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3. Data and methodology 

I often say that when you can measure what you are speaking 

about, and express it in numbers, you know something about 

it; but when you cannot express it in numbers, your knowledge 

is of meagre and unsatisfactory kind; it may be the beginning 

of knowledge, but you have scarcely, in your thoughts, 

advanced to the stage of science, whatever matter may be. 

- Lord Kelvin, W. T., 1866. 

 

 

Chapter 3 outlines the research method, data used, their 

sources and method of analysis. The schematic framework of 

the research is discussed. The Chapter focuses on the geodetic 

and model simulated data sub-sampled at the geodetic VLBI 

stations and the NWP grid cells over the SHADOZ network. In 

addition, the non-parametric techniques used in data analyses 

are also described.  

 

3.1  Introduction 

In this thesis, investigation of tropospheric delays due to geodetic WV and WV fluctuations 

over the Southern Africa region by geodetic and simulation data are reported. The stochastic 

behaviour of local WV time series is investigated by use of Auto-Regressive Moving 

Average (ARMA). In addition, the multi-scale variability and scaling behaviour of WV is 

studied in the time-frequency domain (wavelets) as well as using a data adaptive (noise 

assisted) methodology (i.e. EMD methods). All these methods take into account the inherent 

nonlinearity and nonstationary characteristics based on the local time scales of the data. This 

chapter describes the sources and different types of data that were used in the present 

research work. In addition, methods used to pre-process these data records are briefly 

described. In the analysis section, a general and brief description of the mutual information 

concept, often used in information theory, is discussed and its linkage to the correlation 

paradigm is presented. Further, for the purpose of studying the scaling behaviour in the WV 

fluctuations a general description of the wavelet transform, DFA and HHT techniques are 

also presented. Specific applications of each of these methods, which have been presented in 
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various international conferences, peer reviewed and published are presented in the 

subsequent chapters. 

 

3.2. Research methodology 

In order to investigate the nature of WV fluctuations over Southern Africa, this research was 

undertaken from three important viewpoints as depicted in Figure 3.1. Firstly, geodetic data 

(VLBI and GPS ZTD and delay gradients) at the HartRAO fiducial geodetic station were 

used to compute a long time series of geodetic WV. Troposphere gradients, VMF and WV 

derived from ECMWF data were used to investigate the nature of stochastic processes in the 

time series. Thereafter, the parameters of the ARMA model that characterise the stationarity 

of WV were adaptively estimated from geodetic tropospheric delay time series. 

 

 

Figure 3.1. Flow diagramme of the research framework. 

Secondly, the multi-scale structure of WV in the low- and mid-tropical Africa is investigated 

by use of in situ radiosonde observations of the SHADOZ station network comprising of 

Ascension, Irene (South Africa), Reunion (Reunion) and Nairobi (Kenya) and the numerical 

model simulations for the period from 1998 to 2006. Thereafter, the vertical model of 
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tropospheric WV over southern Africa is developed by use of radiosonde and NCEP/NCAR 

reanalysis data. Finally, the scaling properties of WV fluctuations were identified and 

measured using wavelet-based and DFA (DFA is described by Chen et al., 2002) approaches. 

Wavelet analyses could be viewed as a microscope and telescope. This is due to the high-

frequency/low-time resolution in the low-frequency part and low-frequency/high-time 

resolution in high-frequency part characteristic of this technique. In addition, it uses a 

predefined wavelet basis; the mother wavelet. This implies that the wavelet analysis results 

are limited by the mother wavelet. Nevertheless, this nonparametric estimate of scaling 

behaviour is computationally efficient (e.g., the discrete wavelet transformation) and is robust 

because it has low variance and negligible bias. Further, the Hilbert-Huang transforms, HHT 

(Huang et al., (1998)) and the EEMD reported by Zhaohua and Huang, (2009) were used to 

adaptively analyse the nonlinear and nonstationary processes in WV. The HHT is built on the 

assumption that any data set consists of different, simple and intrinsic modes of oscillations 

(ranging from low to high frequency) that are derived from the observations objectively 

(adaptively). As a result, this methodology is suited for presenting the WV distributions 

(derived from observations) in time-energy-frequency distributions. 

 

3.3. Data 

Troposphere parameters (N, WV, ZTD and delay gradients) that were analysed and presented 

in this thesis were derived from geodetic, radiosonde, other space-borne measurements and 

NWP model simulations. For clarity, Figure 3.1 depicts the data, processing and analysis 

methods that have been used to study the fluctuations of troposphere parameters (ZTD and 

WV). 

