

Antidiabetic activity of pentacyclic triterpenes and flavonoids isolated from stem bark of *Terminalia sericea* Burch.Ex DC

BY

NOLITHA KHANYA NKOBOLE

Submitted in partial fulfilment of the requirements for the degree of

Masters of Science (Medicinal Plant Science)

University of Pretoria

Faculty of Natural and Agricultural Sciences

Department of Plant Science

July 2009

Promoter: Prof N.Lall

© University of Pretoria

DECLARATION

I declare that the dissertation, which I hereby submit for the degree of Masters of science at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Sígned;

Date:....

Table of Contents

List of Figures	XI
List of Tables	XVII
List of Abbreviations	XIX
Abstract	XX

Chapter 1: Introduction1
1.1 History of Diabetes mellitus1
1.2. Classification of diabetes mellitus2
1.2.1 Type 1: Insulin dependent diabetes mellitus2
1.2.1.1 Pathogenesis of IDDM
1.2.2 1 Type 2: Non-insulin dependent diabetes mellitus4
1.2.3 Pathogenesis of NIDDM
1.3 Complications associated with diabetes mellitus
1.4 Diagnosis of DM7
1.5 Epidemiology of DM9
1.7 Therapeutic intervention and limitations associated with them10
1.6.1 Alpha glucosidase and amylase enzymes10
1.6.1.1 Alpha glucosidase and alpha amylase inhibitors11

1.6.2 Sulfonylureas12
1.6.3 Biguanides e.g. metformin12
1.6.4 Meglitinides e.g. prardinic and starlic13
1.6.5 Insulin15
1.6.5.1 Chain of events upon the discovery of insulin15
1.6.5.2 Structure and function
1.6.5.3 Glucose homeostasis 16
1.6.5.4 The role of insulin and glucagon17
1.7 Antioxidants and diabetes mellitus18
2. Use of plants against diabetes mellitus19
3. Objectives of the study21
4. Structure of dissertation21
5. References23

Chapter 2: Selected plants for the study

Introductio	n31
2.1.1 Psidium	guajava31

2.1.1.1 Description
2.1.1.2 Distribution
2.1.2.3 Phytochemistry
2.1.1.4 Medicinal uses
2.1.2 Terminalia sericea35
2.1.2.1 Description
2.1.2.2 Distribution
2.1.2.3 Phytochemistry
2.1.2.4 Medicinal uses
2.1.3 Artemisia afra
2.1.3.1 Description
2.1.3.2 Distribution
2.1.3.3 Phytochemistry
2.1.3.4 Medicinal uses
2.1.4 Aloe ferox
2.1.4.1 Description

2.1.4.2 Distribution
2.1.4.3 Phytochemistry
2.1.4.4 Medicinal uses
2.1.5 Euclea natalensis
2.1.5.1 Description
2.1.5.2 Distribution
2.1.5.3 Phytochemistry40
2.1.5.4 Medicinal uses
2.1.6 Warbugia salutaris
2.1.6.1 Description
2.1.6.2 Distribution
2.1.6.3 Phytochemistry42
2.1.6.4 Medicinal uses
2.1.7 Sclerocarya birrea43
2.1.7.1 Description
2.1.7.2 Distribution
2.1.7.3 Phytochemistry44
2.1.7.4 Medicinal uses

2.1.8 Spirostachys africana45
2.1.8.1 Description
2.1.8.2 Distribution
2.1.8.3 Phytochemistry45
2.1.8.4 Medicinal uses
2.2 References
Chapter 3: α-Glucosidase, α-Amylase inhibitory activities and
antioxidant activities of plant extracts
3.1 Introduction
3.2 Materials and methods
3.2.1 Plant material
3.2.2 Preparation of extracts53
3.2.3 Assay for bakers yeast α-glucosidase inhibitory activity 53
3.2.4 Assay for porcine pancreatic α -amylase inhibitory activity
3.2.5 DPPH assay
3.2.6 Toxicity screening (XTT viability assay)
3.3 Statistical analysis
3.3 Results and discussion
3.3.1 α-Glucosidase and Amylase inhibitory activity 58

