 1H    (84) 

 

Based on the wavelet analysis framework, the wavelet coefficients ,j kd represent the 

difference between the aggregated time series by factors 12 j and 2 j for a fixed scale j . In 

this regard, the underlying assumption is that ,j kd  are short-range correlated. Given that ,j kd  

are the wavelet coefficients at octave j , and if the mother wavelet has M vanishing moments 

and that its Fourier transform is M differentiable at the origin and jm is the number of 

wavelet coefficients available at octave j , then ,j kd  is second order stationary. Furthermore, 

,j kE d   can be estimated as reported by Abry et al., (2000) by; 
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In addition, the estimator of the log ,j kE d   is, 
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where the last term of right-hand side cancels the bias contributed from the nonlinear 

component of log2. As a result, a plot of j  versus js  yields the log-scale diagramme as 

described by Abry and Veitch (1998). 

 The log-scale diagramme of the coefficients of the WT was used to analyse WV 

fluctuations and investigate the presence of two most important self-similar behaviours; the 

LRD and SS. The wavelet-based estimator of the LRD and SS is based on the discrete 

wavelet transform, DWT. The analyses of the WV‟s LRD/SS and other derived parameters 

are based on the following procedure. Firstly, the data is discretely pre-filtered to eliminate 

outliers in the WV sequence. Thereafter, the DWT of the pre-filtered WV data series is 

computed and then the squares of the coefficients of WT are averaged. A linear regression on 

the log of the averaged coefficients of the WT (plotted on the y-axis) and the log of the scale 

(plotted on the x-axis) is fitted.  In this regard, the log-scale diagramme was used to:  

a) select the scale range where scaling is observed, and  

b) estimate the scaling properties in the coefficients of the WV. 

 It is assumed that, a scaling phenomena could occur over a range of 

scales,  1 2,j j j and therefore for LRD processes, 2j is infinite but 1j is where the LRD 

begins (this value has to be selected). However, for SS processes, j   as 2j remain infinite 

(Abry et al., 1999). 

 

3.5.3. Hilbert-Huang transform 

Geodetic data collection, pre-processing, analysis and visualisation of the inherent signal 

structure by use of DFA and WT methodologies often assume that the underlying processes 

are weakly stationary. Ideally, stationarity in geodetic data and tropospheric WV fluctuations 

cannot be guaranteed.  In order to accommodate the inherent nonlinear and nonstationary 

properties of WV sequence, the reported research utilised an objective and flexible method 

that could describe the oscillatory events in WV fluctuations whose associated time-

frequency characteristics evolve over time called the HHT. The HHT approach is able to deal 

with WV fluctuations in the multiple resolutions and therefore distinguishes different 

processes driving variability. 
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The gist of the HHT is the EMD whose basic concept involves the empirical identification of 

oscillatory modes in the data by means of the local extrema. The decomposition is based on 

the assumption that:- 

 a) the data must have at least two extrema, 

 b) there exists a characteristic time-scale defined by the time interval between 

consecutive extremes; and  

c) the presence of an inflection point (no extreme) requires interpolation in order to 

obtain the extrema.  

The EMD approach assumes that the target data set consists of different, simple and intrinsic 

modes of oscillation that need not be sinusoidal (e.g. slowly varying amplitude and phase), 

called IMF. Each IMF ought to satisfy two criteria (to resemble the generalised Fourier 

decomposition); a) an IMF may only have one zero between successful extrema; and b) an 

IMF ought to have zero local mean.  

The EMD adaptive process is a recursive „sifting‟ algorithm described by e.g., Huang 

et al., (1998) and Pegram et al., (2008). Given a time series , 0tY t  , the recursive „sifting‟ 

procedure can be summarized as follows: 

1. Take the input signal 1tY  to decompose, where 0Y is the original time series; 

1.1. identify the local extrema of 1tY   

1.2. construct the upper/lower envelope  ( , ,/u t l t   by interpolation 

1.3. approximate the local average envelope by  , ,0.5
t u t l t     

1.4. extract the detail ,1 1 tt td Y     

1.5. If ,t jd is an IMF, decompose 1tY   into an IMF i.e. ,t t jIMF d and the 

residual 1t t tY Y IMF  . Otherwise repeat steps 1.1 through 1.5. 

2. If tY has an implicit oscillation, set tY  as an input signal and repeat from 

 step1. 

If the IMFs are added together with the residual trend, the original signal is often recovered 

without any distortions or loss of information as shown in Equation (87), 

  t j res

j

Y IMF Y   (87) 
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A key advantage of EMD is that IMFs can be transformed from the temporal-space to time-

frequency space by applying the Hilbert Transform (HT) to each IMF component determined 

by Equation (88) 
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where pv  is the Cauchy principal value or principal value of the singular integral. Note that 

tY and H

tY form a complex conjugate pair. Based on HT, the analytic signal is defined by, 
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 (89) 

where the instantaneous amplitude and phase are given by 2 2H

t t tA Y Y  and 

 1tan H

t t t tA Y Y  respectively. From Equation (89), the instantaneous frequency (which is 

also a function of time) of each IMF can be defined as 

 t
t

d

dt


   (90) 

This implies that the HT of the thn IMF components of tY  can be written as: 
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n
i dtH

n t j t
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Y A e




 , (91) 

where Aj,t is the amplitude of the analytic signal associated with j
th 

IMF. It is worth 

mentioning that the {Aj,t, θj,t}can be projected on the time-frequency-energy (=|Aj,t|
2
): forming 

the Hilbert-Huang spectrum. This spectrum has the same information as in the continuous 

WT reported in Torrence and Compo, (1998). 
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4. Modelling the stochastic properties of WV time series 

 

A mathematician is a device for turning coffee into theorems. 

 - Paul Erdős 

In this Chapter, the stochastic properties of WV are 

investigated. Firstly, results reveal that the underlying process 

driving fluctuations in the monthly averaged tropospheric WV 

derived from geodetic VLBI measurements spanning 1999-2008 

is non-linear and nonstationary. Furthermore, an ARMA(10, 9) 

could generally model the monthly averaged tropospheric WV ( 

transformed to stationary) over the period 1999-2008. 

4.1. Introduction 

A time series represents a path (also called a realisation) of a stochastic process or a sequence 

of data-points measured at successive time intervals. The collection of variables indexed 

according to the order in which they are obtained in time, forms the basis for the statistical 

description of the data which might have inherent spatial-temporal fluctuations (Shumway 

and Stoffer, 2006). The purpose of time series analysis is to develop mathematical models 

that provide robust descriptions about the observables; and as a result obtain an 

understanding of the mechanism that generated the data records (e.g., the nature and structure 

of the underlying forces). Analysis of time series could also involve fitting models to the data 

for purposes of future predictions of the phenomena in question. In geodetic applications, 

tropospheric characteristics can be presented as a vector time series that hold geophysical 

information which is of interest to the space geodesy community. The tropospheric state at 

each moment in time can be modelled as a mapping function denoted as 3 N  ; which 

assigns an n-dimensional (nD) vector of real tropospheric parameters such as temperature, 

pressure, refractivity, WV and tropospheric gradients to every point of the 3D space, herein 

referred to as a time series or data sequence.    

 The problems encountered in time series modelling and prediction dates back to the 

pioneering work of Yule in 1972 (Yule, 1972). Until 1970‟s, most of the research work on 

time series analysis concentrated on the use of parametric methods to describe underlying 

process in the observed data. In these parametric approaches, simple linear models are fitted 

to the data; see for example the text-book by Brockwell and Davis, (1996). Parametric 
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approaches such as the maximum likelihood estimate (MLE) are commonly used when there 

is sufficient prior knowledge that the model in the data set has a parametric form with 

unknown parameters i.e., that the model is from some parametric family-set θ ,θ , 

where 
θ
is a known parametric form with unknown parameter θ to be estimated.  Though 

the parametric approaches have established appealing mathematical properties over time, 

they often impose unsound rigid structure upon the underlying process. To  study nonlinear 

time series, nonparametric models such as the Multivariate Adaptive Regression Splines, 

(MARS) (Chen et al., 1997) and the EEMD (Zhaohua and Huang, 2009) that do not impose 

any structural assumptions have been developed to model underlying processes. 

Nonparametric models are often formulated based on the principle of “letting data speak for 

themselves.” Nonparametric models are therefore useful when little information or when 

flexibility about the underlying model is required. 

One aspect of investigating a time series involves finding appropriate models for the 

time series.  Generally, for a given model, the central theme is to estimate the unknown 

quantities of the model based on discrete observations. The process often involves model 

identification, fitting and model diagnostics. Given some data, there are often an infinite 

number of models or hypothesis that fit the data equally well. As a result, there is no reason 

to prefer one model over another. Therefore, one is forced to make assumptions that lead to 

an inductive bias. In model selection, the model parameters are selected such that a model of 

optimal complexity for a given (finite) data is created. Such models are said to have the 

correct inductive bias. Additional details on model section can be found in the text-book by 

Burhan and Anderson (2002). 

 Time series models have been central in the study of some behaviour of a process or 

metric over a period of time. The application of time series models are manifold, the 

applications range from geophysical problems such as daily weather forecasts, electricity 

(Taylor, 2008) and astronomy (Subba and Priestly, 1997). In decisions that involve some 

element of uncertainty of future values, time series models been found to be robust methods 

of forecasting. Additionally, time series models can be used to understand the structure in the 

data and predict the future trends and patterns in the data. Bates, (1994) analysed the adjusted 

time series of global WV derived from satellite infra-red observations and reported the 

linkage between upper troposphere WV time series seasonal component and the monsoon 

circulations. In addition, the inter-annual variability of WV was found to be correlated to the 
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ENSO warm-cold events.  Based on the notion that all of the power in the integrated WV 

variations is contained in a synoptic-scale motion of air-mass, Davis, (2001) investigated the 

statistics of integrated WV time series using GPS data in order to assess the large-scale 

weather systems. It was found that the power spectral density could be a robust estimator of 

the integrated WV than the structure function is over long time scales.  

Kruger, (2006) examined the spatial-temporal variations of trends in daily extreme 

precipitation indices for 138 rainfall stations for the period 1910 to 2004 in South Africa and 

reported of some certain areas where significant changes in certain characteristics of 

precipitation amid the lack of real evidence of overall changes in precipitation over the past 

century. Documented studies on the spatial-temporal characteristics of WV assume that the 

variability of WV is driven by stationary processes. Despite all these areas of application as 

mentioned above, assessment of the stochastic and self-similar properties of tropospheric WV 

has remained unexplored. In addition, there is no literature known to the author that has 

reported on the model of WV variability. 

To characterise the stochastic behaviour of WV fluctuations, a general Auto-

Regressive Moving-Average (ARMA) time series model will be considered. In the analysis 

of WV fluctuations, an automatic algorithm could be used to estimate the appropriate model 

parameters such as the model order from the tropospheric WV and the estimated model could 

be used to investigate the nature of the underlying process that drives the variability of 

tropospheric WV. 

 

4.2. Basic concepts of time series analysis  

If a random variable Y varies with time, then a simple time series, expressed as 

t tY ={ y , t=1, 2, ...}  (here t denotes for all integer valued time index) assumes that the 

measured data points are realizations of random processes (defined in the next section as)  yt 

that comprises of four components as shown in Equation(92) (Trömel and Schönmise, 2006); 

 

 t t t t tY =T +C +S +R . (92) 

Equation (92) is similar to the model proposed by Li et al., (2000) to investigate the presence 

of secular tectonic deformation fields and to distinguish between tectonically active and 

inactive regions in central Japan using GPS data. The additive model-components, Tt, Ct, and 

St in Equation (92) refer to the trend, non-random long term and short (seasonal) periodic 
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components respectively. The random variable Rt accounts for all the deviations from the 

ideal non-stochastic components. In many time series analysis strategies, the assumption that 

E(Rt ) exist or can also achieved by modifying one or more of the non-random components. 

Furthermore, if the underlying process is dominated by the growth component Tt only then: 

 
t t ,

=

E(

f

Y )=T

(t).
 (93) 

Though the function f(t) is known, it is dependent on the unknown elements of the parameter 

space  1 2, , , q    such that,  

 1 2f(t) f(t; , , ).q    (94) 

Using the ideal realisations, yt the parameters,  1 2, , q    can be determined based on the 

least squares estimate, i.e., 

    
1 2

2 2

t 1 2 t 1 2

t t, ,

y -f(t; , , ) y -f(t; , , ) .

q

q qmin
  

        (95) 

A feasible solution from the numerical problem given in Equation (95) entails; 

  t 1 2y f t; , , ,q    (96) 

as the predictand of t   t=1, 2,y  ... ; where t=1 is the current time. Therefore, the residuals in 

the realisations i.e., ~ t ty y , possess the goodness of fit information of the model to the data. 

 

4.3. Random variables 

Over the probability space , , a discrete random variable Y is a function that maps a 

space of events   to the real axis Y:   by Y( )   where   is a   particular 

elementary event. As a result, the probabilities Y ( )  map each   result between 0 1 . 

A particular with a probability Y ( )  is obtained based on the realisation of Y. The 

relative frequency 
N( )

N


  is the ratio between realisations of and the total number of 

realisations N. 

On the continuous space, , the definition of the random variable Y has the 

corresponding probability density function, Yρ (y) with y . The probability distribution is 

therefore the integrated probability density function given in Equation (97)   
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 Y YP (λ) dyρ (y).



