
Chapter 2

A core bioinformatics workflow environment for

ultra-high-throughput transcriptome data analysis

Chapter preface

This chapter describes the development of software tools in the form of Galaxy workflows to address

very specific next-generation sequence analysis problems. The workflows address very specific bioin-

formatics steps during the analysis of uHTS transcriptome datasets. The developed workflows focus

on evaluating the quality of data from an Illumina mRNA-seq run, introduce a de novo transcriptome

assembly pipeline, describe an automated assemble pipeline, and also provides a framework for gene

expression (FPKM) calculation of genes expressed from a genome where the gene models have not been

defined yet.

A customised Galaxy server has been installed at the Bioinformatics and Computational Biology

Unit (BCBU) research group, that contains a copy of tools available in the public Galaxy server, as well

as new tools that are not available on the default server. These tools consists of either third party, open

source applications in the public domain that were included in the BCBU Galaxy instance, or novel

Python and R scripts that were developed specifically for the BCBU server.

The BCBU Galaxy server can be accessed at the following URL: http://zoidberg.bi.up.ac.za:8882

41

2.1. Introduction

The sheer volumes of data produced by high-throughput technologies are forcing the biological re-

search community to adopt automated data analysis methodologies in order to investigate the underlying

biological relevance of the data produced. These technologies have enabled relatively small research

groups with moderate budgets to produce large amounts of DNA sequence data, which necessitated

the bioinformatics community to develop user-friendly analysis environments geared towards data man-

agement and result sharing. The current lack of bioinformatics human capacity, technical support and

computational hardware in most research institutions is generally considered the bottleneck in obtaining

relevant biological answers to a hypothesis. Deploying flexible and user-friendly analysis systems which

empower the laboratory scientist to assist in data analysis and interface with custom software solutions

developed by the bioinformatics community will greatly relieve the demand for bioinformatics support

in a research project, and will assist both the experimental biologist and bioinformaticist in interpreting

experimental findings.

The field of bioinformatics is more often than not spoiled for choice when it comes to selecting the most

appropriate software analysis tool to perform a specific analysis. New software tools are made available

to the community on a weekly basis, and especially in a newly expanding field such as high-throughput

sequencing applications, various analysis tools that perform essentially the same function, but following

different methodological approaches are rapidly being developed. A good example is the wide range of

short read alignment tools currently available to align results from mRNA-Seq data to a target genome

(Table 1.1). Each of these software packages have been designed with specific criteria in mind, and

selecting the most appropriate tool that fits an experimental design or computational environment is

often a daunting task. Many research groups and consortia have developed software pipelines and

automated systems which use specific tools to address the need for analysis automation (Mungall et al.,

2002; Durham et al., 2005; Forment et al., 2008). In general, these pipelines do not lend themselves

to customisation in terms of the exchange of one analysis tool for another that is more suitable for an

experiment, and often requires modifying various scripts in order to successfully replace a tool. The

42

need therefore exists for a bioinformatics workflow environment, where very complex analysis pipelines

can be built ad hoc from a repository of tools, and these pipelines can then be executed with different

datasets and parameters as input, and together with the results, shared with collaborators (Ludäscher

et al., 2005; Taylor et al., 2007).

A successful bioinformatics analysis and workflow system needs to meet a diverse set of requirements.

First, the initial development hurdle required to extend the system needs to be intuitive and relatively

easy, it needs to be easily deployable and maintainable, scalable to various computational environments

systems, as well as having a user-friendly interface for the users. The bioinformatics community currently

employs a diverse range of tools and programming languages to develop analysis tools geared towards

biological data mining. Traditionally, dynamic scripting languages, such as Python, PERL, PHP and RUBY

have been used with great success in building complex analysis portals and resulted in large “Bio*”

community projects developing around these languages (Chapman and Chang, 2000; Stajich et al., 2002;

Goto et al., 2003; Holland et al., 2008 and http://www.openbio.org). The aim of these communities can

be summarized as providing a standard set of tools, or modules to perform common bioinformatics tasks.

These tasks generally involve parsing results from popular analysis tools, connecting to the application

programming interface (API) of a widely-used analysis tool, or converting between different biologically

relevant file formats. The extensive use of these scripting languages in the bioinformatics community can

be attributed to the lower entry level knowledge required when compared to compiled languages such

as C, C++ and JAVA when learning the language. This is evident in the popularity of these languages

in many introductory courses to bioinformatics (Cohen, 2003; Boyle, 2004). Ideally, a bioinformatics

analysis pipeline system should be ignorant in terms of the language a particular tool is written in, and

should leverage the community expertise in term of skills and experience when new tools and features

needs to be added to the workflow framework.

The modern biologist and laboratory scientist should ideally interact with an analysis workflow system

in such a way that the underlying hardware requirements and nuances of running a specific tool should be

obscured from the user interface, enabling the researchers to focus on interpreting the results obtained.

43

The Galaxy workflow system (Giardine et al., 2005), introduced in Section 1.5.1 meets a large number of

the criteria mentioned above for a successful bioinformatics pipeline system, and was therefore selected

to serve as the basis of a system which caters for next generation data management and analysis. Galaxy

has the abillity to execute scripts or analysis programs concurrently on local computational resources,

and do not require the use of remote resources to execute a specific job. Workflow systems such as

Taverna (Oinn et al., 2004) and Kepler (Ludäscher et al., 2005) makes extensive use of remote servers

and protocols to construct the workflows. With the limited bandwith available in South Africa during

the lifetime of this project, these workflow systems were not considered as viable contenders for a base

workflow system to extend. The Ergratis (Orvis et al., 2010) system was only published in 2010, which

effectively excluded it from being used in this study.

The aim of the chapter is firstly to develop automated analysis pipelines which will perform analysis

related to the quality evaluation of mRNA-Seq reads, the de novo assembly of a gene catalog, develop

an automated functional annotation pipeline and perform expression profiling of gene transcripts using

mRNA-Seq short reads. Secondly, for each of the workflows developed, some key parameters that have an

effect on the output of the different tools will be investigated, and recommendations provided as to what

ranges of these parameters should be considered when performing some of the analysis steps. In order

to fully describe the parameters, different mRNA-Seq datasets were used as input to the workflows. The

workflows developed in this chapter were used to perform a succesfull de novo assembly and annotation

of a gene catalog described in Chapter 3.

