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1.1 SUPPLY CHAIN MANAGEMENT 

1.1.1 Background 

A new era has dawned in Supply Chain Management with the advent of globalization.  

This has led to increased competition and in order to achieve and sustain competitive 

advantage, companies must be able to respond quickly to customer demand and deliver 

a high level of customer service.  The need for companies to be flexible and to be able 

to customize their products is also becoming more important.  This added pressure on 

supply chains, coupled with global deregulation, is encouraging many companies to 

move the sourcing of components and low-value added operations offshore, to lower 

cost countries (Ross, 2003) - this result in supply chains which increase in distance and 

complexity. 

 

With global markets and suppliers, companies need to have a supply chain that is lean 

on inventory and responsive to customer demand.  To ensure an efficient supply chain, 

all aspects of such a supply chain need to be monitored continually and inputs need to 

be managed in order to anticipate any uncertainty in supply, demand and cost and to 

ensure that appropriate contingencies are in place.   

 

According to Lakahl et al (2001) companies must concentrate on their core 

competencies to help sustain competitive advantage. Non-strategic activities that can be 

performed more effectively by a third party need to be externalized. A company's core 

competencies depend heavily on its resources and how they are utilized and if a 

company is able to develop and allocate resources in a way, which creates more value 

for customers than their competitors can, it creates a sustainable competitive advantage.  

A superior supply chain strategy maximizes the value added by internal activities while 

developing solid partnerships leading to high value external activities. 
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Supply chain management is plagued with conflicting objectives and supply chain 

managers must make appropriate tradeoffs to ensure optimal functioning of the supply 

chain.  Traditionally inventory was used to ensure compliance with customer demand 

and to guard against uncertain delivery lead times.  Economies of scale is another 

reason for inventory accumulation - fixed costs are lowered by producing or ordering in 

large quantities, transportation discounts can be achieved and it guards against 

uncertainties.  The problem with high inventories however is that capital is tied up and 

high inventory holding costs is incurred.  The inability to meet customer demand, in 

turn, leads to lost profits and in the long run, possibly the loss of clients.  Thus the trade 

off between customer satisfaction and inventory holding costs is one of the most 

important decisions that a supply chain manager has to make. 

 

The problem of providing customer satisfaction under conditions of demand variability 

is usually addressed with safety stock.  In the literature, safety stock are considered from 

the traditional inventory theory viewpoint and it fails to address key features of realistic 

supply chain problems such as multiple products sharing multiple production facilities 

with capacity constraints and demand originating from multiple customers.  Safety 

stock levels are dependant on factors such as probabilistic distributions of demand, the 

demand-capacity ratio as well as the dependence of overall customer satisfaction levels 

on meeting demands for several different products produced at the same facility (Jung et 

al, 2004).  

 

In order to manage the supply chain, a supply chain manager needs accurate, timely 

information. To produce corporate planning solutions, one, or a combination of 

enterprise planning methods are used, these include manual processes, proprietary 

planning solutions, Enterprise Resource Planning (ERP) and Advanced Planning and 

Scheduling (APS). 

 

To support the increasingly complex analysis associated with extended supply chains, 

decision support tools have to lead key strategic, tactical and operational decisions at 
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every stage of the supply chain. These tools have to provide insight into the tradeoffs 

that have to be made among alternative strategies regarding, for example, site location, 

transportation strategies, inventory strategies, resource allocation and supply chain 

operations (Padmos et al, 1999).  In addition to this, these tools and the methods that 

they employ need to take the uncertainties that are characteristic of supply chains (e.g. 

demand uncertainty), into consideration. 

 

The objective is to have a supply chain were all participants act as if they are part of one 

entity in an effort to maximize the timely arrival of good quality raw material, minimum 

lead times and minimum reasonable inventory – this will contribute to a “seamless 

supply chain” (Kerbache & Smith, 2004). 

1.1.2 Literature Review of Supply Chain Optimization 

A study was undertaken to consider various supply chain optimization approaches 

available in literature.  Literature with regards to supply chain optimization is abundant 

and no attempt is made to do a complete review.  In agreement with the observation that 

Kerbache & Smith (2004) made, it is observed that the literature has taken three 

directions: 

 

1. Purchasing and supply perspective:  The interest here is directed toward the 

upstream supply chain. 

2. Transportation and logistics perspective:  Interest focused on the downstream 

supply chain activities. 

3. Complete supply chain perspective:  Attempts are made to deal with the supply 

chain as a whole (De Kok & Graves, 2003) . 

 

The interest for this paper was focused on literature that takes the third direction – that 

is, literature that considers the complete supply chain. 
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Such literature seemed to be subdivided into three categories: 

 

a. Modelling the supply chain using mathematical programming (Operations 

Research Techniques) (Stadtler & Kilger, 2002) 

b. Modelling the supply chain through simulation modelling 

c. Modelling the supply chain using IT-driven techniques – these includes object 

oriented modelling and intelligent agent technology 

 

A brief discussion of the approach within each of these three groups is provided. 

a. Modelling the supply chain using mathematical programming (Operations 
research techniques) 

Operations Research models are either deterministic or stochastic.   

(i) Deterministic Programming Models 

Deterministic models are used to address strategic and tactical decisions through 

the use of mixed integer linear programming (MILP) or mixed integer 

programming (MIP). The objective of these models is usually to maximize after-

tax profit or minimize supply chain costs. Because of the complexity of some of 

the models, heuristics are often used to attain solutions. 

 

Linear programming and mixed integer programming models are developed to 

address various decisions that have to be made in the supply chain.  These 

solutions give answers to strategic, tactical and operational decisions. 

 

In an effort to make strategic investment decisions easier, for example with 

regards to alternative products and development projects, Fandel & Stammen 

(2004) designed a general linear mixed integer model by considering the total 

product life cycle, including development and recycling.  The goal of their 
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approach was to optimize after-tax profit and to fix the product program and the 

extended supply chain network. 

 

To investigate strategic networking issues, Lakhal et al (2001) developed a large 

mixed integer programming (MIP) problem that aims to find the networking 

strategy that maximizes the value added by internal activities of the company 

(they equate this to maximizing profits).  Because of the complexity of the 

problem, the MIP is relaxed and a heuristic is used to obtain solutions for an 

illustrative example.  The authors however admit that the static nature of the 

model poses an important limitation, as supply chains are inherently dynamic. 

