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CHAPTER 3

A SINGLE PRODUCT PERISHING INVENTORY
MODEL WITH DEMAND INTERACTION
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3.1 INTRODUCTION

In inventory models of perishing products the lifetime of the products in the inventory
model is described in alternative ways. One assumption is that the product has a fixed
lifetime and if no demand occurs for the product within its lifetime, it is considered as
perished and removed from the inventory. Nahmias (1982) has given an exhaustive
survey of the fixed-life perishable inventory literature. Another description of the
lifetime is that the product deteriorates continuously in quality over time and eventually
perishes. Raafat (1991) has presented a review of the literature on deteriorating
(decaying) inventory models. Apart from the lifetime consideration, the deteriorating
items have one important kind of interaction on the demand process in the sense that, in
addition to the usual demand, there may also be a separate demand for items slightly
deteriorated in quality if the cost is comparatively lesser than a new one. For example,
vegetables, food, meat and fish loose their lustre as time elapse. A day old vegetable is
slightly inferior in quality compared to a new one. Such items may be accepted by
some customers in the event of non-availability of new ones. There may also be a
significant number of demands for slightly deteriorated items due to the fact that they
are less expensive. Some of continuous review inventory models have been studied
recently by Beyer and Girlich (1994), Yadavalli et al (2001), Yadavalli & Joubert
(2003) and Yadavalli et al (2004).

In this chapter, an attempt is made to incorporate the above kind of interaction in the
study of deteriorating product inventory systems. Specifically, a continuous review of
perishing inventory models is considered with the assumption that if there is no demand
for product in inventory, it passes through two phases and then perishes. An item in
Phase I is fresh and in Phase II slightly deteriorated. On leaving Phase II, it is
considered as being perished and removed from inventory or scrapped. Independent
demand takes place at constant rates for items in both phases. Demand for an item

during Phase I stock-out may be satisfied by an item in Phase Il based on a probability
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measure. Demand for product in phase II during stock-out is lost. Using the

regeneration point technique, various measures of the inventory model are obtained.

The organization of this chapter is as follows: Section 3.2 lists various assumptions and
notations in the description of the inventory model and also provides the auxiliary
functions which are needed to describe the behaviour of the process between two
successive regeneration points of the underlying stochastic process describing the
inventory model. Various performance measures of the inventory model are obtained in
Section 3.3. A cost analysis is provided in Section 3.4 and some numerical results are

presented in Section 3.5.

3.2 ASSUMPTIONS AND AUXILIARY FUNCTION
The following assumptions are considered in the continuous inventory model with:
1. The item under consideration is perishable.

2. The lifetime distribution of an item is a generalized Erlang distribution with two
phases. For convenience the items in Phase I are designated as Product 1 and

that in Phase II as Product 2.

3. The demand for product i occurs at a constant rate 4,,1 =1, 2.

4. Maximum storage capacity or total capacity of the inventory level is S and re-

order takes place if the total inventory level is S.

5. At the epoch of replenishment, all items of Product 2 are scrapped (deleted) and

the inventory level is raised to S .
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6. The lead-time is arbitrary with pdf f(.), and survivor function F(t)=1-F(t),

where F(t) is the cdf. The arbitrary distribution is selected as an approximation

of complex problems.

7. A demand for Product 1 occurring during the stock-out period can be substituted

by an item of Product 2 with probability p if available, 0 < p <1.

8. A demand for Product 2 occurring during the stock-out period is lost, that is no

backlogging is possible.

The following notation are used in this chapter:

a;: Event that a re-order takes place when the inventory level of Product 2
is,0< j<s.

a: Any a;-event, 0< J<s.

[P Event that a stock replenishment occurs. S —1i units of Product 1 are added

to the inventory and | units of Product 2 scrapped from the inventory.
r: Any r;-event, 0<i, j, i+ j<s.

l.: Event that a demand for product j is lost, j =1, 2

g: Event that a demand for Product 1 is substituted by Product 2.

d; Event that a demand for product i is satisfied with product i,i=1, 2.
k, : Event of Product 1 transitting as Product 2.

k, : Event of Product 2 perishing and being removed from the inventory.
L (t): Inventory level of product iat time t;i=1, 2.