2.2. Materials and methods

2.2.1. BCBU Galaxy: Extending the public Galaxy framework

The Galaxy framework (Giardine et al., 2005) served as the base of extention for the development

of the uHTS sequence analysis workflows. The public framework already contains a wide range of NGS

analysis tools, and these tools were used wherever possible to construct the workflows. When a specific

44

analysis tool was missing from the public server, the tool was added to the BCBU Galaxy server. The

tools added to the BCBU server either consisted of third party applications, such as the Velvet assembler

that were developed by external authors, or custom Python and R scripts that were developed specificaly

for this project. The list of third party applications added to the BCBU server is provided in Table 2.1,

and the newly developed tools added to the BCBU server in Table 2.3.

2.2.2. Illumina short-read base-quality evaluation workflow

The Illumina FASTQ quality evaluation was performed with scripts and tools already present in the

Galaxy framework. The default installation of Galaxy already provides uHTS data analysis functionality

focussed on mRNA-Seq quality evaluation. The workflow, ”Illumina QC” evaluates the quality of the

bases from the forward and reverse reads from an Illumina paired-end run. The output from the workflow

includes a bar chart of the distribution of base quality values for every base in the sequenced mRNA-seq

dataset. The workflow also produces a summary of the FASTQ statistics file, which reports the number

of reads in the lane, the number of bases, and the number of unknown bases in the run. The quality

control tools enable users to evaluate the quality values of especially the 3’ end of bases in the input

dataset, and make informed decisions for trimming bases from a dataset for use in downstream analysis.

2.2.3. De novo transcriptome assembly workflow

The de novo transcriptome assembly workflow made use of the de Bruijn graph-based assembler

Velvet, and a FASTA statistics calculation script from the cndsrc package1 to guide the user towards

steps needed to perform a transcriptome assembly. Transcriptome assembly is not a straigh-forward

process, and during the workflow construction the effect of multiple parameters regarding the input

dataset, such as sequenced read length and the effect of paired end reads, as well as the effect that

different parameters provided to the assembler have on the final assembly were evaluated. A 76 bp

Eucalyptis grandis Illumina-sequenced mRNA-seq dataset was used to illustrate the effect of these pa-

rameters. This dataset was trimmed to illustrate the effect various input data lengths (50 bp to 76 bp),
1 http://www.biostat.wisc.edu/~cdewey/software.html, included in the Galaxy framework as the “faLen” tool

45

Table 2.1: Third party applications that were added to the BCBU Galaxy server instance. The category
column indicates the location of the tool in the BCBU server, and the reference column describes the
publication of the tool, or where applicable, the software package that the tool is part of.

Name Category Description Reference
Exonerate
alignment

Alignment Alignment of EST or cDNA sequence to
a target genome sequence

Slater and Birney
(2005)

BLAST2GO
pipeline

Annotation Executes the b2gPipe command line
interface of the BLAST2GO tool,
requires a local installation of the
BLAST2GO package and databases

Conesa et al. (2005)

BLASTXML2
BLAST2GO

Annotation Re-formats BLAST results in XML
format to a format required by the
BLAST2GO application

Developed by
lmanchon@univ-montp2.fr,
open source

InterProScan Annotation Runs the InterProScan analysis tool,
requires the installation of all the
required InterPro datasets. Currently
optimised to utilise 16 cores on a single
server

Zdobnov and
Apweiler (2001)

BLAST BLAST Performs a BLAST against one of the
puclic databases available locally

Altschul et al.
(1990)

BLAST two
FASTA files

BLAST Allows users to upload to fasta files,
creates the BLAST databases on
demand, and performs a BLAST
analysis

Altschul et al.
(1990)

Circoletto
BLAST
visualisation

BLAST Makes use of the Circoletto application
to view BLAST results in text format

Darzentas (2010)

faLen stats FASTA tools Calculates the N50, min, max, 1st and
3rd Quartile, mean and median sequence
lengths from a fasta file

http://www.biostat.wisc.edu/
~cdewey/software.html

FASTQ
shuffleseq

FASTQ tools Shuffles two FASTQ files into one file,
required by the Velvet assembler

Zerbino and Birney
(2008)

GenScan Gene
Predictors

Calls the GenScan tool on a fasta file
containing protein sequences

Burge and Karlin
(1997)

Velvet
assembly

NGS tools Performs a Velvet assemble on a FASTQ
file

Zerbino and Birney
(2008)

Multiple
Velvet
assemblies

NGS tools Allows a series of Velvet assemblies with
a range of parameters

Zerbino and Birney
(2008)

Oases
assembly

Development Performs an Oases assembly on a
FASTQ file

Zerbino et al.,
unpublished

DEGseq Development Calculates differential expression
between lists of genes using FPKM as
the measure of expression

Wang et al. (2010a)

Muscle
alignment

Development Uses Muscle to perform multiple
sequence alignments

Edgar (2004)

46

Table 2.3: A list of tools newly developed to complement the existing tools available in the BCBU Galaxy
server. The tools include R and Python scripts that perform specific analysis, or convert files between
different formats that serve as input to the next tool in the analysis pipeline.

Name Category Description
Exonerate targetgff2gff3 Alignment Converts the gff and text output from

Exonerate to the GFF3 format
InterProScan RAW format
converter

Annotation Re-formats InterProScan RAW results to either
a txt or XML based format. The XML format
is required by the BLAST2GO application

InterProScan2
BLAST2GO

Annotation Converts InterProScan XML results to a
directory format required by theBLAST2GO
application

Parse BLAST XML BLAST Provides the facility to extract custom fields
from a BLAST XML file

Convert gff3 to gtf Convert
formats

Produces the compact GTF format form a
GFF3 file

Convert qseq to fastq Convert
formats

Converts an Illumina qseq file to a fastq file

Extract FASTA region FASTA tools Extract reqions from a FASTA file
Reverse fasta sequence
direction

FASTA tools Reverse all the sequences in the FASTA file

Retrieve longest
transcripts

FASTA tools Parses the OASES assembler assembly files,
retrieves the longest assembled transcripts

Rename FASTA entries FASTA tools Rename the FASTA entries
Summary of FASTQ
Summary statistics file

NGS tools Calculates the number of usable bases, the
number of A, C, G and T bases and the
theoretical base yield from a FASTQ summary
statistics file

SAM QC stats NGS tools Calculates the number of reads that map as
pairs, as singles, and uniquely from a SAM file

TopHat QC stats NGS tools Calculates the same statistics from a TopHat
generated SAM file

SNP filter SNP tools Filter a pileup file with more stringent
constrains, such as the minimum distance
between two SNPs

SNP summary SNP tools Generates a summary of a pileup file. Includes
the average distances between SNPs

47

different sequencing approaches (paired vs. single end sequencing), and different assembly parameters

(kmer, expected coverage, and coverage cutoff parameters) on the same dataset. The different assemblies

obtained from running multiple iterations of the workflow were compared with each other by a robust

scoring algorithm that takes the number of contigs and length distribution of the contigs into account

to evaluate an assembly. The workflow is provided in the BCBU Galaxy server as the ”Velvet assembly

pipeline”. The workflow also discusses ways to evaluate the contig contiguity of the assembled datasets

against known transcript sequences using BLAST (Altschul et al., 1990) and related tools.

