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Summary

Ultra-high throughput DNA sequencing technologies have rapidly changed the face of genomic re-

search projects. Technologies such as mRNA-Seq have the potential to rapidly profile the expressed

gene-catalog of non-model organisms, albeit with significant bioinformatics related costs and support

required. This study developed automated data analysis workflows focused on the quality evaluation of

mRNA-Seq reads, de novo transcriptome assembly, transcriptome annotation and digital gene expression

profiling making use of data analysis tools available in the public domain and novel tools developed for this

purpose. The developed workflows were made available in a private instance of the Galaxy workflow man-

agement system. The developed workflows were used to perform the de novo assembly of a gene-catalog of

a Eucalyptus plantation tree. The fast growing and good wood properties of Eucalyptus tree species and

their hybrids make them excellent renewable resources of fiber for pulp and paper, and woody biomass

for bioenergy production. We produced an expressed gene-catalog of 18 894 de novo assembled contigs

from Illumina deep mRNA-Seq of six sampled plant tissues. Using a novel coverage-assisted re-assembly

approach, we were able to assemble near full-length biologically relevant transcripts. The assembly was

evaluated in terms of contig quality and contiguity, and functional annotations were assigned. Digital

expression profiling (FPKM values) of each contig across the tissues were calculated, which was used

to identify of tissue-specific sets of expressed genes. Polymorphism analysis of 13 806 high-confidence

contigs revealed a combined exon and untranslated region SNP density of 0.534 SNPs/100 bp, which

provides a good opportunity for designing high-density SNP assays in the expressed regions of the

Eucalyptus genome. The assembled and annotated gene catalog was made available for public use in

a user-friendly, web-based interface as the Eucspresso database (http://eucspresso.bi.up.ac.za). The
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developed database acts as a prelude to a more comprehensive mRNA-Seq whole-transcriptome reposi-

tory, the Eucalyptus Genome Intergrative Explorer (EucGenIE), a resource that will focus on identifying

transcriptional networks active during woody biomass development. Results from the study proved that

current bioinformatics software tools and approaches can be used to successfully assemble and charac-

terise a large proportion of the transcriptome of a complex eukaryotic organism. This approach can be

used to characterise the gene catalog of a wide range of non-model organisms using only data derived

from uHTS experiments.
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Chapter 1

An introduction to ultra-high-throughput DNA

sequencing technologies and their application in

genetics and functional genomics

1.1. Introduction

Eucalypt forest trees supply high quality raw material for the pulp, paper and wood industries,

and have been identified as important role-players in the search for renewable energy resources. Eu-

calypts are hardy, fast growing and have a high dry matter production and resprouting potential,

which makes them one of the most widely used tree species in industrial hardwood plantations (For-

rest and Moore, 2008; Rengel et al., 2009). In recent years, the global forestry industry has experi-

enced a steady shift in location from the northern hemisphere to the tropics and subtropics, where

it is actively competing with food crops for land space needed for expansion (Grattapaglia and Kirst,

2008). In South Africa, a recent report from the South African Department of Water Affairs and

Forestry (DWAF) indicated that 1.25 million hectares (1.1%) of South Africa’s total land area are

covered by forestry plantations, of which 36% (450 000 hectares) are planted with Eucalyptus species

(http://www2.dwaf.gov.za/webapp/Documents/FSA-Abstracts2009.pdf). The economic importance of

plantation trees as renewable energy and biomass producing crops makes them excellent candidates for

genetic improvement studies.
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Eucalypts have a high fiber count of uniform nature, a sought after property that has created high

demands in the pulp, paper and raw wood industries (Moore et al., 2008). Large numbers of genes are

affecting wood formation in forest trees, and have been actively investigated by various research groups

focusing on key properties, such as wood density, pulp yield, cellulose content, fiber length and lignin

content (for a review of the state of Eucalyptus breeding see Myburg et al., 2005). Improvements to

biomass yield and fiber quality with improved breeding programs and the direct application of biotech-

nology advances to crop development will play increasingly important roles in the future of the eucalypt

forestry industry.

Woody biomass has been identified as important in the search for renewable energy resources. The

United States Department of Energy (US-DOE) announced in 2007 their goal to reduce the usage of

gasoline in the United States by 20% by the year 2017 (http://genomicscience.energy.gov/biofuels/).

To achieve this, an expansion of the annual renewable fuel supply from a variety of plant materials,

including grasses, woodchips and agricultural wastes needs to occur. The bioenergy initiative actively

supported the research community in successfully determining the genomic sequence of the Populus

trichocarpa genome (Tuskan et al., 2006) and the Eucalyptus grandis genome (version 1.0 released in

January 2011, http://www.phytozome.net) by the Joint Genome Institute (JGI). It is expected that fast

growing, short-rotation woody crops such as Eucalyptus and Populus and their respective hybrids will

contribute up to 30% of the biomass of the so-called ”energy crops” (Hinchee et al., 2009).

Advances in the fields of biotechnology, genetics and computer science have resulted in an unprece-

dented growth in the amount of biological data being generated on a daily basis by the scientific commu-

nity. This aided the slow, but definitive paradigm shift from a hypothesis-driven scientific approach to a

data-driven, explorative approach. Next-generation DNA sequencing technologies (NGS) have opened the

floodgates in terms of biological sequence data generation. Since the first application of NGS by Margulies

et al. (2005), various technological improvements have led to higher and higher base pair throughput

from NGS platforms. As stated in the preamble of this document, the term ultra-high-throughput se-

quencing (uHTS) will be used in the rest of this manuscript to denote the different high throughput DNA
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sequencing technologies (next generation sequencers, second generation sequencers and third generation

sequencers, Werner, 2010).

High-throughput experiments now commonly investigate the range of gene expression products be-

tween different organisms, between tissues within organisms, or between tissues of the same organism in

different disease states in order to investigate underlying molecular basis of a phenotype. Pyrosequenc-

ing technologies have effectively revolutionised the approach and turnover time needed to sequence and

re-sequence genomes. Applications of uHTS technologies are evident in the advances made in the fields

of mutation discovery, metagenomic characterisation, non-coding RNA and DNA-protein interaction

discovery (Mardis, 2008). The data produced from these high-throughput experiments have resulted in

a biological data glut, where gigabases of data are produced in a single experiment and biologists are

now forced to design and follow efficient data management practices for experiments.

Sequencing large numbers of mRNAs from a sample forms the basis of the revolutionary expressed

sequence tag method (EST) used for identifying genes during the human genome project (Adams et al.,

1991; Venter et al., 2001). The costly nature, long experimental run time, low quality reads and general

inability to detect transcripts expressed at a low level has hampered the technology from being widely

used (Graveley, 2008). The parallel nature of next-generation sequencing makes it a ideal technology

for transcriptome sequencing, generating hundreds of millions of short reads (35-350 base pairs (bp)

long). Many research groups have employed a technology called mRNA-Seq (Section 1.3) to sequence

at various levels of detail and complexity the transcriptomes of a diverse set of organisms (Cloonan

et al., 2008; Denoeud et al., 2008; Mortazavi et al., 2008; Novaes et al., 2008; Nagalakshmi et al., 2008).

Transcriptome studies have revealed, among others, differences in transcript abundance, efficiency of

the machinery active during intron removal and detection of alternatively spliced transcripts between

different tissues and/or organisms of interest. Improvements in the technology in terms of read length,

the ability to perform paired-end sequencing, strand-specific sequencing and improved algorithms to

assemble short reads will provide even greater insight into the transcriptome landscape (Graveley, 2008).

The following sections will focus on the different ultra-high-throughput DNA sequencing platforms
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available in the market with specific focus on the applications of these technologies to the fields of genetics

and functional genomics. A brief discussion regarding the data management issues involved in working

with and analysing data from these platforms is then followed by a section dedicated to defining the

main problem statement of this study. The final section of the chapter includes an outline of the specific

aims and requirements in order to achieve the goals of this study.

1.2. Ultra-high-throughput DNA sequencing platforms

Ultra-high-throughput sequencing (uHTS) technologies have been categorically assigned to one of the

following groups: microelectrophoretic methods, sequencing by hybridisation, real-time observation of

single molecules and cyclic-array sequencing (Shendure et al., 2004). The current technological advances

made with cyclic-array sequencing has proven this to be the most successful approach by far, as is evident

in the implementation of this technology in various commercial products. These products, defined in

the literature as Next Generation Sequencing (NGS) platforms, or more recently Second Generation

Sequencing (SGS) platforms (Kislyuk et al., 2005), include the 454 Genome Sequencer (Roche Applied

Science, Margulies et al., 2005), Solexa technology (Illumina Genome Analyser, Fedurco et al., 2006; Tur-

catti et al., 2008) and the SOLiD platform (Applied Biosystems, Shendure et al., 2005). Very recently,

the term of Third Generation Sequencers (TGS) emerged with the advent of single molecule sequencers

(Schuster, 2008). Of these systems, the most prolific commercial offerings include the Heliscope Single

Molecule Sequencer (Helicos, Braslavsky et al., 2003) and the Single Molecule Real Time (SMRT) se-

quencing platform from Pacific Biosciences (Eid et al., 2009), but the nanoball sequencing platform from

Complete Genomics (Drmanac et al., 2010) and the innovative Ion Torrent (unpublished) platforms are

also available.

1.2.1. Cyclic array sequencing applications

The first practical implementations of uHTS technologies included the de novo sequencing and assem-

bly of the Mycoplasma genitalium genome (Margulies et al., 2005), and the re-sequencing of an evolved
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Escherichia coli strain (Shendure et al., 2005). Since these seminal papers were published, different

applications have been developed in which high-throughput technologies were employed in various bi-

ological scenarios which will be discussed in Section 1.3. Although the different uHTS platforms use

diverse DNA sequencing biochemistry and follow different methodologies in terms of array generation,

a general workflow common to most technologies can be envisioned. Most cyclic-array technologies rely

on the random fragmentation of a target DNA library, followed by the in vitro ligation of a specific set

of adaptor sequences. In the case of paired-end sequencing, a so-called ”jumping” library of mate-pair

tags with a controllable distance between them is generated (Ng et al., 2005; Shendure et al., 2005).

Following amplification of the target sequences on a custom array, the sequencing process is achieved by

alternative cycles of flushing enzymes across a target array in order to drive a biochemical process. At

every step during the sequencing process an image capture device is used to record the chemical reaction

taking place at every position on the array. Various downstream computational approaches are then

available to produce a string of characters with associated quality or confidence values representing the

DNA sequence hybridised to the specific position on the array.

454 GS FLX Pyrosequencing (Roche Applied Science)

The 454 pyrosequencer relies on the principle of ’pyrosequencing’ which employs the biochemical

cleavage of a pyrophosphate molecule released during nucleotide incorporation by DNA polymerase in

order to set off a chain of reactions, which will ultimately produce a burst of light from the cleavage of

oxyluciferin by luciferase (Margulies et al., 2005). Initially developed by 454 Life Sciences, the technology

was the first widely adopted high-throughput sequencing technology and has a well-established user

community. As per the general protocol, sequencing libraries are constructed that give rise to a mixture

of short, adaptor-flanked fragments. These fragments are then clonally amplified with emulsion PCR

inside picoliter reactors on a custom array, with amplicons captured to the surface of 28-μm beads (Tawfik

and Griffiths, 1998; Ghadessy et al., 2001; Margulies et al., 2005). A sequencing primer is hybridised

to the universal adaptor at the appropriate position and orientation, and the pyrosequencing reaction

initiated (Margulies et al., 2005).
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Several hundred cycles of pyrosequencing involves the inclusion of a single species of fluorescently-labeled

nucleotides to the microtiter wells, and in wells where a base is incorporated, a pyrophosphate molecule

is released. One reaction takes place for every base that is incorporated in the sequence, which leads to

signal saturation when more than four or five bases are incorporated during homopolymer runs of the

sequence (Margulies et al., 2005). The nature of the technology results in asynchronous sequencing of

the wells, in other words when the ’A’-base reaction takes place, multiple reactions might take place in

some wells where more than one complimentary base is exposed. At the same time in wells where the

template does not have a complimentary base no reaction will take place. The incorporation of bases is

measured in sequence by a live capture of a charged coupled device (CCD, or camera) from the array.

At the time of writing, approximately 800 papers had been published making use of 454 pyrosequenc-

ing, including very diverse applications in metagenomics, novel and re-sequenced genomes and plasmids,

population diversity determination, RNA discovery and function inferences, epigenetic studies, transcrip-

tome studies and genome structural variant investigations (for a review on the use of high-throughput

sequencing technologies in functional genomics, see Section 1.3). The GS FLX Titanium series produce

between 400 and 600 million high quality bases per run with an average read length of 400 bases, which

amounts to just over 100 million high quality reads per run. The long read lengths make this technology

ideal for de novo genome sequencing projects of various organisms (http://www.454.com). The issue

with the homopolymer run base calls is an inherent feature of the technology, and can only be overcome

by employing a more sensitive light intensity detection system (Rothberg and Leamon, 2008).

Illumina Genome Analysis (Illumina)

The development of the Illumina platform was derived from the initial work of Turcatti and colleagues

on benzene-1,3,5-triacetic acid (BTA) and reversible deoxynucleotide terminators (Fedurco et al., 2006;

Turcatti et al., 2008). The core methodology consists of adaptor-flanked DNA fragments of a couple

of hundred base pairs that are amplified by a bridge PCR method. During this phase of the bridge

PCR protocol, both forward and reverse primers are attached to a glass surface, in such a manner as

to allow for the grouping of all amplified constructs from a single template in a cluster. During each
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step of the bridge PCR, the reaction alternatively extends the template sequence with Bst polymerase

and then denatures the double stranded sequence with formaldehyde (Turcatti et al., 2008). After

the amplification step, each cluster on the glass array should be represented by roughly 1 000 clonal

amplicons, thus the initial concentration of the sequencing library needs to be known. The amplification

process is highly parallelised, resulting in several million clusters amplified at distinct positions within

each of the independent lanes on the array, or flow cell (Turcatti et al., 2008). After cluster construction,

the amplified constructs are denatured into single strands, and a sequencing primer is hybridised to the

adaptor.

The sequencing process involves the single base-pair extension of the template sequence with a mod-

ified deoxynucleotide base. The deoxynucleotide base is modified in two ways; first, it is a reversible

terminator, and secondly; it is fluorescently labeled to correspond to each of the four nucleotide bases.

After incorporation of the modified deoxynucleotide base on the sequencing strand, chemical cleavage is

needed to remove the 3’ hydroxyl position, and the attached fluorescent molecule again starts a chain of

reactions ending in the emission of a light signal. A CCD device captures the signal and the incorporated

base is then computationally determined in downstream analysis of the images (with the Illumina analysis

tools Firecrest and Bustard). The array is then prepared for the next cycle of base incorporation by

enzymatically removing the blocking position of the incorporated base, and the next round of bases are

flushed over the array. At every cycle of the sequencing process, only one base can be incorporated on

the sequencing strand resulting in synchronous probe sequencing.

In contrast to the 454 sequencing, Illumina tends to focus on throughput rather than the lengths of

the reads obtained from a sequencing run. At present, read lengths of up to 100 bp are possible, but

there is a drop in quality of the reads as the read reaches the maximum read length. An example of the

drop in quality of a 76 bp run of sequencing is presented in Figure 2.4, where a drop in base-quality can

be observed from around base 68. The development of the paired-end protocol, where the both ends of

the amplicons are sequenced, together with the extremely high-throughput (500 Gbp) on the HiSeq2000

platform, has made this technology ideal for genome re-sequencing and transcriptome studies where
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the digital expression on a specific transcript can be measured (http://www.illumina.com). The factors

limiting the technology to produce longer read lengths include the incomplete enzymatic cleavage of the

fluorescent labels or terminal moieties, which leads to a decay in the detection signal and eventually

leads to dephasing of the reaction (Shendure and Ji, 2008). Illumina technology suffers from a base

substitution error, rather than an insertion or deletion as observed with the 454 platform. Average raw

error rates have been reported to be in the order of 1-1.5%, but higher accuracy bases with error rates

down to 0.1% can be achieved (Shendure and Ji, 2008).

SOLiD (Applied Biosystems)

The original work of Shendure et al. (2005) and patents by McKernan et al. (2006) directly led to the

development of the unique two-base encoding methodology behind Applied Biosystem’s SOLiD system.

As with the other systems discussed thus far, a fragmented DNA library of adaptor-flanked regions serve

as the starting point for this technology. Cloning of the fragments is achieved with emulsion PCR, with

the amplicons captured to the surface of 1μm beads (Dressman et al., 2003). After breaking the emulsion,

the amplicon-containing beads are immobilised to a solid planar substrate in order to generate a dense,

disordered array of beads (Shendure and Ji, 2008). After the addition of a universal primer that ligates

to the amplicons, the rather complex sequencing process can begin.

A notable difference between the SOLiD and the methods mentioned previously is that the sequencing

reaction is driven by a DNA ligase rather than a polymerase, and is achieved by ligating a degenerate

fluorescent octamer to the template (Shendure et al., 2005). The octamer mixture is structured so

that the identity of a specific base in the octamer corresponds to the fluorescent label of the octamer.

After ligation and image capture with a CCD, the octamer is chemically cleaved between positions three

and six, removing the fluorescent label. In effect progressive rounds of octamer ligation results in the

sequencing of every fifth base (Shendure and Ji, 2008). After several cycles, the extended primer is

denatured and the system is reset to its original state. The process is repeated, each time sequencing

a different position in the octamer by either using an initial primer of a different length or by using a

different position in the octamer as the fluorescent label. An additional complication to the system is
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that an error correction method is in place. Effectively two adjacent bases correspond to the selected

fluorescent label, and each base position is then queried twice, once as the first base and once as the

second base, during a given cycle. A graphical representation of the sequencing cycle with the two base

encoding system can be viewed on the company’s website (http://www.appliedbiosystems.com).

The result from the two-base encoding system is that very accurate base qualities (>99.94 % accuracy)

are achieved with the SOLiD system (http://www.appliedbiosystems.com). Read lengths were initially

limited to 36 bp, but steadily increased to 75 bp. The high quality of the reads, as well as the very

high-throughput of 300 Gb per run from the SOLiD 5500xl System puts it in the same application space

as the Illumina platform. The confidence in the quality of the reads also provides a good platform for

polymorphism studies. Since the output from the SOLiD system is in ”color space” and not ”base space”,

decoding of the reads into base space needs to occur before any analysis can be performed on the results.

Most widely used sequence mapping and assembly tools have been adapted to cater for working in ”color

space”, and a variety of converters exists which will convert ”color space” reads to ”base space”.

Complete Genomics (Complete Genomics)

Drmanac et al. (2010) described another DNA sequencing technology making use of self-assembling

DNA nanoarrays and demonstrated it by re-sequencing three human genomes. The technology employs

recursive restriction site cutting (type IIS restriction enzymes) and directional adaptor insertion methods

to produce circled DNA replicated many times with a polymerase in order to create DNA nanoballs

(Drmanac et al., 2010). These nanoballs are attached to a photolithographic surface, and the sequence

adjacent to the inserted directional adaptor sites sequenced using a high-accuracy combinatorial probe

anchor ligation (cPAL) technology. cPAL uses degenerate anchors in order to read up to 10 bp adjacent

to the inserted adaptor sites, with similar read accuracy across all the bases read. This method produced

between 31-35 bp mate-paired reads.

Using nanoarray sequencing the average amount of sequence produced from three human genomes

ranged from 124 Gb to 241 Gb, which corresponds to a coverage between 45X and 85X (Drmanac et al.,

2010). In terms of sequence quality and polymorphism calls, the authors achieved confident diploid calls
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for up to 95% of the theoretical 98% of a Yoruban female genome (HapMap id: NA19240), with close to

94% of the SNP positions called (99.15% accuracy) in the HapMap phase I/II for the caucasian genome

(NA07022).

Ssequencing-by-synthesis, and sequencing-by-ligation-based technologies use chained reads, where the

substrate for cycle N+1 depends on the product of cycle N. The ligation-based approach described by

Drmanac et al. (2010) uses an unchained approach, where complete probes are ligated to the target

sequences, and the sequencing process does not depend on driving the reaction to completion with high

concentrations of labeled nucleotides as used in other methods. Because of the lack of high concentrations

of purified fluorescently labeled substrates, the average cost per sequenced genome was reduced to under

US$4 400. The short reads obtained from this technology and the late introduction of the commercial

product to the market are some of the initial hurdles to overcome in order to ensure widespread adoption,

but with the reduced cost this can be an attractive platform alternative to the Illumina and SOLiD

platforms.

1.2.2. Single-molecule sequencing platforms

Single-molecule sequencers have been earmarked as the next big technological development aiming

to achieve the target of sequencing a human genome for US$1 000. At the time of writing, only the

Helicos Biosciences system was available as a commercial application, but the commercial launch of

the Pacific Biosciences Single Molecule Real Time (SMRT™) system was imminent according to the

company. The Ion Torrent system was first announced at the 2010 Advances in Genome Biology and

Technology (AGBT, http://agbt.org) meeting, and received much attention that warrants its inclusion in

the following section. Oxford Nanopore’s sequencing system is still in development, and little information

is available on the technical aspects of the system, and is therefore not covered in this review.

SMRT™ sequencing (Pacific Biosciences)

The technology that led to the development of Pacific Biosciences’ single-molecule sequencer was first

described by Eid et al. (2009). The technology also relies on the incorporation of a fluorescently-labeled
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nucleotide complementary to the target strand being sequenced. A notable difference with the nature

of the fluorescently-labeled nucleotide, is that the nucleotide is labeled on the phosphate group. This

labeling strategy has the effect that the fluorescent label is naturally cleaved from the nucleotide together

with the phosphate group during nucleotide incorporation into the synthesized strand. Another unique

feature of the Pacific Biosystems system is that rather than fixing the DNA template to an array and

flushing enzymes across it, the DNA polymerase enzyme is fixed to the array, with fragmented DNA and

labeled nucleotides flowing over the array. The technology involves binding a DNA polymerase (Φ29) on a

polyglycol-covered silica surface without direct interaction between the protein and the silica surface (Eid

et al., 2009). The seating of the polymerase protein occurs inside a zeptoliter (10−21 liter) well, which is

small enough to allow a single fragmented DNA strand to enter, along with labeled nucleotides. Multiple

wells are constructed in an aluminum cladding, known as the Zero-mode Waveguide (ZMW), in which

the sequencing reaction occurs. Apart from functioning as a micro-reactor for the sequencing reaction,

the ZMW reduces the background light noise which occurs in other wells on the ZMW, and allows for the

detection of the light emitted from a single molecule of the fluorescently-labeled phosphate as nucleotides

are incorporated by polymerase in real time (Single-molecule, real time (SMRT™) sequencing, Eid et al.,

2009). Since the whole process proceeds as fast as the DNA polymerase can incorporate bases into the

template sequence, an average per base incorporation rate four orders of magnitude faster than second

generation sequencers can be achieved. By simply manufacturing more wells on the ZMW, the reaction

can occur in parallel, and comparable base pair throughput should be achievable in the future.

The use of SMRT™ sequencing has led to the development of a novel method of DNA circularisation,

coined SMRTbell™, for consensus sequencing of the same molecule (Travers et al., 2010). Using these

circular templates which represents a linear DNA fragment, multiple passes of sequencing are performed,

providing multiple copies of the same molecule. A demonstrative application of the technology was in

re-sequencing a housekeeping gene (aroE132) with a single nucleotide difference between two strains of

Multiple Resistance Staphylococcus aureus (MRSA, the FDA209 and Mu50 strains). By mixing the DNA

fragments of the aroE132 gene from these two strains in different ratios, the robustness of the system to
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detect the frequency of a single nucleotide difference within the samples was detemined (Travers et al.,

2010).

Flusberg et al. (2010) showed that detection of DNA methylation without bisulfite treatment was

possible with SMRT™ sequencing, avoiding some of the drawbacks of bisulfite sequencing, which includes

the costly sample preparations used in methylation studies, the constraints in primer design of a treated

genome, and the ambiguities in alignments of the generated sequences to the reference genome. By

measuring the pulse duration from the phosphate cleavage by DNA polymerase of the labled nucleotides,

a difference in the polymer kinetics inside the ZMW well between methylated and non-methylated sites

could be detected. The use of circular consensus sequencing aided in determining the parameters needed

to measure methylated-adenosine sites, but methylated-cysteine and hydroxymethylcytosine detection

needed additional kinetic sensitivity enhancements (Flusberg et al., 2010).

Pacific Biosciences recently revealed read lengths up to 10 000 bp, and promises reads up to 50 000

bp in the near future. The high accuracy of the bases and confidence in detected variants of samples

which are sequenced multiple times, are the major advantages of the technology, but the relatively low

multiplexing capabillity of 3 000 ZMW wells in the commercial package is a drawback. However, the

development system showcased at the 2010 AGBT meeting showed a massively parallel system, with over

80 000 ZMW wells capable of simultaneous sequencing in parallel. At the current sequencing speed of

almost two nucleotides per second, this system has the potential to make real-time diagnostic sequencing

a reality.

Heliscope Single Molecule Sequencer (Helicos Biosciences)

The Helicos sequencer is a single molecule cyclic array sequencer. It was developed based on the

research by Braslavsky et al. (2003). The key advantage of this technology over cyclic array sequencers

is that there is no amplification step required during the sequencing process, which implies that the

each signal detected on the array originates from a single molecule, and not a cluster of amplicons.

A highly sensitive fluorescent detection system is used to directly interrogate single DNA molecules

via sequencing-by-synthesis. Poly-A tailed fragmented DNA template molecules are captured by a
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surface-tethered poly-T array, yielding an array of primed, single sequencing templates. Fluorescently

labled nucleotides and DNA polymerase are then systematically washed over the array, interspersed by

chemical cleavage in order to detect the incorporated base via a CCD device.

Read lengths ranging from 35 bp to 70 bp have been reported with the system (Harris et al., 2008;

Pushkarev et al., 2009), and read accuracy has been reported to be improved with a two-pass strategy

in which the array of single molecules is sequenced, the original strand removed by denaturing, and

the remaining strand re-sequenced (Harris et al., 2008). This effectively yields a read in the opposite

orientation from the template. This two-pass strategy can reduce the error rate from 2-7% to 0.2-1%

(Shendure and Ji, 2008).

Due to the use of single molecules, a much higher density of unique fragments can fit on an array.

Although the read length only ranges from 25 to 55 bases, the highly parallel nature of the technology

allows it to achieve a throughput of between 21 and 35 Gb per run. The imaging system on the Helicos

platform was designed for a theoretical throughput of 1Gb/hour, but this has not been achieved due

to the practical constraints introduced by the chemical efficiency of the system. Functional genomic

applications of the Helicos system have included the sequencing of a viral genome and BAC library

(Harris et al., 2008; Bowers et al., 2009), digital gene expression of poly-A RNA transcripts generated

by strand-specific reads (Lipson et al., 2009; Ozsolak et al., 2009) and ChIP-Seq applications (Goren

et al., 2010). The comparatively short average read length produced by the system, and the relatively

late market introduction of the commercial application seem to be the major drawbacks in widespread

adoption of the system.

Ion Torrent

At the 2010 Advances in Genome Biology and Technology Meeting the founder of 454 Life Sciences,

Johnathan Rothberg, revealed an innovative approach of sequencing DNA using a semiconductor sys-

tem to detect the change in pH (due to the release of an hydrogen) when a base gets incorporated

during sequencing (http://www.agbt.org, http://www.iontorrent.com). This technology, described as

”Post light sequencing with semiconductor chips” lowers the capital investment needed to acquire a
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sequencer to below US$50 000, and the consumables for a run down to US$500 per sequencing run

(http://www.iontorrent.com). As of the beginning of 2011, no research articles have been produced

applying the Ion Torrent system in a research environment, and commercial instances of the sequencer

have not been sold. However, this technology promises affordable high-throughput sequencing available

without a large capital investment.

1.3. High-throughput DNA sequencing applications in genetics and

functional genomics

The technological advances made with uHTS technologies have provided biologists with most of the

required tools for a systematic approach to functional genomics. This has led to a gradual shift in focus

from studying isolated parts of a system, to analysing DNA, RNA and proteins in context of the whole

organism or cell. Genome re-sequencing efforts have led to better understanding and quantification of

sequence and structural variation between individuals within species (Fullwood et al., 2009; Pang et al.,

2010), and a more detailed blueprint of the genomic data organised in near complete chromosomes for

most model organisms. Another consequential development was the understanding that the same physical

blueprint, such as the genes embedded in a genome, exhibits massive variation in terms of functional

post-transcriptional form and levels of transcript abundance (Mortazavi et al., 2008; Nagalakshmi et al.,

2008; Pan et al., 2008; Sultan et al., 2008). The study of genotypic variation present in transcription

products gains merit when there is an observable effect of a mutation on a phenotype. This, together

with the observation that there are distinct differences in the structure and abundance of transcripts in

a cell, necessitates the study of transcriptomes not only in an individuals, but in a specific tissue and in

many individuals in order to observe transcriptional differences that can be associated with a condition.

Both these approaches are relying on the use of uHTS technologies to provide the primary data for

genome and transcriptome wide studies.
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De novo genome sequencing

Improvements in the chemistry used by sequencing platforms and the development of novel sequencing

techniques such as paired-end sequencing have led to a gradual shift in sequencing applications from

re-sequencing known genomes (Margulies et al., 2005; Shendure et al., 2005; Velicer et al., 2006; Hofreuter

et al., 2006), to de novo sequencing and assembly of prokaryotic genomes (Tauch et al., 2008; Reinhardt

et al., 2009), small eukaryotic genomes (DiGuistini et al., 2010; Nowrousian et al., 2010) and ultimately

large eukaryotic genomes like that of the Giant Panda genome completely assembled from Illumina reads

(Li et al., 2010b). De novo genome sequencing with uHTS technologies has been thought an impossible

task due the very short reads generated by these technologies, but mixing reads generated from different

technologies which complement each other in terms of the read length, the quality of the bases in the

reads, and the sequence throughput from these technologies have led to the development of cost-effective

and de novo genome sequencing and assembly strategies (Aury et al., 2008; DiGuistini et al., 2010;

Nowrousian et al., 2010).

The most robust genome sequencing method is known as BAC-end sequencing. The fundamental

apprach to BAC-end sequencing is to perform a shotgun fragmentation of chromosomal DNA, and

making use of Bacterial Artifical Clones (BAC) as vectors to sequence around 500 bp of each end of

the vector insertion point (Venter and Smith, 1996). BAC-end sequencing has been very successfully

applied in large genome sequencing projects, including the human genome project (Venter et al., 2001),

and was a key improvement over the generation of overlapping Yeast artificial chromosomes (YACs,

Venter and Smith, 1996). Making use of uHTS technologies has enabled the sequencing of the large,

complex and highly repetitive genome of barley from BACs (Wicker et al., 2006; Steurnagel et al.,

2009). Another sequencing approach in contrast to BAC-end sequencing is the whole genome shotgun

sequencing (WGS) of the organism in a single approach using NGS. Uncertainty over the feasibility of

using only uHTS technologies to sequence a large genome was laid to rest with the publication of the

Giant Panda genome (Li et al., 2010b). There are certain tradeoffs between WGS and BAC sequencing,

for example the increase in bioinformatics costs to assemble a genome produced from uHTS technologies.
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For large complex genomes full of repeat elements such as the cereal genomes, alternative methods to

BAC and WGS approaches exist. These methods aim to sequence very specific, pre-selected regions of

the genome. Some of these methods include restriction analysis, where genomic DNA is treated with a

restriction endonuclease, and then fragmented to remove abundant repeat fractions (Van Tassell et al.,

2008). Another approach can be isolating specific chromosomes for sequencing by means of chromosome

sorting (Dolezel et al., 2007; Simková et al., 2008a,b).

The application of uHTS technologies to sequence plant genomes is fast gaining momentum. Since the

initial sequencing of the first plant genome, Arabidopsis (AGI, The Arabidopsis Genome Initiative, 2000),

large genome sequencing projects including rice (Goff et al., 2002; Yu et al., 2002), poplar (Tuskan et al.,

2006), maize (Schnable et al., 2009) and soybean (Schmutz et al., 2010) genomes have been completed by

using Sanger sequencing. One of the first agriculturally important crops to make use of uHTS technology

(454 sequencing) to complete a genome sequence was the consortium to sequence a heterozygous grape

variety (Velasco et al., 2007). More examples of completed genome projects making use of a mixture of

traditional and high-throughput technologies include the cucumber genome (Huang et al., 2009a), BAC

sequences of the barley genome (Steurnagel et al., 2009), and a genomic survey of the perennial grass

Miscanthus (Miscanthus x giganteus, Swaminathan et al. 2010). A recent report on the applications of

uHTS technologies in plant genomics revealed that the sequencing of the cocao (Threbroma cacao), apple

(Malus domestica) and strawberry (Fragaria vesca) genomes currently underway make use of a mixture

of Sanger and uHTS approaches (Imelfort and Edwards, 2009).

Genome re-sequencing and variant discovery

Some of the first applications of uHTS technologies in a genomic context were the re-sequencing of

the bacterial genomes of Mycoplasma genitalium (Margulies et al., 2005), Myxococcus xanthus (Velicer

et al., 2006) and Campylobacter jejuni (Hofreuter et al., 2006). In these projects, the microbes of interest

were a lineage or strain that exhibits a biological phenotype different from the reference genome available

for the species. These reference genomes served as template scaffolds onto which the generated sequences
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were aligned, in order to detect single nucleotide polymorphism (SNP) and indel variations between the

reference genome and the newly re-sequenced genome. The genomic differences were then related to the

presence or absence of a biological phenotype, for instance antibiotic resistant genes or pathogenicity

islands in the re-sequenced genomes.

Human cancer genomics has made great advances in terms of disease-specific re-sequencing efforts,

revealing mutations in somatic tissues that are thought to contribute to tumor progression (Ley et al.,

2008; Mardis et al., 2009; Pleasance et al., 2010a). Exposure to detrimental environmental agents, such

as tobacco smoke, has also lead to genome re-sequencing of tissues under mutational pressure from these

exposures, providing insight into the genome-wide carcinogenic effect of these agents (Pleasance et al.,

2010b). Data from these studies led directly to the design of genome-wide association studies (GWAS),

which have the basic aims to identify genetic markers which can be used to predict an individual’s risk

to disease, and secondly to highlight the molecular processes involved in a disease, with the ultimate aim

of identifying potential therapeutic targets. A natural feedback of information is present in determining

genetic variation, where polymorphism information produced from genome re-sequencing efforts leads

to the design of population-based marker arrays, which in turn prompts investigation in very specific,

personal-whole genomes (Mir, 2009). Re-sequencing of genomes of agricultural importance tends to

focus on adaptive evolutionary traits and the detection of novel genetic markers, especially where large

differences in phenotypes are present in a species. The detection of a selective genomic sweep shared

by broiler populations involving metabolic regulation and reproductive genes in modern chickens is an

excellent example of identifying the effects of adaptive evolution and selection pressure in populations

(Rubin et al., 2010). Variant discovery and domestication studies have also been investigated in the

silkworm (Xia et al., 2009; Li et al., 2010a), soybean (anchoring markers on the genome by Hyten et al.,

2010), and rice (Huang et al., 2009b).

In human genetics, the search for disease phenotypes and population genetic markers led to the

establishment of the 1 000 Genomes Project (http://www.1000genomes.org). The latest release of the

data generated by the 1 000 genomes projects (released on 21 June 2010) included the data from three of
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the completed subprojects. This release included the data from nearly 700 human genomes, and aims to

produce an extensive catalog of human genetic variation, including SNP and structural variants. The final

project will contain data described as ”genomes of about 2000 unidentified people.....will be sequenced

using next generation sequencing technologies” (http://www.1000genomes.org). This achievement some-

what overshadows the phenomenal achievement of the completion of the first draft human genome in

2001 (Lander et al., 2001; Venter et al., 2001), and builds on the example set by the re-sequencing efforts

of the human genome by various other research groups (Bentley et al., 2008; Wang et al., 2008; Wheeler

et al., 2008; Ahn et al., 2009; Kim et al., 2009; McKernan et al., 2009; Pushkarev et al., 2009; Drmanac

et al., 2010; Schuster et al., 2010), it also serves as an excellent showcase of the advances made possible

by next generation sequencing during the last decade.

The development of high-throughput genotyping methods make the use of SNPs highly attractive in

especially agricultural applications (De la Vega et al., 2005). High-density SNP markers in a genome

are ideally suited for the construction of high-resolution genetic maps, the investigation of evolutionary

history within a population or species, and the discovery of marker-trait associations to aid marker

assisted selection (MAS) in breeding programs. During the discovery of marker-trait associations, a

dense set of markers are needed to cover the genome of interest to discover a casual mutation, or a SNP

which is in linkage disequilibrium with a casual mutation for the trait of interest (Aranzana et al., 2005).

The construction of high-density genetic maps requires the genotyping of a large number of individuals,

and platforms with the ability to genotype a large number of samples at a large number of polymorphic

sites are desired. Successful applications of high-throughput genotyping experiments include the design

of a barley SNP assay using the Illumina GoldenGate™ technology, providing the barley community

with a platform to investigate diversity with over 3 000 markers (Close et al., 2009). High-throughput

genotyping assays have also been developed for the unsequenced genomes of white and black spruce (Picea

glauca and Picea mariana, Pavy et al., 2008), the complex genome of soybean which contains a high

proportion of paralogous genes (Hyten et al., 2008) and the allohexaploid genome of wheat (Akhunov

et al., 2009). A future application of uHTS technologies in genotyping, would be designing SNP arrays
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for an organism for which a genome is not yet available, but for which gene information derived from

technologies such as mRNA-Seq can be useful. A large number of EST sequences from different lines

or individuals have already been used for marker identification in maize (Barbazuk et al., 2007) and

Eucalyptus (Novaes et al., 2008). The authors of the Eucalyptus article reported close to 24 000 SNPs,

and validated a proportion of the data with a success rate of close to 85%. Two more popular approaches

to SNP detection in portions of the genome is to make use of specific fragments produced from selective

amplification with restriction enzymes as demonstrated by van Orsouw et al. (2007) and the sequencing

of restriction-site associated DNA (RAD) tags (Baird et al., 2008).

Genome re-sequencing efforts also provide insight into other genome structural variations, such

as indels, copy number variation, inversions and translocations occurring between different genomes.

