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6. Non-linear and nonstationary processes in geodetic TD/WV 

So, Nat’ralists observe, a Flea 

Hath smaller Fleas that on him Prey, 

And these have smaller Fleas to bit’ em, 

And so proceed, proceed ad infinitum 

- J‟onathan Swift (1667-1745) 

 

This Chapter presents results and discussion on the non-linear 

properties in the fluctuations of TD/WV based on the statistical 

information derived from DFA. In order to account for the non-

linear and nonstationary properties in TD/WV fluctuations, the 

EMD/EEMD is used. Self-similar behaviour in TD/WV is 

assessed and found to be present. The lasting periods of 

synchronization with fluctuating phase coincidence (and 

correlations by pairs thereof) between different oscillation 

modes of WV and atmospheric mean temperature demonstrate 

that fluctuations (which are non-linear and depicted in the 

phase shifts) in WV and temperature are driven by common 

underlying processes (exhibiting possible stochastic 

resonance). Assessing the significance of non-linearity and 

nonstationarity in geodetic data analysis is demonstrated by 

the introduction of non-linear function to account for azimuth 

dependent atmospheric range correction. Using a one-month 

SLR data, more than 15% improvement of the O-C residuals is 

achieved for both LAGEOS 1 and 2. 

 

6.1. Introduction 

In the research reported in this Chapter, the emphasis is on the analysis of the variability of 

geodetic tropospheric parameters by extracting the local time/frequency scales of variability 

embedded in the geodetic time series. A data adaptive decomposition (by using the EMD 

and/or EEMD) is considered, whereby complete, orthogonal and local components are 

obtained. Often EMD/EEMD decomposes the time series into IMF according to the levels of 

their local oscillation or frequency.  The EMD effectively captures the non-linear 

characteristic in respect of the amplitude and frequency modulation with local time scales. In 
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this regard, the local time/frequency scales are defined by the instantaneous frequency. Once 

IMFs are obtained, Hilbert Transform spectral analysis is performed on the time series to 

provide the temporal-frequency variation of information which is a key component of time-

frequency analysis for nonstationary geodetic-tropospheric time series. 

  In particular, a non-decimated Haar wavelet transform and EMD/EEMD are used to 

analyse nonstationary processes in WV and other derived tropospheric parameters such as 

tropospheric delay due to WV. In the first part, geodetic WV measured at HartRAO is tested 

for nonstationarity and non-linearity using DFA in the wavelet space. Here the geodetic WV 

was decomposed into the wavelet space and thereafter, the characteristic fluctuation 

properties of the power spectra are investigated using DFA. Furthermore, the EEMD was 

used for correlation analysis of some of the important tropospheric parameters such as wet 

zenith delay and mean tropospheric temperature that affect the accuracy of the geodetic delay 

observable over geodetic stations; here, we have used the geodetic station at HartRAO, South 

Africa. The correlation analysis considered here illustrate the synchronisation or the degree of 

closeness of the modes in WV and mean atmospheric temperature time series derived from 

the phase variance between the time series (Botai et al., 2009b). 

 

6.2. Nonstationary processes in tropospheric WV using wavelet 

analysis 

Non-linear processes exist in nature; examples of the dynamical systems that exhibit non-

linear and nonstationary characteristics include the Earth's climate system (Rial et al., 2004), 

river flow and discharge (Montanari et al., 2000), atmosphere (Ivanova, et al. 1999; Ausloos 

et al., 2001). If a geophysical field such as PWV is decomposed additively into structural 

components such as the trend, the cyclical and seasonal and irregular components, then the 

coherence between the properties of the observed PWV series and those of the structural 

components could be assessed. The characteristics structure in the components of the time 

series could be used to evaluate nonstationarity manifested in the second order properties 

such as the variance and the mean. This may be an indication that the dynamical processes in 

the geophysical field are driven by complex processes as reported by Taqqu et al., (1995), 

Verdes et al., (2001) and Hu et al., (2001).  

In the current analysis, the presence of memory in the tropospheric PWV is assessed 

using statistical theory. Using a global PWV parameter (gPWV) estimated at HartRAO, the 

PWV time series during 2000-2006 was reconstructed with sliding window using Singular 
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Spectrum Analysis (SSA). See Ghil et al., (2001) for a detailed account on SSA. The gPWV 

is defined (here) as the daily mean PWV value computed from two geodetic techniques (GPS 

and VLBI) and NWP models. The wavelet transform of the reconstructed gPWV time series 

was computed using the non-decimated Haar wavelet technique (Percival et al., 2000). As 

described in Chapter 3, the presence of discontinuities due to boundaries in the data is 

accounted for by reflecting the time series onto the last observation. This method of handling 

discontinuities in the geodetic PWV is tractable because the sample mean and variance are 

not affected and the seasonal patterns in PWV time series exhibits are preserved.  