Z(t): (L), Ly ().
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A The demand rate of product i,i=1, 2.
J7AR The perishing rate of product i, 1 =1, 2.
N(,t): Number of ) events in (0,t].
E[N(a;,%)]: The mean stationary rate of re-order.

E[N(k,,)]: The mean stationary rate of transit of Product 1 as Product 2.

E[N(k,,)]: The mean stationary rate of perishing and removed from the inventory.

CR: Re-ordering cost.

CL,; : Cost of lost demand for product i,i=1, 2.
CP: Salvage cost per scrapped (deleted) unit.
CB: Purchase price of one unit.

C(S,s): Total expected cost per unit time.

©: Convolution symbol.

In order to study the stochastic process (L1 (), L, (t)), note that the r -events constitute a

renewal process (see Figure 3.1 below). Consequently, it is sufficient to describe the

behaviour of the inventory process between two successive renewals.
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Figure 3.1: Realization of Events

The necessary auxiliary functions are introduced:

3.2.LFUNCTION P(k,Lt

i, j)
We define

P(k,Ltfi, j) = P[Z(t) = (k,), N7,y =02 (0) = (i, )] , n=a,r.
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P(k,l,t| i, j) represents the probability distribution of the inventory level in an interval

in which neither reorder nor replenishment can occur. To derive an expression for this
function, we note that a change in the inventory level may occur due to any one of the

following possibilities:
1. A demand for Product i occurs and is satisfied by product i, (i=1,2)

2. A unit of Product 1 perishes and transits as Product 2.
3. A unit of Product 2 perishes.

4. A demand for a unit of Product 1 occurs during the stock-out period and is

substituted by Product 2 with probability p if it is available.

Accordingly, we have for
O0<k+I<i+j<sors+1<k+I<i+j<§,
Case 1: k>i.

Pk, 1.t

i,j)=0. (3.1
Case 2: 1>0, ]>0, O<k<i, k+I<i+j.

—(ﬂl +ﬂ.2 +i/11+ jpz )it

Pk, Lt i, j) =4, e 172 g pek It

i_la J)+Ilule

© PO LY i—1, j+1)+ (A, + ju,) e 72 Mg pe It

i,ji-1). (3.2)

Case 3: i>0,j=0,0<k<i,1>20,k+I<i.
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P[k,l,t I,O] — ﬂ] e_(l]+22+iyl+j/l2)t © P[k, I,tl . 1’0] n iﬂle—(lﬁﬂzﬂyﬁjyz)t

© Pk, 1ti+1). (3.3)
Cased: i>0,j>0,k=i,1=].

P[Iv Jat Ie J] :e—(/11+12+i/11+]',t12)t . (34)

Case 5: i>0,j>0,k=i,0<I<]j.

P[i, 1LY i, j]= (4, + ju,)e (1722 @ pri | tli, j-1]. (3.5)
Case 6: i>0,j=0,k=i,1=0.

P[i,0,t] i,0]=¢ 17", (3.6)
Case 7: i=0,j>0,k=0,1=j.

P[0, j.t| 0, j]= e P72 02", (3.7)

Case 8: i=0,1>20,k=0,1<j

PLOLt[ 0, j]1= (4p+4, + ju)e 1722 @ Po,It 0, j-1].  (3.8)
Case 9: i=j=k=1=0.
P[0,0,t[0,0]=1. (3.9
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3.2.2 FUNCTION ¢, (t)

We define

P[a; —eventin (t,t+A), N(r,t) =0|r —event at t = 0]
. .

$,(t) =1lim

The function ¢, (t)dt represents the probability that an a;-event occurs in (t,t+A) and

there is no replenishment in (O,t], given that an r -event has occurred at t =0. Hence,
we have
S,014 F(t) + P[k, j+1,t

¢;() =Plk+1, j,t $.0114, + (j + Dy + S04 PIF (D) (3.10)

where K+ J=5,0<Kk, j<s,and ¢,, is a Kronecker’s delta function.

3.2.3FUNCTION Wi, j,t)

We define
Wi, j,t) = P[Z(t) = i, }), N(r,t) = 0]Z(0) = (S,0)] .

