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4. Modelling the stochastic properties of WV time series 

 

A mathematician is a device for turning coffee into theorems. 

 - Paul Erdős 

In this Chapter, the stochastic properties of WV are 

investigated. Firstly, results reveal that the underlying process 

driving fluctuations in the monthly averaged tropospheric WV 

derived from geodetic VLBI measurements spanning 1999-2008 

is non-linear and nonstationary. Furthermore, an ARMA(10, 9) 

could generally model the monthly averaged tropospheric WV ( 

transformed to stationary) over the period 1999-2008. 

4.1. Introduction 

A time series represents a path (also called a realisation) of a stochastic process or a sequence 

of data-points measured at successive time intervals. The collection of variables indexed 

according to the order in which they are obtained in time, forms the basis for the statistical 

description of the data which might have inherent spatial-temporal fluctuations (Shumway 

and Stoffer, 2006). The purpose of time series analysis is to develop mathematical models 

that provide robust descriptions about the observables; and as a result obtain an 

understanding of the mechanism that generated the data records (e.g., the nature and structure 

of the underlying forces). Analysis of time series could also involve fitting models to the data 

for purposes of future predictions of the phenomena in question. In geodetic applications, 

tropospheric characteristics can be presented as a vector time series that hold geophysical 

information which is of interest to the space geodesy community. The tropospheric state at 

each moment in time can be modelled as a mapping function denoted as 3 N  ; which 

assigns an n-dimensional (nD) vector of real tropospheric parameters such as temperature, 

pressure, refractivity, WV and tropospheric gradients to every point of the 3D space, herein 

referred to as a time series or data sequence.    

 The problems encountered in time series modelling and prediction dates back to the 

pioneering work of Yule in 1972 (Yule, 1972). Until 1970‟s, most of the research work on 

time series analysis concentrated on the use of parametric methods to describe underlying 

process in the observed data. In these parametric approaches, simple linear models are fitted 

to the data; see for example the text-book by Brockwell and Davis, (1996). Parametric 
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approaches such as the maximum likelihood estimate (MLE) are commonly used when there 

is sufficient prior knowledge that the model in the data set has a parametric form with 

unknown parameters i.e., that the model is from some parametric family-set θ ,θ , 

where 
θ
is a known parametric form with unknown parameter θ to be estimated.  Though 

the parametric approaches have established appealing mathematical properties over time, 

they often impose unsound rigid structure upon the underlying process. To  study nonlinear 

time series, nonparametric models such as the Multivariate Adaptive Regression Splines, 

(MARS) (Chen et al., 1997) and the EEMD (Zhaohua and Huang, 2009) that do not impose 

any structural assumptions have been developed to model underlying processes. 

Nonparametric models are often formulated based on the principle of “letting data speak for 

themselves.” Nonparametric models are therefore useful when little information or when 

flexibility about the underlying model is required. 

One aspect of investigating a time series involves finding appropriate models for the 

time series.  Generally, for a given model, the central theme is to estimate the unknown 

quantities of the model based on discrete observations. The process often involves model 

identification, fitting and model diagnostics. Given some data, there are often an infinite 

number of models or hypothesis that fit the data equally well. As a result, there is no reason 

to prefer one model over another. Therefore, one is forced to make assumptions that lead to 

an inductive bias. In model selection, the model parameters are selected such that a model of 

optimal complexity for a given (finite) data is created. Such models are said to have the 

correct inductive bias. Additional details on model section can be found in the text-book by 

Burhan and Anderson (2002). 

 Time series models have been central in the study of some behaviour of a process or 

metric over a period of time. The application of time series models are manifold, the 

applications range from geophysical problems such as daily weather forecasts, electricity 

(Taylor, 2008) and astronomy (Subba and Priestly, 1997). In decisions that involve some 

element of uncertainty of future values, time series models been found to be robust methods 

of forecasting. Additionally, time series models can be used to understand the structure in the 

data and predict the future trends and patterns in the data. Bates, (1994) analysed the adjusted 

time series of global WV derived from satellite infra-red observations and reported the 

linkage between upper troposphere WV time series seasonal component and the monsoon 

circulations. In addition, the inter-annual variability of WV was found to be correlated to the 
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ENSO warm-cold events.  Based on the notion that all of the power in the integrated WV 

variations is contained in a synoptic-scale motion of air-mass, Davis, (2001) investigated the 

statistics of integrated WV time series using GPS data in order to assess the large-scale 

weather systems. It was found that the power spectral density could be a robust estimator of 

the integrated WV than the structure function is over long time scales.  