  

Geodetic data 

The central theme in geodetic processing is to derive the delay observable which has position 

information of the geodetic receiver and the source of the radio signal. For geodetic VLBI, 

the delay observable also has the structure information of the radio source. To derive this 

information with high accuracy, the troposphere contribution to the delay observable must be 

removed. This thesis addresses an inverse problem: 

a) The results of actual geodetic observations are used to assess and compute 

the inherent properties of the fluctuating troposphere parameters that 

characterise the tropospheric structure and dynamics.  
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b) It also addresses the effect of the atmosphere on the geodetic observations, 

through the use of actual observations and numerical simulations of 

meteorological parameters.  

The IVS for Geodesy and Astronomy provides tropospheric products such as zenith total 

delay and zenith wet delay, /

atm

ztd zwd  for all IVS-R1 and IVS-R4 sessions since January 2002 

(Schuh and Boehm 2003). All available VLBI observations are processed by the IVS ACs 

with three main analysis software packages, OCCAM (maintained by the Institute of Applied 

Astronomy, Russia), CALC/SOLVE (maintained by NASA Goddard Space Flight Centre, 

GSFC) and Steel Breeze (maintained by Main Astronomical Observatory-MAO, the National 

Academy of Sciences, Ukraine). The corresponding products such as /

atm

ztd zwd  are transferred 

to the IGG (Institute of Geodesy and Geophysics, Vienna University of Technology, Austria) 

for comparison and combination. The motivation for combining the tropospheric parameters 

is to average out the systematic differences in /

atm

ztd zwd arising from the use of the different 

analysis software packages  using different parameterisation and models, such as the 

thresholds of outlier detection, or elevation cut-off angles. For further details, please refer to 

Schuh and Boehm (2003) and Heinkelmann et al., (2007). The combined long time-series 

of /

atm

ztd zwd is determined from all geodetic VLBI sessions and can conveniently be obtained 

from all IVS data centres (see, ftp://cddis.gsfc.nasa.gov/vlbi/ivsproducts/trop).  

The geodetic delay and other derived parameters such as troposphere gradients, WV, 

mean atmospheric temperature and VMF derived from the ECMWF were obtained from 

IGG. The data is archived at http://mars.hg.tuwien.ac.at. The archive consists of files which 

contain a record of the global geodetic VLBI, GPS and DORIS station names. The temporal 

resolution for troposphere parameters archived is six hours corresponding to the NWP model 

simulations. Since our concern is to assess the local and regional fluctuations of troposphere 

WV, we study WV (and those parameters that influence WV) variability over a geodetic 

station; HartRAO-South Africa (see Figure 3.2). 

 
 
 

ftp://cddis.gsfc.nasa.gov/vlbi/ivsproducts/trop
http://mars.hg.tuwien.ac.at/
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. 

Figure 3.2.  Fiducial geodetic site: Hartebeesthoek Radio Astronomy Observatory. 

 

In addition to geodetic VLBI data, troposphere delays derived from GNSS observations were 

also analysed. The International GNSS Service (IGS) which was formally established in 1993 

by the IAG, began routine operations in January 1994 (Beutler et al., 1999). The IGS 

operates a global network of more than 350 permanent GPS tracking stations, each equipped 

with a GPS receiver that provides raw GPS tracking data in a Receiver Independent 

Exchange (RINEX) data format. All available near-real time global IGS observation data are 

transmitted to the global IGS data centres from where a combined tropospheric product (e.g., 

weekly files containing /

atm

ztd zwd  in a 2-h time interval from the IGS tracking stations and 

archived for instance at ftp://cddis.gsfc.nasa.gov/gps/products/trop_new) can be downloaded. 

Other data sets used in VLBI and GPS processing are presented in Table 3.1. 
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Table 3.1. Data products and sources used in VLBI analysis. 

Geodetic data Description Source 

Ephemerides 

& Earth 

orientation 

parameters 

 Current series: EOP 

0504 (Standish, 1990) 

http://hpiers.obspm.fr/eop-c  

Atmospheric 

loading 

coefficients 

 Tidal and non-tidal  

atmospheric tides 

(Petrov and Boy, 2004) 

- http://www.ecgs.lu/atm (tidal S1/S2 

sine and cosine components) 

 

Thermal 

deformation 
 Thermal deformation 

of VLBI antennas 

(Wresnik et al., 2005) 

