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CHAPTER 5

A SUBSTITUTABLE TWO-PRODUCT
INVENTORY SYSTEM WITH JOINT-ORDERING
POLICY AND COMMON DEMAND

A modified version of this chapter has been published in Applied Mathematics
Computation, 2005.
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5.1 INTRODUCTION

In the study of multi-product inventory systems, the concept of common demand for
some products arises (Yadavalli and Hargreaves, 2003). For example, when a desired
customer arrives at a shop that sells two brands of soft drinks, he/she may be satisfied

by a soft drink of a particular brand with probability p, or by the other with
probability p,, 0 < p, <1, p, + p, =1. If any one of the products is out of stock, due to

the desire, the customer will accept with probability 1 the other product that may be
available in the shop. Also when the supplier is the same for several products under
consideration, the dealer would prefer to have a simultaneous replenishment of all the
products due to several reasons like cost considerations. Joint ordering policies for
periodic inventory systems have been studied by several researchers (Bahadur and
Acharya (1986) and Goyal and Satir (1989). Parlar and Weng (1997) and Anbazhagan
(2002) developed optimal coordination policies for the supply and manufacturing
departments. They considered a problem where the responsibility of the manufacturing
department was to meet the random demand of a product with a short life cycle. The
responsibility the supply department was to provide a sufficient amount of raw
materials, so that the required production level could be achieved. Girlich (1996) and
Yadavalli & Joubert (2003) studied a problem of joint coordination between
manufacturing and supplying department encountered in a short life cycle multi-product
environment. On the other hand, the study of continuous review multi-product
inventory systems with common demand has not been considered so far in the literature.
In this paper, an attempt is made to fill the gap by providing a study of a substitutable
two-product inventory system with joint-ordering policy and common demand. The
layout of the paper is as follows: In Section 2, the model assumptions and notation are
provided. Certain auxiliary functions that characterise the occurrence of various events
pertaining to the model are derived in Section 3. Section 4 gives some of the measures
of the performance of the system. A cost analysis is provided in Section 5. Section 6

deals with the numerical results, which highlights the behaviour of the system.
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5.2 MODEL ASSUMPTIONS AND NOTATION
5.2.1 ASSUMPTIONS

The following assumptions applies to the continuous review two-product inventory

model:

(i) The maximum inventory level of product iis S;,1=1, 2.

(i) Demands occur according to a Poisson process with parameter 4.

(ili)  When both products are available, a demand is satisfied either with Product 1

with  probability p, or with Product 2 with probability p,,
0<p; <1 p, + p, =1. When one of the products is out of stock, the demand is

satisfied with the other product with probability 1. When both the products are
out of stock, all demand is lost. That is, no backorders are allowed.

(iv)  Are-order for both the products is placed at the epoch when the inventory level

of product i reaches s, and that of the other product j is greater than

si,j=L2andi=j.
(v)  The lead-time follows an arbitrary distribution with pdf f(.).

(vi)  When the re-order materializes, the inventory level of each product is brought to

its maximum level.
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5.2.2 NOTATION

The following notation is used in this chapter:

L, (t) : The inventory level of product i attime t,t =1, 2.

L(t): The ordered pair (L,(t), L,(t)) representing the inventory level of the system at

time t.

r; - Eventthat a replenishment of stock occurs at the epoch when the inventory level
is (i, ).

7y - Eventthat a re-order is placed when the product i reaches s; and the level of the

other product j, where (i=1,s,<j<S,)or(i=2,5,<j<S)).

_;"pit t n
B.(np)= S POy
n!
-t n
83 (n’ t) - w
E,: Initial condition representing the occurrence of an r -event.

5.3 AUXILIARY FUNCTIONS

The inventory level of each product is brought to its maximum at every epoch of
replenishment. Hence the r -events constitute a renewal process. To derive the
expression for the various measures of performance of the system, we proceed to study

the renewal process of r -events. For this, certain auxiliary functions are defined to
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characterise the performance of the system in one cycle, which is the time interval

between any two successive r -events.

