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A SINGLE PRODUCT PERISHING INVENTORY 
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3.1 INTRODUCTION 
 

In inventory models of perishing products the lifetime of the products in the inventory 

model is described in alternative ways.  One assumption is that the product has a fixed 

lifetime and if no demand occurs for the product within its lifetime, it is considered as 

perished and removed from the inventory.  Nahmias (1982) has given an exhaustive 

survey of the fixed-life perishable inventory literature.  Another description of the 

lifetime is that the product deteriorates continuously in quality over time and eventually 

perishes.  Raafat (1991) has presented a review of the literature on deteriorating 

(decaying) inventory models.  Apart from the lifetime consideration, the deteriorating 

items have one important kind of interaction on the demand process in the sense that, in 

addition to the usual demand, there may also be a separate demand for items slightly 

deteriorated in quality if the cost is comparatively lesser than a new one.  For example, 

vegetables, food, meat and fish loose their lustre as time elapse.  A day old vegetable is 

slightly inferior in quality compared to a new one.  Such items may be accepted by 

some customers in the event of non-availability of new ones.  There may also be a 

significant number of demands for slightly deteriorated items due to the fact that they 

are less expensive.  Some of continuous review inventory models have been studied 

recently by Beyer and Girlich (1994), Yadavalli et al (2001), Yadavalli & Joubert 

(2003) and Yadavalli et al (2004). 

 

In this chapter, an attempt is made to incorporate the above kind of interaction in the 

study of deteriorating product inventory systems.  Specifically, a continuous review of 

perishing inventory models is considered with the assumption that if there is no demand 

for product in inventory, it passes through two phases and then perishes.   An item in 

Phase I is fresh and in Phase II slightly deteriorated.  On leaving Phase II, it is 

considered as being perished and removed from inventory or scrapped.  Independent 

demand takes place at constant rates for items in both phases.  Demand for an item 

during Phase I stock-out may be satisfied by an item in Phase II based on a probability 
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measure.  Demand for product in phase II during stock-out is lost.  Using the 

regeneration point technique, various measures of the inventory model are obtained. 

 

The organization of this chapter is as follows:  Section 3.2 lists various assumptions and 

notations in the description of the inventory model and also provides the auxiliary 

functions which are needed to describe the behaviour of the process between two 

successive regeneration points of the underlying stochastic process describing the 

inventory model.  Various performance measures of the inventory model are obtained in 

Section 3.3.  A cost analysis is provided in Section 3.4 and some numerical results are 

presented in Section 3.5. 

 

3.2 ASSUMPTIONS AND AUXILIARY FUNCTION 
 
The following assumptions are considered in the continuous inventory model with: 

1. The item under consideration is perishable. 

2.   The lifetime distribution of an item is a generalized Erlang distribution with two 

phases.  For convenience the items in Phase I are designated as Product 1 and 

that in Phase II as Product 2. 

.2,1, =i3. The demand for product i occurs at a constant rate iλ  

4.   Maximum storage capacity or total capacity of the inventory level is S  and re-

order takes place if the total inventory level is s . 

5. At the epoch of replenishment, all items of Product 2 are scrapped (deleted) and 

the inventory level is raised to . S

 77

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



6. The lead-time is arbitrary with pdf , and survivor function (.)f )(1)( tFtF −= , 

where F(t) is the cdf.  The arbitrary distribution is selected as an approximation 

of complex problems. 

7. A demand for Product 1 occurring during the stock-out period can be substituted 

by an item of Product 2 with probability p  if available, 10 ≤≤ p . 

8. A demand for Product 2 occurring during the stock-out period is lost, that is no 

backlogging is possible. 

The following notation are used in this chapter: 

 

:ja  Event that a re-order takes place when the inventory level of Product 2 

is  sjj ≤≤0, .

:a   Any ja -event,  sj ≤≤0 .

:ijr  Event that a stock replenishment occurs. iS − units of Product 1 are added 

to the inventory and j  units of Product 2 scrapped from the inventory. 

:r   Any -event, ijr .,,0 sjiji ≤+≤  

:jl   Event that a demand for product j is lost, j = 1, 2 

:g   Event that a demand for Product 1 is substituted by Product 2. 

:id   Event that a demand for product  is satisfied with product  i .2,1, =ii

:1k   Event of Product 1 transitting as Product 2. 