3.3.2 Antioxidant activity
3.3.3 Cytotoxicity of compounds on Vero cell lines
3.4 Conclusion70
3.5 References
Chapter 4: Isolation of compounds from Terminalia sericea
4.1 Introduction
4.2 Materials and Methods81
4.2.1 Extraction and isolation of pure compounds
4.2.2 Determining alpha glucosidasee inhibition by the fractions
4.2.3 Statistical analysis
4.3 Results and Discussion85
4.3.1 Alpha glucosidase activity
4.3.2 Characterization of compound 1+2
4.3.3 Characterization of compound 3+4
4.3.4 Characterization of compound 5
4.3.5 Characterization of compound 690
4.3.6 Characterisation of compound 791

4.3.7 Characterization of compound 8	91
4.4 Conclusion	92
4.5 References	93

Chapter 5: α-Glucosidase, α-Amylase inhibitory activities and antioxidant activities of isolated compounds

5.1 Introduction	97
5.2 Materials and Methods	97
5.3 Statistical analysis	97
5.4 Results and discussion	98
5.4.1 α-Glucosidase and Amylase inhibitory activity	98
5.4.2 Antioxidant activity	101
5.4.3 Cytotoxicity of compounds on Vero cell lines	104
5.5 Conclusion	107
5.6 References	109

Chapter 6: Summary and general conclusions

6.1 Introduction115
6.2 Conclusion and recommendations for future work116
Chapter 7: Acknowledgements118
Chapter 8: Appendices A120
8.1 ¹ HNMR and ¹³ CNMR of isolated compounds from <i>Terminalia sericea</i> 120
Appendices B
8.2 Compounds isolated from plants for the Dictionary of Natural Products129
Appendices C
8.3 Publications and conference presentations resulting from this thesis140
8.3.1 Publications140
8.3.2 Conference presentations140

LIST OF FIGURES

Chapter 1

Figure 1.1: Complications that arise as a result of diabetic complications, A)	
Diabetic foot, B) Atherosclerosis in diabetics	7
Figure 1.2: Chemical structures of alpha-amylase (A) and alpha glucosidase	
(<i>B</i>)1	1
Figure 1.3: Chemical structure of acarbose (Precose)1	2
Figure 1.4: Chemical structure of metformin1	3
Figure 1.6: Drugs used for the treatment of diabetes mellitus1	4
Figure 1.7: Role of insulin for the control of glucose homeostasis1	8

Chapter 2

Figure 2.1: Psidium guajava L	34
Figure 2.2 : Terminalia sericea Burch. Ex DC	36
Figure 2.3 : Artemisia afra Jacq. Ex Willd	38

Figure 2.3 : Aloe ferox Mill	41
Figure 2.5 : Euclea natalensis A.DC	41
Figure 2.6. : Chemical structure of muzigadial (A) and sesquiterpene lactone	(B)
isolated from W. salutaris	42
Figure 2.7 : Warburgia salutaris (Bertol.f.) Chiov	43
Figure 2.8 : Sclerocarya birrea A.Richi.) Hochst. subsp. Caffra	46
Figure 2.9 : Spirostachys africana Sond	46

Chapter 3

Figure 3.1 Inhibitory activity of plant extracts on a-glucosidase
Figure 3.2 Inhibitory activity of plant extracts on a-amylase

Figure 3.4: The percentage absorbance of the an	tioxidant activities of the acetone
extracts of selected plants and Vitamin C (standa	rd
control)	
Figure 3.5: Antioxidant activity of T. sericea	
Figure 3.6: Effect of T.sericea crude extract and	(Doxorubicin) on normal Vero
cells	70
Chapter 4	

Figure 4.2: Chemical structures of sericoside (A) and analignan B (B) isolated	

from T. sericea		80
-----------------	--	----

Figure 4.3: Silica gel column chromatographic purification of acetone extract of

Figure 4.4: TLC plates of fractions obtained from chromatographic separation of acetone extract of T. sericea