(ii) Stochastic programming models 

Stochastic operations research models incorporate multi-objective mixed integer 

linear programming (MILP) and mixed integer non-linear programming 

(MINLP) in an attempt to resolve strategic and operational problems.  These 

problems aims to maximize supply chain profit and customer satisfaction.  For 

tactical decision making a non-deterministic (NP) hard problem is used, but 

because of the complexity a suitable heuristic is develop. 

 

In a multi-objective stochastic MILP problem, Guillén et al (2005) consider 

strategic and operational decision-making.  Decisions such as the capacity and 

location of plants and warehouses, the amount of products to be made at each 

plant and the flow of material between each two nodes of the supply chain are 

addressed in a hypothetical example.  The objective of the problem is to 

maximize supply chain profit and customer satisfaction and also takes 

uncertainty into account by means of the concept of financial risk.  The problem 

is solved using a standard-constraint method and branch and bound techniques. 
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In a novel approach, Seferlis & Giannelos (2004) uses a two-layer optimization-

based control approach for use in operational decision-making.  The control 

strategy applies multivariable model-predictive control principles to the entire 

supply chain.  This is done whilst safety inventory levels are maintained through 

the use of dedicated feedback controllers for every product and storage node. 

These inventory controllers are embedded in the optimization framework as 

additional equality constraints.  The optimization-based controller aims to 

satisfy multiple objectives: that is to maximize customer satisfaction and 

minimize operating costs.  It is not clear from the source which operational 

research method is employed although extensive detailed equations, assumptions 

and constraints are described. Illustrative simulations are used to demonstrate 

that the model can accommodate supply chain networks of realistic size under a 

variety of stochastic and deterministic disturbances. 

(iii)  Queuing network models 

Using a queuing network, Arda and Hennet (2004) represent a simple two-level 

supply chain.  With this network, the producer uses a base-stock inventory 

control policy that keeps the inventory position level (current inventory plus 

pending replenishment orders) constant.  The decision variables are the 

reference inventory position level and the percentages of orders sent to the 

different suppliers.  In the model, the percentages of orders are implemented as 

Bernoulli branching parameters.  The expected cost is obtained as a complex 

non-linear function of the decision variables. A centralized inventory control 

model is incorporated to combine supply and demand randomness in the 

queuing network model.  Because of the complexity of the problem, a 

decomposed approach is proposed for solving the optimization problem in an 

approximate manner.  When applied to a test case, the approximate solutions’ 

quality is evaluated when it is compared with the numerically computed values.  

This can however only be done for simple cases and the main drawback of this 
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model is its simplicity in that it can only show you the economic advantages for 

the producer of using several suppliers instead of just one.  

 

Kerbache and Smith (2004) also use queuing network systems to model and 

analyze supply chains.  They focus on using closed queuing network systems to 

evaluate performance measures such as throughput, cycle time and WIP. The 

methodology employ analytical queuing networks coupled with nonlinear 

optimization in order to maximize the throughput of the system offset by the 

cost of providing the service. A case study is used to demonstrate the use of the 

model and to show that it provides a useful tool with which to analyze 

congestion problems and to evaluate the performance of the network. 

b. Modelling the supply chain using simulation 

Supply chain modelling with simulation can be divided into descriptive and 

normative/optimization models.  Simulation proves to be problematic as that experts 

are needed to construct realistic models.   This is time consuming and even if a 

realistic model is constructed it is even more problematic and time consuming to 

gather the input data for the model (Bansal 2002). 

 

Notwithstanding these problems, simulation is still used in supply chain 

optimization.  A discrete-event simulation model, which have a linear programming 

model embedded in it, is used to minimize costs, maximize customer satisfaction 

and sustain acceptable inventory levels. 

 

Kalasky (1996) presents an application of discrete-event simulation in modelling the 

supply chain for consumer products.  The author employs a linear program (LP) to 

provide for cost models of the supply chain. The objective of the LP is to satisfy 

multiple objectives, namely minimize costs, maximize customer service levels and 

sustain acceptable inventory levels.  The combined technologies of simulation and 
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optimization provide a viable and useful tool for planning and operation of supply 

chains. 

c. Modelling the supply chain using IT-driven techniques 

IT-driven approaches suggested to optimize and model supply chains, are object 

oriented modelling and intelligent agent technology.  Object oriented modelling 

employs generic building blocks in a simulation model. Operations research 

techniques (LP and MIP) are embedded in the object-oriented model to help with 

strategic, tactical and operational decision-making. 

1.2 INVENTORY OPTIMIZATION 

1.2.1 Inventory Management 

Managing inventory within the supply chain is a key aspect of almost any business, that 

is the ability to provide the right goods or materials at the right price, place and time.  

Inventory is one of the most visible and tangible aspects of doing business and, as a 

result, all the problems of a business often end up in inventory.  The role of inventory 

management is to coordinate the actions of sales, marketing, production and purchasing 

to ensure that the correct level of stocks are held to satisfy customers demand at the 

lowest possible cost.  Inventory management aims to balance the supply and demand 

equation by regulating the supply of goods to affect their availability in such a way that 

they match demand conditions as closely as possible (Wheller, 2004).  Inventory 

management involves methods or processes and is a fundamental requirement prior to 

considering inventory or supply chain optimization. 
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1.2.2 Inventory Optimization in Software Applications 

“Few supply-chain problems have proved as difficult as inventory optimization” 

according to Murphy (2003:1). He compares managing inventory levels across the 

supply chain, so as to consistently meet customer requirements at the least possible cost, 

to squeezing a balloon: air that gets pressed out in one place pops up somewhere else.  

One reason is that functional solutions tend to optimize a single point in the chain 

without taking into account the impact of these changes on other areas. Moreover, 

determining just the right amount of each product to make, how much to place where, 

when to re-order and in what quantities, are very hard problems to solve. Supply and 

demand variability precludes the use of linear algorithms that is used to optimize other 

areas of the supply chain. 

 

A report by Aberdeen Group found that more than 60% of companies use overly 

simplistic inventory management methods, such as ABC inventory policies or simple 

weeks-of-supply rules for products. These companies frequently have 15-30 % more 

inventory than they need and lower service levels.  Less that 5 % of companies surveyed 

are factoring in total supply chain variability when determining inventory policies 

(Enslow 2004:1-17). 

 

According to Murphy (2003:1) companies are trying to deal with the inventory problem 

from an execution perspective.  They use visibility and alerting tools to get an early 

view of where the plan is wrong in order to ensure that corrective action can be taken.  