:2k   Event of Product 2 perishing and being removed from the inventory. 

:)(tLi   Inventory level of product i at time .2,1; =it  

:)(tZ   . ( ))(),( 21 tLtL
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:iλ   The demand rate of product .2,1, =ii  

:iµ   The perishing rate of product .2,1, =ii   

N(η,t):        Number of η events in (0,t]. 

:)],([ ∞jaNE  The mean stationary rate of re-order. 

:)],([ 1 ∞kNE  The mean stationary rate of transit of Product 1 as Product 2. 

:)],([ 2 ∞kNE  The mean stationary rate of perishing and removed from the inventory. 

:CR   Re-ordering cost. 

:iCL   Cost of lost demand for product .2,1, =ii   

:CP   Salvage cost per scrapped (deleted) unit. 

:CB   Purchase price of one unit. 

:),( sSC  Total expected cost per unit time. 

© :  Convolution symbol. 

 

In order to study the stochastic process ( ))(),( 21 tLtL , note that the r -events constitute a 

renewal process (see Figure 3.1 below).  Consequently, it is sufficient to describe the 

behaviour of the inventory process between two successive renewals.  
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Figure 3.1: Realization of Events 
 

The necessary auxiliary functions are introduced: 

 

3.2.1 FUNCTION ( ), , ,P k l t i j  
 

We define 

 

[ ] rajiZtNlktZPjitlkP ,,),()0(0),(),,()(),,,( ===== ηη . 
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),,,( jitlkP  represents the probability distribution of the inventory level in an interval 

in which neither reorder nor replenishment can occur.  To derive an expression for this 

function, we note that a change in the inventory level may occur due to any one of the 

following possibilities: 

1. A demand for Product i  occurs and is satisfied by product ( )2,1, =ii  

2. A unit of Product 1 perishes and transits as Product 2. 

3. A unit of Product 2 perishes. 

4. A demand for a unit of Product 1 occurs during the stock-out period and is 

substituted by Product 2 with probability p  if it is available. 

Accordingly, we have for 

 

sjilk ≤+≤+≤0  or Sjilks ≤+≤+≤+1 , 

 

Case 1: . ik >

 

0),,,( =jitlkP .          (3.1)

   

Case 2: jilkikji +<+<<>> ,0,0,0 . 

 

1),,,( λ=jitlkP tjie )( 2121 µµλλ +++− © tjieijitlkP )(
1

2121),1,,( µµλλµ +++−+−  

© )()1,1,,( 22 µλ jjitlkP +++− tjie )( 2121 µµλλ +++− © )1,,,( −jitlkP . (3.2) 

 

Case 3: ilklikji <+≥<≤=> ,0,0,0,0 . 
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1]0,,,[ λ=itlkP tjie )( 2121 µµλλ +++−  © ]0,1,,[ −itlkP tjiei )(
1

2121 µµλλµ +++−+  

© ( )1,, +itlkP .          (3.3) 

 

Case 4:  jlikji ==>> ,,0,0 .

 
tjiejitjiP )( 2121],,,[ µµλλ +++−= .       (3.4) 

 

Case 5: jlikji <≤=>> 0,,0,0 . 

 
tjiejjitliP )(

22
2121)(],,,[ µµλλµλ +++−+=  © ]1,,,[ −jitliP .   (3.5) 

 

Case 6: 0,,0,0 ===> likji . 

 
tieitiP )( 11]0,,0,[ µλ +−= .        (3.6) 

 

Case 7:  jlkji ==>= ,0,0,0 .

 

=],0,,0[ jtjP tjpe )( 221 µλλ ++− .        (3.7) 

 

Case 8: jlkli <=≥= ,0,0,0  

 

=],0,,0[ jtlP tjpejp )(
221

221)( µλλµλλ ++−++  © ]1,0,,0[ −jtlP .  (3.8) 

 

Case 9: . 0==== lkji

 

1]0,0,0,0[ =tP .          (3.9) 
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3.2.2 FUNCTION )(tjφ  
 

We define 

 

∆

=−=∆+−
=

→∆

]00),(),,([
lim)(

0

tateventrtrNttineventaP
t j

jφ . 