   (97) 

 A value of y < λ  results from a realisation of Y with a probability y{y| < λ}based on  the 

probability distribution function given by equation(98) where a typical example is      one that 

exhibits a Gauss distribution with a density function given by Equation(99);  

  y yy| < λ  = P (λ)  (98)   

 

 

2

2

Y

y - μ
-

2σ

ρ (y) = N μ, σ

1
e

2πσ
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 (99) 

 

4.5. Stochastic processes 

A stochastic process Yt is a time dependent random variable with some dependency structure.  

A random process is often described by a probability density function tρ(y )  where, only the 

probability distributions are computed as compared to the deterministic case where a given 

outcome is determined by initial conditions and equations. A stochastic process Yt is denoted 

as an indexed collection of random variable with i = t1 indices specifying some time ordering 

in the discrete or continuous space. Two data records observed between t1 and t2 might 

exhibit linear dependency that could be described by an auto-covariance function given by;  

   1 2 1 1 2 2Cov(t , t )= Y - Y Y - Y .   

If the joint probability distribution is time invariant, the stochastic process is strictly 

stationary for any moment of time i jt , t . A second-order (weakly) stationary process 

exhibits a constant mean and the auto-correlation function depends only on the lag. 

One way to describe a stochastic process is to specify the joint probability distribution 

of 
1 nt tY ,...,Y for any set of times 1 nt ,...,t  and any value n. However, a simpler, more useful 

way of describing a stochastic process is to obtain the moments of the process which are the 

mean, variance and the auto-correlation function. Stochastic processes can be characterized 

by stationary, auto-covariance function a spectrum and ergodicity properties. Stationary 

processes play an important role in the analysis of time series. However many observed time 

series are nonstationary in nature. Therefore the stationary property (which means 

that
i jt tρ(y ,y ,...) is invariant) in real data is strictly rare. Instead, a first order stationary process 

exhibiting a time independent mean is more common. If a process also has time independent 

 
 
 



64 

 

variance and its covariance function is a function of time differences only, then the process is 

described as weakly stationary or second order stationary. 

 

it

μ

2

i

i i j j

σ

Y μ

= C ,

Var(Y ) σ

Co

= 

v(τ) = Cov(Y (

C ,

t ),Y (t )).



  (100) 

Here μ, σC are constants. The auto-covariance functions of a stationary process could be; 

 
1 1t +Δt tCov(τ) (Y - Y )(Y - Y )) ,  (101) 

This auto-covariance function can be normalized to the variance to obtain the auto-correlation 

function,  
-1

0C(t) = Cov(τ ) Cov(τ) . Furthermore the spectrum S(ω) Cov(τ)  is frequency-

domain equivalent of the auto-covariance. In order to represent a stochastic process, multiple 

realisations are often averaged. This gives rise to the power spectral density given by, 

 
2

T

T

G (ω)
S lim E ,

2T

 
  

 
 (102) 

where  
T-0.5 -iωt

T T
-T

G (ω)= 2π Y (t)e dt  is the Fourier integral of the stationary process ( )Y t . 

The Fourier transform of the auto-covariance function is related to the spectral density as 

follows; 

 
1

( ) ( ) d .
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i tCOV e   






   (103) 

Equation (103) implies that the spectral density and the auto-covariance function describe the 

linear dynamic properties of a process equivalently. Sometimes real data may exhibit a 

temporal mean and auto-covariance function that converges to a value equivalent to the 

average of a set of realisations (say for example, ensemble average). This property is referred 

to as the ergodicity of the underlying process. 

A stochastic process is called short-range correlated or Short-Range Dependent (SRD) 

if the auto-covariance function,  SRDρ (τ)  is summable and decays exponentially,   

 SRD

τ

ρ (τ) const .




    (104) 

Not all data records exhibit SRD, instead they posses the long-range dependence which can 

be described by an algebraic decay of the auto-covariance function; γ

LRDρ (τ) τ . Such type 
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of processes are called long-memory processes or long-range correlated and their decay 

exhibits a diverging sum as shown in Equation (105) 

 LRD

τ

ρ (τ) .




   (105) 

It is worth mentioning that long-memory processes are non-periodic stochastic processes. 

Dependence over infinite time lags due to the deterministic behaviour in the data record does 

not influence the long-range correlated datasets. 

 

4.6. Geodetic parameters time series    

Geodetic time series is derived from a sequence of geodetic data sets observed over a period 

of time and arranged according to observation time. There are numerous reasons to record 

and analyze the geodetic time series data. For instance, geodetic time series analysis could be 

vital in understanding the structure of the processes that generate the data as well as aid in the 

prediction of future values. The characteristic property of a time series is that, the data 

records are not independently generated; they exhibit a time dependent dispersion and are 

often governed by trend and may also exhibit periodicity. In geodetic applications, there are 

two steps of geodetic time series analysis.  The first is identifying the nature of the process 

represented by the sequence of observations and, secondly prediction of the future values. 

Both of these goals require that a pattern of time series data is observed and described. 

Thereafter, the internal pattern (which could be the autocorrelation, trend or seasonal 

components) could then be interpreted and integrated to formulate models in geodetic time 

series that could be vital for tropospheric modelling which improves the accuracy of the 

geodetic delay observable.  

In general, analysis of the geodetic time series reported in this thesis, focuses on the 

estimation and extraction of the deterministic (e.g. trend and seasonal) components in the 

geodetic (e.g. WV) data, see the first three terms in Equation(92). The components in 

geodetic WV time series could be used to determine the best model representing their 

variability. In the analysis of geodetic data, it is assumed that the bias term (which is 

contained in last term in Equation (92)) turns out to be a stationary random process. Thus, the 

theory of random processes can be used to find a satisfactory (and probabilistic) model for 

the bias term, analyze the properties of bias term and use it in conjunction with the 

deterministic components to predict the observed geodetic WV series. Alternatively, analysis 

of the observed geodetic WV series could be approached from Box and Jenkins paradigm 
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(Box and Jenkins 1970). In this model, the difference operators are applied repeatedly to the 

observed series until the differenced observations resemble a realisation of some stationary 

processes, from then on, the theory of stationary process is used model and analyse the 

stationary (and therefore the original) series.  

 

4.6.1. Time series analysis of tropospheric WV 

Strategies for quantifying the overall transient variability of WV are not straightforward, and 

a number of statistical approaches for modelling WV variability have been attempted. 

Gierens et al. (1997) used the measurements of about 2000 flights within the Ozone and WV 

by Airbus in-service aircraft (MOZAIC) program and confirmed that fluctuations of humidity 

and temperature from their local means could be characterized by occasional large 

fluctuations (i.e. heavy-tailed distributions) in the upper troposphere (at pressure levels 166 to 

290 hPa on the general circulation model grid scale).  It was found that the fluctuations could 

then be modelled by the Lorentz distribution rather than the Gauss distribution and this was 

due to large excursions in the fluctuations of humidity and temperature.  Later, data from 3 

years of MOZAIC measurements (this is data is described in Gierens et al. 1997) was used to 

determine the nature of the distribution law of WV; which plays a vital role in testing whether 

the hydrological cycle in climate models is adequately represented. It was reported that the 

frequency of occurrence of relative humidity greater than 100% decreased exponentially 

above ice saturation and that it decreases exponentially for the entire range of values in the 

lower stratosphere (Gierens et al. 1999). A stochastic source-sink model capable of producing 

such distributions was then formulated.  

Data from NASA‟s Pacific exploratory mission in the tropics phase A, that was 

conducted between August and September 1996 was used to study the impact of human 

activity on tropospheric chemistry in the remote regions over the pacific (Cho and Newell, 

2000). Based on the empirical multifractal formula for the structure function originally 

described by Pierrehumbert, (1996), an “anomalous scaling” or multi-fractality between 50 to  

100 km horizontal range of the WV distribution  was reported (Cho and Newell, 2000). From 

these findings, it was noted that while WV increase was statistically stationary, the transient 

WV fields did not exhibit the stationary properties. As a result, the probability distribution 

(e.g., the variance) of transients could therefore not be characterised accurately from a finite 

number of observations. 
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Recently, Jin et al., (2009) used the precipitable WV time series determined from co-located 

space geodetic techniques to quantify the systematic biases between VLBI and GPS in the 5-

year co-located measurements. The reported results demonstrated that systematic biases in 

the geodetic data that describe the atmosphere systems and processes could be accounted for 

if the co-located observations are utilized. Due to the role played by atmospheric WV in 

Earth‟s atmospheric radiation budget, global hydrological cycles and global climate change 

(Suparta et al., 2009), these findings have important applications in weather forecasting, 

numerical weather prediction and climate change studies as discussed by Gettelman and Fu, 

(2008). 

In this section, the analysis of geodetic WV time series is limited to, a) determining or 

transforming of the geodetic WV time series to stationarity, b) detecting seasonality using the 

autocorrelation, partial autocorrelation and automatic spectral plots, and c) deducing the 

inherent stationary model in the data. In the present analysis, geodetic WV data is assumed to 

exhibit a systematic pattern and random noise (error). In order to observe the pattern more 

clearly, some form of noise filtering is done by use of point-averaged smoothing. This 

methodology involves fitting some function or adjusting/correcting for the trend in the data 

records. To this end, an adaptive filtering algorithm reported in Wessel and Voss (2000) and 

described in detail in Section 3.4.2 is applied in smoothing the geodetic WV time series. For 

instance, Figure 4.1 depicts a sample wet tropospheric linear horizontal gradient data set that 

has been adaptively filtered in order to eliminate measurement or systematic errors. The 

filtering procedure employed here is based on the adaptive cumulates (the mean and standard 

deviation); used as filter coefficients which were adapted spontaneously during the 

computation process. This is a robust approach because it caters for the sudden changes in the 

time series. In the current filtering procedure, basic variability of zonal gradients is calculated 

using a binomial-7-filtering given in equation(106). 

 

 t-3 t-2 t-1 t t-1 t-2 t-3Y +6Y +15Y +20Y +15Y +6Y +Y
Y

64
t   (106) 

The adaptive mean and standard deviation are calculated and observations that are flagged 

anomalous based on the procedure described in Section 3.4. The reconstructed series is used 

to compute the basic variability, the new adaptive mean a '

tμ and standard deviation a '

tσ which 

are then used to test for anomalous values using the inequality, 
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 a' a' k

t t f1Y μ >σ k +σ .t   (107) 

Here the filter coefficient vary as f12 k 5  . The diurnal fluctuations of the zonal gradients 

are represented by a basic variability k -1σ ~365 . Anomalous values are replaced with the 

respective values determined a priori. The filter coefficients take empirical constant values 

that range between 2.5 and 5.0 (these values are arbitrary determined). The reconstructed 

series plotted in Figure 4.1 used a filter coefficient that was arbitrary set to 3.0. In order to 

minimize the filtering biases, an adaptive basic variable of 0.011 was considered. This value 

was selected because the tropospheric linear horizontal gradients considered in this analysis 

are often sampled 4 times daily. The weighting factor of 365
-1 

was used to account for daily 

fluctuations in the observed series. As depicted in Figure 4.1, the unfiltered zonal gradients 

have anomalous values in the first and last quartiles. These values are not removed from the 

series. Instead, interval filtering described in Wessel et al., (1994) is used to adjust the 

anomalies. The interval filtering is done through the spontaneous adaptation of the filter 

coefficients due to the sudden changes in the observed series. 

 

 

Figure 4.1  Adaptive filtering applied to the zonal linear horizontal wet gradient component 

observed over HartRAO. The linear zonal gradient has not been detrended. 
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4.6.2. Investigating stationarity in tropospheric geodetic WV 

In this subsection, the stationarity in the geodetic tropospheric WV is examined and described 

by use of classical Box-Jenkins test. If the test for stationarity fails, then the geodetic WV 

ought to be transformed into a stationary time series before a model for stationarity is 

formulated. In the current analysis, stationarity in geodetic WV time series is identified by 

examining the behaviour of the sample auto-correlation function. The auto-correlation 

function measures the correlation between Yt and 
acft+τY (where τacf is time lag). In other 

words, the auto-correlation function of the geodetic WV time series describes the correlation 

(which also refers to the degree of dependence) that exists between geodetic WV time series 

and the same geodetic WV time series but lagged by 1, 2,.., τacf . The auto-correlation 

function is then depicted graphically by use of a histogram both quantitatively and 

qualitatively by, a) determining the period of the oscillation and b) by looking at the shape of 

the autocorrelation plot which gives some indication of the suitable model parameters of the 

time series model (e.g., autoregressive (AR), moving average (MA) or autoregressive-moving 

average (ARMA)). In most data sets, the auto-correlation coefficients are significant for a 

large number of time lags, τacf. However, due to the propagation of the auto-correlation at τacf, 

the auto-correlation at τacf >1 might not be explicit. As a result, the partial auto-correlation 

plot is used to ascertain whether auto-correlation at τacf >1 indeed represents the auto-

correlation at τacf =1. The partial auto-correlation plot is derived from the partial auto-

correlation function. The partial auto-correlation plot often has a spike at τacf =1 which could 

imply that all the higher order auto-correlations are effectively explained by the auto-

correlation at τacf =1.     