Then the function W (i, j,t) represents the probability that the inventory level is (i, j) at
the time t, where t is the time elapsed since the last renewal. To obtain W (i, j,t), we

consider

Casel: O0<i+j<s
In this case, exactly one re-order is made in (0,t) and it does not materialize up to time

t. Precisely, we have
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(1)  The system is in state (S,0) at t=0.

(i) The system enters the state (k,l) in (u,u+du) where k+l=s and O<u<t.
(iii) A re-order is placed in (u,u+du).

(iv) The re-order does not materialize up to time t.

(v) The system enters the state (i, j) at time t.

Using probabilistic arguments,

K.}, where 0<k,I<s and k+I=s. (3.11)

Wi, 10 =Y 4O OFOPG .t

Case2: s+1<i+j<S§
In this case no re-order takes place in (0,t). Hence,

Wi, j,t) = P[i, j,t

S,0] (3.12)

The steady-state probabilities of the system are given by
Wi, j) =limW i, j,t) (3.13)

=LlmW" (i, j,s)

A—0

Where W' (i,j,s) is the Laplace transform of W(i,j,t) (See Girlich, 2003)

W (i, j,s) = [e W (i, j,t)dt
0
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3.3 MEASURES OF SYSTEM PERFORMANCE

To obtain explicit expressions for various performance measures of the presented

model, we proceed to define the first-order product density

P[77—eventin (t,t+ A)Z(0) =(S,0)]

h,(t)= 1A1£13 A

where n=r,1;,8,a;,d,,d,,1,,1,, 9,k k,.

s ij’

3.3.1 MEAN NUMBER OF RE-ORDERS

Since a re-order is defined as an a;-event, the expressions for h;(t) are derived to

obtain the mean number of re-orders. Note that a re-order takes place when the total

inventory level enters S. Hence,

h, (0= SIWG+1 104 WG+ L0164 D+ 4 +(+ D). (3.14)

i+j=s
The mean number of re-orders in (0,t] is given by

E[N(a;,t)]= jhaj (u)du . (3.15)

Consequently, the mean stationary rate of re-orders is given by

E[N(a;,0)] :}im%E[N(aj,t)]:}imhaj(t)
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= S WL A AW, D4 P+ 4, + (D] (3.16)

i+]j=s

3.3.2 MEAN NUMBER OF DEMANDS FOR A PARTICULAR PRODUCT
WHICH IS SATISFIED BY THE SAME PRODUCT

A demand for Product 1 being satisfied by Product 1 is represented by the d,-event.

Hence an expression for hdl (t) is derived. Observe that a d,-event occurs whenever a

demand for Product 1 occurs when the inventory levels is (i, j) where, 1<i<S,

0<j<Sand O0<i+ j<S. Hence,

hy =23 Wi} .

0<i+j<S
i>1,j>0

so that

E[N(dl,t)]=jhd1 (u)du .

Therefore,

E[N(d,,0)]=> >, Wi, 4.

0<i+J<S
i>1,j>0

In the same way,

hd2 (t) = ZZ W(I: j,t)ﬂ,z,

0<i+ j<S
i~1,j=0

so that

(3.17)

(3.18)

(3.19)
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E[N(d,,t)] = jhd2 (u)du

EIN(d,,)]=>.>" W, j)4,. (3.20)

0<i+j<S
i>1,j20

3.3.3 MEAN NUMBER OF LOST DEMAND

A demand for Product 1 is lost when the total inventory level is zero or when the
inventory level of Product 1 is zero and that of Product 2 is positive, but when the

demand is not substituted with Product 2. Therefore,

h, (©)=W(0.0.0)2, + Y W(0, j,0)4(1- p)

j=1

S (3.21)
:ZW(O, O{-p+pdia.