5.3.1 FUNCTION |4, (t)

Defining , ¢ (t) as:

Plr; in (t,t +A)/E,]

r ¢ij (t)= IAi_r)Tg

where (i=1s, < j<S,) or (i=2,5, <]<§,). Thenthe function ¢ (t) has the

interpretation that it represents the probability that the inventory level of product i

enters the state s, in (t, t +dt), the inventory level of the other product at time t is j
and a re-order is placed in (t, t +dt) given that an r-event has occurred at time t =0.
Since a re-order is made at the epoch when the inventory level of product i reaches s,

and the inventory level of product j is greater than s; (j #1i), where
r¢1j(t): Bl(sl_sl_]'! t)Bz(Sz_ j’t)/’i’pl! S; < J SSz (5-1)
r¢2j(t)= Bl(sl_jat)Bz(Sz_sz -1 t)ﬂvpzv S1 < J Ssl (5-2)

5.3.2 FUNCTION _h (t)

Defining . h, (t) as:

Plan | —eventin (t,t+A)/E,}

r hl (t) = IA'_T) A
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Then _h, (t)dt represents the probability that a demand occurs in (t, t +dt) and is lost
given that an r -event has occurred at time t =0. To derive an expression for  h,(t),

we characterize the occurrence of the | -event in the following diagram (Figure 1).

Accordingly, we have

N () = i 4 (O lf(t)[{zi: B,(s, -1 1)B, (i -k, t)4p, © B, (k -1, 1) A}
i=s2+1 i=1

+{i B,(s,—r,t)B,(i—1 t)Ap,©B,(r -1 t)A}]4

+ i r¢2i (t)© 'f(t)[{zz Bl(i —l, t)Bz (52 - k’ t) © Bs (k _1r t)ﬂ}

i=s]+1
+{iz B,(i—r,t)B,(s, -1, t)Ap, ©B,(r -1 t)A}]1 (5.3)

5.3.3 FUNCTION ,y, (t)

Defining .y (t) as:

Planr. eventin (t,t +A)/E
vy = lim G 8)/E]

A—0 A

Then  w; (t) represents the pdf of the interval between two successive replenishments
and that the replenishment which occurs in (t,t + A) is of r; type. Note that at the time
of occurrence of the r;-event, S, —i units of product 1 and S, — j units of product 2

are added to the stock. Accordingly, the following cases exist:

Case 1: i>s and j>s,
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r Wi ®=0 (5.4)
Case 2: iI>s, and 0< j<s,

In this case, a y,, -event should occur in (u,u+A), O<u<t,

i<k<s,.

Consequently,

S1

Wi (=2 4 () OB (k—i,1)B, (s, — |, I (1) (5.5)

k=i
Case 3: i>s and j=0

Since the inventory level of product 2 is 0 at timet, a y,, event occurs in
(u,u+A), O<u<t,and the system enters the state (k —k', 0) in

(v,v+A),u<v<t andisinstate (i,0) attimet. Hence

S1 k—i

rWij (t) = ZZ r¢2k (t)@[Bl(k', t)Bz (32 -1 t)/lp2© Bs(k - kl_i’ t)] f (t)

(5.6)

Case 4: O<i<s, and j>B,

As in Case 2,

S2

Wi (=2 A OB (s, —i, )B, (k— |, O] (1) (5.7)

k=]

Case 5: i=0and j>s,
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Case 7:

University of Pretoria etd — Van Schoor, C de Wet (2006)

This case is similar to Case 3 and

S0 ki

Wi =22 A (D O[B.(s, i, 1)B, (', 1)2p,© By (k —k'~j, )] (t)

k=] k'=0
(5.8)

O<i<s and 0<j<s,

In this case, either a y,, eventora y,, eventshould occurin (u,u+A),

O<u<t. Hence

Wy () = 22: Pu (©) ©[B, (s, —1, 1) B, (k — J, )] T (1)

k=s2+1

© 3 OOIB,(K—i, DB, (5, — J, D] (1) (5.9)

k=s1+1
O<i<s and j=0

At time t =0, the system is in state (S,, S,) and enters the state (s,, k)
k >s, orthe state (k,s,), k>s, in (u, u+A) when a re-order is

placed.