 In most time series analysis, there is no theoretical reference result that could be used 

to select and characterize a stochastic process. In this thesis, we consider a general model 

ARMA {p, q} and then automatically identify the appropriate model parameters hereafter, the 

model orders, {p, q} based on the underlying temporal pattern embedded in the time series 

data through:-  a) identifying the appropriate time dependence by ensuring that the auto-

covariance, auto-correlation and the partial auto-correlation described in the time series 

model represents a stationary stochastic process, b) ensuring that the filtered biases from the 

appropriate models are normally distributed, and c) ensuring that the model choice is 

parsimonious. After obtaining stationary geodetic WV time series, the sample auto-

correlation function and partial correlation function could be used to identify a Box-Jenkins 

model that appropriately describes the geodetic WV time series. In order to assess the 
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specific statistical structure of geodetic WV sequence, a stochastic approach that models the 

dependent structure embedded in geodetic WV time series is considered. As a result, the Box-

Jenkins statistical methodology briefly described in the following is used.    

If the values of geodetic WV series are denoted by Yt,, Yt-1, Yt-2, then Box-Jenkins 

methodology is based on an ARMA (p, q) model given by Equation (108);  

   

 t 1 t-1 1Y Y ... Y ... .p t- p t t-1 q t-qa a a U            (108) 

Here the
ta ‟s are independent and identically distributed random shocks with a zero mean and 

a finite variance 2

aσ . Further, i  i = 1,2,. . . , p and j , j = 1,2,. . . , q  respectively denote the 

AR and MA coefficients while U is the model constant which is related to the mean of 

geodetic WV series. In the model characterized by Equation(108), the current geodetic WV 

series observation, Yt  is explained by a linear combination of the p previous observations, Yt-

1... Yt-p, a linear combination of the q previous random shocks at-1..., at-q and a constant term 

U. The error term is given by at. If q=0, a pure AR (p) is derived and if p=0, the class of pure 

MA (q) is retrieved. The backward shift operator, B can be used such that BYt=Yt-1, a 

compact ARMA (p, q) model then becomes;      

 ( )Y ( ) .t tB U B a    (109) 

Here, 1( ) 1 ... p
pB B B      and 1( ) 1 ... qqB B B      represent the AR and MA 

operators respectively. For stationarity, ( )B roots ought to lie outside the unit circle. The 

model is described by Equation (109) could be visualized in the sample and partial 

autocorrelation plot with characteristics given in Table 4.1.   

 

Table 4.1 Sample AC and PAC model behaviour 

Model SAC SPAC 

MA Cuts off at lag p Tails off 

AR Tails off Cuts off at lag p 

ARMA Tails off Tails off 

 

From Table 4.1, the plots of the SAC and SPAC could be visualised and a pure AR (p) and/or 

MA (q) processes established. However, estimates of (p, q) are not trivial from ARMA (p, q) 

processes. In the current analysis, a large number of candidate geodetic WV time series 
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models are computed and some statistical criteria (e.g., AIC (Akaike, 1969) or SIC in 

equations(110)), where tμ and  
T

2 -1t

t=1

σ =  μ  T are the estimated residuals and variances 

respectively) is used to select a suitable model that is representative of the data. To this end, 

an ARMA (p, q) model is estimated based on the method of maximum likelihood. The 

likelihood function of the ARMA (p, q) model is non-linear in the unknown parameters and 

therefore non-linear optimization techniques are often used to solve for the unknown 

parameters. 

2

2

2
AIC = logσ + (p+q+1);

T

(p+q+1)logT
SIC =  logσ + .

T

 (110) 

In the current case study, WV time series data (for the period 1998 to 2008) derived from 

surface temperature measurements at HartRAO and numerical simulations of the ECMWF 

was used to investigate the stationarity properties. From the results, some indication of the 

broad correlation characteristics were averred from the sample auto-correlation and partial 

auto-correlation plots of the tropospheric WV time series as depicted in Figure 4.2. From the 

sample autocorrelation plot, it is evident that the line graphs exhibit damped oscillations 

which are the absolute sinusoidal components. These oscillations tail off slowly to zero, 

therefore indicating that the fluctuations in geodetic tropospheric WV time series are driven 

by non-stationary stochastic processes. In the present analysis, the auto-correlation function 

plot of the WV series exhibits spikes at several lags (e.g. at lags 1, 2, 4, 5, 6, 7, 8, 10, 11 and 

12). This is expected since WV time series possess inherent diurnal, seasonal and trend 

components. One way to formulate a model for data with such auto-correlation pattern is to 

use the Space Time Auto-Regressive Moving Average (STARMA) models proposed by 

Pfeifer and Deutsch, (1980). However, the STARMA models do not take into account the 

embedded nonlinear behaviour that is representative of the underlying process. In particular, 

dynamical processes with unusual jumps cannot be effectively studied using STARMA 

models. 
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Figure 4.2 Sample autocorrelation and partial autocorrelation function for WV 

 

To use ARMA models adequately, the WV time series must be stationary with respect to the 

mean and variance. Differencing between consecutive observations is one way to efficiently 

achieve stationarity. If the difference operator is defined as 1 B   , such that t t t-1Y =Y -Y  

and the differencing goal is to stabilize the mean, then  the model corresponding to the 

original WV series could be called Auto-Regressive Integrated Moving Average (ARIMA) 

model. An ARIMA (p, d, q) model is defined by the equation; 

       

 t( ) Y ( ) .d

tB U B a     (111) 

 

Here, the d
th

 is the difference of the original series tYd is stationary and could be represented 

by a stationary ARMA (p, q) model.  

The WV time series is often computed daily, monthly, quarterly or annually. 

Therefore WV series exhibit strong diurnal, seasonal or annual periodic fluctuations that 

often recur at pre-determined phases. In addition, it is expected that seasonal nonstationary 

features could be embedded in the series. For a WV time series of period k, (k =12 for 
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monthly data, and k = 36 for quarterly data), stationarity is often achieved by calculating the 

seasonally differenced series Yt – Yt-k. The seasonal difference operator of period k is 

denoted by k

k = 1- B and therefore a seasonal ARIMA model could be defined by an 

equation of the form;  

  

 t( ) Y + ( )d D

k tB U B a     (112)  

The model in Equation (112) takes into account seasonal and regular differencing due to the 

presence of trend components in the data.           

In ARMA modelling applied in this research, the data series ought to be stabilised by 

using various transformations such as square root or the logarithmic transformations.  A 

practical tool for the choice of the appropriate transformation which is based on the power 

transformation is the mean-range plot where the range of data is plotted against the mean of 

each seasonal period. For a detailed discussion on the mean-range   plot, refer to Helfenstein, 

(1986).  In the current analysis, the Box-Cox transformation was used to transform the data to 

a stationary time series. The Box-Cox transformation can be taken as a general time 

deformation process applied to WV series. This type of transformation is only in the time 

domain and therefore the notion of stationarity is restricted to a linear transformation. The 

resultant data series is then subjected to the two-sided Lilliefors and the Jarque-Bera 

goodness-of-fit test of composite normality which performs the normality test based on the 

hypothesis that the data in the WV comes from an unspecified normal distribution.  

The Lilliefors test evaluates the hypothesis that the WV observations have a normal 

distribution with unspecified mean and variance, against the alternative that the WV 

observations do not have a normal distribution. This test compares the empirical distribution 

of WV with a normal distribution having the same mean and variance as WV. The test is 

similar to the Kolmogorov-Smirnov test, but since the parameters of the normal distribution 

are estimated from WV rather than specified a priori, the test becomes more data adaptive. 

From the test, if the result H=1, then the hypothesis that WV observations have a normal 

distribution is rejected. However, if H =0, then it implies that null hypothesis cannot be 

rejected. Additionally, the P-value is computed by interpolation into the Lilliefors simulation 

table.  Table 4.2 illustrates that at 5% significance level, the result of the test is H=0.  This 

indicates that the null hypothesis (i.e. the data are normally distributed) cannot be rejected at 

7.2 % significance level. In addition, the Lilliefors test statistic of 0.0713 is smaller than the 
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cut-off value of 0.0745 at 5% significance level, therefore the hypothesis of normality cannot 

also be rejected.  

   

Table 4.2. Test statistics of the Box-Cox transformed WV normality tests 

Test type H P-value Statistic Critical value 

Lilliefors  0.0 0.072 0.0713 0.0745 

Jarque-Bera 0.0 0.055 5.3233 5.5782 

 

Additionally, the Jarque-Bera test evaluates the hypothesis that WV observations have a 

normal distribution with unspecified mean and variance, against the alternative that WV does 

not have a normal distribution. The test is based on the sample skewness and kurtosis of WV. 

For a true normal distribution, the sample skewness should be near 0 and the sample kurtosis 

should be near 3. The Jarque-Bera test determines whether the sample skewness and kurtosis 

are unusually different than their expected values, as measured by a chi-square statistic. The 

Jarque-Bera test for normal distribution in WV results yielded similar result of H=0 obtained 

from the Lilliefors test and therefore the normality hypothesis at the 5% significant level and 

5.5% P-value could not be rejected.  The derived time series models could be used to analyze 

the power spectral density and covariance function of the stochastic WV observations. These 

models could be suitable for characterizing the spectral density of the random WV 

observations with known model type and order. However, it should be noted that the spectral 

characteristics of the WV observations are often unknown a priori and therefore a large 

number of candidate models ought to be computed.  

An automatic algorithm that estimates a suitable ARMA (p, q) model to the monthly 

averaged stationary tropospheric WV revealed that the 1999 to 2008 monthly tropospheric 

WV data could be modelled by AR (100), MA (20) and ARMA (10, 9). It can be seen that 

MA order of 20 is much lower than the selected AR order of 100 partly due to the fact that a 

high AR order model is often used as an intermediate parameter for the estimation of MA 

models. The optimal coefficient vector of the AR model consists of the set, { :  1.00, -0.72, -

0.11, 0.32, -0.05, 0.11, 0.03, 0.13, 0.02, and -0.25} and the optimal coefficients of the MA 

model were found to be the vector set, {θ: 1.00, -0.25, -0.15, 0.12, -0.28, 0.27, 0.33}.  The 

prediction error of the three best-selected models is estimated based on the measured and 
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given values of the residual in variance described by Broersen (2002). For MA and ARMA 

models, the prediction error is given by Equation (113);  

  p

m
1+

Ne (m) δ(m) .
m

1-
N

=   (113) 

Here, m is the number of estimated parameters in the model and δ is the residual of the 

variance. For AR (p) models, the prediction error is given by Equation (114); 

 

  p

m=1

1
1+

N+1-me (p) δ(p)
1

1-
N+1-m

p

=   (114) 

Equation (114) is significantly different from Equation (113) for m > 0. A single time series 

model, with selected model order and type, with the smallest estimate of ep could therefore be 

easily selected.  Using the estimated parameters of the selected model, the spectral density 

and other statistically significant details such as the second-order characteristics of WV 

observations could be inferred. The model error denoted as ME is defined as the measure of 

the accuracy of the estimated model which is the difference between the estimated model and 

a true stationary process. This measure is simply a scaled transformation of the one step 

ahead squared error of ep. Based on the vector set { ,  }  of the tropospheric WV, a true 

stochastic stationary process was modelled and the difference between the stationary process 

and the estimated model from the WV data.  An ME value of ~ 262 was obtained. However, 

the difference between the selected ARMA and AR models from the same WV data set was 

found to be ~ 15. 
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Figure 4.3. True and estimated power spectral density (log scale) 

Figure 4.3 compares the power spectral densities of a true stationary process and the 

spectrum estimated from WV model on the log-scale. It is evident from the figure that the 

estimated model approximates to the true stationary process with subtle differences which are 

quantified by the ME. Furthermore, the estimated model accuracy as a function of model 

order and type is depicted by Figure 4.4. It is clear from Figure 4.4 that AR (50) and ARMA 

(10, 9) models have higher accuracy than the MA (20) based on the underlying processes in 

WV data. In all the estimated models, the accuracy increases with increase in the model order 

up to the {p, q} of the ARMA model. 
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Figure 4.4.  Estimated model accuracy as a function of the model type and order. 

Assuming that the estimated model is representative of the data, the resultant spectrum could 

be robust and more accurate compared to the parametric spectrum which could be computed 

from, for instance the classical periodogram. This is evident from the left panel of Figure 4.5. 

As can be seen from the left panel of Figure 4.5, the spectral density of the periodogram do 

not have a smooth curve; this could be attributed to the distortion of the spectrum by 

convolution of the window function whose width equal  the length of the WV. In addition, 

the periodic oscillations of WV are often treated differently in the discrete Fourier transform. 

For instance, if there are narrow spectral features (e.g. high frequency components in WV 

fluctuations), those narrow components will be broadened by the convolution. On the other 

side, there will be less broadening of the spectral peaks for a broad window function in the 

time domain but whose spectral main lobe is narrow in the frequency domain.  

As depicted in  Figure 4.5, the power spectral density based on the periodogram vary 

significantly from the true power spectral density of the WV series. A common approach 

(also called the Bartlett method) used to correct this inconsistency is to divide the data record 

into small subsets and compute the periodogram separately. Thereafter, the results are 

averaged over all the small records. Averaging periodograms reduces the variance in the 
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estimated power spectral density and therefore provides a better estimate of the spectral 

properties of the WV observations.  Furthermore, the spectrum of the true stationary process 

(in the left panel) compares well with the spectrum of the true and the estimated time series 

(this is plotted in the right panel). 

 

 

Figure 4.5. Periodogram and the spectra of the true and estimated time series. 