The mean number of lost demands for Product 1 is given by
t
E[N(,,0]=[h, (uydu,
0
so that the mean stationary rate of lost demand for Product 1 is given by

E[N(,,0)]=2 W(0, )1~ p+ p&jy 14, - (3.22)

j=0

In the same way, for the events |,,
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S
h, ) =>W(i.0,0)4,, (3.23
i=0

EIN(,,)]= [h, (Wdu
and

E[N(l,,)] = ZS:W(i,O)/iz . (3.24)

3.3.4 MEAN NUMBER OF DEMANDS OF PRODUCT 1 BEING
SUBSTITUTED BY PRODUCT 2

A demand for Product 1 being substituted by Product 2 is denoted by the ¢ -event.
Note that a g-event occurs in (t,t +A) if the inventory level of the system at time t
equals (0,j),1<j<S and if a demand for Product 1 occurs in (t,t+A) being

substituted by Product 2. Hence,

S
hy (1) =Y W(0, j,t)4,p (3.25)
j=I1
and

E[N(g,D] = [hy(u)du.

Therefore,

E[N(g,0)]=> W(0, )4 p. (3.26)

j=1
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3.3.5MEAN NUMBER OF UNITS DETERIORATED FROM PRODUCT 1
AND TRANSITTED AS PRODUCT 2

Since a k-event pertains to the event of a unit of Product 1 deteriorates and transits as
Product 2 and a Kk, -event occurs in (t,t + A) if the system is in state (i, j) at time t,
1<i<S5,0<jJ<S and 1<i+ jJ<S and a unit in Product 1 transits as Product 2 in

(t,t+A), we have

h, =22 W, i (3.27)

0<i+j<S
i>1,j=0

The mean number of units of Product 1 that have transitted as Product 2 in (0,t] is

given by
t
E[N(k;.] = [ h, (Wdu
0

and the mean stationary rate of units of Product 1 transiting as Product 2 is given by

E[N (k)] = X3 Wi, Dig,. (3.28)

0<i+j<S
i>1,j=0

3.3.6 MEAN NUMBER OF PRODUCT 2 PERISHED AND REMOVED
FROM THE INVENTORY

The first order product density of k, is given by

h, =% Wi, j.0jw - (329)

0<i+j<S
i>1,j=0
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Hence the mean number of units of Product 2 that have perished and removed from the

inventory in (O,t] is given by
t
E[N(k,,0)] = [h, (u)du.
0

Consequently, the mean stationary rate of perishing of Product 2 is given by

E[N(k,0)]= X3 WG, )ity (3.30)

0<i+j<S
i~1,j>0

3.3.7 MEAN NUMBER OF REPLENISHMENTS

Consider the renewal process of r-events and derive its first-order product density
h,(t). Firstly, an expression for the pdf g(t) of the interval between two successive

occurrences of the r -events is derived. By definition,

P[r—eventin (t,t+A), N(r,t)=0{Z(0)=(S,0)]
X .

g(t)=lim
In order to derive g(t), its survival function G (t) is determined. Since G(t) denotes
the probability that a replenishment has not occurred up to t, we have two mutually

exclusive cases for G (t):
(1) A re-order does not occur up to time t.

(i) A re-order is placed in (u,u+A), 0 <u<t, but it has not been realized up

to time t.
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Hence,

Gt =D Pkt S,O)+i¢|(t)©{lf(t)+ SZ_I:ZI:P(kI,II,t s—I,I} (3.31)
S+k1§(|§+||;05 1=0 k=01 =0

However,
h(t)=29"®),
n=1

and

E[N(r,t)]= 't[hr(u)du.

Hence, by renewal theory, the mean stationary rate of replenishment is given by

(3.32)

o0

E[N(r,)] = yrg%jhr(u)du =
0 j G(t)dt

3.3.8 MEAN NUMBER OF REPLENISHMENTS

First, the product density is defined

P[r;, —eventin (t,t+A)| Z(0)=(S,0)]
A

hfij t) = 1A1£13

Next a relation between hrij (t) and h,(t) is obtained.