The DFA and wavelet joint estimator were used to calculate the second-order 

parameters (e.g., the mean, variance and scaling exponent measure the scaling behaviour) that 

are used to infer the (non-)stationary properties in the reconstructed time series. The purpose 

of wavelet joint estimator is to eliminate the deterministic trends and non-discontinuous 

changes in the second-order properties in the WV fluctuations.  

Figure 6.1 depicts the reconstructed gPWV computed from leading principal 

components projected onto a reduced subspace with minimum redundancy in SSA. In this 

way, the gPWV was smoothed and any noise in the time series eliminated through filtering. 

This method of filtering preserves the second order statistical parameters which characterise 

nonstationarity and/or local stationarity.  
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Figure 6.1. PWV time series. Left: Non-detrended PWV time series. Right: PWV derived 

from the singular spectrum analysis.  

 

Figure 6.2 depicts the 'detail' (even scales) of the gPWV in the wavelet space derived from 

the Maximum Overlap Discrete Wavelet Transform (MODWT) analysis (see Whitcher 1998; 

Percival et al., 2000). The MODWT technique allows the non-linear and nonstationary 

structure (e.g., trends, jumps and spikes) in the data to be examined in the wavelet space. The 

illustrated temporal scales correspond to the physical time scales 1 week, 2 month, 4 months, 

and 8 months respectively. In order to get a better understanding of the inherent PWV 

fluctuation patterns, the individual frequency levels are separated out and plotted as functions 

of time as shown in Figure 6.2. Each frequency band spans over the time span with gradual 

decreasing time resolution. From Figure 6.2, we suppose that some contaminating 

observations other than the gPWV observations (the outliers) are embedded in the high 

modes of oscilations (Greenblatt, 1994). Therefore caution should be taken when interpreting 

the oscillatory components, especially the high frequency wavelength coefficients. It is 

evident from Figure 6.2 that gPWV exhibits temporal nonstationary characteristics.  

 

Figure 6.2. Haar wavelet spectra of the reconstructed gPWV at different even-scales. 
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In order to study some aspects of self-similar behaviour present in the reconstructed  gPWV 

times-series,  local linear least square function was fit to a standardised  integrated time series 

constituted from segments of gPWV. The average fluctuation for each segment was used to 

compute the scaling exponent. Figure 6.3 indicates that a single linear fit on the gPWV power 

spectral density has different values of   at different scales (the wavelet scale and   are 

linearly dependent). As depicted in Figure 6.3, the SS and LRD measures are dependent on 

the 'detail' of WT.  

 

 

Figure 6.3. The power spectral density of gPWV at different scales. 

  

Figure 6.4 illustrates that the root mean square fluctuations and the sliding window width 

have different scaling exponents ( ) , suggesting that the long-range power-law correlation 

in gPWV  (i.e. 0.5  ) is dependent on the physical time scales. These results indicate that 

atmospheric processes manifested in the PWV fluctuations are long-range correlated.   
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Figure 6.4. Scaling behaviour of the reconstructed gPWV time Series. 

 

The temporal variation of the mean, variance and   of gPWV is depicted in Figure 6.5. The 

temporal variation in the mean and variance (and also correlations) can be used to measure 

the presence of SS and/or LRD. In our analysis using the wavelet estimator of Abry and 

Veitch, (1998) of second-order parameters, the test for SS and/or LRD properties in gPWV 

time-series showed that the mean and variance are not time invariant as illustrated in Figure 

6.5. The experimental analysis for stationarity reported here considered four vanishing 

moments, the sub-series scale  1,2 2 : 4j  while the scales for the whole series was set to 

 1,2 2 :8j  . This shows that tropospheric PWV has SS and LRD properties.  
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Figure 6.5. Wavelet estimator for SS and LRD at the 10
th

 scale. 

 

6.3. On the noise-Assisted geodetic data analysis 

Analysing non-linear and nonstationary data series using the HHT is a new cutting-edge 

methodology that is widely used in many scientific fields such as finance (e.g., Huang et al., 

2003b), biomedical applications (e.g., Huang et al., 1999b), natural sciences (e.g., Salisbury 

and Wimbush 2002; Pan et al., 2002) and engineering sciences (e.g., Huang et al., 2005).  For 

example, Salisbury and Wimbush,(2002) used Southern Oscillation Index (SOI) data and 

applied the HHT technique to determine whether the SOI data are sufficiently noise free; if 

useful predictions can be made and whether future ENSO events can be predicted from SOI 

data. Pan et al., (2002) used HHT to analyse satellite scatterometer wind data over the North-

Western Pacific and compared the results to Vector Empirical Orthogonal Function (VEOF) 

results. More recently, Pegram et al., (2008) suggested an improvement to the original EMD 

algorithm using rational splines and the flexible treatment of the end conditions and applied it 

to rainfall time series analysis.  