 

The function dttj )(φ  represents the probability that an -event occurs in  and 

there is no replenishment in , given that an 

ja ),( ∆+tt

( ]t,0 r -event has occurred at .  Hence, 

we have 

0=t

 

)(])1(][0,,1,[)(]0,,,1[)( 10221 tFpjStjkPtFStjkPt kj λδµλλφ ++++++=   (3.10) 

 

where , and sjksjk ≤≤=+ ,0, 0kδ  is a Kronecker’s delta function. 

 

3.2.3 FUNCTION  ),,( tjiW
 

We define 

 

)]0,()0(0),(),,()([),,( SZtrNjitZPtjiW ==== . 

 

Then the function  represents the probability that the inventory level is  at 

the time t , where  is the time elapsed since the last renewal.  To obtain , we 

consider 

),,( tjiW ),( ji

t ),,( tjiW

 

Case 1: sji ≤+≤0  

In this case, exactly one re-order is made in  and it does not materialize up to time 

.  Precisely, we have 

),0( t

t
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(i) The system is in state  at )0,(S 0=t . 

(ii)    The system enters the state  in (),( lk ), duuu + slk =+ where  and . tu <<0

),( duuu(iii) A re-order is placed in + . 

(iv) The re-order does not materialize up to time . t

),( ji t(v) The system enters the state  at time . 

Using probabilistic arguments,  

 

∑
=

=
s

l
l ttjiW

0
)(),,( φ ©{ }),,,()( lktjiPtF , where slk ≤≤ ,0  and .   (3.11) slk =+

 

Case 2: Sjis ≤+≤+1  

 

In this case no re-order takes place in .  Hence,  ),0( t

 

]0,,,[),,( StjiPtjiW =                 (3.12) 

 

The steady-state probabilities of the system are given by 

 

),,(lim),( tjiWjiW
t ∞→

=                 (3.13) 

     ( )*

0
lim , ,W i j s
∆→

=

 

Where W*(i,j,s) is the Laplace transform of W(i,j,t)   (See Girlich, 2003)  

 

( ) ( )*

0

, , , ,stW i j s e W i j t dt
∞

−= ∫  

 84

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  SScchhoooorr,,  CC  ddee  WWeett    ((22000066))  



3.3 MEASURES OF SYSTEM PERFORMANCE 
 

To obtain explicit expressions for various performance measures of the presented 

model, we proceed to define the first-order product density  

 

∆
=∆+−

=
→∆

)]0,()0(),([
lim)(

0

SZttineventP
th

η
η . 

 

where 212121 ,,,,,,,,,, kkgllddaarr jij=η . 

 

3.3.1 MEAN NUMBER OF RE-ORDERS 
 

Since a re-order is defined as an -event, the expressions for  are derived to 

obtain the mean number of re-orders.  Note that a re-order takes place when the total 

inventory level enters .  Hence,  

ja )(thij

s

 

∑
∞

=+

++++++=
sji

ia jptjiWtjiWth
j

}])1(){,1,(),,1([)( 22101 µλλδλ . (3.14) 

 

The mean number of re-orders in ( ]t,0  is given by 

 

∫=
t

aj duuhtaNE
j

0

)()],([ . (3.15)

  

Consequently, the mean stationary rate of re-orders is given by 

 

)],([ ∞jaNE    )(lim)],([1lim thtaNE
t jatjt ∞→∞→

==  
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     (3.16) }].)1(){1,(),1([ 22101 µλλδλ ++++++= ∑
∞

=+ sji
i jpjiWjiW

 

3.3.2 MEAN NUMBER OF DEMANDS FOR A PARTICULAR PRODUCT 
WHICH IS SATISFIED BY THE SAME PRODUCT 

 

A demand for Product 1 being satisfied by Product 1 is represented by the -event.  

Hence an expression for  is derived.  Observe that a -event occurs whenever a 

demand for Product 1 occurs when the inventory levels is  where, , 

 and 

1d

)(
1

thd 1d

),( ji Si ≤≤1

Sj ≤≤0 Sji ≤+<0 .  Hence,  

 

1

0,1
0

),()(
1

λjiWth
ji

Sji
d

≥≥
≤+≤

∑∑=  , (3.17) 

 

so that 

∫=
t

d duuhtdNE
0

1 )()],([
1

.  