- 

http://mars.hg.tuwien.ac.at~vlbi/thermal  

Ocean loading  Ocean tide model 

GOT00.2 based on the 

global ocean tide 

model from TOPEX/ 

Poseidon Altimetry/ 

GOT99.2 (Ray, 1999) 

Source, H.G. Scherneck 

 

 

Numerical prediction model simulations, satellite and Ozonesonde data 

NWP model simulated pressure, temperature, and specific and relative humidity fields 

derived from the reanalysis project of the NCEP / NCAR (Kalnay et al., 1996) in the United 

States (US)); which is the NCEP/NCAR data set were also used to compute WV. These data 

sets were obtained from NASA‟s website at http://www.cdc.noaa.gov. In addition, surface 

temperature measurements based on the automatic weather stations over the HCB were 

provided by the South Africa Weather Service (SAWS).  

The vertical profile of WV model for southern Africa reported in this thesis was 

derived from Ozonesonde data sets based on the SHADOZ network (i.e. Nairobi - Kenya, 

Malindi - Kenya, Irene – South Africa, Reunion - Reunion and Ascension–Ascension Islands 

stations); the data is archived at http://croc.gsfc.nasa.gov/shadoz/. Refer to Thompson et al., 

(2003) for a detailed and technical description of the data sets. In addition, data from the 

HALOE on board the upper atmosphere research satellite were from HALOE server. 

 

 
 
 

http://hpiers.obspm.fr/eop-c
http://www.ecgs.lu/atm
http://mars.hg.tuwien.ac.at~vlbi/thermal
http://www.cdc.noaa.gov/
http://croc.gsfc.nasa.gov/shadoz/
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3.4. Data pre-processing 

Both Geodetic data and those derived from model simulations utilised in the present research 

exhibit inherent systematic biases. For instance, geodetic data sets are often acquired by use 

of geodetic instruments that have measurement biases. In addition, bias contribution from 

external environment such as changing weather systems is a known problem among the space 

geodesy community. Furthermore, the difference in the analysis schemes employed by 

different software packages is known to bias geodetic parameters such as geodetic WV. On 

the other hand, model simulated data sets are often constrained by the inherent 

parameterization schemes.  

While the analysis strategies employed in this research are robust and some-worth 

data adaptive, the data sets considered were pre-processed before analysis. A static 

transformation function was applied to most of the data sets analysed in the thesis in order to 

ensure a symmetric frequency distribution and also to obtain a more Gaussian-like shape. 

This transformation is particularly important in assessing the stationary processes in the 

geodetic data. In addition, the periodic cycles and polynomial trends were estimated and 

subtracted from the original data sets as a method of disintegrating the time series into 

inherent components from which the stochastic characteristics of each component would be 

deduced. In particular, the data sets were transformed using Box-Cox transformation (Box 

and Cox, 1964) while second order statistics were adaptively subtracted from the data using 

the Wessel et al, (2000) adaptive filtering methodology. 

 

3.4.1 Box-Cox transformation 

The Box-Cox transformation is a non-linear static transformation function which converts 

non-normal datasets to a set of data which approximates a Gaussian distribution. Though the 

Box-Cox transformation is a family of power transformation, in this thesis, a geodetic data 

record  
1,2, ,j j N

Y


 for which 0jY    1, ,j N  is Box-Cox transformed by Equation(49),  
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The power parameter,  is often selected based on the maximising logarithm of the 

likelihood function given by Equation  (50), 
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where geometric mean, 
1
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Y Y
N
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

  .  

 

3.4.2. Estimation of periodic cycles and adaptive filtering 

Geodetic tropospheric data exhibit periodic components. A periodic component can be 

obtained by estimating the mean and the variance for a particular time span over some 

reference epoch, refT in the cycle. If the geodetic data record has p cycles of length N , 

according to Hipel and Mcleod (1994), the mean can be calculated from Equation (51); 

 

 ,

1

1
ref ref

p

T T j

k

Y
p




     1,2, ,refT N  (51) 

 

where refT  is the reference time epoch and k indexes the successful cycles. Note that N=365 

for daily measurements over one year cycle. The variance is given by Equation  (52); 
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
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The normalised anomalies time series can be calculated by Equation (53) 

 

 
,

,' .
ref ref

ref

ref

T k T

T k

T

Y Y
Y




  (53) 

The main objective in the current analysis of geodetic data is to investigate the characteristics 

of the fluctuations of the WV and the nature of the underlying processes that drive this 

variability. However, some amount of noise is always expected to be embedded in the 

geodetic data records. Analysis of such data records in the presence of noise often fail to give 

the required accurate spatial-temporal structures of interest to the space geodesy community. 
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It is therefore necessary to exclude the artifacts, systematic and manual errors by use of a 

robust cleaning tool. A robust platform for denoising the data which is used in this thesis is 

based on Wessel et al., (2000). The advantage of using this methodology stems from the fact 

that the filter coefficients are spontaneously adapted in the event of the sudden changes in the 

time series.  