Kruger, (2006) examined the spatial-temporal variations of trends in daily extreme 

precipitation indices for 138 rainfall stations for the period 1910 to 2004 in South Africa and 

reported of some certain areas where significant changes in certain characteristics of 

precipitation amid the lack of real evidence of overall changes in precipitation over the past 

century. Documented studies on the spatial-temporal characteristics of WV assume that the 

variability of WV is driven by stationary processes. Despite all these areas of application as 

mentioned above, assessment of the stochastic and self-similar properties of tropospheric WV 

has remained unexplored. In addition, there is no literature known to the author that has 

reported on the model of WV variability. 

To characterise the stochastic behaviour of WV fluctuations, a general Auto-

Regressive Moving-Average (ARMA) time series model will be considered. In the analysis 

of WV fluctuations, an automatic algorithm could be used to estimate the appropriate model 

parameters such as the model order from the tropospheric WV and the estimated model could 

be used to investigate the nature of the underlying process that drives the variability of 

tropospheric WV. 

 

4.2. Basic concepts of time series analysis  

If a random variable Y varies with time, then a simple time series, expressed as 

t tY ={ y , t=1, 2, ...}  (here t denotes for all integer valued time index) assumes that the 

measured data points are realizations of random processes (defined in the next section as)  yt 

that comprises of four components as shown in Equation(92) (Trömel and Schönmise, 2006); 

 

 t t t t tY =T +C +S +R . (92) 

Equation (92) is similar to the model proposed by Li et al., (2000) to investigate the presence 

of secular tectonic deformation fields and to distinguish between tectonically active and 

inactive regions in central Japan using GPS data. The additive model-components, Tt, Ct, and 

St in Equation (92) refer to the trend, non-random long term and short (seasonal) periodic 
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components respectively. The random variable Rt accounts for all the deviations from the 

ideal non-stochastic components. In many time series analysis strategies, the assumption that 

E(Rt ) exist or can also achieved by modifying one or more of the non-random components. 

Furthermore, if the underlying process is dominated by the growth component Tt only then: 

 
t t ,

=

E(

f

Y )=T

(t).
 (93) 

Though the function f(t) is known, it is dependent on the unknown elements of the parameter 

space  1 2, , , q    such that,  

 1 2f(t) f(t; , , ).q    (94) 

Using the ideal realisations, yt the parameters,  1 2, , q    can be determined based on the 

least squares estimate, i.e., 

    
1 2

2 2

t 1 2 t 1 2

t t, ,

y -f(t; , , ) y -f(t; , , ) .

q

q qmin
  

        (95) 

A feasible solution from the numerical problem given in Equation (95) entails; 

  t 1 2y f t; , , ,q    (96) 

as the predictand of t   t=1, 2,y  ... ; where t=1 is the current time. Therefore, the residuals in 

the realisations i.e., ~ t ty y , possess the goodness of fit information of the model to the data. 

 

4.3. Random variables 

Over the probability space , , a discrete random variable Y is a function that maps a 

space of events   to the real axis Y:   by Y( )   where   is a   particular 

elementary event. As a result, the probabilities Y ( )  map each   result between 0 1 . 

A particular with a probability Y ( )  is obtained based on the realisation of Y. The 

relative frequency 
N( )

N


  is the ratio between realisations of and the total number of 

realisations N. 

On the continuous space, , the definition of the random variable Y has the 

corresponding probability density function, Yρ (y) with y . The probability distribution is 

therefore the integrated probability density function given in Equation (97)   
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 Y YP (λ) dyρ (y).



   (97) 

 A value of y < λ  results from a realisation of Y with a probability y{y| < λ}based on  the 

probability distribution function given by equation(98) where a typical example is      one that 

exhibits a Gauss distribution with a density function given by Equation(99);  

  y yy| < λ  = P (λ)  (98)   

 

 

2

2

Y

y - μ
-

2σ

ρ (y) = N μ, σ

1
e

2πσ


 (99) 

 

4.5. Stochastic processes 

A stochastic process Yt is a time dependent random variable with some dependency structure.  

A random process is often described by a probability density function tρ(y )  where, only the 

probability distributions are computed as compared to the deterministic case where a given 

outcome is determined by initial conditions and equations. A stochastic process Yt is denoted 

as an indexed collection of random variable with i = t1 indices specifying some time ordering 

in the discrete or continuous space. Two data records observed between t1 and t2 might 

exhibit linear dependency that could be described by an auto-covariance function given by;  

   1 2 1 1 2 2Cov(t , t )= Y - Y Y - Y .   