Figure 6.6 depicts the temporal variations of the daily-averaged WV, zonal and 

meridional gradients derived from ECMWF data at HartRAO over the period from 2006-

2009. From Figure 6.6, it is evident that the WV and linear horizontal gradients time series 

show that fluctuations occur on time scales much shorter than the length of the entire time 

series.  The short-time fluctuations are then decomposed into IMFs. In this report, IMFs 

derived from WV daily time series data are given in Figure 6.7. The current WV data resulted 
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in 11 IMFs (the trend inclusive). These oscillations are not visible in the WV raw data due to 

their superposition. Looking at individual IMFs, it is possible to decipher information 

regarding WV variability at different time-scales. In particular, 3 5   clearly shows intra-

seasonal modes whose period of oscillation varies from days to months. However, 6  shows 

an almost periodic envelope with amplitudes having seasonal dependence. When examining 

the low frequency modes of WV fluctuations depicted in Figure 6.7, we notice that 8  

exhibits regular intra-annual fluctuations that corroborate with the sub-tropical seasons. This 

component is also visible in the raw WV data.  

 

 

 

Figure 6.6. Time series (time is plotted in the x-axis) of a) Water vapour, mm; b) Meridional 

hydrostatic; c) Zonal hydrostatic; d) Meridional wet and e)  Zonal wet; linear horizontal 

gradients , mm/degree. 
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Figure 6.7 WV derived IMFs 1 6( )  .  The bottom panel illustrates the adaptive trends. 

 

Given that the trend is a local non-oscillatory function defined for a local time scale, the trend 

is also one of the many local properties of the data, (see Zhaohua et al., 2007). From the 

tropospheric WV, we see oscillatory modes are superimposed onto a monotone (oscillatory 

and decreasing) base function. In particular, various trends such as diurnal, intra-annual and 

annual trend are plotted in Figure 6.8. From Figure 6.8, the overall adaptive trend ( 11 ) is 

approximately identical to the linear trend (see bottom panel). The overall adaptive trend is 

derived from the entire data span. Annual and intra-annual trends are formed from the 

combination of trends derived from 8 11   IMFs.   

 
 
 



107 

 

 

Figure 6.8. Low frequency IMFs and linear and adaptive trends at different time scales. 

 

To completely characterise the tropospheric WV and linear horizontal gradients fluctuations, 

local time/frequency scales (defined by the instantaneous frequencies of IMFs) of the 

decomposed time series were extracted. The instantaneous frequencies of the 6th  IMF for 

WV and the zonal linear horizontal (hydrostatic and wet) gradients are plotted in Figure 6.9. 

 

Figure 6.9. The Instantaneous frequency of the 6th  IMF. From top left to right: a) Zonal 

hydrostatic  gradient and instantaneous frequency, b) Zonal wet gradient and instantaneous 

frequency and c) WV and instantaneous frequency. 
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The probability distribution of individual IMFs examined using WV and the linear horizontal 

components. The results show that the probability distribution is approximately normally 

distributed (see Figure 6.10 to Figure 6.12; the fitted normal distribution curve is also 

depicted). From the current variables, it can be noticed that, the first three IMFs derived from 

WV, hydrostatic and zonal linear horizontal gradients exhibit normal probability distribution. 

These results are consistent with those reported in Wu and Huang, (2004) and they are also in 

agreement with the central limit theorem. 

 

 

Figure 6.10. Probability distribution of WV derived IMFs. 

 
 
 



109 

 

 

Figure 6.11. Probability distribution of the zonal linear horizontal hydrostatic gradients. 

 

 

Figure 6.12. Probability distribution of the zonal linear horizontal wet gradients. 

 

From the probability distribution depicted above, it can be observed that the deviation from 

the normal distribution function increases with an increase in the frequency modes of WV 

and linear horizontal gradients. This behaviour could be attributed to the decrease in the 

number of oscillations which reduces the ensemble sample size and therefore results in the 

less smooth distribution. Higher number of oscillations (number of IMFs with high frequency 

modes) follows the normal distribution according to the central limit theory. Following 

 
 
 



110 

 

Papoulies, (1996), it could be expected that WV and linear horizontal gradients therefore 

exhibit a Chi-square distribution. 