 

Therefore, 

 

1

0,1
0

1 ),()],([ λjiWdNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.18) 

 

In the same way,  

 

2

0,1
0

),,()(
2

λtjiWth
ji

Sji
d

≥≥
≤+≤

∑∑= , (3.19) 

 

so that 
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∫=
t

d duuhtdNE
0

2 )()],([
2

  

 

2

0,1
0

2 ),()],([ λjiWdNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.20) 

 

3.3.3 MEAN NUMBER OF LOST DEMAND 
 

A demand for Product 1 is lost when the total inventory level is zero or when the 

inventory level of Product 1 is zero and that of Product 2 is positive, but when the 

demand is not substituted with Product 2.  Therefore,  

 

.}1){,,0(

)1(),,0(),0,0()(

0
10

1
111

∑

∑

=

=

+−=

−+=

S

j
j

S

j
l

pptjW

ptjWtWth

λδ

λλ
 (3.21) 

 

The mean number of lost demands for Product 1 is given by 

 

∫=
t

l duuhtlNE
0

1 )()],([
1

,  

 

so that the mean stationary rate of lost demand for Product 1 is given by 

 

∑
=

+−=∞
S

j
jppjWlNE

0
101 ]1)[,0()],([ λδ . (3.22) 

 

In the same way, for the events , 2l
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∑
=

=
S

i
l tiWth

0
2),0,()(

2
λ , (3.23 

 

∫=
t

l duuhtlNE
0

2 )()],([
2

 

and 

∑
=

=∞
S

i
iWlNE

0
22 )0,()],([ λ . (3.24) 

 

3.3.4 MEAN NUMBER OF DEMANDS OF PRODUCT 1 BEING 
SUBSTITUTED BY PRODUCT 2 

 

A demand for Product 1 being substituted by Product 2 is denoted by the g -event.  

Note that a g -event occurs in ( )∆+tt,  if the inventory level of the system at time t  

equals ( ) Sjj ≤≤1,,0  and if a demand for Product 1 occurs in  being 

substituted by Product 2.  Hence,  

( ∆+tt, )

 

∑
=

=
S

j
g ptjWth

1
1),,0()( λ  (3.25) 

and 

∫=
t

g duuhtgNE
0

)()],([ .  

 

Therefore, 

∑
=

=∞
S

j
pjWgNE

1
1),0()],([ λ . (3.26) 
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3.3.5 MEAN NUMBER OF UNITS DETERIORATED FROM PRODUCT 1 
AND TRANSITTED AS PRODUCT 2 

 

Since a -event pertains to the event of a unit of Product 1 deteriorates and transits as 

Product 2 and a -event occurs in 

1k

1k ( )∆+tt,  if the system is in state (  at time t , 

 and 

)ji,

SjSi ≤≤≤≤ 0,1 Sji ≤+≤1  and a unit in Product 1 transits as Product 2 in 

, we have ( ∆+tt, )
 

1

0,1
0

),,()(
1

µitjiWth
ji

Sji
k

≥≥
≤+≤

∑∑=  (3.27) 

 

The mean number of units of Product 1 that have transitted as Product 2 in  is 

given by 

( ]t,0

 

∫=
t

k duuhtkNE
0

1 )()],([
1

 

 

and the mean stationary rate of units of Product 1 transiting as Product 2 is given by 

 

1

0,1
0

1 ),()],([ µijiWkNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.28)

   

3.3.6 MEAN NUMBER OF PRODUCT 2 PERISHED AND REMOVED 
FROM THE INVENTORY 

 

The first order product density of is given by 2k

 

2

0,1
0

),,()(
2

µjtjiWth
ji

Sji
k

≥≥
≤+≤

∑∑=  . (3.29) 
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Hence the mean number of units of Product 2 that have perished and removed from the 

inventory in  is given by ( ]t,0

 

∫=
t

k duuhtkNE
0

2 )()],([
2

.  

 

Consequently, the mean stationary rate of perishing of Product 2 is given by 

 

2

0,1
0

2 ),()],([ µjjiWkNE
ji

Sji
≥≥
≤+≤

∑∑=∞ . (3.30) 

 

3.3.7 MEAN NUMBER OF REPLENISHMENTS 
 

Consider the renewal process of r -events and derive its first-order product density 

.  Firstly, an expression for the pdf  of the interval between two successive 

occurrences of the 

)(thr )(tg

r -events is derived.  By definition,  

 

∆
==∆+−

=
→∆

)]0,()0(0),(),,([
lim)(

0

SZtrNttineventrP
tg . 

