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This thesis presents a study of stochastic models of continuous review of inventory 

systems of perishable and non-perishable products, as well as inventory systems 

operating in random environment.  It contains five chapters.  The first chapter is 

introductory in nature, containing the motivation for the study and the techniques 

required for the analysis of respective models described in the remaining chapters. 

 

Chapter 2 provides a model of perishable product inventory system operating in a 

random environment.  For the sake of simplicity, the stochastic environment is 

considered to alternate randomly over time between two states 0 and 1 according to an 

alternating renewal process. When the environment is in state k, the items in inventory 

have a perishable rate µk, the demand rate is λk and the replenishment cost is CRk.  The 

performance of various measures of the system evolution are obtained, assuming 

instantaneous replenishment at the epoch of the first demand after the stock-out and 

associating a Markov renewal process with the inventory level. 

 

In Chapter 3, a continuous review single product perishable inventory model is 

considered.  Items deteriorate in two phases and then perish.  Independent demands 

occur at constant rates for items in phase I and in phase II.  Demand that occurs for an 

item in phase I during its stock-out period is satisfied by an item in phase II with some 
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probability.  However a demand for an item in phase II occurring during its stock-out 

period is lost.  The reordering policy is an adjustable (S,s) policy with the lead-time 

following an arbitrary distribution.  Identifying the stochastic process as a renewal 

process, the probability distribution of the inventory level at any arbitrary instant of 

time is obtained.  The expressions for the mean stationary rates of demands lost, 

demands substituted, perished units and scrapped units are also derived.  A numerical 

example is considered to highlight the results obtained. 

 

Chapter 4 is a study of a two-commodity inventory system under continuous review.  

The maximum storage capacity for the i-th item is Si (i=1, 2).  The demand points for 

each commodity are assumed to form an independent Poisson process, with unit 

demand for one item and bulk demand for the other.  The order level is fixed as si for 

the i-th commodity (i=1, 2) and the ordering policy is to place an order for Qi (= Si – si , 

i = 1,2) items for the i-the commodity when both the inventory levels are less than or 

equal to their respective reorder levels.  The lead-time is assumed to be exponential.  

The joint probability distribution for both commodities is obtained in both transient and 

steady state cases.  Various measures of systems performance and the total expected 

cost rate in the steady state are derived.  The results are illustrated with numerical 

examples. 

 

Chapter 5 provides an analysis of a continuous review of two-product system with two 

types of demands and with individual (S,s) ordering policy.  The lead-time distribution 

of product 1 is arbitrary and that of product 2 exponential.  Two types of demands occur 

at constant rates either for both products or for product 2 alone.  Expressions for the 

stationary distribution of the inventory level are obtained by identifying the underlying 

stochastic processes as a semi-regenerative process.  The mean stationary rates of the 

lost demands, the demands that are satisfied and the number of reorders are obtained 

and these measures are used to provide an expression for the cost rate. 
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The main objective of this thesis is to improve the state of art of continuous review 

inventory systems.  The salient features of the thesis are summarized below: 

 

(a) Consideration of 

(i) The impact of the stochastic environment on inventory systems; 

(ii) The interactions existing among the products in multi-product systems; 

(iii) Individual and joint-ordering policies; 

 

(b) Discussion of inventory systems with perishable products; 

(c) Effective use of the regeneration point technique to derive expressions for 

various system measures; 

(d) Illustration of the various results by extensive numerical work; 

(e) Relevant optimization problems 
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1.1 SUPPLY CHAIN MANAGEMENT 

1.1.1 Background 

A new era has dawned in Supply Chain Management with the advent of globalization.  

This has led to increased competition and in order to achieve and sustain competitive 

advantage, companies must be able to respond quickly to customer demand and deliver 

a high level of customer service.  The need for companies to be flexible and to be able 

to customize their products is also becoming more important.  This added pressure on 

supply chains, coupled with global deregulation, is encouraging many companies to 

move the sourcing of components and low-value added operations offshore, to lower 

cost countries (Ross, 2003) - this result in supply chains which increase in distance and 

complexity. 

 

With global markets and suppliers, companies need to have a supply chain that is lean 

on inventory and responsive to customer demand.  To ensure an efficient supply chain, 

all aspects of such a supply chain need to be monitored continually and inputs need to 

be managed in order to anticipate any uncertainty in supply, demand and cost and to 

ensure that appropriate contingencies are in place.   

 

According to Lakahl et al (2001) companies must concentrate on their core 

competencies to help sustain competitive advantage. Non-strategic activities that can be 

performed more effectively by a third party need to be externalized. A company's core 

competencies depend heavily on its resources and how they are utilized and if a 

company is able to develop and allocate resources in a way, which creates more value 

for customers than their competitors can, it creates a sustainable competitive advantage.  

A superior supply chain strategy maximizes the value added by internal activities while 

developing solid partnerships leading to high value external activities. 
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Supply chain management is plagued with conflicting objectives and supply chain 

managers must make appropriate tradeoffs to ensure optimal functioning of the supply 

chain.  Traditionally inventory was used to ensure compliance with customer demand 

and to guard against uncertain delivery lead times.  Economies of scale is another 

reason for inventory accumulation - fixed costs are lowered by producing or ordering in 

large quantities, transportation discounts can be achieved and it guards against 

uncertainties.  The problem with high inventories however is that capital is tied up and 

high inventory holding costs is incurred.  The inability to meet customer demand, in 

turn, leads to lost profits and in the long run, possibly the loss of clients.  Thus the trade 

off between customer satisfaction and inventory holding costs is one of the most 

important decisions that a supply chain manager has to make. 

 

The problem of providing customer satisfaction under conditions of demand variability 

is usually addressed with safety stock.  In the literature, safety stock are considered from 

the traditional inventory theory viewpoint and it fails to address key features of realistic 

supply chain problems such as multiple products sharing multiple production facilities 

with capacity constraints and demand originating from multiple customers.  Safety 

stock levels are dependant on factors such as probabilistic distributions of demand, the 

demand-capacity ratio as well as the dependence of overall customer satisfaction levels 

on meeting demands for several different products produced at the same facility (Jung et 

al, 2004).  

 

In order to manage the supply chain, a supply chain manager needs accurate, timely 

information. To produce corporate planning solutions, one, or a combination of 

enterprise planning methods are used, these include manual processes, proprietary 

planning solutions, Enterprise Resource Planning (ERP) and Advanced Planning and 

Scheduling (APS). 

 

To support the increasingly complex analysis associated with extended supply chains, 

decision support tools have to lead key strategic, tactical and operational decisions at 
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every stage of the supply chain. These tools have to provide insight into the tradeoffs 

that have to be made among alternative strategies regarding, for example, site location, 

transportation strategies, inventory strategies, resource allocation and supply chain 

operations (Padmos et al, 1999).  In addition to this, these tools and the methods that 

they employ need to take the uncertainties that are characteristic of supply chains (e.g. 

demand uncertainty), into consideration. 

 

The objective is to have a supply chain were all participants act as if they are part of one 

entity in an effort to maximize the timely arrival of good quality raw material, minimum 

lead times and minimum reasonable inventory – this will contribute to a “seamless 

supply chain” (Kerbache & Smith, 2004). 

1.1.2 Literature Review of Supply Chain Optimization 

A study was undertaken to consider various supply chain optimization approaches 

available in literature.  Literature with regards to supply chain optimization is abundant 

and no attempt is made to do a complete review.  In agreement with the observation that 

Kerbache & Smith (2004) made, it is observed that the literature has taken three 

directions: 

 

1. Purchasing and supply perspective:  The interest here is directed toward the 

upstream supply chain. 

2. Transportation and logistics perspective:  Interest focused on the downstream 

supply chain activities. 

3. Complete supply chain perspective:  Attempts are made to deal with the supply 

chain as a whole (De Kok & Graves, 2003) . 

 

The interest for this paper was focused on literature that takes the third direction – that 

is, literature that considers the complete supply chain. 
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Such literature seemed to be subdivided into three categories: 

 

a. Modelling the supply chain using mathematical programming (Operations 

Research Techniques) (Stadtler & Kilger, 2002) 

b. Modelling the supply chain through simulation modelling 

c. Modelling the supply chain using IT-driven techniques – these includes object 

oriented modelling and intelligent agent technology 

 

A brief discussion of the approach within each of these three groups is provided. 

a. Modelling the supply chain using mathematical programming (Operations 
research techniques) 

Operations Research models are either deterministic or stochastic.   

(i) Deterministic Programming Models 

Deterministic models are used to address strategic and tactical decisions through 

the use of mixed integer linear programming (MILP) or mixed integer 

programming (MIP). The objective of these models is usually to maximize after-

tax profit or minimize supply chain costs. Because of the complexity of some of 

the models, heuristics are often used to attain solutions. 

 

Linear programming and mixed integer programming models are developed to 

address various decisions that have to be made in the supply chain.  These 

solutions give answers to strategic, tactical and operational decisions. 

 

In an effort to make strategic investment decisions easier, for example with 

regards to alternative products and development projects, Fandel & Stammen 

(2004) designed a general linear mixed integer model by considering the total 

product life cycle, including development and recycling.  The goal of their 
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approach was to optimize after-tax profit and to fix the product program and the 

extended supply chain network. 

 

To investigate strategic networking issues, Lakhal et al (2001) developed a large 

mixed integer programming (MIP) problem that aims to find the networking 

strategy that maximizes the value added by internal activities of the company 

(they equate this to maximizing profits).  Because of the complexity of the 

problem, the MIP is relaxed and a heuristic is used to obtain solutions for an 

illustrative example.  The authors however admit that the static nature of the 

model poses an important limitation, as supply chains are inherently dynamic. 

(ii) Stochastic programming models 

Stochastic operations research models incorporate multi-objective mixed integer 

linear programming (MILP) and mixed integer non-linear programming 

(MINLP) in an attempt to resolve strategic and operational problems.  These 

problems aims to maximize supply chain profit and customer satisfaction.  For 

tactical decision making a non-deterministic (NP) hard problem is used, but 

because of the complexity a suitable heuristic is develop. 

 

In a multi-objective stochastic MILP problem, Guillén et al (2005) consider 

strategic and operational decision-making.  Decisions such as the capacity and 

location of plants and warehouses, the amount of products to be made at each 

plant and the flow of material between each two nodes of the supply chain are 

addressed in a hypothetical example.  The objective of the problem is to 

maximize supply chain profit and customer satisfaction and also takes 

uncertainty into account by means of the concept of financial risk.  The problem 

is solved using a standard-constraint method and branch and bound techniques. 
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In a novel approach, Seferlis & Giannelos (2004) uses a two-layer optimization-

based control approach for use in operational decision-making.  The control 

strategy applies multivariable model-predictive control principles to the entire 

supply chain.  This is done whilst safety inventory levels are maintained through 

the use of dedicated feedback controllers for every product and storage node. 

These inventory controllers are embedded in the optimization framework as 

additional equality constraints.  The optimization-based controller aims to 

satisfy multiple objectives: that is to maximize customer satisfaction and 

minimize operating costs.  It is not clear from the source which operational 

research method is employed although extensive detailed equations, assumptions 

and constraints are described. Illustrative simulations are used to demonstrate 

that the model can accommodate supply chain networks of realistic size under a 

variety of stochastic and deterministic disturbances. 

(iii)  Queuing network models 

Using a queuing network, Arda and Hennet (2004) represent a simple two-level 

supply chain.  With this network, the producer uses a base-stock inventory 

control policy that keeps the inventory position level (current inventory plus 

pending replenishment orders) constant.  The decision variables are the 

reference inventory position level and the percentages of orders sent to the 

different suppliers.  In the model, the percentages of orders are implemented as 

Bernoulli branching parameters.  The expected cost is obtained as a complex 

non-linear function of the decision variables. A centralized inventory control 

model is incorporated to combine supply and demand randomness in the 

queuing network model.  Because of the complexity of the problem, a 

decomposed approach is proposed for solving the optimization problem in an 

approximate manner.  When applied to a test case, the approximate solutions’ 

quality is evaluated when it is compared with the numerically computed values.  

This can however only be done for simple cases and the main drawback of this 

 7

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



model is its simplicity in that it can only show you the economic advantages for 

the producer of using several suppliers instead of just one.  

 

Kerbache and Smith (2004) also use queuing network systems to model and 

analyze supply chains.  They focus on using closed queuing network systems to 

evaluate performance measures such as throughput, cycle time and WIP. The 

methodology employ analytical queuing networks coupled with nonlinear 

optimization in order to maximize the throughput of the system offset by the 

cost of providing the service. A case study is used to demonstrate the use of the 

model and to show that it provides a useful tool with which to analyze 

congestion problems and to evaluate the performance of the network. 

b. Modelling the supply chain using simulation 

Supply chain modelling with simulation can be divided into descriptive and 

normative/optimization models.  Simulation proves to be problematic as that experts 

are needed to construct realistic models.   This is time consuming and even if a 

realistic model is constructed it is even more problematic and time consuming to 

gather the input data for the model (Bansal 2002). 

 

Notwithstanding these problems, simulation is still used in supply chain 

optimization.  A discrete-event simulation model, which have a linear programming 

model embedded in it, is used to minimize costs, maximize customer satisfaction 

and sustain acceptable inventory levels. 

 

Kalasky (1996) presents an application of discrete-event simulation in modelling the 

supply chain for consumer products.  The author employs a linear program (LP) to 

provide for cost models of the supply chain. The objective of the LP is to satisfy 

multiple objectives, namely minimize costs, maximize customer service levels and 

sustain acceptable inventory levels.  The combined technologies of simulation and 
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optimization provide a viable and useful tool for planning and operation of supply 

chains. 

c. Modelling the supply chain using IT-driven techniques 

IT-driven approaches suggested to optimize and model supply chains, are object 

oriented modelling and intelligent agent technology.  Object oriented modelling 

employs generic building blocks in a simulation model. Operations research 

techniques (LP and MIP) are embedded in the object-oriented model to help with 

strategic, tactical and operational decision-making. 

1.2 INVENTORY OPTIMIZATION 

1.2.1 Inventory Management 

Managing inventory within the supply chain is a key aspect of almost any business, that 

is the ability to provide the right goods or materials at the right price, place and time.  

Inventory is one of the most visible and tangible aspects of doing business and, as a 

result, all the problems of a business often end up in inventory.  The role of inventory 

management is to coordinate the actions of sales, marketing, production and purchasing 

to ensure that the correct level of stocks are held to satisfy customers demand at the 

lowest possible cost.  Inventory management aims to balance the supply and demand 

equation by regulating the supply of goods to affect their availability in such a way that 

they match demand conditions as closely as possible (Wheller, 2004).  Inventory 

management involves methods or processes and is a fundamental requirement prior to 

considering inventory or supply chain optimization. 
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1.2.2 Inventory Optimization in Software Applications 

“Few supply-chain problems have proved as difficult as inventory optimization” 

according to Murphy (2003:1). He compares managing inventory levels across the 

supply chain, so as to consistently meet customer requirements at the least possible cost, 

to squeezing a balloon: air that gets pressed out in one place pops up somewhere else.  

One reason is that functional solutions tend to optimize a single point in the chain 

without taking into account the impact of these changes on other areas. Moreover, 

determining just the right amount of each product to make, how much to place where, 

when to re-order and in what quantities, are very hard problems to solve. Supply and 

demand variability precludes the use of linear algorithms that is used to optimize other 

areas of the supply chain. 

 

A report by Aberdeen Group found that more than 60% of companies use overly 

simplistic inventory management methods, such as ABC inventory policies or simple 

weeks-of-supply rules for products. These companies frequently have 15-30 % more 

inventory than they need and lower service levels.  Less that 5 % of companies surveyed 

are factoring in total supply chain variability when determining inventory policies 

(Enslow 2004:1-17). 

 

According to Murphy (2003:1) companies are trying to deal with the inventory problem 

from an execution perspective.  They use visibility and alerting tools to get an early 

view of where the plan is wrong in order to ensure that corrective action can be taken.  

While helpful, this approach is not a substitute for optimizing inventory levels across 

the chain.  Execution tools can go a long way toward solving supply disruptions, but 

often resolution is not responsive enough, resulting in more buffer inventories. 

 

Academic research has resulted in significant breakthroughs in stochastic modelling 

(problems with a high degree of variability). Mathematical algorithms invented in the 

1990’s and tested over several years at individual companies, are now coming to the 

 10

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



market in the form of new Inventory Optimization products.  These solutions promise to 

change the way companies set policies on safety stock, not just for finished goods, but 

across entire supply chains, with huge potential for savings.  These optimization engines 

are highly sophisticated with algorithms that consider consumption, supply, various 

lead-times and then determine the amount of inventory required at different location. 

“It’s a myth to think anyone will ever get to zero inventory, but inventory optimization 

engines are the next step in that direction,” according to Mary Haigis of Clarkston 

Consulting, Durham, N.C. (Murphy 2003:1). 

 

The Aberdeen benchmark study found that companies using new optimization methods 

commonly drove 20-30 % reductions in on-hand inventory and 10-20 % improvements 

in time to market (Enslow 2004:1-17).  The study also found that nearly half of 

respondents have shifted away from purchase orders or release notices for some of their 

suppliers. Instead, these companies are setting a minimum and maximum inventory 

target level for an item at a plant or other company location, and then ask the supplier to 

take responsibility for ensuring that inventory is maintained within that range – in 

essence, Vendor Managed Inventory.  Inventory reduction of 30 % and more has been 

realized in these enterprises and stock-outs have been drastically reduced.  New supplier 

collaboration technology is helping companies execute these min/max replenishment 

strategies in a way that enables suppliers to also reduce their own inventories.  

Companies need to be much more aggressive in using the new generation of multi-

echelon inventory optimization technology and inventory collaboration technology. 

 

The Inventory Optimization Tool marketplace is a niche market since all software 

vendors present in this market also deliver other software components such as 

Forecasting, Supply Chain Network Design, Enterprise Resource Planning (ERP), 

Retail software or Advance Planning Systems (APS). It is also interesting to note that 

all of the Inventory Optimization software vendors also deliver forecasting software, 

which is often closely linked to the Inventory Optimization functionalities, that is 

 11

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



optimization of inventory levels based on future forecasting data (Cap Gemini Ernst & 

Young 2003:4). 

 

Inventory Optimization tools typically contain functionalities such as: 

 

• Calculation of optimal safety stock levels based on customer service level 

parameters 

• Calculation of ABC classifications 

• Determination of the best ordering methodology  

• Best before date management and optimal lot size calculations 

• Analysis for stock / non-stock decisions 

• Dynamic safety stock level management 
 

Software vendors are increasingly realizing that the new direction in supply chain 

management will require them to have an inventory optimization module.  In reaction to 

this optimization packages are emerging in two forms:  Specialized Optimization 

Packages or Inventory Optimization modules as an addition to ERP systems. 

1.2.3 i2 Technology Seven Step Approach 

As an example of an approach used in commercial information technology, i2 

Technology, a leading supply chain optimization solution provider, deploys inventory 

optimization through a seven-step process as depicted in Figure 1.2 below (i2 

Technology, 2003). 
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Source: i2 Technology Inc. White Paper 2003:26) 

 

Figure 1.2:  The i2 Technology Seven Step Approach to Inventory Optimization 

 

The i2 Seven Step Approach is described below: 

a. Establish Baseline – Simulate the current situation and validate against history 

i2 starts the process by building a valid simulation model of the supply chain based 

on historical data.  

b. Analyze Inventory – Segment products and analyze demand 

Concurrently with the establishment of the baseline and through close cooperation 

with business leaders, an understanding of the companies’ business priorities, the 
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market environment and the customers are obtained. This leads to a profile of 

customers’ buying behaviour and lead-time expectations. These insights are used to 

design an appropriate segmentation and stratification strategy for the companies’ 

customers and products, driven by the companies’ customer expectations and 

business priorities.  Items may be analyzed for demand patterns, demand volumes, 

service criticality, product lifecycle, product structure similarities, lead times, and 

competitive posture. 

c. Optimize scenarios and measure sensitivity 

Candidate “to-be” scenarios are identified in cooperation with the companies’ 

business leaders.  Based on i2’s optimization technology, which takes into account 

anticipated demand and the companies’ supply chain constraints and business 

priorities, calculations are made in order to determine how much of what inventories 

must be carried and where and in what form, it should be. 

d. Validate optimized policies with simulation 

The optimized recommendations are then validated with a simulation run. The 

simulation allows i2 to get more detailed expected performance metrics pertinent to 

the supply chain for each scenario. 

e. Select best inventory policy scenario for business 

i2’s solution includes an analytics framework that provides metrics based on the 

SCOR model across the supply chain. The metrics can be tailored according to part, 

location, customer and time hierarchies and comparison of metrics at any level for 

part, location, customer and time, between scenarios or within each scenario can be 

made. This analysis helps the company to decide which “to-be” scenario is best for 

the business. 
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f. Implement business rules and inventory policies in the supply chain 

i2’s solution provides direct integration to supply chain planning business processes 

through standard API and i2’s Supply Chain Operating System (SCOS) architecture. 

g. Monitor service levels and inventory performance 

i2 provides a structured framework for continuous learning and process 

improvement using Six Sigma concepts. Standard reports are provided to monitor 

actual performance against plans.  These reports will also help the company 

understand if the assumptions that plans were based on, were valid or not. The 

analysis framework provides guided analysis paths that help to quickly identify root 

causes of execution problems. 

 

i2 bases their inventory management technologies on the concept of response buffers.  

The response buffer is the inventory point from which material is consumed to fulfil a 

customer order.  In the retail environment, for instance, the primary response buffer is at 

the customer facing location. The retail store’s shelf is the response buffer. If the 

customer fails to find the item he wants on the shelf, he simply goes elsewhere and the 

store loses the order. On the other hand, in a manufacturing environment with 

component inventories, assemblies, and finished goods, the response buffer can be 

anywhere in the supply chain, predicated by the business model. In a make-to-stock 

setting for instance, the response buffer is downstream in the supply chain similar to the 

retail store. In contrast, in a build-to-order environment, the response buffer may be 

upstream in the form of raw material. 

 

Response buffers play a fundamental role in inventory optimization strategies. i2 has 

identified four fundamental strategies that define, according to them, world-class 

inventory management.  These strategies are: 
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• Optimized segmentation - stratification of products based on common inventory 

characteristics and similar response buffer strategies 

• Optimized postponement - deals with decisions around which echelon (node in 

the supply chain) to position the response buffers in the supply chain 

• Optimized inventory levels - drives decision on how much inventory to carry in 

the response buffers 

• Continuous learning for process improvement - enables ongoing, incremental 

improvement of the inventory management process 

 

In addition to these strategies, i2 describe three variables fundamental in performing 

inventory optimization: 

 

• Demand distribution 

Demand distributions reflect the expected volume and variability for demand 

Normal distributions are typically used for medium and high volume demand 

streams. Poisson distributions are typically good to represent low volume or 

intermittent demand streams. The system will automatically choose the 

appropriate distribution based on demand data. 

 

• Order Lead Time distribution 

The order lead-time (OLT) is the time between the last change-order date and 

customer request date (CRD). 

 

• Supply Lead Time distribution 

The supply path of an end-item has lead times for each of the upstream echelons 

of the supply chain. Sometimes the lead-time may be insignificant but typically 

this can range anywhere from a few days to a few weeks. 
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Added to the fundamental variables, i2 believes that there are two key policy inputs to 

inventory optimization, namely: 

 

• Target Customer Service Level (CSL) 

• Minimum Offered Lead Time 

This is the minimum lead-time the planner would like to offer for a particular 

sub-scope of the supply chain. This means that the inventory optimization will 

plan for at least this much lead time regardless of the customer request date. 