If the joint probability distribution is time invariant, the stochastic process is strictly 

stationary for any moment of time i jt , t . A second-order (weakly) stationary process 

exhibits a constant mean and the auto-correlation function depends only on the lag. 

One way to describe a stochastic process is to specify the joint probability distribution 

of 
1 nt tY ,...,Y for any set of times 1 nt ,...,t  and any value n. However, a simpler, more useful 

way of describing a stochastic process is to obtain the moments of the process which are the 

mean, variance and the auto-correlation function. Stochastic processes can be characterized 

by stationary, auto-covariance function a spectrum and ergodicity properties. Stationary 

processes play an important role in the analysis of time series. However many observed time 

series are nonstationary in nature. Therefore the stationary property (which means 

that
i jt tρ(y ,y ,...) is invariant) in real data is strictly rare. Instead, a first order stationary process 

exhibiting a time independent mean is more common. If a process also has time independent 
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variance and its covariance function is a function of time differences only, then the process is 

described as weakly stationary or second order stationary. 

 

it

μ

2

i

i i j j

σ

Y μ

= C ,

Var(Y ) σ

Co

= 

v(τ) = Cov(Y (

C ,

t ),Y (t )).



  (100) 

Here μ, σC are constants. The auto-covariance functions of a stationary process could be; 

 
1 1t +Δt tCov(τ) (Y - Y )(Y - Y )) ,  (101) 

This auto-covariance function can be normalized to the variance to obtain the auto-correlation 

function,  
-1

0C(t) = Cov(τ ) Cov(τ) . Furthermore the spectrum S(ω) Cov(τ)  is frequency-

domain equivalent of the auto-covariance. In order to represent a stochastic process, multiple 

realisations are often averaged. This gives rise to the power spectral density given by, 

 
2

T

T

G (ω)
S lim E ,

2T

 
  

 
 (102) 

where  
T-0.5 -iωt

T T
-T

G (ω)= 2π Y (t)e dt  is the Fourier integral of the stationary process ( )Y t . 

The Fourier transform of the auto-covariance function is related to the spectral density as 

follows; 

 
1

( ) ( ) d .
2

i tCOV e   






   (103) 

Equation (103) implies that the spectral density and the auto-covariance function describe the 

linear dynamic properties of a process equivalently. Sometimes real data may exhibit a 

temporal mean and auto-covariance function that converges to a value equivalent to the 

average of a set of realisations (say for example, ensemble average). This property is referred 

to as the ergodicity of the underlying process. 

A stochastic process is called short-range correlated or Short-Range Dependent (SRD) 

if the auto-covariance function,  SRDρ (τ)  is summable and decays exponentially,   

 SRD

τ

ρ (τ) const .




    (104) 

Not all data records exhibit SRD, instead they posses the long-range dependence which can 

be described by an algebraic decay of the auto-covariance function; γ

LRDρ (τ) τ . Such type 
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of processes are called long-memory processes or long-range correlated and their decay 

exhibits a diverging sum as shown in Equation (105) 

 LRD

τ

ρ (τ) .




   (105) 

It is worth mentioning that long-memory processes are non-periodic stochastic processes. 

Dependence over infinite time lags due to the deterministic behaviour in the data record does 

not influence the long-range correlated datasets. 

 

4.6. Geodetic parameters time series    

Geodetic time series is derived from a sequence of geodetic data sets observed over a period 

of time and arranged according to observation time. There are numerous reasons to record 

and analyze the geodetic time series data. For instance, geodetic time series analysis could be 

vital in understanding the structure of the processes that generate the data as well as aid in the 

prediction of future values. The characteristic property of a time series is that, the data 

records are not independently generated; they exhibit a time dependent dispersion and are 

often governed by trend and may also exhibit periodicity. In geodetic applications, there are 

two steps of geodetic time series analysis.  The first is identifying the nature of the process 

represented by the sequence of observations and, secondly prediction of the future values. 

Both of these goals require that a pattern of time series data is observed and described. 

Thereafter, the internal pattern (which could be the autocorrelation, trend or seasonal 

components) could then be interpreted and integrated to formulate models in geodetic time 

series that could be vital for tropospheric modelling which improves the accuracy of the 

geodetic delay observable.  