2.2.4. Annotation of predicted protein sequences workflow

An annotation workflow that focus on the functional annotation of translated cDNA sequences by

widely used tools such as BLAST2GO (Conesa et al., 2005) and InterProScan (Zdobnov and Apweiler,

2001) was developed. The pipeline predicts protein sequences from the input cDNA sequence file, and

assigns functional annotations such as Gene Ontology (Gene Ontology Consortium, 2001), KEGG (Ogata

et al., 1999) and PFAM (Finn et al., 2010) to the predicted protein sequences. The workflow relies

on finding homologous sequences in model organisms, on which the functional annotations is based.

The workflow is made available as the ”Annotation pipeline” workflow in the BCBU Galaxy server.

The various components in the workflow were used to perform the functional annotation of a de novo

assembled Eucalyptus transcriptome descibed in Chapter 3. The results from the annotation pipeline

can easily be imported into a third party application database, such as the Eucspresso system (Chapter

4) for the visualisation of results.

2.2.5. Expression profiling using Illumina mRNA-Seq short reads workflow

One of the main uses of mRNA-Seq data is transcriptional profiling of expressed gene products

across the genome. Steps involved in calculating transcript expression include mapping reads to a target

genome, inferring read coverage, and calculating the number of short read fragments that map to a

specific genomic position, albeit a known gene region or an unknown genomic region. The workflow

makes use of the TopHat aligner (Trapnell et al., 2009) to map short-reads to a target genome sequence,

48

and the CUFFLINKS (Trapnell et al., 2010) program used to calculate the normalised expression value of

the gene in fragments per kilobase of reads mapped per million mapped reads. The workflow describes the

gene expression calculation of a genome sequence where the only resource to define the gene boundaries

in the genome is a set of EST data. The EST dataset is aligned to the genome with the EST2GENOME

mode of the EXONERATE (Slater and Birney, 2005) package. After the genomic positions of the putative

gene models were identified, differentially expressed genes between two sets of tissues were identified with

the R-package DEGseq (Wang et al., 2010a).

2.3. Results and discussion

Several next-generation data analysis workflows were constructed and saved in the BCBU Galaxy

server as re-usable workflows, specifically with the aim to evaluate the quality of initial Illumina mRNA-Seq

input data, the parameters which influence the assembly of transcriptome datasets, annotation of pre-

dicted protein sequence datasets, and expression profiling of transcriptome making use of mRNA-Seq

short-reads. The sections describing each of the workflows consist of an overview or aim of each workflow,

a short discussion on the components of the workflow, and a description of the effect of the parameters

that can serve as input to the workflow on the results from the analysis pipeline.

2.3.1. Extending the Galaxy framework

The Galaxy framework serves as a container to host data analysis tools. The framework has the ability

to sequentially execute various analysis tools on specific input datasets, selected by the user. Each tool

contained in the framework is represented by a XML file, which specifies the input parameters that are

sent to the tool during programmatic execution. Jobs can be executed on a local server, or submitted to a

job handler server, such as the Sun grid engine (SGE, http://http://wikis.sun.com/display/GridEngine/Home)

that executes jobs on a cluster-based computing platform. The Galaxy server automatically keeps track

of the status of the submitted jobs, and the results are displayed in the server (the ”histories” pane) after

the job has been completed. The server also enables the user to construct workflows, or sequential steps

49

that need to be performed given an input data set. The following section describes the steps required to

add a very basic analysis tool to the Galaxy framework.

The results from paired-end sequencing on the Illumina platform, consist of two FASTQ quality files,

one for reads sequenced in the 5’ to 3’ (forward reads), and one for reads oriented in the 3’ to 5’ direction

(reverse reads). The tool, named “shuffleseq”, joins two FASTQ formatted files from an Illumina file

into one file, with the reads in the final file sorted in an alternate fashion of forward and reverse reads.

This “shuffled” FASTQ file is a required format for the Velvet assembler, and the shuffleseq executable

script forms part of the Velvet assembler distribution.

To extend the BCBU Galaxy server to contain the ”shuffleseq” script, an XML file needs to be

created that registers the tool in the server, and renders an interface to select the tool. The shuffleseq

XML file is presented in Figure 2.1, and consists of the following sections. Lines 3-7 specify the command

to be executed, and allows the definition of the names of the input parameters, as well as the required

format of the input datasets (lines 9-15). The name and format of the output file to store in the

database is defined in lines 16-19. Galaxy has a default interface to define automated software tests, and

encourages test-driven development, which will not be discussed here. These automated tests can then

be run during the development phase of the when adding a tool to ensure that pre-calculated results are

obtained with a with pre-defined set of input parameters. In this example, the input parameters for the

tests are defined in lines 21-24, and the expected output for a successful test in line 25. Documentation

regarding the functionality of the tool is provided from lines 29 to 46 of the XML file. This XML file

renders the interface shown in Figure 2.2.

The executable, in this case the Python script named “fastq_paired_end_shuffleseq.py”, is pre-

sented in Figure 2.1. Lines 13-16 of the file handle error reporting, and lines 21-38 contain error handling

code to ensure that the input and output files are readable and writeable. The execution of the PERL script

occurs on line 45, surrounded again by some error handling code if the execution of the script fails. The

crucial link between the XML file and the executable is defined in the <command> tag of the XML file, and

the input parameters or options in the Python script. In effect, the Galaxy execution engine passes the

50

Figure 2.1: An example of code developed to extend the Galaxy framework with the ”shuffleseq” tool. The .xml file (left) defines the interface
to the tool, and specifies the input and output format requirements. The Python script (.py) on the right pass the input and output parameters
from the xml file to the Perl script, located on the file system. This example illustrates the ease of extending the Galaxy framework. In just
over 100 lines of code, additional functionality was added to the framework.

51

Figure 2.2: The interface of the FASTQ shuffleseq tool described in the fastq_shuffleseq.xml file, as
rendered by Galaxy. The interface provides the user to select buttons to select the forward (left hand)
and reverse (right-hand) reads that will be ”shuffled” into a single file as output. A short description on
the function of the tool, and an example of input formats is also provided.