 

4.7. Concluding remarks  

Recent advances in atmospheric remote sensing have availed WV data from a variety of 

sources and sensors with improved spatial-temporal resolution. As a result, data sets that 

could be used to compute WV for investigating the structure and dynamics in the troposphere 

have increased. Further, the long time series of WV allows detailed studies on WV acting as a 

major component of the global hydrological cycle, as a greenhouse gas as well as the 

variability of WV at different spatio-temporal scales in the climate system. In this chapter, the 

stochastic behaviour of stationary WV fluctuations has been characterised using a general 

auto-regressive moving-average (ARMA) time series model. In the analysis, an automatic 

algorithm which estimates the appropriate model parameters has been used to formulate a 

model that is used to investigate the nature of the underlying processes that drives the 
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variability of tropospheric WV. In the present analysis, monthly averaged stationary 

tropospheric WV derived from geodetic VLBI measurements  for the period from 1999 to 

2008 is modelled by AR (100), MA (20) and ARMA (10, 9). The power spectral densities of 

a true stationary process and the spectrum estimated from WV model were compared on the 

log-scale. Results showed that the estimated model approximates to the true stationary 

process. Furthermore, the estimated model accuracy as a function of model order and type 

showed that AR (50) and ARMA (10, 9) models have higher accuracy than the MA (20) 

based on the underlying processes in WV data. 
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5. Multi-scale WV fluctuation characteristics over southern 

Africa 

A small forcing can cause a small change or a huge one 

- National Academy of Sciences (2002) 

This Chapter presents results and discussion on the vertical 

WV model derived from SHADOZ network and HALOE 

satellites. Results depict spatial-dependent vertical differences 

in the WV model. Furthermore, the multi-scale organization is 

clearly evident in the spatial-temporal WV variability over the 

low- and mid-tropical Africa by use of NCAR/NCEP reanalysis 

and the in situ SHADOZ network data. In particular, the 

present chapter considers the use of WV derived from model 

simulations and in suit radiosonde data to assess the power law 

scaling behaviour of WV. Understanding of this complex 

behaviour contributes towards understanding the contribution 

of meteorological factors that influence geodetic tropospheric 

delay modelling. 

 

5.1. Introduction 

Analysis of WV variability in the low- and mid-tropical Africa is based on the in situ 

radiosonde observations of the SHADOZ station network comprising of Ascension, Irene 

(South Africa), Reunion (Reunion) and Nairobi (Kenya) and the numerical model simulations 

for the period from 1998 to 2006. The motivation for analysing WV fluctuations in the 

tropical Africa is driven by the desire to obtain an in depth understanding of the spatial-

temporal WV fluctuations as well as study the mechanisms driving WV variability and its 

link to the climatic variables. Analysis of the climatic variables influenced by WV is essential 

for the accurate modelling of the influence of WV on the estimation of the geodetic 

tropospheric delay observable and of the regional hydrological cycle in Africa-South of the 

Equator. The analysis of WV fluctuations is based on the multiscale organisation paradigm as 

detailed in section 5.2, where a mean vertical profile of the troposphere WV is developed 

using the radiosonde measurements at Irene-South Africa and Malindi- Kenya. This research 
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work has been published as journal articles; see Botai et al., (2010) and Sivakumar et al., 

(2010). 

The principal effects of variations of WV in the troposphere are; (i) the effect on the 

radiative balance, and (ii) the effect on cloudiness (which indirectly influences the radiative 

field).  Throughout the troposphere, WV exerts a strong influence over how Earth loses 

radiative energy to space and this sets a balance between the energy received and absorbed 

from the sun. The WV feedback (i.e., the feedback on global temperature caused by changes 

to WV resulting from increases in CO2 and other gases) is now almost universally accepted 

to be positive and strong. Based on  data from NASA‟s satellite borne atmosphere infrared 

sounder (AIRS) over the period 2003-2008, Dessler et al., (2008) assessed the tropospheric 

WV response to global-average surface temperature of the Earth and reported strong positive 

WV feedback with a magnitude of λq ~ 2.04 Wm
-2

K
-1

 . This finding corroborates results from 

climate model simulations.  

 Gettelman and Fu, (2008) used humidity and temperature data from AIRS to analyse 

how the upper troposphere responded to changes in the underlying surface temperature. 

These observations were compared with simulations of the NCAR community atmosphere 

model version 3 (CAM) described by Collins et al., (2006). The results from AIRS and CAM 

simulations found a positive WV feedback i.e., as the temperatures increase, the WV in the 

upper troposphere also increases to keep the relative humidity at nearly equilibrium. 

The abundance of WV in the atmosphere has a significant consequence on the earth's 

climate.  This is due to its large energy transfer associated with phase transition where short-

term dynamics of the atmosphere is also affected. WV therefore plays a key role in both the 

radiative and dynamic processes of the climate system (Zveryaev et al., 2007). The sensitivity 

of precipitation, WV and temperature changes in large-scale atmospheric circulation makes 

identification of the regional trends in precipitation and their contribution to temperature and 

WV variability critical. This involves the formation of the Polar Stratospheric Clouds (PSC) 

which are the reservoirs of halogenated molecules involved in the spring ozone depletion. 

Acid rain in the form of H2CO3, HNO3, H2SO4, etc., is formed by the reaction of CO2, 

nitrogen dioxide (NO2) and Sulphur dioxide (SO2) in their aqueous states.  

Global distribution and variability of the atmospheric WV has been well documented 

(e.g., Dai, 2006). In addition, evidence of WV variability over regional scales has also been 

documented (see e.g. Trenberth et al., 2005).  Further, WV is unique among atmospheric 

trace constituents due to the role it plays in creating saturation conditions prevalent in the 
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atmosphere. This property is the most important factor governing the distribution of WV in 

the atmosphere, both in the troposphere and in the stratosphere.  

In the troposphere WV varies by as much as four orders of magnitude in a vertical 

profile while in the stratosphere, variations are much smaller (~10% lower, as reported by 

Stenke and Grewe, 2005) but still significant. Furthermore, WV in the upper troposphere and 

low stratosphere plays a key role in atmospheric chemistry (Stenke and Grewe, 2005). For 

instance, the hydrogen oxides involved in catalytic reaction cycles which are responsible for 

the control of the production and destruction of ozone layer in the lower stratosphere are 

produced from the oxidation of WV and methane by excited oxygen atoms. In addition, the 

partitioning of the nitrogen and halogen family is influenced by the hydrogen oxides. 

Nitrogen and halogen elements are crucial for ozone removal in the stratosphere. 

One way to investigate the variability of WV is to assess the variability of precipitable 

WV (PWV) which is derived from the Integrated WV (IWV) along the path of the balloon 

sounding, i.e.,  

   

vρ dh,
a

s

h

h

IWV    (115) 

Where ρv, and ah are the density of WV and the top of the troposphere respectively. The IWV 

is then mapped into PWV using Equation (116), 

 
w

= ,
ρ

IWV
PWV  (116) 

where ρw is the density of liquid water. Using the gas state Equation, ρv can be obtained from 

 v
v

v

P
ρ = ,

R ×T
 (117) 

where Rv= 461.495 JK
-1

Kg
-1

 is the specific gas constant for WV. The partial pressure, Pv of 

WV which is obtained from Relative Humidity (RH), as expressed in Equation (118) 

 
-4 237.2465+0.213166×T-2.56908×10 ×T

vP =RH .e
 
   (118) 

Here T is the absolute temperature in Kelvin. Since radiosonde observations are discrete data 

series of temperature and RH at different heights, the atmosphere layer could then be 

subdivided into discrete layers. This implies that, if the parameter field  vρ ,T at each layer is 

assumed to be linear, then Equation (119) could be approximated as 
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= h -h × ρ +ρ

ρ 2
PWV  . (119) 

Radiosonde measurements have important applications in verifying WV computed from 

numerical weather prediction models: they are currently one of the main observation 

techniques to provide atmospheric water vapour profiles in an operational NWP system. 

Yang et al., (1999) stated that the horizontal scale of WV is, on average, larger than the 

existing model grid resolution of most the NWP systems. Therefore, even if WV fluctuations 

with short wavelengths exist, the fluctuations are not measured in most cases and ought to be 

ignored.  This assumption would be acceptable in NWP system. However in space geodetic 

applications, such assumption could not be favourable at all. In such cases where geodetic 

stations are close to radiosonde stations, the data from radiosonde measurements is invaluable 

with regard to verifying WV derived from space geodetic techniques such as GPS, VLBI and 

WVR for tropospheric modelling of the geodetic delay observable. 

 Despite the emerging long records of satellite-based observations of atmospheric 

parameters that describe the structure and dynamics of the atmosphere, radiosonde 

measurements continue to prove useful in diagnosing the variations in the vertical 

temperature, humidity and wind speed and direction. As a result, the derived scale height of 

WV (this is based on the humidity information) distribution can be studied in order to 

determine the relations between the scale height vertical WV distribution and the rate of de-

correlation of the integrated WV over horizontal separation. As reported by Ruf and Beus 

(1997), this relationship is as a result of the departure from the simple Kolmogorov behaviour 

of WV turbulence structure, since the horizontal separation approaches the scale height 

dimension. 

 Assessment of WV variability could be done using the WV mixing ratio (п) where the 

relation in Equation (120) and (121) is used to compute the precipitable WV.  

πdp
,

g

a

s

h

h

PWV    (120) 

Here, dp and g are the incremental pressure change with height in Pascal units and 

gravititational  constant respectively,   is the mixing ratio of WV per gram of air. 

In first section of this chapter, a mean vertical profile of WV in the South of the tropical 

Africa is modelled based on the data from selected radiosonde stations which are the part of 

SHADOZ network. The general approach in this chapter is to use SHADOZ in situ 

measurements and numerical weather model simulations to investigate the regional 
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variability of WV. A description of the data sets and the methodology used in obtaining the 

reference profiles for different location is reported by Sivakumar et al., (2010). In the second 

part of the chapter, the multi-scale organisation of the regional WV variability noted by Botai 

et al., (2010) is reported. 

 

5.2. Vertical profile of WV from SHADOZ data 

The global time-mean distribution and large-scale variations of WV are fairly well 

characterised by satellite data sets, especially by HALOE satellites. In addition, in situ and 

ground-based data sets augment satellite information and present a picture consistent with 

satellite observations. In situ and ground-based data sets are also essential for revealing the 

behaviour of WV at smaller spatial scales, for long-term monitoring and for validation of 

satellite data sets. As one of the aims of the research work in this thesis a model (mean) 

profile for WV in Southern hemisphere latitude using about 10 years (1998-2007) of the 

SHADOZ balloon borne measurement from Nairobi-Kenya (1.29
0
 S; 36.80

0
 E; 1795 m),  

Malindi-Kenya (2.99
0
 S; 40.19

0
 E; -6 m), and Irene-South Africa   (25.90

0
 S; 28.22

0
 E; 1524 

m) was constructed and is reported in the ensuing sections.  

The vertical profile of mean WV computed in this section is based on the data 

obtained from the SHADOZ measurements to obtain a height profile of WV in Southern 

region of Africa. Such profiles can be used as a reference for comparisons with other 

measurements such as satellite observations. The details about the data and quality of 

ozonesonde measurements can be found in several publications (e.g., Borchi et al., 2005; 

Sivakumar et al., 2007). At each radiosonde station, about 10 years of ozonesonde data 

gathered from 1998 to 2007 of Irene, from 1999 to 2006 of Malindi and from 1998 to 2007 of 

Nairobi stations was used. The measurement data for height region up to 30 km altitude are 

collected from SHADOZ data which are archived at 

http://croc.gstc.nasa.gov/shadoz/site2.html/. The SHADOZ measurement contains pressure, 

temperature, relative humidity and ozone. The mean value of WV mixing ratio in ppmv is 

found from the relative humidity data using the relation given by Equation (121); 

17502T(z)

24097+T(z)e
=61121×RH× .

P(z)
π  (121) 

Here,   is the mixing ratio, RH is relative humidity, T(z) is temperature in degree centigrade. 
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The height profile of WV is obtained for the regions of southern latitude hemisphere. The 

mean values of 10 years of SHADOZ in-situ measurement data are further used for making 

comparison. The mean WV profile calculated from the SHADOZ measurement for stations at 

Malindi and Irene is displayed in Figure 4.1 which indicates that the variability of WV 

increases with altitude and that there are notable high variations (this can been seen in terms 

if the spread or variances in the mixing rations) between 2  and 7 km. It can be observed that 

above 2 km, the relative variability of WV is greater than 20% in Malindi and 43% in Irene. 

Such difference indicates that the variation of WV concentration with latitude region. The 

variation of relative humidity with temperature also contributes to the WV variability in the 

stratospheric region. The questionable accuracy with altitude can affect the amplitudes of 

WV variability. 

 

Figure 5.1. Height profile of mean water vapour obtained from SHADOZ datasets. 

 

The mean WV profile of about 10 years of SHADOZ network stations (in this case Malindi 

and Irene) was derived and has been used  to verify WV profiles retrieved from other satellite 

measurements, such as; GPS and HALOE (see for instance, Sivakumar et al., (2009a)).  

Additionally, these results would be useful for initializing numerical models and improving 

parameterizations of radiative and cloud processes. In general, the vertical structure of WV 

can be used to investigate the occurrence of turbulent events in the atmosphere which could 

be associated with local weather conditions and passage of fronts.  Refractivity profiles 

computed from radiosonde data could also be used to describe the turbulent fluctuations 

through the analysis of the structure constant. These measurements have vital applications in 
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assessing the occurrence of ducting conditions which could have adverse effects in geodetic 

observations (especially microwave measurements) as well as radio communication. 