In general, analysis of the geodetic time series reported in this thesis, focuses on the 

estimation and extraction of the deterministic (e.g. trend and seasonal) components in the 

geodetic (e.g. WV) data, see the first three terms in Equation(92). The components in 

geodetic WV time series could be used to determine the best model representing their 

variability. In the analysis of geodetic data, it is assumed that the bias term (which is 

contained in last term in Equation (92)) turns out to be a stationary random process. Thus, the 

theory of random processes can be used to find a satisfactory (and probabilistic) model for 

the bias term, analyze the properties of bias term and use it in conjunction with the 

deterministic components to predict the observed geodetic WV series. Alternatively, analysis 

of the observed geodetic WV series could be approached from Box and Jenkins paradigm 
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(Box and Jenkins 1970). In this model, the difference operators are applied repeatedly to the 

observed series until the differenced observations resemble a realisation of some stationary 

processes, from then on, the theory of stationary process is used model and analyse the 

stationary (and therefore the original) series.  

 

4.6.1. Time series analysis of tropospheric WV 

Strategies for quantifying the overall transient variability of WV are not straightforward, and 

a number of statistical approaches for modelling WV variability have been attempted. 

Gierens et al. (1997) used the measurements of about 2000 flights within the Ozone and WV 

by Airbus in-service aircraft (MOZAIC) program and confirmed that fluctuations of humidity 

and temperature from their local means could be characterized by occasional large 

fluctuations (i.e. heavy-tailed distributions) in the upper troposphere (at pressure levels 166 to 

290 hPa on the general circulation model grid scale).  It was found that the fluctuations could 

then be modelled by the Lorentz distribution rather than the Gauss distribution and this was 

due to large excursions in the fluctuations of humidity and temperature.  Later, data from 3 

years of MOZAIC measurements (this is data is described in Gierens et al. 1997) was used to 

determine the nature of the distribution law of WV; which plays a vital role in testing whether 

the hydrological cycle in climate models is adequately represented. It was reported that the 

frequency of occurrence of relative humidity greater than 100% decreased exponentially 

above ice saturation and that it decreases exponentially for the entire range of values in the 

lower stratosphere (Gierens et al. 1999). A stochastic source-sink model capable of producing 

such distributions was then formulated.  

Data from NASA‟s Pacific exploratory mission in the tropics phase A, that was 

conducted between August and September 1996 was used to study the impact of human 

activity on tropospheric chemistry in the remote regions over the pacific (Cho and Newell, 

2000). Based on the empirical multifractal formula for the structure function originally 

described by Pierrehumbert, (1996), an “anomalous scaling” or multi-fractality between 50 to  

100 km horizontal range of the WV distribution  was reported (Cho and Newell, 2000). From 

these findings, it was noted that while WV increase was statistically stationary, the transient 

WV fields did not exhibit the stationary properties. As a result, the probability distribution 

(e.g., the variance) of transients could therefore not be characterised accurately from a finite 

number of observations. 
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Recently, Jin et al., (2009) used the precipitable WV time series determined from co-located 

space geodetic techniques to quantify the systematic biases between VLBI and GPS in the 5-

year co-located measurements. The reported results demonstrated that systematic biases in 

the geodetic data that describe the atmosphere systems and processes could be accounted for 

if the co-located observations are utilized. Due to the role played by atmospheric WV in 

Earth‟s atmospheric radiation budget, global hydrological cycles and global climate change 

(Suparta et al., 2009), these findings have important applications in weather forecasting, 

numerical weather prediction and climate change studies as discussed by Gettelman and Fu, 

(2008). 

In this section, the analysis of geodetic WV time series is limited to, a) determining or 

transforming of the geodetic WV time series to stationarity, b) detecting seasonality using the 

autocorrelation, partial autocorrelation and automatic spectral plots, and c) deducing the 

inherent stationary model in the data. In the present analysis, geodetic WV data is assumed to 

exhibit a systematic pattern and random noise (error). In order to observe the pattern more 

clearly, some form of noise filtering is done by use of point-averaged smoothing. This 

methodology involves fitting some function or adjusting/correcting for the trend in the data 

records. To this end, an adaptive filtering algorithm reported in Wessel and Voss (2000) and 

described in detail in Section 3.4.2 is applied in smoothing the geodetic WV time series. For 

instance, Figure 4.1 depicts a sample wet tropospheric linear horizontal gradient data set that 

has been adaptively filtered in order to eliminate measurement or systematic errors. The 

filtering procedure employed here is based on the adaptive cumulates (the mean and standard 

deviation); used as filter coefficients which were adapted spontaneously during the 

computation process. This is a robust approach because it caters for the sudden changes in the 

time series. In the current filtering procedure, basic variability of zonal gradients is calculated 

using a binomial-7-filtering given in equation(106). 