Then the system enters the state (k, 0) in (v,v+A), u<v<t and the
inventory level is in state (i, 0) at time t and the re-order materializes in

(t,t+A). Hence

0= 3 4 OOIB. (s, — k' OB, (k-1 t)p, (5.10)
k=s2+1k'=0
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©B, (s, - k'i, )] f (t)

Case 8: i=0and 0< j<s,

This case is similar to Case 7. Hence

S2  k-j
Wi =D D 4 ()O[B, (s, —1, t)B, (K", 1) Ap,
k=s2+1k'=0
S
OB, (k—K=§, 01O + 3 5 dn(®
k=s1+1 k'=0
©[B,(k—1,t)B, (k',t)Ap, ©B,(s, —k'—j, t)] f (t) (5.11)
Case 9: i=0and j=0

At timet =0, the inventory level is (S,,S,) and it enters the state(s,,k),
k > s, or the state (k,s,), k>s, in (u,u+A), where a re-order is also
placed. That re-order does not materialize in (0,t) and the system enters
the state (r,0) or the state (0,r) in (v,v+A), O<u<v<w<t. The
system then enters the state (0,0) in ((w,w+A),0<u<v<w<t,andis

in state (0,0) at time t and the re-order materializes in (t,t +A).

Consequently,

r Vi (t) = i r¢lk (t) ©[{§ Bl(sl -1 t)Bz (k', t)ﬂp1© Ba (k: k-1, t)/1©1]

k=sp+1
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+{512 B,(k', t)B,(k —1,t)Ap, © B, (s, —k'-1,t) A ©1}] f (t)

k'=0

-3 A OUS B k-1 1B, (k' 12,

k=s1+1

k-1
©B,(k-k-1, 1) 201 +{> B, (k',t)B,(s, —~1t)p,

k'=0

©B,(k —k'-1,t)2 O] f (t) (5.12)

5.3.4 FUNCTION | p, (t)

Defining | p; (t) as:
r plj (t) = P[Y(t) = j’ N(rlt) = O/EO] I = 0! 1! LR} Sl’ J = O, 1,---, SZ

The following cases exists:

Case 1: i>s, and j>s,
Py () =By (S, -1, 1)B, (S, - ), 1) (5.13)
Case 2: O<i<s and j>s,

In this case a y,, -event, j <k <S,, should occur in (u,u+A),

O<u<t. Hence

S1

Py () =2 8 (DOIBL(s, —1,1)B, (k -, DIF (1) (5.14)

k=i
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Case 3: i>s,and 0< j<s,

This case is similar to case 2. Thus

S1

P (0= 4 (OB, (k—i, 1)B, (s, — j, DIF (1) (5.15)

k=i
Case 4: i>s, and j=0

Since the inventory level of product 2 is zero at t, a y,, -event occurs at
(u,u+A), O<u<t,and the inventory level enters the state (k —k',0) in

(v,v+A), O<u<v<t andisin state (i,0) at time t. Hence

P 0=Y 3 4 O OB, (K, B, (5, -1 O,

©B,(k —k'—i, t)]F (t) (5.16)
Case 5: i=0and j>s,

This case is similar to case 4. So, we obtain

S1 k—j
r Pij (t) = ZZ r¢1k (t) ©[Bl(31 -1 t) Bz (k'_l’ t);i’pl
k=i k'=0
©B,(k —k'-j, t)]F (t) (5.17)
Case 6: O<i<s,and j=0
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At time t =0, the system is in state (S,,S,) and either enters the state
(s;,k), k >'s, orenters the state (k,s,), k >s,, are-order is placed in
(u,u+A), O<u<t. And the inventory level enters the state

(m,0),m>iin (v,v+A), O<u<v<t,and the inventory is in state

(1,0) at time t. Hence

Py (0) = Z ¢1k(t)©[ZB(k 0B, (k —1 1)4p, © By (s, — ki, ]F (t)

k=s2+1

+ Z ¢2k©[ZB (k', 1)B, (s, =1, t)Ap, © By (k —k'—i, )]F (t)

k=s1+1

(5.18)
Case 7: i=0and 0< j<s,

This is similar to Case 6. Hence

Py (0) = Z ¢1k(t)©[ZB(S ~L 0B, (k' )4, © B, (k — k', IF (1)

k=s2+1

52J

+ Z ¢2k©[ZB (k -1, t)B, (k', t)Ap, © B, (s, — k'—j, t)]F (t)
k=s1+1
(5.19)
Case 8: O<i<s, and 0< j<s,