 

With these concepts in mind, i2 then goes on to define an objective function and 

summarizes the inputs, outputs and decision outputs as follows (i2 Inventory 

Optimization User Manual 2005:6-10): 

 

• Objective Function 

Minimize total expected inventory cost while meeting target CSL 

• Inputs 

• CSL or delinquency target for end item buffers 

• Demand rate by time period 

• Demand variability 

• Cycle time & cycle time variability for each arc in the network 

• Key Outputs 

• Inventory targets for all buffers 

• Inventory Turns 

• Revenue (R) 

• Inventory carrying costs (R) 

• Delinquency (R) 

 

The primary outputs of inventory optimization are the optimized inventory 

targets for every buffer in the supply chain. These targets are passed on to 
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Supply Chain or Replenishment Planning.  Data is obtained from current ERP or 

legacy systems employed by the company. 

1.3 INVENTORY MODELS 

A storage point into and out of which commodities move or flow is termed an inventory 

system.  The inflow is characterised by replenishment from production sources and 

demand processes induce the outflow.  The net flow generates a cascade of problems 

pertaining to the control and maintenance of inventory systems.  There are numerous 

factors pertaining to the functioning of an inventory system and considering only a 

small number of factors in the formulation of an inventory model can result in a very 

complex model.  Accordingly, it is quite impossible to obtain a traitable mathematical 

model that will truly reflect the behaviour of an inventory system.  However, several 

nearly realistic models have been proposed and studied extensively in the past giving 

importance to the inherent stochastic nature of these systems.  Most of these models 

assume that the organisations maintaining the inventory have control in determining 

when and in what quantity the inventory have to be replenished, but have no control 

over the demand process.  A systematic account of the early analyses of stochastic 

inventory systems can be found in Arrow et al (1951, 1958), Beckmann (1961) and 

Hadley and Whitin (1963).  As the study of these systems progressed over time, several 

reviews have appeared to highlight the state-of-art (for example, see Aggarwal (1974), 

Nahmias (1978), and Raafat (1991). A review and critique of inventory problems that 

have been effectively solved is provided by Silver (1981), who also suggested some 

problems for future research.  Girlich (1984) executed a survey of dynamic inventory 

problems and models that can be implemented. 

1.3.1 Types of Inventory Models 

The various models of stochastic analysis of inventory systems are broadly classified 

into two types namely, periodic review systems and continuous review systems.  In 
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periodic review systems the state of the system is examined only at specific time 

intervals at equally spaced points in time and decisions such as placing of orders and the 

quantity to be added to the inventory are made only at these review points.  In 

continuous review systems, on the other hand, all events associated with the time 

evolution of the inventory are recorded and the stock level is reviewed continuously at 

the occurrence of each demand for the product in inventory.  Continuous review 

systems have occupied a wider scope for application since failure of review of the 

inventory level even at a single time point may prove disastrous for organisations in the 

defence and medical industries.  Inventory systems are also classified as either single 

product inventory systems or multi product inventory systems, based on the 

consideration of a single product or a variety of products in interaction. 

1.3.2 Single Product Inventory Systems 

Several models for single product inventory systems have been proposed.  Optimal 

ordering policies have been developed and studied extensively in the past by several 

researchers both for periodic and continuous review cases.  For example, see Beckmann 

(1961), Dirickx and Koevoets (1977), Wijngaard and Winkel (1974), Kalpakam and 

Arivarignan (1985, 88), Horrowitz and Doganso (1986), Beckmann and Srinivasan 

(1987), Ramanarayanan and Jacob (1987), Ravichandran (1988), Weiss (1988), 

Srinivasan (1989), Krishnamoorthy and Laxmy (1990), Kalpakam & Sapna (1996), 

Hargreaves (2002) and Krishnamoorthy and Manoharan (1990). 

1.3.3 Multi-product Inventory Systems 

Many real life situations exist in which multi-product inventories are required.  For 

example a pharmacist keeps a number of medicines of different brands, a ready-made 

clothing shop keeps dresses of different designs, colours, and sizes, a shoe store stocks 

shoes of various styles and sizes.  Hence the study of multi- product inventory models 

has drawn special attention recently.  Page and Paul (1976) and Chakravarthy (1981), 
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Sung and Chang (1986), Oneiva and Larraneta (1987), Aksoy and Erengue (1988), 

Amiya and Martin (1988), Goyal (1988) and Correnu (1990) have analysed multi-

product inventory systems. 

a. Ordering Policies 

In a multi-product inventory system the inventory control policies and the nature of 

demands may be different from that of a single product system.  First we consider 

inventory control policies.  The inventory of each product may be controllable 

independently or there may exist an interaction among the items and a joint control 

of the inventory may be required. For example demand for tyres for off-road 

vehicles will not affect the demand for truck tyres available at the same dealership.  

Inventory of such items can be controlled individually.  The demand for new and 

retreads of trucks may be highly dependent and need to be controlled jointly.  Hence 

we may have the following two types of re ordering policies for the control of 

inventory on products: 

(i) Individual order policy 

 This policy determines that each item is ordered according to its own single item 

policy. 

(ii) Joint order policy 

This policy determines that all jointly controlled items is ordered whenever an 

order for specific product order is triggered, irrespective of the inventory level of 

the other items. That is wherever replenishment occurs; every product is 

replenished to a specified inventory level. 
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b. Demand Interaction 

Considering the nature of demand, a demand may be for a single product or several 

products.  For example, the inventory of a dealership for new cars, in addition to 

new vehicles, consists of replacement parts for maintenance and optional 

accessories such as special trimming.  The buyer has the option to take one or more 

of these accessories.  It is also possible that a demand for a particular product during 

its stock-out may be substituted with another similar product in the inventory.  

Examples of products having at least partial substitutability include: 

 

• Consumer products such as different brands of toothpastes and different 

types of pastas or cereals. 

• Building products such as different brand of paints and containers of 

different sizes of the same brand. 

• Clothing products such as dresses in the same design and brand but in 

different colours. 

• Electrical products such as fluorescent light bulbs of different makes and 

ceiling fans of different brands. 

 

When this type of interaction occurs, large stock quantities of a particular product 

can be avoided, as it is substitutable by another similar product.  The available total 

inventory storage space can be shared optimally as to reduce the lost demand due to 

unavailability.  Kamat (1971) studied substitutability of demands by considering a 

two substitutable product inventory model with a prescribed order period and 

obtained a cost function.  McGillivray and Silver (1978) investigated the effect of 

substitutable demands on stock control rules and a heuristic approach for 

establishing the value of control parameters (the order up to levels) for the case of 

two products.  Parlar and Goyal (1984) considered a model of two substitutable 

products as an extension of the classical single period news-boy problem.  They 

have shown that the optimal order quantities can be found for each product by 
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maximizing the expected profit function, which is strictly concave for the wide 

range of parameter values.  Parlar (1988) used game-theoretic concepts (two person 

continuous game) to analyse an inventory problem with two substitutable products 

having random demands. 

1.3.4 Perishable Product Inventory 

Apart from these considerations, the perishability of products also plays a vital role in 

inventory theory.  Several inventory models of perishable products have been proposed 

and studied extensively.  A review of work done on perishable inventory can be found 

in Nahmias (1982).  Further and Weiss (1986), Nahmias and Schmidt (1986), Sarma 

(1987), Abdel, Malek and Ziegle (1988), Ravichandran (1988), Mandal and Phaujdar 

(1989) and Perry and Posner (1990) have analysed perishable inventory models.  In his 

survey article, Raafat (1991) has consolidated the work done on continuously 

deteriorating inventory models. Kalpakam and Sapna (1994, 96) studied a perishable 

inventory model with (s, S) policy and arbitrary lead times. 

a. Demand Interaction 

A different type of interaction can occur in the case of perishable inventory. 

Products such as vegetables, fish, etc. have a short life span and deteriorate in 

quality due to ageing.  The same applies to fashion clothing losing its value due to 

changing seasons or new trends.  In these cases there may also be a demand for an 

item slightly deteriorated in quality if the cost is reduced compared to the new or 

fresh product.  A multi product perishable inventory system with economic 

substitution, which deals with a product that perishes in a single period has been 

proposed and studied by Deuermeyer (1980). Parlar (1985) has also developed a 

Markov decision model to generate ordering policies for perishable (in two periods) 

and substitutable products. 
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1.3.5 Random Environment 

In the stochastic analysis of inventory systems, it is generally assumed that the 

distributions of the random variables, representing the number of demands over a period 

of time, the life of the product (in case of a perishable product) and the lead-time, 

remain the same and do not change through the domain of the analysis.  However, there 

are external factors that affect these random variables.  Seasonal changes can affect the 

demand rate, the perishing rate, the selling price and the cost of replenishment. The 

demand for umbrellas and rain shoes are higher in the rainy season than at other times 

of the year.  The selling price and the cost of replenishment also fluctuate over time due 

to inflation, non-availability of the products, cost of transport, etc.  The state of the 

environment in which the system is operating may randomly change due to weather, 

breakdown of storage facilities, etc. Consequently, consideration of the impact of the 

random environment on such inventory systems is absolutely essential. 

1.3.6 Deteriorating Inventory 

Balkhi (1999) developed a unified inventory model for integrated production systems 

with a single product.  The production, demand and deterioration rates for the finished 

product and the deterioration rates for raw materials are assumed to be known functions 

of time. 

 

The objective of the author is to determine the optimal values of the length of the 

production stage and the length of the inventory cycle that minimizes the total variable 

cost of the inventory system. The problem is converted to an unconstrained 

minimization problem, and when a solution to the underlying inventory system exists, it 

is the unique global optimal solution. A rigorous mathematical formulation proves the 

global optimality of the solution. The article is concluded with a numerical example that 

illustrates the solution procedure. 
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Rau et al (2003) worked on an integrated inventory model for deteriorating items under 

a multi-echelon supply chain environment. Demand, production and deterioration rate is 

assumed to be deterministic and constant with production rate greater than demand rate. 

Only a single supplier, producer, buyer and product are considered.   A model that gives 

the optimal joint total cost from an integrated perspective among the supplier, producer 

and buyer is obtained and Matlab is used to obtain the optimal solution.  A numerical 

example illustrates the use of the model and it shows that an integrated approach results 

in the lowest joint total cost as compared with the independent decision strategies. 

1.3.7 Techniques Used in the Study of Inventory Models 

a. Renewal Theory 

One of the important types of stochastic processes is the renewal process. Several 

researchers in the theory of renewal processes have made outstanding contributions, 

e.g. Feller (1965), Cox and Smith (1958), Smith (1958) and Neuts (1978).  A 

systematic account of renewal theory and its applications to diversified fields can be 

found in Cox (1962), Parzen (1962), Sahin (1990) and Medhi (1994).  A renewal 

process is a sequence of independent, non-negative and identically distributed 

random variables, which are not all zero with a probability of one. 

(i) Definition 

Let {Xn ; n = 1, 2, …} be a collection of non-negative random variables which 

are independent and identically distributed. Then {Xn} is called a renewal 

process. 

We assume that each of the random variable Xi has a finite meaning. A renewal 

process is completely determined by ƒ(⋅), the pdf of Xi.  Let 

 

S0 = 0 
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Sn = X1 + X2 + …… + Xn , n = 1, 2, … 

 

 

 

 

 

 

 

N (t) = max {n : Sn ≤ t} , t > 0 

 

Then N (t) is called the number of renewal up to time (t). The expected value of 

N (t), namely E [N (t)] is called the renewal function and is denoted by H (t). 

The derivative H (t), whenever it exists, is called the renewal density and is 

denoted by h (t). 

S0 S1 S2 SnSn-1

X1 XnX2

(ii) Renewal Equation 

The quantity of h(t) dt has the probabilistic interpretation that it denotes 

probability that the renewal occurs in the interval (t, t + dt). Since this renewal 

may be either the first or the subsequent renewal, the function h (t) satisfies the 

equation. 

 

∫ −+=
t

duutfuhtfth
0

)()()()(  

 

This equation is called the renewal equation. 

(iii) Key Renewal Theorem 

Let Q(t) be non-negative and non-increasing for t > 0 such that 

 25

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



∫ ∞<
t

duuQ
0

)(  

 

then 

 

∫∫ =−
∞→

cot

t
duuQxdHxuQ

00

)(1)()(lim
µ

 

 

where ][ iXE=µ  

b. Markov Renewal Processes 

These stochastic processes are generalisations of renewal processes and have 

become indispensable in inventory applications. A systematic and in depth study 

can be found in Pyke (1961a,b), Cinlar (1975a,b) and Medhi (1994). 

 

Let E be a finite set, N be the set of non-negative integers and R+ = [0,∞].  Suppose 

we have on a probability space ),,( PXΩ , random variables, 

 

+→Ω→Ω RTEX nn :,:  

 

defined for each , so that  Nn∈

 

0 = T0 ≤ T1 ≤  …≤ Tn

 

Definition 1:  The stochastic process };,{),( NnTXTX nn ∈=  is said to be a Markov 

renewal process with state space E provided that 

 

P[Xn+1 = j, Tn+1 – Tn ≤  t | X0, X1, …, Xn ; T0, T1, …, Tn] 
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= P[Xn+1 = j, Tn+1 – Tn ≤  t | Xn] 

 

for all , Nn∈ Nj ∈  and  +∈ Rt

 

Assuming that (X, T) is time homogeneous, that is, for any Eji ∈,  and , +∈ Rt

 

P[Xn+1 = j, Tn+1 – Tn ≤  t | Xn = i] = Q ( i, j, t) is independent of n. 

 

The family of probabilities 

 

Q ( ){ }, , ; , ,Q i j t i j E t R+= ∈ ∈  

 

is called a semi-Markov Kernel over E. We assume that ( ), , 0Q i j t =  for all i, j in 

E. 

 

For each pair (i,j) the function ( ), ,t Q i j t→  has all properties of a distribution 

function except that 

( ) (, lim , ,
t

P i j Q i j t
→∞

= )

0

 

 

is not necessarily 1. It can be seen that  

 

( ),P i j ≥   

( ), 1,P i j j E= ∈∑   

 

That is,  are the transition probabilities for some Markov chain with state 

space E. It follows from Definition 1 and the above that 

( ,P i j )
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( )1 0 1 0 1, ,..., ; , ,..., ,n n nP X j X X X T T T P X j+⎡ ⎤= =⎣ ⎦ n   

 

for all . This implies that  ,n N j E∈ ∈

 

{ };nX X n N= ∈  

 

is a Markov chain with state space E and transition matrix P. 

 

We write  for the conditional probability ( )iP A ( )0|P A X i=  and similarly 

for the conditional expectation of X given ( )iE X { }0X i= . We also assume that 

[ ]0 1 2 ... 0 0iP T T T= = = = = . We define 

 

( ) [ ], , , ; , ,n
i n nQ i j t P X j T t i t E t R+= = = ∈ ∈  

 

for all n . Then N∈

( )0 1
, ,

0ij

if i j
Q i j t

otherwise
δ

=⎧
= = ⎨

⎩
 

 

for all t ≥ 0; and n ≥ 0, we have the recursive relation. δij is the Kronecker’s delta 

function. 

 

( ) ( ) (1

0

, , , , , ,
t

n n

j E
Q i k t Q i j du Q j k t u+

∈
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where the integration is over ( ]0, t  
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The expression ( , , )R i j t , which gives the expected number of renewals of the 

position j in the interval ( ]0, t , is given by 

 

( ) ( )
0

, , , ,n

n
R i j t Q i j t

∞

=

= ∑   

 

This is finite for any  and t < ∞. The ,i j N∈ ( ), ,R i j t  are called Markov renewal 

functions and the collection R ( ){ }, , ; , ,R i j t i j E t R+= ∈ ∈ of these functions is called 

the Markov renewal Kernel corresponding to Q. We note that for fixed  the 

function 

,i j E∈

( ), ,t R i j t→  is a renewal function. 

 

We can easily see from the various expressions above that [ ] 1R I Qα α
−= −  

where I is the unit matrix, and 

 

( ) ( )
0

, , , ;tQ i j e Q i j t dtα
α α

∞
−= >∫ 0

0

  

( ) ( )
0

, , , ;tR i j e R i j t dtα
α α

∞
−= >∫   

 

The class B of functions which we will be working with, is the set of all functions  

:f E R R+× →  such that for every i E∈ , the function is Borel 

measurable and bounded over finite intervals, and for every fixed 

( ),t f i t→

j E∈ , the 

functions and ( ) (, ,ni j Q i j t→ ), ( ) ( ), ,i j R i j t→ ,  both belong to B. 

 

For any function of f B∈ , the function defined by ©Q f
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( ) ( ) ( )
0

© , , , ,
t

j E
Q f i t Q i j ds f t t s

∈
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is well defined and  belongs to B again. Hence the operation can be repeated, 

and the n

©Q P
th iteration is given by 
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Q f i t Q i t ds f j t s

∈

= −∑∫  

 

We can replace Q by R and note that ©R f  is again a well defined function; that is 

f B∈  

 

( ) (
0

© , , ,
t

j E
)R f R i j ds f j t

∈

= −∑∫ s  

 

A function f B∈  is said to satisfy a Markov renewal equation if for all i  and 

 

E∈

t R+∈

( ) ( ) ( ) ( )
0

, , , , ,
t

j E
f i t g i t Q i j ds f j t s

∈

= + −∑∫  

 

for some function of . g B∈

 

Limiting ourselves to function f, g B∈ , which are non negatives and denoting this 

set by B+, the Markov renewal equation now becomes 

 

© ; ,f g Q f f g B+= + ∈  

 

This Markov renewal equation has a solution ©R g . Every solution f is of the form 
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©f R g h= +  

 

where h satisfies 

 

© ,h Q h h B+= ∈  

c. Semi-Markov Processes 

Let (X,T) be a Markov renewal process with state space E and semi-Markov Kernel 

Q. Define . Then L is the lifetime of (X,T). If E is finite or if X is 

irreducible recurrent, then L=+∞ almost surely. By weeding out those 

n
n

L SupT=

ω ∈Ω  for 

which , we assume that ( )n
n

SupT ω < ∞ ( )n
n

SupT ω = +∞  for all ω. Then for any 

ω ∈Ω  and , there is some integer t R∈ n N∈ . Such that Tn(ω) ≤  t < Tn+1(ω). We 

can therefore define a continuous time parameter ( )t t R
Y Y

∈
+

= which stake space E 

by putting Yt = Xn on {Tn ≤  t < Tn+1}. The process ( )t t R
Y Y

+
∈

=  so defined is called a 

Semi-Markov process with state space E and Semi Markov transition Kernel 

( ){ }, ,Q Q i j t= . 

d. Semi-Regenerative Processes 

Let a stochastic process ( )t t R
Z Z

∈
+

= be a stochastic process with a topological state 

space F, and suppose that the function t → Zt(ω) is right continuous and has left-

hand limits for almost all ω ∈Ω . A random variable T : Ω → [0,∞) is called 

stopping time for Z provided that for any t R+∈ , the occurrence or non occurrence 

of the event {T ≤ t} can be determined once the history Ht= σ (Zu : u≤ t) of Z before 

t is known. If T is the stopping time for Z, then we denote by H the history of Z 
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before T. The process Z= {Zt ; t ≥ 0} is called a regenerative if there exists a 

sequence S0, S1, S2 …. of stopping times such that 

(i) { };nS S n N= ∈  is a renewal process 

(ii) For any n, m N 1 2; , ,..., nt t t R+∈ ∈  and any bounded function f defined on En 

( ) ( )1 2 1 2
, ,..., ; , ,...,

m m m m ns t s t s t u m t t tE f Z Z Z Z u S E f Z Z Z+ + +
⎡ ⎤ ⎡≤ =⎣ ⎦ ⎣

⎤
⎦  

 

Definition 2:  Let ( )t t R
Z Z

∈
+

= be a stochastic process topological state space F, and 

suppose that the function t → Z(ω) is right continuous and has left hand limits for 

almost all ω. The process Z is said to be semi-regenerative if there exists a Markov 

renewal process (X,T) with infinite lifetime satisfying the following: 

 

i) for each  is a stopping time for Z , nn N T∈

ii) for each is determined by {Z, nn N X∈ u : u≤ Tn} 

iii) for each and function f defined on F1 2, 1, 0 ... mn N M t t t∈ ≥ ≤ < < < m 

 

( ) ( )1 2 1 2
, ,..., ; , ,...,

n n n m mi T t T t T t u m j t t tE f Z Z Z Z u T E f Z Z Z+ + +
⎡ ⎤ ⎡≤ =⎣ ⎦ ⎣

⎤
⎦  on  [Xn = j] 

 

In this definition Ei and Ej refer to the expectations given the initial state for the 

Markov chain X. 

 

Detailed treatment and MRP can be found in Pyke (1961a,b), Levy (1954), Cinlar 

(1975b) and Ross (1970). The survey of Cinlar (1975a) demonstrates the usefulness 

of the theory MRP and SMP in applications. 
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e. Stochastic Point Processes 

Stochastic point processes form a class of processes more general than those 

considered in the previous sections. Since point processes have been more studied 

by many with varying backgrounds there have been several definitions of the point 

processes each appearing quite natural from the viewpoint of the particular problem 

under study. [See for example Bhabha (1950), Khinchine (1960), Harris (1963) and 

Bartlett (1966)]. A stochastic point process is the mathematical abstraction, which 

arises from considering such phenomena as randomly located population or a 

sequence of events in time. Typically there is envisaged a state space X and a set of 

points Xn, from X representing the locations of the different members of the 

population or the times at which the events occur. Because a realization (or sample 

path) of any of these phenomena is just a set of points in time or space, a family of 

such realizations has come to be called a point process. (Daley and Vere-Jones, 

1971) 

 

A comprehensive definition of point process is due to Moyal (1962) who deals with 

such processes in a general space, which is not necessarily Euclidian. Consider a set 

of objects, each of whose state is described by a point x of a fixed set X of points. 

Such a collection of objects, which we may call a population, may be stochastic if 

there exists a well-defined probability distribution P on σ some field β of subsets of 

the space Φ of all states. We shall assume that members of the population are 

indistinguishable from one another. The state of the population is defined as an 

unordered set xn = {x1, x2, …. , xn} representing the situation where the population 

has n members with one each in the states x1, x2, …. , xn. Thus the population state 

space Φ is the collection of all xn with n = 0,1,2…where x0 denotes  the empty 

population. A point process is defined to be the triplet (Φ, β, P). For a detailed 

treatment of stochastic point processes with special reference to their applications, 

refer to Srinivasan (1974). A point process is called a regular point process if the 
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probability of occurrence of more than one event (0, ∆) is 0(∆), where ∆ is very 

small.  

(i) Product Densities 

One of the ways of characterising a general stochastic point process is enough 

product densities (Ramakrishnan 1950, 1958) and Srinivasan (1974). These 

densities are analogous to the renewal density in the case of non-renewal 

processes. 