The combination of EMD and Hilbert spectrum analyses provides an alternative 

adaptive method to analyse nonstationary and non-linear time series. It can perform and 

enhance most of the traditional data analysis tasks, such as filtering, regressions, and spectral 

analysis adaptively. To accommodate data from nonstationary processes, a number of 

methods such as spectrogram, Wigner- Ville distribution, and Wavelet analysis have all been 

used extensively with some degree of success. Recently, the EMD method has attracted 

considerable attention and been used widely in many fields. While the EMD methodology 

has proved to be versatile and robust, it cannot reveal the signal characteristic information 

accurately. This is because it has a shortcoming of mode mixing; a condition where an IMF 

exhibits local oscillations with clear different time/frequency scales, as reported in Huang et 

al., (1999). A solution to this problem is by subjectively introducing constraints for mode 

mixing, which eliminates the adaptability property in the EMD data.   

Geodetic data is often measured at different spatial-temporal scales. On decomposing 

the intermittent sampled geodetic data, the resultant IMFs exhibits scales with a broad 

spectrum or redundant signals. This condition causes aliases in the time-frequency 

distribution. Redundancy in IMFs oscillations often conceals important characteristics that 

depict physically meaningful information in the data. To alleviate the mode mixing problem 

occurring in EMD, the EEMD method is applied. With EEMD, the components with a truly 

physical meaning can be extracted from the signal.  

A finite, non-infinitesimal and amplitude white noise is used to force the ensemble to 

exhaust all possible solutions in the sifting process, thus require different scale signals to 

collate in the proper IMF dictated by the dyadic filter banks (Zhaohua and Huang, 2009). The 

effect of the added white noise is to present a uniform reference frame in the time-frequency 

and time-space. This implies that the added noise provides a natural reference for the signals 

of comparable scale to collate in one IMF. With this ensemble mean, the scale can be clearly 

and naturally separated without any priori subjective criterion selection, such as in the 

intermittence test for the original EMD algorithm. This new approach fully utilises the 

statistical characteristics of white noise to perturb the data in its true solution neighbourhood 

and then cancel out through the ensemble averaging. 
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6.3.1. Correlation of tropospheric WV and temperature using phase 

differences 

Variability of troposphere WV and mean temperature plays an important role in driving the 

global energy and water cycles. In space geodesy, WV and temperature affect the accuracy of 

the delay observable. It is therefore important to study the temporal correlations of WV and 

temperature to understand the bias contribution from each of these parameters to the geodetic 

delay observable. A flexible methodology for analysing the WV fluctuations and mean 

temperature that adapts to their noise and uneven spectral measurements is reported in this 

section. The correlation strategy employed here involves the linkage of instantaneous phase 

differences among the associated WV and temperature IMF modes derived from the EEMD. 

     In this particular analysis, the amplitude level of the first IMF is taken as reference 

amplitude for the noisy IMFs in the data. The assumption taken here is that, the first IMF 

(with highest frequencies) is corrupted with noise. Therefore the criterion for selecting 

meaningful empirical IMFs is based on the proportion amplitude of target IMF to the 

reference amplitude where the amplitude of the selected amplitude ought to be about 25% of 

the maximum amplitude of the reference IMF. The rationale behind this criterion is derived 

from the relationship between the IMF amplitude and the total energy of the IMF which is the 

square of the amplitude is the equivalent to the energy of the IMF. As a result, the analysis 

uses only significant oscillating IMFs. 

The phase differences between the selected IMF derived from WV and calculated 

temperature, provides the degree of linkage between different modes of the respective IMFs. 

Using the Hilbert transform, local frequencies of each IMF mode can be computed by using 

Equation (122). In this research, the focus is projection of the phase shift defined by Equation 

(122) 

  ,

,

t
i jit

i j e e





  (122) 

where ,

t t t

i j i j     . To determine the closeness of the modes, a global indicator of the 

constant phase shift between WV and temperature: the variance of (:)  is computed. The 

constraint used to detect pairs of modes with constant phase shift in this study is that 

of  var (:) 0.33  . Thereby, the IMFs with  var (:) 0.33  have different local frequencies 

and hence have weak or no correlation. 
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Raw daily WV and mean atmospheric temperature data corresponding to the atmosphere over 

HartRAO exhibits certain unusual magnitudes (see Figure 6.13) due to systematic or 

instrumental errors. These errors were filtered out by ensuring that the data sets have been 

pre-proposed using the adaptive filtering procedure as described in Chapter 3 prior to the 

IMFs extraction. The adaptive filtering stage also gives more stability to the produce IMFs 

extraction. The adaptively filtered time series data are plotted in Figure 6.13. In the figure, 

time is expressed in days since January 2005. The adaptive filtering procedure was done 

using a basic variability value of 0.08, the filter coefficient of 3.0 and 0.05 controlling 

coefficient. As observed from the filtered time series, there exists nontrivial structure in the 

WV fluctuations and mean atmosphere temperature. In Chapter 3, it is reported that data 

could fail a test for Gaussian, thus ruling out a Gaussian linear stochastic process as the 

source of fluctuations. Due to this inconsistency, application of the model-based
11

 methods to 

assess the structure components in WV fluctuations might be not yield representative 

properties.  