 Apart from the ordinary gap filling of data with missing data records, adaptive 

filtering proceeds via two important steps; the adaptive filtering and adaptive control 

procedures. In the adaptive filtering procedure, the adaptive second order properties such as 

the mean, n

a  and standard deviation, n

a  given in Equations (54) are computed from a 

reconstructed time series *kY (wherein the obvious errors such as gaps due to missing values) 

have been removed or filled. 

 

 

1 *( 1) ( 1)     k=1, 2, ... nk k k

a a a

k k k

a a a

k q Y  

  

    

 
 (54) 

 

where  0,1q is the controlling coefficient and the adaptive second moment 

 1 1 * 1 * 1k k k k k

a a aq Y Y         . Outliers are often identified using a filter constraint 

imposed on the raw data. The data point is an outlier if; 
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where  is the proportionality constant ( 0.1), f aq   is the generalised 3  sigma rule. The 

last valid observation is denoted by vY  while a  is the average of n

a . A random number 

generated from Equation (56) is used for gap filling (replace all those values recognised as 

outliers). 
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This gap filling procedure is used to avoid the false decreased variability that is often noticed 

after the adaptive filtering phase. In the adaptive control procedure, a percentage time series 

is build from the adaptively filtered time series. Thereafter, a new adaptive mean and 

standard deviation of the reconstructed percentage time series,  %

kY ; 1,2, ,k n   of the 

adaptive filter and binomial-filtered series are calculated. Then, a constraint is imposed on the 

binomial-filtered series such that an outlier data point is detected using the following 

inequality: 

 

 
1

%

0.
k k

a a f aY q       (57) 

 

Here, 
1f

q and 0 are the filter coefficient and parameter that accounts for basic variability 

respectively. Equation (57) is introduced to dampen filtering errors due to minimal variability 

in the geodetic time series.  

 

  3.5. Data analysis strategies 

The only links we have with the unexplained reality are the data and therefore the only way 

of investigating the underlying processes of any given phenomena is through data analysis, 

refer for example Lin et al., (2009). Geodetic tropospheric parameter time series, such as 

tropospheric delay (and delay gradients), WV, tropospheric mean temperature and pressure 

consist of complex components which are manifestations of non-linear processes. The 

dynamics of the troposphere often evolve as a complex system with various spatio-temporal 

correlation scales that are either discrete (e.g., precipitation) or continuous (e.g., tele-

connection patterns). These correlations often embed different components with, perhaps a 

wealth of unique statistical information about the interactions among the inherent 

tropospheric constituents: the geophysical signals. Traditional methods of determining 

characteristic time-frequency scales (e.g., Fourier and Principal Component Analysis) for 

each component involve decomposing the time series into component basis functions that 

satisfy two conditions; completeness of the basis and orthogonality. In terms of Fourier 

analysis, a given time series „ ( )Y t ‟ is decomposed into global sinusoidal components of fixed 

amplitude ja given by Equations (58) , 

 
 
 



47 

 

 
0

( ) ;

1
( )

2

j

j

n
i t

j

j

i t

j

t

Y t a e

a Y t e dt



















 (58) 

 

Equations (58) imply that the spectral amplitudes, ja  represent the energy contributed by a 

sinusoidal basis with frequency j  that spans the whole time series. The Fourier 

representation is most useful when the underlying geophysical process which causes 

variability in the time series is linear and therefore the superposition of the sinusoidal signals 

would make physical sense. As alluded to earlier, ja  remains time invariant thus ( )Y t is 

fairly constant. However, most of the geodetic time series do not meet this stationarity 

condition (they are non-uniform, non-linear and nonstationary). This would mean that the 

time series exhibits a broad spectral energy. In order to reconstruct the time series, global 

(e.g., harmonic) sinusoids are often required. Fourier transforms do not provide local features 

and therefore not suited for local description of the embedded dynamical structure of the 

observations.  