 

Let  N(t,x) denote the random variable representing the number of events in the 

interval (t, t+x), dxN(t,x) the events in the interval (t+x, t+x+dx) and Pn(n,t,x)= 

P [N (t,x) = n]. The product density of order n is defined as: 

 

( ) ( )
1 2

1 2 , ,..., 0
1 2

, 1, 1, 2,...,
, ,..., lim

...n

i i
n n

n

N x i n
h x x x P

∆ ∆ ∆ →

⎡ ⎤∆ ≥ =
= ⎢ ⎥∆ ∆ ∆⎣ ⎦

  

 

where  x1 ≠ x2 ≠ …≠ xn , 

 

or equivocally for a regular process 

 

( )
( )

1 2

1
1 2 , ,..., 0

1 2

,
, ,..., lim

...n

n

i i
i

n n
n

N x
h x x x E =

∆ ∆ ∆ →

⎡ ⎤
∆⎢ ⎥

⎢ ⎥=
∆ ∆ ∆⎢ ⎥

⎢ ⎥⎣ ⎦

∏
 

 

where x1 ≠ x2 ≠ … ≠ xn

 

These densities represent the probability of an event in each of the intervals (x1, 

x1 +∆x1),   (x2, x2+∆x2), … , (xn , xn+∆xn ). Even though the functions hn (x1, 
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x2,…, xn) are called density, it is important to note that their integrates will not 

give probabilities, but will yield the factorial moments. The stationary moments 

can be obtained by relaxing the condition that all xi are different. 

1.3.8 Measures of System Performance 

In this section some of the important measures of inventory systems are explained. Let 

I(t) be the inventory level at time t and S be the maximum capacity of the inventory. 

Then the next inventory level distribution P(i,t|k) at any time t is given by 

P(i,t|k) = P[I(t) = i|I(0) = k]; i, k = 0, 1, … , S 

The limiting distribution P(i), if it exists, is defined as: 

 

( ) ( )lim ,
t

P i P i t k
→∞

=  

 

For a two product system let the state of the system be represented by the ordered pair 

(X(t), Y(t)), where X(t) is the inventory level of product 1 and Y(t) is the inventory level 

of product 2 . Then the inventory level distribution P(i,j,t|k,l) at time t is given by 

 

( ) ( )( ) ( ) ( ) ( )( ) ( ), , , , , 0 , 0 ,P i j t k l P X t Y t i j X Y k l⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦=  

 

1 2; 0,1, 2,..., ; ; 0,1,...,i k S j l S= =  

 

where S1 and S2 are the maximum inventory levels of product 1 and product 2 

respectively. The limiting of distribution P(i,j), if it exists, is defined as: 

 

( ) ( ), lim , , ,
t

P i j P i j t k l
→∞

=  

 

 35

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



The expected stock on hand of mean inventory level E(L), at any time for a single 

product system in the steady state is given by: 

 

( ) ( )
0

S

i
E L iP i

=

= ∑  

 

In any inventory model, apart from the distribution of the inventory level, the mean 

number of re orders places, replenishments made, demand satisfied demands lost in an 

arbitrary interval of time are also some of the important measures. 

 

In the context of a multi-product system allowing substitution, the number of demands 

for a particular product satisfied by a different product deserves considerations. The 

stationary roles of these events are used in the cost analysis of the system. To find these 

measures, we follow the procedure given below. 

 

Let N(η,t) denote the number of a specific type of event η (like re-orders, replenishment, 

demand for a product satisfied by the same product, demand for a product satisfied by 

another product, demands lost, etc.) in (o,t]. Then the expected number of n events in 

(o,t] is given by: 

 

( ) ( )
0

,
t

E N t h u duη⎡ ⎤ =⎣ ⎦ ∫   

 

Where h(u) is the first order product density corresponding to the event under 

consideration. In the long term, the stationary role of η events is given by: 

 

( )
( )

( )
,

lim lim
t t

E N t
E h

t
η

η
→∞ →∞

⎡ ⎤⎣ ⎦= = t  
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1.3.9 Cost Analysis 

a. Inventory Related Costs 

We consider the following costs in the analysis of the inventory models. 

(i) Holding Costs 

This not only includes the expenses incurred by storage facilities but also the 

amount invested that could have earned a return on investment elsewhere. This 

cost at any time depends upon the level of stock on hand. 

(ii) Re-ordering Costs 

When the stock in hand comes down to a level where re-order is necessary, an 

order is placed. This involves additional expenses with regard to transactions, 

paperwork, inspection and material handling costs. 

(iii) Cost for Demand Lost 

When demand is not met and also not backordered, the profit that would have 

been made is lost together with some goodwill. 

(iv)  Procurement Cost 

This is the price at which the items are bought either from a manufacturer or 

from the market. Most inventory control procedures recognise price fluctuations, 

and they are treated accordingly in this study. 
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b. Cost Optimization 

There are a number of objectives that may be sought after by inventory managers. 

These usually involve the minimisation (maximisation) of costs (profits) function, 

which could be either discounted or undiscounted. The planning period of horizon 

may be finite or infinite, In stochastic models the mean value of costs are measured 

and the criterion consists in the minimisation of the total expected cost pen unit time 

or of the expected discount cost over a finite or infinite horizon. The cost function 

will, in general, consist of the additive contribution of the procurement cost, the 

holding cost and the storage cost. 

 

Under the (S, s) policy, the objective function will, in general, be expressible as a 

function of two variables S and s. The resultant optimization problem consists in 

determining the optimal values of S and s to achieve the selected extension. For a 

multi-product system the maximum inventory levels of the various products and the 

re-order levels can be considered as variables for optimization. 

 

In this regard, it should be pointed out that there are two distinct approaches in 

formulating and solving the stochastic inventory problems both in theory and in 

practise.  

In the first approach the system is viewed as a multi-stage decision process and the 

technique of dynamic programming is employed in finding the optimal policy that 

minimises the total expected cost over the duration of the process. 

 

The following second approach is often used when the duration process is infinite: 

an ordering policy of a given type is chosen and the stationary behaviour of the 

inventory levels is analysed without reference to the cost structure of the problem. 

Such entities as the expected frequencies of orders and the expected quantity on 

hand, etc. are computed. A cost structure is then imposed on the system and the 
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stationary total expected cost rate for operating the inventory system is minimised. 

In this thesis, the stationary approach is adopted for optimal analysis. 

 

If C(t) represents the total cost in [0, t], then the expected cost rate, E(C), is given 

by: 

 

( )
( )

lim
t

E C t
E C

t→∞

⎡ ⎤⎣ ⎦=  

 

Notation: 

λi : Demand rate of product i, i = 1,2 

µi : Perishable rate of product i, i = 1,2 

Si : Maximum inventory level of product i, i = 1,2 

si : Re-order level of product i, i = 1,2 

Si-si : Quantity of product i re-ordered, i = 1,2 

di : Event that a demand for product i is satisfied with product i, i = 1,2 

g : Event that a demand for product 1 is satisfied by product 2 

li : Event that a demand for product i is lost, i = 1,2 

N(η,t): Number of η events in interval (0,t] 

δij : Kronecker’s delta function 

H(•) : Heaviside function 

© : Convolution Symbol 

ξ*(s) : Laplace transform of ξ(t) 

f(n)(t) : n-fold convolution of f(t) 

0

( ) 1 ( ) 1 ( )
t

F t F t f u du= − = − ∫   
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CHAPTER 2 
 

 

 

A PERISHABLE PRODUCT INVENTORY SYSTEM 

OPERATING IN A RANDOM ENVIRONMENT

A modified version of this chapter has been published in the South African Journal of 
Industrial Engineering, Vol 15 No 2, November 2004. 
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2.1 INTRODUCTION 
 

Various stochastic models of inventory systems have been studied recently by Yadavalli 

& Joubert [2003], Yadavalli et al [2004].  Studies on perishable product inventory 

systems have gained much importance in literature (Kumaraswamy and 

Sankarasubramanian [1981], Kalpakam and Arivarignan [1988], Pal  [1990], Liu 

[1990], Raafat [1991] and Kalpakam and Sapna [1994, 1996]).  In the stochastic 

analysis of such inventory systems, it is generally assumed that the distributions of the 

random variables representing the number of demands over a period of time, the 

lifetime of the product and the lead-time remain the same and do not change throughout 

the domain of the analysis.  However, there are external factors that affect these random 

variables.  Seasonal changes can affect the demand rate, the perishing rate, the selling 

price and the cost of replenishment.  The demand for umbrellas and rain shoes are 

higher in winter than in summer.  The perishing rates of vegetables are higher in 

summer.  The selling price and the cost of replenishment also fluctuate over time due to 

reasons such as inflation and non-availability of the product.  The state of the 

environment in which the system is operating may randomly change due to several 

factors, including weather conditions and breakdown of storage facilities.  

Consideration of the impact of the random environment on such inventory systems is, 

therefore, absolutely essential.  Only a few authors have considered inventory systems 

operating in random environments (Feldman [1978], Pal [1990], Song and Zipkin 

[1993] and Girlich [1998]).  These authors considered non-perishable product inventory 

evolving in random environments.  The survey of Raafat [1991] presents only literature 

on deteriorating inventory models in non-changing environments.  Kalpakam and Sapna 

[1996] considered inventory models where the items have constant perishing rates only. 

 

A perishable product inventory system operating in a random environment is studied in 

this chapter.  For the sake of simplicity, the stochastic environment is considered to 

alternate randomly over time between two states, 0 and 1, according to an alternating 

renewal process.  When the environment is in state , the items in the inventory have a k
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perishing rate kµ , the demand rate is kλ  and the replenishment cost is .  Assuming 

instantaneous replenishment at the epoch of the first demand after the stock-out and 

associating a Markov renewal process with the inventory system, the stationary 

distribution of the inventory level and the performance of various measures of the 

system evolution are obtained.  

kCR

 

This chapter is structured as follows: 

 

Section 2.2 provides the assumptions and notation of a model of an inventory system 

operating in a random environment and certain auxiliary functions are obtained in 

Section 2.3.  An associated Markov renewal process is analyzed in Section 2.4.  In 

Section 2.5, the stationary distribution of the inventory level is given and the stationary 

measures of performance of the system are obtained in Section 2.6.  A cost analysis for 

the model of the inventory system is presented in Section 2.7.  Section 2.8 considers a 

particular case of the general model and obtains the probability distribution of the total 

sales proceeds up to any time t .  In Section 2.9, another particular case of the general 

model is considered and the total replenishment cost incurred up to t  is studied, 

followed by a numerical illustration in Section 2.10. 

 

2.2 ASSUMPTIONS AND NOTATION 
 
2.2.1 Assumptions 

 

A continuous review inventory system operating in a random environment is 

considered.  The random environment is assumed to alternate between two states, 0 and 

1.  The durations of stay in the state 0 are given by the sequence of i.i.d. random 

variables { }, having a common exponential distribution with parameter nX 0ν , and the 

durations of stay in the state 1 are given by the sequence of i.i.d. random variables { }, 

having a common exponential distribution with parameter 

nY

1ν .  A renewal of one state 
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occurs at the termination of the other.  The two families { } and { } are 

independent.  

nX nY

 

Other applicable assumptions are the following: 

 

(i) The items under consideration are perishable.  The rate of perishing depends on 

the state of the random environment.  The lifetime distribution of an item in the 

inventory is exponential with parameter kµ  when the environment is in state , 

( k  = 0, 1). 

k

 

(ii) Demands occur according to a double stochastic Poisson process.  The demand 

occurs with rate kλ  when the environment is in state , ( = 0, 1). k k

 

(iii) Replenishment is instantaneous for 1+S  units and is made at the epoch of the 

occurrence of the first demand that occurs during the stock-out period.  The cost 

of replenishment is  when the environment is in state ( = 0, 1). kCR k k

 
2.2.2 Notation 

 

)(tξ  : The state of the environment at time t  

π     : Event that an item perishes 

©     : Convolution symbol 

H(i-j) : Heaviside function 
1
0

if i j
if i j

≥⎧
= ⎨ <⎩
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2.3 AUXILIARY FUNCTIONS  
 

In this section, the underlying stochastic process is identified as a Markov renewal 

process. In order to study its transient behaviour, certain auxiliary functions are obtained 

in this section. 

 

2.3.1 Function  ),;,( kitjP

 

An interval in which there is no replenishment and the environment remains in a fixed 

state, the inventory level process  behaves like a death process.  To describe the 

behaviour of this process, the function 

)(tL

 

])0(,)0()([),;,( kiLjtLPkitjP ==== ξ  

 

is defined, where  and Sji ≤≤ ,0 =k 0, 1.  To derive an expression for  

consider that if  0, a change in the state of  occurs due to any one of the 

following mutually exclusive and exhaustive cases: 

),;,( kitjP

≠)(tL )(tL

 

(i) A demand for the product occurs 

(ii) An item perishes and is removed instantaneously from the inventory  

 

Accordingly 

 

Case 1:  0,0 == ji

tkektP λ−=),0;,0(        (2.1) 

 

Case 2: ij >  

0),;,( =kitjP         (2.2) 
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Case 3: 0≠= ji  

tkjkekitjP )(),;,( µλ +−=       (2.3)  

 

Case 4: ij <≤0  

tkik
kk eikitjP )()(),;,( µλµλ +−+=  © ),1;,( kitjP −    (2.4) 

 

Taking Laplace transforms, the equations (2.1) to (2.4) yield the following: 

 

     

0
1 0

1*( , ; , ) 0
( )

( , , , ) 0

( , , , ) 1

k

k k

k

k k

i j

i j
s

P j s i k i j
s i

u i j k s j i
s

u i j k s j i
s j

λ

λ µ

λ

λ µ

⎧
⎪ <⎪
⎪

= =⎪ +⎪
⎪⎪= ⎨ + +⎪
⎪

= <⎪
+⎪

⎪

= ≠

≤ <⎪
+ +⎪⎩

    (2.5) 

where 
 

ij
ms

m
skjiu i

jm
kk

i

jm
kk

<≤
++

+
=

∏

∏

+=

+= 0;
)(

)(
),,,(

1

1

µλ

µλ
 

 

Inverting Equation 2.5 obtains the following: 
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 (2.6) 

 

where 

 

)!.(

)(
),,( 1

ji

m
kjiv ji

k

i

jm
kk

−

+
= −

+=
∏
µ

µλ
 

 
2.3.2 Function ( ),r kf t   

 

Consider the point process of r -events occurring in an interval in which there is no 

change in the state of the environment.  Let 

 

1,0;
])0(,00),(),,([

lim)(
0, =

∆
==−=∆+−

=
→∆

k
ktateventrtrNttineventrP

tf kr

ξ
 

 

The function represents the pdf of the interval between any two successive 

occurrences of replenishment when the state of the environment remains at k  

throughout the interval under consideration.  Note that 

)(, tf kr

 

1,0;),;,0()(, == kkStPtf kkr λ  
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2.3.3 Function  )(, th kr

 

Considering the point process of r -events occurring in an interval in which there is no 

change in the state of the environment, the function  are defined as follows: )(, th kr

 

1,0;
])0(,0),([

lim)(
0, =

∆
==−∆+−

=
→∆

k
ktateventrttineventrP

th kr

ξ
 

 

The function  represents the renewal density of )(, th kr r -events in an interval in which 

the state of the environment remains as k  throughout the interval.  Note that 

 

1,0;)()(
1

)(
,, == ∑

∞

=

ktfth
n

n
krkr       (2.7) 

 

2.3.4 Function  ),;,( kitjW

 

Consider an interval in which there is no change in the state of environment.  The 

function  is defined as follows: ),;,( kitjW

 

])0(,)0()([),;,( kiLjtLPkitjW ==== ξ  

 

where and . Sji ≤≤ ,0 1,0=k

 

This function gives the distribution of the inventory level at any time t  if the 

environment is in state ,  = 0, 1, throughout the interval k k ]( t,0 .  To obtain an 

expression for , the following mutually exclusive and exhaustive cases are 

considered: 

),;,( kitjW
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(i) No replenishment occurs in ]( t,0  

(ii) Only one replenishment occurs in ]( t,0  

(iii) More than one replenishment occurs in ]( t,0  

 

Accordingly 

 

),;,0(),;,()(),;,( kitPkitjPjiHkitjW kλ+−= ©  ),;,( kStjP

                      + ),;,0( kitPkλ © © )     (2.8) )(, th kr ,;,( kStjP

 

where  and  = 0, 1. Sji ≤≤ ,0 k

 

2.4 INVENTORY LEVEL 
 

Let  be the successive epochs at which the environment changes its state 

and 

...,,0 210 TTT=

 

,...2,1,0);();( =+=+= nTTLL nnnn ξ  

 

Setting ),( nnn LZ ξ= , it follows that ( ) { }...2,1,0;,, == nTZTZ nn  is a Markov renewal 

process (Cinlar [1975a]) with the state space 32 EEE ∪= , where 

 

( ){ } ( ){ }SiiESiiE ,...,2,1,0,1,;,...,2,1,0,0, 32 ====  

 

Defining 

 

122111112211122 ),(),,(;)],(),,([),,,( EkjkjkjZtTTkjZPkjtkjQ nnnn ∈=≤−== ++  
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The function ),,,( 1122 kjtkjQ  has the following interpretation.  Given that the 

environment over its state to , at time  and that the inventory level at  is , the 

probability is 

1k nT nT 1j

),,,( 1122 kjtkjQ  that the subsequent change of the state of the 

environment takes place at time  not later than a duration t  from  and that the 

state of 

1+nT nT

Z  at  is . 1+nT ( )22 , kj

 

Since ’s are epoch transitions of the process nT )(tξ ,  

 

),,,( 1122 kjtkjQ 0=  for 21 kk =       (2.9) 

 

For ,  21 kk ≠

∫ −=
t

u duejujWjtjQ
0

0
01212 )0,;,()0,,1,( νν                          (2.10)       

∫ −=
t

u duejujWjtjQ
0

1
11212 )1,;,()1,,0,( νν      (2.11) 

where . Sjj ≤≤ 21 ,0
 

The semi-Markov kernel  of the Markov renewal process is given by the 

following

)(tQ

( ) ( )2222 +×+ SS  order matrix: 

         2E            3E  

 

      2E            0         )(tA  
 

=)(tQ  
    3E              )(tB             0 
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where  is a matrix of order ( ))(tA ( )11 +×+ SS  whose elements are given by (2.10) and 

the matrix )(tB  is of order ( ) ( )11 +×+ SS  whose elements are given by (2.11). 

 

For any two elements  and ( 11, kj ) ( ) 122 , Ekj ∈ ,  

∑
∞

=

=
0

1122
)(

1122 ),,,(),,,(
n

n kjtkjQkjtkjR      (2.12) 

where

∑ ∫
∈

− −=
1),( 0

22
)1(

111122
)( ),,,(),,,(),,,(

Ekj

t
nn kjutkjQkjdukjQkjtkjQ  

 

),,,( 1122 kjtkjR  represents the expected number of renewals of the state (  in the 

interval  and is called Markov renewal function.  The Markov renewal kernel  

of the process  is given by the 

)

)
22 , kj

( t,0 )(tR

),( TZ ( ) ( )2222 +×+ SS  order matrix  

 

)],,,([)( 1122 kjtkjRtR = . 

 

If  is the matrix Laplace transform defined by (see Girlich, 2003) )(* sR

 

)],,,(*[)(* 1122 kjskjRsR = ,  

 

then, from the theory of Markov renewal process, 

 

[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−−
=

−=

−−

−−

−

11

11

1

))(*)(*())(*)(*)((*

))(*)(*)((*))(*)(*(

)(*)(*

sBsAIsBsAIsB

sBsAIsAsBsAI

sQIsR

 (2.13) 
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where  and  are the matrices of Laplace transforms corresponding 

to  and  respectively.  Inversion of the elements of  yields the 

elements of .  Using these elements, the probability distribution of the inventory 

level is defined as follows: 

)(*),(* sAsQ )(* sB

)(),( tAtQ )(tB )(* sR

)(tR

 

1),(,0;])0(,)0()([),,( EkiSjkiLjtLPkitjP ∈≤≤==== ξ  

 

),,( kitjP  is the probability that the inventory level is j  at time t  given that initially, at 

time , the inventory level is i  and the environment level is k .  To obtain an 

expression for

0=t

),,( kitjP , the vector process ( ))(),( ttL ξ  is semi-regenerative (Cinlar 

[1975]) with state space 1E  and the Markov renewal process (  embedded in it.  Its 

probability function is defined by 

),TZ

 

])0(,)0()(,)([),,,( 11221122 kjLktjtLPkjtkj ===== ξξβ  

 

where  and ( 11, kj ) ( ) 122 , Ekj ∈ . 

 

An auxiliary function is defined as follows: 

 

12211111221122 ),(),,(;])0(,)0(,)(,)([),,,( EkjkjkjLtTktjtLPkjtkj ∈==>=== ξξγ
 

This function has the following probabilistic interpretation: 

 

Given that the inventory level is  and that the environment is in state , at time t  = 0, 

the probability is 

1j 1k

),,,( 1122 kjtkjγ  that the next change of state of the environment takes 

place after a time t  and that the levels of the inventory and the environment at time t  

are  and  respectively. 2j 2k
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Since  corresponds to the epoch of change of the state of the environment from the 

state of the process, the following conditions apply: 

1T

 

(i) ),,,( 1122 kjtkjγ 0=  for 21 kk ≠  

(ii) )1,,1,( 12 jtjγ )1,;,( 12 jtjW=  

(iii) )0,,0,( 12 jtjγ )0,;,( 12 jtjW=       (2.14) 

 

Conditioning on the random variable ,  1T

=),,,( 1122 kjtkjβ ),,,( 1122 kjtkjγ ),,,(),,,( 3322
1)3,3( 0

1133 kjutkjkjdukjQ
Ekj

t

−+ ∑ ∫
∈

β  

         (2.15) 

The solution of (2.15) is given by 

∑ ∫
∈

−=
1)3,3( 0

332211331122 ),,,(),,,(),,,(
Ekj

t

kjutkjkjdukjRkjtkj γβ  (2.16) 

Using the function ),,,( 1122 kjtkjβ ,  

∑
=

=
1

0
11 ),,,(),,(

k
kitkjkitjP β        (2.17) 

 

2.5 LIMITING DISTRIBUTION OF THE INVENTORY LEVEL 
 

Considering the Markov chain { }nnL ξ,  and defining 

 

)(lim;)(lim tBBtAA
tt ∞→∞→

== , 

 

the one-step transition probability matrix of the Markov chain { }nnL ξ,  is given by 
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Q          (2.18) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

0

0

B

A

 

The structure of Q implies that the chain is periodic with period 2. Since every element 

of  is greater than 0, the chain {A }nnL ξ,  is irreducible (Feller [1965]). 

 

Consequently, the stationary distribution of { }nnL ξ,  exists.  Let 

)~,~(~
21 πππ = be the stationary distribution where 

 

 ( ) ( )( ))0,(,...,0,1,0,0~
1 Sππππ =  

 

and ( ) ( ) ( )( )1,,...,1,1,1,0~
2 Sππππ = , 

                        
such that  11

~~ ππ =AB  and A12
~~ ππ = . 

 

Since ( nnL )ξ,  has a stationary distribution, the semi-regenerative process ))(),(( ttL ξ  

also has a stationary distribution defined by  

 

),,,(lim),( 112222 kjtkjkj
t

βφ
∞→

=       (2.19) 

 

where  and ( 11, kj ) ( ) 122 , Ekj ∈ . 