  

5.3. Multiscale organisation of WV in mid- and low-tropical Africa 

A number of ground based and space borne remote sensors are available to provide the 

vertical and horizontal profiles of WV, for e.g. radiosondes, Light Detection And Ranging 

(LiDAR-Raman), GPS, VLBI, WVR( Raschke, 2002). Furthermore, considering the high 

temporal and spatial variability of WV, depicting how the WV fluctuations are organised into 

diurnal, synoptic, seasonal and climatic categories, could provide useful information in 

meteorology (numerical weather prediction and climatology) and space geodetic studies. The 

variability of WV is associated with spatial structure and unique modes of variability inherent 

in the rotated Principal Component Analysis (PCA) of the WV energy spectra. The PCA 

rotating component of WV captures the dominant modes of the WV in temporal scales with 

similar spatial organisation (Petr, 2005). This linear transformation of PCA allows easy 

interpretation of the strongest spatial relationships of WV features that drive atmospheric 

weather systems over a particular region. Saco and Kumar (2000) used similar methodology 

to capture the spatial patterns of the coherence in the temporal scales of variability of stream 

flow response. On the other hand, Schubert et al., (1998) separated different temporal scales 

(by choosing the scales independently) of precipitation using a pre-designed filter.  

 Multiscale spatial-temporal structures of WV describe the movement of water within 

and between the Earth‟s atmosphere, oceans and continents (Trenberth et al., 2005; Zveryaev 

and Allan, 2005).  Soden and Fu (1995) assessed the temporal structure of WV using 

satellite-derived upper-tropospheric relative humidity over the tropical region (30
0
 S - 30

0
 N) 

and concluded that a positive relationship between relative humidity and deep convective 

processes exists.  Though, the global spatial distribution and trends in WV are dominated by 

large-scale dynamics, such as., El Nino- Southern Oscillation (ENSO) rather than the 

thermodynamics, (See., Zveryaev and Allan, 2005), the linkage between WV anomalies and 

atmospheric circulation processes is difficult to establish due to the complexity of the spatial-

temporal structures of WV. The spatial and temporal variability of WV in the mid- and low- 

tropical Africa ranges from a few kilometres to thousands of kilometres and from a few 

minutes to several days, similar to the meso- /synoptic scale processes, respectively (Husak, 

2005). Therefore, the analysis of the correlations of WV between the spatial grids is of great 
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practical importance for studying the conditions that lead to the development of hazardous 

weather systems. 

 In order to understand the feedback processes operating within the mid- and low-

tropical Africa, a robust methodology of examining the spatial-temporal structure is required. 

In this study, the spatial and temporal organisation of WV is analysed simultaneously using 

orthogonal wavelet transformation which allows for calculating the total energy of WV by 

summing up their individual scales either in spatial or temporal regimes.  The spatial-

temporal fluctuations of WV are investigated which further helps to understand the regional 

weather patterns in the East, Central and Southern Africa.  Results obtained from this study 

would also form the basis for future comprehensive analysis of the relation between WV 

variability and the associated atmospheric weather systems as well as any other forcing 

mechanisms observed in the low- and mid-tropical Africa. In addition, the goal of this study 

is to understand the mechanisms driving WV variability and its link to the climatic variables 

which are essential for accurate modelling of the regional hydrological cycle.  

The main data source used in this particular study is about 8 years of upper air 

radiosonde/ozonesonde data archived at the SHADOZ station network consisting of 

Ascension, Irene, Reunion and Nairobi). The publication by Thompson et al., (2003) 

provides further details about the SHADOZ network. The geographical positions of the 

SHADOZ stations and the details about data considered for the present study are tabulated in 

Table 5.1. 

Table 5.1 SHADOZ network stations used in the current study. 

Station Longitude Latitude  Elevation # of Launch  Time Period 

Nairobi 36.80 E 1.27 S 1795.00 370 Jan 1998 to Aug 

2007 

Reunion 55.48 E 21.06 S 24.00 293 Jan 1998 to Oct 

2006 

Irene 28.22 E 25.90 S 15.24 232 Nov 1998 to Dec 

2006 

Ascension 14.42 W 7.98 S 91.00 397 Jan 1998 to Dec 

2006 

 

The SHADOZ stations were configured to obtain mean information of WV over four grids, 

and designated WVg time series. In addition, a time series of integrated WV (hereafter, 

WVncep) was constructed from the average over four grid points of each SHADOZ station 
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(See, Figure 5.2), using the NCEP/NCAR reanalysis (Kalnay et al., 1996) data whose zonal 

and meridional spatial resolution is 2.5
0
. 

 

 

Figure 5.2. The SHADOZ stations with the corresponding grid boxes formed by the closest 

four grid points of reanalysis data from the National Centres for Environmental Prediction 

and Atmospheric Research. 

 

For each NCEP/NCAR grid point, the temporal series of WVg is tested manually for inherent 

normal distribution and then transformed by Box-Cox transformation (Box and Cox, 1964) 

which ensures a normal distribution. Prior to the Box-Cox transformation, the WV data sets 

are detrended. Further, in order to account for latitudinal distortions, each point of WVg 

anomalies are weighted by the square root of the cosine of latitude (North et al., 1982). The 

resulting time series has been linearly detrended and subjected to non-decimal Haar wavelet 

transformation (Lindsay et al., 1996) to capture localised temporal fluctuations.  

In contrast to the Fast Fourier Transform (FFT), the wavelet power spectrum 

(absolute value squared of the wavelet transform) provides the total energy of the WVg time 

series at a given scale while FFT gives information about what frequencies are present in the 

signal, but lacks the ability to correlate the frequencies with the time of their presence. In 

general, the difference between Fourier and wavelet coefficients is that the former is 

influenced by a function on its entire domain (global measure), while the latter is influenced 
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by local features. The wavelet power spectrum is therefore chosen in this study as a better 

measure of variance attributed to localised events. The wavelet coefficients at each time scale 

were used to compute the energy spectrum per spatial scale to form a temporal scale series 

(S) over the grid points (G) to form a matrix D with dimensions S × G.   

The calculated WVg values from radiosonde measurements at the SHADOZ stations 

and from the NCEP/NCAR reanalysis data are plotted in Figure 5.3 (gridded NCEP/NCAR 

reanalysis data is plotted in the left panel and while the four SHADOZ stations; (a) Nairobi 

(b) Ascension (c) Irene and (d) Reunion are plotted in the right panel.  It is clear from the 

figure that the NCEP/NCAR reanalysis data exhibit a cyclic trend over the period of 

observations, whereas such cycles are not evident in the SHADOZ observations.  The 

difference might be due to the coarse latitude and longitude resolution of NCEP/NCAR data 

that were averaged over the station grid box, while each SHADOZ station corresponds to a 

particular location. In addition, sensitivity of the balloon measurements may have contributed 

to the differences in WVg from the two measurements. Further to this, NCEP/NCAR 

reanalysis data are based upon simulation with possible inherent biases. The differences 

between the NCEP/NCAR reanalysis data and SHADOZ station data were calculated for 

each station. Results concluded that the Irene and Reunion stations have higher mean 

deviations (~ 40 mm) while the Nairobi and Ascension stations have a mean WVg deviation 

of ~ 30 mm (this is depicted in Figure 5.4). 
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Figure 5.3. Daily integrated spatially averaged Water Vapour, WVg [mm] for (a) Nairobi (b) 

Ascension (c) Irene and (d) Reunion. 

 

 

Figure 5.4. Differences of Water Vapour in mm, calculated from four SHADOZ stations (a: 

Nairobi, b: Ascension, c: Irene and d: Reunion) and the gridded NCEP/NCAR reanalysis. 
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It is understandable from Figure 5.4 that the variability pattern in WV is difficult to discern 

from the time series. The excursions from the mean signify the presence of exogenous 

processes that play a significant role in WVg fluctuations. These stochastic processes are 

manifestations of local weather system processes (eg., convection, precipitation). To better 

understand these fluctuations, the nature of distribution of WV needs to be known. The 

standard probability distributions of WVg are used and are compared to the normal Guassian 

distribution. The normal Guassian distribution has been generated by selecting random data 

sets. 

To assess the normal (Gaussian) distributions of WVg, the QQ-plots were drawn 

between the Guassian generated and WVg probability distribution.  A linear variation in the 

QQ plot could signify a normally distributed time series. This distribution has been tested, 

individually for each station as shown in Figure 5.5. The obtained regression coefficients 

illustrate that the SHADOZ station; Ascension has high linearity in comparison to that of 

Nairobi, Irene and Reunion. A maximum non-linear fluctuation component of ~10% was 

obtained for Reunion.  On the other hand, Irene, Nairobi and Ascension have values of ~8%, 

5% and 1%, respectively.  The results reported here imply that WV over Ascension follow a 

normal distribution and appear not to be affected by non-linear local weather conditions. 

 

 

Figure 5.5. Quartile-quartile (QQ) plot of a Gaussian distribution, and the probability 

distribution of WVg at the four SHADOZ stations under consideration. 
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To study the local temporal fluctuations of WV, the Haar wavelet transform of maximum 

overlap discrete technique has been applied.  The wavelet coefficients derived from the WT 

of WV are used to assess, capture and discriminate between the different modes of local 

fluctuations in time series in the frequency-time space. Each SHADOZ stations‟ mean WV 

data were grouped into years and months.  The corresponding monthly mean over the 8-year 

period of data is subjected to WT after performing de-trending. Figure 5.6 depicts the 

obtained wavelet coefficient (amplitude) at different temporal scales of 3, 8, 12 and 36 

months (from bottom to top) or the time period of oscillation of WVg at a given location.   

 

Figure 5.6. Haar wavelet spectra at different scales and at different station locations 

(Ascension, Reunion, Irene and Nairobi) - from left to right, respectively.  

 

The relation between the period of oscillation of WVg fluctuations and the wavelet scale 

index is obtained from the equation s=2
j-1

, where the j
th

 index denotes the period. The method 

of deducing the wavelet co-efficient is reported by Percival and Walden (2000). Although, 

scale-1 (~3 month) does not offer any clear information on the fluctuations, other higher 

order scales show a significant oscillation at all the stations. Notably, the annual oscillation 
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(scale-3) is clearly distinguishable at all the stations.  In comparison to all the stations, 

Nairobi exhibits a clear cyclic variation. For almost all the stations, the scale-4 (3-year) 

component does not complete one period of a cycle, inferring that the periodicity is more than 

12-years.  It is noted here that the maximum possible number of scales obtained depends on 

the length of data period used. The log-log plot of the wavelet energy which is depicted in 

Figure 5.7 reveals an approximate power law scaling at lower time scales, which break down 

at high time scales. These results are consistent with the results reported by Lay (1997) and 

Cho et al., (2000). At high time scales, the break down in the linear relationship is associated 

with response of WVg fluctuations to tele-connection patterns such as the influence of ENSO 

in the low and mid- tropical Africa; see for example Trenberth et al., (2005). 

 

 

Figure 5.7. Approximate power law scaling of the WV derived wavelet energy. 

 

PCA has been determined for the wavelet coefficients of all the four stations, and the 

calculated variance is presented in Figure 5.8.  The first three variance components account 

for 98% of the WVg variations. The first component represents high frequency temporal 

fluctuations (monthly time scales) and accounts for 67% of the variability. Component two 
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represent the variance associated with annual fluctuations, and accounts for about 27% of the 

WVg fluctuations. About 4% of WVg variability is associated with low frequency fluctuations 

(1< timescales < 9-year).   

 

Figure 5.8. Co-variance of the Principle Component Analysis (PCA) components obtained 

from the four stations under consideration. 

 

Decadal fluctuations cannot be inferred convincingly due to the short time-span of the data 

(8-years from 1998 to 2006). These results indicate that there is a distinct spatial structure for 

each short term temporal WVg variation in the low and mid-tropical Africa region that could 

be attributed to synoptic/seasonal-scale weather systems, which is consistent with findings 

from Husak (2005) who reported that seasonal weather systems, topography, the Inter-

Tropical Convergence Zone (ITCZ) and monsoon winds affect WV distribution and 

fluctuation. Jin et al. (2008) also reported that the variability of WV in China is dominated by 

seasonal variations. In addition, the spatial distribution of WV dependence on the 

thermodynamic relationship between WV and temperature has been reported in Zveryaev and 

Allan, (2005).  

The marked differences between WV fluctuations at longer timescales could be 

attributed to the WV response to tele-connection patterns such as ENSO in the low and mid-
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tropical Africa; this is in line with the findings of Trenberth et al., (2005) who had indicated 

that the variability of WV is dominated by the evolution of ENSO. This link shows a strong 

relationship over the oceans between WV and Sea Surface Temperatures (SSTs). Further, the 

African low and mid- latitude WV has a strong link to rainfall due to its close association 

with the mean wind flow, and convergence of moisture by trade winds as well as their links 

to SSTs. In addition, the correlation analyses performed between surface temperature and 

WV show that a link exists between WV anomalies and regional air temperature variations 

with marked seasonal dependence (the results are not presented here) over all four SHADOZ 

stations. 

 

5.4. Concluding remarks 

In an effort to analyse regional spatial and temporal features of WV variability over low and 

mid-tropical Africa, NCEP/NCAR reanalysis data around the SHADOZ network of four 

stations were used to calculate spatially averaged WV ( VWg) over the period from 1998 to 

2006. The WVg was calculated as the spatial average of the four closest NCEP/NCAR grid 

points around the SHADOZ stations to form grid cells. Based on these grid cells, data from 

NCEP/NCAR reanalysis data were also used to calculate the vertically integrated column of 

WV over the same time epoch for comparison. For the first time, the WVg variability in the 

low and mid-tropical Africa was analysed using in-situ data from the SHADOZ network. The 

results show that WV exhibits high frequency fluctuations in the wavelet space. Common to 

the entire SHADOZ network considered in this study is the pattern of temporal WVg 

fluctuations with monthly time scales dominating. This dominant variance appears to be 

associated with locally driven WV variations such as the local weather systems. Our results 

show that WV also exhibits the power law scaling in the wavelet energy. The approximate 

log-log linear relationship at smaller temporal scales that breaks down at synoptic scales 

suggests that the energy-times spectra of WV on different temporal scales are correlated. 