Therefore, the following function is define
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P[r, —eventin (t,t+A), N(r,t)=0] Z(0)=(S,0)]
A

f; ()= lAliré

Observe that

fi®=>> [Pk+11t

S,004, + Pk, +1,t

S.0)44, + (1 +1)pt, + 604, P}]©

0<k+I<S
k>0,1>0
fOPA, .t k). (3.33)
Consequently,
hrij ®=f;®O+h, OO ;1) (3.34)
and
t
EIN(r.0]=] hy (udu.
0
Hence,
1 t
E[N(r; o0)] = lim j hy, (W)du
= E[N(r,oo)]lgirr& f; *(0). (3.35)

Since at the occurrence of each r;-event, S—iunits of Product 1 are added to the

inventory, the mean number of Product 1 items added to the inventory per unit time is

given by
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> > EIN(r.0)l(S i) = EIN(ro)] Y Y lim f, *(0). (3.36)
0<i+j<S 0<i+j<S
i>0, >0 i>0, >0

3.3.9 MEAN NUMBER OF UNITS SCRAPPED FROM THE INVENTORY

Since, at the occurrence of an I;-event, j units of Product 2 are scrapped from the

inventory per unit time, we have

ZZ E[N(r;,%)]] = E[N(F,OO)]ZZ }giilg f; *(0). (3.37)
0<i+j<S 0<i+j<S
>0,j>0 i>0,j>0
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3.4 COST ANALYSIS

Since E[N(l,,0)]and E[N(l,,)] are respectively the mean stationary rates of the two

types of lost demands. The cost due to lost demand is given by
EIN(,,%)CL, + E[N(l,,)ICL, (3.38)

The cost corresponding to items of Product 2 perished and removed from the inventory

is E[N(k,,»)]CP. The number of items of Product 2 that are scrapped from the

inventory per unit time is

2.2, EIN(r,»)]j. (3.39)

0<i+j<S
i>0,]>0

The cost due to this is

> > E[N(ry,»)]jCP. (3.40)

0<i+ j<S
i>0,j=0

Hence the total expected cost per unit time is:

C(S,s)=E[N(a,©)]JCR+E[N(l,,©)]CL, + E[N(l,,»)]CL,

+[EIN(K,y,00)]+ > > E[N(r;,0)]jICP+ D> E[N(r;,»)](s—i)CB.

0<i+j<S§ 0<i+ j<S
i>0,]>0 i>0,j>0

(3.41)
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3.5 NUMERICAL EXAMPLE

For illustration purposes, consider the following numerical example. Let

f)=0e"t>0,0>0

M =40,

A =6.0,

wm =25,

n =25,

0 =20,

CR =10.0,
CL, =6.0,
CL, =5.0,

CP =4.0,and
CB =10.0

By varying the probability p from 0.1 to 0.9 and varying S from 2 to 4, with
corresponding possible values for s, the values of the mean stationary rates of the

following variables are obtained:

(i) Demand satisfied (ED;, ED,)
(1)  Demands substituted (EG)
(iii))  Lost demands (EL;, EL,)
(iv)  Items perished (EK3)
(v)  Re-orders (ES)
(vi)  Replenishments (RRATE)
(vii)  Units replenished (EUR)
(viii)  Units scrapped or deleted (EUS)
(ix)  Total expected cost (COST)

The numerical results of the relationship between p and the above variables are

summarised in Table 3.1 below:
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S=2,s=1 S=3,s=1 S=3, s=2 S=4,s=1 | S=4,s5=2 | S=4,s=3

ED1 increases | increases increases | increases | increases | increases
ED?2 decreases | decreases | decreases | decreases | decreases | decreases
EG increases | increases | increases | increases | increases | increases
EL1 decreases | decreases | decreases | decreases | decreases | decreases
EL2 increases | increases | increases | increases | increases | increases
EK2 decreases | decreases | decreases | decreases | decreases | decreases
EA increases | increases | increases | increases | increases | increases

RRATE increases | increases increases | increases | increases | increases

EUR increases | increases increases | increases | increases | increases
EUS decreases | decreases | decreases | decreases | decreases | decreases
COST decreases | decreases | decreases | decreases | decreases | decreases

Table 3.1: Relationship between p and selected variables for varying S and s

Per illustration, the relationships of Total Expected Cost (COST) and Lost Demand

(EL2) versus increasing values of p are shown graphically in Figure 3.2.
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Figure 3.2: Relationship of COST and EL2 versus p for S =3, s =1
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The detail results of the numerical example are given in Table 3.2 to Table 3.7 for

varying values of S and s.