 

To obtain ),( 22 kjφ  consider the mean sojourn time of the Markov renewal process 

 in a state  of  defined by ( TZ , ) ( )11, kj 1E

 

)],([),( 11111 kjZTTEkjm nnn =−= +       (2.20) 
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From the definition of ),,,( 1122 kjtkjQ , Cinlar [1975] indicates that 

 

∫ ∑
∞

∈

−=
0 1)2,2(

112211 )],,,(1[),(
Ekj

dtkjtkjQkjm                (2.21) 

 

By applying a theorem on semi-regenerative process, 

 

m

dtkjtkjkj
kj Ekj

~.~

),,,(),(
),( 0

1122
1)1,1(

11

22 π

γπ
φ

∫∑
∞

∈
=     (2.22)         

 

where ( ) ( ) ( ) ( ) ( )( )1,...,,1,0,0,,...,0,1,0,0~ SmmSmmmm =  

 

and ∑
∈

=
1)1,1(

1111 ),(),(~.~
Ekj

kjmkjm ππ       (2.23)   

 

The stationary distribution of can be obtained, defined by )(tL

 

])0(,)0()([lim)( kiLjtLPj
t

====
∞→

ξθ      (2.24) 

 

where  . Sj ≤≤0 , 1),( Eki ∈

 

Note that 

∑
=

∞→
=

1

02
12 ),,,(lim)(

kt
kitkjj βθ  

                  (2.25) ∑
=

=
1

02
2 ),(

k
kjφ
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2.6 MEASURES OF SYSTEM PERFORMANCE 
 

2.6.1 Mean Number of Replenishments 

 

Let be the first order product density of the point process of )(thr r -events.  Since at the 

epoch of an r -event the environment may be either in state 0 or 1,  

 

∑
=

=
1

0
11 ),,,0()(

k
kr kjtkth λβ  

 

where 111 ),( Ekj ∈

 

The mean number of replenishments in ( ]t,0  is given by  

∫=
t

r duuhtrNE
0

)()],([  

Hence the mean-stationary rate of replenishments is 

 

∑
=

∞→

∞→

=

=

=

1

0
),0(

)(lim

)],([lim)(

k
k

rt

t

k

th
t

trNErE

λφ

 

 

2.6.2 Mean Number of Demands 

 

Since replenishment is instantaneous, any demand that occurs is satisfied.  Define 

 

∆
=∆+−

=
→∆

)],(),([
lim)( 110

0

kjZttineventdaP
thd  ; 111 ),( Ekj ∈ . 

 55

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Then  is the first-order product density of the d -events and  )(thd

∑ ∑
= =

=
S

j k
d kjtkjth

02

1

02
1122 ),,,()( β  

 

The mean number of demands occurring in ( ]t,0  is given by 

 

∫=
t

d duuhtdNE
0

)()],([ . 

 

Consequently, the mean stationary rate of demands is given by 

 

∑∑
= =

=
S

j k
kkjdE

0

1

0
),()( λφ . 

 

Let  be the product density of d -events occurring while the environment is in 

state   Then, 

)(thk
d

.1,0, =kk

 

[ ]
∆

===−∆+
=

→∆

),()(,1),(),(
lim)( 0

0

kjZkttdNtdNP
thk

d

ξ
;   1),( Ekj ∈

 

and      ∑
=

==
S

j

k
d kkjtkjth

0
11 1,0);.,,()( β . 

 

Consequently,  )()()( 10 ththth ddd +=
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2.6.3 Mean Number of Perished Items 

 

For the first-order product density  of the point process of )(thπ π -events,  

 

)(thπ ∑∑
= =

=
S

j k
kjkjtkj

0

1

0
11 ),,,( µβ  

 

where . 111 ),( Ekj ∈

 

The mean number of items that perish in the interval ( ]t,0  is then given by 

 

∫=
t

duuhtNE
0

)()],([ ππ              

 

and the mean-stationary rate of items that perish is 

 

∑∑
= =

∞→

∞→

=

=

=

S

j k
k

t

t

jkj

th

t
tNEE

0

1

0
),(

)(lim

)],([lim)(

µφ

ππ

π  
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2.7 COST ANALYSIS 
 

The profit per unit time can be formulated as follows: 

 

∑∑ ∑
== =

−−++−=
s

j
jkk

k k
bkdkf cEcjCRrEcSrEcdEP

0

1

0

1

0
)()(])()1)(([)( ππθ  

 

where 

 

kdc  :  Selling price of one item when the environment is in state k, k = 0, 1 

bc  :  Buying cost of one item 

kCR  :  Cost of replenishment when the environment is in state k, k = 0, 1 

jc  :  Holding cost when the inventory level is j 

πc  :  Salvage cost of one perished item 

fP  :  Profit per unit time in the long run 

 

2.8 TOTAL SALE PROCEEDS 
 

Assuming the following: 

 

(i) The demand rate is a constant and is the same for all time .  0>t

(ii) The selling price of one item is  when the environment is in state k , k   = 0, 1. kc

 

For the stochastic process )(tβ  defined by 

∫=
t

duut
0

)()( ξβ      

 

Then )(tβ  represents the total time in ( )t,0  during which the environment is in state 1. 
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Consequently, the total time in ( )t,0  during which the environment is in state 0 is 

)(tt β− .  Tackacs (1957a,b) has investigated and obtained the distribution function of 

)(tβ as 

 

)]()()[(),( )1(

0

)()( xtGxtGxHxt n

n

nn −−−=Ω +
∞

=
∑  

 

where   , ][)( xXPxG n ≤=

          , ][)( xYPxH n ≤=

 

and         
⎩
⎨
⎧

<
≥

=
00
01

)()0(

xif
xif

xH

1)()0( =xG  

 

Since  represents the total number of demands which have occurred up to time t , 

the total sale proceeds to time t  is given by 

),( tdN

 

))(,())(,()( 100 tdNcttdNcctS ββ +−+=      (2.26) 

 

Assuming that  is a stationary renewal process, equation (8.1) can be expressed 

as 

),( tdN

 

 ))(,()(),()( 0100 tdNcctdNcctS β−++=      (2.27) 

 

For simplicity, assume that , where  is a fixed positive integer.  Setting 01 mcc = m

0

0 ])([
)(~

c
ctS

tS
−

=  
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The equation (2.27) simplifies as 

 

))(,()1(),()(~ tdNmtdNtS β−+=       (2.28)  

 

In order to determine the probability distribution of , the joint probability 

distribution of  and 

)(tS

),( tdN ))(,( tdN β  is required. 

 

Define ]))(,(;1),([),,( jtdNtdNPtji === βα  

 

Since ))(,( tdN β  and ))(,( ttdN β−  are stochastically independent, 

 

),,( tjiα  = ]))(,(,))(,([ jittdNjtdNP −=−= ββ  

 

               =  te λ− ∫ Ω−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
t

u
jij

i

utdutu
j
i

i 0

),()(
!

λ     (2.29) 

 

For any non-negative integer k , the event ))(~( ktS =  occurs if and only if one of the 

following events occurs: 

 

];)1(),()),(,([ jmktdNtdN −−=β  ,0=j 1, 2,…, r  

 

where r is the largest integer less than or equal to ⎥⎦
⎤

⎢⎣
⎡
m
k . 
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Consequently,  

∑
=

−−====
r

j
jmktdNjtdNPktSP

0
])1(),(,))(,([])(~[ β  

                    =        (2.30) ),,)1((
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tjjmk
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Further specializing to the case where 
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The following results from the work of Tackacs (1957a,b): 
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where  stands for the Heaviside function.  Now, for this particular case, the pdf of (.)U

)(tβ  is given by 
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δω  (2.31) 

 

Using (2.31) in (2.29) the expression for ),,( tjiα  is derived: 
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The following cases are applicable: 

 

Case (i) Let tk > , then from (2.31) 

 

   )()( )(),( xtaxta aexext −−−− += δω

 

  and hence, from (2.32) we get 

 

  ∫ −−−− −⎟⎟
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Case (ii) Let tk < , note that, for some positive integer n , kntnk )1( +≤<  and so, 
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),,( 21 II
j
i

i
etji

i
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  where 

 

               (2.35) ∫ −−−−=
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           ∫
−

−+ −−−
t
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n
xtajij dx

n
xtaaextx

!
)]([)( )(              (2.36) 

 

As ),,( tjiα is explicitly known in all the cases, the probability distribution of )(~ tS is 

obtained from (2.30). 
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2.9 THE TOTAL COST OF REPLENISHMENT 
 

Let the cost of replenishment be  when the environment is in state  and 

 be the total cost of replenishments up to time .  Proceeding as in Section 2.8,  

kCR 1,0, =kk

)(tC t

 

))(,()(),()( 0100 trNCRCRtrNCRCRtC β−++=     (2.37) 

 

Where represents the number of replenishments made in the interval .   ),( trN ]( t,0

 

Setting 
0

0 ))((
)(~

CR
CRtC

tC
−

=  and taking 01 CRmCR =  in (2.37), where m  is a positive 

integer constant, 

 

))(,()1(),()(~ trNmtrNtC β−+=       (2.38) 

 

Consequently,  

 

∑
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−−====
n

j
jmktrNjtrNPktCP

0
])1(),(,))(,([])(~[ β    (2.39) 

 

where  is the largest integer less than or equal to n ⎥⎦
⎤

⎢⎣
⎡
m
k . 

 

Since the event { }jmktrNjtrN )1(),(,))(,( −−==β  is equivalent to the event 

{ } , ))(,( trN β and ))(,( ttrN β−mjkttrNjtrN −=−= ))(,(,))(,( ββ are independent, 

and that 
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Equation (2.39) yields explicitly that 
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2.10 NUMERICAL ILLUSTRATION 
 

In this section, numerical examples illustrate the functioning of the inventory system 

operating in a random environment. 

 

2.10.1 Analysis of Measures of System Performance 

 

First, considering the various measures obtained in Section 6 and 7, their behaviour 

under the following cases are obtained: 

 

Case (i): λ0 varies from 10.0 to 200; S = 3, λ1 = 50.0, µ0 = 10.0, µ1 = 20.0, ν0 = 1.5, ν1 

= 2.5. 

Case (ii): λ1 varies from 50.0 to 250; S = 3, λ0 = 10.0, µ0 = 10.0, µ1 = 20.0, ν0 = 1.5, ν1 

= 2.5. 

Case (iii):  µ0 varies from 10.0 to 20.0; λ0 = 10.0, λ1 = 50.0, µ1 = 20.0, ν0 = 1.5, ν1 = 

2.5. 
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Case (iv): µ0 varies from 10.0 to 20.0; λ0 = 10.0, λ1 = 50.0, µ0 = 10.0, ν0 = 1.5, ν1 = 

2.5. 

 

The results for each of these cases are given in Tables 2.2 to 2.5.  In all the above four 

cases, the following values is assumed for the costs in order to determine the mean-rate 

of the total profit (PF): 

 

Cd0 = 100.0,  Cd1 = 150.0,  CR0 = 10.0,  Cr1 = 20.0,  Cj = 5.0,  Cb = 50.0,  Cπ = 3.0 

 

A consolidated overview of the results are provided in Table 2.1 below: 

 

Mean Rate of 
 Replenishment

(RR) 
Demands 

(RD) 
Perished 

Items (RP) 
Total Profit 

(PF) 
λ0 increases Increases Increases  Increases 

λ1 increases Increases Increases  Increases 

µ0 increases   Increases Decreases 

µ1 increases   Increases Decreases 

 

Table 2.1:  Overview of the Analysis of System Performance Measures 

 

2.10.2 Analysis of Probability Distributions 

 

The probability distribution of the total sale proceeds obtained in Section 2.8 is 

considered and evaluated numerically by assuming the following values for the 

parameters: 

m = 2, k = 10, t = 10 
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Fixing the demand rate λ = 0.3, the value of a is increased to obtain the values of the 

probability P[S(10) = 10] corresponding to the cases k = 8 and k = 20 (Table 2.6). 

 

Fixing a = 0.00006, the demand rate of λ is increased to obtain the values of P[S(10) = 

10] corresponding to k = 8 and k = 20 (Table 2.7). 

 

The time dependent behaviour of P[S(t) = k], in the interval 0 < t< 10 is also illustrated.  

For this purpose, k = 5, a = 0.00001 and k = 6 to obtain P[S(t) = 5], 0 < t < 10 for three 

cases λ = 0.1, λ = 0.2 and λ = 0.3 (Table 2.8).  It is noted that the probability increases 

as time increases in (0, 10) and that the probability increases as the demand rate λ 

increases. 

 

Finally, the probability distribution of the total cost of replenishment obtained in 

Section 2.9 are considered and evaluated numerically by assuming the following values 

for the parameters: 

 

m = 2, k = 10, t = 10 

 

Fixing the demand rate λ = 3.0, the value of a is increased.  Note that the probability 

P[C(10) = 10] increases for both cases k = 8 and k = 10 as detailed in Table 2.9. 

 

Fixing a = 0.00006 and increasing λ, note that the probability decreases for both cases k 

= 8 and k = 10 as per Table 2.10. 

 

The time-dependent behaviour of P[C(t) = k], 0 < t < 10 is illustrated by assuming k = 

20, a = 0.00006 and considering three cases: λ = 3.0, 3.2, 3.4 as detailed in Table 2.11.         
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S =3, λ1 = 50.0, µ0 = 10.0,  µ1 = 20.0, ν0 = 1.5, ν1 = 2.5 
   λ0           RR                         RD                            RP                           PF 
10.0      6.25000                 25.00000                   20.62500                 2011.25000 
20.0      7.81250                 31.24999                   20.62500                 2308.12500 
30.0      9.37500                 37.50000                   20.62500                 2605.00000 
40.0     10.93750                43.74999                   20.62500                 2901.87500 
50.0     12.50000                49.99999                   20.62500                 3198.75000 
60.0     14.06250                56.24998                   20.62499                 3495.62500 
70.0     15.62499                62.49998                   20.62499                 3792.50000 
80.0     17.18751                68.75002                   20.62500                 4089.37500 
90.0     18.75000                74.99999                   20.62500                 4386.25100 
100.0   20.31250                81.24999                   20.62500                 4683.12500 
110.0   21.87499                87.49996                   20.62499                 4979.99900 
120.0   23.43749                93.74997                   20.62499                 5276.87400 
130.0   25.00000                99.99999                   20.62500                 5573.75000 
140.0   26.56249               106.25000                  20.62499                 5870.62400 
150.0   28.12498               112.49990                  20.62499                 6167.49700 
160.0   29.68750               118.75000                  20.62500                 6464.37500 
170.0   31.24999               124.99990                  20.62499                 6761.24800 
180.0   32.81248               131.24990                  20.62499                 7058.12300 
190.0   34.37499               137.50000                  20.62500                 7355.00100 
200.0   35.93749               143.75000                  20.62499                 7651.87400              
 
Table 2.2:  Measures of Performance versus Demand Rate varying in 

environment in State 0 
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S = 3,  λ0 = 10.0,  µ0 = 10.0, µ1 = 20.0, ν0 = 1.5, ν1 = 2.5 
   λ1                  RR                       RD                          RP                        PF 
 50.0            6.25000                25.00000                20.62500              2011.25000 
 60.0            7.18750                28.75000                20.62500              2367.50000 
 70.0            8.12500                32.50000                20.62500              2723.75000 
 80.0            9.06250                36.25002                20.62501              3080.00200 
 90.0            9.99999                39.99997                20.62498              3436.24800 
100.0         10.93749                43.74998                20.62499              3792.49900 
110.0         11.87500                47.49999                20.62500              4148.75000 
120.0         12.81250                51.25000                20.62500              4505.00000 
130.0         13.74999                54.99997                20.62499              4861.24900 
140.0         14.68750                58.75000                20.62500              5217.50000 
150.0         15.62499                62.49998                20.62499              5573.75000 
160.0          16.56249               66.24998                20.62499              5930.00000 
170.0          17.50001               70.00002                20.62501              6286.25300 
180.0          18.43749               73.74995                20.62498              6642.49700 
190.0          19.37498               77.49995                20.62499              6998.74800 
200.0          20.31248               81.24990                20.62498              7354.99200 
210.0          21.25000               84.99998                20.62500              7711.25000 
220.0          22.18750               88.75002                20.62500              8067.50200 
230.0          23.12497               92.49989                20.62498              8423.74300 
240.0          24.06249               96.24995                20.62499              8779.99700 
250.0          24.99999               99.99998                20.62500              9136.24900 
 
Table 2.3:  Measures of Performance versus Demand Rate varying in 
environment in State 1 
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S = 3, λ0 = 10.0, λ1 = 50.0, µ1 = 20.0, ν0 = 1.5, ν2 = 2.5 
  λ0                     RR                        RD                           RP                           PF     
10.0              6.25000                25.00000                 20.62500                2011.25000 
10.5              6.25000                25.00000                 21.09375                2009.84400 
11.0              6.25000                25.00000                 21.56250                2008.43800 
11.5              6.25000                25.00000                 22.03125                2007.03200 
12.0              6.25000                25.00000                 22.50000                2005.62500 
12.5              6.25000                25.00000                 22.96875                2004.21900 
13.0              6.25000                25.00000                 23.43750                2002.81300 
13.5              6.25000                25.00000                 23.90624                2001.40600 
14.0              6.25000                25.00000                 24.37500                2000.00000 
14.5              6.25000                25.00000                 24.84375                1998.59400 
15.0              6.25000                25.00000                 25.31250                1997.18800 
15.5              6.25000                25.00000                 25.78125                1995.78100 
16.0              6.25000                25.00000                 26.25000                1994.37500 
16.5              6.25000                25.00000                 26.71875                1992.96900 
17.0              6.25000                25.00000                 27.18750                1991.56300 
17.5              6.25000                25.00000                 27.65625                1990.15600 
18.0              6.25000                25.00000                 28.12500                1988.75000 
18.5              6.25000                25.00000                 28.59375                1987.34400 
19.0              6.25000                25.00000                 29.06250                1985.34400 
19.5              6.25000                25.00000                 29.53125                1984.53100 
20.0              6.25000                25.00000                 30.00000                1983.12500 
 
Table 2.4:  Measures of Performance versus Demand Rate varying in 

environment in State 0 
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S = 3, λ0 = 10.0, λ1 = 50.0, µ0 = 10.0, ν0 = 1.5, ν1 = 2.5 
   λ0                RR                            RD                            RP                          PF 
10.0           6.25000                      25.00001                 15.00001                2028.12600 
10.5           6.25000                      25.00000                 15.28125                2027.28100 
11.0           6.25000                      24.99999                 15.56250                2026.43700 
11.5           6.25000                      24.99999                 15.84375                2025.59400 
12.0           6.25000                      25.00000                 16.12500                2024.75000 
12.5           6.25000                      25.00000                 16.40625                2023.90600 
13.0           6.25000                      25.00001                 16.68751                2023.06300 
13.5           6.25000                      24.99999                 16.96875                2022.21900 
14.0           6.25000                      25.00000                 17.25000                2021.37500 
14.5           6.25000                      25.00000                 17.53125                2020.53200 
15.0           6.25000                      25.00001                 17.81250                2019.68800 
15.5           6.25000                      25.00001                 18.09375                2018.84400 
16.0           6.25000                      25.00000                 18.37500                2018.00000 
16.5           6.25000                      25.00000                 18.65625                2017.15600 
17.0           6.25000                      25.00000                 18.93750                2016.31300 
17.5           6.25000                      25.00000                 19.21875                2015.46900 
18.0           6.25000                      25.00000                 19.50001                2014.62600 
18.5           6.25000                      25.00000                 19.78125                2013.78100 
19.0           6.25000                      25.00000                  20.06250               2012.93800 
19.5           6.25000                      25.00000                  20.34375               2012.09400 
20.0           6.25000                      25.00000                  20.62500               2011.25000 
                  
Table 2.5:  Measures of Performance versus Perishing Rate varying in 

environment in State 1 
 

 70

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



λ = 0.3 
                                                                P[S(10) = 10] 

----------------------------------------------------------------------- 
        a                                     k = 8                                              k = 20 
   0.00006                           0.0460570                                       0.0000166 
   0.00011                           0.0460597                                       0.0000304 
   0.00016                           0.0460625                                       0.0000442 
   0.00021                           0.0460652                                       0.0000579 
   0.00026                           0.0460679                                       0.0000717 
   0.00031                           0.0460707                                       0.0000855 
   0.00036                           0.0460734                                       0.0000993 
   0.00041                           0.0460761                                       0.0001131 
   0.00046                           0.0460789                                       0.0001268 
   0.00051                           0.0460816                                       0.0001406 
 
Table 2.6:  P[S(10) = 10] versus Environment Rate 
 
 
a = 0.00006 
                                                                P[S(10) = 10] 

----------------------------------------------------------------------- 
        a                                    k = 8                                                k = 10 
      0.25000                       0.0290197                                        0.0000099 
      0.26000                       0.0322745                                        0.0000112 
      0.27000                       0.0356271                                        0.0000124 
      0.28000                       0.0390563                                        0.0000138 
      0.29000                       0.0425402                                        0.0000151 
      0.30000                       0.0460570                                        0.0000166 
      0.31000                       0.0495848                                        0.0000180 
      0.32000                       0.0531022                                        0.0000195 
      0.33000                       0.0565883                                        0.0000210 
      0.34000                       0.0600231                                        0.0000225 
      0.35000                       0.0633876                                        0.0000241 
      0.36000                       0.0666638                                        0.0000256 
 
Table 2.7:  P[S(10) = 10] versus Demand Rate 
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k = 6 and a = 0.00001 
                                                                          P[S(t) = 5] 
                     ------------------------------------------------------------------------------------ 
   t                          λ = 0.1                                   λ = 0.2                         λ = 0.3 
0.50                   0.000000000                          0.000000000              0.000000001 
1.00                   0.000000000                          0.000000003              0.000000009 
1.50                   0.000000002                          0.000000013              0.000000040 
2.00                   0.000000006                          0.000000039              0.000000112 
2.50                   0.000000013                          0.000000088              0.000000243 
3.00                   0.000000027                          0.000000168              0.000000447 
3.50                   0.000000047                          0.000000287              0.000000736 
4.00                   0.000000078                          0.000000453              0.000001116 
4.50                   0.000000119                          0.000000670              0.000001590 
5.00                   0.000000175                          0.000000945              0.000002155 
5.50                   0.000000246                          0.000001279              0.000002805 
6.00                   0.000000336                          0.000001678              0.000003548 
6.50                   0.004705349                          0.019678810              0.034720840 
7.00                   0.008988675                          0.035907300              0.060612490 
8.00                   0.012914050                          0.049407630              0.079737830 
8.50                   0.016536890                          0.060749660              0.094119200 
9.00                   0.019905290                          0.070382460              0.104909600 
9.50                   0.026039840                          0.085853610              0.119100000 
10.00                 0.028873060                          0.092181770              0.123630600 
 
Table 2.8:  P[S(t) = 5] versus Time t 
 
 
λ = 3.0 
                                                              P[C(10) = 10] 

     ----------------------------------------------------------------------- 
     a                                   k = 8                                                    k = 20 
0.00006                         0.0787214                                           0.0000745 
0.00011                         0.0787648                                           0.0001366 
0.00016                         0.0788081                                           0.0001986 
0.00021                         0.0788514                                           0.0002606 
0.00026                         0.0788947                                           0.0003226 
0.00031                         0.0789380                                           0.0003845 
0.00036                         0.0789812                                           0.0004465 
0.00041                         0.0790244                                           0.0005083 
0.00046                         0.0790676                                           0.0005702 
0.00051                         0.0791108                                           0.0006320 
 