 

3.5.1. Detrended fluctuation analysis 

In this thesis, the presence or absence of random walk-type behaviour in troposphere WV is 

assessed using the DFA. The DFA methodology has been proven useful in revealing the 

extent of long-range correlations in diverse time series (e.g., Talkner and Weber, 2000; 

Király and Jánosi, 2005; Qian et al., 2008; Peña et al., 2009; Rybski and Bunde, 2009 and 

Varotsos et al., 2009). The DFA method is used to analyse WV fluctuations and also provide 

characteristics of the correlated stochastic components as well as effectively filtering out slow 

trends. The DFA approach handles nonstationary trends and also amplifies the intrinsic 

correlation structure of WV fluctuations of different time scales for analysis. The most 

important advantage of DFA over conventional methods such as autocorrelation and spectral 

analysis is that it has provision for the detection of intrinsic self-similarity that is embedded 

in the nonstationary WV. In the following, the general procedure of the DFA methodology is 

presented. 
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 Step 1: A fluctuating WV time series tY   1 , 2 , ,t T  is integrated to 

determine the profile: 
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

   (59) 

 

In Equation (59); 
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 Step 2: t is segmented into 1intK T   non-overlapping time intervals, k  

of equal size   where 1, ,k K . The above procedure is repeated from the 

other side of the series (from t=T, T-1, ..., T-(T-1)) in order to include all parts 

of the profile. This yields 2K segments. 

 Step 3: For each of 2K segments, a local trend is calculated and a polynomial 

function of the form 'k  is determined by the least-squares fit to the series. 

Thereafter, the variance is calculated using Equation (61) 
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for each segment, 1, ,k K  and 
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for 1, ,2k K K  . 

 Step 4: An m
th

 order fluctuation is calculated by averaging each scale over all 

segments using Equation (63)  
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In this report, m=2. Steps 2, 3 and 4 are repeated for several time scales in 

order to assess the dependence of (:)F on the time scales. 

 Step 5: The scaling behaviour of the WV fluctuations is then determined by 

analysing the log-log plots of (:)F  versus τ. Note that a power law 

relationship between mF  and τ indicates the scaling with an exponent  given 

by; 

 .mF   (64) 

 

Here, ν is a self-similarity parameter that represents the long-range power-law 

correlation in the data record. It is worth noting that if WV exhibits  self-

similar behaviour with  ν > 0 the fluctuations would grow with the window 

size in a power law way. This implies that the fluctuations on large 

observation windows exponentially grow faster than those with small 

windows. This would mean that WV fluctuations are unbounded. If 

0.5,  the fluctuations are uncorrelated and are expected to be driven by 

processes that are a random walk and WV exhibit a Gaussian distribution; 

however, if 0.5,  the fluctuations are anti-correlated and for 0.5,   the 

signal is correlated. Processes exhibiting this behaviour have a power-law 

autocorrelation function expressed as; 

 

   .t tC YY 
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Here, 0 1  . According to Talker and Weber, (2000), the relationship 

between the correlation exponents could be given by; 
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2


   (66). 

3.5.2. Wavelet transform 

The WT has been introduced and developed to study a large class of phenomena such as 

image processing, data compression, chaos, fractals, etc (Whitcher, 1998). Mallat, (1989) 

proposed a concept of multi-resolution analysis for constructing an orthonormal wavelet basis 

and further illustrated the wavelet multiresolution characteristic from the space aspect. As a 
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result, the works demonstrated the functions of wavelet theory in the frequency analysis of 

various data signals. Though recently developed, wavelets analyses techniques provide a 

powerful and insightful representation of the structure in data appropriate to both linear and 

nonlinear systems. The basic functions of the WT are related to the property of spatial-

temporal-frequency localisation, contrary to what happens with trigonometric functions. The 

WT works as a mathematical microscope on a specific part of a signal to extract local 

structures and singularities. This makes the wavelets ideal for handling non-stationary and 

transient signals, as well as fractal-type structures. 

Let 2 ( )L denote the two dimensional space of all square integral functions, ( )t  

with finite energy. If 2(t) ( )L   is a fixed function, then the ( )t  is said to be a wavelet if 

and only if its Fourier Transform (FT), ( )w  satisfies the permitted admissibility condition 

(also called complete reconstruction condition) given by Equation  (67), 
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Here, ( )t  is the mother or basic wavelet. Equation (67) implies that the wavelet value is 

centred on the mean (see Equation(68)) 

 

 
( ) ( ),

0,

t dt t 








  (68) 

 

and therefore is oscillatory (some sort of a wave) as described by Daubechies, (1992), Mallat, 

(1999) and Qian, (2002).  