52

following parameters to the Python script during execution: python fastq_paired_end_shuffleseq.py

--input1=path/to/input1/file --input2=/path/to/input2/file --output=/path/to/output/file,

and expects the result file to be present in the output file location. The PERL script could have been

called directly by the XML file, but this example illustrates that any executable command can be wrapped

in the Galaxy framework and executed.

2.3.2. Quality assesment of Illumina short-reads

The quality control of experimental data forms an integral part of any analysis pipeline. A workflow

dedicated to calculating the average base quality, the number of usable bases and the total number of

reads from an Illumina mRNA-Seq lane was developed (Figure 2.3, which is available as the Illimina QC

workflow in the BCBU Galaxy server,). The typical yield in terms of bases from an Illumina GA IIx run

is reported by the company to be between 37 Gbp and 45 Gbp (January 2011, http://www.illumina.com),

and these ranges were observed in a recently produced dataset (Table 2.5).

The FASTQ file format stores the quality associated with every sequenced base of every read in the

FASTQ file. Reads produced with the Illumina platform tend to show a drop in the quality of bases

as the read length increases (Figure 2.4). In an attempt to filter erroneous sequences from dataset,

it is often required to remove or trim a subset of bases from the 3’ end of each read. In the case of

paired-end sequencing, the reverse reads also tend to have lower quality values associated with the bases

when compared to the forward reads (Table 2.5). Trimming the last few bases from the 3’ end of the

reads can improve the number of reads that aligns to a target sequences (read mapability), prevent the

occurrence of false positives during SNP identification, and prevent misassembled contigs. The effect of

read trimming will be further addressed in the sections regarding de novo assembly (Section 2.3.3) and

read mapping to a reference genome (Section 2.3.5 on page 73). A good guideline for trimming the reads

is to use an error rate of 1 in 100 bases during assembly and read mapping, which translates to a Phred

quality score cutoff of 20. Several tools already exists in the public Galaxy server to trim the end of

53

Figure 2.3: The Illumina read quality assesment pipeline. The first step after defining the input datasets
(two FASTQ formated files (A), one that consists of the forward reads (A i) of a paired end run, and
that consists of the reverse reads, A ii) is to convert the FASTQ values from the Illumina (1.3+) version
to the FASTQSANGER format (FASTQ Groomer, B). Quality statistics per base are then calculated (FASTQ
Summary Statistics, C), and a graphical summary of all the bases in the lanes produced (Boxplot,
presented in Figure 2.4, D ii). From the FASTQ summary statistics, the number of reads and the number
of bases present in each lane can be calculated (Summary of FASTQ summary statistics, Table 2.5, D i) .

54

Table 2.5: The theoretical and usable base (bases identified as A, G, C and T) yield for six Illumina GA
IIx 76 bp paired-end lanes. The theoretical yield was calculated as the total reads per lane times the
read length. On average, the forward reads yielded 97.53% of the theoretical bases to pass the internal
quality control performed by the sequencing center, while 96.83% of the reverse bases were useable. If
seven usable lanes are considered per flowcell, an estimated 42 Gbp would have been produced from
these lanes (please note that these lanes were not produced from the same flow cell).

Tissue Read length Total reads Theoretical
base yield

Useable base
yield

Useable Gbp

Young leaf
(a)

76 bp X 76
bp

38 675 726
(X 2)

2 939 355 176
(X 2)

5 714 978 949
(97.56% fwd,
96.87% rev)

5.71

Young leaf
(b)

76 bp X 76
bp

40 644 094
(X 2)

3 088 951 144
(X 2)

6 005 687 472
(97.56% fwd,
96.86% rev)

6.01

Young leaf
(c)

76 bp X 76
bp

40 603 294
(X 2)

3 085 850 344
(X 2)

5 999 955 671
(97.57% fwd,
96.86% rev)

6.00

Xylem (a) 76 bp X 76
bp

40 626 119
(X 2)

3 087 585 044
(X 2)

6 001 212 765
(97.54% fwd,
96.83% rev)

6.00

Xylem (b) 76 bp X 76
bp

41 212 187
(X 2)

3 132 126 212
(X 2)

6 084 735 293
(97.50% fwd,
96.76% rev)

6.00

Xylem (c) 76 bp X 76
bp

38 363 392
(X 2)

2 915 617 792
(X 2)

5 664 669 869
(97.48% fwd,
96.81% rev)

5.66

55

the reads based on either read length (the FASTQ Trimmer by column tool in Galaxy), or base quality

(FASTQ Quality Trimmer by sliding window) .

2.3.3. De novo transcriptome assembly using Illumina mRNA-Seq data

One of the main aims of this study was to perform a de novo assembly of a gene catalog from

mRNA-Seq data generated from a range of primary and secondary Eucalyptus tissues (Chapter 3). A

de novo assembly pipeline to achieve this goal typically consists of firstly formatting the input data to

satisfy the requirements of the assembler, secondly perform the assembly, and finally evaluate the assem-

bly (Figure 2.5, which is available as the ”Velvet assembly” pipeline in the BCBU server). Velvet

(Zerbino and Birney, 2008), the assembler used in this workflow, requires paired-end reads to be in a

format where the first read of a fragment is directly followed by the second read of the fragment, as

opposed to some other assemblers which require the reads from the same fragment to be in the same

order, but in two different files. The “shuffleseq” tool, a script provided with the Velvet assembler

and used to create the single file format, was wrapped in the BCBU Galaxy environment to allow for

workflow integration (Section 2.3.1).

Input parameters of note that are specified for use during the graph-creation step of the Velvet

assembly include the choice of kmer (Section 1.4), and the flag that specifies whether the input datasets

are in paired-end format. During the graph traversal step, the expected coverage parameter and a

coverage cutoff parameter is specified. The coverage cutoff parameter is used by the assembler to restrict

highly connected nodes in the graph (repeat regions) from dominating the assembly. Changing each

of these parameters results in differences in the properties of the final set of contigs produced from an

assembly (see Section 1.4 for an overview of graph based de novo assemblers).

Currently no standardised protocol exists for steps needed to evaluate the success of a transcriptome

assembly. Unlike the assembly of a genome sequence, where the aim is to assemble a single contig from all

the reads provide, the aim of a transcriptome assembly can be viewed as the assembly of multiple, short

fragments that represent mRNA molecules. The coverage of genome derived data is also distributed more

56

Figure 2.4: An example of FASTQ quality scores obtained from a 76 bp Illumina GAII paired-end run. The quality of each base is plotted on
the y-axis, with the position of the base on the sequence on the x-axis. This lane contained around 38 million reads (2.8 billion bases) in the
forward (a), and 38 million reads in the reverse (b) direction. The median (black line) and the standard error bars (red bars) for all the reads are
shown in both directions. A quality drop is observable for bases closer to the 3’ end (sharp increase in base-quality variation from base 56-58)
and removing these bases with lower qualities might influence read mapping and assembling strategies.