 

 

Figure 6.13. Time series of water vapour (top) and mean atmosphere temperature (bottom).  

                                                 
11

 Ad-hoc and model-based (e.g., ARMA & ARIMA) approaches are used to decompose a time series into 

structural components such as trend, seasonal/cyclic and irregular components. 
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The IMFs of WV and temperature data are shown in Figure 6.14 and Figure 6.15 

respectively. The original WV and temperature data and the eight IMFs (the components 

from short to longer time periods) are plotted from top to bottom. Here IMF8 corresponds to 

the trend in the data set.  

 

Figure 6.14. Intrinsic mode function components of water vapour over HartRAO. 

 

Figure 6.15. Intrinsic mode function component of mean atmosphere temperature over 

HartRAO. 
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The observed low frequency IMFs could be associated to the fluctuations that are driven by 

physical processes, while the high-frequency IMFs dependent on noise and independent 

external forces. As observed from the Figures 6.14 and Figure 6.15, the local periods are not 

constant but for each fixed IMF, they are constrained within different ranges. The IMFs of 

WV depicted in Figure 6.14 exhibits oscillation patterns with characteristic periods; annual 

(IMF6, 7 mode), seasonal (IMF4, 5 mode), monthly (IMF3 mode) and diurnal (IMF< 2 mode) 

components. IMF8 corresponds to the non-linear trend which exhibits both positive and 

negative trend. The IMFs of the mean atmosphere temperature over HartRAO (see Figure 

6.15) exhibit similar local periods ranging from 400 to 500 days (IMF6, 7 mode), 60 to 100 

days (IMFs mode), 30 days (IMF3 mode) and diurnal (IMF< 2 mode) fluctuating components. 

 

 

Figure 6.16. Instantaneous frequency of selected WV Intrinsic Mode Functions. 

 

As mentioned earlier, not all the extracted IMFs from WV and mean atmosphere temperature 

are physically significant. Therefore on application of the criteria outlined earlier, the modes 

IMF3, 5, 8 and IMF2, 5, 6 from WV and mean atmospheric temperature respectively were 

considered for calculating the phase shift. As a result, Figure 6.16 and Figure 6.17 illustrate 
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the local frequencies of the IMFs used to derive the variance matrix for evaluating the degree 

of synchronisation between WV and mean troposphere temperature fluctuations. It is 

observed that the instantaneous frequencies (unit: cycles per day) IMF3 and IMF2 of WV and 

mean atmosphere temperature have higher values during summer months. 

 

Figure 6.17. Instantaneous frequency of selected Intrinsic Mode Functions of the mean 

temperature. 

   

From the variance matrix, only five pairs of modes of IMFs were considered as exhibiting 

lasting periods of synchronisation with fluctuating phase coincidence as illustrated in Figure 

6.18. It is noted that in most of the IMFs couples selected with synchronisation, the phase 

coincidence fluctuates between 1 and -1 over the entire time period of this data. The 

correlations by pairs indicate that common fluctuations in WV and mean atmospheric 

temperature could be associated to both local and non-local processes. In particular, the local 

processes are partly responsible for driving these fluctuations i.e. heat waves and cold fronts 

which are common in the Highveld climatic region. The temporal dependence of phase shift 

seems to suggest that the WV and temperature fluctuations are strongly non-linear.. The non-

linear oscillating structures visible in the phase shifts could have been triggered possibly by a 

stochastic resonance phenomenon such as the Inter-Tropical Convergence Zone (ITCZ) and 

other trade winds. 
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Figure 6.18. Phase shift of WV and mean atmosphere temperature IMFs modes. 

 

 

6.4. Assessing the effect of non-linearity/stationarity in atmospheric 

range correction 

Until now, the detection, analysis and characterisation of non-linearity and nonstationarity in 

geodetic data has been described and presented in the preceding sections of this thesis. In the 

present section, the benefit of introducing non-linearity and nonstationarity in atmospheric 

correction to the SLR range is investigated. In particular, a non-linear function is introduced 

to model the azimuth dependent atmospheric range correction. From the analysis of one-

month of SLR data, results of azimuth dependent atmospheric range correction indicate that 

the introduced second-order non-linear function improves the Observed-Computed (O-C) 

residual by over 15%. The computed azimuth atmospheric range correction is in general 

negative suggesting that the current atmospheric range correction models generally 

overestimate the atmosphere range bias. 