Re-sequencing of two naturally inbred Arabidopsis strains has led to the discovery of more than 800

000 SNPs and almost 80 000 indels ranging from 1 to 3 base pairs (Ossowski et al., 2008). Finding

longer indels between the genomes was reported as a problematic issue with the short reads (36 bp in

length), but the use of paired-end reads as implemented by most current high-throughput technologies

has resolved the problem (Ng et al., 2006; Fullwood et al., 2009). Structural variation detection has also

been successfuly employed in various human genome re-sequencing projects (McKernan et al., 2009; Kim

et al., 2009; Pang et al., 2010).

Transcriptome sequencing

The transcriptome of an organism can be defined as the complete set of mRNA transcripts produced

at any time in a cell. The transcriptome is by nature not in a steady state and across cell types, during

different conditions in the cell’s lifecycle, and in response to external and internal stimuli. The use of

expressed sequence tags (ESTs) has become a standard in obtaining information regarding the coding,

or expressed regions of an organism for which a sequenced genome is not yet available. Recently, the use

of uHTS technologies has been applied to sequencing the RNA landscape of a cell, by making use of a
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technology now commonly known as mRNA-Seq (Cloonan et al., 2008; Denoeud et al., 2008; Mortazavi

et al., 2008; Novaes et al., 2008; Nagalakshmi et al., 2008).

Various hybridisation-based methods have traditionally been used to study the transcriptome land-

scape, which have lately been complemented by sequence-based methods.. Traditionally, hybridisation-based

methods involved labelling cDNA with a fluorescent dye, and then hybridysing the cDNA to a set of

probes on a microarray. Specialised array chips, such as exon-arrays have been designed specifically to

identify spliced isoforms (Clark et al., 2002; Frey et al., 2005; Singer et al., 2006; Kapur et al., 2007),

while genomic tiling arrays have been used to identify novel transcripts of already sequenced organisms

(Bertone et al., 2004; Cheng et al., 2005; David et al., 2006). The development of parallelised sequenc-

ing technologies have increased the use of sequence-based approaches to gene expression profiling and

the genome-wide evaluation of chromatin immunoprecipitation (ChIP-seq) experiments. Some of the

limitations of hybridisation-based methods include the dependency on knowledge of the sequence of the

studied genome in order to manufacture the probes, the occurance of inter-probe cross-hybridisation on

the arrays, the presence of background noise and signal saturation, and some data-analysis issues in

terms of normalisation of data between experiments (Eklund et al., 2006; Okoniewski and Miller, 2006;

Casneuf et al., 2007; Royce et al., 2007).

The development of tag-based sequencing methods which include cap analysis of gene expression

(CAGE, Kodzius et al., 2006), serial analysis of gene expression (SAGE, Velculescu et al., 1995) and

massively parallel signature sequencing (MPSS, Brenner et al., 2000) allowed for the quantification of

the amount of cDNA present in a biological sample. The advantages of these methods were that a unique

hybridisation probe was not needed to detect each transcript and, in the case of SAGE analysis, multiple

SAGE tags could be sequenced together providing several measurements simultaneously (Bertone et al.,

2005). The initial widespread adoption of these methods was hampered by the high cost of Sanger

sequencing technology (Sanger et al., 1977) used to determine the base pair composition of the sequence,

and the technical problem that the very short tags (10-14 bp tags for SAGE analysis) generated by these

technologies did not map uniquely to the reference genome (Bertone et al., 2005; Wang et al., 2009),
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which made it very difficult to to distinguish transcript isoforms from each other. An improvement

in read length (21 bp Long-SAGE, Saha et al., 2002) overcame some of these limitations, but the use

of SAGE was prohibitively expensive until the power of HTS technologies was employed (Deep-SAGE,

Nielsen et al., 2006).

The development of a technology to sequence the transcriptome content of a biological sample has been

achieved by the major high-throughput sequence technology companies (see Section 1.2 for a overview

of the technologies). The premise of these technologies is the fragmentation of a population of RNA

(total RNA, polyA-selected RNA), which is converted to a library of cDNA fragments with adapters

attached to one or both ends. Each RNA molecule can then be sequenced in a high-throughput manner

from one (single end sequencing) or both ends, resulting in reads that can vary from 35-450 bp in

length depending on the technology used. Prior to sequencing, the RNA or cDNA molecules can be

amplified, but sequencing of RNA without amplification has the added advantage of providing expression

information in addition to the transcript sequences (Wilhelm and Landry, 2009). RNA-Seq technology

is slowly reaching maturity, and it offers some key advantages over hybridisation-based technologies,

with longer sequences than tag-based technologies, and a lower cost per base pair than traditional EST

sequencing technologies. It has also been shown that RNA-Seq detects differential gene expression with

greater sensitivity than expression (Li et al., 2008a; Marioni et al., 2008) and tiling microarrays (Hiller

et al., 2009).

Findings obtained with genome-wide analysis of transcribed sequences and potential transcriptional

start sites indicated that the traditional genome-centric view of the protein coding regions of the genome

needed to be replaced by a more complex transcript-centric view (Bertone et al., 2004; Johnson et al.,

2005; Carninci et al., 2006). These findings brought the idea that there is a defined set of isolated loci

transcribed independently into doubt, and indicated that numerous overlapping coding and non-coding

transcripts span the entire genome, and that those transcripts are of biological importance in the cell

system, which in turn led to a renewed research interest in transcription and transcription-related prod-

ucts in a cell. Recently, with the use of RNA-Seq to determine the proportion of the genome which is
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transcribed, evidence suggests that the initial estimation of transcription might have been excessively

overestimated (van Bakel et al., 2010). The earlier studies were based on tiling microarray data, and the

recent studies indicated that the microarray platform is susceptible to a high rate of false positives (van

Bakel et al., 2010). In the recent study, most of the transcripts not mapping to exonic regions, mapped

to introns, raising the posibillity that these RNA-Seq fragments belong to pre-mRNAs (van Bakel et al.,

2010). This study indicated that most of the genome is not appreciably transcribed in levels associated

with gene expression, but still leaves the question of what the function of low-level transcribed genomic

regions are.

One of the initial applications of mRNA-seq derived data was the discovery of novel transcripts,

with the simultaneous estimation of transcript abundance (Cloonan et al., 2008; Denoeud et al., 2008;

Mortazavi et al., 2008). Cloonan et al. (2008) sequenced poly-A captured RNA transcripts from two dif-

ferent mouse tissues, and demonstrated that alternative splice forms from transcriptionally active tissues

were readily detectable with mRNA-seq. The sequencing approach they followed (not normalising the

sequence libraries) led to the elucidation of transcript expression values, an approach initially proposed

by Mortazavi et al. (2008) for mouse transcripts. Mortazavi et al. (2008) developed a measure of gene

expression, measured in reads per kilobase of exon per million mapped sequence reads (RPKM), which

is a normalised measure of exonic read density. The use of RPKM values was widely adopted, and

various software packages utillise this measure to report gene expression. Furthermore, Cloonan et al.

(2008) demonstrated that the de novo detection of gene models is possible with high levels of expression

and alluded that allele specific expression detection is a near-certain posibillity in transcript expression

studies. In order to perform de novo prediction of gene models from a genome using mRNA-Seq, Denoeud

et al. (2008) developed a software package G-Mo.R-Se, and applied it to the recently sequenced Vitis

vinifera genome. The authors used mRNA-Seq (175 million Illumina reads) from four different tissues

and identified new exons in known loci and alternative splice forms, as well as entirely new loci in the

Vitis genome.

Data obtained from mRNA-Seq experiments led to investigations into the alternative splice complex-
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ity of genes active in different tissues. Previous methods using microarray profiling and cDNA sequencing

lacked the sensitivity or confidence due insufficient coverage needed to validate multiple splice events.

In the human genome, alternatively spliced transcripts were estimated to occur in two thirds of the

genes, but studies using mRNA-Seq estimated that 95% of multi-exon human genes in major human

tissues showed evidence of alternative splicing (Pan et al., 2008). Similar results were obtained in human

embryonic kidney and B cell line tissues, where an average of 7.2 splice junctions per gene was identified,

but employing a very lenient measure of one matched sequence to validate a synthetic splice junction

(Sultan et al., 2008). In Arabidopsis, the percentage of alternatively spliced genes was estimated at 42%

for multi-exon genes (Filichkin et al., 2010), which also surpasses the previous estimates of between 22%

and 33% (Campbell et al., 2006; Wang and Brendel, 2006; Chen et al., 2007; Barbazuk et al., 2008).

Intron retention was the most prevalent form of alternative splicing in Arabidopsis, and was frequently

associated with specific abiotic stresses of the plants, which led the authors to postulate the existance of a

functional transcript regulation mechanism similar to the regulated unproductive splicing and translation

(RUST) mechanism in animals (Lewis et al., 2003; Filichkin et al., 2010). These discussions regarding

different splice forms being actively transcribed in a cell under certain conditions raised the question

regarding in what quantities these splice forms are distributed across tissue types. In previous studies to

quantify transcript expression from mRNA-Seq data, reads were not allocated to specific isoforms, but

this feature was implemented in the Cufflinks software package (Trapnell et al., 2010). The authors

of Cufflinks detected 330 genes present in mouse myoblast tissue, which switched their dominant

transcription start site or splice isoform during a time-series experiment. Cufflinks also no longer relies

on any a priori information regarding the gene models of an organism, and is able to infer the gene

models directly from the combination of mRNA-Seq data and a genome.

Antisense transcription has been shown to play an important regulatory role in the eukaryotic genome.

A simple modification to the RNA-Seq method enabled the method to yield strand-specific transcripts

(ssRNA-seq, Parkhomchuk et al., 2009; Perkins et al., 2009). The method incorporated a deoxyUTP

during the second strand cDNA synthesis, followed by the destruction of the uridine-containing strand in
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the sequencing library, thus allowing the polarity of the transcripts to be known. The method was applied

to the yeast and mouse model organism datasets, yielding new information regarding promotor-associated

and antisense transcription (Parkhomchuk et al., 2009). Another genome-wide investigation of the tran-

scriptional landscape using ssRNA-seq revealed the presence of subtle regulatory RNA and small RNA

sequences in the genome of the bacterial pathogen Salmonella enterica serovar Typhi (Perkins et al.,

2009). The mapping of strand-specific reads to the S. enterica Typhi genome provided a single base pair

resolution map of active transcriptional elements, resolving overlapping annotated transcripts previously

made. The utilisation of ssRNA-seq data derived from large eukaryotic genomes will shed light on the

content of the pervasively transcribed transcriptome in future studies.

The combination of high-density genome-wide genetic markers with expression profiling data to iden-

tify trait-associated gene expression patterns, or expression Quantitative Trait Loci (eQTL) in mapping

populations is fast becomming a reality with the use of HTS technologies. Using data from 60 human Cau-

casian participants in the HapMap project, Montgomery et al. (2010) investigated the occurence of de-

tectable eQTLs from genome-wide collections of SNPs. The authors were also able to detect allele-specific

expression from the same expression dataset, which would certainly form the basis for expression studies

in hybrid mapping populations. According to the authors, a dataset of 10 million mappable fragments

are required in order to quantify alternative and highly abundant transcripts (Montgomery et al., 2010).

A similar study of 69 lymphoblastoid cell lines derived from Nigerian HapMap participants identified

over a thousand genes where genetic variation contributes to variation in expression and splicing (Pickrell

et al., 2010). Results from these studies confirm the observation that most eQTLs are located close to the

gene’s transcriptional start site, and that most eQTLs influence expression in a cis fashion (as oppose to

trans-regulated expression). In addition to the ability to quantify the expression of different transcript

isoforms, these studies also improved the annotation of the genome by detecting previously unannotated

exons (Pickrell et al., 2010).

mRNA-Seq has been shown to produce accurate measurements of the expression landscape of the

genome with unprecedented accuracy. Data derived from mRNA-Seq experiments has been used to
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detect the expression of known and previously unknown transcripts, to assemble transcriptomes from

organisms with no genomic information, to detect allele specific expression patterns, and identify novel

splice forms. Bioinformatics algorithms and data management approaches to handle these datasets are

evolving at a rapid pace in order to to handle mRNA-Seq data, and it is not uncommon for a software

package to undergo several version updates in a short period of time as the nuances of these datasets

are better understood. The computational needs of processing mRNA-Seq, or any uHTS dataset for

that matter, varies according to the intended applications, from a large number of CPUs needed in

loosely-coupled homology searches of tens of thousands of genes against public datasets in parallel, to

the massive memory requirements of de novo assemblers, and must be considered when a high-throughput

experiment is planned.

1.4. Core analyses associated with ultra-high-throughput Illumina sequence

mRNA-Seq data

One of the strengths of ultra-high-throughput sequencing platforms is in the various practical appli-

cations it has in genetic and genomic studies. For each of these applications, there exists a core set of

data analysis methods performed with the data in order to address the underlying biological questions.

The core data analysis tools range from estimating the quality of the bases received from sequencing

facilities, assembling of reads into larger contigs (transcriptomes or genomes), and mapping of reads to a

target sequence in order to detect structural variation, evaluate transcript expression, and perform SNP

mining or structural variation detection.

Determining the quality of Illumina mRNA-Seq data

Illumina results are generally presented to researchers in the FASTQ format, The preprocessing of

the images is performed by the sequencing facility, since it uses the proprietry Illumina Pipeline to

perform the base-calling from the image sources. The output from the Illumina Pipeline, or to be

more specific, the BUSTARD tool, is a FASTQ formatted quality FASTA file (Figure 1.1). The FASTQ quality
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values differ from the standardised Phred quality values prepared by Sanger-based sequencing machines

and software pipelines, and also differs depending on the version of Illumina Pipeline that was used to

perform the base calling. Phred-based quality scores are calculated by QPhred = −10log10(
1

$error_prob),

where $error_prob is the probability of the base call being wrong (Ewing et al., 1998; Ewing and Green,

1998). In order to present the score of a base in a single character, the QPhred score is converted to

a corresponding American Standard Code for Information Interchange (ASCII) character. ASCII is an

8-bit character set defining alphanumeric characters widely used in the computer industry. Since ASCII

32 is the whitespace (spacebar) character, Phred scores use ASCII characters 32-126 to represent qualities

from 0-93. The dynamic range of a Phred score ranges from 1.0 (a completely wrong base), through to

10−9.3, an extremely accurate base (Cock et al., 2010). This is also known as the fastq-sanger format.

The Illumina FASTQ format encode base qualities in two different scoring systems. Illumina Pipeline

(< version 1.3) defined a new scoring formula to determine the quality score: QSolexa = −log10(
$error_prob

1−$error_prob ).

The after-effect of this non-standard scoring formula resulted in a change of the ASCII-offset used to

represent a base score. Since the QSolexa score’s lower limit is -5, assuming a random read error prob-

ability of 0.75, a very low quality base will result in a whitespace character representing the quality

score (this occurs because ASCII characters 0-32 are all whitespace characters). Due to the fact that

whitespace characters can be interpreted differently by some computer operating systems, which should

be avoided in setting a standard where the quality values are aimed to be represented in a single line of

a text file (for example, the newline character is also a whitespace character), the ASCII offset of 64 was

chosen. This resulted that ASCII 59-126 was used, providing the QSolexa score a dynamic range from

-5 through to 62 inclusive (this format is generally known as the fastq-solexa format). After version

1.3 of the Illumina Pipeline, the scoring function changed to be compatable with the Phred standard,

but the ASCII offset of +64 remained, and the format is now known as the fastq-illumina format

(Illumina, 2008). For a review of the complete history of the FASTQ format, and also the introduction

of the ABI Solid CSFASTQ format (in color-space, not base or sequence space), please see Cock et al.

(2010). The discussion above was required to introduce the concept of format conversions of raw Illumina
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Figure 1.1: An example of an Illumina FASTQ formatted mRNA-Seq file. The example presented above
represents five 80 bp reads and the quality values associated with the reads (a). The sequence and quality
header lines are denoted by the @ and + symbols, while the line following the header line represent the
bases and the qualities associated with the specific base pair. Note that the whitespace lines in between
the reads were inserted to improve readability of the format. The header file contains the following
information separated by colons; the unique instrument name, the flowcell lane, the tile number within
the flowcell, the ’x’ coordinate and ’y’ coordinate of the cluster within the tile, the index number for a
multiplexed sample and if paired, the first or second member of a pair (b).
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data. Some assembly tools perform the conversion between the Illumina formats (both fastq-illumina

and fastq-solexa) to the traditional fastq-sanger formats if the input type is specified at run time.

There are also standalone conversion tools available to translate between the different formats for use in

analysis tools that do not provide the conversion ability.

De Bruijn graph-based genome and transcriptome assembly

The short reads produced by uHTS technologies are not suited to be assembled by the same sequence

assemblers as traditional Sanger sequencing reads. With longer Sanger reads, the assembly process relied

on the overlapping of reads which fit together to generate a consensus sequence, or contig. Very short

reads are not suited for the traditional overlap-layout-consensus based method of assembly (Zerbino and

Birney, 2008). Because of the large numbers of reads that are produced, short reads have a much higher

coverage over a specific region. An overlap-based method, where the actual reads are stored to generate a

consensus sequence, has computational limitations when handling billions of reads where large numbers

of reads have an overlap of all but one base pair. With overlap-based methods, each read forms a node

of a graph, and the nodes are connected by an overlay metric between the nodes (Batzoglou, 2005).

A fundamental shift in the methodology behind aligning short reads was introduced in 2001, with the

adaptation of de Bruijn graphs to represent and organise the relation between reads using an Eulerian

path approach to assemble sequence reads (Pevzner et al., 2001). In essence, de Bruijn graphs do not

represent whole reads as nodes in a graph, but rather break the reads into words of a pre-defined length

(length k, henceforth known as kmer(s)), and the reads are then organised in paths through the graph

in a determined order. By using kmers rather than reads, the redundancy of the graph is inherently

handled by the structure of the graph, without increasing the number of nodes in the graph. Every node

in the graph thus represents a single k-mer (non-redundant), and have explicit links to the neighbors, or

start and end positions of the kmer in a read (Pevzner et al., 2001). Various research groups have since

investigated the use of de Bruijn graphs in short read assembly software programs (Shah et al., 2004;

Bokhari and Sauer, 2005; Myers, 2005; Jiang et al., 2007; Zerbino and Birney, 2008).

The Velvet program was one of the first de novo short read assemblers implementing the de Bruijn
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graph assembly strategy. While transcriptome-specific assemblers were developed towards the end of

this study, during the initial phases of this project Velvet was the only assembler found to produce

cDNA contigs of reasonable length and quantity. Analysis with Velvet consists of two phases, first the

indexing of the input reads with the desired kmer, and secondly the traversing and tracking of the kmers

to construct the contigs. Velvet relies on coverage per kmer to eliminate erronous nodes, resolve repeated

kmers and find the path between the nodes which is most represented by coverage and constructs the

output sequence (Zerbino and Birney, 2008). Velvet is an example of a memory hungry application,

with massive memory requirements needed to store and traverse the kmer graphs. A recent experiment

of a single lane of 76 bp paired sequence (≈40 million reads), consumed close to 45 GB of RAM during

assembly with a kmer of 41 bp. The developers of the Velvet package are continuously improving the

memory footprint of the algorithms used.

Alternative assemblers which utilise the de Bruijn graph assembly approach include but is not limited

to the ABySS (Simpson et al., 2009) and OASES (Zerbino et al., unpublished) assemblers. ABySS was used

to succesfully assemble the human transcriptome of a patient with follicular lymphona (Birol et al.,

2009). Using ABySS, the authors assembled ≈65 000 contigs representing close to 30 Mb of the human

transcriptome. The OASES assembler was developed as an extension to the Velvet assembler with the

purpose of focusing on splice variant assembly of transcripts. The source code of the project was made

public early in 2010, and at the time of writing no peer reviewed publications had been published using

the appllication. These applications are viable alternatives for transcriptome assembly projects.

Mapping mRNA-Seq reads to a reference dataset

The requirements of a short read mapper can be seperated into a strategic requirement in terms

of alignment accuracy, and a more practical requirement in terms of a time constraint (Trapnell and

Salzberg, 2009). Firstly, the use of high-throughput sequence technologies for variant discovery in whole

genomes requires the accurate, high confidence alignment of the short read to the target genome. In

this application, the presence of repeat regions in the genome, as well as natural variation that occurs

between the reference genome and the re-sequenced genome needs to be accounted for, and the short read
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mapper needs to be robust enough to handle these issues confidently. Traditional alignment programs,

such as BLAST (Altschul et al., 1990) and BLAT (Kent, 2002) are also able to align short sequences to a

target genome, but the algorithms used in these aligners are not optimised for very short reads (35-76

bp), and the time required by these aligners to perform billions of alignments hampers these programs

from being serious contenders for high-throughput alignments.

RNA-derived reads can be mapped to a target sequence with different objectives; firstly, a fully

sequenced, annotated genome where gene models are already predicted, and the mapped reads are used

to calculate gene expression values; secondly an un-annotated or newly sequenced genome to detect

gene models or infer new genes; or thirdly, a set of genes or coding regions from a unknown genome

(typically the results from a de novo transcriptome assembly project). Several short read mapping

software packages are available, some of the first mappers include ZOOM! (Lin et al., 2008), MAQ (Li et al.,

2008b), Mosaik (Stromberg and Marth, 2008), SOAP (Li et al., 2008d), SHRiMP (Rumble et al., 2009)

and Bowtie (Langmead et al., 2009), with more recent updates to the algorithms implemented in SOAP2

(Li et al., 2009b) and the successor to Bowtie, BWA (Li and Durbin, 2009, Table 1.1). These short read

mappers typically works by selecting a defined wordsize usually from the beginning of the short read,

and then requiring some number of these words to fit perfectly to the target to find a match, while

mismatches are allowed to occur within the rest of the words (Li et al., 2008d ; Langmead et al., 2009; Li

et al., 2009b; Li and Durbin, 2009). Another common approach is to create a subsequence, or a spaced

seed, along the high quality 5’ end of the short read sequence, and again with some mismatch threshold

allowed, the seeds are aligned to the target (Lin et al., 2008; Li et al., 2009b; Rumble et al., 2009). The

next section describes in detail the difference in these two approaches, as implemented by the Bowtie

and MAQ aligners.

Mapping reads with the spaced seed approach

MAQ employs a spaced seed indexing strategy in order to align segments of a short read to a genome.

A short read is effectively divided into four sets of words of equal length, called a spaced seed. By

default, MAQ uses the first 28 bp of a short read for seed generation, and uses a word size of six to
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Table 1.1: A selected list of short read sequence alignment tools currently available for academic use.
These software tools perform essentialy the same function in aligning reads generated from uHTS tech-
nologies to a target genome, but implementing different mathematical, statistical and programmatic
approaches to achieve this goal.

Program
name

Description Reference

BFAST BLAT-like Fast Accurate Search Tool for aligning re-sequence data
to a genome. The program returns an accurate alignment for a
candidate alignment location where the short read corresponds to
the genome. It also includes support for two-base encoding
sequences from the SOLiD platform.

Homer et al.
(2009a,b)

Bowtie A very efficient short read aligner implementing the
Burrows-Wheeler transform in order to be memory efficient. Bowtie
can align up to 25 million 35 bp reads per CPU hour.

Langmead
et al. (2009)

BWA An update of the MAQ package, based on a backward search with
Burrows-Wheeler transform, effectively elimitating the alignment of
repeated short reads.

Li and
Durbin
(2009)

ERANGE Mapping mRNA-Seq data to genomes for quantification of
transcript expression. Makes use of the Bowtie aligner. Mortazavi

et al. (2008)
Genome
Mapper

Simultaneously aligning reads to multiple genomes by collapsing the
corresponding regions of the genomes into a single graph structure.
Used by the 1001 genomes project (http://1001genomes.org)
consortium.

Schneeberger
et al. (2009)

RMAP Used base quality scores in deciding the appropriate map position of
a read on a reference sequence. Smith et al.

(2008)
Slider and
SliderII

Specifically developed for the Illumina platform, and uses the
probability files instead of the sequence files in order to perform the
alignment to the reference sequence.

Malhis et al.
(2009)

SOAP and
SOAP2

Introduced gapped and ungapped alignments, and the use of a
paired- end module. SOAP2 update of SOAP, implementing a
Burrows-Wheeler transform algorithm.

Li et al.
(2008d ,
2009b)

TopHat Uses BWA to perform multiple alignments to a genome with
mRNA-Seq data in order to detect splice junctions. Trapnell

et al. (2009)
MAQ One of the first short read aligners to implement mapping quality to

the target genome. Not as computationally efficient as some of the
other programs.

Li et al.
(2008c)

Mosaik Produces gapped alignments using the Smith-Waterman alignment
algorithm, and forms part of a software suite which includes SNP
calling.

Stromberg
and Marth
(2008)
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generate the spaced seeds. If a perfect match between the read and the target sequence exists, then all

of the spaced seeds will match the target. If, however, a mismatch is present in the target sequence, then

one or possibly more of the spaced seeds will not match perfectly. When two mismatches are present

between the short read and the target sequence, at most two of the spaced seeds will not have a perfect

match (only one space seed will show a mismatch if the mismatches are close to each other, and do not

span a space seed boundary). By aligning pairs of spaced seeds (there are six possible pairs for the 4

seeds) to the target, it is possible to identify the possible locations on the entire target sequence where

the complete short read will match, allowing for at most two seed mismatches. The resulting list of

candidate positions are then compared to the complete read extending from position 28 onwards without

gaps to identify the correct mapping position. The sum of the qualities of the mismatched bases are then

calculated and stored together with a random number and the hit positions in an index. When two short

read sequences are mapped with the same mismatch quality scores, the one with the smallest random

number is selected as the best possible alignment. MAQ can be configured to use up to 20 spaced seeds,

and is then able to find all 28 bp seeds with up to 3 bp mismatches, although this means a mismatch

ratio of more than 10% between the seed and the target sequence.

Mapping reads with the Burrows-Wheeler transform approach

The Burrows-Wheeler transform (BWT) is a much more complicated method, but has the advantage

of running substantially faster (up to 35x when compared to MAQ) than an index-based method, and with

a smaller memory footprint (Langmead et al., 2009). Originally developed for lossless file compression

(Burrows and Wheeler, 1994), the transform involves building an extremely efficient transformation of the

target sequence, and then mapping a short read one base at a time to the BWT target. This is achieved

by combining the BWT with some opportunistic data structures and the building of a reverse index to

minimize backtracking, to allow for an efficient search space (Ferragina and Manzini, 2000, 2001). Each

new successively aligned character allows the algorithm to narrow down the possible location where a

short read might match perfectly. It has been shown that the original implementation of MAQ and SOAP

would take 35x and 300x longer than the corresponding Bowtie alignment (Langmead et al., 2009).
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Since the original publications of MAQ (development discontinued and replaced by BWA, Li and Durbin,

2009) and SOAP (updated as SOAP2, Li et al. 2009b), both of these these programs have been updated

to utilise the BWT algorithm for building a transformed target sequence. The much smaller memory

footprint (1.3 GB for the entire human genome), and the general 30x speedup of the BWT algorithm has

made this approach currently the most widely used tool for mapping short reads to a target sequence.

Mapping high-throughput genomic reads to a genome

High-throughput DNA sequencing is ideally suited for genome re-sequencing projects where variant

discovery is the main focus (see section 1.3 for a review of re-sequencing projects). The fraction of short

reads which map to the reference genome depends on several factors. If there is a minimal amount of

variation between the reference and the re-sequenced genome, the alignment algorithms improved are

capable to align from around 70-75% of single end reads to the reference genome, up to 85% with the

BWA aligner, and up to 98% with paired-end reads (Langmead et al., 2009; Li and Durbin, 2009). The

quality of the sequencing library, the amount of repeat regions in the reference genome, the length of

the reads and the insert size in the case of paired-end reads all influence the mappability of a short

read. Paired-end reads improves the mappability of a sequenced fragment by having two reads with a

known destance associated with the fragment. Paired-reads are specifically useful for improving fragment

mappability in cases where one of the reads aligns to a repeat region in the genome sequence. It has

been calculated that with 35 bp reads, the fraction of the human genome that is re-sequenceable is 85%,

and with paired-end reads with an insert of 170 bp, this fraction increases to 93% (Li et al., 2008b). Any

additional increase in short read mappability could only be obtained with an increase in read length and

having datasets of varying insert sizes available.

Mapping mRNA-Seq reads to a genome

RNA-derived reads, such as those produced by mRNA-Seq, strand specific RNA-Seq and total-RNA-Seq

protocols provided by Illumina require gapped alignments across gene splice juctions in order to map

sequenced reads to eukaryotic genomes. The computational approach to map reads to exon-exon bound-
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aries is different to genome derived short read mapping due to the possibility of a single read spanning

across two exons that were joined during transcript processing. The first approach to solve this problem

was to utilise the structure of known genes in determining the intron-exon boundaries of a gene, such as

implemented in the ERANGE package (Mortazavi et al., 2008). Another approach is to extract possible

junction sequences from the aligned genomic sequence with some form of machine learning algorithm,

for example a logistic regression classifier (Pan et al., 2008) and a support vector machine-like approach

(Schulze et al., 2007; De Bona et al., 2008). Unfortunately these methods only work for organisms for

which gene models are available, as the gene models serve as a required input to delineate the intron-exon

boundaries together with training data sets.

Because of the reliance on known gene models to map the RNA-Seq reads to fully sequenced genomes

as mentioned before, these methods are limited in detecting novel splice junctions. Another approach to

splice juction mapping was proposed and implemented by the two software packages TopHat (Trapnell

et al., 2009) and G-Mo.R-Se (Denoeud et al., 2008). These packages utilise the power of a BWT mapping

tool (initially only Bowtie, but Bowtie and BWA are now supported) to detect possible exons, and then

by joining the exons which share transcripts, remap the data in order to detect possible splice junctions.

Of the two packages, TopHat package is currently being actively maintained.

1.5. High-throughput DNA sequencing data management

Recent calculations from the Ontario Institute for Cancer Research indicated that since the advent of

uHTS, the cost of sequencing a base has been dropping faster than the cost associated with storing a byte

of data on a computational storage meduim (Stein, 2010). The author investigated the historical trends

in data storage prices vs. DNA sequencing costs, and found that the doubling time in sequenced base

pair per dollar was less than six months, exceeding the drop in disk storage cost on a logarithmic scale.

One of the fundamental problems in terms of sequence storage, is that a single base has multiple bytes

associated with it. During a uHTS run where the bases incorporated during the sequencing process is

captured by a CCD, the image needs to be converted from an image to a string representation, usually in
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basespace, but colorspace is also gaining prevalence in order to prepare the data for input into a variety

of analysis programs. A quality score is usually associated with the each base call, effectively doubling

the storage space needed for a base. Format incompatablilities, such as the case of the FASTQ format (

Section 1.4 on page 25) can require various duplicate versions of the same data to be stored as input files.

Different analysis tools produce various output files, which can be thought of as different representations

of a base, highlighting different features of the base, or the surrounding bases in terms of biological

relevance. The problem in terms of storage cost and expansion capabilities is thus compounded by the

already exponential growth of uHTS base throughput, and the non-linear relationship between a base of

sequence and the space required to store the biologial relevance of that base.

The nature of uHTS data requires a disciplined and structural approach to data management. The

different file formats required by software packages require that the data be duplicated between analysis

steps, increasing the data storage and computational cost associated with uHTS analysis. Tools devel-

oped for uHTS analysis are being made available to the community at a rapid pace, and an analysis

environment where these tools can be distributed to various users for immediate use and implementation

in data analysis workflows is essential.

1.5.1. Widely-used bioinformatics workflow systems

During the last decade, many bioinformatics research groups have dedicated resources to develop

mature automated and semi-automated analysis environments. The implementations of these systems

are as varied as the number of programming languages used to develop the system, and include execut-

ing complex analysis on local resources (Ergratis Orvis et al., 2010; Kepler Ludäscher et al., 2005;

Galaxy Goecks et al., 2010), on remote systems through web-services access (Taverna, Oinn et al., 2004),

or making use of distributed grid systems (Taverna, Galaxy). To evaluate different workflow systems,

one needs to critically evaluate the the relative strengths and weaknesses of these cyberinfrastructure

implementations.

Using dedicated, local resources for high-throughput data analysis has the the advantage of having
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complete control over the number of CPU cyles dedicated to a project. The downside of local resources

is firstly the cost of the resource, the cost of installing and maintaining a diverse set of analysis tools and

systems on the servers, and the investment in human capacity to fully utilise and maintain the hardware

components.

Web-services, grid and cloud computing offer attractive alternatives to overcome the initial capital

investment in hardware (Stein, 2010). One of the fundamental requirements of utilising a remote resource

for computing, is the access to fast and cheap network bandwith to the remote server for data transfer,

but this requirement often precludes the use of remote services from some institutions or research groups.

Access to these remote computing sites is also limited to the availability of CPUs at the remote sites at

any given time.

Taverna

Taverna (Oinn et al., 2004) was developed as part of the myGrid initiative for the composition and

execution of workflows in the life sciences domain. Taverna relies on the Simplified conceptual workflow

language (Scufl) to represent each step of a workflow as a single task. A graphical user interface (GUI)

was developed and packaged as part of Tavernawhich acts as a container in which Scufl-based workflows

can be constructed, without the need to learn the Scufl language. The workflows in Taverna rely on the

availabillity of programmatic access to bioinformatics repositories, such as GenBank, and analysis tools,

such as the EMBOSS suite of tools at the European Bioinformatics Institute (EBI), SOAPlab (Senger et al.,

2003) and BioMOBY (Wilkinson and Links, 2002). Access to the tool or repository is granted through a

web-service interface (Stein, 2002), which allows the consumer (the Taverna client) to query a database

or start an analysis tool on the host server remotely. The advantages of this type of architecture is that

data stored in large datacenters, such as the EBI, NCBI and DDBJ, are accessible to users accross the

world through a simple, standardised interface. Centers with access to large computational resources

can also expose analysis web-services to the community, and therefore allow smaller research groups with

limited resources to execute jobs with large computational requirements remotely. This service-oriented
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design of Taverna also allows it to connect to services that can submit jobs on a grid-like environment

for distributed computing.

Taverna has been successfully employed by many research groups, the biggest and most prominent is

the integration of Taverna into the cancer Biomedical Informatics Grid (caBIG) project, where Taverna

and the Web-service-Business Process Execution Language (WS-BPEL) are used in a service-oriented

data analysis environment (Tan et al., 2008, 2009; Missier et al., 2009). As explained above, the

service-oriented nature of Taverna relies on the abillity to connect to a host server to interact with

the data, but when the data is not mirrored on the host server, the data needs to be transfered to the

compute elements. This requires that either a reliable, fast and inexpensive network connection is needed

to connect to the remote services, or a duplication of the services needs to be present on a local network

where the data is already present.

The nature of uHTS data in general does not lend it to be readily distributed to various computing

locations. In most cases, the prohibitive factor is the cost and time needed to duplicate multi-GB datasets

accross many locations in order to perform analysis in parallel. Although the South African Research

Network (SANREN, http://meraka.org.za/sanren.htm) has made great progress in terms of providing a

fast and reliable cyberinfrastructure between South African research institutes and the rest of the world,

the availability of reliable bandwith at a high enough data throughput is still a major hurdle to overcome.

Kepler

The Kepler-project (Ludäscher et al., 2005, https://kepler-project.org) is an example of a data-driven,

scientific data analysis and knowledge discovery pipeline. This JAVA-based application is very similar to

the web-service-based implementation of TAVERNA, but relies on the Ptolemy II open-source software

framework which support an actor-oriented pipeline design (Eker et al., 2003). An actor can be seen as

a step in the analysis pipeline, where multiple actors can be connected to each other via data channels.

The Ptolemy II system was designed with heterogenous data in mind, and has been very successfuly

implemented in automated pipelines by scientific groups (Lee and Zheng, 2005; Lee, 2009; Leung et al.,

2009).
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Ergatis

Ergatis is a workflow management system optimised for paralellised analysis of constructed pipelines

making use of the Sun Grid Engine (SGE, Orvis et al., 2010). It is a workflow management system

targeted for working with genome sequence data, where analysis pipelines can be executed on a single

server, or distributed across large computing clusters. Ergatis was developed making use of standard

ontologies in bioinformatics, and supports input files in the Bioinformatics Sequence Markup Language

format (http://www.bsml.org), the Sequence Ontology for sequence feature annotation (Eilbeck et al.,

2005), and the Gene Ontology format for functional annotations (Gene Ontology Consortium, 2001). The

workflow system has the added capabillity of exporting results into a CHADO-based database (Mungall

et al., 2007), making it compatible with the GMOD set of tools (Stein et al., 2002). The Ergatis system

executes scripts or tools locally and does not require a web-service as interface, in contrast to TAVERNA

and Kepler, and offers a flexible user interface to manage and control executing workflows.

Galaxy

The Galaxy workflow system (Goecks et al., 2010) has been used by several research groups for

biological data analysis (Kosakovsky Pond et al., 2009; Gaulton et al., 2010; Peleg et al., 2010). The goal

of Galaxy is to serve as a layer of abstration on top of a myriad of underlying tools, and serve them to

regular users through an intuitive web interface. The inputs and results from various programs, as well

as the parameters used for each of these programs are stored in a history of a project or analysis step,

which can be shared with collaborators, used as a workflow for similair analysis steps, or archived for

publications. Almost any scriptable piece of software, including custom Python, PERL and R scripts can

be wrapped in the Galaxy interface allowing for the easy extension of the framework to include custom

tools. Galaxy hides the underlying complexity of the programs imbedded in it allowing users to focus

on scientific hypotheses, rather than technical issues associated with the software needed to perform the

analysis used to adress the biological questions.
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1.6. Problem Statement

The hypothesis is formulated that by making use of data from Illumina mRNA-Seq deep sequencing

data, the transcriptome of a complex eukaryotic organism like Eucalyptus can be successfully assembled

and characterised to such an extend that biologically relevant and accurate information can be obtained

regarding transcriptional control of growth and development.

In order to test the hypothesis, a structured approach is needed to first identify a suitable data

management and data analysis framework to aid in the analysis of uHTS data. The data analysis

framework will then be used to test the different parameters and settings of the software packages used

to assemble and annotate the Eucalyptus transcriptome. The framework should be readily extendible

with additional software tools that are not already implemented in the framework to aid in the analysis

and construct automated workflows to perform the data analysis steps.