 

 t-3 t-2 t-1 t t-1 t-2 t-3Y +6Y +15Y +20Y +15Y +6Y +Y
Y

64
t   (106) 

The adaptive mean and standard deviation are calculated and observations that are flagged 

anomalous based on the procedure described in Section 3.4. The reconstructed series is used 

to compute the basic variability, the new adaptive mean a '

tμ and standard deviation a '

tσ which 

are then used to test for anomalous values using the inequality, 
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 a' a' k

t t f1Y μ >σ k +σ .t   (107) 

Here the filter coefficient vary as f12 k 5  . The diurnal fluctuations of the zonal gradients 

are represented by a basic variability k -1σ ~365 . Anomalous values are replaced with the 

respective values determined a priori. The filter coefficients take empirical constant values 

that range between 2.5 and 5.0 (these values are arbitrary determined). The reconstructed 

series plotted in Figure 4.1 used a filter coefficient that was arbitrary set to 3.0. In order to 

minimize the filtering biases, an adaptive basic variable of 0.011 was considered. This value 

was selected because the tropospheric linear horizontal gradients considered in this analysis 

are often sampled 4 times daily. The weighting factor of 365
-1 

was used to account for daily 

fluctuations in the observed series. As depicted in Figure 4.1, the unfiltered zonal gradients 

have anomalous values in the first and last quartiles. These values are not removed from the 

series. Instead, interval filtering described in Wessel et al., (1994) is used to adjust the 

anomalies. The interval filtering is done through the spontaneous adaptation of the filter 

coefficients due to the sudden changes in the observed series. 

 

 

Figure 4.1  Adaptive filtering applied to the zonal linear horizontal wet gradient component 

observed over HartRAO. The linear zonal gradient has not been detrended. 
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4.6.2. Investigating stationarity in tropospheric geodetic WV 

In this subsection, the stationarity in the geodetic tropospheric WV is examined and described 

by use of classical Box-Jenkins test. If the test for stationarity fails, then the geodetic WV 

ought to be transformed into a stationary time series before a model for stationarity is 

formulated. In the current analysis, stationarity in geodetic WV time series is identified by 

examining the behaviour of the sample auto-correlation function. The auto-correlation 

function measures the correlation between Yt and 
acft+τY (where τacf is time lag). In other 

words, the auto-correlation function of the geodetic WV time series describes the correlation 

(which also refers to the degree of dependence) that exists between geodetic WV time series 

and the same geodetic WV time series but lagged by 1, 2,.., τacf . The auto-correlation 

function is then depicted graphically by use of a histogram both quantitatively and 

qualitatively by, a) determining the period of the oscillation and b) by looking at the shape of 

the autocorrelation plot which gives some indication of the suitable model parameters of the 

time series model (e.g., autoregressive (AR), moving average (MA) or autoregressive-moving 

average (ARMA)). In most data sets, the auto-correlation coefficients are significant for a 

large number of time lags, τacf. However, due to the propagation of the auto-correlation at τacf, 

the auto-correlation at τacf >1 might not be explicit. As a result, the partial auto-correlation 

plot is used to ascertain whether auto-correlation at τacf >1 indeed represents the auto-

correlation at τacf =1. The partial auto-correlation plot is derived from the partial auto-

correlation function. The partial auto-correlation plot often has a spike at τacf =1 which could 

imply that all the higher order auto-correlations are effectively explained by the auto-

correlation at τacf =1.     

 In most time series analysis, there is no theoretical reference result that could be used 

to select and characterize a stochastic process. In this thesis, we consider a general model 

ARMA {p, q} and then automatically identify the appropriate model parameters hereafter, the 

model orders, {p, q} based on the underlying temporal pattern embedded in the time series 

data through:-  a) identifying the appropriate time dependence by ensuring that the auto-

covariance, auto-correlation and the partial auto-correlation described in the time series 

model represents a stationary stochastic process, b) ensuring that the filtered biases from the 

appropriate models are normally distributed, and c) ensuring that the model choice is 

parsimonious. After obtaining stationary geodetic WV time series, the sample auto-

correlation function and partial correlation function could be used to identify a Box-Jenkins 

model that appropriately describes the geodetic WV time series. In order to assess the 
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specific statistical structure of geodetic WV sequence, a stochastic approach that models the 

dependent structure embedded in geodetic WV time series is considered. As a result, the Box-

Jenkins statistical methodology briefly described in the following is used.    