57

Figure 2.5: A Galaxy workflow which performs a de novo assembly with the Velvet assembler. The
default input data (a) for this workflow is the forward and reverse FASTQ (fastqsanger) formatted
mRNA-Seq reads. The reads are then reformatted with a ”shuffleseq” script (b) to the correct input
format for paired-end reads as required by Velvet, and the assembly is performed by Velvet (c). A script
to calculate the N50, longest, mean and average sequence lengths is then run on the assembled fasta file.

evenly across the genome, with exceptions of the repeat regions, while the transcriptome data has varied

coverage across a single transcript and between multiple transcripts. The variation in transcript coverage

fluctuates due to the number of transcripts present in then sample mRNA pool, and the variation across

a transcript has been postulated to be due to the folding patterns of the mRNA trancripts in the cell

(Mortazavi et al., 2008). There are several descriptive statistics available to assist in selecting the best

possible assembly, namely the number of bases in the contigs (sum), the number of contigs (N), the

contig length spread (minimum and maximum contig length, 1st and 3rd quartile length, mean and

median length), and the N50 value. The N50 value is calculated as the contig length where 50% of

the bases in the assembly are present in contigs of the reported length, or longer. A scoring function

to empirically select the best assembly has been discussed on the Velvet users group mailing list2, and

defined as: (N50all∗Nlong)
Sumall+log(Sumlong)

, where the long values are calculated for contigs longer than 1 000 bp.

A higher score indicates a higher ratio between the bases located in the longer reads in the dataset and

the bases assigned to short contigs. This scoring metric was also discussed on the community portal

SeqAnswers 3, and later implemented in an optimisation script for Velvet as a third party script, and

although this scoring function has been defined for genome assemblies, it provides a good guideline when

applied to transcriptome assemblies. In the sections discussed below, the score of the assemblies were

calculated with the scoring function to give an indication of the function’s performance on multiple

assembled datasets.
2 http://listserver.ebi.ac.uk/mailman/listinfo/velvet-users
3 http://seqanswers.com

58

Table 2.6: Velvet assembly statistics for a single lane of paired 76 bp sequences from Eucalytpus xylem
tissue reads trimmed to different lengths (50 - 76 bp). The same assembly parameters (kmer 41) were
used to illustrate the effect of sequence length on the assembly. Assemblies with the longest reads as
input (65, 70 and 76 bp) generated the largest (N) assemblies, and the longest single contigs (max) were
assembled with the 65 bp reads. The scoring function also indicates that the longer input reads generate
better assemblies, except when the last 6 bp which were error prone are included. The 1 000 bp contig
values (long contigs) used in the scoring function are presented in the Appendix I table A.1.

Read
length
(bp)

Number
of

contigs
(N)

Sum of
bases

Min
(bp)

1st
Quartile

(bp)

Median
(bp)

3rd
Quartile

(bp)

Max
(bp)

Mean
(bp)

N50
(bp)

Score

50 73 762 21 723 533 81 130 183 342 6 772 294.51 411 6.63

55 104 471 32 014 867 81 122 171 349 8 078 306.45 486 6.95

60 134 970 39 632 149 81 111 163 323 8 241 293.64 467 7.05

65 169 960 46 302 130 81 102 156 293 11 008 272.43 414 7.06

70 207 383 52 321 544 81 95 151 269 8 573 252.29 362 7.03

76 255 609 59 076 999 81 92 148 247 8 985 231.12 308 6.95

Low quality bases are generally present in the 3’ end of Illumina reads (see Figure 2.4), and removing

or trimming these reads tend to influence the subsequent assemblies. Assemblers using the de Bruijn

graph approach, where kmers are used to find joins between reads and the high coverage paths between

kmer nodes in the graph are used to assemble the contigs, have a higher tolerance towards low frequency

erroneous bases in the input dataset (see Section 1.4). There also exists uncertainty about the optimal

read length required to perform de novo transcriptome assemblies, and since longer reads require more

reagents that influences the cost of sequencing this is an important consideration in project planning.

Illumina mRNA-Seq paired-end reads from a deeply sequenced Eucalyptus xylem dataset were trimmed

to a length ranging from 50 bp to 76 bp. The trimmed datasets were then assembled with the Velvet

assembler (Velvet assembly workflow) with a defined kmer of 41 to determine the length of the input

dataset reads that produced the best assembly. Table 2.6 indicates that longer reads produce longer

individual contigs, but there is a decrease in overall assembly quality when the last 6 bp (low quality

bases) of the 76 bp reads are not trimmed from the input dataset. The 55 bp assembly showed the largest

N50 and the longest mean and median contigs, but if the additional ≈7 Mbp of sequence data gained

59

Table 2.7: Statistics for Velvet assembled contigs with a minimum length of 200 bp for a single lane
of paired 76 bp sequences from Eucalytpus xylem tissue reads trimmed to different lengths. The values
in parentheses indicate the same statistics obtained with the same dataset, but where the datasets were
treated as single and not paired-end reads. The 1 000 bp contig values (long contig) used in the scoring
function for the single end assemblies are presented in the Appendix A Table A.1.

Read
length
(bp)

Number
of

contigs
(N)

Sum of bases Min
(bp)

1st
Quar-
tile
(bp)

Median
(bp)

3rd
Quar-
tile
(bp)

Max
(bp)

Mean
(bp)

N50
(bp)

Score

50 33 475
(31 519)

16 411 541
(14 581 289)

200 268
(245)

365
(328)

570
(527)

6 772
(5 571)

490.26
(462.62)

562
(535)

6.68
(6.63)

55 42 934
(43 283)

23 989 757
(22 004 217)

200 278
(253)

403
(248)

672
(577)

8 078
(8 078)

558.76
(508.38)

693
(615)

7.03
(6.95)

60 49 152
(50 771)

28 489 587
(26 957 786)

200 275.5
(258)

407
(359)

689
(603)

8 241
(8 241)

579.62
(530.97)

733
(653)

7.19
(7.08)

65 55 059
(56 990)

31 759 222
(30 633 000)

200 272
(260)

398
(366)

676
(610)

11 049
(11 049)

576.82
(537.52)

730
(660)