The workflows developed should then be used to perform a de novo assembly and homology-based

annotation of the transcriptome of a Eucalyptus grandis x Eucalyptus urophylla plantation tree from

deep sequenced mRNA-Seq data. The assembly should be validated as far as possible without the aid

of the draft Eucalyptus grandis genome sequence, to validate that a de novo transcriptome assembly is

indeed possible. The assembled gene catalog should be characterised and annotated with homologs from

other angiosperm transcriptomes, and used to identify genes differentially expressed between xylogenic

and phytosynthetic tissues.

To allow access to the assembled gene catalog, a web-based system should be developed that stores

the contigs and corresponding annotations, and allows users to browse and search for contigs based on the

annotations assigned to the contigs. The gene expression (FPKM) of the contig in each of the sampled

tissues used perform the assembly should additionally be made available in the user interface.
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1.7. Specific research questions and aims

• With the current selection of open-source uHTS data management and analysis packages available,

is it possible to develop automated software workflows that perform DNA sequence analysis? In each

of the developed workflows, identify the key parameters that have an effect on the results from a

workflow. Where software tools are not present in the selected data management system, these tools

should either be developed or added to the system to successfully perform a de novo assembly and

annotation of a transcriptome dataset.

• To what extent can a transcriptome of a complex organism like Eucalyptus be assembled and evaluated

using only mRNA-Seq data? The workflows developed in the previous aim should be use to completely

assemble and annotate a large eukyryotic transcriptome. The assembled transcriptome should be

evaluated for contig contiguity and the presence of full-length contigs in the dataset, without the

aid of the Eucalyptus genome sequence. Functional annotation of the transcripts should be made in

an automated fashion, and the transcript dataset should be compared to other angiosperm datasets

in terms of the number and diversity of the assembled contigs. Finally, the gene expression profiles

(FPKM) values of the transcripts should be used to identify a set of differentially expressed genes in

xylogenetic and phytosynthetic tissues.

• Development of an intuitive, web-based Eucalyptus specific transcriptome resource that enables users

to query and browse the assembled transcriptome dataset based on annotations? The web-resource

should serve as a central repository for the data generated in the previous aims, and should be

considered as a development platform and extension point for future whole genome mRNA-Seq based

transcriptome sequencing and expression studies in Eucalyptus.

 
 
 



Chapter 2

A core bioinformatics workflow environment for

ultra-high-throughput transcriptome data analysis

Chapter preface

This chapter describes the development of software tools in the form of Galaxy workflows to address

very specific next-generation sequence analysis problems. The workflows address very specific bioin-

formatics steps during the analysis of uHTS transcriptome datasets. The developed workflows focus

on evaluating the quality of data from an Illumina mRNA-seq run, introduce a de novo transcriptome

assembly pipeline, describe an automated assemble pipeline, and also provides a framework for gene

expression (FPKM) calculation of genes expressed from a genome where the gene models have not been

defined yet.

A customised Galaxy server has been installed at the Bioinformatics and Computational Biology

Unit (BCBU) research group, that contains a copy of tools available in the public Galaxy server, as well

as new tools that are not available on the default server. These tools consists of either third party, open

source applications in the public domain that were included in the BCBU Galaxy instance, or novel

Python and R scripts that were developed specifically for the BCBU server.

The BCBU Galaxy server can be accessed at the following URL: http://zoidberg.bi.up.ac.za:8882
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2.1. Introduction

The sheer volumes of data produced by high-throughput technologies are forcing the biological re-

search community to adopt automated data analysis methodologies in order to investigate the underlying

biological relevance of the data produced. These technologies have enabled relatively small research

groups with moderate budgets to produce large amounts of DNA sequence data, which necessitated

the bioinformatics community to develop user-friendly analysis environments geared towards data man-

agement and result sharing. The current lack of bioinformatics human capacity, technical support and

computational hardware in most research institutions is generally considered the bottleneck in obtaining

relevant biological answers to a hypothesis. Deploying flexible and user-friendly analysis systems which

empower the laboratory scientist to assist in data analysis and interface with custom software solutions

developed by the bioinformatics community will greatly relieve the demand for bioinformatics support

in a research project, and will assist both the experimental biologist and bioinformaticist in interpreting

experimental findings.

The field of bioinformatics is more often than not spoiled for choice when it comes to selecting the most

appropriate software analysis tool to perform a specific analysis. New software tools are made available

to the community on a weekly basis, and especially in a newly expanding field such as high-throughput

sequencing applications, various analysis tools that perform essentially the same function, but following

different methodological approaches are rapidly being developed. A good example is the wide range of

short read alignment tools currently available to align results from mRNA-Seq data to a target genome

(Table 1.1). Each of these software packages have been designed with specific criteria in mind, and

selecting the most appropriate tool that fits an experimental design or computational environment is

often a daunting task. Many research groups and consortia have developed software pipelines and

automated systems which use specific tools to address the need for analysis automation (Mungall et al.,

2002; Durham et al., 2005; Forment et al., 2008). In general, these pipelines do not lend themselves

to customisation in terms of the exchange of one analysis tool for another that is more suitable for an

experiment, and often requires modifying various scripts in order to successfully replace a tool. The
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need therefore exists for a bioinformatics workflow environment, where very complex analysis pipelines

can be built ad hoc from a repository of tools, and these pipelines can then be executed with different

datasets and parameters as input, and together with the results, shared with collaborators (Ludäscher

et al., 2005; Taylor et al., 2007).

A successful bioinformatics analysis and workflow system needs to meet a diverse set of requirements.

First, the initial development hurdle required to extend the system needs to be intuitive and relatively

easy, it needs to be easily deployable and maintainable, scalable to various computational environments

systems, as well as having a user-friendly interface for the users. The bioinformatics community currently

employs a diverse range of tools and programming languages to develop analysis tools geared towards

biological data mining. Traditionally, dynamic scripting languages, such as Python, PERL, PHP and RUBY

have been used with great success in building complex analysis portals and resulted in large “Bio*”

community projects developing around these languages (Chapman and Chang, 2000; Stajich et al., 2002;

Goto et al., 2003; Holland et al., 2008 and http://www.openbio.org). The aim of these communities can

be summarized as providing a standard set of tools, or modules to perform common bioinformatics tasks.

These tasks generally involve parsing results from popular analysis tools, connecting to the application

programming interface (API) of a widely-used analysis tool, or converting between different biologically

relevant file formats. The extensive use of these scripting languages in the bioinformatics community can

be attributed to the lower entry level knowledge required when compared to compiled languages such

as C, C++ and JAVA when learning the language. This is evident in the popularity of these languages

in many introductory courses to bioinformatics (Cohen, 2003; Boyle, 2004). Ideally, a bioinformatics

analysis pipeline system should be ignorant in terms of the language a particular tool is written in, and

should leverage the community expertise in term of skills and experience when new tools and features

needs to be added to the workflow framework.

The modern biologist and laboratory scientist should ideally interact with an analysis workflow system

in such a way that the underlying hardware requirements and nuances of running a specific tool should be

obscured from the user interface, enabling the researchers to focus on interpreting the results obtained.
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The Galaxy workflow system (Giardine et al., 2005), introduced in Section 1.5.1 meets a large number of

the criteria mentioned above for a successful bioinformatics pipeline system, and was therefore selected

to serve as the basis of a system which caters for next generation data management and analysis. Galaxy

has the abillity to execute scripts or analysis programs concurrently on local computational resources,

and do not require the use of remote resources to execute a specific job. Workflow systems such as

Taverna (Oinn et al., 2004) and Kepler (Ludäscher et al., 2005) makes extensive use of remote servers

and protocols to construct the workflows. With the limited bandwith available in South Africa during

the lifetime of this project, these workflow systems were not considered as viable contenders for a base

workflow system to extend. The Ergratis (Orvis et al., 2010) system was only published in 2010, which

effectively excluded it from being used in this study.

The aim of the chapter is firstly to develop automated analysis pipelines which will perform analysis

related to the quality evaluation of mRNA-Seq reads, the de novo assembly of a gene catalog, develop

an automated functional annotation pipeline and perform expression profiling of gene transcripts using

mRNA-Seq short reads. Secondly, for each of the workflows developed, some key parameters that have an

effect on the output of the different tools will be investigated, and recommendations provided as to what

ranges of these parameters should be considered when performing some of the analysis steps. In order

to fully describe the parameters, different mRNA-Seq datasets were used as input to the workflows. The

workflows developed in this chapter were used to perform a succesfull de novo assembly and annotation

of a gene catalog described in Chapter 3.

2.2. Materials and methods

2.2.1. BCBU Galaxy: Extending the public Galaxy framework

The Galaxy framework (Giardine et al., 2005) served as the base of extention for the development

of the uHTS sequence analysis workflows. The public framework already contains a wide range of NGS

analysis tools, and these tools were used wherever possible to construct the workflows. When a specific

44

 
 
 



analysis tool was missing from the public server, the tool was added to the BCBU Galaxy server. The

tools added to the BCBU server either consisted of third party applications, such as the Velvet assembler

that were developed by external authors, or custom Python and R scripts that were developed specificaly

for this project. The list of third party applications added to the BCBU server is provided in Table 2.1,

and the newly developed tools added to the BCBU server in Table 2.3.

2.2.2. Illumina short-read base-quality evaluation workflow

The Illumina FASTQ quality evaluation was performed with scripts and tools already present in the

Galaxy framework. The default installation of Galaxy already provides uHTS data analysis functionality

focussed on mRNA-Seq quality evaluation. The workflow, ”Illumina QC” evaluates the quality of the

bases from the forward and reverse reads from an Illumina paired-end run. The output from the workflow

includes a bar chart of the distribution of base quality values for every base in the sequenced mRNA-seq

dataset. The workflow also produces a summary of the FASTQ statistics file, which reports the number

of reads in the lane, the number of bases, and the number of unknown bases in the run. The quality

control tools enable users to evaluate the quality values of especially the 3’ end of bases in the input

dataset, and make informed decisions for trimming bases from a dataset for use in downstream analysis.

2.2.3. De novo transcriptome assembly workflow

The de novo transcriptome assembly workflow made use of the de Bruijn graph-based assembler

Velvet, and a FASTA statistics calculation script from the cndsrc package1 to guide the user towards

steps needed to perform a transcriptome assembly. Transcriptome assembly is not a straigh-forward

process, and during the workflow construction the effect of multiple parameters regarding the input

dataset, such as sequenced read length and the effect of paired end reads, as well as the effect that

different parameters provided to the assembler have on the final assembly were evaluated. A 76 bp

Eucalyptis grandis Illumina-sequenced mRNA-seq dataset was used to illustrate the effect of these pa-

rameters. This dataset was trimmed to illustrate the effect various input data lengths (50 bp to 76 bp),
1 http://www.biostat.wisc.edu/~cdewey/software.html, included in the Galaxy framework as the “faLen” tool
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Table 2.1: Third party applications that were added to the BCBU Galaxy server instance. The category
column indicates the location of the tool in the BCBU server, and the reference column describes the
publication of the tool, or where applicable, the software package that the tool is part of.

Name Category Description Reference
Exonerate
alignment

Alignment Alignment of EST or cDNA sequence to
a target genome sequence

Slater and Birney
(2005)

BLAST2GO
pipeline

Annotation Executes the b2gPipe command line
interface of the BLAST2GO tool,
requires a local installation of the
BLAST2GO package and databases

Conesa et al. (2005)

BLASTXML2
BLAST2GO

Annotation Re-formats BLAST results in XML
format to a format required by the
BLAST2GO application

Developed by
lmanchon@univ-montp2.fr,
open source

InterProScan Annotation Runs the InterProScan analysis tool,
requires the installation of all the
required InterPro datasets. Currently
optimised to utilise 16 cores on a single
server

Zdobnov and
Apweiler (2001)

BLAST BLAST Performs a BLAST against one of the
puclic databases available locally

Altschul et al.
(1990)

BLAST two
FASTA files

BLAST Allows users to upload to fasta files,
creates the BLAST databases on
demand, and performs a BLAST
analysis

Altschul et al.
(1990)

Circoletto
BLAST
visualisation

BLAST Makes use of the Circoletto application
to view BLAST results in text format

Darzentas (2010)

faLen stats FASTA tools Calculates the N50, min, max, 1st and
3rd Quartile, mean and median sequence
lengths from a fasta file

http://www.biostat.wisc.edu/
~cdewey/software.html

FASTQ
shuffleseq

FASTQ tools Shuffles two FASTQ files into one file,
required by the Velvet assembler

Zerbino and Birney
(2008)

GenScan Gene
Predictors

Calls the GenScan tool on a fasta file
containing protein sequences

Burge and Karlin
(1997)

Velvet
assembly

NGS tools Performs a Velvet assemble on a FASTQ
file

Zerbino and Birney
(2008)

Multiple
Velvet
assemblies

NGS tools Allows a series of Velvet assemblies with
a range of parameters

Zerbino and Birney
(2008)

Oases
assembly

Development Performs an Oases assembly on a
FASTQ file

Zerbino et al.,
unpublished

DEGseq Development Calculates differential expression
between lists of genes using FPKM as
the measure of expression

Wang et al. (2010a)

Muscle
alignment

Development Uses Muscle to perform multiple
sequence alignments

Edgar (2004)
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Table 2.3: A list of tools newly developed to complement the existing tools available in the BCBU Galaxy
server. The tools include R and Python scripts that perform specific analysis, or convert files between
different formats that serve as input to the next tool in the analysis pipeline.

Name Category Description
Exonerate targetgff2gff3 Alignment Converts the gff and text output from

Exonerate to the GFF3 format
InterProScan RAW format
converter

Annotation Re-formats InterProScan RAW results to either
a txt or XML based format. The XML format
is required by the BLAST2GO application

InterProScan2
BLAST2GO

Annotation Converts InterProScan XML results to a
directory format required by theBLAST2GO
application

Parse BLAST XML BLAST Provides the facility to extract custom fields
from a BLAST XML file

Convert gff3 to gtf Convert
formats

Produces the compact GTF format form a
GFF3 file

Convert qseq to fastq Convert
formats

Converts an Illumina qseq file to a fastq file

Extract FASTA region FASTA tools Extract reqions from a FASTA file
Reverse fasta sequence
direction

FASTA tools Reverse all the sequences in the FASTA file

Retrieve longest
transcripts

FASTA tools Parses the OASES assembler assembly files,
retrieves the longest assembled transcripts

Rename FASTA entries FASTA tools Rename the FASTA entries
Summary of FASTQ
Summary statistics file

NGS tools Calculates the number of usable bases, the
number of A, C, G and T bases and the
theoretical base yield from a FASTQ summary
statistics file

SAM QC stats NGS tools Calculates the number of reads that map as
pairs, as singles, and uniquely from a SAM file

TopHat QC stats NGS tools Calculates the same statistics from a TopHat
generated SAM file

SNP filter SNP tools Filter a pileup file with more stringent
constrains, such as the minimum distance
between two SNPs

SNP summary SNP tools Generates a summary of a pileup file. Includes
the average distances between SNPs
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different sequencing approaches (paired vs. single end sequencing), and different assembly parameters

(kmer, expected coverage, and coverage cutoff parameters) on the same dataset. The different assemblies

obtained from running multiple iterations of the workflow were compared with each other by a robust

scoring algorithm that takes the number of contigs and length distribution of the contigs into account

to evaluate an assembly. The workflow is provided in the BCBU Galaxy server as the ”Velvet assembly

pipeline”. The workflow also discusses ways to evaluate the contig contiguity of the assembled datasets

against known transcript sequences using BLAST (Altschul et al., 1990) and related tools.

2.2.4. Annotation of predicted protein sequences workflow

An annotation workflow that focus on the functional annotation of translated cDNA sequences by

widely used tools such as BLAST2GO (Conesa et al., 2005) and InterProScan (Zdobnov and Apweiler,

2001) was developed. The pipeline predicts protein sequences from the input cDNA sequence file, and

assigns functional annotations such as Gene Ontology (Gene Ontology Consortium, 2001), KEGG (Ogata

et al., 1999) and PFAM (Finn et al., 2010) to the predicted protein sequences. The workflow relies

on finding homologous sequences in model organisms, on which the functional annotations is based.

The workflow is made available as the ”Annotation pipeline” workflow in the BCBU Galaxy server.

The various components in the workflow were used to perform the functional annotation of a de novo

assembled Eucalyptus transcriptome descibed in Chapter 3. The results from the annotation pipeline

can easily be imported into a third party application database, such as the Eucspresso system (Chapter

4) for the visualisation of results.

2.2.5. Expression profiling using Illumina mRNA-Seq short reads workflow

One of the main uses of mRNA-Seq data is transcriptional profiling of expressed gene products

across the genome. Steps involved in calculating transcript expression include mapping reads to a target

genome, inferring read coverage, and calculating the number of short read fragments that map to a

specific genomic position, albeit a known gene region or an unknown genomic region. The workflow

makes use of the TopHat aligner (Trapnell et al., 2009) to map short-reads to a target genome sequence,
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and the CUFFLINKS (Trapnell et al., 2010) program used to calculate the normalised expression value of

the gene in fragments per kilobase of reads mapped per million mapped reads. The workflow describes the

gene expression calculation of a genome sequence where the only resource to define the gene boundaries

in the genome is a set of EST data. The EST dataset is aligned to the genome with the EST2GENOME

mode of the EXONERATE (Slater and Birney, 2005) package. After the genomic positions of the putative

gene models were identified, differentially expressed genes between two sets of tissues were identified with

the R-package DEGseq (Wang et al., 2010a).

2.3. Results and discussion

Several next-generation data analysis workflows were constructed and saved in the BCBU Galaxy

server as re-usable workflows, specifically with the aim to evaluate the quality of initial Illumina mRNA-Seq

input data, the parameters which influence the assembly of transcriptome datasets, annotation of pre-

dicted protein sequence datasets, and expression profiling of transcriptome making use of mRNA-Seq

short-reads. The sections describing each of the workflows consist of an overview or aim of each workflow,

a short discussion on the components of the workflow, and a description of the effect of the parameters

that can serve as input to the workflow on the results from the analysis pipeline.

2.3.1. Extending the Galaxy framework

The Galaxy framework serves as a container to host data analysis tools. The framework has the ability

to sequentially execute various analysis tools on specific input datasets, selected by the user. Each tool

contained in the framework is represented by a XML file, which specifies the input parameters that are

sent to the tool during programmatic execution. Jobs can be executed on a local server, or submitted to a

job handler server, such as the Sun grid engine (SGE, http://http://wikis.sun.com/display/GridEngine/Home)

that executes jobs on a cluster-based computing platform. The Galaxy server automatically keeps track

of the status of the submitted jobs, and the results are displayed in the server (the ”histories” pane) after

the job has been completed. The server also enables the user to construct workflows, or sequential steps
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that need to be performed given an input data set. The following section describes the steps required to

add a very basic analysis tool to the Galaxy framework.

The results from paired-end sequencing on the Illumina platform, consist of two FASTQ quality files,

one for reads sequenced in the 5’ to 3’ ( forward reads), and one for reads oriented in the 3’ to 5’ direction

(reverse reads). The tool, named “shuffleseq”, joins two FASTQ formatted files from an Illumina file

into one file, with the reads in the final file sorted in an alternate fashion of forward and reverse reads.

This “shuffled” FASTQ file is a required format for the Velvet assembler, and the shuffleseq executable

script forms part of the Velvet assembler distribution.

To extend the BCBU Galaxy server to contain the ”shuffleseq” script, an XML file needs to be

created that registers the tool in the server, and renders an interface to select the tool. The shuffleseq

XML file is presented in Figure 2.1, and consists of the following sections. Lines 3-7 specify the command

to be executed, and allows the definition of the names of the input parameters, as well as the required

format of the input datasets (lines 9-15). The name and format of the output file to store in the

database is defined in lines 16-19. Galaxy has a default interface to define automated software tests, and

encourages test-driven development, which will not be discussed here. These automated tests can then

be run during the development phase of the when adding a tool to ensure that pre-calculated results are

obtained with a with pre-defined set of input parameters. In this example, the input parameters for the

tests are defined in lines 21-24, and the expected output for a successful test in line 25. Documentation

regarding the functionality of the tool is provided from lines 29 to 46 of the XML file. This XML file

renders the interface shown in Figure 2.2.

The executable, in this case the Python script named “fastq_paired_end_shuffleseq.py”, is pre-

sented in Figure 2.1. Lines 13-16 of the file handle error reporting, and lines 21-38 contain error handling

code to ensure that the input and output files are readable and writeable. The execution of the PERL script

occurs on line 45, surrounded again by some error handling code if the execution of the script fails. The

crucial link between the XML file and the executable is defined in the <command> tag of the XML file, and

the input parameters or options in the Python script. In effect, the Galaxy execution engine passes the
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Figure 2.1: An example of code developed to extend the Galaxy framework with the ”shuffleseq” tool. The .xml file (left) defines the interface
to the tool, and specifies the input and output format requirements. The Python script (.py) on the right pass the input and output parameters
from the xml file to the Perl script, located on the file system. This example illustrates the ease of extending the Galaxy framework. In just
over 100 lines of code, additional functionality was added to the framework.
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Figure 2.2: The interface of the FASTQ shuffleseq tool described in the fastq_shuffleseq.xml file, as
rendered by Galaxy. The interface provides the user to select buttons to select the forward (left hand)
and reverse (right-hand) reads that will be ”shuffled” into a single file as output. A short description on
the function of the tool, and an example of input formats is also provided.
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following parameters to the Python script during execution: python fastq_paired_end_shuffleseq.py

--input1=path/to/input1/file --input2=/path/to/input2/file --output=/path/to/output/file,

and expects the result file to be present in the output file location. The PERL script could have been

called directly by the XML file, but this example illustrates that any executable command can be wrapped

in the Galaxy framework and executed.

2.3.2. Quality assesment of Illumina short-reads

The quality control of experimental data forms an integral part of any analysis pipeline. A workflow

dedicated to calculating the average base quality, the number of usable bases and the total number of

reads from an Illumina mRNA-Seq lane was developed (Figure 2.3, which is available as the Illimina QC

workflow in the BCBU Galaxy server,). The typical yield in terms of bases from an Illumina GA IIx run

is reported by the company to be between 37 Gbp and 45 Gbp (January 2011, http://www.illumina.com),

and these ranges were observed in a recently produced dataset (Table 2.5).

The FASTQ file format stores the quality associated with every sequenced base of every read in the

FASTQ file. Reads produced with the Illumina platform tend to show a drop in the quality of bases

as the read length increases (Figure 2.4). In an attempt to filter erroneous sequences from dataset,

it is often required to remove or trim a subset of bases from the 3’ end of each read. In the case of

paired-end sequencing, the reverse reads also tend to have lower quality values associated with the bases

when compared to the forward reads (Table 2.5). Trimming the last few bases from the 3’ end of the

reads can improve the number of reads that aligns to a target sequences (read mapability), prevent the

occurrence of false positives during SNP identification, and prevent misassembled contigs. The effect of

read trimming will be further addressed in the sections regarding de novo assembly (Section 2.3.3) and

read mapping to a reference genome (Section 2.3.5 on page 73). A good guideline for trimming the reads

is to use an error rate of 1 in 100 bases during assembly and read mapping, which translates to a Phred

quality score cutoff of 20. Several tools already exists in the public Galaxy server to trim the end of
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Figure 2.3: The Illumina read quality assesment pipeline. The first step after defining the input datasets
(two FASTQ formated files (A), one that consists of the forward reads (A i) of a paired end run, and
that consists of the reverse reads, A ii) is to convert the FASTQ values from the Illumina (1.3+) version
to the FASTQSANGER format (FASTQ Groomer, B). Quality statistics per base are then calculated (FASTQ
Summary Statistics, C), and a graphical summary of all the bases in the lanes produced (Boxplot,
presented in Figure 2.4, D ii). From the FASTQ summary statistics, the number of reads and the number
of bases present in each lane can be calculated (Summary of FASTQ summary statistics, Table 2.5, D i) .
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Table 2.5: The theoretical and usable base (bases identified as A, G, C and T) yield for six Illumina GA
IIx 76 bp paired-end lanes. The theoretical yield was calculated as the total reads per lane times the
read length. On average, the forward reads yielded 97.53% of the theoretical bases to pass the internal
quality control performed by the sequencing center, while 96.83% of the reverse bases were useable. If
seven usable lanes are considered per flowcell, an estimated 42 Gbp would have been produced from
these lanes (please note that these lanes were not produced from the same flow cell).

Tissue Read length Total reads Theoretical
base yield

Useable base
yield

Useable Gbp

Young leaf
(a)

76 bp X 76
bp

38 675 726
(X 2)

2 939 355 176
(X 2)

5 714 978 949
(97.56% fwd,
96.87% rev)

5.71

Young leaf
(b)

76 bp X 76
bp

40 644 094
(X 2)

3 088 951 144
(X 2)

6 005 687 472
(97.56% fwd,
96.86% rev)

6.01

Young leaf
(c)

76 bp X 76
bp

40 603 294
(X 2)

3 085 850 344
(X 2)

5 999 955 671
(97.57% fwd,
96.86% rev)

6.00

Xylem (a) 76 bp X 76
bp

40 626 119
(X 2)

3 087 585 044
(X 2)

6 001 212 765
(97.54% fwd,
96.83% rev)

6.00

Xylem (b) 76 bp X 76
bp

41 212 187
(X 2)

3 132 126 212
(X 2)

6 084 735 293
(97.50% fwd,
96.76% rev)

6.00

Xylem (c) 76 bp X 76
bp

38 363 392
(X 2)

2 915 617 792
(X 2)

5 664 669 869
(97.48% fwd,
96.81% rev)

5.66
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the reads based on either read length (the FASTQ Trimmer by column tool in Galaxy), or base quality

(FASTQ Quality Trimmer by sliding window) .

2.3.3. De novo transcriptome assembly using Illumina mRNA-Seq data

One of the main aims of this study was to perform a de novo assembly of a gene catalog from

mRNA-Seq data generated from a range of primary and secondary Eucalyptus tissues (Chapter 3). A

de novo assembly pipeline to achieve this goal typically consists of firstly formatting the input data to

satisfy the requirements of the assembler, secondly perform the assembly, and finally evaluate the assem-

bly (Figure 2.5, which is available as the ”Velvet assembly” pipeline in the BCBU server). Velvet

(Zerbino and Birney, 2008), the assembler used in this workflow, requires paired-end reads to be in a

format where the first read of a fragment is directly followed by the second read of the fragment, as

opposed to some other assemblers which require the reads from the same fragment to be in the same

order, but in two different files. The “shuffleseq” tool, a script provided with the Velvet assembler

and used to create the single file format, was wrapped in the BCBU Galaxy environment to allow for

workflow integration (Section 2.3.1).

Input parameters of note that are specified for use during the graph-creation step of the Velvet

assembly include the choice of kmer (Section 1.4), and the flag that specifies whether the input datasets

are in paired-end format. During the graph traversal step, the expected coverage parameter and a

coverage cutoff parameter is specified. The coverage cutoff parameter is used by the assembler to restrict

highly connected nodes in the graph (repeat regions) from dominating the assembly. Changing each

of these parameters results in differences in the properties of the final set of contigs produced from an

assembly (see Section 1.4 for an overview of graph based de novo assemblers).

Currently no standardised protocol exists for steps needed to evaluate the success of a transcriptome

assembly. Unlike the assembly of a genome sequence, where the aim is to assemble a single contig from all

the reads provide, the aim of a transcriptome assembly can be viewed as the assembly of multiple, short

fragments that represent mRNA molecules. The coverage of genome derived data is also distributed more
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Figure 2.4: An example of FASTQ quality scores obtained from a 76 bp Illumina GAII paired-end run. The quality of each base is plotted on
the y-axis, with the position of the base on the sequence on the x-axis. This lane contained around 38 million reads (2.8 billion bases) in the
forward (a), and 38 million reads in the reverse (b) direction. The median (black line) and the standard error bars (red bars) for all the reads are
shown in both directions. A quality drop is observable for bases closer to the 3’ end (sharp increase in base-quality variation from base 56-58)
and removing these bases with lower qualities might influence read mapping and assembling strategies.
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Figure 2.5: A Galaxy workflow which performs a de novo assembly with the Velvet assembler. The
default input data (a) for this workflow is the forward and reverse FASTQ (fastqsanger) formatted
mRNA-Seq reads. The reads are then reformatted with a ”shuffleseq” script (b) to the correct input
format for paired-end reads as required by Velvet, and the assembly is performed by Velvet (c). A script
to calculate the N50, longest, mean and average sequence lengths is then run on the assembled fasta file.

evenly across the genome, with exceptions of the repeat regions, while the transcriptome data has varied

coverage across a single transcript and between multiple transcripts. The variation in transcript coverage

fluctuates due to the number of transcripts present in then sample mRNA pool, and the variation across

a transcript has been postulated to be due to the folding patterns of the mRNA trancripts in the cell

(Mortazavi et al., 2008). There are several descriptive statistics available to assist in selecting the best

possible assembly, namely the number of bases in the contigs (sum), the number of contigs (N), the

contig length spread (minimum and maximum contig length, 1st and 3rd quartile length, mean and

median length), and the N50 value. The N50 value is calculated as the contig length where 50% of

the bases in the assembly are present in contigs of the reported length, or longer. A scoring function

to empirically select the best assembly has been discussed on the Velvet users group mailing list2, and

defined as: (N50all∗Nlong)
Sumall+log(Sumlong)

, where the long values are calculated for contigs longer than 1 000 bp.

A higher score indicates a higher ratio between the bases located in the longer reads in the dataset and

the bases assigned to short contigs. This scoring metric was also discussed on the community portal

SeqAnswers 3, and later implemented in an optimisation script for Velvet as a third party script, and

although this scoring function has been defined for genome assemblies, it provides a good guideline when

applied to transcriptome assemblies. In the sections discussed below, the score of the assemblies were

calculated with the scoring function to give an indication of the function’s performance on multiple

assembled datasets.
2 http://listserver.ebi.ac.uk/mailman/listinfo/velvet-users
3 http://seqanswers.com
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Table 2.6: Velvet assembly statistics for a single lane of paired 76 bp sequences from Eucalytpus xylem
tissue reads trimmed to different lengths (50 - 76 bp). The same assembly parameters (kmer 41) were
used to illustrate the effect of sequence length on the assembly. Assemblies with the longest reads as
input (65, 70 and 76 bp) generated the largest (N) assemblies, and the longest single contigs (max) were
assembled with the 65 bp reads. The scoring function also indicates that the longer input reads generate
better assemblies, except when the last 6 bp which were error prone are included. The 1 000 bp contig
values (long contigs) used in the scoring function are presented in the Appendix I table A.1.

Read
length
(bp)

Number
of

contigs
(N)

Sum of
bases

Min
(bp)

1st
Quartile

(bp)

Median
(bp)

3rd
Quartile

(bp)

Max
(bp)

Mean
(bp)

N50
(bp)

Score

50 73 762 21 723 533 81 130 183 342 6 772 294.51 411 6.63

55 104 471 32 014 867 81 122 171 349 8 078 306.45 486 6.95

60 134 970 39 632 149 81 111 163 323 8 241 293.64 467 7.05

65 169 960 46 302 130 81 102 156 293 11 008 272.43 414 7.06

70 207 383 52 321 544 81 95 151 269 8 573 252.29 362 7.03

76 255 609 59 076 999 81 92 148 247 8 985 231.12 308 6.95

Low quality bases are generally present in the 3’ end of Illumina reads (see Figure 2.4), and removing

or trimming these reads tend to influence the subsequent assemblies. Assemblers using the de Bruijn

graph approach, where kmers are used to find joins between reads and the high coverage paths between

kmer nodes in the graph are used to assemble the contigs, have a higher tolerance towards low frequency

erroneous bases in the input dataset (see Section 1.4). There also exists uncertainty about the optimal

read length required to perform de novo transcriptome assemblies, and since longer reads require more

reagents that influences the cost of sequencing this is an important consideration in project planning.

Illumina mRNA-Seq paired-end reads from a deeply sequenced Eucalyptus xylem dataset were trimmed

to a length ranging from 50 bp to 76 bp. The trimmed datasets were then assembled with the Velvet

assembler (Velvet assembly workflow) with a defined kmer of 41 to determine the length of the input

dataset reads that produced the best assembly. Table 2.6 indicates that longer reads produce longer

individual contigs, but there is a decrease in overall assembly quality when the last 6 bp (low quality

bases) of the 76 bp reads are not trimmed from the input dataset. The 55 bp assembly showed the largest

N50 and the longest mean and median contigs, but if the additional ≈7 Mbp of sequence data gained
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Table 2.7: Statistics for Velvet assembled contigs with a minimum length of 200 bp for a single lane
of paired 76 bp sequences from Eucalytpus xylem tissue reads trimmed to different lengths. The values
in parentheses indicate the same statistics obtained with the same dataset, but where the datasets were
treated as single and not paired-end reads. The 1 000 bp contig values (long contig) used in the scoring
function for the single end assemblies are presented in the Appendix A Table A.1.

Read
length
(bp)

Number
of

contigs
(N)

Sum of bases Min
(bp)

1st
Quar-
tile
(bp)

Median
(bp)

3rd
Quar-
tile
(bp)

Max
(bp)

Mean
(bp)

N50
(bp)

Score

50 33 475
(31 519)

16 411 541
(14 581 289)

200 268
(245)

365
(328)

570
(527)

6 772
(5 571)

490.26
(462.62)

562
(535)

6.68
(6.63)

55 42 934
(43 283)

23 989 757
(22 004 217)

200 278
(253)

403
(248)

672
(577)

8 078
(8 078)

558.76
(508.38)

693
(615)

7.03
(6.95)

60 49 152
(50 771)

28 489 587
(26 957 786)

200 275.5
(258)

407
(359)

689
(603)

8 241
(8 241)

579.62
(530.97)

733
(653)

7.19
(7.08)

65 55 059
(56 990)

31 759 222
(30 633 000)

200 272
(260)

398
(366)

676
(610)

11 049
(11 049)

576.82
(537.52)

730
(660)

7.23
(7.14)

70 60 039
(61 683)

34 307 077
(33 463 851)

200 270
(262)

394
(371)

662
(615)

11 008
(10 757)

571.41
(542.51)

718
(664)

7.25
(7.18)

76 64 713
(65 989)

36 602 687
(36 070 026)

200 268
(264)

389
(375)

652
(621)

9 925
(10 873)

565.62
(546.61)

705
(669)

7.26
(7.22)

by the 60 bp, or the additional ≈14 Mbp of data when the 65 bp input dataset is considered, those

assemblies can certainly be considered when evaluating an assembly. The scoring function calculated

on these datasets provide a ranking system for the assemblies, but ultimately the choice of read length

depends on the discretion of the researcher. Assembled contigs of a length between 81 bp and 200 bp most

likely consist of small fragments of larger contigs, or very rare low coverage transcripts, and an additional

constraint can be applied to the assembled dataset that contigs need to have a least a length of 200 bp to

be considered for downstream analysis and annotation (Table 2.7). Because the Velvet assembler was

developed for the de novo assembly of genomes, not transcriptomes, alternative spliceforms will be lost

during assembly since the assembler returns the longest graph of the most coverage in the final assembly.

The assembly of the various trimmed datasets were repeated with the two lanes of the paired datasets

provided separately to the assembler, effectively re-fromatting the input data as two single-end datasets

as oppose to a single paired-end dataset (Table 2.7, results in parentheses). Overall the single-end reads
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did not perform worse than the paired-end assemblies, and even produced the same maximum length

contigs in some cases. There is, however, a sampling bias in the data used for this single-end assembly,

since the single-ends are not independently sampled fragments from the sequenced mRNA-Seq pool,

but in fact represent sampled paired sequences. This simulated assembly of single end data thus does

not represent the true effect of sequencing single-end vs. paired-end libraries, but rather reflects the

difference in the assembler algorithm and the improvement achieved when enabling the paired-end flags.

These values represent the practical best case scenario when single-end reads are used for assembly, and

real independently sampled single-end assemblies will thus perform worse than reported here.

The graph traversing step of Velvet has multiple parameters that will ultimately affect the set of

contigs assembled. One of the most notable parameters is the effect of kmer size (kmer of 41 - 63 bp)

on the different assemblies, as presented in Table 2.8. The choice of kmer for assembly will vary with a

change in length of the input reads, as well as the inherent sequence properties of the tissue or organism

sampled. The scoring function defined above relates well to the a combination of the N50 value and the

descriptive statistics of the assembly, and plotting the different assembly statistics as a fraction of the

highest value of each parameter show that the scoring function can be successfully used as a guideline

to select the best assembly for further analysis (Figure 2.6). The figure makes use of a normalised value

for some descriptive statistics (N50, Sum and Score in Figure 2.6A) achieved during a specific kmer

assembly according to the maximum value optained (y-axis) across all kmers (x-axis), and can be used

to graphically select the set of kmers that produce an assembly with a high score. The kmer of 51 (k51)

produced an assembly containing 69 485 contigs, ranging from 200 bp to 8 451 bp in lenght. The scoring

algorithm assigned a score of 7.13 to the k51 assembly, but the k49, k53 and k55 assemblies also achieved

a high score. The best choice of a kmer to use in further assemblies depends on whether full length

transcripts were assembled during any of these kmer assemblies, but the scoring algorithm does provide

some measure of comparison between the assemblies.

The effect of two additional parameters during the graph traversal step, the expected coverage and

coverage cutoff value, on the results from multiple assemblies is presented in Figure 2.7. The expected
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Table 2.8: Velvet assembly statistics for a single lane of paired 76 bp sequences from Eucalytpus xylem
tissue. The same input parameters were used, except for the kmer-value to obtain these assemblies.
Note a general trend that fewer contigs (N) and fewer total bases (Sum) are present in higher kmer
assemblies, indicating that more contigs might be joined with longer kmers. The descriptive statistics in
terms of median, mean and N50 values peak around the mid kmer (k49-k55) sizes. The assembly score
was calculated to critically evaluate overall score of an assembly. All contigs longer than 200 bp were
included in the analysis.