p ED1 ED2 EG EL1 EL2 EK2
0.1 1.447408 | 0.802104 | 0.030899 | 2.521693 | 5.197896 | 0.365150
0.2 1.448016 | 0.786138 | 0.059651 | 2.492333 | 5.213861 | 0.357462
0.3 1.448584 | 0.771246 | 0.086471 | 2.464945 | 5.228754 | 0.350288
0.4 1.449116 | 0.757323 | 0.111549 | 2.439334 | 5.242677 | 0.343578
0.5 1.449616 | 0.744276 | 0.135049 | 2.415335 | 5.255723 | 0.337289
0.6 1.450087 | 0.732027 | 0.157114 | 2.392799 | 5.267973 | 0.331382
0.7 1.450530 | 0.720503 | 0.177874 | 2.371595 | 5.279497 | 0.325824
0.8 1.450949 | 0.709642 | 0.197440 | 2.351611 | 5.290359 | 0.320585
0.9 1.451345 | 0.699389 | 0.215912 | 2.332742 | 5.300611 | 0.315637

p EA RRATE | EUR EUS COST

0.1 1.523762 | 1.523762 | 2.775306 | 0.129744 | 86.0899

0.2 1.524402 | 1.524402 | 2.776470 | 0.125240 | 85.9627

0.3 1.525000 | 1.525000 | 2.777560 | 0.120971 | 85.8441

0.4 1.525560 | 1.525560 | 2.778581 | 0.117015 | 85.7332

0.5 1.526087 | 1.526087 | 2.779540 | 0.113309 | 85.6293

0.6 1.526582 | 1.526582 | 2.780442 | 0.109832 | 85.5318

0.7 1.527049 | 1.527049 | 2.781292 | 0.106561 | 85.4400

0.8 1.527490 | 1.527490 | 2.782095 | 0.103480 | 85.3536

0.9 1.527907 | 1.527907 | 2.782854 | 0.100571 | 85.2720

Table 3.2: Numerical Results for S=2,s=1
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p ED1 ED2 EG EL1 EL2 EK2
0.1 2.015121 | 1.154118 | 0.029509 | 1.955370 | 4.845882 | 0.591228
0.2 2.016546 | 1.139571 | 0.057012 | 1.926442 | 4.860429 | 0.583235
0.3 2.017882 | 1.125985 | 0.082706 | 1.899412 | 4.874015 | 0.575761
0.4 2.019136 | 1.113267 | 0.106766 | 1.874098 | 4.886733 | 0.568758
0.5 2.020316 | 1.101338 | 0.129342 | 1.850342 | 4.898662 | 0.562181
0.6 2.021429 | 1.090125 | 0.150568 | 1.828003 | 4.909874 | 0.555993
0.7 2.022480 | 1.079566 | 0.170562 | 1.806958 | 4.920434 | 0.550161
0.8 2.023474 | 1.069605 | 0.189429 | 1.787098 | 4.930395 | 0.544654
0.9 2.024415 | 1.060193 | 0.207260 | 1.768325 | 4.939806 | 0.539447