While helpful, this approach is not a substitute for optimizing inventory levels across 

the chain.  Execution tools can go a long way toward solving supply disruptions, but 

often resolution is not responsive enough, resulting in more buffer inventories. 

 

Academic research has resulted in significant breakthroughs in stochastic modelling 

(problems with a high degree of variability). Mathematical algorithms invented in the 

1990’s and tested over several years at individual companies, are now coming to the 
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market in the form of new Inventory Optimization products.  These solutions promise to 

change the way companies set policies on safety stock, not just for finished goods, but 

across entire supply chains, with huge potential for savings.  These optimization engines 

are highly sophisticated with algorithms that consider consumption, supply, various 

lead-times and then determine the amount of inventory required at different location. 

“It’s a myth to think anyone will ever get to zero inventory, but inventory optimization 

engines are the next step in that direction,” according to Mary Haigis of Clarkston 

Consulting, Durham, N.C. (Murphy 2003:1). 

 

The Aberdeen benchmark study found that companies using new optimization methods 

commonly drove 20-30 % reductions in on-hand inventory and 10-20 % improvements 

in time to market (Enslow 2004:1-17).  The study also found that nearly half of 

respondents have shifted away from purchase orders or release notices for some of their 

suppliers. Instead, these companies are setting a minimum and maximum inventory 

target level for an item at a plant or other company location, and then ask the supplier to 

take responsibility for ensuring that inventory is maintained within that range – in 

essence, Vendor Managed Inventory.  Inventory reduction of 30 % and more has been 

realized in these enterprises and stock-outs have been drastically reduced.  New supplier 

collaboration technology is helping companies execute these min/max replenishment 

strategies in a way that enables suppliers to also reduce their own inventories.  

Companies need to be much more aggressive in using the new generation of multi-

echelon inventory optimization technology and inventory collaboration technology. 

 

The Inventory Optimization Tool marketplace is a niche market since all software 

vendors present in this market also deliver other software components such as 

Forecasting, Supply Chain Network Design, Enterprise Resource Planning (ERP), 

Retail software or Advance Planning Systems (APS). It is also interesting to note that 

all of the Inventory Optimization software vendors also deliver forecasting software, 

which is often closely linked to the Inventory Optimization functionalities, that is 
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optimization of inventory levels based on future forecasting data (Cap Gemini Ernst & 

Young 2003:4). 

 

Inventory Optimization tools typically contain functionalities such as: 

 

• Calculation of optimal safety stock levels based on customer service level 

parameters 

• Calculation of ABC classifications 

• Determination of the best ordering methodology  

• Best before date management and optimal lot size calculations 

• Analysis for stock / non-stock decisions 

• Dynamic safety stock level management 
 

Software vendors are increasingly realizing that the new direction in supply chain 

management will require them to have an inventory optimization module.  In reaction to 

this optimization packages are emerging in two forms:  Specialized Optimization 

Packages or Inventory Optimization modules as an addition to ERP systems. 

1.2.3 i2 Technology Seven Step Approach 

As an example of an approach used in commercial information technology, i2 

Technology, a leading supply chain optimization solution provider, deploys inventory 

optimization through a seven-step process as depicted in Figure 1.2 below (i2 

Technology, 2003). 
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Source: i2 Technology Inc. White Paper 2003:26) 

 

Figure 1.2:  The i2 Technology Seven Step Approach to Inventory Optimization 

 

The i2 Seven Step Approach is described below: 

a. Establish Baseline – Simulate the current situation and validate against history 

i2 starts the process by building a valid simulation model of the supply chain based 

on historical data.  

b. Analyze Inventory – Segment products and analyze demand 

Concurrently with the establishment of the baseline and through close cooperation 

with business leaders, an understanding of the companies’ business priorities, the 
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market environment and the customers are obtained. This leads to a profile of 

customers’ buying behaviour and lead-time expectations. These insights are used to 

design an appropriate segmentation and stratification strategy for the companies’ 

customers and products, driven by the companies’ customer expectations and 

business priorities.  Items may be analyzed for demand patterns, demand volumes, 

service criticality, product lifecycle, product structure similarities, lead times, and 

competitive posture. 

c. Optimize scenarios and measure sensitivity 

Candidate “to-be” scenarios are identified in cooperation with the companies’ 

business leaders.  Based on i2’s optimization technology, which takes into account 

anticipated demand and the companies’ supply chain constraints and business 

priorities, calculations are made in order to determine how much of what inventories 

must be carried and where and in what form, it should be. 

d. Validate optimized policies with simulation 

The optimized recommendations are then validated with a simulation run. The 

simulation allows i2 to get more detailed expected performance metrics pertinent to 

the supply chain for each scenario. 

e. Select best inventory policy scenario for business 

i2’s solution includes an analytics framework that provides metrics based on the 

SCOR model across the supply chain. The metrics can be tailored according to part, 

location, customer and time hierarchies and comparison of metrics at any level for 

part, location, customer and time, between scenarios or within each scenario can be 

made. This analysis helps the company to decide which “to-be” scenario is best for 

the business. 
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f. Implement business rules and inventory policies in the supply chain 

i2’s solution provides direct integration to supply chain planning business processes 

through standard API and i2’s Supply Chain Operating System (SCOS) architecture. 

g. Monitor service levels and inventory performance 

i2 provides a structured framework for continuous learning and process 

improvement using Six Sigma concepts. Standard reports are provided to monitor 

actual performance against plans.  These reports will also help the company 

understand if the assumptions that plans were based on, were valid or not. The 

analysis framework provides guided analysis paths that help to quickly identify root 

causes of execution problems. 

 

i2 bases their inventory management technologies on the concept of response buffers.  

The response buffer is the inventory point from which material is consumed to fulfil a 

customer order.  In the retail environment, for instance, the primary response buffer is at 

the customer facing location. The retail store’s shelf is the response buffer. If the 

customer fails to find the item he wants on the shelf, he simply goes elsewhere and the 

store loses the order. On the other hand, in a manufacturing environment with 

component inventories, assemblies, and finished goods, the response buffer can be 

anywhere in the supply chain, predicated by the business model. In a make-to-stock 

setting for instance, the response buffer is downstream in the supply chain similar to the 

retail store. In contrast, in a build-to-order environment, the response buffer may be 

upstream in the form of raw material. 

