

AN INVESTIGATION CERVICAL CANCER, HUMAN PAPILLOMAVIRUS (HPV) INFECTION AND STEROID CONTRACEPTION

Manivasan Moodley

Submitted in partial fulfilment of the requirement for the degree of Philosophiae Doctor in Obstetrics Gynaecology

University of Pretoria Pretoria South Africa

Supervisor: Professor BG Lindeque

Submitted in partial fulfilment of the requirements for the degree of PhD in the department of Obstetrics and Gynaecology, University of Pretoria, South Africa

ABSTRACT

PROJECT ONE

Introduction

HPV is detected in about 99.7% of cervical cancers. However, the HPV type distribution in South African women is unknown.

Objectives

To determine HPV-type distribution among women with cervical dysplasia in relation to oral contraceptive usage.

Methods

Prospective cross-sectional study of four groups of patients according to oral contraceptive usage: non-users, users of less than five years duration, users of between five years and ten years and users of more than ten years duration. Swabs of the cervix were analysed for HPV DNA using polymerase chain reaction method.

Results

A total of 124 women were recruited for the study. There were 75 HIV-infected patients (seroprevalence 61%). Of the 102(82%) HPV-positive patients, 79 patients had high-risk HPV DNA (78%). In terms of the four oral contraceptive groups, high-risk HPV DNA was detected in 70% (n=21), 79% (n=22), 90% (n=21) and 71% (n=15) of patients, respectively. The odds of having HPV DNA was six times higher for the combination of contraceptive users of less than 5 years duration/non-users (OR 5.9, 95% CI: 1.87 - 18.77).

There was no change when adjustment was made for age (OR 6.1, 95% CI: 1.9 - 19.4). HPV DNA types 16 and or 18 was present in a total of 21 patients (49%) (non-contraceptive users and users < 5years duration) versus 15 patients (42%) who used oral contraceptives of more than 5 years duration (p=0.524). HPV type 16 was the commonest HPV type detected (20.2%) and HPV type 58 was the next commonest high-risk HPV type (16.1%). HPV types 58 and 33 was detected in a much greater percentage of our population and HPV 16 in a much smaller percentage of our population compared with a non-South African population.

Conclusion

The findings of this study demonstrate an interesting distribution of HPV types in a South African population.

PROJECT TWO

Introduction

Various risk factors have been implicated in the causation of cervical cancer including human papillomavirus (HPV), the early genes (*E6* and *E7*) of which encode the main transforming proteins. Studies have suggested that steroid hormones may enhance the expression of these genes leading to loss of p53 gene-mediated cell apoptosis.

Methods

A total of 120 cervical tissue samples were obtained from patients with proven cervical cancer. Patients who used depo-medroxyprogesterone acetate steroid contraception were recruited as part of the study arm. Only HPV DNA type 16 samples were used for the study. Controls included three cell lines (CaSki, SiHa, & C33A) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal housekeeping gene. Of 120 patients, there were 111 patients with HPV type 16 identified. Of this number, RNA was present in 63 samples. There were 30 women (30/63) who used steroid contraception. In relation to patients who used contraception, HPV 16 E6 gene expression was present in 79% (n = 23) and 88% (n = 30) of steroid users compared to nonusers, respectively. In total there were 25 patients (40%) with expression of the HPV 16 E6*I gene and 30 patients with expression of the E6*II gene. There were 57% of steroid users (n = 17) who had expression of the E6*II gene, compared to 52% (n = 17) of nonusers (P = 0.800).

Conclusion

From a molecular level, this study reflects almost similar distribution of the HPV 16 E6/E6*1 and E6*11 and does not confirm the role of injectable progesterones in cervical carcinogenesis.

Further studies with larger patient numbers are needed.

DECLARATION

This study represents work done by the author.

The research described in this thesis was performed in the Department of Obstetrics and Gynaecology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa.