Furthermore, based on PCA, three dominant modes emerge. These modes explain ~ 98% of 

the total spatial variance of the normalized energy in WV fluctuations. To validate the current 

findings, future studies will involve the use of observations such as HALOE (Russell et al., 

1993) and regional numerical simulation model data sets to determine the temporal and 

spatial organisation of PWV data at finer spatial and temporal scales. 

In general, from the current analysis, results indicate that WV exhibits high frequency 

fluctuations in the time-frequency space. For the entire SHADOZ network considered in this 
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study, monthly time-scales dominate the pattern of temporal WV fluctuations. This dominant 

variance appears to be associated with locally driven WV variations such as the local weather 

systems. Our results show that WV also exhibits the power law scaling in the wavelet energy. 

The approximate log-log linear relationship at smaller temporal scales breaks down at 

synoptic scales. This behaviour suggests that the energy-times-frequency spectra of WV on 

different temporal scales could be correlated. 

 Mechanisms that influence the global WV distribution can also be assessed in the 

context of their role in regional tropospheric WV fluctuations. Tropospheric regional WV is 

influenced by the dynamics and the seasonal changes in temperature. The ability of the 

atmospheric dynamics influencing water follows from the steep slope of the Clausius-

Clapeyron equation: this relates to the rapid increase in water holding capacity of the 

atmosphere. The environmental lapse-rate then rapidly decreases the WV with altitude (at a 

scale height of ~2 km). 

 Our understanding of factors controlling long-term changes in tropospheric WV is 

inadequate to explain the observed variations or to provide good projections in the near 

future. In the lower stratosphere, the observed changes in WV could be linked to changes in 

other greenhouse gases, such as, ozone and methane. It is fairly clear that atmospheric 

processes (e.g., transport, convection, and clouds) are involved in determining the distribution 

of tropospheric WV, but their influences are very difficult to quantify. Since it is also difficult 

to predict how these might change in response to natural and human-induced climate change, 

future changes in the distribution and variability of tropospheric WV still remain unknown. 

It is generally accepted that there is a cancellation effect between increasing humidity 

and decreasing temperature with height. Furthermore, the uncertainty over the precise WV 

concentration in the troposphere, and even greater uncertainty over trends in upper 

tropospheric humidity and temperatures, makes it impossible to carry out a firm quantitative 

estimate of the tropospheric radiative consequences of long-term changes in tropospheric 

WV. However, present knowledge indicates that the radiative response to long-term changes 

in upper tropospheric WV will almost certainly be significant. Due to this, the following 

recommendations are proposed. Firstly, upper tropospheric WV should be monitored with a 

view to determine long-term variations. More observations of the tropical tropopause region 

(15-20 km), by both in situ and remote sensing methods, are needed to improve our 

understanding of stratosphere-troposphere exchange. Furthermore, in order to assess robust 

estimates of WV variability, complementary observations and techniques are recommended. 
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Second, in order to have a balanced view of all the mechanisms that drive WV variability in 

the troposphere, combined measurements of WV, cloud microphysical properties, and 

chemical species are recommended.  
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6. Non-linear and nonstationary processes in geodetic TD/WV 

So, Nat’ralists observe, a Flea 

Hath smaller Fleas that on him Prey, 

And these have smaller Fleas to bit’ em, 

And so proceed, proceed ad infinitum 

- J‟onathan Swift (1667-1745) 

 

This Chapter presents results and discussion on the non-linear 

properties in the fluctuations of TD/WV based on the statistical 

information derived from DFA. In order to account for the non-

linear and nonstationary properties in TD/WV fluctuations, the 

EMD/EEMD is used. Self-similar behaviour in TD/WV is 

assessed and found to be present. The lasting periods of 

synchronization with fluctuating phase coincidence (and 

correlations by pairs thereof) between different oscillation 

modes of WV and atmospheric mean temperature demonstrate 

that fluctuations (which are non-linear and depicted in the 

phase shifts) in WV and temperature are driven by common 

underlying processes (exhibiting possible stochastic 

resonance). Assessing the significance of non-linearity and 

nonstationarity in geodetic data analysis is demonstrated by 

the introduction of non-linear function to account for azimuth 

dependent atmospheric range correction. Using a one-month 

SLR data, more than 15% improvement of the O-C residuals is 

achieved for both LAGEOS 1 and 2. 

 

6.1. Introduction 

In the research reported in this Chapter, the emphasis is on the analysis of the variability of 

geodetic tropospheric parameters by extracting the local time/frequency scales of variability 

embedded in the geodetic time series. A data adaptive decomposition (by using the EMD 

and/or EEMD) is considered, whereby complete, orthogonal and local components are 

obtained. Often EMD/EEMD decomposes the time series into IMF according to the levels of 

their local oscillation or frequency.  The EMD effectively captures the non-linear 

characteristic in respect of the amplitude and frequency modulation with local time scales. In 
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this regard, the local time/frequency scales are defined by the instantaneous frequency. Once 

IMFs are obtained, Hilbert Transform spectral analysis is performed on the time series to 

provide the temporal-frequency variation of information which is a key component of time-

frequency analysis for nonstationary geodetic-tropospheric time series. 

  In particular, a non-decimated Haar wavelet transform and EMD/EEMD are used to 

analyse nonstationary processes in WV and other derived tropospheric parameters such as 

tropospheric delay due to WV. In the first part, geodetic WV measured at HartRAO is tested 

for nonstationarity and non-linearity using DFA in the wavelet space. Here the geodetic WV 

was decomposed into the wavelet space and thereafter, the characteristic fluctuation 

properties of the power spectra are investigated using DFA. Furthermore, the EEMD was 

used for correlation analysis of some of the important tropospheric parameters such as wet 

zenith delay and mean tropospheric temperature that affect the accuracy of the geodetic delay 

observable over geodetic stations; here, we have used the geodetic station at HartRAO, South 

Africa. The correlation analysis considered here illustrate the synchronisation or the degree of 

closeness of the modes in WV and mean atmospheric temperature time series derived from 

the phase variance between the time series (Botai et al., 2009b). 

 

6.2. Nonstationary processes in tropospheric WV using wavelet 

analysis 

Non-linear processes exist in nature; examples of the dynamical systems that exhibit non-

linear and nonstationary characteristics include the Earth's climate system (Rial et al., 2004), 

river flow and discharge (Montanari et al., 2000), atmosphere (Ivanova, et al. 1999; Ausloos 

et al., 2001). If a geophysical field such as PWV is decomposed additively into structural 

components such as the trend, the cyclical and seasonal and irregular components, then the 

coherence between the properties of the observed PWV series and those of the structural 

components could be assessed. The characteristics structure in the components of the time 

series could be used to evaluate nonstationarity manifested in the second order properties 

such as the variance and the mean. This may be an indication that the dynamical processes in 

the geophysical field are driven by complex processes as reported by Taqqu et al., (1995), 

Verdes et al., (2001) and Hu et al., (2001).  

In the current analysis, the presence of memory in the tropospheric PWV is assessed 

using statistical theory. Using a global PWV parameter (gPWV) estimated at HartRAO, the 

PWV time series during 2000-2006 was reconstructed with sliding window using Singular 
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Spectrum Analysis (SSA). See Ghil et al., (2001) for a detailed account on SSA. The gPWV 

is defined (here) as the daily mean PWV value computed from two geodetic techniques (GPS 

and VLBI) and NWP models. The wavelet transform of the reconstructed gPWV time series 

was computed using the non-decimated Haar wavelet technique (Percival et al., 2000). As 

described in Chapter 3, the presence of discontinuities due to boundaries in the data is 

accounted for by reflecting the time series onto the last observation. This method of handling 

discontinuities in the geodetic PWV is tractable because the sample mean and variance are 

not affected and the seasonal patterns in PWV time series exhibits are preserved.  

The DFA and wavelet joint estimator were used to calculate the second-order 

parameters (e.g., the mean, variance and scaling exponent measure the scaling behaviour) that 

are used to infer the (non-)stationary properties in the reconstructed time series. The purpose 

of wavelet joint estimator is to eliminate the deterministic trends and non-discontinuous 

changes in the second-order properties in the WV fluctuations.  

Figure 6.1 depicts the reconstructed gPWV computed from leading principal 

components projected onto a reduced subspace with minimum redundancy in SSA. In this 

way, the gPWV was smoothed and any noise in the time series eliminated through filtering. 

This method of filtering preserves the second order statistical parameters which characterise 

nonstationarity and/or local stationarity.  
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Figure 6.1. PWV time series. Left: Non-detrended PWV time series. Right: PWV derived 

from the singular spectrum analysis.  

 

Figure 6.2 depicts the 'detail' (even scales) of the gPWV in the wavelet space derived from 

the Maximum Overlap Discrete Wavelet Transform (MODWT) analysis (see Whitcher 1998; 

Percival et al., 2000). The MODWT technique allows the non-linear and nonstationary 

structure (e.g., trends, jumps and spikes) in the data to be examined in the wavelet space. The 

illustrated temporal scales correspond to the physical time scales 1 week, 2 month, 4 months, 

and 8 months respectively. In order to get a better understanding of the inherent PWV 

fluctuation patterns, the individual frequency levels are separated out and plotted as functions 

of time as shown in Figure 6.2. Each frequency band spans over the time span with gradual 

decreasing time resolution. From Figure 6.2, we suppose that some contaminating 

observations other than the gPWV observations (the outliers) are embedded in the high 

modes of oscilations (Greenblatt, 1994). Therefore caution should be taken when interpreting 

the oscillatory components, especially the high frequency wavelength coefficients. It is 

evident from Figure 6.2 that gPWV exhibits temporal nonstationary characteristics.  

 

Figure 6.2. Haar wavelet spectra of the reconstructed gPWV at different even-scales. 
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In order to study some aspects of self-similar behaviour present in the reconstructed  gPWV 

times-series,  local linear least square function was fit to a standardised  integrated time series 

constituted from segments of gPWV. The average fluctuation for each segment was used to 

compute the scaling exponent. Figure 6.3 indicates that a single linear fit on the gPWV power 

spectral density has different values of   at different scales (the wavelet scale and   are 

linearly dependent). As depicted in Figure 6.3, the SS and LRD measures are dependent on 

the 'detail' of WT.  

 

 

Figure 6.3. The power spectral density of gPWV at different scales. 

  

Figure 6.4 illustrates that the root mean square fluctuations and the sliding window width 

have different scaling exponents ( ) , suggesting that the long-range power-law correlation 

in gPWV  (i.e. 0.5  ) is dependent on the physical time scales. These results indicate that 

atmospheric processes manifested in the PWV fluctuations are long-range correlated.   
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Figure 6.4. Scaling behaviour of the reconstructed gPWV time Series. 

 

The temporal variation of the mean, variance and   of gPWV is depicted in Figure 6.5. The 

temporal variation in the mean and variance (and also correlations) can be used to measure 

the presence of SS and/or LRD. In our analysis using the wavelet estimator of Abry and 

Veitch, (1998) of second-order parameters, the test for SS and/or LRD properties in gPWV 

time-series showed that the mean and variance are not time invariant as illustrated in Figure 

6.5. The experimental analysis for stationarity reported here considered four vanishing 

moments, the sub-series scale  1,2 2 : 4j  while the scales for the whole series was set to 

 1,2 2 :8j  . This shows that tropospheric PWV has SS and LRD properties.  
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Figure 6.5. Wavelet estimator for SS and LRD at the 10
th

 scale. 

 

6.3. On the noise-Assisted geodetic data analysis 

Analysing non-linear and nonstationary data series using the HHT is a new cutting-edge 

methodology that is widely used in many scientific fields such as finance (e.g., Huang et al., 

2003b), biomedical applications (e.g., Huang et al., 1999b), natural sciences (e.g., Salisbury 

and Wimbush 2002; Pan et al., 2002) and engineering sciences (e.g., Huang et al., 2005).  For 

example, Salisbury and Wimbush,(2002) used Southern Oscillation Index (SOI) data and 

applied the HHT technique to determine whether the SOI data are sufficiently noise free; if 

useful predictions can be made and whether future ENSO events can be predicted from SOI 

data. Pan et al., (2002) used HHT to analyse satellite scatterometer wind data over the North-

Western Pacific and compared the results to Vector Empirical Orthogonal Function (VEOF) 

results. More recently, Pegram et al., (2008) suggested an improvement to the original EMD 

algorithm using rational splines and the flexible treatment of the end conditions and applied it 

to rainfall time series analysis.  