In this case either a y,, -event or a y,, -event should occur in (u,u+A),

0<u<t. The following equation is obtained

DO= > A O OIB,(S, i DB, K~ JOF (D) + > 0y (1)
k=s2+1 k=sy+1
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©[B, (k—i,1)B, (s, - j, DIF (t) (5.20)
Case 9: i=0and j=0

At time t =0, the system is in state (S,,S,) and enters the state (s,,k),
k >s, orenters the state (k,s,), k > s, and corresponding re-order is
placed in (u,u+ A). And the re-order does not materialize in (0,t) and
the system enters the state (0,m) or (m,0), m>0 in (v,v+A),

0 <u<v<t and then enters the state (0,0) in (w,w+A),

O<u<v<w<t andisin state (0,0) at time t. Accordingly,

0= Y OOKS Bi(s, ~L OB, (K' 1)2p, OB, (k— k'L )1 ©T}

k=s2+1

S -1

+{> B, (K", 1)B,(k—1,t)Ap, ©B, (s, —k'-1, 1)1 ©1}]

+ i r ¢2k (t) ©[{522_ Bl(k -1 t)Bz (k" t)ﬂ*p1© Bs (k -k*-1, t)ﬂ ©1}
k=s1+1 k'=0

S -1

+{> B, (K", 1)B, (s, -1, 1)Ap,© B, (k —k'-1, t) A O] F (t) (5.21)

Based on the above auxiliary functions (5.1) to (5.21), some measures of system

performance are presented in the next section.
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5.4 MEASURES OF SYSTEM PERFORMANCE
5.4.1 MEAN NUMBER OF REPLENISHMENTS

The r -events correspond to the epoch of replenishments, and as such they constitute a
renewal process. The first-order product density h, (t) corresponding to the r -events is

given by
h.@®=>9"()
n=1

where g(t) is the pdf of the interval between two successive occurrences of r -events.

To obtain an expression for g(t), an expression for the survivor function G (t)

corresponding to g(t) is defined. Since G(t) is the probability that replenishment has

not occurred up to time t, the following probabilities exist:
(1) A re-order is not placed up to time t
(i)  Arvre-order is placed in (u,u+A), O<u<t, but it has not materialized until t

S1-51-182-s2-1

GH= 3 3 BDBGD+ X.400F0+ Y 4,0 OF 1) (.22
i=0 j=0 j=s2+1 j=s1+1

Consequently, the mean number of replenishments is given by

E[N(r,1)] = Jt'hr(u)du
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and the expected stationary rate of replenishments is given by

E(r) =limh, (t)

5.4.2 MEAN NUMBER OF RE-ORDERS PLACED

Defining h7ij (t) as:

Pla y; —eventin (t,t+A)/E,]
A

hyij t) = IAlir(}

Since an epoch of re-order corresponds to the occurrence of a y -event the first-order

product density h, (t) corresponding to re-orders is given by

S92 S1
h®)=> h, O+ h, ® (5.23)
j=s2+1 j=s1+1

To derive an expression for hyij (t) , consider the following mutually exclusive and

exhaustive possibilities
(1) No r -event has occurred up to time t

(i) At least one r-event has occurred in (0,t)

h;/ij ()= ¢;O+h (DO, (1) (5.24)

Hence the mean number of re-orders placed in (0,t) is given by
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Sp ot st
EING.DI= . | h,, (Wdu+ > | h,,. (u)du

j=s2+1 o j=s1+l o
The mean stationary rate of re-ordering is given by

E(y)=limh, (1)

sp s
SEOLY 4,0+ D, 4,0)] (5.25)
j=so+1 j=s1+1

where r(zﬁi}‘(.) is the Laplace transform of ¢, (.), (see Girlich, 2003).