ACKNOWLEDGEMENTS

- 1. Professor BG Lindeque for his unwaivering support and encouragement over the years.
- 2. Susan Sewart, Department of Biological and Life Sciences, University of Liverpool, Liverpool, United Kingdom, for her technical assistance in the project.
- 3. Dr I Kleinsmidt and Cathy Connolly, Biostatistics, Medical Research Council, Durban, South Africa
- 4. The South African Society of Obstetricians and Gynaecologists for their financial support.
- 5. Mr A Hirasen for his expert drawings
- 6. Mr H Garbers (MSD South Africa) for granting permission to use the HPV phylogentic tree
- 7. All patients who contributed to the project.

PRESENTATION ARISING FROM THE PROJECT

- 1. ACADEMIC MEETING DEPARTMENT OBSTETRICS GYNAECOLOGY 2005
- 2. THE OBSTETRIC AND GYNAECOLOGY UPDATE, UNIVERSITY OF PRETORIA, MAY 2009.
- 3. SOUTH AFRICAN SOCIETY OBSTETRICIANS GYNAECOLOGISTS 2010

PUBLICATIONS ARISING FROM THE STUDY

- 1. An investigation into oral contraceptive use, human papilomavirus (HPV)type distribution and cervical intraepithelial neoplasia, Durban, South
 Africa. Eur J Gynaecol Oncol 2009 (accepted for publication).
- The interaction between steroid hormones, human papillomavirus type 16,
 E6 oncogene expression and cervical cancer. Int J Gynecol Cancer 2003; 13:
 1-9.
- 3. The role of steroid contraceptive hormones in the pathogenesis of invasive cervical cancer: a review. Int J Gynecol Cancer 2003; 13: 103-110.
- 4. Use of the nested reverse transcription-polymerase chain reaction for the detection of human papillomavirus 16 E6 transcriptional activity in cervical cancer: A technical perspective. Eur J Gynecol Oncol 2003; 25: 51 54

TABLE OF CONTENTS

~			_ ~	
CH.	ΛD	יעיי	<i>D (</i>	MIN.
\ .	\boldsymbol{A}	יי	\	יו דו

INTI	RODUG	CTION		1
1.0	EPII	DEMIOI	LOGY OF CERVICAL CANCER	2
	1.1	RISK	FACTORS AND AETIOLOGY OF CERVICAL CANCER	
		AND	IT'S PRECURSORS	5
		1.1.1	PARITY	5
		1.1.2	THE NUMBER OF SEXUAL PARTNERS AND	
			FREQUENCY OF SEXUAL INTERCOURSE	6
		1.1.3	SMOKING	6
		1.1.4	ROLE OF THE MALE PARTNER	8
		1.1.5	ROLE OF DIETARY FACTORS	9
		1.1.6	ROLE OF SEXUALLY TRANSMITTED INFECIONS	
			OTHER THAN HPV	9
		1.1.7	ROLE OF THE HUMAN IMMUNODEFICIENCY VIRUS	
			(HIV) INFECTION	11
2.0	THE	HUMA	N PAPILLOMAVIRUS AND ITS LINK TO	
	INTI	RAEPIT	THELIAL AND INVASIVE CERVICAL NEOPLASIA	16
	2.1	HIST	ORICAL PERPECTIVE	16

2.2	EPIDEMIOLOGICAL EVIDENCE LINKING HPV AND	
	CERVICAL NEOPLASIA	17
2.3	CLASSIFICATION AND STRUCTURE OF	
	PAPILLOMAVIRUSES	20
2.4	STRUCTURE OF THE HUMAN PAPILLOMAVIRUS	22
2.5	THE HPV NUCLEIC ACID/GENOME	22
	2.5.1 ORFs WITH ONCOGENIC PROPERTIES	24
	2.5.2 REGULATORY GENES	37
	2.5.3 UNKNOWN GENE FUNCTIONS	37
	2.5.4 LATE CAPSID PROTEINS AND THE UPSTREAM	
	REGULATORY REGION	39
2.6	REPLICATION CYCLE OF THE HUMAN	
	PAPILLOMAVIRUS	40
2.7	IMMUNOLOGY OF HPV INFECTIONS	41