If the flex (also called the dilation) and translation transform is applied to the mother 

wavelet ( )t , then ( )t  can be decomposed into some wavelet series  ,a b
  defined such that;  
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Here, b  is the translation parameter and ( 0)a a  is the flex/dilation or scale 

parameter (this is the scaling in frequency range). The normalisation factor a
0.5

 ensures that 

 ,a b
  has the same energy along all the scales.  Given that tropospheric WV data sets are 

represented by finite number of observations or measurements, the orthogonal (discrete) 

wavelets associated with orthonormal bases of 2 ( )L  are often appropriately used for their 

analysis. Therefore, WT is performed only on a discrete grid of the tropospheric WV over 

some dilation and translation. This implies that a  and b  parameters take only integral values, 

where in general terms, the expansion of the WV time series, ( )Y t  can be expressed by 

Equation  (70) 

 

 ,Y(t)= ( )m

n m n

n m

Y t  (70) 

 

From Equation  (70) the orthonormal wavelet basis functions are related according to; 

 

  2
, ( ) 2 2 ,

m

m

m n t t n    (71) 

 

where m  and n  are the dilation and translation indices respectively.  Equation (71) is derived 

from equation (69) when 2 ma   and 2mb n  . At any particular wavelet level m , the 

contribution of a time series could be given by Equation (72), 

 

 ,( ) ( )m

m n m n

n

Y t Y t  (72) 

 

The significance of Equation (72) is that it provides temporal behaviour of the time series 

within different scales as well their contribution to the total energy WV time series. As 

discussed in Qian, (2002), the wavelet function ( )t is related to scaling function ( )t and 

scaling coefficients m

na .  

For a given wavelet basis to be as representative as possible, some degree of 

regularity is often desired. This condition is met by wavelets that exhibit n  vanishing 

moments; 
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 ( ) 0k

nY y dx




  ; 0,1, , 1,k n       and (73) 

   

 ( ) 0k

nY y dx




 ;  .k n   (74) 

 

Equations (73) and (74) imply that a wavelet with n  vanishing moments is orthogonal to 

polynomials up to order 1n . Note that the admissibility condition imposes the condition 

that a wavelet ought to have at least one vanishing moment. In general, a wavelet transform 

of ( )Y t with a wavelet ( )n y  and n  vanishing moments is simply a smoothed version of the 

thn  derivative of ( )Y t on various scales. 

Here, we have employed the Haar wavelet as the analysing signal where a set of non-

continuous (and therefore non-differentiable) functions whose mother wavelet takes the form 

of: 

 

 

1

( ) 1

0

t




 



    

otherwise

t

t

15.0

5.00





 (75) 

 

with a scaling function )(t described as, 

 

 
1

( )
0

t


 


    
otherwise

t 10 
 (76). 

Important features of the Haar wavelet include:   

a) the basis functions are often expressed by linear combinations: 

0 1 2(2 ), (2 ), (2 ), , (2 ),kt t t t     and their shifted functions,  

b) the constant functions,  0 1 2(2 ), (2 ), (2 ), , (2 ),kt t t t    and their shifted 

function form are used for approximations, 

c) they exhibit the orthogonality, 1

1 11 , ,2 (2 ) (2 )mm m

m m n nt n t n dt   



   , where ,i j  

is the Kronecker delta and  

d) the wavelet and scaling functions are related as shown in equations (77) ;  

 
 
 



53 

 

 

 
     

     

  2   2  1 ,

  2   2  1 .

t t t

t t t

  

  

  

  
 (77) 

The Haar wavelet transform cross-multiplies a function against the Haar mother wavelet with 

various shifts and stretches which are derived from the Haar matrix. See Equation (78)  for a 

2 by 2 Haar matrix sample; 

 

 2

1 1

1 1
H

 
  

 
 (78) 

The Haar WT therefore aids the sampling processing in which rows of the transform matrix 

act as samples of the finest resolution (this is the basis for multi-resolution analysis in 

wavelet methodology). 

 In the analysis of scaling behaviour in WV, nonparametric estimators (e.g. DFA 

described above) were considered in this thesis. These estimators are based on fitting a 

power-law on the thn order moment of the data values themselves or of their variations as a 

function of some scale/lag parameter. The approach has however two presuppositions for 

scaling processes. For long memory processes:-  

a) a statistically sufficient evidence that the relevant points on the curve do indeed 

represent a straight is required, and  

b) that the line‟s slope is such that 0.5 1H  , where H is the Hurst parameter. 