p EA RRATE | EUR EUS COST

0.1 1.139148 | 1.139148 | 3.227835 | 0.104645 | 82.4150

0.2 1.139954 | 1.139954 | 3.230117 | 0.101013 | 82.2985

0.3 1.140709 | 1.140709 | 3.232256 | 0.097624 | 82.1897

0.4 1.141418 | 1.141418 | 3.234266 | 0.094455 | 82.0879

0.5 1.142085 | 1.142085 | 3.236156 | 0.091486 | 81.9924

0.6 1.142714 | 1.142714 | 3.237938 | 0.088698 | 81.9027

0.7 1.143308 | 1.143308 | 3.239621 | 0.086075 | 81.8182

0.8 1.143870 | 1.143870 | 3.241213 | 0.083603 | 81.7384

0.9 1.144402 | 1.144402 | 3.242721 | 0.081269 | 81.6631

Table 3.3: Numerical Results forS=3,s=1
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p ED1 ED2 EG EL1 EL2 EK2
0.1 2.100194 | 1.209167 | 0.028260 | 1.871547 | 4.790833 | 0.619952
0.2 2.100425 | 1.195623 | 0.054702 | 1.844873 | 4.804378 | 0.612563
0.3 2.100644 | 1.182931 | 0.079498 | 1.819857 | 4.817068 | 0.605627
0.4 2.100852 | 1.171014 | 0.102799 | 1.796349 | 4.828986 | 0.599103
0.5 2.101049 | 1.159802 | 0.124737 | 1.774214 | 4.840198 | 0.592954
0.6 2.101236 | 1.149234 | 0.145429 | 1753335 | 4.850765 | 0.587149
0.7 2.101414 | 1.139256 | 0.164979 | 1.733607 | 4.860744 | 0.581660
0.8 2.101583 | 1.129818 | 0.183481 | 1.714936 | 4.870183 | 0.576461
0.9 2.101745 | 1.120878 | 0.201016 | 1.697240 | 4.879122 | 0.571530

p EA RRATE | EUR EUS COST

0.1 2.058707 | 1.436794 | 3.566840 | 0.231180 | 94.8435

0.2 2.058934 | 1.436952 | 3.567234 | 0.225902 | 94.7067

0.3 2.059149 | 1.437102 | 3.567606 | 0.220951 | 94.5783

0.4 2.059352 | 1.437244 | 3.567958 | 0.216298 | 94.4577

0.5 2.059545 | 1.437379 | 3.568292 | 0.211917 | 94.3441

0.6 2.059728 | 1.437507 | 3.568610 | 0.207783 | 94.2370

0.7 2.059903 | 1.437628 | 3.568912 | 0.203878 | 94.1357

0.8 2.060069 | 1.437744 | 3.569200 | 0.200181 | 94.0398

0.9 2.060227 | 1.437855 | 3.569474 | 0.196677 | 93.9489

Table 3.4: Numerical Results forS=3,s=2
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p ED1 ED2 EG EL1 EL2 EK2
0.1 2.461397 | 1.550978 | 0.022888 | 1.515716 | 4.449023 | 0.824795
0.2 2.462760 | 1.540001 | 0.044223 | 1.493017 | 4.460000 | 0.818603
0.3 2.464039 | 1.529750 | 0.064159 | 1.471803 | 4.470250 | 0.812810
0.4 2.465240 | 1.520156 | 0.082829 | 1.451930 | 4.479844 | 0.807379
0.5 2466372 | 1.511157 | 0.100352 | 1.433276 | 4.488843 | 0.802276
0.6 2.467440 | 1.502699 | 0.116830 | 1.415730 | 4.497301 | 0.797472
0.7 2.468449 | 1.494735 | 0.132354 | 1.399197 | 4.505266 | 0.792943
0.8 2.469404 | 1.487222 | 0.147005 | 1.383592 | 4.512778 | 0.788664
0.9 2.470309 | 1.480124 | 0.160855 | 1.368836 | 4.519876 | 0.784615

p EA RRATE | EUR EUS COST

0.1 0.884151 | 0.884151 | 3.387431 | 0.080117 | 77.6749

0.2 0.884640 | 0.884640 | 3.389307 | 0.077324 | 77.5813

0.3 0.885100 | 0.885100 | 3.391067 | 0.074719 | 77.4939

0.4 0.885531 | 0.885531 | 3.392720 | 0.072284 | 77.4120

0.5 0.885938 | 0.885938 | 3.394278 | 0.070030 | 77.3352

0.6 0.886321 | 0.886321 | 3.395747 | 0.067862 | 77.2629

0.7 0.886684 | 0.886684 | 3.397136 | 0.065848 | 77.1949

0.8 0.887027 | 0.887027 | 3.398450 | 0.063950 | 77.1037

0.9 0.887352 | 0.887352 | 3.399695 | 0.062158 | 77.0700

Table 3.5: Numerical Results forS=4,s=1
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p ED1 ED2 EG EL1 EL2 EK2
0.1 2.571096 | 1.635669 | 0.021343 | 1.407561 | 4.364332 | 0.872010
0.2 2.571408 | 1.625571 | 0.041319 | 1.387274 | 4.374429 | 0.866307
0.3 2.571703 | 1.616109 | 0.060056 | 1.368241 | 4.383891 | 0.860949
0.4 2.571984 | 1.607225 | 0.077667 | 1.350350 | 4.392776 | 0.855907
0.5 2.572251 | 1.598865 | 0.094251 | 1.333499 | 4.401135 | 0.851153
0.6 2.572504 | 1.590985 | 0.109898 | 1.317598 | 4.409014 | 0.846663
0.7 2.572746 | 1.583545 | 0.124684 | 1.302570 | 4.416455 | 0.842414
0.8 2.572976 | 1.576508 | 0.138680 | 1.288344 | 4.423493 | 0.838389
0.9 2.573195 | 1.569841 | 0.151948 | 1.274857 | 4.430159 | 0.834568