 

6.4.1. SLR atmospheric range correction 

The atmosphere-Earth and Ocean is an intrinsically non-linear and nonstationary physical 

system that is the subject of space geodetic research. This non-linearity/nonstationarity is 

manifested in many series of geodetic variables depicted in Table 2.1, in Chapter 2. Detecting 
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and quantifying this non-linearity/nonstationarity depends on a) the type of variable, b) the 

geographic area and/or c) the data span. As described in the foregoing section (see Chapter 

2), the range Equation used in SLR processing includes an atmospheric term which is 

currently modelled as an elevation only model (this is the Pavlis and Mendes (2004) model 

adopted by the ILRS working group). This model does not take into account the azimuth 

dependence and this is the point of departure. The current elevation-only model could be 

viewed to be linear and therefore may not be realistic since other factors such as 

measurement errors and unknown noise sources, may introduce non-linearities during SLR 

processing (and this may impact on the accuracy parameters such as station position and 

EOPs). In general, the measurements of e.g., the barometric pressure, temperature and 

relative humidity exhibit second-order terms (gradients) that are sensitive to the asymmetry 

of the atmosphere and could introduce some non-linearity in the atmospheric range correction 

term.  

Detecting, characterising/analysing and incorporating non-linearity and non-

stationarity into models of the SLR observation equation terms is of extraordinary importance 

for accurate computation of the O-C residuals. Detection and analysis of non-linearity and 

nonstationarity in moisture fluctuations have been achieved, in part, by calculating 

persistence/scaling behaviour in tropospheric delay due to WV. In order to assess the 

contribution of incorporating non-linear/nonstationary aspects in geodetic analysis, the 

current atmospheric correction used in SLR analysis has been modified by adding a non-

linear term to account for the azimuth dependent atmospheric range bias. The proposed 

modification (see Equation (123)) has been tested on one-month of SLR data analysed by the 

SLR analysis software developed at HartRAO (see Combrinck, 2010). 

  

 o c a, e a, azO-C=R - R +ΔR +ΔR    (123) 

 

Here, R0 and Rc are the observed and computed ranges. Similarly, ΔRa,e and ΔRa,az are the 

elevation-only and azimuth dependent (this is modelled as a second-order function) 

atmospheric range correction terms. There could still be remnants of other factors such as 

time bias and range bias; however these were estimated before the estimate of the azimuthal 

non-linearity so should be eliminated to a large extent. 
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Figure 6.19 depicts differences between O-C (for both LAGEOS 1 and 2) before and after 

incorporating the non-linear function. From the results, a 15 - 20% improvement in the 

estimated O-C derived from the analysis of one-month SLR data for the orbits of LAGEOS 1 

and 2 due is attained due to incorporation of the non-linear term in Equation (123).  

 

Figure 6.19.  LAGEOS 1 (left column) and LAGEOS 2 (right column) observed-computed 

values, before (top panel), after (middle panel), percentage difference (bottom panel). 

 

The estimated average value, minimum, maximum and standard deviation before and after 

incorporating the non-linear term, for O-C for LAGEOS 1 & 2 are depicted in Table 6.1. 
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Table 6.1. Statistical description of the observed-computed residual before and after 

incorporating the azimuth dependent atmospheric correction term (non-linear) in SLR 

processing. 

 

Statistical parameters (O-C) 

LAGEOS 1 LAGEOS 2 

Model off Model on Model off Model on 

Maximum [ m ] 0.0908 0.0908 0.0874 0.0708 

Minimum [ m ] 0.0145 0.0098 0.0027 0.0020 

Mean [ m ] 0.0392 0.0317 0.0434 0.0347 

 
Variance ×10

-4
 [ m

2
 ] 

 
3.1121 

 
2.4538 

 
3.3242 

 
2.3163 

 

The huge improvement in O-C could be attributed to the azimuth dependent atmospheric 

range correction term which partly accounts for the asymmetry of the atmosphere (and the 

local physical conditions, such as pressure, temperature and relative humidity, along the path 

from the SLR station to the target satellite). Furthermore, the physical conditions (e.g., 

thermal radiation) of the surface in the vicinity of the SLR station will also contribute to the 

non-linearity and nonstationarity inherent in the SLR range. Figure 6.20 and Figure 6.21 

demonstrates the azimuth dependent atmospheric range correction values based on the one-

month SLR data processed by SLR analysis software developed at HartRAO.  