KmerNumber
of

contigs
(N)

Sum of
bases

Min
(bp)

1st
Quartile

(bp)

Median
(bp)

3rd
Quartile

(bp)

Max
(bp)

Mean
(bp)

N50
(bp)

Score

k41 84 428 38 627 991 200 249 334 523 8 985 457.53 518
7.00

k43 81 527 38 434 796 200 250 339 538 8 862 471.44 543
7.05

k45 78 748 37 908 219 200 250 342 548 8 451 481.39 560
7.08

k47 75 732 37 110 906 200 250 345 557 8 451 490.03 576
7.10

k49 72 320 36 115 097 200 249 349 573 8 451 499.38 598
7.12

k51 69 485 35 124 810 200 250 351 581 8 451 505.50 613
7.13

k53 66 029 33 652 392 200 249 353 587 8 065 509.66 621
7.12

k55 62 391 31 953 361 200 248 351 593 8 582 512.15 632
7.12

k57 58 921 30 071 960 200 247 350 593 8 277 510.38 631
7.09

k59 54 966 27 877 831 200 246 349 591 9 622 507.18 626
7.04

k61 51 057 25 518 959 200 245 346 585 7 152 499.81 613
6.98

k63 46 684 22 658 706 200 244 338 563 6 360 485.36 585
6.89
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Figure 2.6: The assembly scoring function is a robust measure to select the kmer of the best Velvet
assembly. The y-axis represents the value of a certain descriptive statistic obtained for a kmer as a
fraction of the maximum value of that statistic (y-axis) across all kmers (x-axis). The scoring function
is not sensitive to changes in total base count and number of contigs (a), and correlates well with the
N50 and mean values (b) as well as the other descriptive statistics (c). The graphs were normalised so
that the values correspond to a fraction of the maximum value achieved for each parameter across all
kmer assemblies shown.
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coverage parameter performs two key functions during the assembly. First, it is required to activate the

paired-end read resolution function of Velvet (as stated in the Velvet manual), which programatically

makes use of the insert size between pairs to join contigs; and secondly it assists in finding the optimal

path through the nodes in the graph of kmers by searching for nodes in the graph that correspond to the

expected coverage value. This assistance provides the assembler with a naive approach to filter the nodes

in the graph based on the node coverage in order to determine optimal contigs (Zerbino and Birney, 2008).

This approach is especially useful when a genome sequence is assembled, since the sequence coverage

from a lane of genomic short-read data should have near uniform coverage, bar the repeat regions of the

genome that should have higher coverage. The inherent properties of mRNA-Seq data, where coverage

varies between transcripts based on the amount of transcript present in the sampled mRNA pool and

across a single transcript based on the mRNA molecule’s folding properties, the occurrence of alternative

splicing, and the known 3’ bias exhibited by mRNA-Seq technologies render this parameter less useful

during transcriptome assemblies.

Figure 2.7A (left), indicates that for a transcriptome assembly, high expected coverage values produce

the best possible assembly when evaluating the results based on the scoring function. The results were

obtained by performing various assemblies with a constant set of parameters (insert length between

paired reads = 150 bp, the coverage cutoff = 10X, and the kmer set to 51), but increasing the expected

coverage value from 0 to 1 000 with each subsequent assembly. The graph shows that a higher expected

coverage value can produce assemblies with longer mean length and N50 values (an expected coverage

of 0 produced an assembly with an average N50 length of 1 018 bp, only 55% of the N50 value achieved

by the assembly where the expected coverage was set to 1 000 (N50 = 1 854 bp)). These estimations of

the expected coverage value are needed to assemble highly expressed transcripts to a complete length,

and will remove lowly expressed transcripts from the assembly.

The coverage cutoff value effectively screens the contigs after graph generation, removing contigs

that do not meet the minimum coverage cutoff value as specified. This parameter removes short, low

coverage contigs from the assembly, and in general improves the assembly when set to a reasonable value
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between 4 and 10 (Figure 2.7b). Setting the value too high will remove highly covered and good quality

contigs, while a too low value will include short, low covered contigs which most likely originated from

nucleotide errors in the sequence, or contain low covered introns that were captured when unprocessed

mRNA molecules were selected before sequencing.

Varying the parameters used during an assembly has a measurable effect on the total number of

contigs, the average contig length and the number of bases present in a transcript assembly. The quality

of a transcriptome assembly is, however, not based on the global properties of the assembly, but on

the presence of near complete or completely assembled cDNA transcripts in the assembly. By using

known, well studied, full-length cDNA sets of genes the corresponding transcripts in the assembly can

be evaluated. Figures 2.8, 2.9 and 2.10 presents six Eucalyptus grandis cellulose synthase (CesA) genes

(Ranik and Myburg, 2006), and the results of performing a BLAST (e−100) of the CesA genes against

assemblies from kmer 41 (Figure 2.8), kmer 51 (Figure 2.9) and kmer 61 (Figure 2.10) presented in

Table 2.8. The CesA sequences (DQ014510.1, DQ014509.1, DQ014508.1, DQ014507.1, DQ014506.1 and

DQ014505.1) are connected with colored banners of high similarity to regions present in contigs in the

assembly dataset. Each CesA sequence can have similarity regions on multiple contigs present in the

assembly. A perfect assembly will have a one-to-one ratio of CesA sequence to assembled contig with

both sequences showing similarity along the entire length of the transcript. A subset of these CesA genes

have been shown to have high expression in either primary or secondary cell formation tissues (Ranik

and Myburg, 2006), and since these assemblies were performed with a single lane of xylem mRNA-Seq

data, it can be expected that the lower abundant transcripts would not fully assemble. In order to select

the best assembly parameters, a similar analysis should be repeated with different gene families that

have a range of expression across multiple tissues.

2.3.4. Annotating assembled transcript sequences

Several good EST annotation pipelines exists in the public domain. These pipelines consists mainly of

a set of scripts that calls a subset of tools sequentially to annotate a set of protein or DNA sequences. Few
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Figure 2.7: The effect of the expected coverage and the coverage cutoff parameters on a Velvet assembly.
Due to the large dynamic range in transcript expression, high expected coverage values (A, left) produce
the highest scoring assemblies. For the coverage cutoff parameter, it was found that the best Velvet
assembly is achieved when the coverage cutoff parameter (B, right) ranges between 6 and 10. This will
effectively remove low coverage contigs from the assembly while not removing the higher covered, longer
contigs.
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Figure 2.8: Alignment of the six full length CesA cDNA sequences against an assembly with a kmer
size of 41 (k41). The CesA cDNA sequences (identifier starts with ”DQ”) show similarities to various
contig sequences (identifiers ”NODE”) in the assembly. Blue ribbons indicate regions where the bit
score of the alignment is < 25% of the maximum bit score in the dataset. Warmer colors (25% >
green <= 50%, 50% > orange <= 75% and red > 75%) indicate higher bit scores. The two CesA cDNA
sequences, DQ014506_a and DQ014505_1 are presented by near full length contigs NODE_2152422 and
NODE_1495600. The cDNA sequence DQ014507_1 is represented by two large contigs (NODE_2230537
and NODE 1004772), while the remaining cDNA sequences are represented by various small contigs.
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Figure 2.9: Alignment of the six full length CesA cDNA sequences against an assembly with a kmer size
of 51 (k51). The CesA cDNA sequences (identifier starts with ”DQ”) show similarities (best BLAST hit)
to various contig sequences (identifiers ”NODE”) in the assembly. Blue ribbons indicate regions where
the bit score of the alignment is < 25% of the maximum bit score in the dataset. Warmer colors (25%
> green <= 50%, 50% > orange <= 75% and red > 75%) indicate higher bit scores. The alignment
indicate two copies of the cDNA sequence DQ014501_1 in the assembly (NODE_27280 and NODE8489).
A partially assembled contig (NODE_155100) that represent DQ014506_1 can also be identified. The
remaining CesA’s are represented by various shorter contigs in the dataset, indicating that there are still
fragmented transcripts present in the assembly. The graph was generated with the Circoletto tool from
the BLAST result file.
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Figure 2.10: Alignment of the six full length CesA cDNA sequences against an assembly with a kmer size
of 61 (k61). The CesA cDNA sequences (identifier starts with ”DQ”) show similarities (best BLAST hit)
to various contig sequences (identifiers ”NODE”) in the assembly. Blue ribbons indicate regions where
the bit score of the alignment is < 25% of the maximum bit score in the dataset. Warmer colors (25%
> green <= 50%, 50% > orange <= 75% and red > 75%) indicate higher bit scores. The alignment
represents the least fragmented assembly of the CesA cDNA sequences when compared to Figures 2.8 and
2.10. A duplicate assembled contig can be identified in the assembled dataset for sequence DQ014508_1.
Most of the remaining CesA cDNA sequences are represented by at least one or two large contigs in
the assembly, although not all of them aligning accross the whole length of the cDNA. The graph was
generated with the Circoletto tool from the BLAST result file.
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Figure 2.11: The automated annotation pipeline developed from tools available in Galaxy. The input
for the pipeline (A) is a FASTA file containing cDNA sequence data. Protein sequence predictions are
performed by GenScan (C and the results converted to FASTA format, D) and the resulting peptides
submitted to the IPRSCAN pipeline. (F, G, and H) The input file is simultaneously submitted to BLAST
(B and E) to perform homology searches (BLASTX), and the results of the IPRSCAN and BLAST searches
used as input to the BLAST2GO pipeline (I) for further analysis.

pipelines allow the user to customise the different components used by the annotation pipeline specificaly

for the organim that is to be annotated. Two widely used tools, the InterProScan set of scripts and

databases (Zdobnov and Apweiler, 2001), and the BLAST2GO annotation pipeline Conesa et al. (2005)

were incorporated in the BCBU Galaxy server. The InterProScan annotation scripts and associated

databases are often used to unknown protein sequences with protein feature, protein family and detected

motifs present on the protein sequence. The BLAST2GO pipeline assigns functional annotations to the

submitted cDNA or protein dataset, which consists of Gene Ontology, KEGG and InterPro accessions.

An automated workflow (Figure 2.11, available as the ”Annotation pipeline” workflow in the BCBU

Galaxy server) was developed to use both these annotation pipelines to annotate a set of cDNA sequences

from the transcriptome assembly pipeline described above.

The automated assembly workflow takes cDNA sequences as input (ESTs or contigs assembled from
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mRNA-Seq data), performs a translation of the coding sequence into a putative protein and CDS se-

quence, and uses the predicted protein sequence to find protein family and protein feature annotations

with IPRSCAN, the interface to the EBI’s InterProScan tool. Results from IPRSCAN analysis are then

converted to a format acceptable for the BLAST2GO annotation tool. The protein sequences are also

used for a homology-based search against an external database (for instance, the NCBI’s database of

non redundant protein sequences), and the results parsed for use in the BLAST2GO annotation pipeline.

BLAST2GO analysis is performed with the homology search (BLAST) and the IPRSCAN results as input,

and an annotation (.annot) file is constructed. This .annot file can then be used as direct input into a

BLAST2GO instance for the perusal of the annotations or imported into an external database.

The input sequences to the pipeline can consist of portions of genomic cDNA, full-length CDS or

partial CDS sequences. The gene finder application, GenScan (Burge and Karlin, 1997) was used to

predict a protein and CDS sequence from the input sequence. This is a very crude approach to cDNA

translation and peptide sequence prediction, since partially assembled sequences will not have all the

sequence signals present on the sequence required by GenScan to perform a reliable prediction of the

exact intron and exon structure of the input sequence. This particular tool can, however, be replaced

by any other gene prediction or cDNA translation tool in the workflow, as long as a protein sequence is

the output from the alternative tool. The pipeline was used to perform a basic annotation of the 18 894

full-length, or partially assembled sequences of a Eucalyptus grandis x Eucalyptus urophylla transcriptome

generated from mRNA-Seq data (Chapter 3).

The InterProScan analysis tool scans a given protein sequence against a range of protein signatures

stored in the InterPro member databases. These signatures, present in the PROSITE, PRINTS, Pfam,

ProDOM and SMART databases can then be used to provide functional annotations of the input protein

sequence based on motifs present in the sequence. The InterProScan tool is a scalable and extensible

system for protein feature annotation, and searches databases installed on a local server of the men-

tioned sources in order to find signature sequences. Results from the InterProScan analysis tool can

be converted into XML, HTML or a TXT based file, which can be used to create a summary of the features
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Figure 2.12: The 25 most prevalent protein family domains annotated in an assembled transcriptome
dataset, expressed as a fraction of the total number of PFam annotations. The Leucine Rich Repeat
(PF:PF00560) region was the annotation assigned in 13% of the annotations, and the dataset also
represents annotations of kinases (PF00069 and PF07714) and the Myb transcription factor binding
domains (PF00249). The figure was produced from the PFAM annotations assigned to the 18 894
assembled contigs by the InterProScan tool.

found in the dataset on a global scale (Figure 2.12), or to view the signatures and features annotated on

a specific sequence (Figure 2.13).

Various functional annotation projects use the Gene Ontology system to group sequences into re-

lated functional groups. The BLAST2GO annotation tool offers a wide range of statistical validations in

assigning a functional classification to a protein sequence. The results from the annotation workflow

produce an annotation file, generated by the command line interface (b2gPipe) of the BLAST2GO anno-

tation tool. The pipeline expects BLAST XML results formatted in a specific manner, and a directory

containing InterProScan XML results in order to complete the annotation. The BLASTXML2BLAST2GO

and IPRSCANXML2BLAST2GO Galaxy extensions perform the simple conversions between the formats, and

also execute the b2gPipe pipeline. BLAST2GO relies on a local installation of public Gene Ontology and

Gene Ontology Accession databases to assign the Gene Ontology annotations to the sequences in the

BLAST XML file. The annotation file produced can then be imported in a stand-alone version of the
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Figure 2.13: Protein features annotated by InterProScan present on the cellulose synthase 6 (CesA6)
protein sequence assembled from reads derived from mRNA-Seq sequencing. The sequence represents
the assembled contig with the highest homology to the CesA6 (DQ014510.1) mRNA sequence, and
was annotated by the InterProScan annotation pipeline. The annotation indicates the presence of a
transcription factor binding motif (TGACC-motif, black box), a X-Box transcription factor-related motif
(black box) on the 5’ end of the sequence identified by HMMPanther. The same 5’ region has also been
identified as having a Ring/U-box superfamily signature (yellow box). The long green box represents
the presence of the cellulose synthase protein family signature identified by HMMPfam. The image was
generated from the RAW results by the InterProImageGenerator tool in Galaxy.

BLAST2GO tool, and can be used to summarise the overall ontology structure of the dataset, as well as

inspect the annotations made to a single protein sequence.

2.3.5. Using mRNA-Seq data to calculate transcript expressions values

Many research groups have calculated gene transcript abundance levels with the aid of mRNA-Seq

data (see Section 1.3 for a review of RPKM and FPKM calculations and other high-throughput se-

quencing applications in genetics and genomics). Mortazavi et al. (2008) showed that the differences in

transcript abundance can span five orders of magnitude, and that the mRNA-seq methodology used was

shown to be sensitive enough to detect even single copies of a transcript in a cell . A recent methods

paper used mRNA-Seq data to detect novel transcripts and alternative spliceforms of transcripts, and

was made available as the CUFFLINKS package (Trapnell et al., 2010). CUFFLINKS performs a de novo

prediction of splice junctions, and generates a set of detected gene models with their corresponding

expression values (FPKM). The following section describes the workflow developed to detect transcript

expression values for an organism where no annotated gene information is available (Figure 2.14, available

as the ”FPKM calculation” workflow in the BCBU server). The workflow starts of by mapping an input
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Figure 2.14: Calculating gene expression (FPKM) values for unigene aligned regions from a genome with
no gene models available. The input dataset for the workflow is a reference genome (B), the forward and
reverse reads of an mRNA-Seq lane (C and D), and a FASTA file containing a set of ESTs (A). TopHat
aligns the mRNA-Seq reads to the genome (F) and also against the splice junction regions using the
Bowtie aligner. The alignment file (SAM format) is then used in calculating some short read mapping
statistics (I), and as input for CUFFLINKS (J). The unigenes input dataset is aligned against the genome
with EXONERATE (E), and the GFF output of EXONERATE is converted to the required GTF format (H)
for CUFFLINKS. The GTF and SAM files are used to calculate the FPKM values (J).

set of mRNA-Seq reads to a target genome with TopHat (Trapnell et al., 2009), as well as aligning a set

of cDNA sequences to the genome with the EXONERATE aligner (Slater and Birney, 2005). The workflow

further generates a gene model file from the cDNA alignment, and calculates the FPKM values for each

of the transcripts present in the alignment.

The normalised transcript expression values (FPKM) are calculated by mapping reads to a target

genome, constructing splice sites where reads span intron junctions, and then calculating the number

of fragments that map per unit transcript. The TopHat mapping program (Trapnell et al., 2009) was

designed to determine the splice junction alignment when mapping to genome sequences. A single lane

of 76 bp Illumina mRNA-Seq data was trimmed to shorter lengths and mapped to the Eucalyptus grandis

draft genome sequence. Since longer reads require more reagents during sequencing, a key question to

address is how a difference in read length influences the read mapability. Figure 2.15 indicates that there

is an increase in the number of paired reads that map uniquely to a genome when the read length is

increased from 40 bp to 50 bp, but beyond 50 bp there is not a marked difference in the number of paired
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Figure 2.15: A breakdown of the number of reads which map uniquely, and non-uniquely as pairs or
single reads to a target genome for different read lengths. No increase in read specificity can be detected
when paired reads are longer than 50 bp in terms of unique paired mapping to the genome. Up to 97%
(50-65 bp) of the reads were mappable to the genome, but this includes reads that map to regions outside
gene models and within repeat regions. There is a significant increase in the number of reads that did
not map to the genome when the read length was 70 bp.

reads that map to the genome. These results indicate that a paired read or fragment of 50 bp has a high

enough specificity in the genome to map uniquely, and longer reads are not necessarily more specific.

Reads longer than 70 bp shows a decrease in mappability, due to the stringency associated with the

number of mismatches allowed when aligning a read to the target sequence. These mismatches have a

higher probability to occur in longer reads, mostly due to the effect of sequencing errors in longer reads,

but also due to SNPs present in a sequenced sample.

CUFFLINKS makes use of the genomic coordinates of genes or transcripts to calculate the FPKM

expression value. The coordinates file needs to be supplied in the GTF (a condensed GFF3 file format)

format to CUFFLINKS. The genome coordinates for a genome where no annotation, i.e. no GFF3 file

exists, can be determined by performing a gapped alignment of cDNA sequences to the genome with

EXONERATE. Output from EXONERATE needs to be reformatted to the GFF3 format and converted to the
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GTF format before serving as input to CUFFLINKS. CUFFLINKS can calculate the FPKM values for the

annotated genes present in the GTF file, or if no reference gene models are provided, it will identify new

expressed transcripts.

Lists of genes and their expression values can serve as input to one of several statistical packages to

determine groups of genes that are differentially expressed between experiments. The R package DEGseq

(Wang et al., 2010a) was used to determine a list of genes differentially expressed between immature

xylem and young leaf tissue of a Eucalyptus grandis hybrid tree (Chapter 3). Figure 2.16 present the

results from the DEGseq package used to determine differential expression. The figure presents the MA

plot (where M = log2tissue1 − log2tissue2, A = 1/2(log2tissue1 + log2tissue2)) of differential expressed

genes identified with a 2X fold change method to detect differential expression. The Venn diagrams

below the MA plot shows the number of genes detected to be differentially expressed in immature xylem

and in young leaf tissue, and the set of genes not being differentially expressed.

2.4. Conclusion

The management and data analysis of large DNA sequence datasets produced with high throughput

biological experiments require sound data management principles, dedicated and sometimes specialised

computational hardware, and a variety of software tools. The Galaxy framework was identified as one

of many potential data management and automated data analysis workflow systems that can be used

and adapted to analyse mRNA-Seq datasets. The framework can easily be extended to include new

analysis tools, which can then be incorporated into complex workflows, which have the ability to make

high throughput data analysis tools available to research groups. The framework effectively reduces the

steep learning curve needed to master the command line interface of an analysis tool, by providing a

web-based form to set the parameters used during the execution of the analysis program.

The quality evaluation of uHTS data is one of the first analysis steps when working with theses

datasets. The current Illumina pipeline (version 3.6) produced quality scores associated with each base

of sequence in an format that differs from the standard Phred based format, which needs to be converted
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Figure 2.16: Genes identified as differentially expressed in immature xylem and young leaf tissues of
a Eucalyptus grandis hybrid tree. The top figure (A) represent genes identified by the DEGseq tool
as differentially expressed genes based on the MA (where where M = log2tissue1 − log2tissue2, A =
1/2(log2tissue1 + log2tissue2)) using a 2X fold change method. The Venn diagrams representthe same
set of genes identified as being differentially expressed in immature xylem (brown) and young leaf tissue
(green), and the genes that are not detected as being deferentially expressed (Not DE, overlapping area).
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to the standard Phred format. After conversion, a per base quality graph can be calculated for every

base at every position of the read, and bases removed from the 3’ ends of the reads. Depending on the

amount of data available, it is recommended that a Phred quality value of 20 (base error rate of 1 in

100) is used as a guideline to trim the reads. Erroneous bases at the 3’ ends of the reads have the ability

to prohibit the alignment of a read to a target sequence as it increases the number of mismatches that

will occur between a target sequence and the read, and also with graph-based assemblers it can create

low coverage paths between the nodes of the graph. A default pipeline for the quality evaluation of short

read Illumina data is available as the ”Illumina QC” workflow in the BCBU Galaxy server installed at

the University of Pretoria.

The assembly of a set of representative cDNA sequences from a pool of mRNA reads is still a

challenging endeavor. A workflow which makes uses of the Velvet assembler to assemble contigs was

developed to assist in performing multiple assemblies and keep track of the results. The workflow

re-formats the input datasets to the format required for Velvet, performs the assembly of the input

datasets, and produces a basic statistics file summarising the assembly. De Bruijn assemblers have a

very high memory footprint, and hardware with the required RAM is required to succesfully complete

the assembly. A dataset containing 35 million short reads of (35-50 bp in length) typically requires

up to 120 GB of RAM, depending on the size of kmer used during assembly. A recent thread on the

SeqAnswers forums4 stated that the following formula can be used to calculate the amount of RAM

needed for a genome assembly: RAM = −109635 + 18977 ∗ ReadLength + 86326 ∗ GenomeSize +

233353 ∗ NumberOfReads − 51092 ∗ kmer. No such formula exists to calculate the amount of RAM

needed for a transcriptome assembly, mainly due to the uncertainties of transcriptome size, and number

of alternative isoforms that can be present in a sample. For a typical Illumina dataset consisting of reads

76 bp long, a kmer value between 51 and 55 were found to produce the best assembly using a scoring

function that takes into account the number of bases as well as the number and length of contigs present

in an assembly. The choice of kmer, expected coverage and coverage cutoff depends greatly on the size

and characteristics of the biological sample, as well as the amount and quality of sequence data used for
4 http://seqanswers.com/forums/showthread.php?t=2101
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the assembly, and therefore no conclusion can be reached in terms of the best parameters to use. One

important aspect when evaluating the contiguity of the assembled transcripts is the comparison against

known, full-length cDNA sequences in order to identify missassembled contigs and critically evaluate an

assembly.

The availability of transcriptome specific assembly software, such as trans-ABySS (Robertson et al.,

2010), OASES (Zerbino et al., unpublished) and the recently released Trinity (Grabherr et al., 2011)

software packages will in future make de novo assemblies of full-length transcripts a standard bioinfor-

matic operation. The Velvet-based assembler approach described here does not deal with the assembly

of alternative splice forms, and may assemble some partial transcripts, but the analysis described did

result in the assembly of near full-length, contiguous biological molecules, as described in Chapter 3.

Functional annotation of a set of assembled transcripts occurs mainly through homology-based

searches to identify sequences similar to a newly sequenced organism. Both the InterProScan and

BLAST2GO pipelines makes use of homology-based searches and functional protein domain signatures

to assign functional annotation to a contig. These annotation pipelines have been used with great

success to functionally annotate a vast range of EST and cDNA datasets (Vizoso et al., 2009; Coetzer

et al., 2010; Arnaiz et al., 2010; Blanca et al., 2011; Mondego et al., 2011), The InterProScan pipeline

assigns PROSITE, PRINTS, Pfam, ProDOM and SMART annotations to each contig in the cDNA file, with

the BLAST2GO pipeline makes use of these protein features to assign Gene Ontology, KEGG and InterPro

categories to the contigs. The results from the pipeline is presented in a format that can be viewed by

the BLAST2GO application, or parsed to a delimited text file that can be imported to a database system.

Gene expression calculated with mRNA-Seq data is reported to be more robust than microarray data

(Li et al., 2008a; Marioni et al., 2008; Hiller et al., 2009). Estimating gene expression values from known

and novel genome models and transcripts aids in identifying pathways and functional gene classes that

are over-expressed between different tissues or conditions. Functional expression analysis of different

tissues and/or different stages of development can be viewed as the first steps to a complete functional

characterisation of a species of interest. The first step in estimating gene expression is to re-align or
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map the Illummina short-read data to the target genome and a set of splice juctions. Results show that

for the Eucalyptus grandis genome, paired end reads longer than 50 bp do not increase the mapability

of the fragments, when reads were aligned with the TopHat program (Trapnell et al., 2009). This value

will differ between different organisms, but can be used as a guideline to determine gene expression for

organisms of similair genome complexity as eucalypts. Several statistical approaches have been developed

to model the distribution of RNA-Seq data across a transcriptome (Langmead et al., 2010; Srivastava

and Chen, 2010; Trapnell et al., 2010; Wang et al., 2010a) and correct for transcript length (Oshlack

and Wakefield, 2009), positional (Bohnert and Rätsch, 2010) and content bias of the technology (Hansen

et al., 2010). Improvements to the CUFFLINKS package to incorporate various normalisation methods

for the detection of differential expression makes it a valueable benchmark to use for expression analysis

(Trapnell et al., 2010; Roberts et al., 2011). The DEGseq package makes use of three different published

methods (Marioni et al., 2008; Bloom et al., 2009; Tang et al., 2009) and two novel methods to identify

differential expression using mRNA-Seq data, and also serves as a good alternative starting point for

different expression analysis. Both CUFFLINKS and DEGseq are available as tools in the BCBU Galaxy

server. Investigations of transcriptome wide gene expression data assist in the selection of target genes

of interest for genetic modification and the elucidation of complex traits when combined with population

genetic data.

The workflows described here serve as a starting point to a whole range of uHTS DNA sequence analy-

ses. The Galaxy environment facilitates easy incorporation of new tools, results storage and tracking, and

a common interface to store and share analysis pipelines and results. Key parameters that can influence

the output of the individual analysis tools that make up the workflows have been discussed and guidelines

provided regarding the effect of these parameters on a dataset. The guidelines provided should, however,

be used with caution, as they are only applicable to the datasets and organism evaluated. The workflows

described here have been used to perform the de novo assembly of a gene catalog from mRNA-Seq, the

subsequent annotation of the assembled gene catalog as well as the expression profiling of the assembled

transcripts as described in Chapter 3.

 
 
 



Chapter 3

The assembly and annotation of a draft transcriptome

sequence of a Eucalyptus hybrid tree

Chapter Preface

The following publication resulted from the worked described in this chapter:

• Mizrachi, E., Hefer, C.A., Ranik, M., Joubert, F. and Myburg, A.A., 2010. De novo assembled

expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC

Genomics, Volume 11, 681.

Several of the figures used in this chapter were also used in the above mentioned publication. The

manuscript is attached as Appendix D.

Author contributions:

C.A. Hefer performed the de novo assembly and automated annotation, participated in data analysis,

and drafted the chapter. E. Mizrachi helped sample the biological material, prepared the libraries,

participated in the de novo assembly and data analysis, M. Ranik prepared the libraries, helped sample

the biological material and participated in data analysis. F. Joubert participated in data analysis. A.A.

Myburg conceived of the study, and participated in its design and coordination and participated in data

analysis.
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3.1. Introduction

In South Africa, 36% (450 000ha) of the total land area used for commercial forestry comprises of eu-

calypt species (DWAF report, http://www2.dwaf.gov.za/webapp/Documents/FSA=Abstracts2009.pdf).

The Eucalyptus genome released early in 2011 (http://www.phytozome.net) is only the second forest

hardwood tree for which a genome sequence is available. Together with the genome sequence of Populus

trichocarpa (Tuskan et al., 2006), the Eucalyptus genome sequence provides researchers with interests

in woody biomass production unique opportunities to elucidate the underlying biochemical and genetic

components of wood properties and cellulose production. Eucalypt and poplar trees have been earmarked

as potential bioenergy crops (Hinchee et al., 2009), which adds to the existing value of these plantation

crops in the pulp, paper and timber industries (Moore et al., 2010).

Accurately identifying gene models in a newly sequenced genome relies heavily on the presence of

evidence of expression of potential gene models in order to reduce the number of false positives identified

using computational gene finders. Despite the availability of uHTS technology, by the the end of 2009 pre-

cious few eucalypt unigene and EST datasets had been made available to the scientific community, mostly

due to the commercial interests in the species (Hibino, 2009). The EST datasets that were available con-

sisted mostly of Sanger sequenced datasets (Rasmussen-Poblete et al., 2008; Rengel et al., 2009) and 454

(Roche Life Sciences) generated EST datasets (Novaes et al., 2008). A collection of EST resources in the

public domain is now accessible from the EucalyptusDB resource (http://eucalyptusdb.bi.up.ac.za), and

consists of ESTs and unigenes derived from seedlings and different leaf and xylem tissues from various

eucalypt species.

Sequencing gene specific tags of the mRNA content of a cell was first demonstrated during the

human genome project (Adams et al., 1991), and has in the past two decades been used to profile the

transcriptomes of many organisms (Boguski et al., 1993, 1994; Sterky et al., 1998; Seki et al., 2002;

Dias Neto et al., 2000; Rasmussen-Poblete et al., 2008). The advent of ultra-high-throughput sequenc-

ing technologies, especially the use of mRNA-Seq has enabled the genome wide identification of novel

expressed transcripts in various tissues and organisms (Cloonan et al., 2008; Denoeud et al., 2008; Mor-
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tazavi et al., 2008), the identification of alternative splicing events (Pan et al., 2008; Sultan et al., 2008;

Filichkin et al., 2010) and quantification of transcript abundance (Mortazavi et al., 2008; Trapnell et al.,

2010). Transcriptome profiling has mostly been performed for model organisms, although early access to

genome sequences has been used to profile gene expression in non-model organisms, with reference-based

transcriptome assemblies performed for the Pachycladon (Collins et al., 2008), Melitaea (Vera et al.,

2008) and Cucumis (Wu et al., 2010) genomes.

The following sections describe the de novo assembly, annotation and transcriptome profiling of

a Eucalyptus hybrid tree. By performing deep mRNA sequencing of six different tissues with Illumina

technology, reads ranging from 35-55 bp long were assembled into 18 894 contigs longer than 200 bp. The

assembled contigs were evaluated for contig contiguity and assembly quality, and transcript composition

compared to the homologous transcripts available for the Populus trichocarpa, Vitis vinifera and Ara-

bidopsis thaliana angiosperms. Annotation of the assembled contigs was performed based on homology

search results against the above mentioned angiosperm transcriptome datasets, as well as additional

annotation including protein family and protein feature annotations, gene ontology classification and

functional pathway classifications. The transcript abundance of the assembled contigs was calculated

in each of the sampled tissues, and a set of transcripts over-expressed in woody when compared to

non-woody tissues were identified. The deep sequencing of the tissues also allowed for the identification

of possible polymorphism sites in the assembled gene catalog, providing insight in the heterozygosity

present in the hybrid transcriptome.

3.2. Materials and methods

3.2.1. Plant tissue collection, mRNA-Seq library preparation and sequence generation

Six different tissues from a six year old ramet of a commercially grown E. grandis x E. urophylla hybrid

clone (GUASPI, Sappi forest Research) sampled consisted of xylem, immature xylem, phloem, shoot tip,

and young and mature leaf tissue. After total RNA extraction and polyA enrichment, paired-end libraries
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with an approximate average insert length of 200 bp were synthesized. The libraries were sequenced on

an Illumina Genome Analyser (version I, II and IIx) equipped with a paired-end module. Further details

regarding the sampling and laboratory methods are described in the Materials and Methods section of

Mizrachi et al., 2010 (Appendix D).

3.2.2. De novo transcriptome assembly

A single paired-end file was created containing the reads from the various tissues and sequence

lanes. After removing reads containing regions of consecutive low quality bases (4 consecutive ”N”s), a

total dataset of 3.9 Gb of sequence was used for the assembly. The de novo transcriptome assemblies

were performed with the de Bruijn graph-based assembler Velvet (Zerbino and Birney, 2008). Various

assemblies were performed to firstly identify the optimal kmer length, and then the expected coverage

cutoff that resulted in the assembly of the final set of transcripts. A stringent average coverage cutoff of

8X was used to remove entire contigs with low coverage.

Extending the assembly

The short read assembler, Velvet (Zerbino and Birney, 2008) showed superior performance over

other short read assemblers, and although the assembler was developed for genome assembly, it managed

to assemble sufficiently long contigs of representative mRNA-transcripts. The assembler requires an

estimation of the coverage across a transcript in order to correctly join nodes in the de Bruijn graph

representing each contig. If large discrepancies in coverage happen to occur across a contig, the genome

assembler tends to break the contig into two or more shorter sequences. Due to the variable nature

of transcript expression, a coverage assisted re-assembly of the assembled contigs was performed. The

re-assembly process involved mapping the dataset of short reads to the assembled contigs, and calculating

the average sequence depth of each transcript. The matching read and associated mate pair reads

that mapped to any given transcript were then extracted from the total dataset and together with the

calculated average coverage and the original contig used in a reference based approach to re-assemble
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Figure 3.1: A schematic flow diagram of the coverage-assisted re-assembly process. First, a mapping
process (using Mosaik, Stromberg and Marth, 2008) is followed where all the Illumina reads are mapped
to a contig from the initial de novo Velvet assembly, then the average coverage of the contig is calculated.
The short-reads will map as pairs (red) or single reads (blue) to the assembled contig. All mate-pairs
(of the red and blue reads) that mapped to the contig are then extrancted from the Berkeley database
and stored in a seperate file. These pairs are then, together with the appropriate coverage setting and
the contig as a backbone, submitted to Velvet for re-assembly.

the contig (see Figure 3.1 for a graphical representation of the process, and Appendix B for the Python

code).

A Berkeley database (BDB, Oracle, 2009) was constructed to facilitate the storage of the mate-pair

information for the 35 million paired-ends reads in an efficient manner. The high performance and

scalability of the BDB storage system made BDB more suited for the task at hand than relational database

systems or flat-file storage (Oracle, 2009). The BDB system is designed to be embeddable in a program-

matic fashion, and have the ability to handle multiple concurrent queries. The mate pair information

was stored as tuples in the database, with the name of the entry as the lookup or key value. The
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key-value storage allowed for the fast querying of the data, but with the initial computational overhead

of initializing the database. The Python API provided access to the database via a dictionary-like object,

and streamlined the extraction of mate-pair information from the database.

The average coverage per contig for the assembled contigs were calculated using the Mosaik assembler

(Stromberg and Marth, 2008). The mapping parameters used a hash size of 12, and limited the number

of hash positions on a contig to 100, as per user documentation. Variations of the input parameters did

not yield significantly different results. In addition to the coverage value for each contig, the assembler

returns a list of short reads which aligned to each contig. These reads and their respective pairs were

then extracted from the BDB using custom Python scripts.

The contig coverage and short reads that mapped to a specific contig as determined by Mosaik were

used in a reference based re-assembly. The expected coverage parameter was customized to represent

the calculated coverage, and the short reads were submitted as paired reads to the assembler, with the

original contig as the reference template. The reference based assembly had a relatively small memory

footprint, since only the reads that mapped to the contig were used during the assembly, and a pipeline

was developed to run the re-assembly process in parallel on the 24-core server used for assembly.

The release of a de novo transcriptome assembler, OASES (Zerbino et al., unpublished and in beta

release) prompted the re-assembly of the contigs using the same parameters that was used for the original

Velvet-based assembly. The OASES assembler does not accept any parameters regarding the expected

coverage values since it attempts to estimate the coverage during assembly. The OASES-assembled contigs

were then compared with the Velvet assembled transcripts and a set of full-length cDNA sequences from

GenBank.

3.2.3. Prediction of coding sequences

In order to provide supporting information for the contiguity of the assembled contigs, multiple

ab initio coding sequence (CDS) predictions were performed on the assembled and extended contigs

(Table 3.2). GENSCAN (Burge and Karlin, 1997), GeneMark (Borodovsky and McIninch, 1993), AUGUSTUS
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(Stanke and Waack, 2003), GLIMMER (Salzberg et al., 1999) and GeneID (Guigo et al., 1992) are all Markov

model-based prediction tools for the prediction of coding sequences from genomic DNA. Markov-based

prediction tools are trained on a predefined known dataset of known features associated with a coding

sequence such as a transcriptional start site (TSS), 5’ and 3’ untranslated regions (UTRs), start codons,

splice donors and acceptors, etc. These training sets are then used to perform ab initio coding sequence

predictions. For all of the previously-mentioned predictors, the Arabidopsis training data set was used

to predict the coding regions of the contigs. The prediction of coding sequences played an important

role in validating the assembled contigs in terms of possible misassemblies occurring in the dataset.

3.2.4. Inspecting contig contiguity

The nature of the assembled contigs in terms of assembling a complete full length contig, and in

terms of identifying possible misassemblies, were inspected by selecting 33 full-length Eucalyptus cDNA

sequences representing various different gene families, and using these as reference templates for the

assembled contigs (Section C.1.1 in Appendix B). The homology search tool, BLAST (Altschul et al.,

1990), was used with a stringent e-value cutoff (1e−100) to find the corresponding assembled contig that

matched each of the Genbank cDNA sequences. A global alignment (Needle, Rice et al., 2000) was

then performed between the cDNA sequence and the assembled contig, and the cDNA sequence and the

predicted coding sequence from the GENSCAN analyses were considered in order to evaluate the contig

contiguity.

The coverage per base pair (CBP) was calculated separately for all of the cDNA sequences, the

assembled contigs and the predicted CDS with BWA aligner (Li and Durbin, 2009, see section 3.2.7 for a

description of the parameters used). The coverage values and the alignment information were then used

to construct a graph which represents the coverage accross the alignment between the three sequences.