3.0	CLIN	NICAL CORRELATES OF HPV TYPES	45
	3.1	CUTANEOUS HPVs IN IMMUNO-COMPETANT	
		POPULATION	45
	3.2	CUTANEOUS HPVs IN IMMUNO-COMPROMISED	
		INDIVIDUALS	46
	3.3	HPVs AFFECTING THE AERO-DIGESTIVE AND	
		ANOGENITAL MUCOSAE	47
		3.3.1 LOW-RISK HPV TYPES	47
		3.3.2 HIGH-RISK HUMAN PAPILLOMAVIRUSES	48
		3.3.2.1 HPV TYPE 16 VIRUS	48
		3.3.2.2 HPV TYPE 18 VIRUS	49
4.0	VUL	NERABILITY OF THE HOST TO CERVICAL NEOPLASIA	50
4.1	THE	CELL CYCLE AND ITS ASSOCIATION WITH HUMAN	
	PAP	ILLOMAVIRUS INFECTION	52
4.2	CEL	L-CYCLE PROTEINS	53
	4.2.1	CYCKLIN-DEPENDENT KINASES	53
	4.2.2	CYCLINS	54

	4.2.3 CYCLIN-DEPENDENT KINASE INHIBITORS	54
	4.2.4 CYCLE-CYCLE PHASES	55
	4.2.4.1 G1/S PHASE	55
	4.2.4.2 G2/M PHASE	55
	4.2.4.3 CELL-CYCLE CHECKPOINTS	56
5.0	THE ROLE OF HPV IN RELATION TO THE CELL CYCLE	57
6.0	THE $p53$ GENE AND ITS ROLE IN CERVICAL CANCER	59
	6.1 HISTORY	59
	6.2 THE p53 GENE AND CERVICAL CANCER	62
7.0	THE ROLE OF TELOMERASE ACTIVITY IN HPV-RELATED	
	CERVICAL CANCER	64
8.0	THE ROLE OF DNA METHYLATION IN CERVICAL CANCER	65
9.0	MICROSTAELLITE INSTABILITY AND CERVICAL CANCER	66
10.0	THE ROLE OF STEROID CONTRACEPTION, HUMAN	
	PAPILLOMAVIRUS AND CERVICAL NEOPLASIA	69

	10.1	INTRODUCTION	69
	10.2	THE BENEFITS OF STEROID CONTRACEPTION	70
	10.3	CANCERS LINKED TO STEROID CONTRACEPTION	71
	10.4	REVIEW OF PUBLISHED DATA LINKING STEROID	
		CONTRACEPTION TO CERVICAL NEOPLASIA	72
		10.4.1 EVIDENCE FROM COHORT STUDIES	72
		10.4.2 EVIDENCE FROM CASE-CONTROLLED STUDIES	76
	10.5	ROLE OF PROGESTERONE-ONLY CONTRACEPTIVE	
		AGENTS IN THE PATHOGENESIS OF CERVICAL	
		NEOPLASIA	82
11.0	POST	TULATED MECHANISMS OF STEROID-RELATED	
	CER	VICAL CARCINOGENESIS AND THE LINK BETWEEN	
	STER	ROID CONTRACEPTION AND HUMAN PAPILLOMAVIRUS	
	INFE	CTION	86
12.0	THE	IMPLICATIONS OF THE EVIDENCE PROVIDED	
	FOR	CLINICAL PRACTICE WITH REGARDS TO STEROID	
	CON	TRACEPTION	93
13.0	HPV	VACCINES AND THE FUTURE	94

14.0 PART ONE OF THE PROJECT

99

AN INVESTIGATION INTO ORAL CONTRACEPTIVE USAGE, HUMAN PAPILLOMAVIRUS (HPV)-TYPE DISTRIBUTION AND CERVICAL INTRAEPITHELIAL NEOPLASIA, DURBAN, SOUTH AFRICA

	14.1	AIMS	99
	14.2	PATIENTS AND METHODS	99
	14.3	STATISTICAL METHODS	101
	14.4	RESULTS	102
14.5	DISC	CUSSION	110
15.0	PART	T TWO OF THE PROJECT	115