As depicted in Figure 6.20 and Figure 6.21, there is generally strong azimuth 

dependence in the values. While the current one-month data might not be sufficient to 

demonstrate the actual quadrant dependence of the atmospheric range bias correction, the 

preliminary results point to specific arcs depicting non-linear relation between the angular 

direction and the atmospheric range correction. Furthermore, the average correction value of 

the present analysis is negative (see Figure 6.21), therefore suggesting that the current model 

used for atmospheric range correction could probably be overestimating the atmospheric 

range bias. This result is of extraordinary importance to the ILRS working group as well as to 

the research community (though long term analysis is required) with regard to the benefit of 

incorporating non-linear and nonstationary models in the analysis geodetic data. 
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Figure 6.20. Polar description of azimuth dependent atmospheric range correction for 

LAGEOS 1 and 2. Only atmospheric range correction values below 0.5 (accounts for 98% of 

the total correction) are plotted for clarity.   
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Figure 6.21. Southern (top row) and Northern (bottom row) hemisphere azimuth dependent 

atmosphere range correction. A negative mean value suggest that the current atmospheric 

range correction models generally overestimates the atmospheric range bias. 

 

6.5. Concluding remarks  

The two critical strengths for non-linear approach to the analysis of WV fluctuations are as 

follows:-. First, they are intrinsic to the signal where in this case, linear methods have been 

exploited, yet certain structures in WV fluctuations have not been accounted for. Secondly, 

the atmospheric system is intuitively known to include non-linear components and therefore a 

linear description could be unsatisfactory. It is rather subjective to presuppose that the non-

linear components in the atmosphere prove enough that the non-linearity is also reflected in 

troposphere WV fluctuations. As a result and without any prejudice, the application of non-

linear analysis methods of WV fluctuations reported here was first justified by the 

establishment of non-linearity in WV fluctuations in the first part of this chapter.   

Different non-linear approaches to the analysis have been introduced and applied to 

the study WV fluctuations. The DFA and wavelet based analysis tools are widely used in 

several fields of complexity analysis in science. For the first time however, the geodetic 
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troposphere WV time series has been decomposed into segments and nonstationary processes 

investigated using statistical information. It is shown from the wavelet space analysis that the 

tropospheric WV has trends and unusual magnitudes indicating nonstationarity. Further, the 

second-order statistical properties (means, variances and correlations) show that they are time 

variants. This is the additional evidence that WV variability is driven by forces that are 

nonstationary. The PWV time series also has self-similar and long-range dependence 

properties which are dependent on the WT 'detail'.  

While wavelet based approach is a good tool for detection, identification and 

measurement of features such as scaling in the data, it is a poor method for analysing the 

time-energy-frequency distributions. The extracted statistical properties are vital for 

establishing the presence and nature of non-linear and nonstationary properties in the data. In 

order to accommodate the non-linear and nonstationary structures in WV fluctuations, an 

alternative strategy: the EMD (EEMD) is used to adaptively decompose the WV fluctuations 

into different scales based on the local temporal characteristic of the data. The use of EEMD 

enables comparison of WV and the mean troposphere temperature, thereby giving a powerful 

method to extract their features that could be used to describe their dependence. Such 

assertion has meteorological and geodetic applications. 

 In order to assess the contribution of incorporating non-linear/nonstationary aspects 

in geodetic analysis, a non-linear term which accounts for the azimuth dependent atmospheric 

range bias was incorporated onto the SLR analysis software developed at HartRAO. Results 

show that by incorporating non-linearity and nonstationarity to the atmospheric range 

correction model, a 15 - 20% improvement in the estimated O-C residuals derived from the 

analysis of one-month SLR data was achieved for the orbits of LAGEOS 1 and 2.  
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7. Concluding remarks 

Now a whole is that which has a beginning, middle, and end. 

- Aristotle, c330 BC. 

 

Data analysis is an important tie in the scientific research cycle of observation, analysis, 

interpretation and theorising. In particular, time series analysis: this often entails modelling 

and theoretical studies, and are often required in order to understand fluctuations of 

tropospheric parameters such as tropospheric delay due to WV and delay gradients and WV. 

These parameters are used in meteorology and climate studies as well as in space geodetic 

applications. The research work reported in this thesis is aimed at contributing to both these 

fields. We have used both parametric and non-parametric tools and studied particular process 

properties as inferred from the variability of tropospheric parameters. This is the first attempt 

to systematically apply model-based and non-linear analyses strategies to investigate the 

dynamic structure embedded tropospheric parameters. 

To summarise, the current research reports that the variability of WV and 

tropospheric delays due to WV over southern Africa a) exhibits multiscale properties b) are 

driven by non-linear and non-stationary processes, and c) over a long period of time, the 

fluctuations exhibit complex scaling properties, which suggest that the fluctuations have 

temporal memory. As a result, tropospheric geodetic parameters do not satisfy the stationary 

conditions. Furthermore, incorporating non-linearity and nonlinearity to the atmospheric 

range bias correction in SLR analysis improves the O-C residuals by more than 15%. To 

conclude, at various points in this thesis, we have assessed and characterised the: 

a) Stochastic behaviour of tropospheric WV or tropospheric delay due to WV 

In the course of the thesis, the previous literature on geodetic modelling of 

tropospheric parameters was examined. Time series analysis of tropospheric 

parameters by use of the automatic model-based approach was assessed in detail. 