This representation of the sequences allowed for the fast identification of misassembled contigs from

Illumina data in comparison to the full cDNA sequences obtained from Sanger sequencing.
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3.2.5. Homology searches

Homology-based analyses were used to evaluate the size categories and completeness of the assembled

contig dataset. The complete peptide datasets of Arabidopsis thaliana (TAIR9, Huala et al., 2001), Pop-

ulus trichocarpa (Version 2, Tuskan et al., 2006) and Vitis vinifera (Jaillon et al., 2007) were compared to

two Eucalyptus datasets, the assembled transcriptome, and a dataset of all publicly available Eucalyptus

sequences at that time (August 2009). The publicly available dataset (henceforth known as the EucAll

dataset) consisted of 45 442 entries from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html

downloaded on 27 July 2009), 13 930 entries from a Eucalyptus Wood (EucaWood) unigene and ESTs

resource (Rengel et al., 2009), leaf tissue ESTs (120 661 entries from JGI-produced sequences), and 190

106 unigenes and singlets from 454 data (Novaes et al., 2008). The aim was to identify the sequence

homologs of the Arabidopsis, Vitis and Populus protein datasets present in the Eucalyptus datasets

with homology-based searches. BLAST searches were performed against the Eucalyptus datasets with

e-value thresholds of 1e−5, 1e−10 and 1e−20, and a High Scoring Pair (HSP) minimum alignment length

of 100 bp (33 amino acids). The set of results were further separated based on the size of the hit

(Eucalyptus) sequence. The proportion of genes shared among four angiosperm species (Eucalyptus,

Arabidopsis, Poplar and Vitis) were also determined with BLAST (1e−10, min HSP alignment length of

100 bp) analysis, identifying genes common to all four species, and genes shared between the assembled

Eucalyptus contigs and each of the other three angiosperm species.

3.2.6. InterProScan

The InterProScan tool was used to detect protein predictive models or signatures in the assembled

dataset. InterProScan relies on integrative data stored in the InterPro database (Hunter et al., 2009)

which aggregates diverse information from multiple databases, including Gene3D, PANTHER, Pfam, PIR,

PRINTS, ProDom, ProSITE, SMART, SUPERFAMILY and TIGRFAM data. In the 2009 release of InterPro close

to 58 000 different signatures were present in the database, and together with the over 16 000 UniProtKB

entries formed a valuable tool for protein functional annotation.
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3.2.7. Calculating transcript coverage and expression

Average coverage per contig was calculated by mapping the short reads to the assembled contigs with

the BWA aligner (Li and Durbin, 2009), and averaging the coverage per base pair (CBP) for every base

in the assembled transcript. The alignment allowed for a 0.04 fraction of missing alignments given the

predicted 2% uniform error rate of Illumina reads, also allowing for one gap in the sequence alignment.

During alignment, deletions were disallowed within 16 bp of the 3’ end of the sequences, and within 5

bp of the 5’ end. A gap opening penalty of eleven and gap extension penalty of four were used for the

scoring matrices, and the mean insert size for a paired read to be considered as being mapped properly

was set to 200 bp.

The Fragments per Kilobase of exon per Million mapped (FPKM, initially developed by Mortazavi

et al. (2008) as Reads per Kilobase of exon per Million mapped, RPKM, but redefined as FPKM by

Trapnell et al., 2010) were derived from mapping the short reads to the assembled contigs with the

BOWTIE short read aligner (Langmead et al., 2009). The resulting alignment files (SAM format, Li et al.,

2009a) were then used as input for the CUFFLINKS software program (Trapnell et al., 2010) in order to

calculate the FPKM values. The parameters for the BOWTIE alignment allowed for three mismatches in

the seed (first 28 bp from the 5’ end of the sequence), but no gaps in the alignment. A mean insert size

of 200 bp was used for the correct alignment of paired-end reads.

Differential transcripts in the xylogenetic (woody tissues which include the xylem and immature xylem

datasets) vs. non-xylogenetic (non-woody tissues which include the shoot tip, mature and immature leaf

samples) were detected by filtering the transcripts to only contain transcripts with an expression value

>2X in either of the two groups of tissues. KEGG and gene ontology analysis of the set of differentially

expressed transcripts were performed with the BiNGO Cytoscape plugin (Maere et al., 2005) and the

Paintomics (García-Alcalde et al., 2010) web server.
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3.2.8. Single nucleotide polymorphism detection

Results from short read mapping performed with the Bowtie short read alignment tool (Langmead

et al., 2009) were used to detect single nucleotide polymorphisms in the dataset. Possible polymorphisms

were detected using SAMTOOLS (Li et al., 2009a). SAMTOOLS applies a default filtering for SNPs using the

following rules; (a) discard SNPs within the 3 bp flanking region around a potential indel; (2) discard

SNPs covered by three or fewer reads; (3) discard SNPs covered by no read with a mapping quality

higher than 60; (4) in any 10 bp window, if there are three or more SNPs, discard them all; and (5)

discard SNPs with a consensus quality lower than 10 (Li et al., 2008b). Potential SNPs were then filtered

to contain only SNPs with coverage of at least 8X, where the minor allele occurs at least 4X. Only SNPs

with a higher PHRED based quality score than 20 were included in the final results.

3.3. Results

3.3.1. Assembly

Multiple assemblies were performed with a defined set of input parameters using different values to

evaluate which parameters resulted in the longest transcript sequences in the most contigs (Figure 3.3).

The final assembly was performed with the following input parameters: kmer=31, expected coverage

value=1000 and coverage cutoff value=8. The optimal kmer and expected coverage values were selected

by performing a range of assemblies varying the kmer values from (kmer=19, 21, 23, 25, 27, 29, 31, 33)

and expected coverage (EC=10, 25, 50, 75, 100, 250, 500, 750 and 1000) input parameters (Figure 3.2 and

Figure 3.3). Each assembly was scored with the following scoring algorithm: Score = (N50all∗Nlong)
Sumall+log(Sumlong)

,

where contigs longer than 1 000 bp were considered as long contigs (Section 2.3.3). The conservative

coverage cutoff value (8X average coverage of a contig) was chosen to prevent low covered contigs from

entering the assembly. A summary of the final assembly is presented in Table 3.1.

After assembly, a coverage-assisted re-assembly was performed on the assembled contigs. The re-

sulting assembly contained 23.27 Mbp of sequence in 38 597 contigs vs. the 22.88 Mbp sequence in 38
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Figure 3.2: Identifying the optimal kmer used for the de novo assembly of the Eucalyptus transcrip-
tome. The y-axis represent the relative fraction of the highest value obtained for each parameter during
assemblies. The scoring function for each assembly is plotted together with assembly parameters such
as number of contigs (N), the total sum of bases in the asssembly (Sum) in (A), the mean contig size
(Mean) and N50 value in (B) and the spread of contig sizes (1st-quartile length, median and 3rd-quartile
length) in (C) for each assembly where the kmer value varied from 19 to 33. The final assembly using a
kmer of 31 was further used to detect the optimal expected coverage value (Figure 3.3)
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Figure 3.3: Identifying the optimal expected coverage value to use for the de novo assembly of the
Eucalyptus transcriptome. The y-axis represent the relative fraction of the highest value obtained for
each parameter during the assemblies. The scoring function for each assembly is plotted together with
assembly parameters such as number of contigs (N), the total sum of bases in the asssembly (Sum) in
(A), the mean contig size (Mean) and N50 value in (B) and the spread of contig sizes (1st-quartile length,
median and 3rd-quartile length) in (C) for each assembly where the expected coverage parameter varied
from 10 to 1 000. The final assembly was performed with an expected coverage value of 1 000.
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Figure 3.4: The number of bases per contig added during the extension of the assembly. The theoretical
upper limit of the number of bases added by the extension step is 400 bp (200 bp for each end of the
contig, which corresponds to the sequenced library size) + the standard deviation of the sequenced DNA
fragment sizes. 99% of the added bases per contig were shorter than 336 bp.

597 contigs before extention. Although the maximum contig length did not improve, the average length

of the shorter contigs did improve overall in the re-assembled dataset (Table 3.1). The mean contig

length improved from 592.88 bp to 728.49 bp (22%), and number of unknown bases (N) in the assembly

increased from 396 029 to 405 429 (2.3%). Figure 3.4 indicates that 99% of the additional bases added

to the assembly per contig were shorter than 336 bp. The theoretical limit with which a single contig

can be expected to be extended, was estimated as the insert size of the sequenced DNA library (200 bp)

x 2 (one for each end of a contig) and adding a standard deviation for the library insert size (Figure 3.5).

This would cater for the cases where one sequence from the mate pair library occured at the beginning

or end of the assembled contig, and the other fragment of the paired sequence were added during the

extension step.

A closer look at the top 10 contigs where more than 500 bp was added to the assembly during
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Figure 3.5: The effect of performing a coverage-assisted re-assembly on a single contig (contig_10522).
An additional 124 bp were added to the contig during assembly. 72 bp were added to the beginning and
45 bp to the end of the contig due to a better estimate of the expected coverage of the contig.
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extension revealed that the extensions still yielded biologically relevant molecules, as shown with the

alignment of the sequences against known protein coding sequences and against the sequences present

in the pre-extended dataset. For example, after the initial assembly contig_68291 (Figure 3.6) had a

region of low quality or coverage bases (the result from the stringent 8X coverage cutoff parameter) at

positions 65 and position 1832, spanning 40 and 54 bases respectively. During the re-assembly step,

when the contig sequence acted as a template sequence for the extended assembly and the 8X coverage

cutoff value was not enforced anymore, these regions of unknown bases were extended and repeated,

resulting in a total extension of 1 485 bp of low quality bases. By replacing these regions of low quality

bases with a stretch of four consecutive Ns (NNNN), and aligning the contig before and after extension,

the alignment indicates that the contig after extension actually had bases removed from the beginning

of the sequence due to the presence of the polyA region which could not be overcome by the assembler

(position 1-171 of the before-extension contig, see Figure 3.6). The alignment also indicates that a region

initially consisting of low quality bases at position 1838 of the pre-extension contig was resolved during

the extension step.

After applying a further restriction to the assembly to only include contigs equal to or longer than

200 bp, the final assembly contained 18 894 contigs representing 22 108 288 bp of sequence data (Table

3.1). The mean contig length was 908 bp, with the longest contig consisting of 12 053 bp. The N50 value

of the final assembly was 1640 bp. These sequences were then used for further contig validation, coding

sequence prediction and annotation.

3.3.2. Prediction of coding sequences

In order to determine whether or not the assembled transcripts were full-length, contiguous biological

molecules, coding sequence (CDS) predictions were performed on the assembled contigs to identify CDS,

open reading frames (ORFs) and transcriptional start and stop sites. The success rate of various CDS

detection software tools ranged from identifying 10 400 (7 776 single-exon and 2 624 multi-exon) contigs

containing valid coding sequences to 18 894 (16 568 single and 2 326 multi-exon) CDS containing contigs
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Figure 3.6: The alignment of contig_68291 before and after extension. The alignment shows that
although 1 485 bases was reportedly added to the contig during extension, these bases mostly consisted
of the extension of a low quality region containing Ns. The extension did however resolve a 88 bp region
of these low quality bases. The contig after extension also showed removed regions at the start and end
of the original contig, due to the presence of a polyA region at the beginning of the sequence. The full
alignment of the two sequences is available in Appendix C.1.3.

Table 3.1: Comparing the assembled Velvet dataset before and after the coverage assisted extention.
The most notable effect is observed in the increased length of the shorter reads (the Q1, median and Q3
values).

Velvet assembly After assisted
re-assembly

Final assembly
(>=200 bp)

Number of contigs 38 597 38 597 18 894
Amount of bases in assembly 22 883 310 23 272 382 22 108 288
Shortest contig length (bp) 61 61 200
First quartile length (Q1) (bp) 64 89 470
Median contig length (bp) 137 358 908
Third quartile length (Q3) (bp) 856 1 078 1573
Maximum contig length (bp) 12 053 12 053 12 053
Mean contig length (bp) 592.88 728.49 1170.12
N50 length (bp) 1 550 1 570 1640
Number of Ns in assembly (bp) 396 029 (1.73 %) 405 439 (1.74 %) 405 238 (1.83 %)
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Table 3.2: Coding sequences predicted in the assembled dataset with different ab initio gene prediction
software packages.

Number of predicted exons GENSCAN GeneMark AUGUSTUS GLIMMER GeneID

Single exon 10 887 8 320 11 134 7 776 16 568
Multiple exons 4 827 10 365 4 770 2 624 2 326

Total CDS predicted sequences 15 714 18 685 15 904 10 400 18 894

by the GLIMMER and GeneID software packages respectively (Table 3.2). GeneID assigned single-exon

status to each of the input contigs, a clear over-estimation of the number of contigs present in the

assembly, and the results were disgarded in further analysis. The prediction of single exon coding

sequences ranged from 38.70% of the complete dataset with the GeneMark prediction tool, to around

70% (69.28%, 70.00% and 74.76% with the GENSCAN, AUGUSTUS and GLIMMER tools respectively), with a

maximum of 87.69% by GeneID. When comparing the GENSCAN, GLIMMER and AUGUSTUS results, a total of

15 275 (94.85%) out of the maximum of 15 904 CDS-containing sequences were predicted by at least two

of the CDS prediction tools. GENSCAN predicted more than 98% of the total coding sequences predicted by

this subset of predictors, and the results from GENSCAN were subsequently used in downstream analysis.

Further analysis showed that 6 294 (39.57%) of the 15 904 predicted CDS had both start (ATG) and

stop (TAA, TGA or TAG) codons present as the first and last codons of the sequence, while 13 660

(81.91%) had one of the features present. Predicted partial CDS sequences with neither the start nor

stop codons present as the first and last positions of the contig comprised 14.19% (2 258 contigs) of the

total dataset.

3.3.3. Inspecting contig contiguity

In order to gain confidence in the quality of the assembled contigs, several sequence alignment ap-

proaches were followed to ensure that the assembled contigs were representive of biologically relevant

contiguous sequences and not assembly artifacts. Full length Eucalyptus cDNA sequences were retrieved

from GenBank, and aligned with the corresponding assembled contig and predicted CDS results from

GenScan (Figure 3.7 and the alignment of the predicted amino acid sequence on contig_5550 and the

GenBank sequence AF197329.1 in Figure 3.8). The alignment showed mismatches in the 5’ and 3’ UTR
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regions between the GenBank and assembled contig sequences, but a high proportion of similarity in the

CDS alignments. For each of the 33 cDNA sequences (see Appendix C.1.1) a global alignment between

the cDNA, the contig and predicted CDS sequence was performed to evaluate the contig contiguity. The

short read library was then mapped to the cDNA, predicted CDS and assembled contig, and the depth

of coverage plotted across the length of each of the sequences. The multiple sequence alignment and the

coverage plots of the sequences were then used to construct a coverage-alignment plot for each of the

cDNA sequences (Figure 3.9 and Appendix C.1.2). Gaps in the alignment between the three sequences

as presented as gaps in the coverage across the region, and where regions of dissimilar sequence occur,

the coverage across the region will aid in detecting possible misassemblies.

Using the full-length cDNA sequences as template, 23 of the 33 (69%) comparisons revelealed the

presence of indels in either the cDNA sequence, the assembled contig, or the predicted CDS sequence.

For the purpose of this analysis, indels were defined as any insertion or deletion in the alignment between

the sequences longer than five base pairs. Of the 23 sequences where indels were detected, 17 (74%) had

indels within the predicted coding sequence, with the remaining indels present in the predicted UTR

regions. Twenty eight (85%) of the 33 sequences inspected contained both the 5’ and the 3’ UTRs, while

the remaining sequences contained at least one UTR sequence.

Inspection of the zinc transporter cDNA sequence AF197329 and its corresponding assembled con-

tig_5550 showed some initial indels present in the 5’ region of the assembled sequence when compared

to the cDNA sequence (Figure 3.9A). Various single base pair mismatches occur within the predicted

coding sequence (e.g. position 92 on the assembled contig), with a six base pair indel present at position

686 of the assembled contig. The coverage was calculated across the indel as 40X, indicating that the

indel is likely present in the mRNA-Seq sequenced sample, and is not an artifact of a missasembly. The

alignment of the three sequences is presented on the x-axis of Figure 3.9A, with the coverage across each

sequence plotted on the y-axis. The 6 bp gap in the alignment where the indel is present, is indicated by

a gap in the coverage (red line) of the graph. More indels were detected in the 3’ region of the assembled

transcript.
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Figure 3.7: Alignment of the full length cDNA sequence AF197329.1, the assembled contig_5550, and the predicted coding sequence. Note that
some gaps appear in the predicted contig upstream (5’ UTR) of the ATG site and in the 3’ UTR region downstream of the transcription stop
(TAG) site . There is a six-base-pair insertion present at position 686 of the cDNA sequence and various single nucleotide mismatches are visible
in the alignment. The protein sequence alignment between contig_5550 and AF197329.1 is presented in Figure 3.8.
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Figure 3.8: Alignment of the protein coding sequence of contig_5550 and the full length cDNA sequence
AF197329.1. The six basepair insert in the assembled contig (contig_5550) coded for the amino acids
glycine and histidine (at position 191 and 192) of the amino acid sequence. Alignment differences
between the two sequences can be attributed to the species differences and natural variation between the
two organisms represented by the amino acid sequences.

The de novo transcriptome assembler OASES (Zerbino et al., unpublished which is based on the

Velvet assembler) was used to assemble a transcriptome using the same kmer parameters as was used

during the Velvet assembly. The OASES assembler corrects for the difference in expected coverage across

transcripts in a dataset, and is able to assemble alternative isoforms of a transcript. By comparing the

assembled Velvet contig (contig_5550) to the assembled OASES transcripts, six shorter transcripts were

identified in the OASES assembled dataset, with one of the transcripts (locus_19278) suggesting that

alternative isoforms of the transcript are present in the sequenced biological sample (Figure 3.9B). The

OASES assembler holds the promise to be able to detect alternative isoforms of a transcript, but at the

time of this study, it was found that it performs this function at the expense of assembling full-length

transcripts.
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Figure 3.9: Alignment coverage figure of the full length cDNA sequence AF197329.1, the assembled homologous contig (contig_5550) and the
predicted CDS (A) and the OASES assembled transcripts (B). In figure A, the coverage per base are plotted on the y-axis, with the sequence
on the x-axis (1 574 bp long). The cyan and blue bars represent the calculated coverage of the assembled contig (cyan) and predicted CDS
sequence (blue). The red bars represent the coverage of the genbank sequence (AF197329.1). The six bp indel present in the GenBank sequence
is indicated as a gap in the red coverage plot. In figure B, the assembled contig is presented as a light grey box at the top left of the figure. The
red bands indicates regions of high similarity between the assembled contig and the loci assembled with OASES, while blue bands indicate lower
similarity scores. The figure illustrates that multiple loci are being assembled by OASES at the cost of assembling a single contiguous sequence
when compared to the Velvet assembly.
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3.3.4. Homology searches

The assembled contig diversity was inspected with the aid of homology-based comparisons of the

contigs against the different angiosperm transcriptomes. The EucAll (see Section 3.2.5) and assembled

gene catalog were binned into six different size categories, and the transcriptome sequences of Arabidopsis,

Populus and Vitis compared against the binned sequences (Table 3.3). The results indicate that the

assembled contig represented the same sequence diversity present in the EucAll dataset, but that a

larger number of contigs (1 865, 4 543 and 2 887 vs 6 185, 15 286 and 9 010 for Arabidopsis, Vitis and

Populus respectively ) are represent in the larger size categories (>2 000 bp) of the assembled contigs.

When comparing the assembled contig dataset against the selected angiosperm datasets, a large

percentage of the contigs (82% or 15 505 contigs) matched at least one other angiosperm gene sequences

(BLAST e-value cutoff at 1e−10 and min HSP length of 100 bp, Figure 3.10). Between the Populus and the

assembled Eucalyptus datasets, 14 769 sequences were common, while Eucalyptus and Vitis shared 14

883 sequences. Between Eucalyptus and Arabidopsis there were a common set of 14 231 sequences, while

3 552 sequences in Eucalyptus did not show similarity to any of the selected angiosperm transcriptomes

at an e-value cutoff of 1e−10.

3.3.5. InterProScan

The InterProScan pipeline annotated protein features and/or signatures on 10 557 (56%) of the 15 904

assembled contigs. During annotation, 2 504 distinct protein families (PFAM) were detected, assigning

family information to 85% (9 028 contigs) of the 10 557 annotated contigs. PANTHER analysis provided

4 274 distinct functional annotations, with 7 589 (40.16%) sequences annotated and 7 056 sequences

(37.43%) were classified in 724 distinct superfamilies, while 1 076 profiles were detected in 5 438 sequences.

Conserved domains identified with TIGR HMM models contributed 869 (4.6%) of the total annotations

utilising 492 models, and 364 (1.9%) sequences were annotated with 241 Protein Information Resource

(PIR) domain identifiers (Figure 3.11).
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Table 3.3: A summary of the representation of Arabidopsis, Populus and Vitis genes (number of sequences in brackets) in the constructed
public dataset (EucAll), and the assembled contig dataset at different e-value thresholds. The assembled contigs contained the same number of
homologous contigs as the EucAll dataset (27 939 and 26 848 sequences in Arabidopsis), but contained more longer contigs than the publicly
available Eucalyptus datasets (> 2 000 bp).

Angiosperme-value EucAll dataset Assembled contigs
>200bp >300bp >500bp >1000bp >2000bp >3000bp >200bp >300bp >500bp >1000bp >2000bp >3000bp

Arabidopsis1e−5 27 939 27 394 25 593 17 245 2 002 199 26 845 26 020 24 512 18 516 6 862 2 177
(33 410) 1e−10 26 587 26 202 24 662 16 903 1 940 199 25 538 24 757 23 390 17 744 6 602 2 114

1e−20 24 302 24 129 23 093 16 279 1 865 191 23 242 22 545 21 485 16 569 6 185 1 978
Vitis 1e−5 63 777 62 197 56 085 36 655 4 862 1 118 59 231 57 312 53 600 40 913 17 716 7 791
(75 983) 1e−10 61 167 59 932 54 585 35 975 4 750 1 088 56 462 54 632 51 231 39 301 16 897 7 374

1e−20 55 264 54 713 50 806 34 412 4 543 989 50 953 49 274 46 526 36 064 15 286 6 522
Populus 1e−5 38 723 37 835 34 827 23 340 3 107 483 36 922 35 737 33 487 25 348 10 197 3 673
(45 779) 1e−10 36 981 36 308 33 730 22 891 3 038 466 35 131 34 011 31 987 24 395 9 813 3 521

1e−20 33 082 32 789 31 034 21 736 2 887 401 31 546 30 560 28 936 22 451 9 010 3 171
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Figure 3.10: Similarity search results of the assembled Eucalyptus transcripts against three angiosperm
species. In total, 15 505 contigs had homologous sequences in either Populus (14 769), Vitis (14 833)
or Arabidopsis (14 883). The results were filtered to contain only high similarity results (e-value 1e−10

and a minimum HSP length of 100 bp or 33 amino acids). There were 3 552 Eucalyptus sequences that
were assembled but did not have homologous counterparts in the selected angiosperm datasets with these
filter parameters.

3.3.6. Expression profiling

Relative gene expression in terms of Fragments of reads mapped Per Kilobase of exon per Million

mapped reads (FPKM, Trapnell et al., 2010) was calculated by mapping the six different mRNA-Seq

samples back to the assembled transcriptome, and calculating the transcript abundance with the TopHat

(Trapnell and Salzberg, 2009) and Cufflinks (Trapnell et al., 2010) software packages. The expression

ratio of the xylogenic tissues (average expression in xylem and immature xylem) vs. the non-xylogenic

tissues (average expression in shoot tips, mature and young leaf) were used to identify genes which

are differentially expressed between the woody and non-woody tissues. A 2X threshold was set, and 3

602 (19.06%) genes were identified with higher expression in the xylogenic tissues, while 879 (4.65%)

genes were expressed 2X higher in the non-xylogenic tissues (Figure 3.13A). The expression profile of

the selected genes indicate that the genes selected show patterns of co-expression across different tissues

(Figure 3.13B).

Gene ontology (GO) category analysis of the over expressed genes in the xylogenic tissues (Figure
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Figure 3.11: The 20 most prevalent protein family (PFAM) and protein information resource (PIR)
annotations from InterProScan analysis. The pie charts represent the frequency of the top 20 annotations
based on PFAM (a), and PIR (b) annotations. The number of annotations in each annotation category
is presented in the center of each pie chart. Leucine repeats and protein kinase-related family members
were the most prevalent protein families, and hydrolases, ligases and chaperone protein domains the most
frequently annotated PIR features.
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Figure 3.12: The 20 most prevalent Panther (a) and Prosite (b) annotations from InterProScan analysis.
Protein kinase signatures were the most prevalent in both annotation sets, as well as the WD40 and
leucine-rich repeats.
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Figure 3.13: Identifying over-expressed xylogenic and non-xylogenic genes (non-xylogenic tissues include
mature leaf (ML), shoot tip (ST) and young leaf (YL) tissues, while xylogenic tissues include the imma-
ture xylem (IX) and xylem (XY) tissues). Of the 18 894 genes, genes which are expressed 2X higher in
xylogenic than non-xylogenic tissues and vice versa were identified (A). The expression profiles of the
three sets of genes indicate a trend towards co-expression of the genes in the different tissues (B).
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3.14, Figure 3.15 and Figure 3.16) and the non-xylogenic tissues (Figure 3.14B) indicated an abundance

in transporter associated, catalytic activity and membrane associated proteins in the xylogenic tissues.

Additional structural components over represented include the vacuole and the plasma membrane, both

indicative of transport activity in these tissues. Photosynthetic biological processes and plastid associated

genes were most prevalent in the non-xylogenetic tissues, as expected for these photosynthetic tissues.

By mapping the Arabidopsis homologs of the 3 602 genes identified as being over-expressed in xy-

logenic tissues to the starch and sucrose metabolism pathway (KEGG map00500) in KEGG, xylem

over-represented enzymes in the KEGG pathway were identified. The enzymes fructokinase (EC:2.7.1.4),

dehydrogluconokinase (EC:2.7.1.13), UDP glucose pyrophosphorylase (EC:2.7.7.9) and alpha-galacturonosyl-transferase

(EC:2.4.1.43) showed the largest differentiation in expression in the xylogenic tissue (Figure 3.17). In the

photosyntesis pathway (KEGG map00195) the photosystem II enxymes psbR, psbS and psbP were the

most abundant, while the psaD, psaL and psaM photosynthesis I enzymes were the most differentially

expressed (Figure 3.18). The annotations of the top 30 genes identified as differentially expresed are

presented for xylogenic (Table 3.4) and phytosynthetic tissues (Table 3.5).ansferase

From Table 3.4 several known secondary cell wall proteins were identified as being over-expressed

in xylegenic tissues, which validates the approach of performing a de novo assembly with mRNA-Seq

data, and making use of the short-read data to infer transcript expression. This included genes in-

volved in growth and shoot development (AT3G53980, Che et al., 2006, AT3G23090, Yuen et al.,

2003, AT1G15080, Katagiri et al., 2005), heat shock, disease and stress response pathways (AT5G12030,

Wehmeyer and Vierling, 2000, AT5G59720 and AT4G10250, Nishizawa et al., 2006, AT3G53260, Wanner

et al., 1995, AT2G35980, Zheng et al., 2004, AT3G51780, Doukhanina et al., 2006, AT2G39530, Cartieaux

et al., 2003). Two proteins of unknown function (AT1G0961, Brown et al., 2005) and AT3G0998 that

contains the domain of unknown function (DUF662) have also been identified among others as being

over-expressed in xylogenic tissue. More importantly, xylem development genes, such as those identified

as being active in the xylem development transcriptional network (AT4G28380, Ko et al., 2006), those

involved in secondary cell wall construction (AT5G60490 and AT5G03170, Andersson-Gunnerås et al.,
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Figure 3.14: Over-represented molecular function gene ontology terms of genes over-expressed in xylogenic and photosynthetic tissues. AMIGO
results of over-represented molecular function gene ontology terms in xylogenic (A) and photosynthetic (B) tissues. Xylogenic tissues contained
an overrepresented set of terms associated with protein binding and genes with a catalytic activity, especially kinase and transferase activities.
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Figure 3.15: Over-represented gene ontology terms of genes over-expressed in xylogenic and photosynthetic tissues. AMIGO results of
over-represented genes in xylogenic (A) and photosynthetic (B) tissues. Growth and protein modification processes dominated the xylogenic
tissues, while processed associated with biosynthesis and photosynthesis processes were abundant in the photosynthetic tissue dataset.
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Figure 3.16: Over-represented cellular component gene ontology terms of genes over-expressed in xylogenic and photosynthetic tissues. AMIGO
results of over-represented genes in xylogenic (A) and photosynthetic (B) tissues. Cell wall and plasma membrane components were identified
as over-represented term in the xylogenic tissues, while terms associated as part of the plastid were over-represented in the photosynthetic set of
genes.
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Figure 3.17: Differential gene expression between the xylogenic and photosynthetic genes represented on the starch and sugar metabolism KEGG
pathway. The starch and sugar metabolism pathway were used to identify enzymes higher expressed in xylogenic than photosynthetic tissues.
The enzymes are highlighted relative to their expression in both xylogenic (left) and photosynthetic (right) tissues, where a dark red indicates a
higher expression of the enzyme in the pathway. Results were generated by the Paintomics web-server.
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Figure 3.18: Differential gene expression between the xylogenic and photosynthetic genes represented on the photosynthesis metabolism KEGG
pathway. The pathway indivates several enzymes higher expressed in photosynthetic tissues compared to xylegenic tissues. The enzymes are
highlighted relative to their expression in both xylogenic (left) and photosynthetic (right) tissues, where a dark red indicates a higher expression
of the enzyme in the pathway. Results were generated by the Paintomics web-server.113

 
  



Table 3.4: The top 30 genes identified in the xylogenic tissues, compared to photosynthetic tissues. The ratio between xylogenic and photo-
synthetic expression were used to select the genes with the biggest differential expression. Only genes with a match (e-value < e−10) to an
Arabidopsis homolog were included in the list.

Contig Name Arabidopsis homolog Description Ratio
contig_139 AT3G53980.2 Protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 437.20
contig_4304 AT5G12030.1 A. thaliana heat shock protein 17.6A; Unfolded protein binding 388.05
contig_2918 AT5G59720.1 Heat shock protein 18.2 382.59
contig_368 AT1G09610.1 unknown protein 362.02
contig_14996 AT3G09980.1 unknown protein 351.51
contig_16352 AT3G53260.1 Phenylalanine ammonia-lyase 332.46
contig_954 AT2G35980.1 Yellow leaf specific gene 9 235.42
contig_29940 AT4G28380.1 Leucine-rich repeat family protein 221.68
contig_319 AT5G60490.1 FLA12 186.99
contig_35092 AT4G10250.1 Heat shock protein 22.0 185.77
contig_6941 AT5G01300.1 Phosphatidylethanolamine-binding family protein 176.87
contig_17263 AT1G24530.1 Transducin family protein / WD-40 repeat family protein 172.50
contig_13899 AT3G16920.1 Chitinase 170.75
contig_31438 AT3G51780.1 A. thaliana BCL-2-associated Athnogene 4; protein binding 165.51
contig_2525 AT3G23090.1 unknown protein 164.42
contig_4068 AT3G16920.1 Chitinase 161.67
contig_24841 AT1G15080.1 Acid phosphatase / phosphatidate phosphatase 157.65
contig_21284 AT2G39530.1 Integral membrane protein 158.06
contig_1039 AT4G12980.1 Auxin-responsive protein 148.23
contig_63769 AT4G33430.1 BRI1-Associated receptor kinase; kinase/ protein binding / protein heterodimerization 145.16
contig_41003 AT1G50590.1 Pirin 134.02
contig_59694 AT2G30490.1 Ttrans-cinnamate 4-monooxygenase 131.12
contig_3127 AT5G60020.1 Laccase 17 129.04
contig_3811 AT1G27440.1 Catalytic/ glucuronoxylan glucuronosyltransferase 126.59
contig_1532 AT3G16920.1 Chitinase 125.30
contig_17037 AT1G73140.1 unknown protein 124.19
contig_2707 AT5G03170.1 FLA11 122.99
contig_27288 AT2G30395.1 Thalianaovate family protein 17 120.44
contig_65667 AT1G72510.2 unknown protein 116.05
contig_69508 AT3G16920.1 Chitinase 114.86
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Table 3.5: Top 30 photosynthetic genes identified as over-expressed in photosynthetic tissue compared to xylogenic tissue. Only genes with a
Arabidopsis homolog (e-value < e−10) were considered for selection.

Contig Name Arabidopsis homolog Description Ratio
contig_17098 AT5G38430.1 Ribulose bisphosphate carboxylase small chain 1B / RuBisCO small subunit 1B (RBCS-1B) 393.58
contig_14337 AT2G47400.1 CP12-1, CP12 221.94
contig_22811 AT3G15353.1 Methallothionein 3; copper ion binding 191.79
contig_93397 AT4G27450.1 Unknown protein 171.45
contig_21245 AT5G47230.1 Ethylene responsove element binding factor 5; DNA binding transcription factor 166.67
contig_40682 AT3G01500.3 Carbonic anhydrase 1; carbonate dehydratase/ zinc ion binding 141.56
contig_86098 AT3G19390.1 Cysteine proteinase, putative / thiol protease 141.38
contig_31364 AT1G44575.1 Nonphotochemical quencing (NPQ4); chlorophyll binding / xanthophyll binding 123.27
contig_76583 AT5G22430.1 Unknown protein 91.95
contig_3750 AT5G04660.1 Electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding 91.66
contig_93320 AT4G37360.1 Electron carrier/ heme binding / iron ion binding / monooxygenase/ oxygen binding 91.57
contig_65926 AT1G76080.1 Chloroplastic drought-induced stress protein of 32KD (CDSP32) 75.40
contig_51400 AT4G29270.1 Acid phosphatase class B family protein 72.53
contig_37387 AT5G59320.1 Lipid transfer protein 3 (LTP3) 64.85
contig_46787 AT2G34430.1 Chlorophyll binding ( LHB1B1, LHCB1.4, LHB1B1) 46.80
contig_74523 AT5G48480.1 Unknown protein 40.42
contig_84512 AT4G37300.1 Maternal effect embryo arrest 59 (MEE59) 36.75
contig_32402 AT4G00430.1 Plasma membrane intrinsic protein (TMP-C, PIP1;4, PIP1E); water channel 33.88
contig_93894 AT4G24000.1 Cellulose synthase / transferase, transferring glycosyl groups (ATCSLG2, CSLG2) 33.51
contig_49907 AT3G10450.1 Serine carboxypeptidase like 7; serine-type carboxypeptidase 31.02
contig_61965 AT3G54420.1 Chitinase 26.92
contig_54188 AT1G12090.1 Extensin-like protein; lipid binding 25.54
contig_25739 AT1G79040.1 Photosystem II subunit R (PSBR) 24.49
contig_92707 AT1G68570.1 Proton-dependent oligopeptide transport (POT) family protein 23.61
contig_95912 AT4G25000.1 Alpha-amylase-like (ATAMY1, AMY1) 23.06
contig_37372 AT5G09640.1 Serine-type carboxypeptidase/ sinapoyltransferase (SNG2) 23.01
contig_38811 AT4G03280.1 Photosynthetic electron transfer C (PETC, PGR1) 22.80
contig_83181 AT1G73270.1 Serine carboxypeptidase-like 6 (SCPL6) 22.03
contig_95420 AT5G41120.1 Esterase / lipase / thioesterase family protein 21.92
contig_89772 AT3G03980.1 Short-chain dehydrogenase/reductase (SDR) family protein 21.91
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2006, AT3G16920, Brown et al., 2005, AT2G30490, Bayer et al., 2006, AT1G27440, Bosca et al., 2006,

AT1G73140 which contains DUF231, Bischoff et al., 2010) and lignin biosynthesis (AT5G60020, Sibout

et al., 2005 ) have been identified as up-regulated in the xylogenic tissues.

3.3.7. Single nucleotide polymorphism (SNP) detection

SNP diversity was investigated in a subset of the assembled contigs which were deemed to consist of

high quality, full length coding genes. The high quality contigs were selected based on the decision tree

shown in Figure 3.19. The total contig dataset was separated in CDS and non-CDS-containing reads, and

further classified according to homology matches (BLAST e-value of e−10 and a minimum HSP length of

100 bp) of the contigs against various datasets. The 13 806 contigs which contained a predicted CDS and

showed high levels of homology against angiosperm protein datasets (Arabidopsis thaliana, Vitis vinifera

and Populus trichocarpa) were selected for polymorphism analysis.

A total of 106 658 possible SNPs were observed in these 13 806 contigs. The average SNP density in a

predicted coding sequence was 0.21 SNP/100 bp (16 969 SNPs), while the SNP density in the predicted

UTR regions was seven fold higher (1.43 SNP/100 bp, 89 689 SNPs). The overall SNP density (CDS

and UTR regions) was 0.53 SNP/100 bp, with an average of 7.72 SNPs detected per contig.

3.4. Discussion

Deep Illumina mRNA-Seq data analysis of six different tissues of an actively growing six year old

Eucalyptus grandis x Eucalyptus urophylla tree was used to assemble and annotatate 18 894 expressed

gene transcripts (Table 3.1), producing a well-annotated gene catalog of expressed eucalypt transcripts.

The assembly process consisted of performing multiple assemblies of the data with the Velvet assembler

in order to identify the set of input parameters that produces the longest contigs with the most bases,

corresponding to near full length gene models (Figure 3.3). The assemblies were evaluated with a scoring

function that accounts for the number of bases, the number of contigs and the length of contigs to

evaluate an assembly (Section 2.3.3). The final assembly (assembly parameters: kmer=31, expected
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Figure 3.19: Selection of high quality, high confidence contigs for polymorphism detection. The total
dataset were queried for contigs that matched against A. thaliana, P. trichocarpa or V. Vinifera proteins,
and seperated based on the presence of a predicted CDS (A and B). The remaining contigs were then used
to identify matches against the E. grandis genome sequence (B and C), and the NCBI non-redundant
(NR) protein database (E and F, and G and H).
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coverage = 1 000 and a coverage cutoff value of 8X) consisted of 22.8 million bases in approximately 40

000 contigs (Table 3.1). A novel assembly strategy, where the expected coverage value of each individual

contig was calculated and the contig together with all the reads that matched to the contig were used

for a coverage assisted re-assembly, yielded an additional 400 000 bases to the assembly, with most of

the additional bases added to the shorter contigs (Section 3.2.2, Table 3.1 and Figure 3.4). The final

assembly, containing only contigs longer than 200 bp, comprised of 22.1 Mbp transcript catalog in 18 894

contigs with an N50 length of 1 640 bp. Further inspection of the extended contigs indicated that most

of the additional reads added during the coverage-assisted re-assembly were added to the start and end

of the de novo assembled contigs (Figure 3.5 and Appendix B), with the exceptions of some low quality

regions (Ns in the assembled contig), that became artificially elongated during the re-assembly process.