 If WV data (of length N ) is assumed to be stationary, then a simple sample estimator of the 

mean, Y  of a second order process tY is a reasonable choice. However, as N  , Y  

follows a normal distribution with; 

 

 

 
2

var

Y

Y

E Y

Y
N



  (79) 

If tY  exhibits self-similar behaviour, the sample mean is asymptotically and normally 

distributed with Y  but the variance is expressed according to Beran, (1994) by Equation 

(80),  

 

 
 

2 2 1

1

r
LRD

C N

N




 




 (80) 
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where  0,1  and  0,rC   parameters describe self-similar behaviour. Equation (80) 

implies that the variance of the sample mean decreases with sample size at a slower rate than 

the classical one with the ratio 2 2:Y LRD    quickly with N . Clearly, computing any 

confidence interval of Y  would be biased. A robust approach that is capable of handling 

self-similar behaviour in WV time series could therefore be required. The wavelet estimator 

is one of the methods chosen in this thesis. Using the wavelet based approach; scaling 

properties in the data sets could be detected, identified and quantified. This is because, the 

WT often utilises an analysing a priori mother wavelet such as the Haar basic wavelet; which 

has inherent scale invariant properties. These semi-parametric estimators are computationally 

efficient and allow data analysis of arbitrary length. In addition, the estimators can also detect 

and isolate the deterministic components (trends) in the data.  

There are many classes of scaling processes (Beran, 1994). In this thesis, it is 

desirable to distinguish between self-similarity and long range dependent processes. Self-

similar (SS) processes (e.g. Fractional Brownian motion) are stochastic processes that are 

invariant in distribution under suitable scaling of time and space. A stochastic process 

( , 0)tY t   is SS with exponent H  of SS if and only if all 0c  , 

 

    , 0 , 0
d

H

ct tY t c Y t    (81) 

where 
d

  indicates an equality in the statistical and/or distribution sense. For Gaussian 

processes with finite variance (these processes exhibit stationary increments), the following 

properties hold: 

1. If 0H  , then 0tY   0t  , 

2. If 0H   and ( , 0)tY t   is continuous probability, then 0t  , 0( ) 1tP Y Y  , 

which implies that 0H   for this particular SS processes. 

3. If for some 0 1  ,  1tE Y


  , then 0 1H  . 

Some processes exhibit inbuilt memory which is dependent upon widely separated values that 

are significant even across large time shifts. Such stochastic processes are referred to as 

Long-Range Dependent (LRD) and their autocorrelations decay to zero slowly such that their 
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sum does not converge. Processes with long memory (or LRD) are stationary processes and 

contain spectral density that satisfies, 

 

 fc


 


   as 0   (82) 

 

where 0 1     (this describes the quantitative nature of the scaling) and 0fc   (is the 

measure of the size of the LRD and has the dimension of variance). Equation (82) implies 

that the auto-covariance,  t tr E YY  satisfies, 

 

 1

rr c 

    as 0   (83) 

 

where    12 1 sin 2r fc c     , and  is the Gamma function (Beran, 1994). Equations 

(82) and (83) imply that the covariances, r decays slowly. Increments of finite variances of 

SS processes have LRD as long as 0.5 1H  , where H  and   are related through 

 

 2 1H    (84) 

 

Based on the wavelet analysis framework, the wavelet coefficients ,j kd represent the 

difference between the aggregated time series by factors 12 j and 2 j for a fixed scale j . In 

this regard, the underlying assumption is that ,j kd  are short-range correlated. Given that ,j kd  

are the wavelet coefficients at octave j , and if the mother wavelet has M vanishing moments 

and that its Fourier transform is M differentiable at the origin and jm is the number of 

wavelet coefficients available at octave j , then ,j kd  is second order stationary. Furthermore, 

,j kE d   can be estimated as reported by Abry et al., (2000) by; 

 

 
2

,

1

1 jm

j j k

kj

d
m




   (85) 

 

In addition, the estimator of the log ,j kE d   is, 
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1

log
log 2

j j

j

s
m

   (86) 

 

where the last term of right-hand side cancels the bias contributed from the nonlinear 

component of log2. As a result, a plot of j  versus js  yields the log-scale diagramme as 

described by Abry and Veitch (1998). 

 The log-scale diagramme of the coefficients of the WT was used to analyse WV 

fluctuations and investigate the presence of two most important self-similar behaviours; the 

LRD and SS. The wavelet-based estimator of the LRD and SS is based on the discrete 

wavelet transform, DWT. The analyses of the WV‟s LRD/SS and other derived parameters 

are based on the following procedure. Firstly, the data is discretely pre-filtered to eliminate 

outliers in the WV sequence. Thereafter, the DWT of the pre-filtered WV data series is 

computed and then the squares of the coefficients of WT are averaged. A linear regression on 

the log of the averaged coefficients of the WT (plotted on the y-axis) and the log of the scale 

(plotted on the x-axis) is fitted.  In this regard, the log-scale diagramme was used to:  

a) select the scale range where scaling is observed, and  

b) estimate the scaling properties in the coefficients of the WV. 