p EA RRATE | EUR EUS COST

0.1 1.557317 | 1.082949 | 3.764555 | 0.170350 | 87.6552

0.2 1.557506 | 1.083081 | 3.765011 | 0.166502 | 87.5522

0.3 1.557685 | 1.083205 | 3.765444 | 0.162895 | 87.4556

0.4 1.557855 | 1.083323 | 3.765855 | 0.159505 | 87.3647

0.5 1.558017 | 1.083436 | 3.766245 | 0.156314 | 87.2792

0.6 1.558170 | 1.083542 | 3.766616 | 0.155504 | 87.1984

0.7 1.558316 | 1.083644 | 3.766970 | 0.150461 | 87.1221

0.8 1.558456 | 1.083741 | 3.767308 | 0.147770 | 87.0498

0.9 1.558589 | 1.083834 | 3.767629 | 0.145219 | 86.9813

Table 3.6: Numerical Results for S=4,s=2
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p ED1 ED2 EG EL1 EL2 EK2
0.1 2.639271 | 1.675820 | 0.020484 | 1.340245 | 4.324180 | 0.902930
0.2 2.639348 | 1.666208 | 0.039680 | 1.320971 | 4.333792 | 0.897530
0.3 2.639421 | 1.657192 | 0.057710 | 1.302868 | 4.342807 | 0.892449
0.4 2.639492 | 1.648719 | 0.074677 | 1.285831 | 4.351282 | 0.887662
0.5 2.639560 | 1.640739 | 0.090675 | 1.269766 | 4.359261 | 0.883141
0.6 2.639623 | 1.633211 | 0.105786 | 1.254591 | 4.366789 | 0.878865
0.7 2.639685 | 1.626096 | 0.120081 | 1.240234 | 4.373904 | 0.874815
0.8 2.639744 | 1.619362 | 0.133628 | 1.226628 | 4.380638 | 0.870973
0.9 2.639800 | 1.612977 | 0.146483 | 1.213717 | 4.387023 | 0.867323

p EA RRATE | EUR EUS COST

0.1 2.405319 | 1.401584 | 4.151391 | 0.363537 | 100.2953

0.2 2.405389 | 1.401625 | 4.151512 | 0.359440 | 100.1917

0.3 2.405456 | 1.401664 | 4.151628 | 0.355589 | 100.0942

0.4 2.405520 | 1.401702 | 4.151738 | 0.351962 | 100.0025

0.5 2.405581 | 1.401737 | 4.151844 | 0.348539 | 99.9159

0.6 2.405640 | 1.401771 | 4.151945 | 0.345305 | 99.8340

0.7 2.405696 | 1.401804 | 4.152041 | 0.342243 | 99.7565

0.8 2.405749 | 1.401835 | 4.152133 | 0.339339 | 99.6830

0.9 2.405801 | 1.401865 | 4.152223 | 0.336583 | 99.6133

Table 3.7: Numerical Results forS=4,s=3
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3.6 CONCLUSION

This chapter described a single perishing product inventory model where items
deteriorate in two phases and then perish. Independent demand takes place at constant
rates for items in both phases. Demand for an item in Phase I not satisfied may be
satisfied by an item in Phase II based on a probability measure. Demand for items in
Phase II during stock-out is lost. The re-ordering policy is an adjustable (S, s) policy
with the lead-time following an arbitrary distribution. Identifying the underlying
stochastic process as a renewal process, the probability distribution of the inventory
level at any arbitrary point in time is obtained. The expressions for the mean stationary
rates of lost demand, substituted demand, perished units and scrapped units are also

derived. A numerical example is considered to highlight the obtained results.
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