Figure 6.6 depicts the temporal variations of the daily-averaged WV, zonal and 

meridional gradients derived from ECMWF data at HartRAO over the period from 2006-

2009. From Figure 6.6, it is evident that the WV and linear horizontal gradients time series 

show that fluctuations occur on time scales much shorter than the length of the entire time 

series.  The short-time fluctuations are then decomposed into IMFs. In this report, IMFs 

derived from WV daily time series data are given in Figure 6.7. The current WV data resulted 
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in 11 IMFs (the trend inclusive). These oscillations are not visible in the WV raw data due to 

their superposition. Looking at individual IMFs, it is possible to decipher information 

regarding WV variability at different time-scales. In particular, 3 5   clearly shows intra-

seasonal modes whose period of oscillation varies from days to months. However, 6  shows 

an almost periodic envelope with amplitudes having seasonal dependence. When examining 

the low frequency modes of WV fluctuations depicted in Figure 6.7, we notice that 8  

exhibits regular intra-annual fluctuations that corroborate with the sub-tropical seasons. This 

component is also visible in the raw WV data.  

 

 

 

Figure 6.6. Time series (time is plotted in the x-axis) of a) Water vapour, mm; b) Meridional 

hydrostatic; c) Zonal hydrostatic; d) Meridional wet and e)  Zonal wet; linear horizontal 

gradients , mm/degree. 
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Figure 6.7 WV derived IMFs 1 6( )  .  The bottom panel illustrates the adaptive trends. 

 

Given that the trend is a local non-oscillatory function defined for a local time scale, the trend 

is also one of the many local properties of the data, (see Zhaohua et al., 2007). From the 

tropospheric WV, we see oscillatory modes are superimposed onto a monotone (oscillatory 

and decreasing) base function. In particular, various trends such as diurnal, intra-annual and 

annual trend are plotted in Figure 6.8. From Figure 6.8, the overall adaptive trend ( 11 ) is 

approximately identical to the linear trend (see bottom panel). The overall adaptive trend is 

derived from the entire data span. Annual and intra-annual trends are formed from the 

combination of trends derived from 8 11   IMFs.   
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Figure 6.8. Low frequency IMFs and linear and adaptive trends at different time scales. 

 

To completely characterise the tropospheric WV and linear horizontal gradients fluctuations, 

local time/frequency scales (defined by the instantaneous frequencies of IMFs) of the 

decomposed time series were extracted. The instantaneous frequencies of the 6th  IMF for 

WV and the zonal linear horizontal (hydrostatic and wet) gradients are plotted in Figure 6.9. 

 

Figure 6.9. The Instantaneous frequency of the 6th  IMF. From top left to right: a) Zonal 

hydrostatic  gradient and instantaneous frequency, b) Zonal wet gradient and instantaneous 

frequency and c) WV and instantaneous frequency. 
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The probability distribution of individual IMFs examined using WV and the linear horizontal 

components. The results show that the probability distribution is approximately normally 

distributed (see Figure 6.10 to Figure 6.12; the fitted normal distribution curve is also 

depicted). From the current variables, it can be noticed that, the first three IMFs derived from 

WV, hydrostatic and zonal linear horizontal gradients exhibit normal probability distribution. 

These results are consistent with those reported in Wu and Huang, (2004) and they are also in 

agreement with the central limit theorem. 

 

 

Figure 6.10. Probability distribution of WV derived IMFs. 
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Figure 6.11. Probability distribution of the zonal linear horizontal hydrostatic gradients. 

 

 

Figure 6.12. Probability distribution of the zonal linear horizontal wet gradients. 

 

From the probability distribution depicted above, it can be observed that the deviation from 

the normal distribution function increases with an increase in the frequency modes of WV 

and linear horizontal gradients. This behaviour could be attributed to the decrease in the 

number of oscillations which reduces the ensemble sample size and therefore results in the 

less smooth distribution. Higher number of oscillations (number of IMFs with high frequency 

modes) follows the normal distribution according to the central limit theory. Following 
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Papoulies, (1996), it could be expected that WV and linear horizontal gradients therefore 

exhibit a Chi-square distribution. 

The combination of EMD and Hilbert spectrum analyses provides an alternative 

adaptive method to analyse nonstationary and non-linear time series. It can perform and 

enhance most of the traditional data analysis tasks, such as filtering, regressions, and spectral 

analysis adaptively. To accommodate data from nonstationary processes, a number of 

methods such as spectrogram, Wigner- Ville distribution, and Wavelet analysis have all been 

used extensively with some degree of success. Recently, the EMD method has attracted 

considerable attention and been used widely in many fields. While the EMD methodology 

has proved to be versatile and robust, it cannot reveal the signal characteristic information 

accurately. This is because it has a shortcoming of mode mixing; a condition where an IMF 

exhibits local oscillations with clear different time/frequency scales, as reported in Huang et 

al., (1999). A solution to this problem is by subjectively introducing constraints for mode 

mixing, which eliminates the adaptability property in the EMD data.   

Geodetic data is often measured at different spatial-temporal scales. On decomposing 

the intermittent sampled geodetic data, the resultant IMFs exhibits scales with a broad 

spectrum or redundant signals. This condition causes aliases in the time-frequency 

distribution. Redundancy in IMFs oscillations often conceals important characteristics that 

depict physically meaningful information in the data. To alleviate the mode mixing problem 

occurring in EMD, the EEMD method is applied. With EEMD, the components with a truly 

physical meaning can be extracted from the signal.  

A finite, non-infinitesimal and amplitude white noise is used to force the ensemble to 

exhaust all possible solutions in the sifting process, thus require different scale signals to 

collate in the proper IMF dictated by the dyadic filter banks (Zhaohua and Huang, 2009). The 

effect of the added white noise is to present a uniform reference frame in the time-frequency 

and time-space. This implies that the added noise provides a natural reference for the signals 

of comparable scale to collate in one IMF. With this ensemble mean, the scale can be clearly 

and naturally separated without any priori subjective criterion selection, such as in the 

intermittence test for the original EMD algorithm. This new approach fully utilises the 

statistical characteristics of white noise to perturb the data in its true solution neighbourhood 

and then cancel out through the ensemble averaging. 
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6.3.1. Correlation of tropospheric WV and temperature using phase 

differences 

Variability of troposphere WV and mean temperature plays an important role in driving the 

global energy and water cycles. In space geodesy, WV and temperature affect the accuracy of 

the delay observable. It is therefore important to study the temporal correlations of WV and 

temperature to understand the bias contribution from each of these parameters to the geodetic 

delay observable. A flexible methodology for analysing the WV fluctuations and mean 

temperature that adapts to their noise and uneven spectral measurements is reported in this 

section. The correlation strategy employed here involves the linkage of instantaneous phase 

differences among the associated WV and temperature IMF modes derived from the EEMD. 

     In this particular analysis, the amplitude level of the first IMF is taken as reference 

amplitude for the noisy IMFs in the data. The assumption taken here is that, the first IMF 

(with highest frequencies) is corrupted with noise. Therefore the criterion for selecting 

meaningful empirical IMFs is based on the proportion amplitude of target IMF to the 

reference amplitude where the amplitude of the selected amplitude ought to be about 25% of 

the maximum amplitude of the reference IMF. The rationale behind this criterion is derived 

from the relationship between the IMF amplitude and the total energy of the IMF which is the 

square of the amplitude is the equivalent to the energy of the IMF. As a result, the analysis 

uses only significant oscillating IMFs. 

The phase differences between the selected IMF derived from WV and calculated 

temperature, provides the degree of linkage between different modes of the respective IMFs. 

Using the Hilbert transform, local frequencies of each IMF mode can be computed by using 

Equation (122). In this research, the focus is projection of the phase shift defined by Equation 

(122) 

  ,

,

t
i jit

i j e e





  (122) 

where ,

t t t

i j i j     . To determine the closeness of the modes, a global indicator of the 

constant phase shift between WV and temperature: the variance of (:)  is computed. The 

constraint used to detect pairs of modes with constant phase shift in this study is that 

of  var (:) 0.33  . Thereby, the IMFs with  var (:) 0.33  have different local frequencies 

and hence have weak or no correlation. 
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Raw daily WV and mean atmospheric temperature data corresponding to the atmosphere over 

HartRAO exhibits certain unusual magnitudes (see Figure 6.13) due to systematic or 

instrumental errors. These errors were filtered out by ensuring that the data sets have been 

pre-proposed using the adaptive filtering procedure as described in Chapter 3 prior to the 

IMFs extraction. The adaptive filtering stage also gives more stability to the produce IMFs 

extraction. The adaptively filtered time series data are plotted in Figure 6.13. In the figure, 

time is expressed in days since January 2005. The adaptive filtering procedure was done 

using a basic variability value of 0.08, the filter coefficient of 3.0 and 0.05 controlling 

coefficient. As observed from the filtered time series, there exists nontrivial structure in the 

WV fluctuations and mean atmosphere temperature. In Chapter 3, it is reported that data 

could fail a test for Gaussian, thus ruling out a Gaussian linear stochastic process as the 

source of fluctuations. Due to this inconsistency, application of the model-based
11

 methods to 

assess the structure components in WV fluctuations might be not yield representative 

properties.  

 

 

Figure 6.13. Time series of water vapour (top) and mean atmosphere temperature (bottom).  

                                                 
11

 Ad-hoc and model-based (e.g., ARMA & ARIMA) approaches are used to decompose a time series into 

structural components such as trend, seasonal/cyclic and irregular components. 
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The IMFs of WV and temperature data are shown in Figure 6.14 and Figure 6.15 

respectively. The original WV and temperature data and the eight IMFs (the components 

from short to longer time periods) are plotted from top to bottom. Here IMF8 corresponds to 

the trend in the data set.  

 

Figure 6.14. Intrinsic mode function components of water vapour over HartRAO. 

 

Figure 6.15. Intrinsic mode function component of mean atmosphere temperature over 

HartRAO. 
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The observed low frequency IMFs could be associated to the fluctuations that are driven by 

physical processes, while the high-frequency IMFs dependent on noise and independent 

external forces. As observed from the Figures 6.14 and Figure 6.15, the local periods are not 

constant but for each fixed IMF, they are constrained within different ranges. The IMFs of 

WV depicted in Figure 6.14 exhibits oscillation patterns with characteristic periods; annual 

(IMF6, 7 mode), seasonal (IMF4, 5 mode), monthly (IMF3 mode) and diurnal (IMF< 2 mode) 

components. IMF8 corresponds to the non-linear trend which exhibits both positive and 

negative trend. The IMFs of the mean atmosphere temperature over HartRAO (see Figure 

6.15) exhibit similar local periods ranging from 400 to 500 days (IMF6, 7 mode), 60 to 100 

days (IMFs mode), 30 days (IMF3 mode) and diurnal (IMF< 2 mode) fluctuating components. 

 

 

Figure 6.16. Instantaneous frequency of selected WV Intrinsic Mode Functions. 

 

As mentioned earlier, not all the extracted IMFs from WV and mean atmosphere temperature 

are physically significant. Therefore on application of the criteria outlined earlier, the modes 

IMF3, 5, 8 and IMF2, 5, 6 from WV and mean atmospheric temperature respectively were 

considered for calculating the phase shift. As a result, Figure 6.16 and Figure 6.17 illustrate 
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the local frequencies of the IMFs used to derive the variance matrix for evaluating the degree 

of synchronisation between WV and mean troposphere temperature fluctuations. It is 

observed that the instantaneous frequencies (unit: cycles per day) IMF3 and IMF2 of WV and 

mean atmosphere temperature have higher values during summer months. 

 

Figure 6.17. Instantaneous frequency of selected Intrinsic Mode Functions of the mean 

temperature. 

   

From the variance matrix, only five pairs of modes of IMFs were considered as exhibiting 

lasting periods of synchronisation with fluctuating phase coincidence as illustrated in Figure 

6.18. It is noted that in most of the IMFs couples selected with synchronisation, the phase 

coincidence fluctuates between 1 and -1 over the entire time period of this data. The 

correlations by pairs indicate that common fluctuations in WV and mean atmospheric 

temperature could be associated to both local and non-local processes. In particular, the local 

processes are partly responsible for driving these fluctuations i.e. heat waves and cold fronts 

which are common in the Highveld climatic region. The temporal dependence of phase shift 

seems to suggest that the WV and temperature fluctuations are strongly non-linear.. The non-

linear oscillating structures visible in the phase shifts could have been triggered possibly by a 

stochastic resonance phenomenon such as the Inter-Tropical Convergence Zone (ITCZ) and 

other trade winds. 
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Figure 6.18. Phase shift of WV and mean atmosphere temperature IMFs modes. 

 

 

6.4. Assessing the effect of non-linearity/stationarity in atmospheric 

range correction 

Until now, the detection, analysis and characterisation of non-linearity and nonstationarity in 

geodetic data has been described and presented in the preceding sections of this thesis. In the 

present section, the benefit of introducing non-linearity and nonstationarity in atmospheric 

correction to the SLR range is investigated. In particular, a non-linear function is introduced 

to model the azimuth dependent atmospheric range correction. From the analysis of one-

month of SLR data, results of azimuth dependent atmospheric range correction indicate that 

the introduced second-order non-linear function improves the Observed-Computed (O-C) 

residual by over 15%. The computed azimuth atmospheric range correction is in general 

negative suggesting that the current atmospheric range correction models generally 

overestimate the atmosphere range bias. 

 

6.4.1. SLR atmospheric range correction 

The atmosphere-Earth and Ocean is an intrinsically non-linear and nonstationary physical 

system that is the subject of space geodetic research. This non-linearity/nonstationarity is 

manifested in many series of geodetic variables depicted in Table 2.1, in Chapter 2. Detecting 
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and quantifying this non-linearity/nonstationarity depends on a) the type of variable, b) the 

geographic area and/or c) the data span. As described in the foregoing section (see Chapter 

2), the range Equation used in SLR processing includes an atmospheric term which is 

currently modelled as an elevation only model (this is the Pavlis and Mendes (2004) model 

adopted by the ILRS working group). This model does not take into account the azimuth 

dependence and this is the point of departure. The current elevation-only model could be 

viewed to be linear and therefore may not be realistic since other factors such as 

measurement errors and unknown noise sources, may introduce non-linearities during SLR 

processing (and this may impact on the accuracy parameters such as station position and 

EOPs). In general, the measurements of e.g., the barometric pressure, temperature and 

relative humidity exhibit second-order terms (gradients) that are sensitive to the asymmetry 

of the atmosphere and could introduce some non-linearity in the atmospheric range correction 

term.  