This dataset represents the most complete gene catalog for a Eucalyptus forest tree produced making

use of uHTS technology data (Novaes et al., 2008).

Due to the nature of the assembler used, the assembled dataset would not contain full length al-

ternative transcripts of the gene models assembled. De Bruijn graph assemblers returns the longest

contigs with the most coverage as a consensus contig, and alternative fragments would be lost. De

novo transcriptome specific assemblers, such as trans-ABySS (Birol et al., 2009), OASES (Zerbino et al.,

unpublished) and Trinity (Grabherr et al., 2011), became available at the end of the lifetime project and

were not considered as alternative assemblers. The chosen assembler did however manage to assembly

long contiguous transcripts that could be used for transcriptome profiling.

Ab initio coding sequence prediction tools were used to identify transcriptional start and stop sites in

the assembled dataset. These prediction tools were developed to make use of genomic sequence, where

it relies on finding sequence features in a predefined order, for example, in a 5’ to 3’ direction. These

methods take into account the presence of promotor regions, the TSS, 5’ UTR, start codon, exons, splice

donors, introns, splice acceptors, stop codons, 3’ UTR and polyA tail. In the case of partially assembled

contigs producing coding sequences, when a feature needed for that stage of the HMM prediction state

is not present, the predictor would be unable to exit the current state and fail to continue searching for
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features in the rest of the sequence, resulting in a negative or incomplete CDS prediction. This can be

classified as a false negative prediction, since the gene product is present in the assembly, but the gene

model is incomplete. Much of the variation in the prediction of coding sequences can be attributed to

the low sensitivity (70%) and specificity (60%) generally observed by ab initio gene prediction software

(Blanco and Guigó, 2005), and together with the incomplete nature of the assembled contigs, most of the

variation in coding sequence prediction results are explained (Table 3.2). The GENSCAN tool predicted

98% of the total coding sequences predicted by a combination of GLIMMER, GENSCAN and AUGUSTUS. The

predicted CDS from GENSCAN were subsequently used to evaluate the contiguity of the assembled contigs.

A total of 33 full-length cDNA sequences representing a range of gene families were used to inspect

the contiguity of the assembled contigs and predicted CDS sequences. Short indels were present in most

of the UTR regions of the assembled sequences when compared to the full-length cDNA sequences, with

a very low frequency of indels present in the CDS sequences. No gross misassemblies were observed in

the tested dataset (Appendix C.1.2). Results from the de novo transcriptome assembler OASES were also

compared to the assembled dataset, but the extended Velvet assembly produced longer, higher quality

contigs in general. To further assess the quality of the assembled dataset, an in depth comparison between

the predicted gene models based on the genome sequence will be performed when the gene models become

available, but the current analysis provided great confidence in the quality and contiguity of the de novo

assembled gene catalog.

The diversity of the assembled contigs was firstly evaluated by performing various homology-based

searches against other angiosperm datasets. The assembled dataset represented longer, more diverse

sequences than the previously available public dataset (EucAll), and over 14 000 contigs showed high

similarity with other angiosperm species. A subset of the sequences did not show any homology to known

angiosperm proteins, and these will be further investigated when the full set of gene models are available

from the Eucalyptus genome annotation effort. InterProScan analysis provided the second measure of

diversity for the assembled dataset. Over 10 000 protein sequences were annotated with a functional

domain, allocating sequences to over 2 500 distinct protein families. These annotation together with the
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Gene Ontology annotations made to the assembled dataset assigned valuable functional annotations to

the sequences, which became especially useful during the expression profiling of the sequences.

By assigning relative expression values, in the form of FPKM values to each of the genes for each

of the tissues sampled and sequenced, genes highly expressed in wood forming (xylogenic) and photo-

synthetic tissues were identified. The results indicate, as expected, that the xylogenetic tissues have an

over-abundance of transporter-associated, catalytic- and membrane-associated genes expressed, as well

as an over-expressed set of structural proteins. Photosynthetic pathways and processes were the most

abundant in the leafy and phloem tissues. A similar approach was followed in Mizrachi et al. (2010),

where genes for which a high correlation in terms of expression patterns with some of the primary cell

wall genes was observed. The database of expression patterns developed will serve as an starting point

for more in depth analysis of expression correlation and tissue specific expression of various genes and

pathways in future studies.

In the 13 806 contigs that were considered for putative SNP detection, 16 696 SNPs were identified

in coding regions (0.206 SNPs/100 bp, 89 962 SNPs were identified in UTRs), resulting in an overall

SNP density for coding an non-coding regions of 0.534 SNPs/100 bp (compared to genomic SNP density

of one SNP per 17 bp, Külheim et al., 2009). Furthermore, the theoretical designability of Illumina

GoldenGate and Infinium HD Genotyping assays (http://www.illumina.com) was determined. This

analysis ignored the presence of introns in the sequence, and is thus an over-estimation of the number

of possible SNPs that can be used in the assays. Of the 106 658 putative SNPs, 73% (77 631) passed

the initial 50 bp flanking window filter where no other polymorphisms should be present in order for

the probes to bind, of which 16% (12 285 SNPs or 0.17 SNPs/100 bp) occurred within predicted coding

regions. For the 60 bp window, a total of 12 070 coding regions SNPs (0.168 SNPs/100 bp) and 64 225

UTR SNPs (1.207 SNPs/100 bp) were detected. Assay designability performed by the Illumina support

team (http://www.illumina.com/support) revealed that 68 606 (90%) of the SNPs had an Infinium HD

Assay designability score higher than 0.8, and 68 579 (90%) had GoldenGate Genotype designability

scores of 1.0. These results indicate that by designing the SNP assays based on the coding regions of the
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genomic sequence, these two Illumina platforms could be useful for SNP genotyping and genetic mapping

of thousands of expressed genes in a interspecific hybrid pedigree.

3.5. Conclusion

In this study we succesfully assembled a draft gene catalog of an Eucalyptus grandis x Eucalyptus

urophylla hybrid clone using deep mRNA-Seq from six different sampled tissues. The assembled tran-

scriptome was evaluated in terms of contig contiguity and homology to other angiosperm transcriptomes.

The assembled dataset does not contain only full length transcripts, but through investigation into the

structure and nature of the assembled contigs, it can confidently be described as the most complete gene

catalog hitherto of a single Eucalyptus tree. The level of completeness of the transcripts can only be

fully evaluated when a complete, annotated genome sequence becomes available.

Functional annotations were assigned to the assembled transcriptome dataset, providing insight to

the active transcriptional landscape of the organism. The expression profile of each assembled contig

in the six sampled tissues were calculated and used to identify over-expressed genes in xylogenic and

photosynthetic tissues. Several genes known to be active in secondary cell-wall formation (such as

FLA11 and FLA12) and lignin biosynthesis (such as LAC17) were identified in the list op top 30 genes

over-expressed in xylogenic tissues.

The dataset produced can be considered as a first step towards identifying transcriptional control

networks active in a fast-growing wood-forming organism. Transcriptional profiles of individual trees with

different genetic background (mapping populations), disease and physiological states will soon become

available, which will soon shed more information on the level of gene co-expression and underlying active

trancriptional modules involved in wood formation.

 
 
 



Chapter 4

Eucspresso: Towards the development of a Eucalyptus

genome and transcriptome information resource

Preface

This chapter describes the development of a public data resource that contains sequences and

annotations for the 18 894 de novo assembled transcripts of a Eucalyptus grandis x Eucalyptus

urophylla hybrid tree (Chapter 3). The resource was developed to provide users with access to the

annotation and sequence data described in Chapter 3, and was published as part of the research

manuscript describing the de novo assembly of the Eucalyptus hybrid transcriptome (joined first

author publication):

• Mizrachi, E., Hefer, C.A., Ranik, M., Joubert, F. and Myburg, A.A., 2010. De novo assembled

expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC

Genomics, Volume 11, 681.

Author contribitions: E. Mizrachi, M. Ranik and A.A Myburg assisted in the general de-

sign of the features in the database, F. Joubert assisted with some technical challenges during

development, and C.A. Hefer developed and designed the database and web interface.

The database resource, Eucspresso is available at the following URL:

http://eucspresso.bi.up.ac.za. Public access is granted to all the entries in the database.
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4.1. Introduction

The release of the Eucalyptus grandis genome sequence and gene model annotation (Version 1.0,

http://www.phytozome.net) in January 2011 provided forest tree geneticists with an opportunity to

investigate gene targets for the genetic manipulation of the most abundant plantation tree in the Southern

hemisphere. Traditionally, after the completion or release of a newly sequenced genome sequence, the

immediate focus of research programmes shifts towards defining the characteristics of each functional

unit in the genome. This translates to, among others, the identification and annotation of genes, the

identification of gene expression regulation mechanisms, regions on the genome associated with certain

traits and finally genomic targets for the genetic manipulation of the organism of interest. It is imperative

that access to the different datasets and annotations associated with a sequenced genome is made available

in a user friendly and easily accessible form to support research on the organism.

Several widely used plant genomics databases already exists for a variety of plant species (Ara-

bidopsis Garcia-Hernandez et al., 2002, Zea mays Lawrence et al., 2004, Populus Sjödin et al., 2009,

Brachypodium and Oryza Zhao et al., 2004), with some resources available for a range of plant species

(http://phytozome.net, PlantGDB (Duvick et al., 2008)). The focus of these resources range from per-

forming comparative genomics and transcriptomics between plants, to hosting gene expression datasets.

To facilitate research on the newly sequenced Eucalyptus grandis genome sequence, we envisioned the

development of a Eucalyptus-focussed mRNA-seq gene expression database. As a first step to the devel-

opment of such an mRNA-seq repository, we focussed on the development of Eucspresso, a module of

the resource that focusses on the expression of genes in a eucalypt hybrid plantation tree.

The availability of a de novo assembled gene catalog of an Eucalyptus grandis x Eucalyptus urophylla

F1 hybrid tree and its associated annotations, tissue specific gene expression information and close

angiosperm homologs (Chapter 3 and Mizrachi et al., 2010) necessitated the need to develop a central

database to store the annotations for each of the 18 894 contigs in the dataset. The aim of the database

is to provide access to the basic annotations performed on the dataset via a user-friendly, web-based

interface. The interface has to cater for different search scenarios, where the user can search for contig
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names, homolog IDs and sequences (BLAST), annotations and lists of terms or IDs. The interface also

has to link to a genome browser instance of the 8X Eucalyptus grandis genome assembly to identify the

genomic locations of the assembled transcripts.

4.2. Materials and methods

4.2.1. MySQL database

The database backend consisted of a MySQL database that stores the assembled transcript sequences

and associated annotations. The Eucspresso data model was based on the open source BioSQL sequence

data model (http://www.biosql.org), where each entry in the database inherits from a single BioEntry

table. This design allowed for the effective storage of metadata, such as entry names, text-based descrip-

tions and accessions in a single, indexable table that enhances the search capabilities of the database.

Programmatic access to the entries in the database was provided through the Python based object

relational mapper (ORM) SQLAlchemy (http://www.sqlalchemy.org), which also handles the field or

property inheritance between the objects stored in the database.

4.2.2. TurboGears Web framework

The TurboGears (version 1.09b, http://www.turbogears.org) web framework was used to develop

the http interface to the database. TurboGears enforces a model-view-controller design paradigm, with

a software layer that provides access to the database backend or the model, logic code in a Python

environment as the controllers, and a templating system to generate the viewable HTML code. As men-

tioned, the framework uses an ORM to construct custom Python objects that can be passed to and from

the different layers. The Genshi templating engine (http://genshi.edgewall.org) provides a XML-based

templating framework that is converted to the viewable HTML pages. Eucspresso is served by the default

CherryPy web-server (http://www.cherrypy.org) at the current URL (http://eucspresso.bi.up.ac.za).
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4.2.3. Custom Python controllers and R scripts

Python and R scripts were developed to provide the logic that interacts with the data model and

perform on-demand analysis that enhances the interface. The Python simple object access protocol

(SOAP) was used to access the remote KEGG server (http://soap.genome.jp/KEGG.wsdl) to render KEGG

pathways with the annotated enzyme highlighted on the pathway. The GO graphs are downloaded upon

request from the AMIGO web server (http://amigo.geneontology.org), and stored on the local server. After

the KEGG maps and GO images are retrieved from the remote servers, the images are stored locally which

are then used if the image is requested again. R-scripts are used to display the FPKM expression values

of the selected gene as a bar chart.

4.3. Results and discussion

4.3.1. Eucspresso data model

The central entity of the Eucspresso data model is the BioEntry table (Figure 4.1). All data types

stored in the database inherit properties from the BioEntry table. Search indices have been created

for the BioEntry.Id, BioEntry.Accession, BioEntry.Identifier, BioEntry.Description and BioEntry.Name

columns. The BioEntry.Datatype field stores the value of the child table that inherits the properties

from the BioEntry table. By creating a single point of inheritance (the BioEntry table), a search can

be performed across all datatypes at the same time, which increases the efficiency of searching. The

BioEntry table stores a primary identifier of each of the entries in the Eucspresso database and contains

over 1.5 million records.

The BioSequence table stores the sequence information related to each of the 18 894 contigs in the

database. Each annotation associated with a contig has a foreign key (foreign keys are not shown in

Figure 4.1) that relates the annotation to the contig. This allows the user to search for a contig and

display the annotation, as well as search for a keyword term in the annotation field, and display all the

contigs that share the annotation.
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SQLAlchemy was used to construct the queries to the database, and provide custom objects that

represent entries in the database. Theses custom data mappers makes use of the foreign key constraints

between the Python data objects to build custom objects that are send to the Genshi template system

to render the HTML pages in a browser.

4.3.2. Browsing and searching for a contig

The primary entry point to the database is the contig browsing table (Figure 4.2). The table consists

of a ToscaWidgets (http://www.toscawidgets.org) grid interface that uses JavaScript object notation

(JSON) to populate the display table with a subset of entries (by default 25 sequences, but the user

can customise it). The table is sortable on the contig name and length columns. The table contains

the best homology based search (BLAST) result, and the first description of each of the GO, EC and

InterProScan annotation assigned to the contig. Searching is possible based on Arabidopsis (AT)

accession and description, GO, EC and InterPro annotation description, as well as the contig name. The

results from searching is displayed in the same table, after a JSON request was submitted to the server

and the results of the query returned back to the browser (Figure 4.2B).

4.3.3. Visualising a contig and associated annotation

A summary of the annotations of a contig is presented as a ”Summary” tab when the user clicks on

the ”View” link in the contig browsing table. The summary tab contains detail regarding the contig such

as the length and GC content, the length of the GenScan predicted ORF, the closest homolog of the

sequence found in either of the Arabidopsis, Populus or Vitis protein sequences, and an overview of the

GO and KEGG annotations for the contig (Figure 4.3A). More detail is presented in each of the tabs at

the top of the page. The ”Sequence Detail” tab presents the cDNA and predicted protein sequence of

the contig, as well as links to download the sequences (Figure 4.3B).

The top 20 BLAST results against the Arabidopsis, Populus and Vitis transcriptome datasets are

presented in the ”Homology search results” tab, with links to the TAIR (Arabidopsis) and Phytozome

(Populus and Vitis) entry for each of the homologous sequences (Figure 4.4A). The ”Gene Ontology” tab

126

 
 
 



Figure 4.1: Entity relationship diagram of the main datatypes in Eucspresso. All the datatypes inherit
attributes from the BioEntry table. The description and accession attributes of the BioEntry table are
used for searching, and any link between different results occur through the BioEntry table.
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Figure 4.2: Browsing and searching for contigs through the Eucspresso web interface. The table consist
of a ToscaWidget table, that sends queries to the database through a JSON controller. The entries can
be sorted by contig name and length (A) and dynamic searches can be performed on the entries in the
table. Searching for the ”cellulose” keyword that occurs in the ”AT description” column, returns 12 items
to the table (B). A link to the detailed descriptiom of the contig in the table is provided by clicking on
the ”View” column in the table.
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Figure 4.3: Contig summary and sequence detail tab for contig_31, the assembled cellulose synthase
IRX3 gene (A). Download links for the cDNA and predicted protein sequence in FASTA format are
provided (B).
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(Figure 4.4B) contains a description of the GO category that the sequence was annotated with, and links

to a graph based representation of the ontology term, as rendered by the AmiGo server (Figure 4.5).

The gene ontology page (Figure 4.5A) contains a link to download all the contigs in that GO category

as a FASTA file (Figure 4.5A) and a graphical representation of the GO term (Figure 4.5B).

If a KEGG annotation is available for a contig, a highlighted KEGG map is drawn by the KEGG

server by sending a SOAP request to the server, and the image shown in the ”Enzyme commission” tab.

Each map has an enzyme highlighted in yellow, which corresponds to the enzymes associated with the

contig (Figure 4.6). For every enzyme annotation (EC number) associated with the assembled contig,

a pathway image is generated. The hyperlink to the EC commision table links to a short description

of the enzyme in the pathway, and a FASTA file containing all the contigs annotated with the EC

number (screenshot not shown). The InterProScan results tab (Figure 4.7) displays a line diagram of

the predicted protein sequence, indicating the annotated protein features on the sequence. The tab also

contains a table summary of the features found on the protein sequence, and links to the InterPro entry

of the feature in the InterPro (http://www.ebi.ac.uk/interpro/) database.

Transcript expression for the contigs was calculated by the Cufflinks (Trapnell et al., 2010) program

(see Chapter 3 Section 3.2.7), and the expression values for each of the six sequenced tissues displayed

in a table and as a bar graph (Figure 4.8). The bar graph is created by an R-script (Rpy2 Python

package) that extracts the values from the database, and the created image displayed by the browser.

The IRX3 Eucalyptus gene (contig_31), is highly expressed in woody tissues (xylem and immature

xylem), compared to green leaf tissues (shoot tips and young and mature leaf).

The 8X coverage version of the Eucalyptus grandis genome became publicly available (during August

of 2010) and the assembled contigs were aligned to the first draft genome sequence in order to inspect

contig contiguity and to view the de novo assembled contig together with public EST data on the draft

genome sequence. The generic genome browser, GBrowse (version 2.26) was used to visualize the results

from aligning the assembled contigs, as well as the Illumina short-reads to the genome sequence. The

”GBrowse” tab available in Eucspresso renders the genomic position of the assembled contig on the
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Figure 4.4: The homology search results of the contig against a set of selected angiosperm transcriptomes,
and a summary of the GO category that the sequence is associated with. The angiosperm sequence
identifier links to entries in the TAIR and Phytosome databases (A). The molecular function ontology
classes ”cellulose synthase”, ”protein binding” and ”zinc ion binding”, the cellular component ”integral to
membrane” and the biological process ”cellulose biosynthetic process” are associated with the contig (B).
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Figure 4.5: Gene ontology annotations for contig_31, the assembled cellulose synthase IRX3 gene. A
summary of the GO biological process category ”cellulose biosynthetic process”. A FASTA file containing
the 23 FASTA sequences also annotated with the GO term (GO:0030244) is available as download (A).
The GO graph of the GO term as rendered by the AmiGO web server is available in the ”GO Graph”
tab (B).
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Figure 4.6: The cellulose synthase enzyme (EC:2.4.1.12) is highlighted on the starch and sucrose
metabolism KEGG map.
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Figure 4.7: The InterProScan results tab describing protein features found on the predicted protein
sequence from contig_31. The contig contains the protein family domain for cellulose synthase (PF03552)
and a zinc finger domain (PS50089) identified by the HMMPfam and ProfileScan tools (A and B). Some
additional binding motifs were found close to the 5’ of the sequence (A). Links to the InterPro entries of
the cellulose synthase protein family and zinc finger domains are provided as blue text.
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Figure 4.8: The FPKM expression values of contig_31, a secondary cell wall synthesis gene (cellulose
synthase, IRX3). The gene is highly expressed in woody tissues (FPKM value of 728.98 in xylem and
537.66 in immature xylem), and has a low expression value in leafy tissues (FPKM of 2.55 in shoot tips,
5.9 in young leaf, and 21.8 in mature leaf).
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genome sequence. The user needs to manually request the GBrowse rendering option, since the rendering

of the short-read track is time consuming. The short-reads can be visualised as a coverage plot, or

individual reads aligned to the genome sequence.

4.3.4. Search interface

In addition to the search interface available in the ”Browse contig” interface (Figure 4.2), two ad-

ditional search modules are available in Eucspresso. Under the ”Advance Search tab”, a keyword or

accession number search can be used to filter the entries in the database. The ”Keyword Search” tab

offers the user the abillity to construct complex queries using boolean search operators on a combina-

tion of datatypes and descriptors (Figure 4.10A). The search query interface is constructed as a set of

predefined fields, or widgets (using ToscaWidgets), that dynamically constructs the SQL query with

SQLAlchemy. The results of the search query are displayed in the same format as the ”Browse and search”

table discussed in Section 4.3.2.

The ”Accession Search” tab allows for the opportunity to upload a combination of accessions, from

the same datatype (GO accessions) or a mix of datatypes (GO, KEGG and InterPro accessions) and

retrieve the contigs that were annotated with the terms (Figure 4.10B). A non-redundant set of sequences

is returned to the user, and the results are again displayed in the ”Browse and search” table format for

further perusal of specific contigs.

4.4. Conclusion

The aim of the Eucspresso database (http://euspresso.bi.up.ac.za) was to serve as a central repos-

itory for the de novo assembled gene catalog described in Chaper 3. Although the resource curently

contains data related to the specific Eucalyptus hybrid tree sequenced, it forms part of a bigger vision

to build a genomic resource for Eucalyptus mRNA-Seq based expression data. Access to the Eucpresso

data repository is provided through the web protocol as a easy to use interface to browse the contigs

and annotations. The interface also provided several search interfaces to filter the data in such a matter
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Figure 4.9: The Eucspresso GBrowse instance, indicating the position of contig_31 (IRX3) on the 8X
Eucalyptus draft sequence (scaffold 82, A). The assembled contig is shown in relation to other assembled
contigs (B) and some 454 EST data (C) from Novaes et al. (2008). When focussing on the highlighted
area, the complete transcript is shown (D) together with the closest Populus homolog that aligned to the
same position in the genome (E). The coverage plot (F) represents the Illumina mRNA-Seq data aligned
to the genome sequence, that was used to assemble the contig. The short-reads can be viewed when the
user zooms in on the contig (G).
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Figure 4.10: The Eucspresso search interface. Users can construct boolean searches based on accession
IDs or keywords present in the EC, InterPro, GO and homology based annotations (A), as well as combine
accession numbers from various datasets to retrieve non-redundant lists of contigs from the database (B).
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as to focus on very specific subsets of the data. At any level of browsing, the specific contig or set of

contigs of interest can be downloaded in FASTA format for further analysis in 3rd party applications.

Searches by common identifier, such as a specific GO category or KEGG identifier, can be used to

explore very specific functional classes or metabolic pathways in terms of the sequences present in such

a category. The genome browser interface provides additional confidence to the quality of the assembly

process followed in Chapter 3, especially where EST data from Sanger sequence data or longer 454 reads

are available to support the de novo assembled expressed transcripts.

The first version of annotation for the Eucalyptus grandis version 1.0 genome sequence was released

early in 2011 (http://www.phytozome.net). The mRNA-Seq data used to assemble the transcriptome

in this project is also available as an additional track in the Phytozome Eucalyptus genome browser

(http://www.phytozome.net), and can be used to aid the identification of gene and exon boundaries of

predicted gene models. The genome resource and predicted gene models available in Phytosome will be

used to recalculate the FPKM values available in Eucspresso, and together with additional mRNA-seq

experiments, including deep sequencing mRNA-Seq data of additional tissues, mRNA-Seq from disease

challenged plants, and population based eQTL and mQTL data, a new resource is in the process of being

developed. This new Eucalyptus resource (the Eucalyptus Genome Integrative Explorer, or EucGenIE),

will focus primarily on the data from a multitude of mRNA-Seq experiments, and will complement

genetic and genomic resources already available for woody plants.

Whole-transcriptome based expression experiments are fast becomming the standard to interrogate

the transcriptional landscape of an organism. With more of these experiments being performed, a central

repository can be envisioned where a multitute of experiments can be stored and combined to identify

transcriptional networks. Similar resources are already publically available for microarray experiments

(Manfield et al., 2006; Obayashi et al., 2007; Mutwil et al., 2011), where data from several experiments

can be combined to identify clusters of co-expressed genes. With the greated sensitivity of mRNA-Seq

data to detect lowly expressed transcripts (Marioni et al., 2008), algorithms and techniques developed for

 
 
 



microarray expression analysis can aid the elucidation of the transcriptional networks of the Eucalyptus

forest tree.
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Chapter 5

Concluding Discussion

Ultra-high-throughput DNA sequencing technologies have revolutionised the field of genomics. The

advances made have led to the succesful de novo sequencing of genomes (Tauch et al., 2008; Rein-

hardt et al., 2009; DiGuistini et al., 2010; Nowrousian et al., 2010; Li et al., 2010b), large scale genome

re-sequencing (Margulies et al., 2005; Shendure et al., 2005; Hofreuter et al., 2006; McKernan et al., 2009;

Drmanac et al., 2010; Pleasance et al., 2010a,b), transcriptome profiling (Cloonan et al., 2008; Denoeud

et al., 2008; Mortazavi et al., 2008; Wilhelm and Landry, 2009; Wang et al., 2010b), genome-wide DNA

methylation mapping (Lister et al., 2008; Hashimoto et al., 2009; Flusberg et al., 2010; Sun et al., 2011)

and protein-DNA interaction studies (Valouev et al., 2008; Kuznetsov, 2009; Goren et al., 2010). These

studies lead us to formulate the hypothesis that a large proportion of the transcriptome of complex

eukaryotes can be successfully de novo assembled, annotated and characterised using only mRNA-Seq

data. The first objective of the study was to identify a suitable uHTS framework to store large sequence

datasets, perform data analysis, and keep track of the results produced inside a web-based framework.

Secondly, automated analysis workflows had to be developed to perform a set of pre-defined analysis

on uHTS datasets, and, where needed, novel tools developed to complete the workflows. The de novo

assembly of the transcriptome of a Eucalyptus hybrid tree was identified as a key validation of the devel-

oped hypothesis and tools, and the transcriptome was annotated and characterised without the aid of a

genome sequence. The assembled transcriptome and annotations were then used to develop and populate

a stand-alone transcriptome expression profiling database that forms part of a larger Eucalyptus genome
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information resource (The Eucalyptus Genome Innforamtion Resource, EucGenIE), in anticipation of the

release of annotated gene models from the Eucalyptus genome sequencing project (US Department of

Energy and the Joint Genome Initiative, http://www.phytozome.net).

The Galaxy web framework (Goecks et al., 2010) was identified as a suitable framework to store and

manage large next-generation sequencing datasets, and also host the myriad of analysis tools available

to perform analysis on uHTS data. The Galaxy framework provided the ability to connect input and

output datasets of different analysis tools to create automated workflows. These workflows can then

be shared between research groups and individuals. Widely-used ultra-high-throughput data analysis

tools were incorporated into automated workflows, addressing tasks such as the quality evaluation of

next-generation sequence data, de novo assembly of a transcriptome, mapping of short reads to a target

genome and subsequent relative gene expression (FPKM) calculation, and the annotation of a set of

assembled cDNA sequences. The design of these workflows led to the development of additional analysis

tools and the extention of the Galaxy framework to include novel tools to perform the above-mentioned

functions. All newly developed tools and wrappers have been incorporated in the local BCBU Galaxy

server instance.

Critical evaluation of the developed workflow components identified several key parameters that

influences the results from uHTS analysis tools. The Velvet (Zerbino and Birney, 2008) assembler

was shown to be a reliable transcript assembler, assembling reliable, long, contiguious contigs. One critical

shortfall of the assembler is that that the assembly of alternative transcripts is not possible using Velvet,

a problem that is being addressed by the development of the transcriptome specific assemblers OASES

(Zerbino et al., unpublished), trans-ABySS (Birol et al., 2009) and Trinity (Grabherr et al., 2011).

One of the key paramaters to consider during the assembly, the expected coverage parameter, provided

the most robust assembly when set high enough (a value of 1 000 was used in the final assembly) to allow

for highy expressed transcripts. Another key parameter with great influence on the results obtained from

the assembler, the kmer-value, needs to be independently verified for each transcriptome dataset, since

it will vary with the complexity of the transcriptome and the length of the short reads sequenced. It
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was also observed that paired-end reads from an Illumina sequenced cDNA library of larger than 50 bp

did not significantly improve unique read mappability to a reference genome sequence as complex as the

Eucalyptus grandis genome. The InterProScan (Zdobnov and Apweiler, 2001) and BLAST2GO (Conesa

et al., 2005) annotation pipelines were succesfully incorporated in the BCBU Galaxy server, making

high throughput annotation pipelines available in an easy to use web framework. For differential gene

expression, the CUFFLINKS (Trapnell et al., 2010) set of software tools, as well as the DEGseq R-package

(Wang et al., 2010a) provided various statistical approaches to model mRNA-Seq transcript sampling

and identify differentially expressed genes in a sample dataset.

The workflows developed were used to perform a de novo assembly and annotation of the tran-

scriptome of a Eucalyptus grandis x Eucalyptus urophylla hybrid tree from Illumina mRNA-Seq data.

Six different tissues were sampled and a gene catalog consisting of 18 894 near full length transcripts

were assembled. The assembled gene catalog was evaluated based on contig contiguity, contig diversity

and similarity (BLAST) to other angiosperm transcriptome datasets. A novel transcriptome assembly

approach was developed, where an assembled contig was used in a coverage-directed re-assembly ap-

proach in an attempt to extend the contig sequences. Although the assembly approach followed did

not allow for the assembly of alternative transcripts, the set of transcripts assembled were shown to

contain contiguous, near full-length biologically relevant molecules. The assembled transcriptome was

annotated with Gene Ontology, KEGG and various InterProScan-related terms, identifying a range of

assembled transcripts present in the assembly. The Illumina short-read data was then used to identify

a set of transcripts over-expressed in xylogenic vs. leafy tissues (and vice versa). The study showed

that current bioinformatics software tools and approaches can be used to assemble and characterise a

large proportion of the transcriptome of a complex eukaryotic organism. This approach can be used to

succesfully characterise the gene catalog of a wide range of organisms using only data derived from uHTS

experiments.

A Python based web framework (TurboGears) was used to develop a user-friendly, intuitive web

interface to browse and interact with the assembled and annotated Eucalyptus hybrid gene catalog.
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A MySQL database stored the relations between the assembled contigs and the functional annotations

associated with each of the transcripts. The SQLAlchemy object relational mapper was implemented to

perform queries on the relational database, and also provided the ability to construct ad hoc queries

via the advanced search interface. The resource, Eucspresso, was developed with the aim to serve as a

transcriptome expression module for a larger framework, EucGenIE, that will cater for the storage and

analysis of data of a wide range of mRNA-Seq based whole-transcriptome experiments. The availability of

such a range of whole transcriptome expression datasets will in future aid the discovery of transcriptional

regulation networks, gene co-expression clusters and regulatory elements and will complement existing

databases for forest research (PopGenIE, Sjödin et al., 2009).

In conclusion, it was shown that by making use of deep Illumina mRNA-seq data, it is possible

to assemble and characterise a gene catalog of a complex eukaryote without the use of any genomic

information. Analysis tools and workflows were developed to address different steps in the assembly and

annotation process, and these workflows implemented in a web-based framework. The study produced

the most complete de novo assembled gene catalog to date for a forest tree from uHTS data (longer,

more complete contigs than what was possible by a similar study using 454 data by Novaes et al.,

2008). The study was one of the first to make use of Illumina mRNA-Seq data to characterise the

transcriptome of a large eukaryote, and a similar approach was followed with the characterisation of the

Chickpea transcriptome (Garg et al., 2011). Velvet and OASES , as well as trans-ABySS were evaluated

during the Chickpea transcriptome assembly, and it was found that OASES performed slightly better than

Velvet when evaluating assemblies based on the N50 and mean transcript lengths. The findings from

the Chickpea study supports the decision to make use of a de Bruijn graph assembler such as Velvet

for de novo transcriptome assemblies, but also illustrates the rapid improvement of assembly algorithms

with the finding that OASES performed better on the Chickpea dataset. When considering future de novo

transcriptome assembly projects, the advances made in the algorithms for assembly needs to be carefully

considered and several assemblers evaluated before selecting the best assembly. Improvements to the read
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length of Illumina mRNA-Seq data and the algorithms used for de novo transcriptome will soon result

in transcriptome profiling of species with very little or no genomic resources becomimg commonplace.

The study also resulted in a bioinformatics workflow environment in which uHTS data can be used

for transcriptome assembly, transcript annotation and transcript expression profiling. The developed

Eucspresso transcriptome resource provided early access to the transcriptome landscape of Eucalyptus,

and provided users with the gene expression profiles of six different sequenced tissues in a Eucalyptus

grandis x Eucalyptus urophylla hybrid tree. The Illumina short-read data was made available to the

EUCAGEN (http://eucagen.org) consortium to aid the annotation of the recently sequenced Eucalyptus

grandis genome, and the short-reads are available as a separate track on the current (Version 7.0) release

of Phytozome. Future work that directly follows from the findings in this study includes the development

of a Eucalyptus genome integrative explorer (EucGenIE), that will serve as a primary repository for

several re-sequenced genome sequences, as well as transcriptome datasets from several individuals used

in a Eucalyptus genome mapping population, and several disease specific transcriptome datasets.

With the availability of the complete set of gene models predicted from the Eucalyptus grandis

genome sequence, the use of Eucalyptus mRNA-Seq experimental data will move towards identifying

alternative transcript spliceforms, alternative transcriptional start sites, and identify differential gene

expression within tissues and under different environmental conditions. Whole-genome transcriptional

profiles, when used in conjuction with population wide quantitative trait (Quantitative Trait Loci, QTL)

association data, can lead to the identification of clusters of co-expressed genes associated with specific

traits (Brem and Kruglyak, 2005). The availability of these genome wide, and population wide datasets

will allow for future studies that test directly for the effect of allele specific expression in heterozygotes.

For example, where heterozygous loci are present in a population, and the two copies of the transcript

are present at different levels between individuals, the effect can possibly be ascribed to the effect of

cis-acting regulatory elements that affect gene expression (Wittkopp et al., 2008; Gilad et al., 2009). The

combination of genome-wide genomic and transcriptomic datasets and population genetic information

 
 
 



provides researchers with a powerfull approach to identify the system-wide phenotypic effect of small

molecular changes on the genome, a new field of study that can be considered genetical genomics.
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Appendix A

Bioinformatics workflow

Table A.1: Velvet assembly statistics of contigs longer than 1 000 bp for a single lane of paired 76
bp sequences from Eucalytpus xylem tissue reads trimmed to different lengths. The assemblies were
all performed with a kmer setting of 41. These statistics were used to calculate the assembly score, as
discussed in Section 2.3.3 on page 56 and presented in Table 2.6.

Read
length

N Sum Min 1st
Quartile

Median 3rd
Quartile

Max Mean N50

50 2 644 3 853 938 1 000 1 118 1 300 1 611.5 6 772 1 457.61 1 424

55 5 045 7 722 735 1 000 1 138 1 342 1 709 8 078 1 530.77 1 512

60 6 458 10 216 572 1 000 1 149 1 371 1 770 8 241 1 582.00 1 574

65 7 165 11 547 759 1 000 1 160.5 1 393 1 804 11 049 1 611.69 1 609

70 7 548 12 288 379 1 000 1 162 1 395 1 823 11 008 1 628.03 1 627

76 7 857 12 917 451 1 000 1 164 1 415 1 848 9 925 1 644.06 1 643

 
 
 



Appendix B

Extendinator

The Python script used for a coverage-assisted re-assembly of contigs, also known as ”extendinator”

is provided on the following pages. A graphical representation of the process is provided in Figure 3.1.

The program selects an entry from the assembled contigs file, and performs an alignment of the short

reads to the selected contig and calculated the true coverage of the contig. After alignment, the program

extracts all the short reads together with their respective mate-pairs from a Berkeley database, and

sends the contig as well as the sampled short reads to Velvet with the calculated coverage parameter to

perform a directed contig assembly.

 
 
 



"""
    Extendinator:
        An interative approach to try and improve contig sizes.
    