 

In order to derive , its survival function )(tg )(tG  is determined.  Since )(tG  denotes 

the probability that a replenishment has not occurred up to t , we have two mutually 

exclusive cases for )(tG : 

 

(i) A re-order does not occur up to time . t

(ii) A re-order is placed in ),( ∆+uu , tu <<0 , but it has not been realized up 

to time .  t
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Hence, 

 

∑∑∑
=

≥≥
≤+≤+

+=
s

l
l

lk
Slks

tStlkPtG
0

0,0
1

)()0,,,()( φ © 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+ ∑∑
−

= =

ls

k

l

l
llstlkPtF

0 0
11

1 1

,,,()( . (3.31) 

 

However, 

∑
∞

=

=
1

)( )()(
n

n
r tgth , 

and 

∫=
t

r duuhtrNE
0

)()],([ . 

 

Hence, by renewal theory, the mean stationary rate of replenishment is given by 

 

∫
∫
∞∞→

==∞
t

rt
dttG

duuh
t

rNE
0

0

)(

1)(1lim)],([ . (3.32) 

 

3.3.8 MEAN NUMBER OF REPLENISHMENTS 
 

First, the product density is defined 

 

)(th
ijr ∆

=∆+−
=

→∆

)]0,()0(),([
lim

0

SZttineventrP ij  

 

Next a relation between  and  is obtained. )(th
ijr )(thr

 

Therefore, the following function is define  
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∆

==∆+−
=

→∆

)]0,()0(0),(),,([
lim)(

0

SZtrNttineventrP
tf ij

ij  

 

Observe that 

 

}])1(){0,,1,()0,,,1([)( 10221

0,0
0

plStlkPStlkPtf k

lk
Slk

ij λδµλλ ++++++=

≥≥
≤+≤

∑∑ ©         

                                                    ),,,()( lktjiPtf . (3.33) 

 

Consequently,  

 

)(th
ijr )()( thtf rij += ©  (3.34) )(tf ij

and 

∫=
t

ij trNE
0

)],([ duuh
ijr )( . 

 

Hence, 

 

∫∞→
=∞

t

tij t
rNE

0

1lim)],([ duuh
ijr )(  

                             

)(*lim)],([
0

θ
θ ijfrNE
→

∞= . (3.35) 

 

Since at the occurrence of each -event, ijr iS − units of Product 1 are added to the 

inventory, the mean number of Product 1 items added to the inventory per unit time is 

given by 
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))](,([
0,0

0
iSrNE ij

ji
Sji

−∞

≥≥
≤+≤

∑∑  = )(*lim)],([
0

0,0
0

θ
θ ij

ji
Sji

frNE
→

≥≥
≤+≤

∑∑∞ . (3.36) 

 

3.3.9 MEAN NUMBER OF UNITS SCRAPPED FROM THE INVENTORY 
 

Since, at the occurrence of an -event, ijr j  units of Product 2 are scrapped from the 

inventory per unit time, we have 

 

jrNE ij

ji
Sji

)],([
0,0

0
∞

≥≥
≤+≤

∑∑  = )(*lim)],([
0

0,0
0

θ
θ ij

ji
Sji

frNE
→

≥≥
≤+≤

∑∑∞ . (3.37) 
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3.4 COST ANALYSIS 
 
Since and  are respectively the mean stationary rates of the two 

types of lost demands.  The cost due to lost demand is given by 

)],([ 1 ∞lNE )],([ 2 ∞lNE

 

2211 )],([)],([ CLlNECLlNE ∞+∞  (3.38) 

 

The cost corresponding to items of Product 2 perished and removed from the inventory 

is .  The number of items of Product 2 that are scrapped from the 

inventory per unit time is 

CPkNE )],([ 2 ∞

 

jrNE ij

ji
Sji

)],([
0,0

0
∞

≥≥
≤+≤

∑∑ . (3.39) 

 

The cost due to this is 

 

jCPrNE ij

ji
Sji

)],([
0,0

0
∞

≥≥
≤+≤

∑∑ . (3.40) 