 

Response buffers play a fundamental role in inventory optimization strategies. i2 has 

identified four fundamental strategies that define, according to them, world-class 

inventory management.  These strategies are: 
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• Optimized segmentation - stratification of products based on common inventory 

characteristics and similar response buffer strategies 

• Optimized postponement - deals with decisions around which echelon (node in 

the supply chain) to position the response buffers in the supply chain 

• Optimized inventory levels - drives decision on how much inventory to carry in 

the response buffers 

• Continuous learning for process improvement - enables ongoing, incremental 

improvement of the inventory management process 

 

In addition to these strategies, i2 describe three variables fundamental in performing 

inventory optimization: 

 

• Demand distribution 

Demand distributions reflect the expected volume and variability for demand 

Normal distributions are typically used for medium and high volume demand 

streams. Poisson distributions are typically good to represent low volume or 

intermittent demand streams. The system will automatically choose the 

appropriate distribution based on demand data. 

 

• Order Lead Time distribution 

The order lead-time (OLT) is the time between the last change-order date and 

customer request date (CRD). 

 

• Supply Lead Time distribution 

The supply path of an end-item has lead times for each of the upstream echelons 

of the supply chain. Sometimes the lead-time may be insignificant but typically 

this can range anywhere from a few days to a few weeks. 
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Added to the fundamental variables, i2 believes that there are two key policy inputs to 

inventory optimization, namely: 

 

• Target Customer Service Level (CSL) 

• Minimum Offered Lead Time 

This is the minimum lead-time the planner would like to offer for a particular 

sub-scope of the supply chain. This means that the inventory optimization will 

plan for at least this much lead time regardless of the customer request date. 

 

With these concepts in mind, i2 then goes on to define an objective function and 

summarizes the inputs, outputs and decision outputs as follows (i2 Inventory 

Optimization User Manual 2005:6-10): 

 

• Objective Function 

Minimize total expected inventory cost while meeting target CSL 

• Inputs 

• CSL or delinquency target for end item buffers 

• Demand rate by time period 

• Demand variability 

• Cycle time & cycle time variability for each arc in the network 

• Key Outputs 

• Inventory targets for all buffers 

• Inventory Turns 

• Revenue (R) 

• Inventory carrying costs (R) 

• Delinquency (R) 

 

The primary outputs of inventory optimization are the optimized inventory 

targets for every buffer in the supply chain. These targets are passed on to 
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Supply Chain or Replenishment Planning.  Data is obtained from current ERP or 

legacy systems employed by the company. 

1.3 INVENTORY MODELS 

A storage point into and out of which commodities move or flow is termed an inventory 

system.  The inflow is characterised by replenishment from production sources and 

demand processes induce the outflow.  The net flow generates a cascade of problems 

pertaining to the control and maintenance of inventory systems.  There are numerous 

factors pertaining to the functioning of an inventory system and considering only a 

small number of factors in the formulation of an inventory model can result in a very 

complex model.  Accordingly, it is quite impossible to obtain a traitable mathematical 

model that will truly reflect the behaviour of an inventory system.  However, several 

nearly realistic models have been proposed and studied extensively in the past giving 

importance to the inherent stochastic nature of these systems.  Most of these models 

assume that the organisations maintaining the inventory have control in determining 

when and in what quantity the inventory have to be replenished, but have no control 

over the demand process.  A systematic account of the early analyses of stochastic 

inventory systems can be found in Arrow et al (1951, 1958), Beckmann (1961) and 

Hadley and Whitin (1963).  As the study of these systems progressed over time, several 

reviews have appeared to highlight the state-of-art (for example, see Aggarwal (1974), 

Nahmias (1978), and Raafat (1991). A review and critique of inventory problems that 

have been effectively solved is provided by Silver (1981), who also suggested some 

problems for future research.  Girlich (1984) executed a survey of dynamic inventory 

problems and models that can be implemented. 

1.3.1 Types of Inventory Models 

The various models of stochastic analysis of inventory systems are broadly classified 

into two types namely, periodic review systems and continuous review systems.  In 
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periodic review systems the state of the system is examined only at specific time 

intervals at equally spaced points in time and decisions such as placing of orders and the 

quantity to be added to the inventory are made only at these review points.  In 

continuous review systems, on the other hand, all events associated with the time 

evolution of the inventory are recorded and the stock level is reviewed continuously at 

the occurrence of each demand for the product in inventory.  Continuous review 

systems have occupied a wider scope for application since failure of review of the 

inventory level even at a single time point may prove disastrous for organisations in the 

defence and medical industries.  Inventory systems are also classified as either single 

product inventory systems or multi product inventory systems, based on the 

consideration of a single product or a variety of products in interaction. 

1.3.2 Single Product Inventory Systems 

Several models for single product inventory systems have been proposed.  Optimal 

ordering policies have been developed and studied extensively in the past by several 

researchers both for periodic and continuous review cases.  For example, see Beckmann 

(1961), Dirickx and Koevoets (1977), Wijngaard and Winkel (1974), Kalpakam and 

Arivarignan (1985, 88), Horrowitz and Doganso (1986), Beckmann and Srinivasan 

(1987), Ramanarayanan and Jacob (1987), Ravichandran (1988), Weiss (1988), 

Srinivasan (1989), Krishnamoorthy and Laxmy (1990), Kalpakam & Sapna (1996), 

Hargreaves (2002) and Krishnamoorthy and Manoharan (1990). 

1.3.3 Multi-product Inventory Systems 

Many real life situations exist in which multi-product inventories are required.  For 

example a pharmacist keeps a number of medicines of different brands, a ready-made 

clothing shop keeps dresses of different designs, colours, and sizes, a shoe store stocks 

shoes of various styles and sizes.  Hence the study of multi- product inventory models 

has drawn special attention recently.  Page and Paul (1976) and Chakravarthy (1981), 
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Sung and Chang (1986), Oneiva and Larraneta (1987), Aksoy and Erengue (1988), 

Amiya and Martin (1988), Goyal (1988) and Correnu (1990) have analysed multi-

product inventory systems. 

a. Ordering Policies 

In a multi-product inventory system the inventory control policies and the nature of 

demands may be different from that of a single product system.  First we consider 

inventory control policies.  The inventory of each product may be controllable 

independently or there may exist an interaction among the items and a joint control 

of the inventory may be required. For example demand for tyres for off-road 

vehicles will not affect the demand for truck tyres available at the same dealership.  

Inventory of such items can be controlled individually.  The demand for new and 

retreads of trucks may be highly dependent and need to be controlled jointly.  Hence 

we may have the following two types of re ordering policies for the control of 

inventory on products: 

(i) Individual order policy 

 This policy determines that each item is ordered according to its own single item 

policy. 