Solvent system: DCM: MeOH (95:5)	83
Detection: Vanillin in H ₂ SO ₄	83

Figure 4.6: Dose dependent inhibition of alpha glucosidase enzyme by fractions
using p-nitrophenyl α-D-glucopyranoside as a substrate86
Figure 4.7: Chemical structure of compounds isolated from stem bark of T.
sericea
A) Chemical structure of catechin, epicatechin, gallocatechin and galloepicatechin isolated from
the bark of <i>T. sericea</i>
B) Chemical structure of lupeol and β -sitosterol isolated from the bark of <i>T. sericea</i> 90
C) Chemical structure of β -sitosterol-3-acetate and stigma-4-ene-one isolated from the bark of <i>T</i> .

sericea......91

Chapter 5

Figure 5.1: Inhibitory activity of compounds isolated from T. sericea on α -
glucosidase100
Figure 5.2: Antioxidant activity of isolated compounds from T. sericea104
Figure 5.3: Effect of isolated compounds on the viability of Vero cells

Chapter 8

Figure 8.1: ¹ HNMR spectrum of 'lupeol' isolated from the acetone extract of
Terminalia sericea120
Figure 8.2: ¹³ CNMR of 'lupeol' isolated from the acetone extract of Terminalia
<i>sericea</i> 121
Figure 8.3 ¹ HNMR spectrum of ' β -sitosterol-3-acetate' isolated from the acetone
extract of Terminalia122
Figure 8.4: ¹ HNMR spectrum of '3-one-stigmasterol' isolated from the acetone
extract of Terminalia sericea123
Figure 8.5: ¹ HNMR spectrum of ' β -sitsterol' isolated from the acetone extract of
Terminalia sericea124
Figure 8.6: ¹ HNMR spectrum of 'catechin-epicatechin' isolated from the acetone
extract of Terminalia sericea125
Figure 8.7: ¹³ CNMR of 'catechin-epicatechin'' isolated from the acetone extract
of Terminalia sericea126
Figure 8.8: ¹ HNMR spectrum of 'gallocatechin-epigallocatechin' isolated from
the acetone extract of Terminalia sericea127

Figure 8.9: ¹³ CNMR of 'gallocatechin-epigallocatechin' isolated from	n the acetone
extract of Terminalia sericea	
List of isolated compounds from Dictionary of Natural Products	129

LIST OF TABLES

Chapter: 1

Table 1.1: Diagnostic thresholds for diabetes and lesser degrees of impaired	
glucose regulation8	
Table 1.2: Non-insulin dependent diabetes statistics worldwide (1994-2010)9	

Chapter: 2

 Table 2.1: Constituents of P.guajava and their biological activities

 33

Chapter 3

Table 3.1: Medicinal plants investigated in the study
Table 3.2: Effect of plant extracts on the activity of α -glucosidase and α -amylase
enzymes61

Table 3.4: IC_{50} values for the aceton	e extracts of selected plants (Vitamin $C IC_{50}$ =
2.52µg/ml)	68

Chapter 4

Table 4.1: Fifty percent inhibitory concentration (IC_{50} values) of fractions on
alpha (a) – glucosidase
Table 4.2: ¹ HNMR and ¹³ CNMR data of catechin-epicatechin and gallocatechin-
epigallocatechin

Chapter 5

Table 5.2: Inhibition of DPPH (percent) by the compounds at 100µg/ml......103

LIST OF ABBREVIATIONS

AGE:	Advanced glycosylated end products
DM:	Diabetes mellitus
DMSO:	Dimethylsulfoxide
DPPH:	1, 2-diphenyl-2-picrylhydrazil
ERK:	Extracellular signal-regulated kinases
GLUT4:	Glucose transporter
IDDM:	Insulin dependent diabetes mellitus
IRS-1:	Insulin receptor substrate 1
МАРК:	Mitogen-activated protein (MAP) kinases
NIDDM:	Non-insulin dependent diabetes mellitus
NMR:	Nuclear Magnetic Resonance
PEPCK:	Phosphoenopyruvate carboxykinase
TLC:	Thin Layer Chromatography
T1DM:	Type -1 diabetes mellitus
T2DM:	Type- 2 diabetes mellitus
UV:	Ultra violet
WHO:	World Health Organization
XTT:	2, 3-bis-[2-methoxy-4-nitrophenyl]-2H-
	tetrazolium-5-carboxanilide