If the values of geodetic WV series are denoted by Yt,, Yt-1, Yt-2, then Box-Jenkins 

methodology is based on an ARMA (p, q) model given by Equation (108);  

   

 t 1 t-1 1Y Y ... Y ... .p t- p t t-1 q t-qa a a U            (108) 

Here the
ta ‟s are independent and identically distributed random shocks with a zero mean and 

a finite variance 2

aσ . Further, i  i = 1,2,. . . , p and j , j = 1,2,. . . , q  respectively denote the 

AR and MA coefficients while U is the model constant which is related to the mean of 

geodetic WV series. In the model characterized by Equation(108), the current geodetic WV 

series observation, Yt  is explained by a linear combination of the p previous observations, Yt-

1... Yt-p, a linear combination of the q previous random shocks at-1..., at-q and a constant term 

U. The error term is given by at. If q=0, a pure AR (p) is derived and if p=0, the class of pure 

MA (q) is retrieved. The backward shift operator, B can be used such that BYt=Yt-1, a 

compact ARMA (p, q) model then becomes;      

 ( )Y ( ) .t tB U B a    (109) 

Here, 1( ) 1 ... p
pB B B      and 1( ) 1 ... qqB B B      represent the AR and MA 

operators respectively. For stationarity, ( )B roots ought to lie outside the unit circle. The 

model is described by Equation (109) could be visualized in the sample and partial 

autocorrelation plot with characteristics given in Table 4.1.   

 

Table 4.1 Sample AC and PAC model behaviour 

Model SAC SPAC 

MA Cuts off at lag p Tails off 

AR Tails off Cuts off at lag p 

ARMA Tails off Tails off 

 

From Table 4.1, the plots of the SAC and SPAC could be visualised and a pure AR (p) and/or 

MA (q) processes established. However, estimates of (p, q) are not trivial from ARMA (p, q) 

processes. In the current analysis, a large number of candidate geodetic WV time series 
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models are computed and some statistical criteria (e.g., AIC (Akaike, 1969) or SIC in 

equations(110)), where tμ and  
T

2 -1t

t=1

σ =  μ  T are the estimated residuals and variances 

respectively) is used to select a suitable model that is representative of the data. To this end, 

an ARMA (p, q) model is estimated based on the method of maximum likelihood. The 

likelihood function of the ARMA (p, q) model is non-linear in the unknown parameters and 

therefore non-linear optimization techniques are often used to solve for the unknown 

parameters. 

2

2

2
AIC = logσ + (p+q+1);

T

(p+q+1)logT
SIC =  logσ + .

T

 (110) 

In the current case study, WV time series data (for the period 1998 to 2008) derived from 

surface temperature measurements at HartRAO and numerical simulations of the ECMWF 

was used to investigate the stationarity properties. From the results, some indication of the 

broad correlation characteristics were averred from the sample auto-correlation and partial 

auto-correlation plots of the tropospheric WV time series as depicted in Figure 4.2. From the 

sample autocorrelation plot, it is evident that the line graphs exhibit damped oscillations 

which are the absolute sinusoidal components. These oscillations tail off slowly to zero, 

therefore indicating that the fluctuations in geodetic tropospheric WV time series are driven 

by non-stationary stochastic processes. In the present analysis, the auto-correlation function 

plot of the WV series exhibits spikes at several lags (e.g. at lags 1, 2, 4, 5, 6, 7, 8, 10, 11 and 

12). This is expected since WV time series possess inherent diurnal, seasonal and trend 

components. One way to formulate a model for data with such auto-correlation pattern is to 

use the Space Time Auto-Regressive Moving Average (STARMA) models proposed by 

Pfeifer and Deutsch, (1980). However, the STARMA models do not take into account the 

embedded nonlinear behaviour that is representative of the underlying process. In particular, 

dynamical processes with unusual jumps cannot be effectively studied using STARMA 

models. 
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Figure 4.2 Sample autocorrelation and partial autocorrelation function for WV 

 

To use ARMA models adequately, the WV time series must be stationary with respect to the 

mean and variance. Differencing between consecutive observations is one way to efficiently 

achieve stationarity. If the difference operator is defined as 1 B   , such that t t t-1Y =Y -Y  

and the differencing goal is to stabilize the mean, then  the model corresponding to the 

original WV series could be called Auto-Regressive Integrated Moving Average (ARIMA) 

model. An ARIMA (p, d, q) model is defined by the equation; 

       

 t( ) Y ( ) .d

tB U B a     (111) 

 

Here, the d
th

 is the difference of the original series tYd is stationary and could be represented 

by a stationary ARMA (p, q) model.  

The WV time series is often computed daily, monthly, quarterly or annually. 

Therefore WV series exhibit strong diurnal, seasonal or annual periodic fluctuations that 

often recur at pre-determined phases. In addition, it is expected that seasonal nonstationary 

features could be embedded in the series. For a WV time series of period k, (k =12 for 
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monthly data, and k = 36 for quarterly data), stationarity is often achieved by calculating the 

seasonally differenced series Yt – Yt-k. The seasonal difference operator of period k is 

denoted by k

k = 1- B and therefore a seasonal ARIMA model could be defined by an 

equation of the form;  

  

 t( ) Y + ( )d D

k tB U B a     (112)  

The model in Equation (112) takes into account seasonal and regular differencing due to the 

presence of trend components in the data.           