(ii) Joint order policy 

This policy determines that all jointly controlled items is ordered whenever an 

order for specific product order is triggered, irrespective of the inventory level of 

the other items. That is wherever replenishment occurs; every product is 

replenished to a specified inventory level. 
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b. Demand Interaction 

Considering the nature of demand, a demand may be for a single product or several 

products.  For example, the inventory of a dealership for new cars, in addition to 

new vehicles, consists of replacement parts for maintenance and optional 

accessories such as special trimming.  The buyer has the option to take one or more 

of these accessories.  It is also possible that a demand for a particular product during 

its stock-out may be substituted with another similar product in the inventory.  

Examples of products having at least partial substitutability include: 

 

• Consumer products such as different brands of toothpastes and different 

types of pastas or cereals. 

• Building products such as different brand of paints and containers of 

different sizes of the same brand. 

• Clothing products such as dresses in the same design and brand but in 

different colours. 

• Electrical products such as fluorescent light bulbs of different makes and 

ceiling fans of different brands. 

 

When this type of interaction occurs, large stock quantities of a particular product 

can be avoided, as it is substitutable by another similar product.  The available total 

inventory storage space can be shared optimally as to reduce the lost demand due to 

unavailability.  Kamat (1971) studied substitutability of demands by considering a 

two substitutable product inventory model with a prescribed order period and 

obtained a cost function.  McGillivray and Silver (1978) investigated the effect of 

substitutable demands on stock control rules and a heuristic approach for 

establishing the value of control parameters (the order up to levels) for the case of 

two products.  Parlar and Goyal (1984) considered a model of two substitutable 

products as an extension of the classical single period news-boy problem.  They 

have shown that the optimal order quantities can be found for each product by 
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maximizing the expected profit function, which is strictly concave for the wide 

range of parameter values.  Parlar (1988) used game-theoretic concepts (two person 

continuous game) to analyse an inventory problem with two substitutable products 

having random demands. 

1.3.4 Perishable Product Inventory 

Apart from these considerations, the perishability of products also plays a vital role in 

inventory theory.  Several inventory models of perishable products have been proposed 

and studied extensively.  A review of work done on perishable inventory can be found 

in Nahmias (1982).  Further and Weiss (1986), Nahmias and Schmidt (1986), Sarma 

(1987), Abdel, Malek and Ziegle (1988), Ravichandran (1988), Mandal and Phaujdar 

(1989) and Perry and Posner (1990) have analysed perishable inventory models.  In his 

survey article, Raafat (1991) has consolidated the work done on continuously 

deteriorating inventory models. Kalpakam and Sapna (1994, 96) studied a perishable 

inventory model with (s, S) policy and arbitrary lead times. 

a. Demand Interaction 

A different type of interaction can occur in the case of perishable inventory. 

Products such as vegetables, fish, etc. have a short life span and deteriorate in 

quality due to ageing.  The same applies to fashion clothing losing its value due to 

changing seasons or new trends.  In these cases there may also be a demand for an 

item slightly deteriorated in quality if the cost is reduced compared to the new or 

fresh product.  A multi product perishable inventory system with economic 

substitution, which deals with a product that perishes in a single period has been 

proposed and studied by Deuermeyer (1980). Parlar (1985) has also developed a 

Markov decision model to generate ordering policies for perishable (in two periods) 

and substitutable products. 
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1.3.5 Random Environment 

In the stochastic analysis of inventory systems, it is generally assumed that the 

distributions of the random variables, representing the number of demands over a period 

of time, the life of the product (in case of a perishable product) and the lead-time, 

remain the same and do not change through the domain of the analysis.  However, there 

are external factors that affect these random variables.  Seasonal changes can affect the 

demand rate, the perishing rate, the selling price and the cost of replenishment. The 

demand for umbrellas and rain shoes are higher in the rainy season than at other times 

of the year.  The selling price and the cost of replenishment also fluctuate over time due 

to inflation, non-availability of the products, cost of transport, etc.  The state of the 

environment in which the system is operating may randomly change due to weather, 

breakdown of storage facilities, etc. Consequently, consideration of the impact of the 

random environment on such inventory systems is absolutely essential. 

1.3.6 Deteriorating Inventory 

Balkhi (1999) developed a unified inventory model for integrated production systems 

with a single product.  The production, demand and deterioration rates for the finished 

product and the deterioration rates for raw materials are assumed to be known functions 

of time. 

 

The objective of the author is to determine the optimal values of the length of the 

production stage and the length of the inventory cycle that minimizes the total variable 

cost of the inventory system. The problem is converted to an unconstrained 

minimization problem, and when a solution to the underlying inventory system exists, it 

is the unique global optimal solution. A rigorous mathematical formulation proves the 

global optimality of the solution. The article is concluded with a numerical example that 

illustrates the solution procedure. 
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Rau et al (2003) worked on an integrated inventory model for deteriorating items under 

a multi-echelon supply chain environment. Demand, production and deterioration rate is 

assumed to be deterministic and constant with production rate greater than demand rate. 

Only a single supplier, producer, buyer and product are considered.   A model that gives 

the optimal joint total cost from an integrated perspective among the supplier, producer 

and buyer is obtained and Matlab is used to obtain the optimal solution.  A numerical 

example illustrates the use of the model and it shows that an integrated approach results 

in the lowest joint total cost as compared with the independent decision strategies. 

1.3.7 Techniques Used in the Study of Inventory Models 

a. Renewal Theory 

One of the important types of stochastic processes is the renewal process. Several 

researchers in the theory of renewal processes have made outstanding contributions, 

e.g. Feller (1965), Cox and Smith (1958), Smith (1958) and Neuts (1978).  A 

systematic account of renewal theory and its applications to diversified fields can be 

found in Cox (1962), Parzen (1962), Sahin (1990) and Medhi (1994).  A renewal 

process is a sequence of independent, non-negative and identically distributed 

random variables, which are not all zero with a probability of one. 

(i) Definition 

Let {Xn ; n = 1, 2, …} be a collection of non-negative random variables which 

are independent and identically distributed. Then {Xn} is called a renewal 

process. 

We assume that each of the random variable Xi has a finite meaning. A renewal 

process is completely determined by ƒ(⋅), the pdf of Xi.  Let 

 

S0 = 0 
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Sn = X1 + X2 + …… + Xn , n = 1, 2, … 

 

 

 

 

 

 

 

N (t) = max {n : Sn ≤ t} , t > 0 

 

Then N (t) is called the number of renewal up to time (t). The expected value of 

N (t), namely E [N (t)] is called the renewal function and is denoted by H (t). 