Antidiabetic activity of pentacyclic triterpenes and flavonoids isolated from the stem bark of *Terminalia sericea* Burch. Ex DC

Abstract

Diabetes mellitus (DM) represents a series of metabolic conditions associated with hyperglycemia and caused by defects in insulin secretion, and/ insulin action. Exposure to chronic hyperglycemia may result in microvascular complications in the retina, kidney or peripheral nerves. According to the World Health Organization (WHO) global burden of disease, more than 176 million people are diabetic with about two thirds of these living in developing countries. With a long course and serious complications that often result in high incidences of mobility and mortality rate, the treatment of diabetes is often costly. The management of this disease is not without side effects and this is a challenge to the medical system. This has led the researches to seek new antidiabetic agents from plants.

Acetone extract of 8 plants namely *Terminalia sericea* Burch. Ex DC, *Euclea natalensis* A.DC, *Warbugia salutaris* Bertol.f.) Chiov., *Artemisia afra* Jacq.ex Willd., *Aloe ferox* Mill, *Sclerocarya birrea* (A.Richi.) Hochst. subsp. caffra , *Spirostachys Africana* Sond and *Psidium guajava* L were evaluated for antidiabetic and antioxidant properties. In addition extracts were tested for cytotoxicity. Different parts of all these plants are traditionally used in South Africa for diabetes treatment. Plants were selected based on ethnobotanical information and phytochemical constituents. For determining inhibitory activity against each enzyme (α -glucosidase and α -amylase), all extracts were tested at concentration that ranged from $2x10^{-5}$ to 0.2mg/ml for α -glucosidase and 0.025 to 1.25mg/ml for α -amylase and fifty percent inhibition or higher was taken

as significant (p<0.05). The extracts of *A. ferox* and *S. africana* showed no inhibition against α glucosidase at the highest concentration tested (0.2mg/ml) whereas *A. afra* showed weak inhibition
(47.15%). *T. sericea* showed to be a potent inhibitor of α -glucosidase exhibiting 97.44 % inhibition
of the enzyme (p<0.05). *W. salutaris, S birrea and E. natalensis* also showed good activity on α glucosidase as they demonstrated 71.84; 97.44 and 92.60 % inhibition respectively (p<0.05). Other
plant extracts such as *A. ferox* and *S. africana* did not exhibit any activity on α -glucosidase.

T. sericea and *S. birrea* showed the best inhibitory activity on α -amylase enzyme, exhibiting 91.91 and 94.94 % inhibition respectively at 1.25mg/ml. *A. afra, E. natalensis, P. guajava* and *W. salutaris* also showed good inhibitory activity on α -amylase enzyme at 1.25mg/ml which was the highest concentration tested (p<0.05).

Low levels of plasma antioxidants is a risk factor associated with diabetes therefore, it has been suggested that plant-based medicines that contain antioxidant properties add an advantage in curbing complications that arise during DM aetiology. The antioxidant activity of plant extracts was carried out using 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assay. Six plant extracts which showed good α -glucosidase and α -amylase inhibitory activity were evaluated for antioxidant activity. The radical scavenging activity was measured in terms of the amount of antioxidants necessary to decrease the initial DPPH absorbance (EC₅₀). The EC₅₀ is the amount of antioxidants necessary to decrease initial DPPH absorbance by 50%. All 6 tested plant extracts showed good activity. *W. salutaris* and *T. sericea* demonstrated the highest activity exhibiting EC₅₀ values of 5.08 and 5.56µg/ml respectively as compared to ascorbic acid/Vitamin C (EC₅₀=2.52µg/ml), a well- known potent antioxidant. This was followed by *P. guajava* (EC₅₀=6.97µg/ml); *E. natalensis* (EC₅₀=8.46µg/ml) and *S. birrea* (EC₅₀=9.41µg/ml). *A. ferox* showed EC₅₀ value of 48.53µg/ml.