Table 2.9:   P[C(10) = 10] versus Environment Rate 
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a = 0.00006 
λ      P[C(10) = 10] 
                   ---------------------------------------------------------------------------- 

                                      k = 8                                                      k = 20 
      3.00000                    0.0787214                                              0.0000745 
      3.10000                    0.0664267                                              0.0000735 
      3.20000                    0.0548080                                              0.0000720 
      3.30000                    0.0442755                                              0.0000702 
      3.40000                    0.0350609                                              0.0000681 
      3.50000                    0.0272459                                              0.0000658 
      3.60000                    0.0207988                                              0.0000632 
      3.70000                    0.0156118                                              0.0000604 
      3.80000                    0.0115328                                              0.0000573 
      3.90000                    0.0083918                                              0.0000540 
      4.00000                    0.0060197                                              0.0000504 
      4.10000                    0.0042604                                              0.0000467 
      4.20000                    0.0029774                                              0.0000428 
      4.30000                    0.0020564                                              0.0000389 
      4.40000                    0.0014049                                              0.0000350 
      4.50000                    0.0009502                                              0.0000311 
 
Table 2.10:  P[C(10) = 10] versus Demand Rate 
 
 
k = 20 and a = 0.00006 
                                                                     P[C(10) = 10] 
                             ----------------------------------------------------------------------------- 
    t                                 λ = 3.0   λ = 3.2  λ = 3.4 
0.50000                      0.0000000  0.0000000               0.0000000 
1.50000                      0.0000000  0.0000000               0.0000000 
2.50000                      0.0000000  0.0000000               0.0000000 
3.50000                      0.0000001  0.0000002               0.0000004 
4.50000                      0.0000016  0.0000026               0.0000041 
5.50000                      0.0000083  0.0000121               0.0000165 
6.50000                      0.0000235  0.0000299               0.0000358 
7.50000                      0.0000432  0.0000492               0.0000533 
8.50000                      0.0000604  0.0000632               0.0000638 
9.50000                      0.0000714  0.0000704               0.0000679 
                      
Table 2.11:  P[C(10) = 10] versus Time t 
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2.11 CONCLUSION 
 

A model of a perishable product inventory system operating in a random environment is 

studied in this chapter.  For the sake of simplicity, the stochastic environment is 

considered to alternate randomly over time between two states 0 and 1 according to an 

alternating renewal process.  When the environment is in state k , the items in the 

inventory have a perishing rate kµ , the demand rate is kλ  and the replenishment cost is 

.  Assuming instantaneous replenishment at the epoch of the first demand after the 

stock-out and associating a Markov renewal process with the inventory system, the 

stationary distribution of the inventory level and the performance of various measures of 

the system evolution are obtained.  Numerical examples illustrated the results obtained. 

kCR
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CHAPTER 3 
 
 
 

A SINGLE PRODUCT PERISHING INVENTORY 
MODEL WITH DEMAND INTERACTION 

A modified version of chapter has been published in ORiON, Vol 20, No 2, 2004.            
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3.1 INTRODUCTION 
 

In inventory models of perishing products the lifetime of the products in the inventory 

model is described in alternative ways.  One assumption is that the product has a fixed 

lifetime and if no demand occurs for the product within its lifetime, it is considered as 

perished and removed from the inventory.  Nahmias (1982) has given an exhaustive 

survey of the fixed-life perishable inventory literature.  Another description of the 

lifetime is that the product deteriorates continuously in quality over time and eventually 

perishes.  Raafat (1991) has presented a review of the literature on deteriorating 

(decaying) inventory models.  Apart from the lifetime consideration, the deteriorating 

items have one important kind of interaction on the demand process in the sense that, in 

addition to the usual demand, there may also be a separate demand for items slightly 

deteriorated in quality if the cost is comparatively lesser than a new one.  For example, 

vegetables, food, meat and fish loose their lustre as time elapse.  A day old vegetable is 

slightly inferior in quality compared to a new one.  Such items may be accepted by 

some customers in the event of non-availability of new ones.  There may also be a 

significant number of demands for slightly deteriorated items due to the fact that they 

are less expensive.  Some of continuous review inventory models have been studied 

recently by Beyer and Girlich (1994), Yadavalli et al (2001), Yadavalli & Joubert 

(2003) and Yadavalli et al (2004). 

 

In this chapter, an attempt is made to incorporate the above kind of interaction in the 

study of deteriorating product inventory systems.  Specifically, a continuous review of 

perishing inventory models is considered with the assumption that if there is no demand 

for product in inventory, it passes through two phases and then perishes.   An item in 

Phase I is fresh and in Phase II slightly deteriorated.  On leaving Phase II, it is 

considered as being perished and removed from inventory or scrapped.  Independent 

demand takes place at constant rates for items in both phases.  Demand for an item 

during Phase I stock-out may be satisfied by an item in Phase II based on a probability 
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measure.  Demand for product in phase II during stock-out is lost.  Using the 

regeneration point technique, various measures of the inventory model are obtained. 

 

The organization of this chapter is as follows:  Section 3.2 lists various assumptions and 

notations in the description of the inventory model and also provides the auxiliary 

functions which are needed to describe the behaviour of the process between two 

successive regeneration points of the underlying stochastic process describing the 

inventory model.  Various performance measures of the inventory model are obtained in 

Section 3.3.  A cost analysis is provided in Section 3.4 and some numerical results are 

presented in Section 3.5. 

 

3.2 ASSUMPTIONS AND AUXILIARY FUNCTION 
 
The following assumptions are considered in the continuous inventory model with: 

1. The item under consideration is perishable. 

2.   The lifetime distribution of an item is a generalized Erlang distribution with two 

phases.  For convenience the items in Phase I are designated as Product 1 and 

that in Phase II as Product 2. 

.2,1, =i3. The demand for product i occurs at a constant rate iλ  

4.   Maximum storage capacity or total capacity of the inventory level is S  and re-

order takes place if the total inventory level is s . 

5. At the epoch of replenishment, all items of Product 2 are scrapped (deleted) and 

the inventory level is raised to . S
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6. The lead-time is arbitrary with pdf , and survivor function (.)f )(1)( tFtF −= , 

where F(t) is the cdf.  The arbitrary distribution is selected as an approximation 

of complex problems. 

7. A demand for Product 1 occurring during the stock-out period can be substituted 

by an item of Product 2 with probability p  if available, 10 ≤≤ p . 

8. A demand for Product 2 occurring during the stock-out period is lost, that is no 

backlogging is possible. 

The following notation are used in this chapter: 

 

:ja  Event that a re-order takes place when the inventory level of Product 2 

is  sjj ≤≤0, .

:a   Any ja -event,  sj ≤≤0 .

:ijr  Event that a stock replenishment occurs. iS − units of Product 1 are added 

to the inventory and j  units of Product 2 scrapped from the inventory. 

:r   Any -event, ijr .,,0 sjiji ≤+≤  

:jl   Event that a demand for product j is lost, j = 1, 2 

:g   Event that a demand for Product 1 is substituted by Product 2. 

:id   Event that a demand for product  is satisfied with product  i .2,1, =ii

:1k   Event of Product 1 transitting as Product 2. 

:2k   Event of Product 2 perishing and being removed from the inventory. 

:)(tLi   Inventory level of product i at time .2,1; =it  

:)(tZ   . ( ))(),( 21 tLtL
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:iλ   The demand rate of product .2,1, =ii  

:iµ   The perishing rate of product .2,1, =ii   

N(η,t):        Number of η events in (0,t]. 

:)],([ ∞jaNE  The mean stationary rate of re-order. 

:)],([ 1 ∞kNE  The mean stationary rate of transit of Product 1 as Product 2. 

:)],([ 2 ∞kNE  The mean stationary rate of perishing and removed from the inventory. 

:CR   Re-ordering cost. 

:iCL   Cost of lost demand for product .2,1, =ii   

:CP   Salvage cost per scrapped (deleted) unit. 

:CB   Purchase price of one unit. 

:),( sSC  Total expected cost per unit time. 

© :  Convolution symbol. 

 

In order to study the stochastic process ( ))(),( 21 tLtL , note that the r -events constitute a 

renewal process (see Figure 3.1 below).  Consequently, it is sufficient to describe the 

behaviour of the inventory process between two successive renewals.  
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Figure 3.1: Realization of Events 
 

The necessary auxiliary functions are introduced: 

 

3.2.1 FUNCTION ( ), , ,P k l t i j  
 

We define 

 

[ ] rajiZtNlktZPjitlkP ,,),()0(0),(),,()(),,,( ===== ηη . 
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),,,( jitlkP  represents the probability distribution of the inventory level in an interval 

in which neither reorder nor replenishment can occur.  To derive an expression for this 

function, we note that a change in the inventory level may occur due to any one of the 

following possibilities: 

1. A demand for Product i  occurs and is satisfied by product ( )2,1, =ii  

2. A unit of Product 1 perishes and transits as Product 2. 

3. A unit of Product 2 perishes. 

4. A demand for a unit of Product 1 occurs during the stock-out period and is 

substituted by Product 2 with probability p  if it is available. 

Accordingly, we have for 

 

sjilk ≤+≤+≤0  or Sjilks ≤+≤+≤+1 , 

 

Case 1: . ik >

 

0),,,( =jitlkP .          (3.1)

   

Case 2: jilkikji +<+<<>> ,0,0,0 . 

 

1),,,( λ=jitlkP tjie )( 2121 µµλλ +++− © tjieijitlkP )(
1

2121),1,,( µµλλµ +++−+−  

© )()1,1,,( 22 µλ jjitlkP +++− tjie )( 2121 µµλλ +++− © )1,,,( −jitlkP . (3.2) 

 

Case 3: ilklikji <+≥<≤=> ,0,0,0,0 . 

 

 81

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



1]0,,,[ λ=itlkP tjie )( 2121 µµλλ +++−  © ]0,1,,[ −itlkP tjiei )(
1

2121 µµλλµ +++−+  

© ( )1,, +itlkP .          (3.3) 

 

Case 4:  jlikji ==>> ,,0,0 .

 
tjiejitjiP )( 2121],,,[ µµλλ +++−= .       (3.4) 

 

Case 5: jlikji <≤=>> 0,,0,0 . 

 
tjiejjitliP )(

22
2121)(],,,[ µµλλµλ +++−+=  © ]1,,,[ −jitliP .   (3.5) 

 

Case 6: 0,,0,0 ===> likji . 

 
tieitiP )( 11]0,,0,[ µλ +−= .        (3.6) 

 

Case 7:  jlkji ==>= ,0,0,0 .

 

=],0,,0[ jtjP tjpe )( 221 µλλ ++− .        (3.7) 

 

Case 8: jlkli <=≥= ,0,0,0  

 

=],0,,0[ jtlP tjpejp )(
221

221)( µλλµλλ ++−++  © ]1,0,,0[ −jtlP .  (3.8) 

 

Case 9: . 0==== lkji

 

1]0,0,0,0[ =tP .          (3.9) 
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3.2.2 FUNCTION )(tjφ  
 

We define 

 

∆

=−=∆+−
=

→∆

]00),(),,([
lim)(

0

tateventrtrNttineventaP
t j

jφ . 

 

The function dttj )(φ  represents the probability that an -event occurs in  and 

there is no replenishment in , given that an 

ja ),( ∆+tt

( ]t,0 r -event has occurred at .  Hence, 

we have 

0=t

 

)(])1(][0,,1,[)(]0,,,1[)( 10221 tFpjStjkPtFStjkPt kj λδµλλφ ++++++=   (3.10) 

 

where , and sjksjk ≤≤=+ ,0, 0kδ  is a Kronecker’s delta function. 

 

3.2.3 FUNCTION  ),,( tjiW
 

We define 

 

)]0,()0(0),(),,()([),,( SZtrNjitZPtjiW ==== . 

 

Then the function  represents the probability that the inventory level is  at 

the time t , where  is the time elapsed since the last renewal.  To obtain , we 

consider 

),,( tjiW ),( ji

t ),,( tjiW

 

Case 1: sji ≤+≤0  

In this case, exactly one re-order is made in  and it does not materialize up to time 

.  Precisely, we have 

),0( t

t
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(i) The system is in state  at )0,(S 0=t . 

(ii)    The system enters the state  in (),( lk ), duuu + slk =+ where  and . tu <<0

),( duuu(iii) A re-order is placed in + . 

(iv) The re-order does not materialize up to time . t

),( ji t(v) The system enters the state  at time . 

Using probabilistic arguments,  

 

∑
=

=
s

l
l ttjiW

0
)(),,( φ ©{ }),,,()( lktjiPtF , where slk ≤≤ ,0  and .   (3.11) slk =+

 

Case 2: Sjis ≤+≤+1  

 

In this case no re-order takes place in .  Hence,  ),0( t

 

]0,,,[),,( StjiPtjiW =                 (3.12) 

 

The steady-state probabilities of the system are given by 

 

),,(lim),( tjiWjiW
t ∞→

=                 (3.13) 

     ( )*

0
lim , ,W i j s
∆→

=

 

Where W*(i,j,s) is the Laplace transform of W(i,j,t)   (See Girlich, 2003)  

 

( ) ( )*

0

, , , ,stW i j s e W i j t dt
∞

−= ∫  
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3.3 MEASURES OF SYSTEM PERFORMANCE 
 

To obtain explicit expressions for various performance measures of the presented 

model, we proceed to define the first-order product density  

 

∆
=∆+−

=
→∆

)]0,()0(),([
lim)(

0

SZttineventP
th

η
η . 

 

where 212121 ,,,,,,,,,, kkgllddaarr jij=η . 

 

3.3.1 MEAN NUMBER OF RE-ORDERS 
 

Since a re-order is defined as an -event, the expressions for  are derived to 

obtain the mean number of re-orders.  Note that a re-order takes place when the total 

inventory level enters .  Hence,  

ja )(thij

s

 

∑
∞

=+

++++++=
sji

ia jptjiWtjiWth
j

}])1(){,1,(),,1([)( 22101 µλλδλ . (3.14) 

 

The mean number of re-orders in ( ]t,0  is given by 

 

∫=
t

aj duuhtaNE
j

0

)()],([ . (3.15)

  

Consequently, the mean stationary rate of re-orders is given by 

 

)],([ ∞jaNE    )(lim)],([1lim thtaNE
t jatjt ∞→∞→

==  
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     (3.16) }].)1(){1,(),1([ 22101 µλλδλ ++++++= ∑
∞

=+ sji
i jpjiWjiW

 

3.3.2 MEAN NUMBER OF DEMANDS FOR A PARTICULAR PRODUCT 
WHICH IS SATISFIED BY THE SAME PRODUCT 

 

A demand for Product 1 being satisfied by Product 1 is represented by the -event.  

Hence an expression for  is derived.  Observe that a -event occurs whenever a 

demand for Product 1 occurs when the inventory levels is  where, , 

 and 

1d

)(
1

thd 1d

),( ji Si ≤≤1

Sj ≤≤0 Sji ≤+<0 .  Hence,  

 

1

0,1
0

),()(
1

λjiWth
ji

Sji
d

≥≥
≤+≤

∑∑=  , (3.17) 

 

so that 

∫=
t

d duuhtdNE
0

1 )()],([
1

.  

 

Therefore, 

 

1

0,1
0

1 ),()],([ λjiWdNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.18) 

 

In the same way,  

 

2

0,1
0

),,()(
2

λtjiWth
ji

Sji
d

≥≥
≤+≤

∑∑= , (3.19) 

 

so that 
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∫=
t

d duuhtdNE
0

2 )()],([
2

  

 

2

0,1
0

2 ),()],([ λjiWdNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.20) 

 

3.3.3 MEAN NUMBER OF LOST DEMAND 
 

A demand for Product 1 is lost when the total inventory level is zero or when the 

inventory level of Product 1 is zero and that of Product 2 is positive, but when the 

demand is not substituted with Product 2.  Therefore,  

 

.}1){,,0(

)1(),,0(),0,0()(

0
10

1
111

∑

∑

=

=

+−=

−+=

S

j
j

S

j
l

pptjW

ptjWtWth

λδ

λλ
 (3.21) 

 

The mean number of lost demands for Product 1 is given by 

 

∫=
t

l duuhtlNE
0

1 )()],([
1

,  

 

so that the mean stationary rate of lost demand for Product 1 is given by 

 

∑
=

+−=∞
S

j
jppjWlNE

0
101 ]1)[,0()],([ λδ . (3.22) 

 

In the same way, for the events , 2l
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∑
=

=
S

i
l tiWth

0
2),0,()(

2
λ , (3.23 

 

∫=
t

l duuhtlNE
0

2 )()],([
2

 

and 

∑
=

=∞
S

i
iWlNE

0
22 )0,()],([ λ . (3.24) 

 

3.3.4 MEAN NUMBER OF DEMANDS OF PRODUCT 1 BEING 
SUBSTITUTED BY PRODUCT 2 

 

A demand for Product 1 being substituted by Product 2 is denoted by the g -event.  

Note that a g -event occurs in ( )∆+tt,  if the inventory level of the system at time t  

equals ( ) Sjj ≤≤1,,0  and if a demand for Product 1 occurs in  being 

substituted by Product 2.  Hence,  

( ∆+tt, )

 

∑
=

=
S

j
g ptjWth

1
1),,0()( λ  (3.25) 

and 

∫=
t

g duuhtgNE
0

)()],([ .  

 

Therefore, 

∑
=

=∞
S

j
pjWgNE

1
1),0()],([ λ . (3.26) 
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3.3.5 MEAN NUMBER OF UNITS DETERIORATED FROM PRODUCT 1 
AND TRANSITTED AS PRODUCT 2 

 

Since a -event pertains to the event of a unit of Product 1 deteriorates and transits as 

Product 2 and a -event occurs in 

1k

1k ( )∆+tt,  if the system is in state (  at time t , 

 and 

)ji,

SjSi ≤≤≤≤ 0,1 Sji ≤+≤1  and a unit in Product 1 transits as Product 2 in 

, we have ( ∆+tt, )
 

1

0,1
0

),,()(
1

µitjiWth
ji

Sji
k

≥≥
≤+≤

∑∑=  (3.27) 

 

The mean number of units of Product 1 that have transitted as Product 2 in  is 

given by 

( ]t,0

 

∫=
t

k duuhtkNE
0

1 )()],([
1

 

 

and the mean stationary rate of units of Product 1 transiting as Product 2 is given by 

 

1

0,1
0

1 ),()],([ µijiWkNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.28)

   

3.3.6 MEAN NUMBER OF PRODUCT 2 PERISHED AND REMOVED 
FROM THE INVENTORY 

 

The first order product density of is given by 2k

 

2

0,1
0

),,()(
2

µjtjiWth
ji

Sji
k

≥≥
≤+≤

∑∑=  . (3.29) 
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Hence the mean number of units of Product 2 that have perished and removed from the 

inventory in  is given by ( ]t,0

 

∫=
t

k duuhtkNE
0

2 )()],([
2

.  

 

Consequently, the mean stationary rate of perishing of Product 2 is given by 

 

2

0,1
0

2 ),()],([ µjjiWkNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.30) 

 

3.3.7 MEAN NUMBER OF REPLENISHMENTS 
 

Consider the renewal process of r -events and derive its first-order product density 

.  Firstly, an expression for the pdf  of the interval between two successive 

occurrences of the 

)(thr )(tg

r -events is derived.  By definition,  

 

∆
==∆+−

=
→∆

)]0,()0(0),(),,([
lim)(

0

SZtrNttineventrP
tg . 

 

In order to derive , its survival function )(tg )(tG  is determined.  Since )(tG  denotes 

the probability that a replenishment has not occurred up to t , we have two mutually 

exclusive cases for )(tG : 

 

(i) A re-order does not occur up to time . t

(ii) A re-order is placed in ),( ∆+uu , tu <<0 , but it has not been realized up 

to time .  t
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Hence, 

 

∑∑∑
=

≥≥
≤+≤+

+=
s

l
l

lk
Slks

tStlkPtG
0

0,0
1

)()0,,,()( φ © 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+ ∑∑
−

= =

ls

k

l

l
llstlkPtF

0 0
11

1 1

,,,()( . (3.31) 

 

However, 

∑
∞

=

=
1

)( )()(
n

n
r tgth , 

and 

∫=
t

r duuhtrNE
0

)()],([ . 

 

Hence, by renewal theory, the mean stationary rate of replenishment is given by 

 

∫
∫
∞∞→

==∞
t

rt
dttG

duuh
t

rNE
0

0

)(

1)(1lim)],([ . (3.32) 

 

3.3.8 MEAN NUMBER OF REPLENISHMENTS 
 

First, the product density is defined 

 

)(th
ijr ∆

=∆+−
=

→∆

)]0,()0(),([
lim

0

SZttineventrP ij  

 

Next a relation between  and  is obtained. )(th
ijr )(thr

 

Therefore, the following function is define  
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∆

==∆+−
=

→∆

)]0,()0(0),(),,([
lim)(

0

SZtrNttineventrP
tf ij

ij  

 

Observe that 

 

}])1(){0,,1,()0,,,1([)( 10221

0,0
0

plStlkPStlkPtf k

lk
Slk

ij λδµλλ ++++++=

≥≥
≤+≤

∑∑ ©         

                                                    ),,,()( lktjiPtf . (3.33) 

 

Consequently,  

 

)(th
ijr )()( thtf rij += ©  (3.34) )(tf ij

and 

∫=
t

ij trNE
0

)],([ duuh
ijr )( . 

 

Hence, 

 

∫∞→
=∞

t

tij t
rNE

0

1lim)],([ duuh
ijr )(  

                             

)(*lim)],([
0

θ
θ ijfrNE
→

∞= . (3.35) 

 

Since at the occurrence of each -event, ijr iS − units of Product 1 are added to the 

inventory, the mean number of Product 1 items added to the inventory per unit time is 

given by 
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))](,([
0,0

0
iSrNE ij

ji
Sji

−∞

≥≥
≤+≤

∑∑  = )(*lim)],([
0

0,0
0

θ
θ ij

ji
Sji

frNE
→

≥≥
≤+≤

∑∑∞ . (3.36) 

 

3.3.9 MEAN NUMBER OF UNITS SCRAPPED FROM THE INVENTORY 
 

Since, at the occurrence of an -event, ijr j  units of Product 2 are scrapped from the 

inventory per unit time, we have 

 

jrNE ij

ji
Sji

)],([
0,0

0
∞

≥≥
≤+≤

∑∑  = )(*lim)],([
0

0,0
0

θ
θ ij

ji
Sji

frNE
→

≥≥
≤+≤

∑∑∞ . (3.37) 
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3.4 COST ANALYSIS 
 
Since and  are respectively the mean stationary rates of the two 

types of lost demands.  The cost due to lost demand is given by 

)],([ 1 ∞lNE )],([ 2 ∞lNE

 

2211 )],([)],([ CLlNECLlNE ∞+∞  (3.38) 

 

The cost corresponding to items of Product 2 perished and removed from the inventory 

is .  The number of items of Product 2 that are scrapped from the 

inventory per unit time is 

CPkNE )],([ 2 ∞

 

jrNE ij

ji
Sji

)],([
0,0

0
∞

≥≥
≤+≤

∑∑ . (3.39) 

 

The cost due to this is 

 

jCPrNE ij

ji
Sji

)],([
0,0

0
∞

≥≥
≤+≤

∑∑ . (3.40) 

Hence the total expected cost per unit time is: 

 

2211 )],([)],([)],([),( CLlNECLlNECRaNEsSC ∞+∞+∞=  

               CBisrNECPjrNEkNE ij

ji
Sji

ij

ji
Sji

))](,([])],([)],([[
0,0

0
0,0

0
2 −∞+∞+∞+

≥≥
≤+≤

≥≥
≤+≤

∑∑∑∑ . 