In ARMA modelling applied in this research, the data series ought to be stabilised by 

using various transformations such as square root or the logarithmic transformations.  A 

practical tool for the choice of the appropriate transformation which is based on the power 

transformation is the mean-range plot where the range of data is plotted against the mean of 

each seasonal period. For a detailed discussion on the mean-range   plot, refer to Helfenstein, 

(1986).  In the current analysis, the Box-Cox transformation was used to transform the data to 

a stationary time series. The Box-Cox transformation can be taken as a general time 

deformation process applied to WV series. This type of transformation is only in the time 

domain and therefore the notion of stationarity is restricted to a linear transformation. The 

resultant data series is then subjected to the two-sided Lilliefors and the Jarque-Bera 

goodness-of-fit test of composite normality which performs the normality test based on the 

hypothesis that the data in the WV comes from an unspecified normal distribution.  

The Lilliefors test evaluates the hypothesis that the WV observations have a normal 

distribution with unspecified mean and variance, against the alternative that the WV 

observations do not have a normal distribution. This test compares the empirical distribution 

of WV with a normal distribution having the same mean and variance as WV. The test is 

similar to the Kolmogorov-Smirnov test, but since the parameters of the normal distribution 

are estimated from WV rather than specified a priori, the test becomes more data adaptive. 

From the test, if the result H=1, then the hypothesis that WV observations have a normal 

distribution is rejected. However, if H =0, then it implies that null hypothesis cannot be 

rejected. Additionally, the P-value is computed by interpolation into the Lilliefors simulation 

table.  Table 4.2 illustrates that at 5% significance level, the result of the test is H=0.  This 

indicates that the null hypothesis (i.e. the data are normally distributed) cannot be rejected at 

7.2 % significance level. In addition, the Lilliefors test statistic of 0.0713 is smaller than the 
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cut-off value of 0.0745 at 5% significance level, therefore the hypothesis of normality cannot 

also be rejected.  

   

Table 4.2. Test statistics of the Box-Cox transformed WV normality tests 

Test type H P-value Statistic Critical value 

Lilliefors  0.0 0.072 0.0713 0.0745 

Jarque-Bera 0.0 0.055 5.3233 5.5782 

 

Additionally, the Jarque-Bera test evaluates the hypothesis that WV observations have a 

normal distribution with unspecified mean and variance, against the alternative that WV does 

not have a normal distribution. The test is based on the sample skewness and kurtosis of WV. 

For a true normal distribution, the sample skewness should be near 0 and the sample kurtosis 

should be near 3. The Jarque-Bera test determines whether the sample skewness and kurtosis 

are unusually different than their expected values, as measured by a chi-square statistic. The 

Jarque-Bera test for normal distribution in WV results yielded similar result of H=0 obtained 

from the Lilliefors test and therefore the normality hypothesis at the 5% significant level and 

5.5% P-value could not be rejected.  The derived time series models could be used to analyze 

the power spectral density and covariance function of the stochastic WV observations. These 

models could be suitable for characterizing the spectral density of the random WV 

observations with known model type and order. However, it should be noted that the spectral 

characteristics of the WV observations are often unknown a priori and therefore a large 

number of candidate models ought to be computed.  

An automatic algorithm that estimates a suitable ARMA (p, q) model to the monthly 

averaged stationary tropospheric WV revealed that the 1999 to 2008 monthly tropospheric 

WV data could be modelled by AR (100), MA (20) and ARMA (10, 9). It can be seen that 

MA order of 20 is much lower than the selected AR order of 100 partly due to the fact that a 

high AR order model is often used as an intermediate parameter for the estimation of MA 

models. The optimal coefficient vector of the AR model consists of the set, { :  1.00, -0.72, -

0.11, 0.32, -0.05, 0.11, 0.03, 0.13, 0.02, and -0.25} and the optimal coefficients of the MA 

model were found to be the vector set, {θ: 1.00, -0.25, -0.15, 0.12, -0.28, 0.27, 0.33}.  The 

prediction error of the three best-selected models is estimated based on the measured and 
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given values of the residual in variance described by Broersen (2002). For MA and ARMA 

models, the prediction error is given by Equation (113);  

  p

m
1+

Ne (m) δ(m) .
m

1-
N

=   (113) 