7.23
(7.14)

70 60 039
(61 683)

34 307 077
(33 463 851)

200 270
(262)

394
(371)

662
(615)

11 008
(10 757)

571.41
(542.51)

718
(664)

7.25
(7.18)

76 64 713
(65 989)

36 602 687
(36 070 026)

200 268
(264)

389
(375)

652
(621)

9 925
(10 873)

565.62
(546.61)

705
(669)

7.26
(7.22)

by the 60 bp, or the additional ≈14 Mbp of data when the 65 bp input dataset is considered, those

assemblies can certainly be considered when evaluating an assembly. The scoring function calculated

on these datasets provide a ranking system for the assemblies, but ultimately the choice of read length

depends on the discretion of the researcher. Assembled contigs of a length between 81 bp and 200 bp most

likely consist of small fragments of larger contigs, or very rare low coverage transcripts, and an additional

constraint can be applied to the assembled dataset that contigs need to have a least a length of 200 bp to

be considered for downstream analysis and annotation (Table 2.7). Because the Velvet assembler was

developed for the de novo assembly of genomes, not transcriptomes, alternative spliceforms will be lost

during assembly since the assembler returns the longest graph of the most coverage in the final assembly.

The assembly of the various trimmed datasets were repeated with the two lanes of the paired datasets

provided separately to the assembler, effectively re-fromatting the input data as two single-end datasets

as oppose to a single paired-end dataset (Table 2.7, results in parentheses). Overall the single-end reads

60

did not perform worse than the paired-end assemblies, and even produced the same maximum length

contigs in some cases. There is, however, a sampling bias in the data used for this single-end assembly,

since the single-ends are not independently sampled fragments from the sequenced mRNA-Seq pool,

but in fact represent sampled paired sequences. This simulated assembly of single end data thus does

not represent the true effect of sequencing single-end vs. paired-end libraries, but rather reflects the

difference in the assembler algorithm and the improvement achieved when enabling the paired-end flags.

These values represent the practical best case scenario when single-end reads are used for assembly, and

real independently sampled single-end assemblies will thus perform worse than reported here.

The graph traversing step of Velvet has multiple parameters that will ultimately affect the set of

contigs assembled. One of the most notable parameters is the effect of kmer size (kmer of 41 - 63 bp)

on the different assemblies, as presented in Table 2.8. The choice of kmer for assembly will vary with a

change in length of the input reads, as well as the inherent sequence properties of the tissue or organism

sampled. The scoring function defined above relates well to the a combination of the N50 value and the

descriptive statistics of the assembly, and plotting the different assembly statistics as a fraction of the

highest value of each parameter show that the scoring function can be successfully used as a guideline

to select the best assembly for further analysis (Figure 2.6). The figure makes use of a normalised value

for some descriptive statistics (N50, Sum and Score in Figure 2.6A) achieved during a specific kmer

assembly according to the maximum value optained (y-axis) across all kmers (x-axis), and can be used

to graphically select the set of kmers that produce an assembly with a high score. The kmer of 51 (k51)

produced an assembly containing 69 485 contigs, ranging from 200 bp to 8 451 bp in lenght. The scoring

algorithm assigned a score of 7.13 to the k51 assembly, but the k49, k53 and k55 assemblies also achieved

a high score. The best choice of a kmer to use in further assemblies depends on whether full length

transcripts were assembled during any of these kmer assemblies, but the scoring algorithm does provide

some measure of comparison between the assemblies.

The effect of two additional parameters during the graph traversal step, the expected coverage and

coverage cutoff value, on the results from multiple assemblies is presented in Figure 2.7. The expected

61

Table 2.8: Velvet assembly statistics for a single lane of paired 76 bp sequences from Eucalytpus xylem
tissue. The same input parameters were used, except for the kmer-value to obtain these assemblies.
Note a general trend that fewer contigs (N) and fewer total bases (Sum) are present in higher kmer
assemblies, indicating that more contigs might be joined with longer kmers. The descriptive statistics in
terms of median, mean and N50 values peak around the mid kmer (k49-k55) sizes. The assembly score
was calculated to critically evaluate overall score of an assembly. All contigs longer than 200 bp were
included in the analysis.

KmerNumber
of

contigs
(N)

Sum of
bases

Min
(bp)

1st
Quartile

(bp)

Median
(bp)

3rd
Quartile

(bp)

Max
(bp)

Mean
(bp)

N50
(bp)

Score

k41 84 428 38 627 991 200 249 334 523 8 985 457.53 518
7.00

k43 81 527 38 434 796 200 250 339 538 8 862 471.44 543
7.05

k45 78 748 37 908 219 200 250 342 548 8 451 481.39 560
7.08

k47 75 732 37 110 906 200 250 345 557 8 451 490.03 576
7.10

k49 72 320 36 115 097 200 249 349 573 8 451 499.38 598
7.12

k51 69 485 35 124 810 200 250 351 581 8 451 505.50 613
7.13

k53 66 029 33 652 392 200 249 353 587 8 065 509.66 621
7.12

k55 62 391 31 953 361 200 248 351 593 8 582 512.15 632
7.12

k57 58 921 30 071 960 200 247 350 593 8 277 510.38 631
7.09

k59 54 966 27 877 831 200 246 349 591 9 622 507.18 626
7.04

k61 51 057 25 518 959 200 245 346 585 7 152 499.81 613
6.98

k63 46 684 22 658 706 200 244 338 563 6 360 485.36 585
6.89

62

Figure 2.6: The assembly scoring function is a robust measure to select the kmer of the best Velvet
assembly. The y-axis represents the value of a certain descriptive statistic obtained for a kmer as a
fraction of the maximum value of that statistic (y-axis) across all kmers (x-axis). The scoring function
is not sensitive to changes in total base count and number of contigs (a), and correlates well with the
N50 and mean values (b) as well as the other descriptive statistics (c). The graphs were normalised so
that the values correspond to a fraction of the maximum value achieved for each parameter across all
kmer assemblies shown.

63

coverage parameter performs two key functions during the assembly. First, it is required to activate the

paired-end read resolution function of Velvet (as stated in the Velvet manual), which programatically

makes use of the insert size between pairs to join contigs; and secondly it assists in finding the optimal

path through the nodes in the graph of kmers by searching for nodes in the graph that correspond to the

expected coverage value. This assistance provides the assembler with a naive approach to filter the nodes

in the graph based on the node coverage in order to determine optimal contigs (Zerbino and Birney, 2008).