The derivative H (t), whenever it exists, is called the renewal density and is 

denoted by h (t). 

S0 S1 S2 SnSn-1

X1 XnX2

(ii) Renewal Equation 

The quantity of h(t) dt has the probabilistic interpretation that it denotes 

probability that the renewal occurs in the interval (t, t + dt). Since this renewal 

may be either the first or the subsequent renewal, the function h (t) satisfies the 

equation. 

 

∫ −+=
t

duutfuhtfth
0

)()()()(  

 

This equation is called the renewal equation. 

(iii) Key Renewal Theorem 

Let Q(t) be non-negative and non-increasing for t > 0 such that 
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∫ ∞<
t

duuQ
0

)(  

 

then 

 

∫∫ =−
∞→

cot

t
duuQxdHxuQ

00

)(1)()(lim
µ

 

 

where ][ iXE=µ  

b. Markov Renewal Processes 

These stochastic processes are generalisations of renewal processes and have 

become indispensable in inventory applications. A systematic and in depth study 

can be found in Pyke (1961a,b), Cinlar (1975a,b) and Medhi (1994). 

 

Let E be a finite set, N be the set of non-negative integers and R+ = [0,∞].  Suppose 

we have on a probability space ),,( PXΩ , random variables, 

 

+→Ω→Ω RTEX nn :,:  

 

defined for each , so that  Nn∈

 

0 = T0 ≤ T1 ≤  …≤ Tn

 

Definition 1:  The stochastic process };,{),( NnTXTX nn ∈=  is said to be a Markov 

renewal process with state space E provided that 

 

P[Xn+1 = j, Tn+1 – Tn ≤  t | X0, X1, …, Xn ; T0, T1, …, Tn] 
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= P[Xn+1 = j, Tn+1 – Tn ≤  t | Xn] 

 

for all , Nn∈ Nj ∈  and  +∈ Rt

 

Assuming that (X, T) is time homogeneous, that is, for any Eji ∈,  and , +∈ Rt

 

P[Xn+1 = j, Tn+1 – Tn ≤  t | Xn = i] = Q ( i, j, t) is independent of n. 

 

The family of probabilities 

 

Q ( ){ }, , ; , ,Q i j t i j E t R+= ∈ ∈  

 

is called a semi-Markov Kernel over E. We assume that ( ), , 0Q i j t =  for all i, j in 

E. 

 

For each pair (i,j) the function ( ), ,t Q i j t→  has all properties of a distribution 

function except that 

( ) (, lim , ,
t

P i j Q i j t
→∞

= )

0

 

 

is not necessarily 1. It can be seen that  

 

( ),P i j ≥   

( ), 1,P i j j E= ∈∑   

 

That is,  are the transition probabilities for some Markov chain with state 

space E. It follows from Definition 1 and the above that 

( ,P i j )
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( )1 0 1 0 1, ,..., ; , ,..., ,n n nP X j X X X T T T P X j+⎡ ⎤= =⎣ ⎦ n   

 

for all . This implies that  ,n N j E∈ ∈

 

{ };nX X n N= ∈  

 

is a Markov chain with state space E and transition matrix P. 

 

We write  for the conditional probability ( )iP A ( )0|P A X i=  and similarly 

for the conditional expectation of X given ( )iE X { }0X i= . We also assume that 

[ ]0 1 2 ... 0 0iP T T T= = = = = . We define 

 

( ) [ ], , , ; , ,n
i n nQ i j t P X j T t i t E t R+= = = ∈ ∈  

 

for all n . Then N∈

( )0 1
, ,

0ij

if i j
Q i j t

otherwise
δ

=⎧
= = ⎨

⎩
 

 

for all t ≥ 0; and n ≥ 0, we have the recursive relation. δij is the Kronecker’s delta 

function. 

 

( ) ( ) (1

0

, , , , , ,
t

n n

j E
Q i k t Q i j du Q j k t u+

∈

= −∑∫ )  

 

where the integration is over ( ]0, t  
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The expression ( , , )R i j t , which gives the expected number of renewals of the 

position j in the interval ( ]0, t , is given by 

 

( ) ( )
0

, , , ,n

n
R i j t Q i j t

∞

=

= ∑   

 

This is finite for any  and t < ∞. The ,i j N∈ ( ), ,R i j t  are called Markov renewal 

functions and the collection R ( ){ }, , ; , ,R i j t i j E t R+= ∈ ∈ of these functions is called 

the Markov renewal Kernel corresponding to Q. We note that for fixed  the 

function 

,i j E∈

( ), ,t R i j t→  is a renewal function. 

 

We can easily see from the various expressions above that [ ] 1R I Qα α
−= −  

where I is the unit matrix, and 

 

( ) ( )
0

, , , ;tQ i j e Q i j t dtα
α α

∞
−= >∫ 0

0

  

( ) ( )
0

, , , ;tR i j e R i j t dtα
α α

∞
−= >∫   

 

The class B of functions which we will be working with, is the set of all functions  

:f E R R+× →  such that for every i E∈ , the function is Borel 

measurable and bounded over finite intervals, and for every fixed 

( ),t f i t→

j E∈ , the 

functions and ( ) (, ,ni j Q i j t→ ), ( ) ( ), ,i j R i j t→ ,  both belong to B. 

 

For any function of f B∈ , the function defined by ©Q f
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( ) ( ) ( )
0

© , , , ,
t

j E
Q f i t Q i j ds f t t s

∈

= −∑∫  

 

is well defined and  belongs to B again. Hence the operation can be repeated, 

and the n

©Q P
th iteration is given by 

 

( ) ( ) ( )
0

© , , , ,
t

n n

j E
Q f i t Q i t ds f j t s

∈

= −∑∫  

 

We can replace Q by R and note that ©R f  is again a well defined function; that is 

f B∈  

 

( ) (
0

© , , ,
t

j E
)R f R i j ds f j t

∈

= −∑∫ s  

 

A function f B∈  is said to satisfy a Markov renewal equation if for all i  and 

 

E∈

t R+∈

( ) ( ) ( ) ( )
0

, , , , ,
t

j E
f i t g i t Q i j ds f j t s

∈

= + −∑∫  

 

for some function of . g B∈

 

Limiting ourselves to function f, g B∈ , which are non negatives and denoting this 

set by B+, the Markov renewal equation now becomes 

 

© ; ,f g Q f f g B+= + ∈  

 