5.43 MEAN NUMBER OF LOST DEMANDS

Let h, (t) be the first-order product density corresponding to the epochs of occurrences

of lost demands. Then the following expression can be derived:
h(t)=4(t)+h (1) © h (). (5.26)

Hence the mean number of lost demands in [0,t] is given by
t
EIN(,t)] = [h, (u)du
0

and the mean stationary rate of lost demands is given by

E(l) = limh, (t)

=E(r),h (0) (5.27)

141



University of Pretoria etd — Van Schoor, C de Wet (2006)

5.44 MEAN NUMBER OF UNITS REPLENISHED

At the occurrence of each r; -event S, —i units of product 1 and S, — j units of product
2 are replenished. Also note that E(r;) is the mean stationary state of r; -events and it

is given by
E(rlj) = !I_[Q hru (t)
where hr”. (t) is the first order product density corresponding to r; -events. Then

h, (©)=, v, (©) +h, () ©,p; (1) (5.28)
Consequently,

E(ry) =lims[L+h ()], v; (9)

=E(), ¥; (0) (5.29)

Thus, the mean number of Product 1 that may be added to the inventory in unit time in

the long run is given by

S_lezz E(rii)(sl - i) + Szl SZZ: E(rij)(sl - i)

i=s1+1 j=0

and, in the same manner, the mean number of Product 2 that may be added to the

inventory in unit time in the long run is given by

142



University of Pretoria etd — Van Schoor, C de Wet (2006)

33 )5~ )+ > SE()G, - 5.30)

= i=s1+1 j=0

5.45 DISTRIBUTION OF THE INVENTORY LEVEL

The probability distribution of the inventory level is defined by
Py () =PLY(2)=(i, )/ E,]
where 0<i<S, and 0< j<S,.
Using renewal theoretic arguments,
P (D)=p; () +h, (1) ©, py (1) (5.31)
Consequently, the stationary distribution of the inventory level is given by

IT; = !I_)I’Q p; (t) = E(r)rp; (0)

(5.32)

5.5 COST ANALYSIS

We have two types of re-orders, namely

(i) the re-order is placed when the inventory level of Product 1 reaches s, or

(i) the re-order is placed when the inventory level of Product 2 reaches s,

143



University of Pretoria etd — Van Schoor, C de Wet (2006)

It can be assumed that the two types of re-orders placed are with two different suppliers

and hence that the corresponding costs are different. Let CR, be the cost corresponding
to a re-order due to the inventory level of product i reaching s;,i=1,2. Let CL be the
cost corresponding to a lost demand. Since E(r),h, (0) is the mean rate of the lost

demand, the cost due to lost demands is given by E(r),h; (0)CL. In the same way, the

cost corresponding to re-orders placed is given by

EOLS. 4,0CR + 34, (O)CR,]

j=s2+1 j=s1+1

Hence the total cost is given by

S2 S1
Total Cost = E(r)[,h; (0)CL+ > ¢/ (0)CR, + >_ 4, (0)CR,] (5.33)
j=s2+1 j=s1+1

The total cost can be considered as a function of s, and its optimal value can be

obtained.

144



University of Pretoria etd — Van Schoor, C de Wet (2006)

At t =0, the system
is in state (S,,S,)
and enters the state

[

v v

(s;,1), i>s, and (i,s,), i>s, and
a re-order is placed in a re-order is placed in
(uu+A),O0<uc<t (Uu+A),0<uc<t

v

The re-order does not
materialize up to time
t and the system
enters the state
[

v v

(J,0),0< j<s in 0,j),0<j<s,in
(v,v+A),u<v<t and (v,v+A),u<v<t and
the system enters the state the system enters the state

v

(0,0) in (w,w+A),
v<w<t,anda

demand occurs in
(t,t+A)

Figure 5.1: System State for Cost Function
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5.6 NUMERICAL ILLUSTRATION

For the purpose of illustration, we assume that f(t) = a exp{-at} and the values of

various parameters as follows:

L =12,
a=0.5,

S; = 8,
S;=5,
s1=1,

CL =10,
CR; = 200,
CR, =300

First, the re-order level for Product 1 is fixed as s; = 2 and the value of p; increased

from 0.1 to 0.9 to obtain the behaviour of the mean rates of

M r-events,

(i) yij-events

(ili)  Lost demands

(iv)  Unit 1 replenished
(v) Unit 2 replenished
(vi)  Total cost

From Table 5.1, it can be observed that, as ps, the probability of demand for Product 1,

increases,
(1) The mean rate of replenishments decreases and then increases

(i)  The mean rate of y;;-events increase and that of y,; decreases

(i) The mean rate of lost demands increases
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The mean rate of unit 1 replenished increases
The mean rate of unit 2 replenished decreases
The mean rate of total cost decreases and then increases. The total cost is a

minimum when p; = 0.7

Next, as p; is fixed and the re-order level for Product 1 increased, the results presented

in Table 2 is obtained. The result is that, as s; increases with p; = 0.7,

(i)
(ii)
(iii)
(iv)
v)
(vi)