 (3.41) 
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3.5 NUMERICAL EXAMPLE 
 

For illustration purposes, consider the following numerical example.  Let 

ƒ (t) = θ e–θt, t > 0, θ > 0 

λ1  = 4.0, 

λ2  = 6.0, 

µ1  = 2.5, 

µ2  = 2.5, 

θ  = 2.0, 

CR  = 10.0, 

CL1  = 6.0, 

CL2  = 5.0, 

CP  = 4.0, and 

CB  = 10.0 

 

By varying the probability p from 0.1 to 0.9 and varying S from 2 to 4, with 

corresponding possible values for s, the values of the mean stationary rates of the 

following variables are obtained: 

(i) Demand satisfied (ED1, ED2) 

(ii) Demands substituted (EG) 

(iii) Lost demands (EL1, EL2) 

(iv) Items perished (EK2) 

(v) Re-orders (ES) 

(vi) Replenishments (RRATE) 

(vii) Units replenished (EUR) 

(viii) Units scrapped or deleted (EUS) 

(ix) Total expected cost (COST) 

The numerical results of the relationship between p and the above variables are 

summarised in Table 3.1 below: 
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 S=2, s=1 S=3, s=1 S=3, s=2 S=4, s=1 S=4, s=2 S=4, s=3 
ED1 increases increases increases increases increases increases 
ED2 decreases decreases decreases decreases decreases decreases 
EG increases increases increases increases increases increases 
EL1 decreases decreases decreases decreases decreases decreases 
EL2 increases increases increases increases increases increases 
EK2 decreases decreases decreases decreases decreases decreases 
EA increases increases increases increases increases increases 
RRATE increases increases increases increases increases increases 
EUR increases increases increases increases increases increases 
EUS decreases decreases decreases decreases decreases decreases 
COST decreases decreases decreases decreases decreases decreases 
 
Table 3.1: Relationship between p and selected variables for varying S and s 
 

Per illustration, the relationships of Total Expected Cost (COST) and Lost Demand 

(EL2) versus increasing values of p are shown graphically in Figure 3.2. 
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Figure 3.2: Relationship of COST and EL2 versus p for S =3, s =1 
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The detail results of the numerical example are given in Table 3.2 to Table 3.7 for 

varying values of S and s. 

 

 
p ED1 ED2 EG EL1 EL2 EK2 

0.1 1.447408 0.802104 0.030899 2.521693 5.197896 0.365150 

0.2 1.448016 0.786138 0.059651 2.492333 5.213861 0.357462 

0.3 1.448584 0.771246 0.086471 2.464945 5.228754 0.350288 

0.4 1.449116 0.757323 0.111549 2.439334 5.242677 0.343578 

0.5 1.449616 0.744276 0.135049 2.415335 5.255723 0.337289 

0.6 1.450087 0.732027 0.157114 2.392799 5.267973 0.331382 

0.7 1.450530 0.720503 0.177874 2.371595 5.279497 0.325824 

0.8 1.450949 0.709642 0.197440 2.351611 5.290359 0.320585 

0.9 1.451345 0.699389 0.215912 2.332742 5.300611 0.315637 

 
p EA RRATE EUR EUS COST 

0.1 1.523762 1.523762 2.775306 0.129744 86.0899 

0.2 1.524402 1.524402 2.776470 0.125240 85.9627 

0.3 1.525000 1.525000 2.777560 0.120971 85.8441 

0.4 1.525560 1.525560 2.778581 0.117015 85.7332 

0.5 1.526087 1.526087 2.779540 0.113309 85.6293 

0.6 1.526582 1.526582 2.780442 0.109832 85.5318 

0.7 1.527049 1.527049 2.781292 0.106561 85.4400 

0.8 1.527490 1.527490 2.782095 0.103480 85.3536 

0.9 1.527907 1.527907 2.782854 0.100571 85.2720 

 
Table 3.2: Numerical Results for S = 2, s =1 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.015121 1.154118 0.029509 1.955370 4.845882 0.591228 

0.2 2.016546 1.139571 0.057012 1.926442 4.860429 0.583235 

0.3 2.017882 1.125985 0.082706 1.899412 4.874015 0.575761 

0.4 2.019136 1.113267 0.106766 1.874098 4.886733 0.568758 

0.5 2.020316 1.101338 0.129342 1.850342 4.898662 0.562181 

0.6 2.021429 1.090125 0.150568 1.828003 4.909874 0.555993 

0.7 2.022480 1.079566 0.170562 1.806958 4.920434 0.550161 

0.8 2.023474 1.069605 0.189429 1.787098 4.930395 0.544654 

0.9 2.024415 1.060193 0.207260 1.768325 4.939806 0.539447 

 
p EA RRATE EUR EUS COST 

0.1 1.139148 1.139148 3.227835 0.104645 82.4150 

0.2 1.139954 1.139954 3.230117 0.101013 82.2985 

0.3 1.140709 1.140709 3.232256 0.097624 82.1897 

0.4 1.141418 1.141418 3.234266 0.094455 82.0879 

0.5 1.142085 1.142085 3.236156 0.091486 81.9924 

0.6 1.142714 1.142714 3.237938 0.088698 81.9027 

0.7 1.143308 1.143308 3.239621 0.086075 81.8182 

0.8 1.143870 1.143870 3.241213 0.083603 81.7384 

0.9 1.144402 1.144402 3.242721 0.081269 81.6631 

 
Table 3.3: Numerical Results for S = 3, s = 1 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.100194 1.209167 0.028260 1.871547 4.790833 0.619952 

0.2 2.100425 1.195623 0.054702 1.844873 4.804378 0.612563 

0.3 2.100644 1.182931 0.079498 1.819857 4.817068 0.605627 

0.4 2.100852 1.171014 0.102799 1.796349 4.828986 0.599103 

0.5 2.101049 1.159802 0.124737 1.774214 4.840198 0.592954 

0.6 2.101236 1.149234 0.145429 1753335 4.850765 0.587149 

0.7 2.101414 1.139256 0.164979 1.733607 4.860744 0.581660 

0.8 2.101583 1.129818 0.183481 1.714936 4.870183 0.576461 

0.9 2.101745 1.120878 0.201016 1.697240 4.879122 0.571530 

 
p EA RRATE EUR EUS COST 

0.1 2.058707 1.436794 3.566840 0.231180 94.8435 

0.2 2.058934 1.436952 3.567234 0.225902 94.7067 

0.3 2.059149 1.437102 3.567606 0.220951 94.5783 

0.4 2.059352 1.437244 3.567958 0.216298 94.4577 

0.5 2.059545 1.437379 3.568292 0.211917 94.3441 

0.6 2.059728 1.437507 3.568610 0.207783 94.2370 

0.7 2.059903 1.437628 3.568912 0.203878 94.1357 

0.8 2.060069 1.437744 3.569200 0.200181 94.0398 

0.9 2.060227 1.437855 3.569474 0.196677 93.9489 

 
Table 3.4: Numerical Results for S = 3, s = 2 

 99

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



 
 

p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.461397 1.550978 0.022888 1.515716 4.449023 0.824795 

0.2 2.462760 1.540001 0.044223 1.493017 4.460000 0.818603 

0.3 2.464039 1.529750 0.064159 1.471803 4.470250 0.812810 

0.4 2.465240 1.520156 0.082829 1.451930 4.479844 0.807379 

0.5 2.466372 1.511157 0.100352 1.433276 4.488843 0.802276 

0.6 2.467440 1.502699 0.116830 1.415730 4.497301 0.797472 

0.7 2.468449 1.494735 0.132354 1.399197 4.505266 0.792943 

0.8 2.469404 1.487222 0.147005 1.383592 4.512778 0.788664 

0.9 2.470309 1.480124 0.160855 1.368836 4.519876 0.784615 

 
p EA RRATE EUR EUS COST 

0.1 0.884151 0.884151 3.387431 0.080117 77.6749 

0.2 0.884640 0.884640 3.389307 0.077324 77.5813 

0.3 0.885100 0.885100 3.391067 0.074719 77.4939 

0.4 0.885531 0.885531 3.392720 0.072284 77.4120 

0.5 0.885938 0.885938 3.394278 0.070030 77.3352 

0.6 0.886321 0.886321 3.395747 0.067862 77.2629 

0.7 0.886684 0.886684 3.397136 0.065848 77.1949 

0.8 0.887027 0.887027 3.398450 0.063950 77.1037 

0.9 0.887352 0.887352 3.399695 0.062158 77.0700 

 
Table 3.5: Numerical Results for S = 4, s = 1 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.571096 1.635669 0.021343 1.407561 4.364332 0.872010 

0.2 2.571408 1.625571 0.041319 1.387274 4.374429 0.866307 

0.3 2.571703 1.616109 0.060056 1.368241 4.383891 0.860949 

0.4 2.571984 1.607225 0.077667 1.350350 4.392776 0.855907 

0.5 2.572251 1.598865 0.094251 1.333499 4.401135 0.851153 

0.6 2.572504 1.590985 0.109898 1.317598 4.409014 0.846663 

0.7 2.572746 1.583545 0.124684 1.302570 4.416455 0.842414 

0.8 2.572976 1.576508 0.138680 1.288344 4.423493 0.838389 

0.9 2.573195 1.569841 0.151948 1.274857 4.430159 0.834568 

 
p EA RRATE EUR EUS COST 

0.1 1.557317 1.082949 3.764555 0.170350 87.6552 

0.2 1.557506 1.083081 3.765011 0.166502 87.5522 

0.3 1.557685 1.083205 3.765444 0.162895 87.4556 

0.4 1.557855 1.083323 3.765855 0.159505 87.3647 

0.5 1.558017 1.083436 3.766245 0.156314 87.2792 

0.6 1.558170 1.083542 3.766616 0.155504 87.1984 

0.7 1.558316 1.083644 3.766970 0.150461 87.1221 

0.8 1.558456 1.083741 3.767308 0.147770 87.0498 

0.9 1.558589 1.083834 3.767629 0.145219 86.9813 

 
Table 3.6: Numerical Results for S = 4, s = 2 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.639271 1.675820 0.020484 1.340245 4.324180 0.902930 

0.2 2.639348 1.666208 0.039680 1.320971 4.333792 0.897530 

0.3 2.639421 1.657192 0.057710 1.302868 4.342807 0.892449 

0.4 2.639492 1.648719 0.074677 1.285831 4.351282 0.887662 

0.5 2.639560 1.640739 0.090675 1.269766 4.359261 0.883141 

0.6 2.639623 1.633211 0.105786 1.254591 4.366789 0.878865 

0.7 2.639685 1.626096 0.120081 1.240234 4.373904 0.874815 

0.8 2.639744 1.619362 0.133628 1.226628 4.380638 0.870973 

0.9 2.639800 1.612977 0.146483 1.213717 4.387023 0.867323 

 
p EA RRATE EUR EUS COST 

0.1 2.405319 1.401584 4.151391 0.363537 100.2953 

0.2 2.405389 1.401625 4.151512 0.359440 100.1917 

0.3 2.405456 1.401664 4.151628 0.355589 100.0942 

0.4 2.405520 1.401702 4.151738 0.351962 100.0025 

0.5 2.405581 1.401737 4.151844 0.348539 99.9159 

0.6 2.405640 1.401771 4.151945 0.345305 99.8340 

0.7 2.405696 1.401804 4.152041 0.342243 99.7565 

0.8 2.405749 1.401835 4.152133 0.339339 99.6830 

0.9 2.405801 1.401865 4.152223 0.336583 99.6133 

 
Table 3.7: Numerical Results for S = 4, s = 3 
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3.6 CONCLUSION 
 
This chapter described a single perishing product inventory model where items 

deteriorate in two phases and then perish.  Independent demand takes place at constant 

rates for items in both phases.  Demand for an item in Phase I not satisfied may be 

satisfied by an item in Phase II based on a probability measure.  Demand for items in 

Phase II during stock-out is lost.  The re-ordering policy is an adjustable (S, s) policy 

with the lead-time following an arbitrary distribution.  Identifying the underlying 

stochastic process as a renewal process, the probability distribution of the inventory 

level at any arbitrary point in time is obtained.  The expressions for the mean stationary 

rates of lost demand, substituted demand, perished units and scrapped units are also 

derived.  A numerical example is considered to highlight the obtained results. 
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TWO-COMMODITY CONTINUOUS REVIEW 

INVENTORY SYSTEM WITH BULK DEMAND 

FOR ONE COMMODITY 

A modified version of this chapter has been accepted in Asia-Pacific Journal of 
Operational Research  
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4.1 INTRODUCTION 
 

With the advent of advanced computing systems, many industries and firms deal with 

multi-commodity systems. In dealing with such systems, models were initially proposed 

with independently established reorder points.  In situations where several products 

compete for limited storage space, or share the same transport facility, or items are 

produced on (procured from) the same equipment (supplier), the above strategy 

overlooks the potential saving associated with joint replenishment, reduction in ordering 

and setup costs and allowing the user to take advantage of quantity discounts. 

 

In continuous review inventory systems, Ballintify (1964) and Silver (1974) have 

considered a coordinated reordering policy, which is represented by the triplet (S, c, s), 

where the three parameters Si, ci and si are specified for each item i with si ≤ ci ≤Si. In 

this policy, if the level of i-th commodity at any time is below si, an order is placed for 

Si − si items and at the same time, for any other item j(≠i) with available inventory at or 

below its can-order level cj , an order is placed so as to bring its level back to its 

maximum capacity Sj . Subsequently many articles have appeared with models 

involving the above policy. Another article of interest is due to Federgruen, Groenevelt 

and Tijms (1984), which deals with the general case of compound Poisson demands and 

non-zero lead times. A review of inventory models under joint replenishment is 

provided by Goyal and Satir (1989). 

 

Kalpakam and Arivarignan (1993) have introduced (s,S) policy with a single reorder 

level s defined in terms of the total number of items in the stock. This policy avoids 

separate ordering for each commodity and hence a single processing of orders for both 

commodities has some advantages in situation where in procurement is made from the 

same supplies, items are produced on the same machine, or items have to be supplied by 

the same transport facility. 
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A natural extension of (s,S) policy to two-commodity inventory system is to have two 

reorder levels and to place order for each commodity independent of other. But this 

policy will increase the total cost, as separate processing of two orders is required. 

Anbazhagan and Arivarignan (2000) have considered a two commodity inventory 

system with independent reorder levels where a joint order for both the commodities is 

placed only when the levels of both commodities are less than or equal to their 

respective reorder levels. The demand points form an independent Poisson process and 

the lead-time is distributed as negative exponential. They also assumed unit demands 

for both commodities. 

 

In this chapter, the above work is extended by assuming unit demand for one 

commodity and bulk demand for the other commodity. The number of items demanded 

for the latter commodity is assumed to be a random variable Y with probability function 

pk = Pr{Y = k}, k = 1, 2, 3, . . . .  A reorder is made for both commodities when the 

inventory levels of these commodities are at or below the respective inventory levels.  

    

      (0, S2)                  (S1, S2) 

 

 

 

 

        (0, s2)             

     
 
          Set of reorder levels

 

 

 

 

                             (0, 0)                 (s1, 0)    (S1, 0) 

 

Figure 4.1: Space of Inventory Levels (s, S) 
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The joint probability distribution of the two inventory levels is obtained in both 

transient and steady state cases. Various measures of systems performance and the total 

expected cost rate in the steady state are also derived. 

 

4.2 MODEL DESCRIPTION 
 

Consider a two commodity inventory system with the maximum capacity Si units for i-

th commodity (i = 1, 2). We assume that demand for first commodity is for single item 

and demand for second commodity is for bulk items. The sequences of respective 

demand points for commodities 1, 2 and for both commodities are assumed to form 

independent Poisson processes with parameters λ1, λ2 and λ12 respectively. The number 

of items demanded for the second commodity at any demand point is a random variable 

Y with probability function pk = Pr{Y = k}, k = 1, 2, 3, …. The reorder level for the i-th 

commodity is fixed at si(1 ≤ si ≤ Si) and ordering quantity for i-th commodity is Qi(= Si 

− si > si + 1) items when both inventory levels are less than or equal to their respective 

reorder levels. The requirement Si −si > si +1, ensure that after a replenishment the 

inventory level will be always above the respective reorder levels. Otherwise it may not 

be possible to place reorder which leads to perpetual shortage. That is if Li(t) represents 

inventory level of i-th commodity at time t, then a reorder is made when L1(t) ≤ s1 and 

L2(t) ≤ s2. 

 

The lead-time is assumed to be distributed as negative exponential with parameter µ (> 

0). The demands that occur during stock out periods are lost. The stochastic process 

{(L1 (t), L2 (t)), t ≥ 0} has the state space,  

 

E = E1 × E2 

 

where E1 = {0, 1, 2, . . . , S1} and E2 = {0, 1, . . . , S2}. 
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Notation: 

0:  zero matrix 
'
NI :  (1, 1, . . . , 1)1×N

I :  an identity matrix 

 

      < x > =  
⎩
⎨
⎧

≤
>

00
0

xif
xifx

From the assumptions made on demand and on replenishment processes, it follows that 

{(L1 (t), L2 (t)), t ≥ 0} is a Markov process. To determine the infinitesimal generator 

A = ((a (i, q; j, r))), (i, q), (j, r) ∈E, we use the following arguments: 

 

The demand for the first commodity takes the state of the process from (i, q) to (i − 1, q) 

and the intensity of transition a(i, q; i − 1, q) is given by λ1, i = 1, 2, . . . , S1. A bulk 

demand of k items for second commodity takes the state from (i, q) to (i, < q − k >),             

i = 0, 1, . . . , S1,  q = 0, 1, . . . , S2,  k = 1, 2, . . . , and the respective intensity of 

transitions are given by λ2pk and λ2 . A joint demand for single item of first 

commodity and for k items of second commodity takes the system from the state (i, q) 

to (i − 1,< q − k >),           i = 0, 1, 2, . . . , S

∑
∞

=ku
up

1,  q = 0, 1, 2, . . . , S2,  k = 1, 2, . . . , and the 

respective intensity of transition are given by λ12 pk and λ12∑
∞

=ku
kp . From the state (i, q) 

(≤(s1, s2) ) a replenishment takes the joint inventory level to (i + Q1, q + Q2) and the 

intensity of transition for this is given by µ. For other transition from (i, q) to (j, r), 

when (i, q) ≠ (j, r), is zero. To obtain the intensity of passage, a (i, q; i, q) of state (i, q), 

we note that the entries in any row of this matrix add to zero. Hence the diagonal entry 

is equal to the negative of the sum of the other entries in that row. More explicitly                          
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Hence we have, 
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where .  ∑
∞

=

=′
qk

kq pp

 

Denoting m = ((m, S2), (m, S2−1), . . . , (m, 1), (m, 0)) for m = 0, 1, 2, . . . , S1, the 

infinitesimal generator A can be conveniently expressed as a block partitioned matrix: 

 

 

 

 

 

 

 

 

 

where, 
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with    d = −(λ1 + λ2 + λ12 + µ), 

 

and 

 

 

 

 

 

 

 

 

with   d1 = -(λ2 + µ). 
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4.3 TRANSIENT ANALYSIS 
 

Define 

 

φ (i, q; j, r, t) = Pr [L (t) = j, X (t) = r|L(0) = i, X(0) = q], (i, q), (j, r) ∈E. 

 

Let φ ij(t) denote a matrix whose (q, r)th element is φ (i, q; j, r, t) and Φ(t) denote a block 

partitioned matrix with the sub matrix φ ij(t) at (i, j)th position. The Kolmogorov’s 

differential equation can be written as 

 

,)()( Att Φ=Φ′  

 

the solution of which is given by 

 
Atet =Φ )(  

 

where eAt represents 

   …+++
!2!1

22tAAtI  

 

Alternatively, if we use the notation A* (α ) to denote the Laplace transform of the 

function (or matrix) A (t) then we have 

 
1* )( −−=Φ AIαα  
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The matrix )( AI −α  has the following block partitioned form 

 

 

 

 

 

 

 

 

Where 
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(Note that the rows and columns have been numbered in decreasing order if magnitude.) 

 

It may be observed that )( AI −α is an almost lower triangular matrix in block 

partitioned form. That is, if we denote the (i, j)th sub matrix of P )( AI −= α by Pij, then 

we have 

 

Pij = 0   i = 1, 2, . . . , S1; j > i − 1. 
 

To compute P−1 = )( AI −α -1 we proceed as described below: 

Consider a lower triangular matrix 
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with Uii = 1, i = 0, 1, 2, . . . , S1 and an almost lower triangular matrix 

 

 

 

 

 

 

such that PU = R. We find the sub matrices Uij and R0j by computing the product PU 

and equating it to R. The (i, j)th sub matrix of PU, denoted by [PU]ij is given by 

 

By equating the sub matrices of PU to the corresponding elements of R, we get 

 

 

 

 

 

 

 

and 

 

 

 

 

The equation PU = R implies 

 

(PU)−1 = R−1

U−1P−1 = R−1

P−1 = UR−1. 
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It can be verified that the inverse of R is given by, 

 

 

 

 

 

 

Since the expression for R−1 involves the term , it is demonstrated that the latter 

exists.  

1
0 1

−
SR

 

From PU = R, we get 

 

det(PU) = det(R)  

det(P)det(U) = det( )det(−B)det(−B) · · · det(−B). 
10SR

 

Since U is a lower triangular matrix and B is a upper triangular matrix, their determinant 

values are not equal to zero. Hence det( ) is not equal to zero. This proves the 

existence of the inverse of . From P

10SR

1
0 1

−
SR −1 = UR−1, we can compute the (i, j)th sub matrix 

(denoted by Pij) of P−1 = )( AI −α -1 and it is given by, 
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4.4 Steady State Analysis 
 

It can be seen from the structure of A that the homogeneous Markov process {(L1(t), 

L2(t)), t ≥ 0} on the state space E is irreducible. Hence the limiting distribution  

),,,,( 01111 φφφφ …−= SSΦ         (4.1) 

 

with , where  denotes the steady state probability for 

the state (i, j) of the inventory level process, exists and is given by 

),,,( )0,()1,(),( 22 mSmSmm φφφφ …−= ),( jiφ

 

∑ ∑
∈

==Φ
Eji

jiandA
),(

),( 10 φ .       (4.2)  

 

The first equation of the above yields the following set of equations: 
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Simplification yields the following: 

 

 
where  can be obtained by solving, 0φ
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The marginal probability distribution { 1iφ , i = 0, 1, 2, . . . , S1} of the first commodity is 

given by 

 

,,,2,1,0, 1
0

),(
1

2
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S

q

qi
i …==∑

=

φφ  

 

and the marginal probability distribution { q2φ , q = 0, 1, 2, . . . , S2} of the second 

commodity is given by 

 

,,,2,1,0, 2
0
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S
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The expected inventory level in the steady state, for the i-th commodity is given by 

 

∑
=

==
iS

k
iki ikLE

0
.2,1,][ φ        (4.3) 
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4.5 REORDERS AND SHORTAGES 
 
In this section the reorder and shortages are studied. This requires the study of time 

points at which a transition occurs in the inventory level process. 