Detecting, characterising/analysing and incorporating non-linearity and non-

stationarity into models of the SLR observation equation terms is of extraordinary importance 

for accurate computation of the O-C residuals. Detection and analysis of non-linearity and 

nonstationarity in moisture fluctuations have been achieved, in part, by calculating 

persistence/scaling behaviour in tropospheric delay due to WV. In order to assess the 

contribution of incorporating non-linear/nonstationary aspects in geodetic analysis, the 

current atmospheric correction used in SLR analysis has been modified by adding a non-

linear term to account for the azimuth dependent atmospheric range bias. The proposed 

modification (see Equation (123)) has been tested on one-month of SLR data analysed by the 

SLR analysis software developed at HartRAO (see Combrinck, 2010). 

  

 o c a, e a, azO-C=R - R +ΔR +ΔR    (123) 

 

Here, R0 and Rc are the observed and computed ranges. Similarly, ΔRa,e and ΔRa,az are the 

elevation-only and azimuth dependent (this is modelled as a second-order function) 

atmospheric range correction terms. There could still be remnants of other factors such as 

time bias and range bias; however these were estimated before the estimate of the azimuthal 

non-linearity so should be eliminated to a large extent. 
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Figure 6.19 depicts differences between O-C (for both LAGEOS 1 and 2) before and after 

incorporating the non-linear function. From the results, a 15 - 20% improvement in the 

estimated O-C derived from the analysis of one-month SLR data for the orbits of LAGEOS 1 

and 2 due is attained due to incorporation of the non-linear term in Equation (123).  

 

Figure 6.19.  LAGEOS 1 (left column) and LAGEOS 2 (right column) observed-computed 

values, before (top panel), after (middle panel), percentage difference (bottom panel). 

 

The estimated average value, minimum, maximum and standard deviation before and after 

incorporating the non-linear term, for O-C for LAGEOS 1 & 2 are depicted in Table 6.1. 
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Table 6.1. Statistical description of the observed-computed residual before and after 

incorporating the azimuth dependent atmospheric correction term (non-linear) in SLR 

processing. 

 

Statistical parameters (O-C) 

LAGEOS 1 LAGEOS 2 

Model off Model on Model off Model on 

Maximum [ m ] 0.0908 0.0908 0.0874 0.0708 

Minimum [ m ] 0.0145 0.0098 0.0027 0.0020 

Mean [ m ] 0.0392 0.0317 0.0434 0.0347 

 
Variance ×10

-4
 [ m

2
 ] 

 
3.1121 

 
2.4538 

 
3.3242 

 
2.3163 

 

The huge improvement in O-C could be attributed to the azimuth dependent atmospheric 

range correction term which partly accounts for the asymmetry of the atmosphere (and the 

local physical conditions, such as pressure, temperature and relative humidity, along the path 

from the SLR station to the target satellite). Furthermore, the physical conditions (e.g., 

thermal radiation) of the surface in the vicinity of the SLR station will also contribute to the 

non-linearity and nonstationarity inherent in the SLR range. Figure 6.20 and Figure 6.21 

demonstrates the azimuth dependent atmospheric range correction values based on the one-

month SLR data processed by SLR analysis software developed at HartRAO.  

As depicted in Figure 6.20 and Figure 6.21, there is generally strong azimuth 

dependence in the values. While the current one-month data might not be sufficient to 

demonstrate the actual quadrant dependence of the atmospheric range bias correction, the 

preliminary results point to specific arcs depicting non-linear relation between the angular 

direction and the atmospheric range correction. Furthermore, the average correction value of 

the present analysis is negative (see Figure 6.21), therefore suggesting that the current model 

used for atmospheric range correction could probably be overestimating the atmospheric 

range bias. This result is of extraordinary importance to the ILRS working group as well as to 

the research community (though long term analysis is required) with regard to the benefit of 

incorporating non-linear and nonstationary models in the analysis geodetic data. 
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Figure 6.20. Polar description of azimuth dependent atmospheric range correction for 

LAGEOS 1 and 2. Only atmospheric range correction values below 0.5 (accounts for 98% of 

the total correction) are plotted for clarity.   
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Figure 6.21. Southern (top row) and Northern (bottom row) hemisphere azimuth dependent 

atmosphere range correction. A negative mean value suggest that the current atmospheric 

range correction models generally overestimates the atmospheric range bias. 

 

6.5. Concluding remarks  

The two critical strengths for non-linear approach to the analysis of WV fluctuations are as 

follows:-. First, they are intrinsic to the signal where in this case, linear methods have been 

exploited, yet certain structures in WV fluctuations have not been accounted for. Secondly, 

the atmospheric system is intuitively known to include non-linear components and therefore a 

linear description could be unsatisfactory. It is rather subjective to presuppose that the non-

linear components in the atmosphere prove enough that the non-linearity is also reflected in 

troposphere WV fluctuations. As a result and without any prejudice, the application of non-

linear analysis methods of WV fluctuations reported here was first justified by the 

establishment of non-linearity in WV fluctuations in the first part of this chapter.   

Different non-linear approaches to the analysis have been introduced and applied to 

the study WV fluctuations. The DFA and wavelet based analysis tools are widely used in 

several fields of complexity analysis in science. For the first time however, the geodetic 
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troposphere WV time series has been decomposed into segments and nonstationary processes 

investigated using statistical information. It is shown from the wavelet space analysis that the 

tropospheric WV has trends and unusual magnitudes indicating nonstationarity. Further, the 

second-order statistical properties (means, variances and correlations) show that they are time 

variants. This is the additional evidence that WV variability is driven by forces that are 

nonstationary. The PWV time series also has self-similar and long-range dependence 

properties which are dependent on the WT 'detail'.  

While wavelet based approach is a good tool for detection, identification and 

measurement of features such as scaling in the data, it is a poor method for analysing the 

time-energy-frequency distributions. The extracted statistical properties are vital for 

establishing the presence and nature of non-linear and nonstationary properties in the data. In 

order to accommodate the non-linear and nonstationary structures in WV fluctuations, an 

alternative strategy: the EMD (EEMD) is used to adaptively decompose the WV fluctuations 

into different scales based on the local temporal characteristic of the data. The use of EEMD 

enables comparison of WV and the mean troposphere temperature, thereby giving a powerful 

method to extract their features that could be used to describe their dependence. Such 

assertion has meteorological and geodetic applications. 

 In order to assess the contribution of incorporating non-linear/nonstationary aspects 

in geodetic analysis, a non-linear term which accounts for the azimuth dependent atmospheric 

range bias was incorporated onto the SLR analysis software developed at HartRAO. Results 

show that by incorporating non-linearity and nonstationarity to the atmospheric range 

correction model, a 15 - 20% improvement in the estimated O-C residuals derived from the 

analysis of one-month SLR data was achieved for the orbits of LAGEOS 1 and 2.  
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7. Concluding remarks 

Now a whole is that which has a beginning, middle, and end. 

- Aristotle, c330 BC. 

 

Data analysis is an important tie in the scientific research cycle of observation, analysis, 

interpretation and theorising. In particular, time series analysis: this often entails modelling 

and theoretical studies, and are often required in order to understand fluctuations of 

tropospheric parameters such as tropospheric delay due to WV and delay gradients and WV. 

These parameters are used in meteorology and climate studies as well as in space geodetic 

applications. The research work reported in this thesis is aimed at contributing to both these 

fields. We have used both parametric and non-parametric tools and studied particular process 

properties as inferred from the variability of tropospheric parameters. This is the first attempt 

to systematically apply model-based and non-linear analyses strategies to investigate the 

dynamic structure embedded tropospheric parameters. 

To summarise, the current research reports that the variability of WV and 

tropospheric delays due to WV over southern Africa a) exhibits multiscale properties b) are 

driven by non-linear and non-stationary processes, and c) over a long period of time, the 

fluctuations exhibit complex scaling properties, which suggest that the fluctuations have 

temporal memory. As a result, tropospheric geodetic parameters do not satisfy the stationary 

conditions. Furthermore, incorporating non-linearity and nonlinearity to the atmospheric 

range bias correction in SLR analysis improves the O-C residuals by more than 15%. To 

conclude, at various points in this thesis, we have assessed and characterised the: 

a) Stochastic behaviour of tropospheric WV or tropospheric delay due to WV 

In the course of the thesis, the previous literature on geodetic modelling of 

tropospheric parameters was examined. Time series analysis of tropospheric 

parameters by use of the automatic model-based approach was assessed in detail. 

The Box-Jenkins approach of automatic model identification and selection of the 

ARMA model, which models the dependence structure embedded in WV time 

series, was proposed, illustrated and analysed. It was found that if a parameter 

series is transformed to stationarity, then the underlying model structure could be 

represented by the ARMA model with model degree and order determined via the 

maximum likelihood criteria. 

b)  Multiscale variability of WV in the low and mid-tropical Africa 
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Empirical studies and simulations of WV variability over the last decade presume 

that the inherent fluctuations are stationary and Gaussian. The multiscale structure 

of WV in the low- and mid-tropical Africa region was investigated, based on in 

situ radiosonde observations of the SHADOZ station network comprising of 

Ascension (Ascension Island), Irene (South Africa), Reunion (Reunion) and 

Nairobi (Kenya) and the numerical model simulations for the period 1998 to 2006. 

The purpose of analysing WV fluctuations in tropical Africa was to obtain an in-

depth understanding of the spatial-temporal WV fluctuations as well as to study 

the mechanisms driving WV variability and its link to the climatic variables. The 

climatic variables influenced by WV are essential for accurate geodetic 

tropospheric modelling. The results from the analysis show that WV exhibits high 

frequency fluctuations in the wavelet space. Furthermore, the embedded pattern of 

temporal WV fluctuations over the SHADOZ network has a dominating monthly 

signature. This dominant variance appears to be associated with locally-driven 

WV variations such as the local weather systems. The power law scaling of WV 

wavelet energy is a critical finding in this research. In the study, the approximate 

log-log linear relationship at smaller temporal scales, which breaks down at 

synoptic scales, suggests that the energy-times spectra of WV on different 

temporal scales are correlated. Furthermore, based on PCA, three dominant modes 

emerge. These modes explain ~ 98% of the total spatial variance of the normalised 

energy in WV fluctuations. 

c)  Self-similar behaviour in tropospheric WV 

Studying the dynamic structure in WV or tropospheric delay caused by WV based 

on the wavelet approach is sufficient with regard to detection, identification and 

measurement of such as second order statistical parameters (which are the mean 

and variance) and scaling in the data. In the thesis, self-similar behaviour is 

assessed by use of DFA in the time-energy-frequency distributions. The extracted 

statistical properties are vital for establishing the presence and nature of non-linear 

and non-stationary properties in the data. In order to accommodate the non-linear 

and non-stationary structures in WV fluctuations, an EEMD is used to adaptively 

decompose the WV fluctuations into different scales, based on the local temporal 

characteristic of the data. The use of EEMD enables comparison of WV and the 
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mean troposphere temperature, thereby giving a powerful method to extract their 

features that could be used to describe their dependence. 

d) Detection, characterization and incorporation of non-linearity and 

nonstationarity for atmospheric range bias correction in SLR analysis 

The atmosphere-Earth and Ocean is an intrinsically non-linear and nonstationary 

physical system that is the subject of space geodetic research. This non-

linearity/nonstationarity is manifested in many series of geodetic variables. The 

benefit of introducing non-linearity and nonstationarity in atmospheric correction, 

for example, to the SLR range has been assessed. In particular, a non-linear 

function is introduced to model the azimuth dependent atmospheric range 

correction. Based on the present analysis of one-month of SLR data, the azimuth 

dependent atmospheric range correction results suggest  that introducing a second-

order non-linear function could improve the O-C residuals by over 15% and the 

computed azimuth atmospheric range correction is generally negative suggesting 

that the current atmospheric range correction models could be overestimating the 

atmosphere range bias. 

The studies in this thesis raised some outstanding questions and leads to many possible future 

extensions. These questions emerge from the ideas and concepts proposed in this work and 

therefore initiate new fields of research. An interesting perspective in this regard is the 

refinement of tropospheric modelling strategies so as to include the non-stationary behaviour 

of tropospheric WV or tropospheric delay due to WV. Geodetic analysis strategies often 

model tropospheric delays and delay gradients based on the concept of stationarity. However, 

and as can be inferred from the present work, tropospheric parameters are non-linear and 

non-stationary. Therefore an adjustment of tropospheric modelling strategies for geodetic 

applications is suggested. 

The analyses of self-similar behaviour in tropospheric parameters by use of a scaling 

parameter have important climatic applications. In the current study, we have investigated 

and found that tropospheric parameters have memory. This memory has spatial dependence 

and therefore a global climatology of scaling parameters derived from various meteorological 

parameters could be an important product to climate change studies. An important research 

topic could therefore be the development of methodology to generate scaling parameters from 

various non-parametric approaches for the purpose of characterising the spatial self-similar 

patterns at global scales. 
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