    1) Map all the short reads to a contig, get the reads that mapped.
    2) Extract the pairs
        2a) Connect to a database, get all the reads that match
            2ab) Convert to fasta
    3) Assemble with Velvet
        3a) Parameter range cc_9 ec [9,50,100,200,1000]
        3b)Join the longest assemblies in one file (best_assembly.fa)
    
    
    @requires: Biopython
    @requires: bsddb3
    @author: charles.hefer@gmail.com
"""

import sys
import getopt
from datetime import datetime
from Bio import SeqIO
import os
import subprocess
import time
from multiprocessing import Process
import bsddb3

global usage
usage = """
Extendinator: An iterative approach to extext Velvet contigs

Usage: python start_extendinator.py [options] short_reads.fa contigs.fa

++Bowtie options++
\t-f\t--short_reads_type\Either fa for fasta, or fq for fastq, default is fa
\t-b\t--bowtie_mismatch\tNumber of mismatches allowed during the bowtie matching of the short reads to the contig
\t-m\t--max_bowtie_processes\tMax number of bowtie processes
\t-t\t--threads\tNumber of threads for Bowtie, this times the #processes = number of CPUs

++Global options++
\t-h\t\t--help\tThis help message
"""
global cwd
cwd = os.getcwd()
global bowtie_build_cmd
bowtie_build_cmd = "/usr/local/bowtie/bowtie-build"
global bowtie_cmd
bowtie_cmd = "/usr/local/bowtie/bowtie"
global bdb
bdb = "./pairs.db"

class UsageEx(Exception):
    """The standard exception"""
    def __init__(self, msg):
        """
            Sets the exception message
            @var msg: The exception message thrown
        """    
        self.msg = msg

def now():
    """
        Converts the current time to a string format
        
        @requires: datetime.datetime
        @return: A string reprepsentation of datetime.now()
    """
    curr_time = datetime.now()
    return curr_time.strftime("%c")

def get_number_of_processes(process):
    """Returns the number of processes returned by grep
    ps -eaf | grep processname
    Subtract the grep itself, and the extra newline that comes through.
    @var process: The process to grep for
    @type process: String
     
    @return: The number of process as an int
    """
    num_procs = subprocess.Popen("ps -eaf | grep '%s'" % process, shell=True, stdout=subprocess.PIPE)
    output = num_procs.stdout.readlines()
    i = len(output) - 2
    return i

 
 
 



def multiprocess_start(cmd):
    """
        Executes the command as a multiprocess
    """
    process = subprocess.call(cmd, shell=True, stdout=subprocess.PIPE)
    return process
    

def prepare_bowtie_build(dir, filename, max_bowtie_processes):
    """
        Sets the command to run bowtie build on the contig
    """
    #the resulting build has a _ewbt extention
    #and is in the ./bowtie dir
    cmd = "%s %s %s_ewbt" % (bowtie_build_cmd, dir+filename, "./bowtie/"+filename)
    
    while get_number_of_processes("bowtie_build") >= max_bowtie_processes:
        time.sleep(5)
    process = Process(target=multiprocess_start, args=(cmd,))
    process.start()
    

def prepare_bowtie_align(short_reads_filename, ewbt_filename, bowtie_mismatch, max_bowtie_processes, threads, short_reads_filetype):
    """
        Aligns the short reads to the file
    """
    cmd = "%s -%s -n %s --alfa=%s.match -p %s %s %s %s.out" % (bowtie_cmd,
                                                               short_reads_filetype,
                                                             bowtie_mismatch, 
                                                             "bowtie/"+ewbt_filename,
                                                             threads, 
                                                             "bowtie/"+ewbt_filename, 
                                                             short_reads_filename, 
                                                             "bowtie/"+ewbt_filename)
    
    while get_number_of_processes("bowtie") >= max_bowtie_processes:
        time.sleep(5)
    process = Process(target=multiprocess_start, args=(cmd,))
    process.start()
       
def save_biopython_entry(dir, entry, format):
    """
        Saves the biopython object in the correct format
    """
    try:
        handle = open(dir+"/" + entry.name + "/" + entry.name+".fa", "w")
    except IOError, e:
        print(e)
        sys.exit()
    SeqIO.write([entry], handle, format)
    handle.close()
    return dir+"/"+entry.name + "/" + entry.name + ".fa"

def bowtie_watcher(contig, max_bowtie_processes, bowtie_mismatch,short_reads_filename):
    """
        Somehow manages the number of bowtie executables that can be started
    """
    #Get the current number of bowties running
    current = get_number_of_processes("bowtie")
    while current > max_bowtie_processes:
        time.sleep(10)
    else:
        bowtie_dir = prepare_bowtie_dir(contig.name)
        contig_file_name = save_biopython_entry(bowtie_dir, contig, "fasta")
        bowtie_builder(contig_file_name)
        bowtie_aligner(contig_file_name, bowtie_mismatch, short_reads_filename)
        
def split_fasta_file(handle, dir):
    """
        Takes every entry, create an output file for that entry in the dir
    """
    entries = SeqIO.parse(handle, "fasta")
    for entry in entries:
        out = open(dir+entry.name.replace(" ","").replace("\\","").replace("|","_").replace("/","_").replace("(","_").replace(")","_")+".fa", "w")
        SeqIO.write([entry], out, "fasta")
        out.close()

def create_mates_file(base_name, database_name):
    """ Iterates over ./bowtie/base_name.match, and returns all the mated
        that is found in the berkeley database
        Creates a file basename.fa in ./mates
    """
    
    try:
        handle = open("./bowtie/%s.fa_ewbt.match" % (base_name),"r")
        out_handle = open("./mates/%s.fa" % (base_name),"w")
    except IOError, e:
        #No alignments found... can do nothing about that
        #should this be reported?

 
 
 



        return None
    entries = SeqIO.parse(handle, "fasta")
    
    mate_pairs = []
    pairs = bsddb3.hashopen(bdb, "r") 
    for entry in entries:
        out_handle.write(">%s\n" % entry.name)
        out_handle.write("%s\n" % pairs[entry.name].split(",")[0])
        out_handle.write(">%s\n" % entry.name)
        out_handle.write("%s\n" % pairs[entry.name].split(",")[1])
    out_handle.close()

def faLen_stats(file):
    """
        Returns the result from running faLen on the file
        #TODO: Rewrite use subprocess
    """
    import popen2
    
    output = []
    
    cmd = "faLen < %s | stats" % (file)
    process = popen2.Popen3(cmd)
    process.wait()
    result = process.fromchild.readlines()
    for line in result:
        line = line.replace(" ","")
        output.append(line.split("=")[1].rstrip())
    output.append("\n")
    return output

def velveth_runner(filename, kmer):
    """
        Runs velveth on the file, hashing for the kmer
    """
    velvet_exe = "/usr/local/velvet/velveth"
    cmd = "%s ./velvet/%s/assembly %s -fasta -shortPaired ./mates/%s -long ./fasta/%s" % \
    (velvet_exe, filename, kmer, filename, filename)
    
    while get_number_of_processes("velveth") >= 20:
        time.sleep(5)
    process = Process(target=multiprocess_start, args=(cmd,))
    process.start()
    time.sleep(2)
  
def get_coverage(filename):
    """
        Returns the coverage value stored in ./mates/cov_stats.csv
    """
    file = open("./mates/cov_stats.csv", "r")
    for line in file:
        if filename in line:
            cols = line.split(",")
            contig_length = int(cols[1])
            bases = int(cols[2].rstrip())
    return bases/float(contig_length)

def velvetg_runner(filename):
    """
        Runs velvetg in the file, hashing for the kmer
    """
    velvet_exe = "/usr/local/velvet/velvetg"
    coverage = get_coverage(filename)
    
    cmd = "%s ./velvet/%s/assembly -ins_length 200 -ins_length_sd 80 -exp_cov %s -cov_cutoff 8" % \
    (velvet_exe, filename, coverage)
    
    print cmd
    
    while get_number_of_processes("velveth") >= 20:
        time.sleep(5)
    process = Process(target=multiprocess_start, args=(cmd,))
    process.start()
    
def save_longest_entry(entry_name, contigs_file, location):
    """
        Finds the longest entry in the contigs_file, rename it to the
        entry name [minus the extention] , and saves it in the locatoion 
    """
    try:
        contigs_handle = open(contigs_file, "r")
        location_handle = open(location+"/%s" % entry_name, "w")
    except IOError, e:
        print(e)
        
    longest_entry = None
    longest_length = 0

 
 
 



    entries = SeqIO.parse(contigs_handle, "fasta")
    for entry in entries:
        if len(entry.seq) > longest_entry:
            longest_entry = entry
            longest_length = len(entry.seq)
            
    #Rename the longest_entry
    longest_entry.id = entry_name.replace(".fa","")
    longest_entry.name = ""
    longest_entry.description = ""
    #write to the location
    SeqIO.write([longest_entry], location_handle, "fasta")
    location_handle.close()
    contigs_handle.close()
    
    #update the report
    #remove the entries that did not grow for fasta
    #repeat = True

def main(argv = None):
    """
        The main program flow
    """
    print("%s Extendinator started" % now())
    
    #Get all the arguments
    if argv is None:
        argv = sys.argv
    try:
        try:
            opts, args = getopt.getopt(argv[1:], "b:h:m:t:f:", 
                                        ["bowtie_mismatch=",
                                        "max_bowtie_processes=",
                                        "threads=",
                                        "short_reads_type"
                                        "help"])
    
            bowtie_mismatch = 2
            max_bowtie_processes = 1
            threads = "2"
            short_reads_filetype = "f"
            
            
            for opt, value in opts:
                if opt in ("-b", "--bowtie_mismatch"):
                    bowtie_mismatch = value
                if opt in ("-m","--max_bowtie_processes"):
                    max_bowtie_processes = int(value)
                if opt in ("-t", "--threads"):
                    threads = value
                if opt in ("-f", "--short_reads_type"):
                    if value == "fq":
                        short_reads_filetype = "q"
                if opt in ("-h", "--help"):
                    print(usage)
                    raise sys.exit()
                
                    
        except getopt.error, e:
            print(e)
            raise UsageEx(e)
        
        #test the presence of the contigs and short read files
        try:
            print("%s Validating the short reads file: %s" % (now(), args[0]))
            short_reads_filename = cwd+"/"+args[0]
            short_reads_handle = open(args[0],"r")
            print("%s Validating the contigs file: %s" % (now(), args[1]))
            contigs_handle = open(args[1],"r")
        except IOError,e:
            print(e)
            raise UsageEx(e)
        
        #Prepare the directory structure
        #this can be made more intelligent
        try:
            os.system("rm -rf bowtie")
            os.system("rm -rf fasta")
            os.system("rm -rf mates")
            os.system("rm -rf velvet")
        except OSError:
            pass
        try:
            os.mkdir("bowtie")
            os.mkdir("fasta")
            os.mkdir("mates")
            os.mkdir("velvet")
        except OSError, e:
            os.system("rm -rf bowtie/*")

 
 
 



            os.system("rm -rf fasta/*")
            os.system("rm -rf mates/*")
            os.system("rm - rf velvet/*")
        
        try:
            report_handle = open("report.csv","w")
        except IOError, e:
            print(e)
            sys.exit()
        
        #The step is to parse the contigs file
        print("%s Parsing the contigs file into ./fasta" % now())
        split_fasta_file(contigs_handle, "./fasta/")
        contigs_handle.close()
        
        fasta_entries = os.listdir("./fasta")
        
        #generate an file with the initial lengths
        print("%s Generate the initial report template" % now())
        report_handle.write("Sequence_entry,init_length\n")
        for fasta_file in fasta_entries:
            #get the sequence length
            entry_length = int(faLen_stats("./fasta/%s" % fasta_file)[1])
            report_handle.write("%s,%s\n" % (fasta_file, entry_length))
        report_handle.close()
        
        while 1:
            fasta_entries = os.listdir("./fasta")
            
            if len(fasta_entries) == 0:
                break
            
            print("%s Building the Bowtie indices" % now())
            for fasta_entry in fasta_entries:
                prepare_bowtie_build("./fasta/", fasta_entry, max_bowtie_processes)
            time.sleep(2)
            #Need to wait for all the processes to finish
            while get_number_of_processes("bowtie_build") > 0:
                time.sleep(5)
                    
            print("%s Running Bowtie aligner with %s mismatches" % (now(), bowtie_mismatch))
            print("Stdout from Bowtie to follow...this can be ignored")
            for fasta_entry in fasta_entries:
                prepare_bowtie_align(short_reads_filename, fasta_entry+"_ewbt", bowtie_mismatch, max_bowtie_processes, threads, short_reads_filetype)
                #give the os time to register
                time.sleep(2)
            #Need to wait for all the processes to finish
            time.sleep(5)
            while get_number_of_processes("bowtie") > 0:
                time.sleep(5)
            print("%s Done with the Bowtie aligner" % (now()))
            
            
            print("%s Preparing to find the mates" % (now()))
            for fasta_entry in fasta_entries:
                #change the name
                fasta_entry = ".".join(fasta_entry.split(".")[:-1])
                create_mates_file(fasta_entry, bdb)
            time.sleep(5)
            print("%s Mates now in ./mates" % now())
            
            print("%s Calculating the coverage statistics" % now())
            mate_entries = os.listdir("mates")
            try:
                mate_entries.remove("cov_stats.csv")
            except:
                pass
            cov_stats_handle = open("mates/cov_stats.csv", "w")
            cov_stats_handle.write("Contig_name,Lenght,Bases_in_mates")
            cov_stats_handle.write("\n")
            for mate_entry in mate_entries:
                contig_length = int(faLen_stats("./fasta/%s" % mate_entry)[1])
                pairs_bases = int(faLen_stats("./mates/%s" % mate_entry)[1])
                cov_stats_handle.write("%s,%s,%s" % (mate_entry, contig_length, pairs_bases))
                cov_stats_handle.write("\n")
            cov_stats_handle.close()
            time.sleep(5)
            print("%s Finished with the coverage statistics, in ./mates/cov_stats.csv" % now())
            
            print("%s Preparing for the velvet hashing " % now())
            for entry in mate_entries:
                try:
                    os.mkdir("./velvet/%s" % entry)
                except OSError, e:
                    pass
                velveth_runner(entry,"31")
            time.sleep(5)
            while get_number_of_processes("velveth") > 0:
                time.sleep(5)

 
 
 



            print("%s Done with the velvet hashing" % now())
            
            print("%s Preparing for the velvet assembly " % now())
            for entry in mate_entries:
                velvetg_runner(entry)
            time.sleep(5)
            while get_number_of_processes("velveth") > 0:
                time.sleep(5)
            print("%s Done with the velvet assembly" % now())
    
            print("%s Getting the longest entry for every assembly" % now())
            for entry in mate_entries:
                #the contigs resides in velvet/entry/assembly/contigs.fa
                save_longest_entry(entry, "velvet/%s/assembly/contigs.fa" % entry, "fasta/")
            print("%s All the longest entries now back in ./fasta" % now())
            
            print("%s Adding the newest data to the report.csv file" % now())
            #Append to the reports file
            os.system("mv ./report.csv ./report.csv.prev")
            reports_handle = open("report.csv.prev","r")
            report_out_handle = open("report.csv","w")
            report_out_handle.write("Sequence_entry,init_length\n")
            for line in reports_handle:
                if line.startswith("Sequence_entry"):
                    continue
                line = line.rstrip()
                cols = line.split(",")
                #the name of the entry is the first col
                try:
                    entry_length = int(faLen_stats("./fasta/%s" % cols[0])[1])
                    cols.append("%i" % entry_length)
                except IndexError, e:
                    pass
                outline = ",".join(cols)
                report_out_handle.write(outline + "\n")
            report_out_handle.close()
            reports_handle.close()
            print("%s Updated the report.csv file" % now())
            
            #Now, check the report file, if the last entry is smaller or equal to
            #the second last entry, then call the entry finished
            #remove from ./fasta/
            #and append to finished_contigs.fa
            print("%s remove the contigs that does not want to grow any more" % now())
            report_handle = open("report.csv","r")
            for line in report_handle:
                if line.startswith("Sequence_entry"):
                    continue
                print line
                line = line.rstrip()
                cols = line.split(",")
                if int(cols[-1]) <= int(cols[-2]):
                    print cols[0]
                    os.system("less ./fasta/%s >> finished_contigs.fa" % cols[0])
                    os.system("rm ./fasta/%s" % cols[0])
                    os.system("rm ./mates/%s" % cols[0])
                    print os.listdir("fasta")
                    print os.listdir("mates")

            print("%s And start over again?" % now())
        print("%s Done" % now())
        
            
    except UsageEx, err:
        print(usage)

if __name__ == "__main__":
    if len(sys.argv) < 3:
        print(usage)
        sys.exit()
    else:
        sys.exit(main())

 
 
 



Appendix C

Transcriptome assembly

C.1. Evaluating contig contiguity of the assembled transcript sequences

C.1.1. Full length Eucalyptus cDNA sequences

The following table contains the 34 full length CDS sequences used to validate the assembly. The

functional role of the 33 sequences ranges from transcription factors, transporter genes, structural and

developmental proteins, indicating that the assembled transcriptome succesfully assembled near full

length genes, including the 5’ and 3’ UTR regions for a wide variate of mRNA sequences.

Accession Contig_id Description length FPKM

AB465730.1 contig_87094 Eucalyptus grandis AGL mRNA for agamous-like

protein, complete cds.

1184 17.98

AB479542.1 contig_10798 Eucalyptus grandis mRNA for transcription factor

Myb, complete cds.

666 14.02

AB479543.1 contig_45922 Eucalyptus grandis mRNA for transcription factor

GRAS family protein, complete cds.

1485 13.00

AB479544.1 contig_94920 Eucalyptus grandis mRNA for

1-aminoacyclopropane-1-carboxylate oxidase, complete

cds.

1288 81.75

 
 
 



AB479545.1 contig_56935 Eucalyptus grandis mRNA for transcription factor

squamosa promoter binding protein like, complete cds

1940 43.35

AF029976.1 contig_93436 Eucalyptus grandis MADS box protein (EGM2)

mRNA, complete cds.

920 13.01

AF197329.1 contig_5550 Eucalyptus grandis zinc transporter (EgZnT1)

mRNA, complete cds.

1635 17.08

AF197330.1 contig_2649 Eucalyptus grandis calcineurin-like protein (EgCBL1)

mRNA, complete cds.

951 27.21

AY150283.1 contig_11286 Eucalyptus grandis fertilization independent

endosperm development protein mRNA, complete cds

1626 18.87

AY263807.1 contig_68957 Eucalyptus grandis SOC1-like floral activator MADS3

mRNA, complete cds.

1112 21.66

AY263808.1 contig_52396 Eucalyptus grandis SOC1-like floral activator MADS4

mRNA, complete cds.

980 8.80

AY263809.1 contig_6043 Eucalyptus grandis SVP-like floral repressor mRNA,

complete cds.

855 20.09

DQ014506.1 contig_2805 Eucalyptus grandis cellulose synthase 2 (CesA2)

mRNA, complete cds.

3471 226.37

DQ014507.1 contig_31 Eucalyptus grandis cellulose synthase 3 (CesA3)

mRNA, complete cds.

3452 220.59

DQ014509.1 contig_4202 Eucalyptus grandis cellulose synthase 5 (CesA5)

mRNA, complete cds.

3712 137.25

DQ014510.1 contig_19509 Eucalyptus grandis cellulose synthase 6 (CesA6)

mRNA, complete cds.

3782 97.32

DQ227992.1 contig_6857 Eucalyptus grandis thioredoxin h mRNA, complete

cds.

354 133.93

 
 
 



DQ227993.1 contig_69050 Eucalyptus grandis sucrose synthase (SuSy1) mRNA,

complete cds.

2498 250.38

DQ227994.1 contig_40644 Eucalyptus grandis sucrose synthase (SuSy3) mRNA,

complete cds.

2508 220.28

EF179384.1 contig_24067 Eucalyptus grandis UDP-glucose dehydrogenase

(UGDH) mRNA, complete cds.

1443 812.03

EF534216.1 contig_319 Eucalyptus grandis fasciclin-like arabinogalactan

protein (FLA1) mRNA, complete cds.

1179 666.30

EF534217.1 contig_4434 Eucalyptus grandis fasciclin-like arabinogalactan

protein (FLA2) mRNA, complete cds.

1125 180.66

EF534218.1 contig_2707 Eucalyptus grandis fasciclin-like arabinogalactan

protein (FLA3) mRNA, complete cds.

1033 224.10

EF534219.1 contig_2477 Eucalyptus grandis beta-tubulin (TUB1) mRNA,

complete cds.

1583 285.33

EF534220.1 contig_64905 Eucalyptus grandis beta-tubulin (TUB2) mRNA,

complete cds.

1654 55.93

EF534223.1 contig_4441 Eucalyptus grandis beta-tubulin (TUB5) mRNA,

complete cds.

1607 307.08

EF534224.1 contig_100 Eucalyptus grandis alpha-tubulin (TUA1) mRNA,

complete cds.

1657 674.32

EU737107.1 contig_2692 Eucalyptus grandis UTP-glucose 1 phosphate

uridylyltransferase (UGP) mRNA, complete cds.

1431 153.30

EU737108.1 contig_33128 Eucalyptus grandis UDP-D-glucuronate carboxy-lyase

(UXS1) mRNA, complete cds.

1041 158.60

EU770570.1 contig_2246 Eucalyptus grandis iron-sulfer cluster scaffold protein

ISU1 (ISU1) mRNA, complete cds.

756 78.07

 
 
 



EU770571.1 contig_31483 Eucalyptus grandis iron-sulfer cluster scaffold protein

NFU4 (NFU4) mRNA, partial cds.

869 13.30

EU770572.1 contig_15010 Eucalyptus grandis iron-sulfer cluster scaffold protein

ISA1 (ISA1) mRNA, partial cds.

822 25.81

EU770573.1 contig_25291 Eucalyptus grandis iron-sulfer cluster scaffold protein

NFS1 (NFS1) mRNA, partial cds.

871 16.29

 
 
 



C.1.2. Alignment coverage graphs of the 33 full length cDNA sequences and assembled

contigs

Comparison of 33 de novo-assembled contigs of the Eucalyptus grandis x Eucalyptus urophylla clone

compared to the reference contigs obtained from Sanger sequencing. Peak heights indicates the actual

coverage per base (CPB) across the contig. The CBP of the assembled contig is shown in cyan, the CBP

of the predicted CDS in dark blue, and the CPB of the reference sequence in red. Where present, the

5’ UTR (orange box) and the 3’ UTR (purple box) is indicated. Large gaps in the global alignment

between the sequences are indicated by gaps in the graph, and possible reasons for the gap annotated

on each graph. The graphs are also available as supplementary material for the article by Mizrachi et al.

(2010).
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C.1.3. Alignment of contig 68291 before and after extension

The complete alignment of contig or node 68291 before and after the coverage-assisted re-assembly

of the dataset. The aligment was performed with the the ClustalW program, and no editing of the

alignment was performed. The alignment shows that although 1 485 bases was reportedly added to the

contig during extension, these bases mostly consisted of the extension of a low quality region containing

Ns. The extension did however resolve a 88 bp region of these low quality bases. The contig after

extension also showed removed regions at the start and end of the original contig, due to the presence of

a polyA region at the beginning of the sequence. An extract from the alignment is presented in Figure

3.6.

 
 
 



                                                                                                   
NODE_68291_before TTTTTTTTTTTTTTTTTTTTTTATTTCTTTAGCGTTCTGAATACGTGAAAGAGAGAGGCTTGGAGTGGTCAGGACTCTTA    80
NODE_68291_after --------------------------------------------------------------------------------

                                                                                 **    * * ***  * *
NODE_68291_before TTCCAGAGAGAAAGCATCAGCGCGGGCTGTCAAAGCTTCAATGAACGTATAGTTTGTTACTGAAGCGGAGATAAAGGAGA   160
NODE_68291_after -----------------------------------------------------------AAAAAAAAAAAAAAAAAAAAA    21

                     **     ***********************************************************************
NODE_68291_before GTAAGNNNNCAAGCAAAGCTGGTGCTTTTTGTGCATCTCCATTGACTTGGCCATTTGGTCCATTGATAAGTTCGGCAACT   240
NODE_68291_after AAAAAAAAACAAGCAAAGCTGGTGCTTTTTGTGCATCTCCATTGACTTGGCCATTTGGTCCATTGATAAGTTCGGCAACT   101

                   ********************************************************************************
NODE_68291_before CAGGCGATTCCTGGCTTTGCGTCGGTGAGTTCTTCGTGATCTGGCAATGGCGTCGGCTCTAGCCGGCGATGATTTGGCTA   320
NODE_68291_after CAGGCGATTCCTGGCTTTGCGTCGGTGAGTTCTTCGTGATCTGGCAATGGCGTCGGCTCTAGCCGGCGATGATTTGGCTA   181

                   ********************************************************************************
NODE_68291_before GATCCACGAGCAGCCGCCGGAGCTGGGCCTCCGGGAGCCACCGGAGCTGGGCCTCCACGAGCTTCCGGGAGGCGTGGAAC   400
NODE_68291_after GATCCACGAGCAGCCGCCGGAGCTGGGCCTCCGGGAGCCACCGGAGCTGGGCCTCCACGAGCTTCCGGGAGGCGTGGAAC   261

                   ********************************************************************************
NODE_68291_before GGCCCGCCAGATGTGTTCGCGCGGAGCGGGAGGCAGGACGACGAGGAGGAGCTCCGGTGGGCCGCCATCGAACGGCTGCC   480
NODE_68291_after GGCCCGCCAGATGTGTTCGCGCGGAGCGGGAGGCAGGACGACGAGGAGGAGCTCCGGTGGGCCGCCATCGAACGGCTGCC   341

                   ********************************************************************************
NODE_68291_before AACGTATGACCGCCTCCGAAAAGGCATGCTGAAGCAAGTACTTGATACTGGGAGGGTGGTCCAGCAAGAAGTGGACGTGA   560
NODE_68291_after AACGTATGACCGCCTCCGAAAAGGCATGCTGAAGCAAGTACTTGATACTGGGAGGGTGGTCCAGCAAGAAGTGGACGTGA   421

                   ********************************************************************************
NODE_68291_before CCAACCTCGGAATGCAGGACAAGAAGCAGTTGATGGAGAGCATCCTTAAGGTTGCGGAAGAAGACAATGAGAGGTTCTTG   640
NODE_68291_after CCAACCTCGGAATGCAGGACAAGAAGCAGTTGATGGAGAGCATCCTTAAGGTTGCGGAAGAAGACAATGAGAGGTTCTTG   501

                   ********************************************************************************
NODE_68291_before AGGAGATTGAGAGACAGGACTGATAGGGTCGGGATCGAAATTCCGAAGATCGAAGTCCGGTGTGAGCATTTATCTGTAGA   720
NODE_68291_after AGGAGATTGAGAGACAGGACTGATAGGGTCGGGATCGAAATTCCGAAGATCGAAGTCCGGTGTGAGCATTTATCTGTAGA   581

                   ********************************************************************************
NODE_68291_before AGGAGACGTGTACGTTGGAAGCAGAGCTCTCCCTACCCTTCTCAATGCCACTATGAACGCGATAGAGAGTGTTCTTGGAC   800
NODE_68291_after AGGAGACGTGTACGTTGGAAGCAGAGCTCTCCCTACCCTTCTCAATGCCACTATGAACGCGATAGAGAGTGTTCTTGGAC   661

                   ********************************************************************************
NODE_68291_before TTATTCGGCTAGCCCCATCGAAGAAGAGAAAAATTCAGATACTTAAGGACGTGAACGGATTAGTCAGGCCTTCGAGGATG   880
NODE_68291_after TTATTCGGCTAGCCCCATCGAAGAAGAGAAAAATTCAGATACTTAAGGACGTGAACGGATTAGTCAGGCCTTCGAGGATG   741

                   ********************************************************************************
NODE_68291_before ACCCTACTTTTGGGTCCACCGGGAGCTGGGAAGACAACATTGTTGCTGGCACTTGCTGGGAAACTAGACAGCGATCTGAG   960
NODE_68291_after ACCCTACTTTTGGGTCCACCGGGAGCTGGGAAGACAACATTGTTGCTGGCACTTGCTGGGAAACTAGACAGCGATCTGAG   821

                   ********************************************************************************
NODE_68291_before GGTAACGGGAAAAGTCACCTACTGTGGTCACGAGCTAAACGAATTTGTTCCTCAAAGGACTTGCGCTTATATCAGCCAAC  1040
NODE_68291_after GGTAACGGGAAAAGTCACCTACTGTGGTCACGAGCTAAACGAATTTGTTCCTCAAAGGACTTGCGCTTATATCAGCCAAC   901

                   ********************************************************************************
NODE_68291_before ATGATCTTCACTATGGGGAAATGACAGTTAGAGAGACATTGGACTTCTCGGGTCGCTGTTTGGGTGTAGGGACAAGGTAT  1120
NODE_68291_after ATGATCTTCACTATGGGGAAATGACAGTTAGAGAGACATTGGACTTCTCGGGTCGCTGTTTGGGTGTAGGGACAAGGTAT   981

                   ********************************************************************************
NODE_68291_before GAGATGCTTGCAGAACTCTCCAGGCGAGAGAGGGAAGCCGGAATCAAACCTGATCCCGAAATTGACGCTTTTATGAAGGC  1200
NODE_68291_after GAGATGCTTGCAGAACTCTCCAGGCGAGAGAGGGAAGCCGGAATCAAACCTGATCCCGAAATTGACGCTTTTATGAAGGC  1061

                   ********************************************************************************
NODE_68291_before CACAGCTCTGTCGGGTCAAGAGACAAGCTTGGTCACTGATTATATACTCAAGATTCTTGGATTGGATATCTGTGCAGACA  1280
NODE_68291_after CACAGCTCTGTCGGGTCAAGAGACAAGCTTGGTCACTGATTATATACTCAAGATTCTTGGATTGGATATCTGTGCAGACA  1141

                   ********************************************************************************
NODE_68291_before TTATGGTCGGAGATGAGATGCGAAGGGGCATTTCAGGTGGACAAAAAAAGCGTCTTACAACCGGAGAGATGTTAGTAGGA  1360
NODE_68291_after TTATGGTCGGAGATGAGATGCGAAGGGGCATTTCAGGTGGACAAAAAAAGCGTCTTACAACCGGAGAGATGTTAGTAGGA  1221

                   ********************************************************************************
NODE_68291_before CCAGCAAAGGCTCTTTTTATGGATGAAATATCCACAGGGTTGGACAGTTCCACTACTTTTCAAATTTGCAAATTCATGAG  1440
NODE_68291_after CCAGCAAAGGCTCTTTTTATGGATGAAATATCCACAGGGTTGGACAGTTCCACTACTTTTCAAATTTGCAAATTCATGAG  1301

                   ********************************************************************************
NODE_68291_before GCAGATGGTTCATATTATGGATGTCACCATGATCATCTCATTGCTTCAGCCGGCTCCTGAGACTTATGATCTCTTCGATG  1520
NODE_68291_after GCAGATGGTTCATATTATGGATGTCACCATGATCATCTCATTGCTTCAGCCGGCTCCTGAGACTTATGATCTCTTCGATG  1381

 
 
 



                   ********************************************************************************
NODE_68291_before ACATTATCCTTCTCTCGGAGGGTCAAGTCGTCTACCAAGGTCCACGAGAGAACGTCCTCGAGTTTTTCGAGCACATGGGA  1600
NODE_68291_after ACATTATCCTTCTCTCGGAGGGTCAAGTCGTCTACCAAGGTCCACGAGAGAACGTCCTCGAGTTTTTCGAGCACATGGGA  1461

                   ********************************************************************************
NODE_68291_before TTCAAGTGCCCTGAAAGGAAAGGAGTTGCCGACTTCTTGCAAGAAGTGACATCTAAGAAAGATCAAGAACAGTATTGGTT  1680
NODE_68291_after TTCAAGTGCCCTGAAAGGAAAGGAGTTGCCGACTTCTTGCAAGAAGTGACATCTAAGAAAGATCAAGAACAGTATTGGTT  1541

                   ********************************************************************************
NODE_68291_before CAAGAAGAACCAACCTTTCCAATACGTTTCTGTAGATGATTTCGTGCATGGATTCAAATCTTTTCACATTGGCCAACATC  1760
NODE_68291_after CAAGAAGAACCAACCTTTCCAATACGTTTCTGTAGATGATTTCGTGCATGGATTCAAATCTTTTCACATTGGCCAACATC  1621

                   ******************************************************************************  
NODE_68291_before TGTCATCCGATCTTAGGATTCCTTATGACAAATCAAAAACTCACCCAGCTGCACTAGTCAAAGAGAAATACGGGNNNN--  1838
NODE_68291_after TGTCATCCGATCTTAGGATTCCTTATGACAAATCAAAAACTCACCCAGCTGCACTAGTCAAAGAGAAATACGGGNNNNGC  1701

                                                                                                   
NODE_68291_before --------------------------------------------------------------------------------  1838
NODE_68291_after ACTAGTCAAAGAGAAATACGGGATTTCAAATATGGAGCTGTTCAAGGCATGCTTTGCCAGAGAATGGCTACTAATGAAGC  1781

                        ***************************************************************************
NODE_68291_before -----TCCTTTGTTTACATATTCAAGACCACCCAGATCACTATCATGTCGCTTATTGCTCTGACGGTGTTCCTTAGGACT  1913
NODE_68291_after GAAACTCCTTTGTTTACATATTCAAGACCACCCAGATCACTATCATGTCGCTTATTGCTCTGACGGTGTTCCTTAGGACT  1861

                   ********************************************************************************
NODE_68291_before GAAATGCCAGTAGGGTCAGTGCAAGATGGAGGGAAGTTTTTTGGAGCACTTTTCTTCAGCTTGATCAATGTCATGTTCAA  1993
NODE_68291_after GAAATGCCAGTAGGGTCAGTGCAAGATGGAGGGAAGTTTTTTGGAGCACTTTTCTTCAGCTTGATCAATGTCATGTTCAA  1941

                   ********************************************************************************
NODE_68291_before TGGAATGGCGGAACTTGCAATGACCGTTTTCAGGCTTCCTGTGTTCTATAAGCAGAGAGATTTCTTGTTTTACCCCGCTT  2073
NODE_68291_after TGGAATGGCGGAACTTGCAATGACCGTTTTCAGGCTTCCTGTGTTCTATAAGCAGAGAGATTTCTTGTTTTACCCCGCTT  2021

                   ********************************************************************************
NODE_68291_before GGGCTTTCGGCTTGCCTATTTGGGTCCTCCGAATTCCGTTGTCATTCATGGAATCAGGGATATGGATCATCTTAACATAC  2153
NODE_68291_after GGGCTTTCGGCTTGCCTATTTGGGTCCTCCGAATTCCGTTGTCATTCATGGAATCAGGGATATGGATCATCTTAACATAC  2101

                   ********************************************************************************
NODE_68291_before TACACCATTGGCTTCGCTCCAGCGGCCAGCAGGTTCTTCAAGCAATTCTTGGCATTCTTTGGCATCCATCAGATGGCACT  2233
NODE_68291_after TACACCATTGGCTTCGCTCCAGCGGCCAGCAGGTTCTTCAAGCAATTCTTGGCATTCTTTGGCATCCATCAGATGGCACT  2181

                   ********************************************************************************
NODE_68291_before GTCCCTCTTTCGGTTCATTGCTGCAGTTGGGAGAACTCAGGTTGTCGCAAACACCCTGGGAACCTTCACTTTGCTAATGG  2313
NODE_68291_after GTCCCTCTTTCGGTTCATTGCTGCAGTTGGGAGAACTCAGGTTGTCGCAAACACCCTGGGAACCTTCACTTTGCTAATGG  2261

                   ********************************************************************************
NODE_68291_before TTTTCGTTCTTGGAGGATTTATTGTTTCCAAAAACGACATCGAGCCATGGATGATATGGGGATATTACGTATCTCCTATG  2393
NODE_68291_after TTTTCGTTCTTGGAGGATTTATTGTTTCCAAAAACGACATCGAGCCATGGATGATATGGGGATATTACGTATCTCCTATG  2341

                   ********************************************************************************
NODE_68291_before ATGTATGGGCAAAATGCTATAGTGATGAATGAATTCCTCGACAAAAGATGGAGCACGCGTAACGAGGATACTAGAATTAA  2473
NODE_68291_after ATGTATGGGCAAAATGCTATAGTGATGAATGAATTCCTCGACAAAAGATGGAGCACGCGTAACGAGGATACTAGAATTAA  2421

                   ********************************************************************************
NODE_68291_before TGAGCCCACAGTTGGAAAAGTGCTTTTGAAGTCTCGAGGTTTCTTCGTACAAGAATATTGGTATTGGATCTGCATTGGAG  2553
NODE_68291_after TGAGCCCACAGTTGGAAAAGTGCTTTTGAAGTCTCGAGGTTTCTTCGTACAAGAATATTGGTATTGGATCTGCATTGGAG  2501

                   ********************************************************************************
NODE_68291_before CACTGTTTGGGTTTTCACTCCTCTTCAACATCTTGTTTGTTGCAGCATTGACTTGGTTAAATCCTTTGGGAGATGCAAAA  2633
NODE_68291_after CACTGTTTGGGTTTTCACTCCTCTTCAACATCTTGTTTGTTGCAGCATTGACTTGGTTAAATCCTTTGGGAGATGCAAAA  2581

                   ********************************************************************************
NODE_68291_before GCAGTTGTCTCGGATGAAGAGGCGGATAAGAAGAAAAACAAATCATTGTCTTCGCAACTTGCGAAAGAAGGAATCGACAT  2713
NODE_68291_after GCAGTTGTCTCGGATGAAGAGGCGGATAAGAAGAAAAACAAATCATTGTCTTCGCAACTTGCGAAAGAAGGAATCGACAT  2661

                   ********************************************************************************
NODE_68291_before GCAAGTGAGAAGTTCTTCTGAAATCGTTAGCACTTCAGAGAATATACAGAGAAGAGGGATGGTTCTGCCATTCCAACCCC  2793
NODE_68291_after GCAAGTGAGAAGTTCTTCTGAAATCGTTAGCACTTCAGAGAATATACAGAGAAGAGGGATGGTTCTGCCATTCCAACCCC  2741

                   ********************************************************************************
NODE_68291_before TTTCTCTTGCGTTCAACCATGTGAACTACTACGTGGATATGCCTGCAGAAATGAAGAGTCAAGGAGTTGAGGAAGACCGT  2873
NODE_68291_after TTTCTCTTGCGTTCAACCATGTGAACTACTACGTGGATATGCCTGCAGAAATGAAGAGTCAAGGAGTTGAGGAAGACCGT  2821

                   ********************************************************************************
NODE_68291_before CTCCAACTGTTGAGAGATGTCAGTGGCGCTTTCAGACCAGGGGTACTCACAGCATTGGTCGGGGTTAGTGGTGCTGGAAA  2953
NODE_68291_after CTCCAACTGTTGAGAGATGTCAGTGGCGCTTTCAGACCAGGGGTACTCACAGCATTGGTCGGGGTTAGTGGTGCTGGAAA  2901

 
 
 



                   ********************************************************************************
NODE_68291_before GACAACCCTCATGGATGTGCTAGCAGGAAGGAAGACAGGTGGTTACATAGAAGGAAGTATTAGCATCTCCGGATACCCTA  3033
NODE_68291_after GACAACCCTCATGGATGTGCTAGCAGGAAGGAAGACAGGTGGTTACATAGAAGGAAGTATTAGCATCTCCGGATACCCTA  2981

                   ********************************************************************************
NODE_68291_before AAAACCAATCAACGTTTGCTCGGGTCAGTGGTTACTGTGAACAGAACGACATTCACTCGCCTAACGTCACTGTCTACGAA  3113
NODE_68291_after AAAACCAATCAACGTTTGCTCGGGTCAGTGGTTACTGTGAACAGAACGACATTCACTCGCCTAACGTCACTGTCTACGAA  3061

                   ********************************************************************************
NODE_68291_before TCCCTCCTATACTCAGCCTGGCTTCGTCTTTCTTCCGACATTAAGACTCAAACTCGCAAGATGTTTGTGGAAGAAGTTAT  3193
NODE_68291_after TCCCTCCTATACTCAGCCTGGCTTCGTCTTTCTTCCGACATTAAGACTCAAACTCGCAAGATGTTTGTGGAAGAAGTTAT  3141

                   ********************************************************************************
NODE_68291_before GGAGTTGGTTGAGCTCAACCCTATCAGAAACGCGCTTGTCGGGCTTCCTGGTGTCGATGGCCTTTCGACTGAGCAAAGAA  3273
NODE_68291_after GGAGTTGGTTGAGCTCAACCCTATCAGAAACGCGCTTGTCGGGCTTCCTGGTGTCGATGGCCTTTCGACTGAGCAAAGAA  3221