Hence the total expected cost per unit time is: 

 

2211 )],([)],([)],([),( CLlNECLlNECRaNEsSC ∞+∞+∞=  

               CBisrNECPjrNEkNE ij

ji
Sji
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3.5 NUMERICAL EXAMPLE 
 

For illustration purposes, consider the following numerical example.  Let 

ƒ (t) = θ e–θt, t > 0, θ > 0 

λ1  = 4.0, 

λ2  = 6.0, 

µ1  = 2.5, 

µ2  = 2.5, 

θ  = 2.0, 

CR  = 10.0, 

CL1  = 6.0, 

CL2  = 5.0, 

CP  = 4.0, and 

CB  = 10.0 

 

By varying the probability p from 0.1 to 0.9 and varying S from 2 to 4, with 

corresponding possible values for s, the values of the mean stationary rates of the 

following variables are obtained: 

(i) Demand satisfied (ED1, ED2) 

(ii) Demands substituted (EG) 

(iii) Lost demands (EL1, EL2) 

(iv) Items perished (EK2) 

(v) Re-orders (ES) 

(vi) Replenishments (RRATE) 

(vii) Units replenished (EUR) 

(viii) Units scrapped or deleted (EUS) 

(ix) Total expected cost (COST) 

The numerical results of the relationship between p and the above variables are 

summarised in Table 3.1 below: 
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 S=2, s=1 S=3, s=1 S=3, s=2 S=4, s=1 S=4, s=2 S=4, s=3 
ED1 increases increases increases increases increases increases 
ED2 decreases decreases decreases decreases decreases decreases 
EG increases increases increases increases increases increases 
EL1 decreases decreases decreases decreases decreases decreases 
EL2 increases increases increases increases increases increases 
EK2 decreases decreases decreases decreases decreases decreases 
EA increases increases increases increases increases increases 
RRATE increases increases increases increases increases increases 
EUR increases increases increases increases increases increases 
EUS decreases decreases decreases decreases decreases decreases 
COST decreases decreases decreases decreases decreases decreases 
 
Table 3.1: Relationship between p and selected variables for varying S and s 
 

Per illustration, the relationships of Total Expected Cost (COST) and Lost Demand 

(EL2) versus increasing values of p are shown graphically in Figure 3.2. 
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Figure 3.2: Relationship of COST and EL2 versus p for S =3, s =1 
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The detail results of the numerical example are given in Table 3.2 to Table 3.7 for 

varying values of S and s. 

 

 
p ED1 ED2 EG EL1 EL2 EK2 

0.1 1.447408 0.802104 0.030899 2.521693 5.197896 0.365150 

0.2 1.448016 0.786138 0.059651 2.492333 5.213861 0.357462 

0.3 1.448584 0.771246 0.086471 2.464945 5.228754 0.350288 

0.4 1.449116 0.757323 0.111549 2.439334 5.242677 0.343578 

0.5 1.449616 0.744276 0.135049 2.415335 5.255723 0.337289 

0.6 1.450087 0.732027 0.157114 2.392799 5.267973 0.331382 

0.7 1.450530 0.720503 0.177874 2.371595 5.279497 0.325824 

0.8 1.450949 0.709642 0.197440 2.351611 5.290359 0.320585 

0.9 1.451345 0.699389 0.215912 2.332742 5.300611 0.315637 

 
p EA RRATE EUR EUS COST 

0.1 1.523762 1.523762 2.775306 0.129744 86.0899 

0.2 1.524402 1.524402 2.776470 0.125240 85.9627 

0.3 1.525000 1.525000 2.777560 0.120971 85.8441 

0.4 1.525560 1.525560 2.778581 0.117015 85.7332 

0.5 1.526087 1.526087 2.779540 0.113309 85.6293 

0.6 1.526582 1.526582 2.780442 0.109832 85.5318 

0.7 1.527049 1.527049 2.781292 0.106561 85.4400 

0.8 1.527490 1.527490 2.782095 0.103480 85.3536 

0.9 1.527907 1.527907 2.782854 0.100571 85.2720 

 
Table 3.2: Numerical Results for S = 2, s =1 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.015121 1.154118 0.029509 1.955370 4.845882 0.591228 