AN INVESTIGATION INTO HPV 16 E6 ONCOGENE- EXPRESSION
AND USE OF INJECTABLE MEDROXY-PROGESTERONE STEROID
CONTRACEPTIVES AMONG WOMEN WITH INVASIVE CERVICAL
CANCER

	15.1	HYPOTHESIS OF THE STUDY	114
	15.2	AIMS	116
	15.3	MATERIALS AND METHODS	116
	15.4	LABORATORY METHODS	118
15.4.1	TYP	ING OF THE CERVICAL TISSUE SPECIMENS FOR HPV 16	
	15.4.1	.1 DNA EXTRACTION	120
	15.4.1	.2 HPV TYPING	121
15.4.2	GRO	OWTH OF CELL LINES IN VITRO	124
15.4.3	EXT	RACTION OF RIBONUCLEIC ACID (RNA) FROM TISSUE	
	SPE	CIMENS;	126
15.4.4	ASS	ESSMENT OF THE QUALITY AND QUANTITY OF RNA	
	EXT	RACTED BY SPECTROPHOTOMETRY;	127
15.4.5	REV	ERSE TRANSCRIPTION OF RNA TO	
	SYN	THESISE cDNA USING REVERSE	
	TRA	NSCRIPTASE ENZYME;	129
15.4.6	MO	CK REVERSE TRANSCRIPTION OF RNA	
	WIT	HOUT REVERSE TRANSCRIPTASE ENZYME TO	
	DIFI	FERENTIATE RNA FROM	
	GEN	OMIC DEOXYRIBONUCLEIC ACID (DNA);	130

15.4.7	POLYMERASE CHAIN REACTION OF PRODUCTS FROM 16.5))
	AND 16.6) ABOVE USING SPECIFIC PRIMER PAIRS TO	
	THE E6 ONCOGENE;	131
15.4.8	NESTED POLYMERASE CHAIN REACTION OF	
	PRODUCTS FROM 16.7) ABOVE USING SPECIFIC	
	PRIMER PAIRS TO DETERMINE THE EXPRESSION	
	OF HPV 16 E6*I AND E6*II SPLICED VARIANTS;	136
15.4.9	GEL ELECTROPHORESIS TO DETERMINE THE	
	EXPRESSION OF THE E6, E6*I AND E6*II ONCOGENES	
	IN BOTH GROUPS OF PATIENTS;	137
15.4.10	COMPARISON OF THE PRESENCE OR ABSENCE OF	
	BANDS WITH THE USE OF THE S3/S4 PRIMERS AND S1/S2	
	PRIMERS IN RELATION TO THE USAGE OF STEROID	
	CONTRACEPTION	138
16.0	STATISTICAL METHODS	138

17.0	RESULTS		139	
	17.1	PATIENT DEMOGRAPHICS	139	
	17.2	CLINICAL DATA	139	
	17.3	CONTRACEPTIVE DATA	140	
	17.4	SMOKING	141	
	17.5	RNA EXTRACTION	141	
	17.6	HISTOLOGY FOR 63 PATIENTS	143	
	17.7	CLINICAL STAGES FOR 63 PATIENTS	145	
	17.8	EXPRESSION OF HPV 16 E6, E6*I & E6*II		
		ONCOGENES FOR 63 PATIENTS	148	
	17.9	CLINICAL STAGE VERSUS HPV 16 E6 ONCOGENE		
		EXPRESSION	150	
	17.10	EXPRESSION OF THE HPV TYPE 16 E6*I/E6*II		
		ONCOGENES IN STEROID USERS AND		
		NON-STEROID USERS	150	
	17.11	EXPRESSION OF THE HPV 16 E6*I/E6*II		
		IN RELATION TO STAGE	150	
18.0	DISC	USSION	155	

19.0	CHAPTER FIVE	166
	19.1 CONCLUSIONS AND RECOMMENDATIONS	S 166
20.0	APPENDIX	168
21.0	REFERENCES	180