                   ********************************************************************************
NODE_68291_before AGCGGCTGACAATAGCTGTAGAGTTGGTGGCTAATCCATCTATTATCTTTATGGACGAACCAACCTCCGGCCTTGATGCT  3353
NODE_68291_after AGCGGCTGACAATAGCTGTAGAGTTGGTGGCTAATCCATCTATTATCTTTATGGACGAACCAACCTCCGGCCTTGATGCT  3301

                   ********************************************************************************
NODE_68291_before AGAGCAGCCGCCATCGTGATGCGTACGGTGAGGAACACGGTGGATACAGGGAGGACTGTTGTTTGCACGATTCACCAGCC  3433
NODE_68291_after AGAGCAGCCGCCATCGTGATGCGTACGGTGAGGAACACGGTGGATACAGGGAGGACTGTTGTTTGCACGATTCACCAGCC  3381

                   ********************************************************************************
NODE_68291_before GAGCATTGACATTTTTGAAGCTTTTGATGAGTTGCTATTAATGAAAAGAGGCGGGCGGGTCATTTATGCTGGCCCTCTTG  3513
NODE_68291_after GAGCATTGACATTTTTGAAGCTTTTGATGAGTTGCTATTAATGAAAAGAGGCGGGCGGGTCATTTATGCTGGCCCTCTTG  3461

                   ********************************************************************************
NODE_68291_before GTCGCCATTCCCACAAGCTCGTAGAATATTTTGAGGCTGTCCCAGGGGTTCCGAAGATCAGGGATGGTCACAATCCAGCC  3593
NODE_68291_after GTCGCCATTCCCACAAGCTCGTAGAATATTTTGAGGCTGTCCCAGGGGTTCCGAAGATCAGGGATGGTCACAATCCAGCC  3541

                   ********************************************************************************
NODE_68291_before ACATGGATGCTTGAAGTGAGTGCTCCGGCAGTTGAGGCTCAGCTCGAGGTCGACTTCGCAGATATTTACCCAAACTCTGA  3673
NODE_68291_after ACATGGATGCTTGAAGTGAGTGCTCCGGCAGTTGAGGCTCAGCTCGAGGTCGACTTCGCAGATATTTACCCAAACTCTGA  3621

                   ********************************************************************************
NODE_68291_before CCTTTATAAGCGGAACCAAGACCTGATCAAAGAGCTTAGTACCCCAGCCCCAGGCTGCAAAGATCTCCACTTCCCTACCG  3753
NODE_68291_after CCTTTATAAGCGGAACCAAGACCTGATCAAAGAGCTTAGTACCCCAGCCCCAGGCTGCAAAGATCTCCACTTCCCTACCG  3701

                   ********************************************************************************
NODE_68291_before AGTACTCACAACCTTTCCTCACTCAGTGCAAGGCTTGTTTCTGGAAACAGCACTGGTCTTACTGGAGAAATCCTCAGTAC  3833
NODE_68291_after AGTACTCACAACCTTTCCTCACTCAGTGCAAGGCTTGTTTCTGGAAACAGCACTGGTCTTACTGGAGAAATCCTCAGTAC  3781

                   ********************************************************************************
NODE_68291_before AACGCCATCCGGTTCTTTATGACCATAGTCATCGCCATTTTGTTTGGTTTAATATTCTGGGATAAAGGACAGCAGACGAC  3913
NODE_68291_after AACGCCATCCGGTTCTTTATGACCATAGTCATCGCCATTTTGTTTGGTTTAATATTCTGGGATAAAGGACAGCAGACGAC  3861

                   ********************************************************************************
NODE_68291_before CAAGCAACAAGACCTGATGAATCTTTTGGGAGCCATGTACGCAGCTGTGCTTTTCCTTGGGGCCACAAATGCTTCTGCTG  3993
NODE_68291_after CAAGCAACAAGACCTGATGAATCTTTTGGGAGCCATGTACGCAGCTGTGCTTTTCCTTGGGGCCACAAATGCTTCTGCTG  3941

                   ********************************************************************************
NODE_68291_before TGCAGTCTATAGTCGCCATTGAGAGGACAGTCTTCTACCGTGAACGAGCAGCTGGAATGTACTCTCCGCTGCCATACGCA  4073
NODE_68291_after TGCAGTCTATAGTCGCCATTGAGAGGACAGTCTTCTACCGTGAACGAGCAGCTGGAATGTACTCTCCGCTGCCATACGCA  4021

                   ********************************************************************************
NODE_68291_before TTTGCTCAGGTGGCTATTGAGACAATTTATGTAGCGATTCAGACATTGGTCTACAGTCTTCTCCTTTACTCGATGATTGG  4153
NODE_68291_after TTTGCTCAGGTGGCTATTGAGACAATTTATGTAGCGATTCAGACATTGGTCTACAGTCTTCTCCTTTACTCGATGATTGG  4101

                   ********************************************************************************
NODE_68291_before GTTCGAGTGGAAGGCGGGGAAGTTCTTGTGGTTCTACTACTACATACTGATGTGCTTCATCTACTTCACGATGTATGGAA  4233
NODE_68291_after GTTCGAGTGGAAGGCGGGGAAGTTCTTGTGGTTCTACTACTACATACTGATGTGCTTCATCTACTTCACGATGTATGGAA  4181

                   ********************************************************************************
NODE_68291_before TGATGGTTGTAGCATTGACACCAGGCCACCAGATAGCTGCCATTGTGATGTCCTTCTTCCTGAGCTTCTGGAACTTGTTC  4313
NODE_68291_after TGATGGTTGTAGCATTGACACCAGGCCACCAGATAGCTGCCATTGTGATGTCCTTCTTCCTGAGCTTCTGGAACTTGTTC  4261

                   ********************************************************************************
NODE_68291_before TCTGGCTTCCTTATCCCTAGGCCGCAAATTCCTGTATGGTGGAGGTGGTATTACTGGGCTTCACCAGTGGCATGGACGCT  4393
NODE_68291_after TCTGGCTTCCTTATCCCTAGGCCGCAAATTCCTGTATGGTGGAGGTGGTATTACTGGGCTTCACCAGTGGCATGGACGCT  4341

                   ********************************************************************************
NODE_68291_before GTACGGTCTTGTCACCTCTCAAGTGGGCGACAAGAATGGCAATCTCGAAATACCAGGAGCCGGCAACATGCCGTTGAAGC  4473
NODE_68291_after GTACGGTCTTGTCACCTCTCAAGTGGGCGACAAGAATGGCAATCTCGAAATACCAGGAGCCGGCAACATGCCGTTGAAGC  4421

 
 
 



                   ********************************************************************************
NODE_68291_before AGTTCCTGAAGGTAGAACTGGGTTTTGACTACAGCTTCCTCCCCGCTGTCGCGGTTGCTCACATCGGCTGGGTCCTTCTC  4553
NODE_68291_after AGTTCCTGAAGGTAGAACTGGGTTTTGACTACAGCTTCCTCCCCGCTGTCGCGGTTGCTCACATCGGCTGGGTCCTTCTC  4501

                   ********************************************************************************
NODE_68291_before TTTTTCTTTGTCTTCGCTTACGGCATCAAGTTCCTCAATTTCCAGAGGAGATAAAACCGATGGCAAACAGTTCTCACTTT  4633
NODE_68291_after TTTTTCTTTGTCTTCGCTTACGGCATCAAGTTCCTCAATTTCCAGAGGAGATAAAACCGATGGCAAACAGTTCTCACTTT  4581

                   ********************************************************************************
NODE_68291_before CTGGCTAGATTTTGAAACGTTAAACGTAGGCCCATCATGTAAATTAAGGATGATAGGCGACTAAAGAGTCTCCCTCCTCC  4713
NODE_68291_after CTGGCTAGATTTTGAAACGTTAAACGTAGGCCCATCATGTAAATTAAGGATGATAGGCGACTAAAGAGTCTCCCTCCTCC  4661

                   ************************************************************************* ******
NODE_68291_before TGTTTTCTTCACTTTTCAGTAAGTCTTGCTTTTGTAACACTAGCATTCTTTGTCACCGCTGCTTCATTGGACTGAGAGCG  4793
NODE_68291_after TGTTTTCTTCACTTTTCAGTAAGTCTTGCTTTTGTAACACTAGCATTCTTTGTCACCGCTGCTTCATTGGACTTAGAGCG  4741

                   ** *******                                           
NODE_68291_before TCAGTTAATTGTAAGAGACAAATAATTAATTTGAAATGCAAACGAGTGGTGTG  4846
NODE_68291_after TCGGTTAATT-------------------------------------------  4751
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De novo assembled expressed gene catalog of a
fast-growing Eucalyptus tree produced by
Illumina mRNA-Seq
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Abstract

Background: De novo assembly of transcript sequences produced by short-read DNA sequencing technologies
offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence
will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre
crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth
and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene
sequences from multiple tissues and organs.

Results: We present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid
clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-
derived contigs, a large proportion of which represent full-length protein coding genes were assembled and
annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most
comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital
expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is
invaluable for ascribing putative gene functions.

Conclusions: De novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing
and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://
eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production
in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants.

Background
Ultra-high-throughput second-generation DNA sequen-
cing technologies from companies such as Roche (454
pyrosequencing), Illumina (sequencing by synthesis,
Solexa GA) and Applied Biosystems (sequencing by liga-
tion, SOLiD), are increasingly being used for novel
exploratory genomics in small to medium-sized labora-
tories. “Short-read” (36 - 72 nt) technologies such as
those of Illumina and Applied Biosystems have proven
to be exceptionally successful in a wide variety of
whole-transcriptome investigations [1-5], but most of
these studies have relied on prior sequence knowledge

such as an annotated genome for qualitative and quanti-
tative transcriptome analyses.
Genome assembly of short sequences without any

auxiliary knowledge has primarily utilized 454 sequen-
cing data, due to the longer individual read lengths of
150-400 base pairs (bp). However, short-read sequencing
(Illumina GA and SOLiD) has been successfully used for
de novo assembly of small bacterial genomes (2-5 Mbp),
where 36 bp reads have been assembled [6-8] and
hybrid approaches, where genomes are de novo
assembled using a combination of reads from multiple
sequencing platforms to overcome the inherent limita-
tions of each technology, have been used to successfully
assemble genomes of up to 40 Mbp [9,10]. More
recently, the sequencing of the giant panda genome was
demonstrated [11] using de novo assembly of sequence
derived from a single platform (Illumina), but utilizing a
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combination of different insert sizes, allowing assembly
of an estimated 94% of the genome (2.25 Gbp). De novo
assembly of large, highly repetitive and highly heterozy-
gous eukaryotic genomes from short-read data remains
a challenge.
In transcriptome studies, 454 pyrosequencing has pro-

ven very useful for generating ESTs representing the
majority of expressed genes. This has enabled gene discov-
ery in a variety of previously uncharacterized eukaryotic
organisms with no or little a priori DNA sequence infor-
mation [12-16]. However, relatively few published studies
have attempted de novo assembly of whole-transcriptome
sequences from short-read data such as that generated by
Illumina GA or SOLiD technologies. Assembly of short
(36-72 bp) read data into accurate, contiguous transcript
sequences has only recently been reported [17-19] demon-
strating that assembly of long, potentially full-length, tran-
script assemblies is indeed possible.
Eucalyptus tree species and hybrids presently consti-

tute the most widely planted (≈ 20 Mha) and commer-
cially important hardwood fibre crop in the world. They
are mainly utilized for timber, pulp and paper produc-
tion [20]. Their fast growth rates and wide adaptability
may in future allow sustainable and cost efficient pro-
duction of woody biomass for bioenergy generation
[21,22]. Eucalyptus will soon be only the second forest
plantation genus (after Populus) for which a reference
genome sequence will be completed by end 2010 [23].
To support the genome annotation effort, there is much
value in having a dataset of genes with strong transcrip-
tional evidence across a range of tissues and develop-
mental stages. Until recently, limited amounts of
Eucalyptus EST/unigene data were available in public
databases, mainly due to the fact that commercial inter-
ests have necessitated private EST collections [24]. As of
March 2010, aside from a mixed-species collection of
≈56,000 nucleotide sequences on NCBI (≈ 37,000 of
which are Sanger EST sequences) and which contain
extensive redundancy, the largest effort to date to gener-
ate a comprehensive catalogue of expressed genes in a
single Eucalyptus species was based on 454 sequencing
of cDNA fragments from E. grandis trees [15]. While
this study provided an excellent representation of
expressed genes and gene ontology classes in E. grandis,
the relatively short lengths of the assembled contigs
(mean length of 389 bp for all contigs longer than 200
bp) meant that very few complete gene models were
represented. There remains therefore a fundamental
need for a high-quality expressed gene catalog for Euca-
lyptus, to support genome annotation efforts and discern
authentically expressed genes from predicted gene mod-
els, as well as for future genomics research, which will
include transcriptome, proteome and metabolome
profiling.

In the process of producing such a high-quality
expressed gene catalog for Eucalyptus, we addressed
three main questions: First, is it feasible to de novo
assemble Illumina mRNA-Seq data into contiguous,
near full-length gene model sequences for Eucalyptus?
Second, what genes make up the expressed gene catalog
for a fast-growing Eucalyptus plantation tree? Finally,
can we re-use the mRNA-Seq data to create a tissue
and organ-specific digital expression profile for each
assembled contig? We addressed these questions by gen-
erating a comprehensive set of expressed gene
sequences from a commercially grown Eucalyptus
hybrid (E. grandis × E. urophylla) clone using Illumina
mRNA-Seq technology and de novo short-read assembly.
We report herein the complete annotation of the
expressed gene catalog based on comparative analysis
with the published Arabidopsis thaliana [25], Populus
trichocarpa [26] and Vitis vinifera [27] protein-coding
datasets. We describe an interactive database of anno-
tated transcript sequences, coding sequences (CDSs)
and derived protein sequences (Eucspresso, http://
eucspresso.bi.up.ac.za/, CA Hefer, E Mizrachi, AA
Myburg, F Joubert, unpublished), which will be continu-
ously updated and curated in association with the Euca-
lyptus Genome Network (EUCAGEN, http://www.
eucagen.org) as part of an effort to initiate a publicly
accessible database for Eucalyptus transcriptomics
research similar to that produced for Populus [28].

Results
De novo assembly, validation and annotation of contigs
In total, 62 million paired-end reads of raw mRNA-Seq
data (6.90 Gbp) representing poly(A)-selected RNA
from six Eucalyptus tissues and varying in lengths from
36 bp to 60 bp, were generated in 14 lanes on Illumina
GA and GAII instruments. Following a sequence filter-
ing process to exclude low quality and ribosomal RNA-
derived reads, we assembled 36 million paired-end reads
(3.93 Gbp, Additional file 1 - Table S1 and Figure S1,
NCBI Sequence Read Archive accession SRA012408) of
non-normalized mRNA sequence, using the Velvet
short-read assembler (version 0.7.30, [29]). In total,
18,894 RNA-derived contigs were assembled (compris-
ing 22.1 Mbp of transcriptome sequence) that were
greater than 200 bp in length (mean = 1170 bp, Figure
1 and Additional file 2), with a median coverage per
base (CPB) per contig of 37×, ranging from 8× (mini-
mum coverage cut-off for assembly) to 5,262× (Addi-
tional file 1 Figure S2).
We performed ab inito CDS prediction using GEN-
SCAN [30] and found that 15,713 contigs (83.2%) con-
tained a predicted CDS (Additional file 1 Table S3).
Analysis of the predicted coding sequences using Ana-
conda [31] identified 6,208 contigs that contained
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putatively full-length CDSs (i.e. containing start and stop
codons), 4,610 predicted to contain a start but no stop
codon, 4,874 predicted to contain a stop but no start
codon, and only 21 with neither. To ascertain the qual-
ity of Velvet assembly of short reads into long contigu-
ous coding sequences, we compared a subset of 35 of
our transcript-derived contigs to corresponding Sanger-
sequenced, full-length, cloned Eucalyptus grandis
mRNA sequences in NCBI (Figure 2 and Additional file
3). Paired reads were independently mapped to each
Sanger reference sequence, the de novo assembled Vel-
vet contig and its corresponding predicted CDS. A Nee-
dleman-Wunsch alignment of these three sequences was
used for contiguity validation of the assembled contigs.
Independently, each sequence had 100% coverage valida-
tion across the contig, except in cases of low quality
assembly (’N’s inserted by Velvet), which occurred in
regions of coverage lower than 8× per base. Of the 35
transcript-derived contigs evaluated, 25 (71%) assembled
completely with a 5’ UTR, 3’ UTR, as well as a contigu-
ous coding sequence matching that of the reference
mRNA sequence. We found several cases where, despite
high coverage, our transcript-derived contigs differed
from the Sanger reference sequence due to indels, but

these were generally in the UTR regions and likely
represent allelic differences between the F1 hybrid indi-
vidual and the reference sequences (Additional file 3).
Of the 18,894 assembled contigs, 18,606 (98.48%)

exhibited significant similarity (BLASTN, -10, [31]) to
the preliminary draft 8X DOE-JGI E. grandis genome
assembly (http://eucalyptusdb.bi.up.ac.za/) consistent
with the origin of the mRNA contigs (an F1 hybrid of E.
grandis and E. urophylla). We further characterized the
assembled contigs by high stringency BLASTX analysis
(-10 confidence, minimum 100 bp high scoring pair
(HSP) match length) to protein datasets from three
reference sequenced angiosperm genera (Arabidopsis,
Populus and Vitis). Cumulatively, 15,055 contigs
(79.68%) exhibited high similarity to Arabidopsis (14,235
contigs), Populus (14,769 contigs) or Vitis proteins
(14,833 contigs, Additional file 1 Figure S3). Of the
15,055 contigs with high similarity to Arabidopsis, Popu-
lus or Vitis proteins, 13,806 (91.70%) also contained pre-
dicted coding sequences (Figure 3A), while 1,249
(8.30%) did not (Figure 3B), possibly due to low expres-
sion of these transcripts which would have resulted in
lower coverage and shorter contigs that represented
only a fraction of the open reading frame (or mostly

 

Figure 1 Summary distribution of the lengths of the 18,894 assembled contigs (> 200 bp, mean length = 1170 bp, N50 = 1,640 bp,
Q3 = 1,573 bp, Max = 12,053 bp).
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UTR sequence). Predicted codon usage and amino acid
frequencies in the proteome represented by the Eucalyp-
tus expressed gene catalog were very similar to those of
expressed gene catalogs from Arabidopsis and Populus
(Additional file 1 Figure S4 and Figure S5).
To compare the completeness of our expressed gene

catalogue to that of all publicly available gene sequence
data for Eucalyptus, we generated a separate dataset,
termed EucALL, containing all publicly available Euca-
lyptus gene sequence data to date (March 2010). This
included all NCBI unigenes and ESTs, assembled 454
EST data from E. grandis leaf tissue (DOE-JGI, http://
eucalyptusdb.bi.up.ac.za/), assembled 454 EST data pro-
duced by Novaes and colleagues [15], and the Euca-
Wood contig dataset [33]. We compared the
representation of Arabidopsis genes in the EucALL data-
set and in our assembled E. grandis × E. urophylla
(EGU) transcript dataset by BLASTX at significance
levels of < 1e-05, < 1e-10 and < 1e-20 (Additional file 1
Table S2). While the overall numbers of hits were

higher in the EucALL dataset, these were mostly in the
lower size ranges. For our de novo assembled contigs, a
much higher number of significant hits in contigs larger
than 2000 bp in size (6,602 compared to 1,940 at signifi-
cance < 1e-10) suggested that a greater proportion of our
contigs represent full-length gene models than the pub-
licly available Eucalyptus gene sequence set (EucALL).

Functional annotation of the expressed gene catalog
The transcript-derived contig sequences were annotated
according to several functional annotation conventions,
including Gene Ontology (GO - http://www.geneontol-
ogy.org/), KEGG (http://www.genome.jp/kegg/) and
InterProScan (http://www.ebi.ac.uk/Tools/InterProScan/
). The numbers and assortment of allocated GO cate-
gories provides a good indication of the large diversity
of expressed genes sampled from the Eucalyptus tran-
scriptome (Figure 4). This was also reflected in the
diversity of InterProScan categories identified (Addi-
tional file 1 Figure S6 and Figure S7), as well as the

Figure 2 Comparison of the de novo assembled contig of the Eucalyptus grandis UDP-glucose dehydrogenase (UGDH) transcript to a
reference Sanger-based sequence (Genbank EF179384) for the same gene. Peak height indicates coverage per base (CPB) of mapped short-
reads across each sequence. CPB of the fully assembled contig is shown in cyan. CPB of the predicted CDS region is shown in dark blue. CPB of
the Sanger reference sequence is shown in red. 5’ UTR (orange box) and 3’ UTR (purple box) regions are indicated.
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comprehensive coverage of biochemical processes by
KEGG annotation, which was similar to that of the
entire Arabidopsis gene catalog (Additional file 1 Figure
S8).

Digital expression profiling
An accepted method of identifying large scale differ-
ences in gene expression is to use EST abundance as an
indicator of transcript abundance. This method has
been implemented and validated in numerous studies
using Sanger-derived ESTs [34,35], as well as 454-

pyrosequencing methods [13,36-39]. Quantitative tran-
scriptome analysis using ultra-high-throughput sequen-
cing technologies such as Illumina and SOLiD has been
shown to be accurate and highly correlated with other
quantitative methods such as RT-qPCR and microarray
analysis [1,5]. To quantify tissue-specific transcript
abundance reflected in our short-read dataset, we com-
bined data (multiple lanes in most cases) generated
from the same tissues and mapped six tissue-specific
datasets (Additional file 1 Table S1) to the assembled
gene catalog using Bowtie [40]. Following this, we used

Total assembled 

contigs >200 bp

18,894 contigs

13,806 contigs (73.07%)
Median contig length: 1,200 bp

Median CPB per contig: 47X 
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Median CPB per contig: 20X

1,813contigs (9.60%)
Median contig length: 512 bp
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1,738 contigs (9.20%)
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14 contigs (0.07%)
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Figure 3 Breakdown of annotation categories for all 18,894 transcript-derived contigs. A large proportion (98.5%) of assembled contigs
(A-D) had significant BLAST hits (< 1e-10 confidence, minimum 100 bp HSP match length) to the draft Eucalyptus genome assembly (http://
eucalyptusdb.bi.up.ac.za/), 80% of which (A, B) also exhibited significant similarity (BLASTX, < 1e-10, > 100 bp HSP) to coding sequences of
Arabidopsis, Populus or Vitis.
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the Cufflinks [41] program (http://cufflinks.cbcb.umd.
edu), which provides relative abundance values by calcu-
lating Fragments Per Kilobase of exon per Million frag-
ments mapped (FPKM) as validated previously [2]. This
enabled the allocation of a tentative digital expression
profile for each transcript-derived contig (Additional file
4).
To compare between two general tissue types that are

of interest for woody biomass production, we evaluated
groups of genes whose FPKM values were greater than
two-fold higher in woody (xylogenic) tissues (average
FPKM of immature xylem and xylem: 1,897 annotated
contigs) or leaf (non-xylogenic) tissues (average FPKM
of shoot tips, young leaves and mature leaves: 1,531
annotated contigs). GO categories over-represented in
the xylem-upregulated set compared to the leaf set (Fig-
ure 5A) was representative of developing woody tissues,
with significant enrichment (p < 0.05) in signalling
("kinase activity”), carbohydrate metabolism, and genes
associated with the Golgi, cytoskeleton and the plasma
membrane - consistent with an emphasis on delivery of
biopolymers to the cell wall. In contrast, gene categories
significantly enriched (p < 0.05) in leaf tissue compared
to woody tissue (Figure 5B) were associated with photo-
synthesis ("plastid”, “thylakoid”, “photosynthesis”),

growth and energy production (precursor metabolites,
“lipid biosynthesis”, “amino acid metabolism”).
We also interrogated our transcriptome data using the

“core xylem gene set” identified in Arabidopsis by Ko
and colleagues [42]. Of the 52 genes identified by the
authors as markers of secondary xylem formation in
Arabidopsis, 33 had putative homologues in the Euca-
lyptus transcriptome (BLASTX, < 1e-10) and in total 43
contigs were identified. Of these, 40 (93%) showed
greater than two-fold “Xylem” to “Leaf” digital expres-
sion profile ratios and six were only detected in xylem
tissues (Additional file 1 Table S4). Most of the expres-
sion profiles were also highly correlated with that of sec-
ondary cell wall-specific Eucalyptus cellulose synthase
genes, similar to the patterns previously observed in
Arabidopsis. These results are comparable to the 80%
(51 out of 63 genes) reported recently for the same set
of Arabidopsis homologs in Populus [43], which pro-
vided further support for the biological validity of the
short-read-based digital expression profiles associated
with the Eucalyptus expressed gene catalog.

Public data resource
We constructed a public data resource, Eucspresso
(http://eucspresso.bi.up.ac.za), which provides a

Figure 4 Top ten most represented GO categories under the “Molecular Function” (A-C), “Biological Process” (D-F) and “Cellular
Compartment” (G-I) categories in level 2 (A, D and G), 3 (B, E and H) and 4 (C, F and I). The numbers and proportions in all categories
reflect the diversity and complexity of genes expressed in multiple tissues sampled to make up the Eucalyptus gene catalog.
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Figure 5 Over-represented GO categories in xylem (A - 1,897 annotated contigs) and leaf (B - 1,531 annotated contigs) tissues. All
genes with a FPKM value more than two-fold higher in one tissue type versus the other were considered for the analysis. Data were analyzed
using BiNGO (Maere et al. 2005). Node size is proportional to the number of genes in each category and colors shaded according to significance
level (white - no significant difference, yellow - FDR = 0.05, Orange - FDR < 0.05).
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searchable interface to the assembled contigs. The data-
base can be queried based on closest homologous entry
in the Arabidopsis thaliana (TAIR9), Populus tricho-
carpa (Version 2.0) and Vitis vinifera (Sept 2009 build)
sequence data sets. Simple and compound keyword
searches can be performed based on all of the functional
annotation terms and the predicted coding and protein
sequences can be obtained for all contigs. Finally, the
tissue-specific (FPKM) digital expression profile and the
location of each contig in the draft 8X E. grandis gen-
ome assembly (http://eucalyptusdb.bi.up.ac.za/) can be
viewed from within Eucspresso.

Discussion
We have assembled nearly 19,000 expressed gene
sequences from xylogenic and non-xylogenic tissues of
an actively growing Eucalyptus plantation tree using
only Illumina mRNA-Seq technology and de novo short-
read assembly. Quality control comparisons to full-
length, cloned, Sanger-derived transcript sequences from
Eucalyptus, as well as multiple lines of evidence such as
CDS prediction and Pfam prediction showed that the
transcript assemblies are robust and that thousands of
full-length coding sequences and their respective 5’ and/
or 3’ UTR regions were successfully assembled. Compar-
ison of assembled gene models to gene catalogs of other
angiosperm species by BLAST analysis and functional
annotation (GO, InterProScan and KEGG category
numbers and proportions, Figure 4 and Additional file 1
- Figure S6, Figure S7 and Figure S8) indicate that we
have sampled an expansive and diverse expressed gene
catalog representing a large proportion of the genes
expressed in mature Eucalyptus trees across a variety of
woody and non-woody tissues. Comparison to all pub-
licly available Eucalyptus DNA sequence suggests that
we have sampled a more comprehensive set of genes,
which is also more complete in length (Additional file 1
- Table S2) from a single eucalypt tree genotype than
has been available to date for the entire genus. Addi-
tionally, using a validated approach to quantify mRNA-
Seq data we have produced an informative database of
transcript abundance across six Eucalyptus tree tissues,
which, due to the depth of sequencing, results in higher
sensitivity and wider dynamic range than Sanger or 454-
derived EST counts usually associated with this type of
analysis.
A concern associated with de novo assembly of tran-

script sequences, be it Sanger derived [33] or 454
sequence derived [15] assemblies, is the contiguity of
assembled sequences. This concern intuitively increases
as the read length decreases, and may be one of the
main reasons why most transcriptome de novo assembly
approaches have utilized technologies with longer read
lengths to date. We provide several lines of evidence

which jointly support the contiguity of transcript
sequences assembled in our study using short-read data.
First, a high proportion of the contigs exhibited high-
confidence BLASTX similarity to protein sequences
from annotated gene catalogs of three angiosperm spe-
cies Arabidopsis, Populus and Vitis (Figure 3). Second, a
large proportion of the contigs contained long, near full-
length, predicted CDSs (Figure 3). Third, InterproScan
analysis predicted 45,687 protein domains, which is indi-
cative of contiguous, in-frame predicted protein
sequences (Additional File 1). Finally, a random subset
of the contigs, which represented a variety of length and
read coverage, were validated by direct alignment to
previously published, Sanger sequenced, full-length
Eucalyptus genes that were directly cloned from cDNA
(Additional File 3).
Assigning biological significance to de novo assembled

contigs should be approached with caution. In our
study, 13,806 assembled gene models (73.07% of the
total assembled contigs, Figure 3A) were considered
high confidence annotations due to the presence of a
significant high stringency BLAST hit in other angios-
perm species, as well as a predicted CDS. These contigs
had relatively high coverage per base (CPB) values
(median 47X) as compared to contigs lacking a pre-
dicted CDS (median CPB of 20× or lower, Figure 3B
and 3D and Supplemental Table S3). Thus, a lack of
CDS prediction was generally associated with low gene
expression level and low CPB, which resulted in ‘N’s
inserted by Velvet in the contig sequences (Figure 3B
and 3D and Supplemental Table S3). The assembly
quality and annotation of these sequences could be
improved in future by even deeper sequencing and the
addition of data from new tissue types. Another possible
source of error is the spurious prediction of CDSs in
long, non-coding RNAs, which has been previously
shown to occur [44,45]. It is notable that of the 1,813
Eucalyptus-derived contigs with no significant BLAST
hit to other angiosperms, but containing a predicted
CDS (Figure 3C), only 81 contigs had predicted Inter-
ProScan domains. Additionally, the median CDS to con-
tig length ratio was 0.33, as compared to 0.62 in the
13,806 high confidence contigs in Figure 3A, which sug-
gests that many of these CDS predictions may be false
positives. De novo assembled transcriptome datasets lack
the ability to distinguish and classify the lower confi-
dence annotations, an exercise that is beyond the scope
of this study, albeit one that can be resolved once a gen-
ome-based predicted set of gene models is available.
Validation of the digital expression (FPKM) profiles

using the “core xylem gene set” identified in Arabidopsis
[42] has precedence in similar investigations in conifers
[46], cotton [47] and poplar [43]. This analysis, com-
bined with the results shown in Figure 5A and Figure
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5B, lend support to the biological significance of digital
expression profiles derived from short-read sequencing
technology, which will assist in the discovery and annota-
tion of novel Eucalyptus genes - and using the genome
sequence, promoters - playing key roles in growth and
development, and particularly in woody biomass produc-
tion. The Eucspresso online resource produced from this
study, as well as future comparative analysis with other
woody species such as Vitis and Populus, will be valuable
for studying the unique biology of woody perennials.

Conclusions
Taking into consideration the number, length, coverage
and quality of assembled gene models, as well as their
digital expression profiles, this dataset surpasses several
previous de novo transcriptome assemblies using Illu-
mina [17,18] or 454 technology [13-16]. This can pri-
marily be attributed to the amount of data generated
(3.93 Gbp of non-rRNA derived reads), the diversity of
tissues sampled and strategy of paired-end sequencing,
as well as read-length (mostly 50-60 bp, compared to
only 36 bp in earlier studies). Our dataset was generated
using several generations of Illumina GA technology,
but considering the current throughput of Illumina
sequencing (up to 100 Gbp per flowcell), a gene catalog
of this scale can now be produced using a single lane of
Illumina mRNA-Seq. Finally, non-normalized short-read
data will be extremely useful for downstream applica-
tions such as digital gene expression profiling and detec-
tion of alternative transcript structure, once reference
models are available from the genome.

Methods
Plant tissue collection
Tissues from a six-year-old ramet of a commercially
grown E. grandis × E. urophylla hybrid clone (GUSAP1,
Sappi Forestry, Kwambonambi, South Africa) were col-
lected in a clonal field trial and immediately frozen in
liquid nitrogen, as previously described by Ranik and
Myburg [48]. The following tissues were sampled from
approximately breast height (1.35 m) on the main stem
following bark removal: immature xylem (outer gluti-
nous 1-2 mm layer comprising early developing xylem
tissue) and xylem (after removal of the immature xylem
layer, 2-mm-deep planing including xylem cells in
advanced stages of maturity). Early developing phloem
tissue including small amounts of cambial cells was col-
lected by scraping the first 1-2 mm layer from the inner
surface of the bark. Additionally, we sampled shoot tips
(soft green termini of young crown tip branches con-
taining shoot primordia and apical meristems), young
leaves (rapidly-growing leaves in the process of unfold-
ing) and mature leaves (older, fully expanded leaves of
the current growth season).

Paired-end mRNA-Seq library preparation and sequence
generation
Total RNA was extracted from the six tissues using the
protocol described previously [49]. Total RNA quality
and concentration were determined using the Agilent
RNA 6000 Pico kit (Agilent, Santa Clara, CA) on a 2100
Bioanalyzer (Agilent). Enrichment of polyA+ RNA was
performed using the Oligotex midi kit (Qiagen, Valen-
cia, CA). Two hundred nanograms of polyA+ RNA were
fragmented in 1× RNA fragmentation solution (Ambion,
Austin, TX) at 70°C for 5 minutes. The fragmented
RNA was precipitated with three volumes of ethanol
and re-dissolved in water. Double-stranded cDNA was
synthesized using the cDNA Synthesis System (Roche,
Indianapolis, IN) according to manufacturer’s instruc-
tions using random hexamers (Invitrogen, Carlsbad, CA)
to prime the first strand cDNA synthesis. Paired-end
libraries with approximate average insert lengths of 200
base pairs were synthesized using the Genomic Sample
Prep kit (Illumina, San Diego, CA) according to manu-
facturer’s instructions. Prior to cluster generation, library
concentration and size were assayed using the Agilent
DNA1000 kit (Agilent) on a 2100 Bioanalyzer (Agilent).
Libraries were sequenced on a Genome Analyzer
equipped with a paired-end module (versions I, II and
IIx, Illumina).

De novo assembly of mRNA-Seq data
After removing sequences containing low quality bases
(’N’s) or single base repeats and ribosomal RNA
sequences, the 3.93 Gbp dataset was used for assembly
and subsequent coverage per base (CPB) estimation for
each assembled contig. We assembled the filtered Illu-
mina paired-end (PE) reads using Velvet version 0.7.30
[29]. Previous studies [1-3,50] have demonstrated that
mRNA-Seq technology produces uneven coverage over a
transcript, which prompted us to follow a coverage-
assisted reference assembly strategy. Using Mosaik
(http://bioinformatics.bc.edu/marthlab/Mosaik) to align
the filtered Illumina PE sequences to the assembled con-
tigs, the average coverage per contig was calculated. A
custom script was then developed to extract the pairs of
sequences that mapped to each contig, and using that
contig as a template, each contig was re-assembled using
Velvet with the associated expected coverage parameter
set to the Mosaik average coverage value for that contig.

Contig validation
The degree to which the assembled contigs represented
long, contiguous RNA transcript sequences, was evalu-
ated by aligning 35 Velvet contigs and their respective
predicted CDSs to full-length, cloned, Sanger-derived
Eucalyptus reference sequences present in NCBI. CPB
was calculated for the sequences using BWA [51] and a
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global pairwise alignment of the sequences was per-
formed using the Needle package from EMBOSS [52].
Plots were constructed from the alignments with the
CPB on the y-axis of the plot. Zero coverage values
were assigned to gaps in the alignments. This revealed
where gaps and/or potentially misassembled regions
were present in the assembled contigs, and to what
depth these contigs were sequenced.

Coding sequence prediction
Coding sequence predictions were performed using
GENSCAN [30] and AUGUSTUS [53], predicting
15,713 and 15,904 proteins respectively. The difference
in coding sequences predicted could be attributed to the
different training data sets used and inherent difficulty
of predicting coding sequences from incomplete geno-
mic sequences. The GENSCAN results (15,713 predicted
proteins) were used in downstream analyses.

Annotation of assembled contigs
Homology searches were performed against public
sequence databases. The newest versions as of February
2010 of the protein sequences of Arabidopsis (TAIR 9),
Vitis (Sept 2009 build) and Populus (version 2.0, Phyto-
zome) were used to construct the individual BLAST
datasets. The Eucalyptus public dataset (EucAll) con-
sisted of 45,442 entries in Genbank (downloaded March
2010), 13,930 entries from the Eucalyptus Wood uni-
genes and ESTs [33], E. grandis leaf tissue ESTs
(120,661 entries from DOE-JGI-produced 454
sequences, http://eucalyptusdb.bi.up.ac.za/) and 190,106
Unigenes and singlets from E. grandis 454 data [15].
The BLAST e-value threshold was set at 1e-10, with a
minimum alignment length of 100 nucleotides (33
amino acids). Functional annotation (GO and KEGG)
was performed using BLAST2GO [54], using the default
annotation parameters (BLAST e-value threshold of 1e-
06, Gene Ontology annotation threshold of 55). InterPro
annotations were performed using InterProScan (http://
www.ebi.ac.uk/Tools/InterProScan/).

Coverage and FPKM determination
Sequence depth and base coverage were calculated using
BWA (Lin et al. 2009) and the FPKM values estimated
by aligning the Illumina reads to the assembled tran-
scriptome using Bowtie [40] and estimating the expres-
sion level of each predicted transcript (FPKM value)
using Cufflinks (http://cufflinks.cbcb.umd.edu) [41].

Additional material

Additional file 1: Supplemental Tables S1-S3 and Supplemental
Figures S1-S8 referred to in text.

Additional file 2: FASTA formatted sequences of all 18,894
assembled contigs.

Additional file 3: Contig validation, Needleman-Wunsch alignment
figures.

Additional file 4: Table containing all 18,894 contig names and
calculated FPKM values for six tissues (immature xylem, xylem,
phloem, shoot-tips, young leaves and mature leaves). Eucspresso
(http://eucspresso.bi.up.ac.za/) - Online database with mRNA contig
sequences and their Blast, GO, KEGG, Pfam annotations. The short-read
sequence data have been submitted to the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) under accession SRA012408.
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