Here, m is the number of estimated parameters in the model and δ is the residual of the 

variance. For AR (p) models, the prediction error is given by Equation (114); 

 

  p

m=1

1
1+

N+1-me (p) δ(p)
1

1-
N+1-m

p

=   (114) 

Equation (114) is significantly different from Equation (113) for m > 0. A single time series 

model, with selected model order and type, with the smallest estimate of ep could therefore be 

easily selected.  Using the estimated parameters of the selected model, the spectral density 

and other statistically significant details such as the second-order characteristics of WV 

observations could be inferred. The model error denoted as ME is defined as the measure of 

the accuracy of the estimated model which is the difference between the estimated model and 

a true stationary process. This measure is simply a scaled transformation of the one step 

ahead squared error of ep. Based on the vector set { ,  }  of the tropospheric WV, a true 

stochastic stationary process was modelled and the difference between the stationary process 

and the estimated model from the WV data.  An ME value of ~ 262 was obtained. However, 

the difference between the selected ARMA and AR models from the same WV data set was 

found to be ~ 15. 

 

 
 
 



76 

 

 

Figure 4.3. True and estimated power spectral density (log scale) 

Figure 4.3 compares the power spectral densities of a true stationary process and the 

spectrum estimated from WV model on the log-scale. It is evident from the figure that the 

estimated model approximates to the true stationary process with subtle differences which are 

quantified by the ME. Furthermore, the estimated model accuracy as a function of model 

order and type is depicted by Figure 4.4. It is clear from Figure 4.4 that AR (50) and ARMA 

(10, 9) models have higher accuracy than the MA (20) based on the underlying processes in 

WV data. In all the estimated models, the accuracy increases with increase in the model order 

up to the {p, q} of the ARMA model. 
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Figure 4.4.  Estimated model accuracy as a function of the model type and order. 

Assuming that the estimated model is representative of the data, the resultant spectrum could 

be robust and more accurate compared to the parametric spectrum which could be computed 

from, for instance the classical periodogram. This is evident from the left panel of Figure 4.5. 

As can be seen from the left panel of Figure 4.5, the spectral density of the periodogram do 

not have a smooth curve; this could be attributed to the distortion of the spectrum by 

convolution of the window function whose width equal  the length of the WV. In addition, 

the periodic oscillations of WV are often treated differently in the discrete Fourier transform. 

For instance, if there are narrow spectral features (e.g. high frequency components in WV 

fluctuations), those narrow components will be broadened by the convolution. On the other 

side, there will be less broadening of the spectral peaks for a broad window function in the 

time domain but whose spectral main lobe is narrow in the frequency domain.  

As depicted in  Figure 4.5, the power spectral density based on the periodogram vary 

significantly from the true power spectral density of the WV series. A common approach 

(also called the Bartlett method) used to correct this inconsistency is to divide the data record 

into small subsets and compute the periodogram separately. Thereafter, the results are 

averaged over all the small records. Averaging periodograms reduces the variance in the 
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estimated power spectral density and therefore provides a better estimate of the spectral 

properties of the WV observations.  Furthermore, the spectrum of the true stationary process 

(in the left panel) compares well with the spectrum of the true and the estimated time series 

(this is plotted in the right panel). 

 

 

Figure 4.5. Periodogram and the spectra of the true and estimated time series. 

 

4.7. Concluding remarks  

Recent advances in atmospheric remote sensing have availed WV data from a variety of 

sources and sensors with improved spatial-temporal resolution. As a result, data sets that 

could be used to compute WV for investigating the structure and dynamics in the troposphere 

have increased. Further, the long time series of WV allows detailed studies on WV acting as a 

major component of the global hydrological cycle, as a greenhouse gas as well as the 

variability of WV at different spatio-temporal scales in the climate system. In this chapter, the 

stochastic behaviour of stationary WV fluctuations has been characterised using a general 

auto-regressive moving-average (ARMA) time series model. In the analysis, an automatic 

algorithm which estimates the appropriate model parameters has been used to formulate a 

model that is used to investigate the nature of the underlying processes that drives the 
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variability of tropospheric WV. In the present analysis, monthly averaged stationary 

tropospheric WV derived from geodetic VLBI measurements  for the period from 1999 to 

2008 is modelled by AR (100), MA (20) and ARMA (10, 9). The power spectral densities of 

a true stationary process and the spectrum estimated from WV model were compared on the 

log-scale. Results showed that the estimated model approximates to the true stationary 

process. Furthermore, the estimated model accuracy as a function of model order and type 

showed that AR (50) and ARMA (10, 9) models have higher accuracy than the MA (20) 

based on the underlying processes in WV data. 
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