 

Let 0 = T0 < T1 < T2 < · · · be the instances of transitions of the process. Let ( ) = 

(L

)2()1( , nn LL

1(Tn+), L2(Tn+)), n = 0, 1, 2, . . . . From the well known theory of Markov processes, 

{( ), n = 0, 1, 2, . . .} is a Markov chain and with the transition probability matrix 

(tpm) 

)2()1( , nn LL

 

P = (( p(i, j; k, l) ))(i,j)∈ E,(k,l) ∈ E, 
 
where, 
 

p(i, j; k, l) =           
⎩
⎨
⎧

≠−
=

),(),(,/),;,(
),(),(0

lkjilkjia
lkji

ijθ
        
Here θij = a(i, j; i, j) which is a negative value. Moreover for all n, we also have, 

 

Pr [(L1(Tn+1+), L2(Tn+1+)) = (k, l), Tn+1 − Tn > t | (L1(Tn+), L2(Tn+)) = (i, j)] 

 

      = p(i, j; k, l)eθijt. 

 

4.5.1 Reorders 
 
A reorder for both commodities is made when the joint inventory level at any time t, 

drops to either (s1, s2) or (s1, j), j < s2 or (i, s2), i < s1. 

 

We associate with a reorder a counting process N(t). Define  
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    _ 
where Pij [· · ·] represents Pr[· · · | ( ) = (i, j)].  The fact that the reorder at time t 
is either due to the first transition or due to a subsequent one, gives the following 
equations: 

)2(
0

)1(
0 , LL

 
 
 
 
          
 

 

 

where  β1 (i,j,t) is given by 

 

 

 

 

 

 

In the above expression we have used the fact that, when j = 0, 1, 2, . . . , s2 and i = s1 

+1, then the next demand for commodity 1 will trigger a reorder. When i = 0, 1, 2, . . . , 

s1 and j = s2 + k, (k = 1, 2, . . . ,Q2) then k or more than k demands for commodity 2 

alone will trigger a reorder. A demand for both commodities will trigger a reorder if the 

number of demanded items for the second commodity is k (k = 1, 2, . . . ,) when i = 1, 2, 

. . . , s1 + 1 and j = s2 + k. 

 

As the Markov process {(L1(t), L2(t)), t ≥ 0} is irreducible and recurrent (due to finite 

state space), 
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exists and will be equal to the steady state mean reorder rate. Moreover, we have from 

Cinlar(1975), 
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where mij is the mean sojourn time in the inventory level (i, j) and is given by 1/θij , and 

is the stationary distribution of the Markov chain ),( jiπ

 

{( ), n = 0, 1, 2, . . .}. )2()1( , nn LL

 

Since for a Markov process, 
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we have from (4.5) 
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4.5.2 Shortages 
 
A shortage for a commodity occurs when a demand occurs during a stockout period. We 

associate with a shortage a counting process M(t). Define 
 

         

(4.6) 
  
 
which satisfies the equation, 

 

∑ ∫
∈

−+=
Elk

t
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We have used the fact that the shortage at time t is due to the first demand or a 

subsequent one. Hence 

 

 

and is given by, 

 

 
 
     
(4.7) 

 

 

Derivations similar to the one used to derive β1 (refer subsection Reorder) yields, 
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4.5.3 Expected Cost 
 
The long run expected cost rate C(S1, S2, s1, s2), is given by,  

 

C(S1, S2, s1, s2) = h1E[L1] + h2E[L2] + Kβ1 + bβ2  

 

where h1 and h2 are holding cost for first and second commodity respectively, K is the  

 

 

fixed cost per order and b is the shortage cost. Then we have 
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4.6 NUMERICAL ILLUSTRATIONS 
 
The limiting probability distribution of inventory level is computed for specific values 

of parameters. For the first example we have assumed, 

 

S1 = 6, S2 = 7, s1 = 2, s2 = 2, λ1 = 1.5, λ2 = 2, λ12 = 1, µ = 1.5, p1 = 0.25, p2 = 0.20, p3 = 

0.15, p4 = 0.05, p5 = 0.01, p6 = 0.005, p7 = 0.001, h1 = 0.2, h2 = 0.3, b = 0.7, K = 50. 

 

Commodity II 
    0 1 2 3 

0 0.075012 0.001401 0.001621 0.00252 
1 0.065147 0.001181 0.001587 0.00204 
2 0.117119 0.002746 0.003406 0.00405 
3 0.205454 0.005726 0.007193 0.00704 
4 0.152802 0.005999 0.008525 0.00894 
5 0.086886 0.004373 0.006852 0.00754 

Commodity I 

6 0.031357 0.001949 0.003524 0.00413 
 

Commodity II    
4 5 6 7 

0 0.00164 0.001108 0.000059 0.000025 
1 0.00155 0.001436 0.000064 0.000034 
2 0.00340 0.004236 0.000166 0.000103 
3 0.00656 0.012514 0.000411 0.000311 
4 0.00894 0.037037 0.000974 0.000935 
5 0.00792 0.035197 0.001012 0.001185 

Commodity I 

6 0.00460 0.039340 0.001134 0.001967 
 

Table 4.1: Limiting probability distribution of the inventory level – Example 1 

 

This example gives the following results: 

Expected reorder rate = 0.39466. 

Expected shortage rate = 2.41792. 

Expected inventory level for the commodity I = 3.25862. 

Expected inventory level for the commodity II = 1.04528.  

Total Expected Cost rate = 22.39090. 
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As a second example, the following values have been considered and the calculated 

joint probability distribution of the inventory level is given in Table 4.2: 

 

S1 = 5, S2 = 6, s1 = 1, s2 = 2, λ1 = 1.2, λ2 = 1.5, λ12  = 0.8, µ = 1, p1 = 0.3, p2 = 0.20, p3 = 

0.15, p4 = 0.05, p5 = 0.01, p6 = 0.005, h1 = 0.3, h2 = 0.3,b = 0.9, K = 75. 

 

Commodity II 
    0 1 2 3 

0 0.168866 0.004688 0.007036 0.005056 
1 0.116626 0.003385 0.004312 0.003621 
2 0.188656 0.006302 0.007149 0.006626 
3 0.145235 0.007318 0.009887 0.010186 
4 0.082216 0.005493 0.008781 0.009814 

Commodity I 

5 0.021723 0.001687 0.002995 0.003492 
 

Commodity II    
4 5 6 

0 0.003363 0.002014 0.000053 
1 0.002929 0.002484 0.000067 
2 0.006133 0.007181 0.000196 
3 0.010919 0.020758 0.000573 
4 0.011697 0.059996 0.001671 

Commodity I 

5 0.004383 0.033446 0.000967 
 

Table 4.2: Joint probability distribution of the inventory level – Example 2 

 

This example gives the following results: 

Expected reorder rate = 0.288526. 

Expected shortage rate = 1.718531. 

Expected inventory level for the commodity I = 2.254718. 

Expected inventory level for the commodity II = 1.033886. 

Total Expected Cost rate = 24.172744. 
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4.7 CONCLUISION 
 

This article analyses a two-commodity inventory system under continuous review. The 

maximum storage capacity for the i-th item is Si (i = 1, 2). The demand points for each 

commodity are assumed to form an independent Poisson process. We also assume that 

unit demand for one item and bulk demand for the other. The reorder level is fixed as si 

for the i-th commodity (i = 1, 2) and the ordering policy is to place order for Qi (= Si − 

si, i = 1, 2) items for the i-th commodity when both the inventory levels are less than or 

equal to their respective reorder levels. The lead-time is assumed to be exponential. The 

joint probability distribution for both commodities is obtained in both transient and 

steady state cases. Various measures of systems performance and the total expected cost 

rate in the steady state are derived. The results are illustrated with numerical examples. 
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CHAPTER 5 
 

 

 

A SUBSTITUTABLE TWO-PRODUCT 

INVENTORY SYSTEM WITH JOINT-ORDERING 

POLICY AND COMMON DEMAND 
 

 

A modified version of this chapter has been published in Applied Mathematics 
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5.1 INTRODUCTION 
 

In the study of multi-product inventory systems, the concept of common demand for 

some products arises (Yadavalli and Hargreaves, 2003).  For example, when a desired 

customer arrives at a shop that sells two brands of soft drinks, he/she may be satisfied 

by a soft drink of a particular brand with probability  or by the other with 

probability , 

1p

2p 1,10 21 =+<< pppi .  If any one of the products is out of stock, due to 

the desire, the customer will accept with probability 1 the other product that may be 

available in the shop.  Also when the supplier is the same for several products under 

consideration, the dealer would prefer to have a simultaneous replenishment of all the 

products due to several reasons like cost considerations.  Joint ordering policies for 

periodic inventory systems have been studied by several researchers (Bahadur and 

Acharya (1986) and Goyal and Satir (1989).  Parlar and Weng (1997) and Anbazhagan 

(2002) developed optimal coordination policies for the supply and manufacturing 

departments. They considered a problem where the responsibility of the manufacturing 

department was to meet the random demand of a product with a short life cycle.  The 

responsibility the supply department was to provide a sufficient amount of raw 

materials, so that the required production level could be achieved.   Girlich (1996) and 

Yadavalli & Joubert (2003) studied a problem of joint coordination between 

manufacturing and supplying department encountered in a short life cycle multi-product 

environment.  On the other hand, the study of continuous review multi-product 

inventory systems with common demand has not been considered so far in the literature.  

In this paper, an attempt is made to fill the gap by providing a study of a substitutable 

two-product inventory system with joint-ordering policy and common demand.  The 

layout of the paper is as follows:  In Section 2, the model assumptions and notation are 

provided.  Certain auxiliary functions that characterise the occurrence of various events 

pertaining to the model are derived in Section 3.  Section 4 gives some of the measures 

of the performance of the system.  A cost analysis is provided in Section 5.  Section 6 

deals with the numerical results, which highlights the behaviour of the system. 
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5.2 MODEL ASSUMPTIONS AND NOTATION 
 

5.2.1 ASSUMPTIONS 
 

The following assumptions applies to the continuous review two-product inventory 

model: 

(i) The maximum inventory level of product i is .2,1, =iSi    

(ii) Demands occur according to a Poisson process with parameter λ . 

(iii) When both products are available, a demand is satisfied either with Product 1 

with probability  or with Product 2 with probability , 

.  When one of the products is out of stock, the demand is 

satisfied with the other product with probability 1.  When both the products are 

out of stock, all demand is lost.  That is, no backorders are allowed. 

1p p

1,10 =+<< ppp

i s

2

21i

(iv) A re-order for both the products is placed at the epoch when the inventory level 

of product  reaches  and that of the other product i j  is greater than 

 and 2,1, =js j ji . ≠

(.)f(v) The lead-time follows an arbitrary distribution with pdf . 

(vi) When the re-order materializes, the inventory level of each product is brought to 

its maximum level. 
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5.2.2 NOTATION 
 

The following notation is used in this chapter: 

 

:)(tLi  The inventory level of product  at time i .2,1, =tt  

 

:)(tL  The ordered pair  representing the inventory level of the system at  ))(),(( 21 tLtL

 time t . 

 

:ijr  Event that a replenishment of stock occurs at the epoch when the inventory level  

 is . ),( ji

 

:ijγ  Event that a re-order is placed when the product  reaches  and the level of the  i is

 other product j , where ),1( 22 Sjsi ≤<=  or ),2( 11 Sjsi ≤<= . 

 

2,1;
!

)(
),( ==

−

i
n

tpe
tnB

n
i

tp

i

i λλ

 

 

!
)(),(3 n

tetnB
nt λλ−

=  

 

:0E  Initial condition representing the occurrence of an r -event. 

 

5.3 AUXILIARY FUNCTIONS 
 

The inventory level of each product is brought to its maximum at every epoch of 

replenishment.  Hence the r -events constitute a renewal process.  To derive the 

expression for the various measures of performance of the system, we proceed to study 

the renewal process of r -events.  For this, certain auxiliary functions are defined to 
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characterise the performance of the system in one cycle, which is the time interval 

between any two successive r -events. 

 
5.3.1 FUNCTION )(tijr φ  
 

Defining )(tijr φ  as: 

 

 
∆

∆+
=

→∆

]/),([
lim)( 0

0

EttinrP
t ij

ijr φ  

 

where ),1( 22 Sjsi ≤<=  or ),2( 11 Sjsi ≤<= .  Then the function )(tijr φ  has the 

interpretation that it represents the probability that the inventory level of product i  

enters the state  in , the inventory level of the other product at time  is is ),( dttt + t j  

and a re-order is placed in  given that an ),( dttt + r -event has occurred at time .  

Since a re-order is made at the epoch when the inventory level of product i  reaches  

and the inventory level of product 

0=t

is

j  is greater than  )(js ij ≠ , where 

 

221221111 ,),(),1()( SjsptjSBtsSBtjr ≤<−−−= λφ  (5.1) 

 

112222112 ,),1(),()( SjsptsSBtjSBtjr ≤<−−−= λφ  (5.2) 

 

5.3.2 FUNCTION  )(thlr

 

Defining  as: )(thlr

 

∆
∆+−

=
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}/),([
lim)( 0
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EttineventlanP
thlr  
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Then  represents the probability that a demand occurs in dtthlr )( ),( dttt +  and is lost 

given that an r -event has occurred at time 0=t .  To derive an expression for , 

we characterize the occurrence of the l -event in the following diagram (Figure 1).  

Accordingly, we have 

)(thlr
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5.3.3 FUNCTION )(tijrψ  
 

Defining )(tijrψ  as: 

 

∆

∆+
=

→∆

]/),([
lim)( 0

0

EttineventranP
t ij

ijrψ  

 

Then )(tijrψ  represents the pdf of the interval between two successive replenishments 

and that the replenishment which occurs in ),( ∆+tt  is of  type.  Note that at the time 

of occurrence of the -event, 

ijr

ijr iS −1  units of product 1 and jS −2  units of product 2 

are added to the stock.  Accordingly, the following cases exist: 

 

Case 1:   and  1si > 2sj >
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    0)( =tijrψ         (5.4) 

 

Case 2:   and  1si > 20 sj ≤<

 

In this case, a k2γ -event should occur in ),( ∆+uu , tu <<0 , 

1Ski ≤≤ . 

 

Consequently,  
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Case 3:   and  1si > 0=j

 

  Since the inventory level of product 2 is 0 at time t , a k2γ  event occurs in 

  ),( ∆+uu , 0 , and the system enters the state  in tu << )0,'( kk −

  ),( ∆+vv , u  and is in state  at time .  Hence  tv << )0,(i t
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Case 4:  10 si ≤<  and  2Bj ≥

 

  As in Case 2,  

  ©∑
=

=
2

)()( 1

S

jk
krijr tt φψ )()],(),([ 211 tftjkBtisB −−    (5.7) 

 

Case 5:   and  0=i 2sj >
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  This case is similar to Case 3 and  
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Case 6:  10 si ≤<  and 20 sj ≤<  

 

  In this case, either a k1γ  event or a k2γ  event should occur in , ),( ∆+uu

  .  Hence tu <<0
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Case 7:  10 si ≤<  and  0=j

 

At time , the system is in state  and enters the state  0=t ),( 21 SS ),( 1 ks

1sk >  or the state ,  in ),( 2sk 2sk > ),( ∆+uu  when a re-order is 

placed. 

 

Then the system enters the state  in )0,(k ),( ∆+vv ,  and the 

inventory level is in state  at time  and the re-order materializes in 

tvu <<

)0,(i t

),( ∆+tt .  Hence  
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Case 8:   and  0=i 20 sj ≤<

 

  This case is similar to Case 7.  Hence  
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Case 9:   and  0=i 0=j

 

  At time , the inventory level is  and it enters the state , 0=t ),( 21 SS ),( 1 ks

  or the state ,  in 2sk > ),( 2sk 1sk > ),( ∆+uu , where a re-order is also 

  placed.  That re-order does not materialize in  and the system enters  ),0( t

  the state  or the state  in )0,(r ),0( r ),( ∆+vv , twvu <<<<0 .  The 

  system then enters the state n ()0,0(  i ),( ∆+ww , twvu <<<<0

)

, and is 

  in state at time t  and the re-order materializes in .  0,0( ),( ∆+tt

 

  Consequently,  
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5.3.4 FUNCTION  )(tpijr

 

Defining  as: )(tpijr

 

]/0),(,)([)( 0EtrjtYPtpijr =Ν==  1...,,1,0 Si = ; 2,...,1,0 Sj =  

 

The following cases exists: 

 

Case 1:   and  1si > 2sj >

 

  ),(),()( 2211 tjSBtiSBtpijr −−=      (5.13) 

 

Case 2:  10 si <<  and  2sj >

 

In this case a k1γ -event, 2Skj <≤ , should occur in , 

.  Hence 

),( ∆+uu

tu <<0
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Case 3:   and  1si > 20 sj ≤<

 

  This case is similar to case 2.  Thus 
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Case 4:   and  1si > 0=j

 

Since the inventory level of product 2 is zero at , a t k2γ -event occurs at 

),( ∆+uu , , and the inventory level enters the state in tu <<0 )0,'( kk −

),( ∆+vv , tvu <<<0  and is in state  at time .  Hence  )0,(i t
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Case 5:   and  0=i 2sj >

 

  This case is similar to case 4.  So, we obtain 
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Case 6:  10 si <<  and  0=j
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At time , the system is in state and either enters the state 

 or enters the state , , a re-order is placed in 

0=t ),( 21 SS

21 ),,( skks > ),( 2sk 1sk >

),( ∆+uu , .  And the inventory level enters the state 

n 

tu <<0

imm ≥),0,(  i ),( ∆+vv , tvu <<<0 , and the inventory is in state 

 at time t .  Hence )0,(i
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           (5.18) 

Case 7:   and  0=i 20 sj ≤<

 

  This is similar to Case 6.  Hence  
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Case 8:  10 si ≤<  and 20 sj ≤<  

 

  In this case either a k1γ -event or a k2γ -event should occur in , ),( ∆+uu

  .  The following equation is obtained tu <<0
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  © )()],(),([ 221 tFtjsBtikB −−               (5.20) 

 

Case 9:   and  0=i 0=j

 

  At time 0=t , the system is in state  and enters the state , ),( 21 SS ),( 1 ks

   or enters the state  and corresponding re-order is  2sk > 12 ),,( sksk >

  placed in .  And the re-order does not materialize in  and 

  the system enters the state  or  in ,  

   and then enters the state n 

),( ∆+uu ),0( t

),0( m 0),0,( >mm ),( ∆+vv

tvu <<<0 )0,0(  i ),( ∆+ww ,   

   and is in state at time .  Accordingly, twvu <<<<0 )0,0( t
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Based on the above auxiliary functions (5.1) to (5.21), some measures of system 

performance are presented in the next section. 
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5.4 MEASURES OF SYSTEM PERFORMANCE 
 

5.4.1 MEAN NUMBER OF REPLENISHMENTS 
 

The r -events correspond to the epoch of replenishments, and as such they constitute a 

renewal process.  The first-order product density  corresponding to the )(thr r -events is 

given by  

 

∑
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n

n
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where  is the pdf of the interval between two successive occurrences of )(tg r -events.   

 

To obtain an expression for , an expression for the survivor function )(tg )(tG  

corresponding to  is defined.  Since )(tg )(tG  is the probability that replenishment has 

not occurred up to time t , the following probabilities exist: 

 

(i) A re-order is not placed up to time  t

 

(ii) A re-order is placed in ),( ∆+uu , tu <<0 , but it has not materialized until  t
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Consequently, the mean number of replenishments is given by 
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and the expected stationary rate of replenishments is given by 

 

)(lim)( thrE rt ∞→
=  

 

5.4.2 MEAN NUMBER OF RE-ORDERS PLACED 
 

Defining  as: )(th
ijγ

 

∆
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Since an epoch of re-order corresponds to the occurrence of a γ -event the first-order 

product density  corresponding to re-orders is given by )(thγ
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To derive an expression for , consider the following mutually exclusive and 

exhaustive possibilities 

)(th ijγ

 

(i) No r -event has occurred up to time t  

 

(ii) At least one r -event has occurred in  ),0( t

 

)()()( thtth rijrij += φγ © )(tijr φ       (5.24) 

 

Hence the mean number of re-orders placed in  is given by ),0( t
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The mean stationary rate of re-ordering is given by 
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where  is the Laplace transform of (.)*
ijr φ (.)ijr φ , (see Girlich, 2003). 

 

5.4.3 MEAN NUMBER OF LOST DEMANDS 
 

Let  be the first-order product density corresponding to the epochs of occurrences 

of lost demands.  Then the following expression can be derived: 

)(thl
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Hence the mean number of lost demands in  is given by ],0[ t
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and the mean stationary rate of lost demands is given by 
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5.4.4 MEAN NUMBER OF UNITS REPLENISHED 
 

At the occurrence of each -event ijr iS −1  units of product 1 and jS −2  units of product 

2 are replenished.  Also note that  is the mean stationary state of -events and it 

is given by 

)( ijrE ijr

 

)(lim)( thrE ijrtij ∞→
=  

 

where  is the first order product density corresponding to -events.  Then  )(th ijr ijr
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Consequently,  
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Thus, the mean number of Product 1 that may be added to the inventory in unit time in 

the long run is given by 
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and, in the same manner, the mean number of Product 2 that may be added to the 

inventory in unit time in the long run is given by 
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5.4.5 DISTRIBUTION OF THE INVENTORY LEVEL 
 

The probability distribution of the inventory level is defined by 

 

]/),()([)( 0EjiZYPtpij ==  

 

where  and . 10 Si ≤≤ 20 Sj ≤≤

 

Using renewal theoretic arguments,  

 

)()()( thtptp rijrij += © )       (5.31) (tpijr

 

Consequently, the stationary distribution of the inventory level is given by 

 

)0()()(lim *
ijrijtij prEtp ==Π

∞→
                 

(5.32) 

 

5.5 COST ANALYSIS 
 

We have two types of re-orders, namely 

 

(i) the re-order is placed when the inventory level of Product 1 reaches  or 1s

(ii) the re-order is placed when the inventory level of Product 2 reaches  2s
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It can be assumed that the two types of re-orders placed are with two different suppliers 

and hence that the corresponding costs are different.  Let  be the cost corresponding 

to a re-order due to the inventory level of product  reaching 

iCR

i 2,1, =isi .  Let  be the 

cost corresponding to a lost demand.  Since  is the mean rate of the lost 

demand, the cost due to lost demands is given by .  In the same way, the 

cost corresponding to re-orders placed is given by 

CL
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Hence the total cost is given by 
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The total cost can be considered as a function of  and its optimal value can be 

obtained. 