This approach is especially useful when a genome sequence is assembled, since the sequence coverage

from a lane of genomic short-read data should have near uniform coverage, bar the repeat regions of the

genome that should have higher coverage. The inherent properties of mRNA-Seq data, where coverage

varies between transcripts based on the amount of transcript present in the sampled mRNA pool and

across a single transcript based on the mRNA molecule’s folding properties, the occurrence of alternative

splicing, and the known 3’ bias exhibited by mRNA-Seq technologies render this parameter less useful

during transcriptome assemblies.

Figure 2.7A (left), indicates that for a transcriptome assembly, high expected coverage values produce

the best possible assembly when evaluating the results based on the scoring function. The results were

obtained by performing various assemblies with a constant set of parameters (insert length between

paired reads = 150 bp, the coverage cutoff = 10X, and the kmer set to 51), but increasing the expected

coverage value from 0 to 1 000 with each subsequent assembly. The graph shows that a higher expected

coverage value can produce assemblies with longer mean length and N50 values (an expected coverage

of 0 produced an assembly with an average N50 length of 1 018 bp, only 55% of the N50 value achieved

by the assembly where the expected coverage was set to 1 000 (N50 = 1 854 bp)). These estimations of

the expected coverage value are needed to assemble highly expressed transcripts to a complete length,

and will remove lowly expressed transcripts from the assembly.

The coverage cutoff value effectively screens the contigs after graph generation, removing contigs

that do not meet the minimum coverage cutoff value as specified. This parameter removes short, low

coverage contigs from the assembly, and in general improves the assembly when set to a reasonable value

64

between 4 and 10 (Figure 2.7b). Setting the value too high will remove highly covered and good quality

contigs, while a too low value will include short, low covered contigs which most likely originated from

nucleotide errors in the sequence, or contain low covered introns that were captured when unprocessed

mRNA molecules were selected before sequencing.

Varying the parameters used during an assembly has a measurable effect on the total number of

contigs, the average contig length and the number of bases present in a transcript assembly. The quality

of a transcriptome assembly is, however, not based on the global properties of the assembly, but on

the presence of near complete or completely assembled cDNA transcripts in the assembly. By using

known, well studied, full-length cDNA sets of genes the corresponding transcripts in the assembly can

be evaluated. Figures 2.8, 2.9 and 2.10 presents six Eucalyptus grandis cellulose synthase (CesA) genes

(Ranik and Myburg, 2006), and the results of performing a BLAST (e−100) of the CesA genes against

assemblies from kmer 41 (Figure 2.8), kmer 51 (Figure 2.9) and kmer 61 (Figure 2.10) presented in

Table 2.8. The CesA sequences (DQ014510.1, DQ014509.1, DQ014508.1, DQ014507.1, DQ014506.1 and

DQ014505.1) are connected with colored banners of high similarity to regions present in contigs in the

assembly dataset. Each CesA sequence can have similarity regions on multiple contigs present in the

assembly. A perfect assembly will have a one-to-one ratio of CesA sequence to assembled contig with

both sequences showing similarity along the entire length of the transcript. A subset of these CesA genes

have been shown to have high expression in either primary or secondary cell formation tissues (Ranik

and Myburg, 2006), and since these assemblies were performed with a single lane of xylem mRNA-Seq

data, it can be expected that the lower abundant transcripts would not fully assemble. In order to select

the best assembly parameters, a similar analysis should be repeated with different gene families that

have a range of expression across multiple tissues.

2.3.4. Annotating assembled transcript sequences

Several good EST annotation pipelines exists in the public domain. These pipelines consists mainly of

a set of scripts that calls a subset of tools sequentially to annotate a set of protein or DNA sequences. Few

65

Figure 2.7: The effect of the expected coverage and the coverage cutoff parameters on a Velvet assembly.
Due to the large dynamic range in transcript expression, high expected coverage values (A, left) produce
the highest scoring assemblies. For the coverage cutoff parameter, it was found that the best Velvet
assembly is achieved when the coverage cutoff parameter (B, right) ranges between 6 and 10. This will
effectively remove low coverage contigs from the assembly while not removing the higher covered, longer
contigs.

66

Figure 2.8: Alignment of the six full length CesA cDNA sequences against an assembly with a kmer
size of 41 (k41). The CesA cDNA sequences (identifier starts with ”DQ”) show similarities to various
contig sequences (identifiers ”NODE”) in the assembly. Blue ribbons indicate regions where the bit
score of the alignment is < 25% of the maximum bit score in the dataset. Warmer colors (25% >
green <= 50%, 50% > orange <= 75% and red > 75%) indicate higher bit scores. The two CesA cDNA
sequences, DQ014506_a and DQ014505_1 are presented by near full length contigs NODE_2152422 and
NODE_1495600. The cDNA sequence DQ014507_1 is represented by two large contigs (NODE_2230537
and NODE 1004772), while the remaining cDNA sequences are represented by various small contigs.

67

Figure 2.9: Alignment of the six full length CesA cDNA sequences against an assembly with a kmer size
of 51 (k51). The CesA cDNA sequences (identifier starts with ”DQ”) show similarities (best BLAST hit)
to various contig sequences (identifiers ”NODE”) in the assembly. Blue ribbons indicate regions where
the bit score of the alignment is < 25% of the maximum bit score in the dataset. Warmer colors (25%
> green <= 50%, 50% > orange <= 75% and red > 75%) indicate higher bit scores. The alignment
indicate two copies of the cDNA sequence DQ014501_1 in the assembly (NODE_27280 and NODE8489).
A partially assembled contig (NODE_155100) that represent DQ014506_1 can also be identified. The
remaining CesA’s are represented by various shorter contigs in the dataset, indicating that there are still
fragmented transcripts present in the assembly. The graph was generated with the Circoletto tool from
the BLAST result file.

68

Figure 2.10: Alignment of the six full length CesA cDNA sequences against an assembly with a kmer size
of 61 (k61). The CesA cDNA sequences (identifier starts with ”DQ”) show similarities (best BLAST hit)
to various contig sequences (identifiers ”NODE”) in the assembly. Blue ribbons indicate regions where
the bit score of the alignment is < 25% of the maximum bit score in the dataset. Warmer colors (25%
> green <= 50%, 50% > orange <= 75% and red > 75%) indicate higher bit scores. The alignment
represents the least fragmented assembly of the CesA cDNA sequences when compared to Figures 2.8 and
2.10. A duplicate assembled contig can be identified in the assembled dataset for sequence DQ014508_1.
Most of the remaining CesA cDNA sequences are represented by at least one or two large contigs in
the assembly, although not all of them aligning accross the whole length of the cDNA. The graph was
generated with the Circoletto tool from the BLAST result file.