The mean rate of replenishments increases

The mean rate of yy; increases and that of y,; decreases
The mean rate of lost demands decreases

The mean rate of unit 1 replenished increases

The mean rate of unit 2 replenished increases

The mean rate of total cost increases.
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Re-Order Level for Product 1 Fixed at 2

p1 p2 LL1 RR ERO1 ERO2 RLD UIRR U2RR TCOST
01 09 2 2852 0.000 2.852 0.003 0908 7.534  855.613
02 08 2 1496 0.005 1.492 0.004 1113 4107  448.500
03 07 2 1.022 0.026 0.996 0.008 1362 2.909  304.097
04 06 2 0790 0.078 0.711 0.014 1689 2300 229.198
05 05 2 0675 0171 0.503 0.026 2117 1934  185.494
06 04 2 0643 0310 0.333 0.056 2.683 1.679  162.366
0.7 03 2 0699 0510 0.189 0.141  3.498 1464  160.152
08 02 2 0908 0.831 0.078 0421 4944 1251  193.664
09 01 2 1633 1620 0.014 1.668 9.013 1.030  344.680
P1 : Probability of Demand for Product 1

P2 : Probability of Demand for Product 2

LL1 : Re-Order Level for Product 1

RR : Rate of Replenishment

ERO1 : Rate of Type 1 Re-Order

ERO2 : Rate of Type 2 Re-Order

RLD : Rate of Lost Demand

U1RR : Rate of Units of Product 1 Replenishment
U2RR : Rate Of Units Of Product 2 Replenishment
TCOST : Rate of Total Cost

Table5.1:  Variation of Measures of System Performance Against the
Probability of Demand for Product 1
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Probability of Demand for Product 1 Fixed at Various Levels

p1 p2 LL1 RR ERO1 ERO2 RLD UIRR U2RR TCOST
03 07 1 1.014 0.011  1.003 0.104 1330 2.889  303.227
03 07 2 1.022 0.026  0.996 0.008 1362 2909  304.097
03 0.7 3 1.041 0.060 0.981 0.005 1408 2946  306.296
05 05 1 0.634 0.109 0.525 0.116  1.888 1.826  180.451
05 05 2 0.675 0.171  0.503 0.026 2117 1934  185.494
05 05 3 0.741 0.269 0.472 0.009 2284 2.041  195.454
0.7 03 1 0.600 0.390 0.210 0942 2690 1224  150.363
0.7 03 2 0.699 0510 0.189 0.141 3498 1464  160.152
0.7 03 3 0.848 0.684  0.165 0.019 3977 1.633  186.306
P1 : Probability of Demand for Product 1

P2 : Probability of Demand for Product 2

LL1 : Re-Order Level for Product 1

RR : Rate of Replenishment

ERO1 : Rate of Type 1 Re-Order

ERO2 : Rate of Type 2 Re-Order

RLD : Rate of Lost Demand

U1RR : Rate of Units of Product 1 Replenishment

U2RR : Rate Of Units Of Product 2 Replenishment

TCOST : Rate of Total Cost

Table 5.2:

Variation of Measures of System Performance Against Re-Order
Level for Product 1
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5.7 CONCLUSION

A substitutable two-product inventory system with joint-ordering policy is considered in
this chapter. Common demands occur according to a Poisson process. A demand is
satisfied either with an item of Product 1 with probability p; or with an item of Product
2 with probability p, (p1 + p2 = 1). When one of the products is out of stock, the
demand is satisfied with the other available product with probability 1. Analyzing the
imbedded renewal process describing the system, expressions for the stationary
distribution of the inventory level and the stationary rates of the replenishments, the re-
orders placed, the lost demands, and the units replenished are obtained. A cost analysis

is also provided and a numerical example illustrates the results obtained.
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