It has been suggested that plant extracts and compounds must undergo toxicity test for safety before drug discovery is taken into consideration. Due to the large number of plants screened in this study and limited resources in our laboratory, only the acetone extract of *T. sericea* (which demonstrated good α -glucosidase and α -amylase inhibitory activities) was tested for cytotoxicity. Acetone extract of *T. sericea* demonstrated moderate toxicity against primary vervet monkey kidney cells (VK) cells exhibiting IC₅₀ values of 20.94 µg/ml when tested at 400µg/ml. Consequently, the acetone extract of *T. sericea* was selected for the isolation and identification of bioactive compounds. A bio-assay guided fractionation of the acetone extract of *T. sericea* led to the isolation of 4 pure compounds namely β-sitosterol, β-sitosterol-3-acetate, lupeol and 3-one-stigmasterol and two sets of mixtures of isomers (epicatechin-catechin; MI1 and epigallocatechin-gallocatechin; MI2).

Antidiabetic, antioxidant and cytotoxicity activities of isolated compounds were evaluated. β – Sitosterol and lupeol showed best inhibitory activity on α -glucosidase exhibiting 50% inhibitory concentration (IC₅₀) value of 54.50 µM and 66.48 µM respectively (p<0.05). This was followed by the MI2; epigallocatechin-gallocatechin (IC₅₀=119.34 µM); β -sitosterol-3-acetate (IC₅₀=129.34 µM); 3-one-stigmasterol (IC₅₀=164.87 µM) and the MI1; epicatechin-catechin (IC₅₀=255.76 µM). During the evaluation of purified compound's inhibitory activity on α -amylase, compounds of interest were lupeol and β -sitosterol which exhibited IC₅₀ values of 140.72 µM and 216.02 µM respectively as compared to the positive drug-control acarbose (IC₅₀=65.25 µM). Epicatechincatechin and epigallocatechin-gallocatechin also demonstrated α -amylase inhibitory properties and the IC₅₀ values were found to be lower than 100µg/ml. Epigallocatechin-gallocatechin, epicatechin-catechin and lupeol showed good free radical scavenging activity as they inhibited DPPH by 98.19; 96.98 and 70.90 % at 100µg/ml respectively (p<0.05). The DPPH scavenging activity was very low in case of 3-one-stigmasterol (21.5% inhibition), whilst β -sitosterol and its derivative β -sitosterol-3-acetate did not show any activity.

During cytotoxicity evaluation of pure compounds against monkey kidney cells, all the compounds except β -sitosterol did not inhibit the growth of these cells lines at the highest concentration tested (200µg/ml). β -Sitosterol showed moderate toxicity exhibiting IC₅₀ values of 197.72 µM. β -Sitosterol-3-acetate, epicatechin-catechin, lupeol and epigallocatechin-gallocatechin were found to be non-toxic to Vero cells as 100% cell viability was observed when Vero cells were exposed to these samples at 200µg/ml.

The compounds isolated and the extract of *T. sericea* demonstrated significant antidiabetic and antioxidant properties as compared to well known drugs acarbose (a known α -glucosidase and α -amylase inhibitor) and Vitamin C (a well known antioxidant). This study is the first to report α -glucosidase, α -amylase and antioxidant properties of epicatechin-catechin, epigallocatechin-gallocatechin, β -sitosterol-3-acetate and stigma-4-ene-3-one isolated from *T. sericea*. In addition, epicatechin-catechin, epigallocatechin-gallocatechin, β -sitosterol-3-acetate and stigma-4-ene-3-one are isolated from *T. sericea* for the first time. Overall all results scientifically validated the traditional use of the bark of *T. sericea* for diabetes in South Africa.