 It is assumed that, a scaling phenomena could occur over a range of 

scales,  1 2,j j j and therefore for LRD processes, 2j is infinite but 1j is where the LRD 

begins (this value has to be selected). However, for SS processes, j   as 2j remain infinite 

(Abry et al., 1999). 

 

3.5.3. Hilbert-Huang transform 

Geodetic data collection, pre-processing, analysis and visualisation of the inherent signal 

structure by use of DFA and WT methodologies often assume that the underlying processes 

are weakly stationary. Ideally, stationarity in geodetic data and tropospheric WV fluctuations 

cannot be guaranteed.  In order to accommodate the inherent nonlinear and nonstationary 

properties of WV sequence, the reported research utilised an objective and flexible method 

that could describe the oscillatory events in WV fluctuations whose associated time-

frequency characteristics evolve over time called the HHT. The HHT approach is able to deal 

with WV fluctuations in the multiple resolutions and therefore distinguishes different 

processes driving variability. 
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The gist of the HHT is the EMD whose basic concept involves the empirical identification of 

oscillatory modes in the data by means of the local extrema. The decomposition is based on 

the assumption that:- 

 a) the data must have at least two extrema, 

 b) there exists a characteristic time-scale defined by the time interval between 

consecutive extremes; and  

c) the presence of an inflection point (no extreme) requires interpolation in order to 

obtain the extrema.  

The EMD approach assumes that the target data set consists of different, simple and intrinsic 

modes of oscillation that need not be sinusoidal (e.g. slowly varying amplitude and phase), 

called IMF. Each IMF ought to satisfy two criteria (to resemble the generalised Fourier 

decomposition); a) an IMF may only have one zero between successful extrema; and b) an 

IMF ought to have zero local mean.  

The EMD adaptive process is a recursive „sifting‟ algorithm described by e.g., Huang 

et al., (1998) and Pegram et al., (2008). Given a time series , 0tY t  , the recursive „sifting‟ 

procedure can be summarized as follows: 

1. Take the input signal 1tY  to decompose, where 0Y is the original time series; 

1.1. identify the local extrema of 1tY   

1.2. construct the upper/lower envelope  ( , ,/u t l t   by interpolation 

1.3. approximate the local average envelope by  , ,0.5
t u t l t     

1.4. extract the detail ,1 1 tt td Y     

1.5. If ,t jd is an IMF, decompose 1tY   into an IMF i.e. ,t t jIMF d and the 

residual 1t t tY Y IMF  . Otherwise repeat steps 1.1 through 1.5. 

2. If tY has an implicit oscillation, set tY  as an input signal and repeat from 

 step1. 

If the IMFs are added together with the residual trend, the original signal is often recovered 

without any distortions or loss of information as shown in Equation (87), 

  t j res

j

Y IMF Y   (87) 
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A key advantage of EMD is that IMFs can be transformed from the temporal-space to time-

frequency space by applying the Hilbert Transform (HT) to each IMF component determined 

by Equation (88) 

 

 

 

1

H

t tY H Y

Y
pv d

t

 
 










 (88) 

where pv  is the Cauchy principal value or principal value of the singular integral. Note that 

tY and H

tY form a complex conjugate pair. Based on HT, the analytic signal is defined by, 

 
t

H

t t t

i

t

z Y iY

A e


 


 (89) 

where the instantaneous amplitude and phase are given by 2 2H

t t tA Y Y  and 

 1tan H

t t t tA Y Y  respectively. From Equation (89), the instantaneous frequency (which is 

also a function of time) of each IMF can be defined as 

 t
t

d

dt


   (90) 

This implies that the HT of the thn IMF components of tY  can be written as: 

 , ,

1

j
t

n
i dtH

n t j t

j

Y A e




 , (91) 

where Aj,t is the amplitude of the analytic signal associated with j
th 

IMF. It is worth 

mentioning that the {Aj,t, θj,t}can be projected on the time-frequency-energy (=|Aj,t|
2
): forming 

the Hilbert-Huang spectrum. This spectrum has the same information as in the continuous 

WT reported in Torrence and Compo, (1998). 
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