1s
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At 0=t , the system 
is in state  
and enters the state

),( 21 SS

),( 1 is ,  and 2si >
a re-order is placed in 

tuuu <<∆+ 0),,(  

),( 2si ,  and 1si >
a re-order is placed in 

tuuu <<∆+ 0),,(  

The re-order does not 
materialize up to time 

 and the system 
enters the state

t

)0,( j , 10 sj ≤<  in 
tvuvv <<∆+ ),,(  and 

the system enters the state 

),0( j ,  in 20 sj ≤<
tvuvv <<∆+ ),,(  and 

the system enters the state 

)0,0(  in ),( ∆+ww , 
twv << , and a 

demand occurs in 
),( ∆+tt  

 

Figure 5.1: System State for Cost Function 
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5.6 NUMERICAL ILLUSTRATION 
 

For the purpose of illustration, we assume that f(t) = a exp{-at} and the values of 

various parameters as follows: 

 

λ = 1.2, 

a = 0.5, 

S1  =  8, 

S2 = 5, 

s1 = 1, 

CL =10, 

CR1  =  200, 

CR2 = 300 

 

First, the re-order level for Product 1 is fixed as s1 = 2 and the value of p1 increased 

from 0.1 to 0.9 to obtain the behaviour of the mean rates of 

 

(i) r-events, 

(ii) γij-events 

(iii) Lost demands 

(iv) Unit 1 replenished 

(v) Unit 2 replenished 

(vi) Total cost 

 

From Table 5.1, it can be observed that, as p1, the probability of demand for Product 1, 

increases,  

 

(i) The mean rate of replenishments decreases and then increases 

(ii) The mean rate of γ1j-events increase and that of γ2j decreases 

(iii) The mean rate of lost demands increases 
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(iv) The mean rate of unit 1 replenished increases 

(v) The mean rate of unit 2 replenished decreases 

(vi) The mean rate of total cost decreases and then increases.  The total cost is a 

minimum when p1 = 0.7 

 

Next, as p1 is fixed and the re-order level for Product 1 increased, the results presented 

in Table 2 is obtained.  The result is that, as s1 increases with p1 = 0.7, 

 

(i) The mean rate of replenishments increases 

(ii) The mean rate of γ1j increases and that of γ2j decreases 

(iii) The mean rate of lost demands decreases 

(iv) The mean rate of unit 1 replenished increases 

(v) The mean rate of unit 2 replenished increases 

(vi) The mean rate of total cost increases. 
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Re-Order Level for Product 1 Fixed at 2 
 
p1       p2      LL1     RR       ERO1      ERO2      RLD       U1RR      U2RR     TCOST 
0.1    0.9       2       2.852      0.000       2.852        0.003       0.908       7.534       855.613 
0.2    0.8       2       1.496      0.005       1.492        0.004       1.113       4.107       448.500 
0.3    0.7       2       1.022      0.026       0.996        0.008       1.362       2.909       304.097 
0.4    0.6       2       0.790      0.078       0.711        0.014       1.689       2.300       229.198 
0.5    0.5       2       0.675      0.171       0.503        0.026       2.117       1.934       185.494 
0.6    0.4       2       0.643      0.310       0.333        0.056       2.683       1.679       162.366 
0.7    0.3       2       0.699      0.510       0.189        0.141       3.498       1.464       160.152 
0.8    0.2       2       0.908      0.831       0.078        0.421       4.944       1.251       193.664 
0.9    0.1       2       1.633      1.620       0.014        1.668       9.013       1.030       344.680 
p1 : Probability of Demand for Product 1 
p2 : Probability of Demand for Product 2 
LL1 : Re-Order Level for Product 1 
RR : Rate of Replenishment 
ERO1 : Rate of Type 1 Re-Order 
ERO2 : Rate of Type 2 Re-Order 
RLD : Rate of Lost Demand 
U1RR : Rate of Units of Product 1 Replenishment 
U2RR : Rate Of Units Of Product 2 Replenishment 
TCOST : Rate of Total Cost 
 

Table 5.1: Variation of Measures of System Performance Against the 
Probability of Demand for Product 1 
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Probability of Demand for Product 1 Fixed at Various Levels 
                                                
p1       p2      LL1      RR       ERO1      ERO2      RLD       U1RR      U2RR     TCOST 
0.3    0.7       1        1.014      0.011       1.003        0.104       1.330       2.889       303.227 
0.3    0.7       2        1.022      0.026       0.996        0.008       1.362       2.909       304.097 
0.3    0.7       3        1.041      0.060       0.981        0.005       1.408       2.946       306.296 
0.5    0.5       1        0.634      0.109       0.525        0.116       1.888       1.826       180.451 
0.5    0.5       2        0.675      0.171       0.503        0.026       2.117       1.934       185.494 
0.5    0.5       3        0.741      0.269       0.472        0.009       2.284       2.041       195.454 
0.7    0.3       1        0.600      0.390       0.210        0.942       2.690       1.224       150.363 
0.7    0.3       2        0.699      0.510       0.189        0.141       3.498       1.464       160.152 
0.7    0.3       3        0.848      0.684       0.165        0.019       3.977       1.633       186.306 
p1 : Probability of Demand for Product 1 
p2 : Probability of Demand for Product 2 
LL1 : Re-Order Level for Product 1 
RR : Rate of Replenishment 
ERO1 : Rate of Type 1 Re-Order 
ERO2 : Rate of Type 2 Re-Order 
RLD : Rate of Lost Demand 
U1RR : Rate of Units of Product 1 Replenishment 
U2RR : Rate Of Units Of Product 2 Replenishment 
TCOST : Rate of Total Cost 
 

Table 5.2: Variation of Measures of System Performance Against Re-Order 
Level for Product 1 
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5.7 CONCLUSION 
 

A substitutable two-product inventory system with joint-ordering policy is considered in 

this chapter.  Common demands occur according to a Poisson process.  A demand is 

satisfied either with an item of Product 1 with probability p1 or with an item of Product 

2 with probability p2 (p1 + p2 = 1).  When one of the products is out of stock, the 

demand is satisfied with the other available product with probability 1.  Analyzing the 

imbedded renewal process describing the system, expressions for the stationary 

distribution of the inventory level and the stationary rates of the replenishments, the re-

orders placed, the lost demands, and the units replenished are obtained.  A cost analysis 

is also provided and a numerical example illustrates the results obtained. 

 150

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



REFERENCES 

Abdel_Malek, L. and Ziegle, H., 1988, Age dependent perishability in two echelon 

serial inventory system, Computers and Operations Research, 15, pp 227 – 238. 

Aggarwal, S.C., 1974, Axeview of current inventory theory and its applications, 

International Journal of Production Research, 12, pp 443 – 482. 

Aksoy, Y and Erengue, S.S., 1988, Multi-item inventory models with coordinated 

replenishment, International Journal of Operations and Productions Management, 8 pp 

63 –73. 

Amiya, K. and Martin, G.E., 1988, Optimal multi-product inventory grouping for co-

ordinated periodic replenishment vendor stochastic demand, Computers and Operations 

Research, 15, pp 263 – 270.  

Anbazhagan, N., 2002, Analysis of two commodity stochastic inventory systems, 

Doctoral thesis, School of Mathematics, Madurai Kamaraj University, India, pp 85 – 

103. 

Anbazhagan, N. and Arivarignan G., 2000, Two commodity continuous review 

inventory system coordinated reorder policy, International Journal of Information and 

Management Sciences; 11, pp 19 – 30. 

Arda, Y. and Hennet, J., 2004, Inventory control in a multi-supplier system,  

International Journal of Production Economics, In Press, Corrected Proof, Available 

online 23 November 2004. 

Arrow, K.J., Harris, T. and Marschak, T., 1951, Optimal Inventory Policy, 

Econometrica, 19(3), pp 250 – 272. 

Arrow, K.J., Karlin, S and Scarf, H., 1958, Studies in Mathematical Theory of 

Inventory and Production, Stanford University Press. 

   151

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Bahadur, U. and Acharya. D., 1986, An approach to multiple item joint replenishment   

and vendor’s delivery schedule negotiation, Industrial Engineering Journal; 15, pp 609 

– 625. 

Balkhi, Z.T., 1999, On the global optimal solution to an integrated inventory system 

with general time varying demand, production and deterioration rates, European 

Journal of Operational Research, 1 April 1999, 114(1), pp 29 – 37. 

Ballintify, J.L., 1964, On a basic class of inventory problems. Management Science;  

10, pp 287 – 297. 

Bandal, S., 2002, Promise and problems of simulation technology in SCM domain.  

Simulation Conference Proceedings. Winter, 2, pp 1831 – 1837. 

Beckmann, M.J., 1961, An inventory model with arbitrary interval and quantity 

distributions of demands, Management Science, 8, pp35 – 57  

Beckmann, M.J. and Srinivasan, S.K., 1987, An (s,S) inventory system with Poisson 

demands and exponential lead times, OR Spektrum, 9(4), pp 213 – 217.   

Beyer D, and Girlich, H.-J., 1994, An economical resetting model in continuous 

review, International Journal of Production Economics, pp 223 – 231. 

Bhabha, H.J., 1950, On the stochastic theory of continuous parametric system and its 

applications to electron-Photon cascades, Proceedings of Royal Society of London, 

A202, pp 301 – 332. 

Bartlett, M.S., 1966, An introduction of stochastic processes, 2nd Edition, Cambridge 

University Press. 

Cap Gemini Ernst & Young, 2003, Inventory Optimization Tools: An overview of the 

vendors, developments and trends in the Dutch Inventory Optimization market, B2B 

Supply Chain service line. 

Cinlar, E., 1975a, Morkov renewal theory: A survey, Management Science, 21, pp 727 

– 752. 

   152

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Cinlar, E., 1975b, Introduction to stochastic Processes, Prentice Hall, USA. 

Chakravarthy, A.K., 1981, Multi-item inventory aggregation into groups, Journal of 

Operations Research Society, 32, pp 19 – 26. 

Corrence, J.J., 1980, Economic lot scheduling for multiple products as parallel 

processes, Management Science, 36, pp 348 – 358. 

Cox, D.R. and Smith, W.L., 1958, Renewal theory and its domifications, Journal of 

Royal Statistical Society, B - 20, pp 243 – 302. 

Cox, D.R., 1962, Renewal Theory, Mathuen, London. 

Daley, D.J. and Vere-Jones, 1971, A summary of the theory of point processes in 

stochastic processes, (eds.) A.W. Lewis, John Wiley & sons, pp 299 – 383. 

De Kock, A.G. and Graves, S.C. (editors), 2003, Supply Chain Management: Design 

Coordination and Operation, Elsevier. 

Deuermeyer, B.L., 1980, A Single period model for a multi-product perishable 

inventory system with economic substitution, Navel Research Logistics Quarterly, 27, 

pp 177 – 186. 

Dirickx, Y.M.I. and Koevoets, D., 1987, A continuous review (s, S) inventory system 

in a random environment, Journal of Applied Probability, 15, pp 654 – 659. 

Enslow, B., 2004, Supply Chain Inventory Strategies Benchmark Report:  How 

inventory misconceptions and inertia are damaging companies’ service levels and 

financial results.  Aberdeen Group. 

Fandel, G. & Stammen, M. 2004.,  A general model for extended strategic supply 

chain management with emphasis on product life cycles including development and 

recycling, International Journal of Production Economics, 89(3), pp 293 – 308. 

Federgruen, A., Groenvelt, H. and Tijms, H.C., 1984, Coordinated replenishment in 

a multi-item inventory system with compound Poisson demands. Management Science; 

30, pp 344 – 357. 

   153

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Feldmann, R., 1978, A continuous review (s,S) inventory system in a random 

environment, Journal of Applied Probability; 15, pp 654 – 659. 

Feller, W., 1968, An introduction to Probability theory and its applications; 3rd Edition, 

John-Wiley and Sons, New York. 

Feller, W., 1965, An introduction to Probability theory and its applications; Volume I 

& II , John Wiley and Sons, New York. 

Girlich, H.-J., 1984, Dynamic inventory problems and implementable models, Journal 

of Information Processing and Cybernetics, 20 pp462 - 475  

Girlich, H.-J., 1996, Sensitivity of the Gittens Index in the Continuous Time Two-

armed Bandit Problem; Optimization, 38, pp 367 – 378. 

Girlich, H.-J., 1998, Inventory modelling in a fluctuating environment. Inventory 

modelling in Production and Supply Chains (Editors: Papachristos, S. and Ganas, I.); pp 

121 – 130. 

Girlich, H.-J., 2004, Applications of integrated transforms to planning and finance, 

International Journal of Production Economics; 88, pp 137 – 144. 

Goyal, S.K., 1980, Economics ordering policy for jointly replenished items, 

International Journal of Production Research, 26, pp 1237 – 1240. 

Goyal, S.K. and Satir, A.T., 1989, Joint replenishment inventory control deterministic 

and stochastic models, European Journal of Operational Research; 36, pp 180 – 185. 

Goyal, S.K. and Satir, A.T., 1989, Joint replenishment inventory control: 

Deterministic and stochastic models. European Journal of Operational Research; 38, 

pp 2 – 13. 

Guillén, G., Mele, F.D., Bagajewicz, M.J., Espuña, A. & Puigjaner, L., 2005, Multi-

objective supply chain design under uncertainty, Chemical Engineering Science, 60(6), 

pp 1535 – 1553. 

   154

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Hadley, G. and Whitin, T.M., 1963, Analysis of Inventory systems, Prentice Hall, 

Engelwood Cliffs, New Jersey. 

Hargreaves, C., 2002, Stochastic Problems in Reliability and Inventory, PhD Thesis, 

University of South Africa. 

Harris, T.E., 1963, The Theory of Branching Processes, Springer-Verlag, Berlin. 

I2 Technologies Inc, 2003, Improving Service and Market Share with i2 Inventory 

Optimization: How superior inventory management can be deployed as a competitive 

weapon to drive the top and the bottom line, White Paper. 

I2 Technologies Inc, 2005, User Manual, Version 6.1.1. 

Jung, J.Y., Blau, G., Pekny, J.F., Reklaitis, G.V. & Eversdyk, D., 2004, A 

simulation based optimization approach to supply chain management under demand 

uncertainty, Computers & Chemical Engineering, 28(10), pp 2087 – 2106. 

Kalasky, D.R., 1996, Simulation-based supply-chain optimization for consumer 

products. Simulation Conference Proceedings, pp 1373 – 1378. 

Kalpakam, S. and Arivarignan, G., 1985, A continuous review inventory system with 

arbitrary inter arrival lines between demands and an eributing item subject to a random 

failure, Opsearch, 22, pp 153 – 168. 

Kalpakam, S. and Arivarignan, G., 1988, A continuous review perishable inventory 

model, Statistics; 19, pp 389 – 398. 

Kalpakam, S. and Arivarignan, G., 1993, A coordinated multicommodity (s,S) 

inventory system. Mathematical Computing Modelling; 18, pp 69 – 73. 

Kalpakam, S. and Sapna, K.P., 1994, Continuous review (s,S) inventory system with 

random lead-times and positive lead-times, OR Letters; 16, pp 115 – 119. 

Kalpakam, S. and Sapna, K.P., 1996, An (s,S) perishable system with arbitrary 

distributed lead-times, Opsearch; 33, pp 1 – 19. 

   155

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Kerbache, L. and Smith, J.M. 2004., Queuing networks and the topological design of 

supply chain systems, International Journal of Production Economics, 91(3), pp 251 – 

272. 

Khintchine, A.J., 1960, Mathematical Methods of theory of Queuing, Griffin, London. 

Kamat, S.J., 1971, A two-product inventory control model with substitution, 39th ORSA 

meeting, May 5-7, 1971,  Mexico. 

Krishnamoorthy, A., Iqbal Basha, R. and Laxmy, B., 1994, Analysis of two 

commodity problem. International Journal of Information and Management Sciences, 

5. 

Krishnamoorthy, A., and Laxmy, B., 1990, An inventory system with Markov 

dependent reordering levels, Opsearch, 27, pp 39 – 45.  

Krishnamoorthy, A. and Varghese, T.V., 1994, A two commodity inventory problem. 

Information and Management Sciences, 3, pp 55 – 70. 

Kumaraswamy, S. and Sankarasubramanian, E., 1981, A continuous review of S-s 

inventory systems in which depletions is due to demand and failure of units, Journal of 

Operations Research Society; 32, pp 997 – 1001. 

Lakhal, S., Martel, A., Kettani, O. and Oral, M.,  2001,  On the optimization of 

supply chain networking decisions, European Journal of Operational Research, 129(2), 

pp 259 – 270. 

Levy, P., 1956, Semi-Morkov processes, Proceedings of International Congress of 

Mathematicians, Amsterdam, 3, pp 416 – 426. 

Liu, L., 1990, (s,S) continuous review models for inventory with random lifetimes; OR 

Letters; 9, pp 161 – 167. 

Mandal, B.N. and Phaujan, S., 1989, An inventory model for deteriorating items and 

stock-dependent consumption rate, Journal of Operations Research Society, 40, pp 483 

– 488. 

   156

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



McGillivray, G. and Silver, E.A., 1978, Some concepts of inventory control under 

substitutable demands, Information Systems and Operational Research, 23, pp 47 – 63. 

Medhi, J., 1994, Stochastic Processes, John Wiley, New York. 

Moyal, J.E., 1962, The general theory of stochastic population processes, ACTA 

MATHEMATICA, 108, PP 1 – 31. 

Murphy, J.V., 2003.  New Algorithms from academia help solve inventory 

optimization problem.  Global Logistics & Supply Chain Strategies, 

http://www.glscs.com/archives/06.03.visible.htm?adcode=10. 

Nahmias, S., 1978, Inventory models, Encyclopedia of Computer Science and 

Technology, Volume 9, Holtzman, A and Kent, A (eds), Marcel Dekker, New York. 

Nahmias, S. and Schmidt, C.A., 1986, An application of the theory of weak 

convergence to the dynamic perishable inventory problem with discrete demand, 

Mathematics of Operations Research,11, pp 62 – 69. 

Nahmias, S., 1982, Perishable inventory theory, Operations Research, 30, pp 680 – 

708. 

Neuts, M.F., 1978, Renewal processes of Phasetype, Navel Research Logistics 

Quarterly, 25, pp 445 – 454. 

Oneira, L and Larraneta, J., 1987, Methods para la determinacion del tamano del lote 

en articulos subjectos a ordenes conjutos (Heuristic rules in the joint ordering 

replenishment problem), QUESTIIO, 11, PP 61 – 83. 

Padmos, J., Hubbard, B., Duczmal, T. & Saidi, S., 1999, How to integrate simulation 

in supply chain optimization, Simulation Conference Proceedings, 2, pp 1350 – 

1355. 

Page, E. and Paul, R.J., 1976, Multi-product inventory situation with one restriction, 

Operations Research, 27, pp 815 – 834. 

   157

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Pal, M., 1990, An inventory model for deteriorating items when demand is random; 

Calcutta Statistical Association Bulletin; 39, pp 201 – 207. 

Parlar, M., 1985, Optimal ordering policies for a perishable and substitutable product – 

A Morkov decision model, Information Systems and Operations Research, 23, pp 182 – 

195. 

Parlar, M., 1988, Game theoretic analysis of the substitutable product in inventory 

problems with random demands, Navel Research Logistics Quarterly, 35, pp 397 – 409. 

Parlar, M. and Weng, Z.K., 1997, Designing a firm’s coordinated manufacturing and 

supply decisions with short product lifecycles, Management Science; 43; pp 1329 – 

1344. 

Parzen, E., 1962, Stochastic Processes, Holden day, MaGraw Hill, New York. 

Perry, D. and Posner, M.J.M., 1990, Control of input and demand rates in inventory 

systems of perishable commodities, Navel Research Logistics Quarterly, 37, pp 85 – 98. 

Pyke, R., 1961a, Markov renewal processes with finitely mony states, Annals of 

Mathematical Statistics, 32, pp 1243 – 1259.  

Raafat, F., 1991, Survey of literature on continuously deteriorating invetory models, 

Journal of Operations Research Society; 42, pp 27 – 37. 

Ravichandran, N., 1988, Probabilistic analysis of a continuous review perishable 

system with Markovian demand, Erlangian life and non-instantaneous lead times, OR 

Spektrum, 10, pp 23 – 27. 

Ramakrishnan, A., 1958, Probability and stochastic processes, Handbuch des Physik, 

13, Spriger-Verlag, Berlin. 

Ramakrishnan, A., 1958, Stochastic processes relating to particles distribution in an 

infinity of states, Proceedings of Cambridge Philosophical Society, 46, pp 595 – 602. 

   158

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Ramanarayanan, R. and Jocob, M.J., 1987, General analysis of (S,s) inventory 

system with random lead times and bulk demand, Cashiers Centre D’Etudes de 

Reseherch Operentioanalle, 29, pp 239 – 246. 

Ross, S.M., 1970, Applied probability model with optimization applications, Holden 

Day, San Francisco. 

Sahin, I., 1990, Regenerative Inventory Systems: Operating Characteristics and 

Optimization, Springer-Verlag. 

Sarma, K.V.S., 1987, A deterministic order level inventory model for deteriorating 

items with two storage facilities, European Journal of Operational Research, 29, pp 70 

– 73. 

Seferlis, P. and Giannelos, N.F. 2004., A two-layered optimisation-based control 

strategy for multi-echelon supply chain networks, Computers & Chemical Engineering, 

May 2004, 28(5), pp 799 – 809. 

Silver, E.A., 1974, A control system of coordinated inventory replenishment. 

International Journal of Production Research, 12, pp 647 – 671. 

Silver, E.A., 1981, Operations Research in inventory management, A review critique, 

Operations Research, 29, pp 628 – 645. 

Srinivasan, S.K., 1972, Stochastic point processes and their applications, Griffin, 

London. 

Srinivasan, S.K., 1989, Analysis of (S,s) inventory systems with general lead time and 

demand distributions, Optimization, 19, pp 557 – 576. 

Song, J.S. and Zipkin, P., 1993, Inventory control in a fluctuating demand 

environment, Operations Research; 41, pp 351 – 370. 

Stadtler, H and Kilger, G. (editors), 2002, Supply Chain Management and Advanced 

Planning, Springer. 

   159

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



Stadtler, H and Kilger, G., 2003, Handbooks in Operations Research and Management 

Science, 11, Elsevier. 

Sung, C.S. and Chang, S.H., 1986, A capacity planning model for multi-product 

facility, Engineering Optimization, 10, pp 263 – 270. 

Weiss, H.J., 1986, Optimal ordering policies for continuous review perishable 

inventory models, Operations Research, 28, pp 365 – 374.  

Weiss, H.J., 1988, Sensitivity and continuous review (S,s) inventory systems to 

ordinary delays, European Journal of Operational Research, 36, pp 174 – 179. 

Wheller, S., 2004, Supply chain, inventory management and optimization: skills for 

small businesses, SYSPRO (Pty) Ltd. 

Wijngaad, J. and Winkel, E.G.F., Average cost in a continuous review (S,s) inventory 

system with exponentially distributed lead time, Operations Research, 27, pp 396 – 

401. 

Yadavalli, V.S.S., Natarajan, R., Hemamalini, L., and Hargreaves, C.A., 2001, 

Stochastic model of a two-product inventory system with product interaction, 

Management Dynamics; 10, No.3, pp 81 – 91. 

Yadavalli, V.S.S. and Hargreaves, C.A., 2003, A Two-product inventory system with 

product interaction, South African Journal of Industrial Engineering, 14(1), pp 17 – 26. 

Yadavalli, V.S.S. and Joubert, J.W., 2003, A two-product single period 

manufacturing and supply system, Management Dynamics; 12, pp 34 – 39. 

Yadavalli, V.S.S., Arivarignan, G. and Anbazhagan, N., 2004, A Two-commodity 

stochastic inventory system with lost sales, Stochastic Analysis and Applications; 22, pp 

479 – 494. 

   160

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  