This Markov renewal equation has a solution ©R g . Every solution f is of the form 
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©f R g h= +  

 

where h satisfies 

 

© ,h Q h h B+= ∈  

c. Semi-Markov Processes 

Let (X,T) be a Markov renewal process with state space E and semi-Markov Kernel 

Q. Define . Then L is the lifetime of (X,T). If E is finite or if X is 

irreducible recurrent, then L=+∞ almost surely. By weeding out those 

n
n

L SupT=

ω ∈Ω  for 

which , we assume that ( )n
n

SupT ω < ∞ ( )n
n

SupT ω = +∞  for all ω. Then for any 

ω ∈Ω  and , there is some integer t R∈ n N∈ . Such that Tn(ω) ≤  t < Tn+1(ω). We 

can therefore define a continuous time parameter ( )t t R
Y Y

∈
+

= which stake space E 

by putting Yt = Xn on {Tn ≤  t < Tn+1}. The process ( )t t R
Y Y

+
∈

=  so defined is called a 

Semi-Markov process with state space E and Semi Markov transition Kernel 

( ){ }, ,Q Q i j t= . 

d. Semi-Regenerative Processes 

Let a stochastic process ( )t t R
Z Z

∈
+

= be a stochastic process with a topological state 

space F, and suppose that the function t → Zt(ω) is right continuous and has left-

hand limits for almost all ω ∈Ω . A random variable T : Ω → [0,∞) is called 

stopping time for Z provided that for any t R+∈ , the occurrence or non occurrence 

of the event {T ≤ t} can be determined once the history Ht= σ (Zu : u≤ t) of Z before 

t is known. If T is the stopping time for Z, then we denote by H the history of Z 
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before T. The process Z= {Zt ; t ≥ 0} is called a regenerative if there exists a 

sequence S0, S1, S2 …. of stopping times such that 

(i) { };nS S n N= ∈  is a renewal process 

(ii) For any n, m N 1 2; , ,..., nt t t R+∈ ∈  and any bounded function f defined on En 

( ) ( )1 2 1 2
, ,..., ; , ,...,

m m m m ns t s t s t u m t t tE f Z Z Z Z u S E f Z Z Z+ + +
⎡ ⎤ ⎡≤ =⎣ ⎦ ⎣

⎤
⎦  

 

Definition 2:  Let ( )t t R
Z Z

∈
+

= be a stochastic process topological state space F, and 

suppose that the function t → Z(ω) is right continuous and has left hand limits for 

almost all ω. The process Z is said to be semi-regenerative if there exists a Markov 

renewal process (X,T) with infinite lifetime satisfying the following: 

 

i) for each  is a stopping time for Z , nn N T∈

ii) for each is determined by {Z, nn N X∈ u : u≤ Tn} 

iii) for each and function f defined on F1 2, 1, 0 ... mn N M t t t∈ ≥ ≤ < < < m 

 

( ) ( )1 2 1 2
, ,..., ; , ,...,

n n n m mi T t T t T t u m j t t tE f Z Z Z Z u T E f Z Z Z+ + +
⎡ ⎤ ⎡≤ =⎣ ⎦ ⎣

⎤
⎦  on  [Xn = j] 

 

In this definition Ei and Ej refer to the expectations given the initial state for the 

Markov chain X. 

 

Detailed treatment and MRP can be found in Pyke (1961a,b), Levy (1954), Cinlar 

(1975b) and Ross (1970). The survey of Cinlar (1975a) demonstrates the usefulness 

of the theory MRP and SMP in applications. 
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e. Stochastic Point Processes 

Stochastic point processes form a class of processes more general than those 

considered in the previous sections. Since point processes have been more studied 

by many with varying backgrounds there have been several definitions of the point 

processes each appearing quite natural from the viewpoint of the particular problem 

under study. [See for example Bhabha (1950), Khinchine (1960), Harris (1963) and 

Bartlett (1966)]. A stochastic point process is the mathematical abstraction, which 

arises from considering such phenomena as randomly located population or a 

sequence of events in time. Typically there is envisaged a state space X and a set of 

points Xn, from X representing the locations of the different members of the 

population or the times at which the events occur. Because a realization (or sample 

path) of any of these phenomena is just a set of points in time or space, a family of 

such realizations has come to be called a point process. (Daley and Vere-Jones, 

1971) 

 

A comprehensive definition of point process is due to Moyal (1962) who deals with 

such processes in a general space, which is not necessarily Euclidian. Consider a set 

of objects, each of whose state is described by a point x of a fixed set X of points. 

Such a collection of objects, which we may call a population, may be stochastic if 

there exists a well-defined probability distribution P on σ some field β of subsets of 

the space Φ of all states. We shall assume that members of the population are 

indistinguishable from one another. The state of the population is defined as an 

unordered set xn = {x1, x2, …. , xn} representing the situation where the population 

has n members with one each in the states x1, x2, …. , xn. Thus the population state 

space Φ is the collection of all xn with n = 0,1,2…where x0 denotes  the empty 

population. A point process is defined to be the triplet (Φ, β, P). For a detailed 

treatment of stochastic point processes with special reference to their applications, 

refer to Srinivasan (1974). A point process is called a regular point process if the 
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probability of occurrence of more than one event (0, ∆) is 0(∆), where ∆ is very 

small.  

(i) Product Densities 

One of the ways of characterising a general stochastic point process is enough 

product densities (Ramakrishnan 1950, 1958) and Srinivasan (1974). These 

densities are analogous to the renewal density in the case of non-renewal 

processes. 

 

Let  N(t,x) denote the random variable representing the number of events in the 

interval (t, t+x), dxN(t,x) the events in the interval (t+x, t+x+dx) and Pn(n,t,x)= 

P [N (t,x) = n]. The product density of order n is defined as: 

 

( ) ( )
1 2

1 2 , ,..., 0
1 2

, 1, 1, 2,...,
, ,..., lim

...n

i i
n n

n

N x i n
h x x x P

∆ ∆ ∆ →

⎡ ⎤∆ ≥ =
= ⎢ ⎥∆ ∆ ∆⎣ ⎦

  

 

where  x1 ≠ x2 ≠ …≠ xn , 

 

or equivocally for a regular process 

 

( )
( )

1 2

1
1 2 , ,..., 0

1 2

,
, ,..., lim

...n

n

i i
i

n n
n

N x
h x x x E =

∆ ∆ ∆ →

⎡ ⎤
∆⎢ ⎥

⎢ ⎥=
∆ ∆ ∆⎢ ⎥

⎢ ⎥⎣ ⎦

∏
 

 

where x1 ≠ x2 ≠ … ≠ xn

 

These densities represent the probability of an event in each of the intervals (x1, 

x1 +∆x1),   (x2, x2+∆x2), … , (xn , xn+∆xn ). Even though the functions hn (x1, 
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x2,…, xn) are called density, it is important to note that their integrates will not 

give probabilities, but will yield the factorial moments. The stationary moments 

can be obtained by relaxing the condition that all xi are different. 