The Box-Jenkins approach of automatic model identification and selection of the 

ARMA model, which models the dependence structure embedded in WV time 

series, was proposed, illustrated and analysed. It was found that if a parameter 

series is transformed to stationarity, then the underlying model structure could be 

represented by the ARMA model with model degree and order determined via the 

maximum likelihood criteria. 

b)  Multiscale variability of WV in the low and mid-tropical Africa 
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Empirical studies and simulations of WV variability over the last decade presume 

that the inherent fluctuations are stationary and Gaussian. The multiscale structure 

of WV in the low- and mid-tropical Africa region was investigated, based on in 

situ radiosonde observations of the SHADOZ station network comprising of 

Ascension (Ascension Island), Irene (South Africa), Reunion (Reunion) and 

Nairobi (Kenya) and the numerical model simulations for the period 1998 to 2006. 

The purpose of analysing WV fluctuations in tropical Africa was to obtain an in-

depth understanding of the spatial-temporal WV fluctuations as well as to study 

the mechanisms driving WV variability and its link to the climatic variables. The 

climatic variables influenced by WV are essential for accurate geodetic 

tropospheric modelling. The results from the analysis show that WV exhibits high 

frequency fluctuations in the wavelet space. Furthermore, the embedded pattern of 

temporal WV fluctuations over the SHADOZ network has a dominating monthly 

signature. This dominant variance appears to be associated with locally-driven 

WV variations such as the local weather systems. The power law scaling of WV 

wavelet energy is a critical finding in this research. In the study, the approximate 

log-log linear relationship at smaller temporal scales, which breaks down at 

synoptic scales, suggests that the energy-times spectra of WV on different 

temporal scales are correlated. Furthermore, based on PCA, three dominant modes 

emerge. These modes explain ~ 98% of the total spatial variance of the normalised 

energy in WV fluctuations. 

c)  Self-similar behaviour in tropospheric WV 

Studying the dynamic structure in WV or tropospheric delay caused by WV based 

on the wavelet approach is sufficient with regard to detection, identification and 

measurement of such as second order statistical parameters (which are the mean 

and variance) and scaling in the data. In the thesis, self-similar behaviour is 

assessed by use of DFA in the time-energy-frequency distributions. The extracted 

statistical properties are vital for establishing the presence and nature of non-linear 

and non-stationary properties in the data. In order to accommodate the non-linear 

and non-stationary structures in WV fluctuations, an EEMD is used to adaptively 

decompose the WV fluctuations into different scales, based on the local temporal 

characteristic of the data. The use of EEMD enables comparison of WV and the 
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mean troposphere temperature, thereby giving a powerful method to extract their 

features that could be used to describe their dependence. 

d) Detection, characterization and incorporation of non-linearity and 

nonstationarity for atmospheric range bias correction in SLR analysis 

The atmosphere-Earth and Ocean is an intrinsically non-linear and nonstationary 

physical system that is the subject of space geodetic research. This non-

linearity/nonstationarity is manifested in many series of geodetic variables. The 

benefit of introducing non-linearity and nonstationarity in atmospheric correction, 

for example, to the SLR range has been assessed. In particular, a non-linear 

function is introduced to model the azimuth dependent atmospheric range 

correction. Based on the present analysis of one-month of SLR data, the azimuth 

dependent atmospheric range correction results suggest  that introducing a second-

order non-linear function could improve the O-C residuals by over 15% and the 

computed azimuth atmospheric range correction is generally negative suggesting 

that the current atmospheric range correction models could be overestimating the 

atmosphere range bias. 

The studies in this thesis raised some outstanding questions and leads to many possible future 

extensions. These questions emerge from the ideas and concepts proposed in this work and 

therefore initiate new fields of research. An interesting perspective in this regard is the 

refinement of tropospheric modelling strategies so as to include the non-stationary behaviour 

of tropospheric WV or tropospheric delay due to WV. Geodetic analysis strategies often 

model tropospheric delays and delay gradients based on the concept of stationarity. However, 

and as can be inferred from the present work, tropospheric parameters are non-linear and 

non-stationary. Therefore an adjustment of tropospheric modelling strategies for geodetic 

applications is suggested. 

The analyses of self-similar behaviour in tropospheric parameters by use of a scaling 

parameter have important climatic applications. In the current study, we have investigated 

and found that tropospheric parameters have memory. This memory has spatial dependence 

and therefore a global climatology of scaling parameters derived from various meteorological 

parameters could be an important product to climate change studies. An important research 

topic could therefore be the development of methodology to generate scaling parameters from 

various non-parametric approaches for the purpose of characterising the spatial self-similar 

patterns at global scales. 
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