0.2 2.016546 1.139571 0.057012 1.926442 4.860429 0.583235 

0.3 2.017882 1.125985 0.082706 1.899412 4.874015 0.575761 

0.4 2.019136 1.113267 0.106766 1.874098 4.886733 0.568758 

0.5 2.020316 1.101338 0.129342 1.850342 4.898662 0.562181 

0.6 2.021429 1.090125 0.150568 1.828003 4.909874 0.555993 

0.7 2.022480 1.079566 0.170562 1.806958 4.920434 0.550161 

0.8 2.023474 1.069605 0.189429 1.787098 4.930395 0.544654 

0.9 2.024415 1.060193 0.207260 1.768325 4.939806 0.539447 

 
p EA RRATE EUR EUS COST 

0.1 1.139148 1.139148 3.227835 0.104645 82.4150 

0.2 1.139954 1.139954 3.230117 0.101013 82.2985 

0.3 1.140709 1.140709 3.232256 0.097624 82.1897 

0.4 1.141418 1.141418 3.234266 0.094455 82.0879 

0.5 1.142085 1.142085 3.236156 0.091486 81.9924 

0.6 1.142714 1.142714 3.237938 0.088698 81.9027 

0.7 1.143308 1.143308 3.239621 0.086075 81.8182 

0.8 1.143870 1.143870 3.241213 0.083603 81.7384 

0.9 1.144402 1.144402 3.242721 0.081269 81.6631 

 
Table 3.3: Numerical Results for S = 3, s = 1 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.100194 1.209167 0.028260 1.871547 4.790833 0.619952 

0.2 2.100425 1.195623 0.054702 1.844873 4.804378 0.612563 

0.3 2.100644 1.182931 0.079498 1.819857 4.817068 0.605627 

0.4 2.100852 1.171014 0.102799 1.796349 4.828986 0.599103 

0.5 2.101049 1.159802 0.124737 1.774214 4.840198 0.592954 

0.6 2.101236 1.149234 0.145429 1753335 4.850765 0.587149 

0.7 2.101414 1.139256 0.164979 1.733607 4.860744 0.581660 

0.8 2.101583 1.129818 0.183481 1.714936 4.870183 0.576461 

0.9 2.101745 1.120878 0.201016 1.697240 4.879122 0.571530 

 
p EA RRATE EUR EUS COST 

0.1 2.058707 1.436794 3.566840 0.231180 94.8435 

0.2 2.058934 1.436952 3.567234 0.225902 94.7067 

0.3 2.059149 1.437102 3.567606 0.220951 94.5783 

0.4 2.059352 1.437244 3.567958 0.216298 94.4577 

0.5 2.059545 1.437379 3.568292 0.211917 94.3441 

0.6 2.059728 1.437507 3.568610 0.207783 94.2370 

0.7 2.059903 1.437628 3.568912 0.203878 94.1357 

0.8 2.060069 1.437744 3.569200 0.200181 94.0398 

0.9 2.060227 1.437855 3.569474 0.196677 93.9489 

 
Table 3.4: Numerical Results for S = 3, s = 2 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.461397 1.550978 0.022888 1.515716 4.449023 0.824795 

0.2 2.462760 1.540001 0.044223 1.493017 4.460000 0.818603 

0.3 2.464039 1.529750 0.064159 1.471803 4.470250 0.812810 

0.4 2.465240 1.520156 0.082829 1.451930 4.479844 0.807379 

0.5 2.466372 1.511157 0.100352 1.433276 4.488843 0.802276 

0.6 2.467440 1.502699 0.116830 1.415730 4.497301 0.797472 

0.7 2.468449 1.494735 0.132354 1.399197 4.505266 0.792943 

0.8 2.469404 1.487222 0.147005 1.383592 4.512778 0.788664 

0.9 2.470309 1.480124 0.160855 1.368836 4.519876 0.784615 

 
p EA RRATE EUR EUS COST 

0.1 0.884151 0.884151 3.387431 0.080117 77.6749 

0.2 0.884640 0.884640 3.389307 0.077324 77.5813 

0.3 0.885100 0.885100 3.391067 0.074719 77.4939 

0.4 0.885531 0.885531 3.392720 0.072284 77.4120 

0.5 0.885938 0.885938 3.394278 0.070030 77.3352 

0.6 0.886321 0.886321 3.395747 0.067862 77.2629 

0.7 0.886684 0.886684 3.397136 0.065848 77.1949 

0.8 0.887027 0.887027 3.398450 0.063950 77.1037 

0.9 0.887352 0.887352 3.399695 0.062158 77.0700 

 
Table 3.5: Numerical Results for S = 4, s = 1 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.571096 1.635669 0.021343 1.407561 4.364332 0.872010 