1.3.8 Measures of System Performance 

In this section some of the important measures of inventory systems are explained. Let 

I(t) be the inventory level at time t and S be the maximum capacity of the inventory. 

Then the next inventory level distribution P(i,t|k) at any time t is given by 

P(i,t|k) = P[I(t) = i|I(0) = k]; i, k = 0, 1, … , S 

The limiting distribution P(i), if it exists, is defined as: 

 

( ) ( )lim ,
t

P i P i t k
→∞

=  

 

For a two product system let the state of the system be represented by the ordered pair 

(X(t), Y(t)), where X(t) is the inventory level of product 1 and Y(t) is the inventory level 

of product 2 . Then the inventory level distribution P(i,j,t|k,l) at time t is given by 

 

( ) ( )( ) ( ) ( ) ( )( ) ( ), , , , , 0 , 0 ,P i j t k l P X t Y t i j X Y k l⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦=  

 

1 2; 0,1, 2,..., ; ; 0,1,...,i k S j l S= =  

 

where S1 and S2 are the maximum inventory levels of product 1 and product 2 

respectively. The limiting of distribution P(i,j), if it exists, is defined as: 

 

( ) ( ), lim , , ,
t

P i j P i j t k l
→∞

=  
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The expected stock on hand of mean inventory level E(L), at any time for a single 

product system in the steady state is given by: 

 

( ) ( )
0

S

i
E L iP i

=

= ∑  

 

In any inventory model, apart from the distribution of the inventory level, the mean 

number of re orders places, replenishments made, demand satisfied demands lost in an 

arbitrary interval of time are also some of the important measures. 

 

In the context of a multi-product system allowing substitution, the number of demands 

for a particular product satisfied by a different product deserves considerations. The 

stationary roles of these events are used in the cost analysis of the system. To find these 

measures, we follow the procedure given below. 

 

Let N(η,t) denote the number of a specific type of event η (like re-orders, replenishment, 

demand for a product satisfied by the same product, demand for a product satisfied by 

another product, demands lost, etc.) in (o,t]. Then the expected number of n events in 

(o,t] is given by: 

 

( ) ( )
0

,
t

E N t h u duη⎡ ⎤ =⎣ ⎦ ∫   

 

Where h(u) is the first order product density corresponding to the event under 

consideration. In the long term, the stationary role of η events is given by: 

 

( )
( )

( )
,

lim lim
t t

E N t
E h

t
η

η
→∞ →∞

⎡ ⎤⎣ ⎦= = t  
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1.3.9 Cost Analysis 

a. Inventory Related Costs 

We consider the following costs in the analysis of the inventory models. 

(i) Holding Costs 

This not only includes the expenses incurred by storage facilities but also the 

amount invested that could have earned a return on investment elsewhere. This 

cost at any time depends upon the level of stock on hand. 

(ii) Re-ordering Costs 

When the stock in hand comes down to a level where re-order is necessary, an 

order is placed. This involves additional expenses with regard to transactions, 

paperwork, inspection and material handling costs. 

(iii) Cost for Demand Lost 

When demand is not met and also not backordered, the profit that would have 

been made is lost together with some goodwill. 

(iv)  Procurement Cost 

This is the price at which the items are bought either from a manufacturer or 

from the market. Most inventory control procedures recognise price fluctuations, 

and they are treated accordingly in this study. 
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b. Cost Optimization 

There are a number of objectives that may be sought after by inventory managers. 

These usually involve the minimisation (maximisation) of costs (profits) function, 

which could be either discounted or undiscounted. The planning period of horizon 

may be finite or infinite, In stochastic models the mean value of costs are measured 

and the criterion consists in the minimisation of the total expected cost pen unit time 

or of the expected discount cost over a finite or infinite horizon. The cost function 

will, in general, consist of the additive contribution of the procurement cost, the 

holding cost and the storage cost. 

 

Under the (S, s) policy, the objective function will, in general, be expressible as a 

function of two variables S and s. The resultant optimization problem consists in 

determining the optimal values of S and s to achieve the selected extension. For a 

multi-product system the maximum inventory levels of the various products and the 

re-order levels can be considered as variables for optimization. 

 

In this regard, it should be pointed out that there are two distinct approaches in 

formulating and solving the stochastic inventory problems both in theory and in 

practise.  

In the first approach the system is viewed as a multi-stage decision process and the 

technique of dynamic programming is employed in finding the optimal policy that 

minimises the total expected cost over the duration of the process. 

 

The following second approach is often used when the duration process is infinite: 

an ordering policy of a given type is chosen and the stationary behaviour of the 

inventory levels is analysed without reference to the cost structure of the problem. 

Such entities as the expected frequencies of orders and the expected quantity on 

hand, etc. are computed. A cost structure is then imposed on the system and the 
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stationary total expected cost rate for operating the inventory system is minimised. 

In this thesis, the stationary approach is adopted for optimal analysis. 

 

If C(t) represents the total cost in [0, t], then the expected cost rate, E(C), is given 

by: 

 

( )
( )

lim
t

E C t
E C

t→∞

⎡ ⎤⎣ ⎦=  

 

Notation: 

λi : Demand rate of product i, i = 1,2 

µi : Perishable rate of product i, i = 1,2 

Si : Maximum inventory level of product i, i = 1,2 

si : Re-order level of product i, i = 1,2 

Si-si : Quantity of product i re-ordered, i = 1,2 

di : Event that a demand for product i is satisfied with product i, i = 1,2 

g : Event that a demand for product 1 is satisfied by product 2 

li : Event that a demand for product i is lost, i = 1,2 

N(η,t): Number of η events in interval (0,t] 

δij : Kronecker’s delta function 

H(•) : Heaviside function 

© : Convolution Symbol 

ξ*(s) : Laplace transform of ξ(t) 

f(n)(t) : n-fold convolution of f(t) 

0

( ) 1 ( ) 1 ( )
t

F t F t f u du= − = − ∫   
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