0.2 2.571408 1.625571 0.041319 1.387274 4.374429 0.866307 

0.3 2.571703 1.616109 0.060056 1.368241 4.383891 0.860949 

0.4 2.571984 1.607225 0.077667 1.350350 4.392776 0.855907 

0.5 2.572251 1.598865 0.094251 1.333499 4.401135 0.851153 

0.6 2.572504 1.590985 0.109898 1.317598 4.409014 0.846663 

0.7 2.572746 1.583545 0.124684 1.302570 4.416455 0.842414 

0.8 2.572976 1.576508 0.138680 1.288344 4.423493 0.838389 

0.9 2.573195 1.569841 0.151948 1.274857 4.430159 0.834568 

 
p EA RRATE EUR EUS COST 

0.1 1.557317 1.082949 3.764555 0.170350 87.6552 

0.2 1.557506 1.083081 3.765011 0.166502 87.5522 

0.3 1.557685 1.083205 3.765444 0.162895 87.4556 

0.4 1.557855 1.083323 3.765855 0.159505 87.3647 

0.5 1.558017 1.083436 3.766245 0.156314 87.2792 

0.6 1.558170 1.083542 3.766616 0.155504 87.1984 

0.7 1.558316 1.083644 3.766970 0.150461 87.1221 

0.8 1.558456 1.083741 3.767308 0.147770 87.0498 

0.9 1.558589 1.083834 3.767629 0.145219 86.9813 

 
Table 3.6: Numerical Results for S = 4, s = 2 
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p ED1 ED2 EG EL1 EL2 EK2 

0.1 2.639271 1.675820 0.020484 1.340245 4.324180 0.902930 

0.2 2.639348 1.666208 0.039680 1.320971 4.333792 0.897530 

0.3 2.639421 1.657192 0.057710 1.302868 4.342807 0.892449 

0.4 2.639492 1.648719 0.074677 1.285831 4.351282 0.887662 

0.5 2.639560 1.640739 0.090675 1.269766 4.359261 0.883141 

0.6 2.639623 1.633211 0.105786 1.254591 4.366789 0.878865 

0.7 2.639685 1.626096 0.120081 1.240234 4.373904 0.874815 

0.8 2.639744 1.619362 0.133628 1.226628 4.380638 0.870973 

0.9 2.639800 1.612977 0.146483 1.213717 4.387023 0.867323 

 
p EA RRATE EUR EUS COST 

0.1 2.405319 1.401584 4.151391 0.363537 100.2953 

0.2 2.405389 1.401625 4.151512 0.359440 100.1917 

0.3 2.405456 1.401664 4.151628 0.355589 100.0942 

0.4 2.405520 1.401702 4.151738 0.351962 100.0025 

0.5 2.405581 1.401737 4.151844 0.348539 99.9159 

0.6 2.405640 1.401771 4.151945 0.345305 99.8340 

0.7 2.405696 1.401804 4.152041 0.342243 99.7565 

0.8 2.405749 1.401835 4.152133 0.339339 99.6830 

0.9 2.405801 1.401865 4.152223 0.336583 99.6133 

 
Table 3.7: Numerical Results for S = 4, s = 3 
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3.6 CONCLUSION 
 
This chapter described a single perishing product inventory model where items 

deteriorate in two phases and then perish.  Independent demand takes place at constant 

rates for items in both phases.  Demand for an item in Phase I not satisfied may be 

satisfied by an item in Phase II based on a probability measure.  Demand for items in 

Phase II during stock-out is lost.  The re-ordering policy is an adjustable (S, s) policy 

with the lead-time following an arbitrary distribution.  Identifying the underlying 

stochastic process as a renewal process, the probability distribution of the inventory 

level at any arbitrary point in time is obtained.  The expressions for the mean stationary 

rates of lost demand, substituted demand, perished units and scrapped units are also 

derived.  A numerical example is considered to highlight the obtained results. 
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