69

Figure 2.11: The automated annotation pipeline developed from tools available in Galaxy. The input
for the pipeline (A) is a FASTA file containing cDNA sequence data. Protein sequence predictions are
performed by GenScan (C and the results converted to FASTA format, D) and the resulting peptides
submitted to the IPRSCAN pipeline. (F, G, and H) The input file is simultaneously submitted to BLAST
(B and E) to perform homology searches (BLASTX), and the results of the IPRSCAN and BLAST searches
used as input to the BLAST2GO pipeline (I) for further analysis.

pipelines allow the user to customise the different components used by the annotation pipeline specificaly

for the organim that is to be annotated. Two widely used tools, the InterProScan set of scripts and

databases (Zdobnov and Apweiler, 2001), and the BLAST2GO annotation pipeline Conesa et al. (2005)

were incorporated in the BCBU Galaxy server. The InterProScan annotation scripts and associated

databases are often used to unknown protein sequences with protein feature, protein family and detected

motifs present on the protein sequence. The BLAST2GO pipeline assigns functional annotations to the

submitted cDNA or protein dataset, which consists of Gene Ontology, KEGG and InterPro accessions.

An automated workflow (Figure 2.11, available as the ”Annotation pipeline” workflow in the BCBU

Galaxy server) was developed to use both these annotation pipelines to annotate a set of cDNA sequences

from the transcriptome assembly pipeline described above.

The automated assembly workflow takes cDNA sequences as input (ESTs or contigs assembled from

70

mRNA-Seq data), performs a translation of the coding sequence into a putative protein and CDS se-

quence, and uses the predicted protein sequence to find protein family and protein feature annotations

with IPRSCAN, the interface to the EBI’s InterProScan tool. Results from IPRSCAN analysis are then

converted to a format acceptable for the BLAST2GO annotation tool. The protein sequences are also

used for a homology-based search against an external database (for instance, the NCBI’s database of

non redundant protein sequences), and the results parsed for use in the BLAST2GO annotation pipeline.

BLAST2GO analysis is performed with the homology search (BLAST) and the IPRSCAN results as input,

and an annotation (.annot) file is constructed. This .annot file can then be used as direct input into a

BLAST2GO instance for the perusal of the annotations or imported into an external database.

The input sequences to the pipeline can consist of portions of genomic cDNA, full-length CDS or

partial CDS sequences. The gene finder application, GenScan (Burge and Karlin, 1997) was used to

predict a protein and CDS sequence from the input sequence. This is a very crude approach to cDNA

translation and peptide sequence prediction, since partially assembled sequences will not have all the

sequence signals present on the sequence required by GenScan to perform a reliable prediction of the

exact intron and exon structure of the input sequence. This particular tool can, however, be replaced

by any other gene prediction or cDNA translation tool in the workflow, as long as a protein sequence is

the output from the alternative tool. The pipeline was used to perform a basic annotation of the 18 894

full-length, or partially assembled sequences of a Eucalyptus grandis x Eucalyptus urophylla transcriptome

generated from mRNA-Seq data (Chapter 3).

The InterProScan analysis tool scans a given protein sequence against a range of protein signatures

stored in the InterPro member databases. These signatures, present in the PROSITE, PRINTS, Pfam,

ProDOM and SMART databases can then be used to provide functional annotations of the input protein

sequence based on motifs present in the sequence. The InterProScan tool is a scalable and extensible

system for protein feature annotation, and searches databases installed on a local server of the men-

tioned sources in order to find signature sequences. Results from the InterProScan analysis tool can

be converted into XML, HTML or a TXT based file, which can be used to create a summary of the features

71

Figure 2.12: The 25 most prevalent protein family domains annotated in an assembled transcriptome
dataset, expressed as a fraction of the total number of PFam annotations. The Leucine Rich Repeat
(PF:PF00560) region was the annotation assigned in 13% of the annotations, and the dataset also
represents annotations of kinases (PF00069 and PF07714) and the Myb transcription factor binding
domains (PF00249). The figure was produced from the PFAM annotations assigned to the 18 894
assembled contigs by the InterProScan tool.

found in the dataset on a global scale (Figure 2.12), or to view the signatures and features annotated on

a specific sequence (Figure 2.13).

Various functional annotation projects use the Gene Ontology system to group sequences into re-

lated functional groups. The BLAST2GO annotation tool offers a wide range of statistical validations in

assigning a functional classification to a protein sequence. The results from the annotation workflow

produce an annotation file, generated by the command line interface (b2gPipe) of the BLAST2GO anno-

tation tool. The pipeline expects BLAST XML results formatted in a specific manner, and a directory

containing InterProScan XML results in order to complete the annotation. The BLASTXML2BLAST2GO

and IPRSCANXML2BLAST2GO Galaxy extensions perform the simple conversions between the formats, and

also execute the b2gPipe pipeline. BLAST2GO relies on a local installation of public Gene Ontology and

Gene Ontology Accession databases to assign the Gene Ontology annotations to the sequences in the

BLAST XML file. The annotation file produced can then be imported in a stand-alone version of the

72

Figure 2.13: Protein features annotated by InterProScan present on the cellulose synthase 6 (CesA6)
protein sequence assembled from reads derived from mRNA-Seq sequencing. The sequence represents
the assembled contig with the highest homology to the CesA6 (DQ014510.1) mRNA sequence, and
was annotated by the InterProScan annotation pipeline. The annotation indicates the presence of a
transcription factor binding motif (TGACC-motif, black box), a X-Box transcription factor-related motif
(black box) on the 5’ end of the sequence identified by HMMPanther. The same 5’ region has also been
identified as having a Ring/U-box superfamily signature (yellow box). The long green box represents
the presence of the cellulose synthase protein family signature identified by HMMPfam. The image was
generated from the RAW results by the InterProImageGenerator tool in Galaxy.

BLAST2GO tool, and can be used to summarise the overall ontology structure of the dataset, as well as

inspect the annotations made to a single protein sequence.

2.3.5. Using mRNA-Seq data to calculate transcript expressions values

Many research groups have calculated gene transcript abundance levels with the aid of mRNA-Seq

data (see Section 1.3 for a review of RPKM and FPKM calculations and other high-throughput se-

quencing applications in genetics and genomics). Mortazavi et al. (2008) showed that the differences in

transcript abundance can span five orders of magnitude, and that the mRNA-seq methodology used was

shown to be sensitive enough to detect even single copies of a transcript in a cell . A recent methods

paper used mRNA-Seq data to detect novel transcripts and alternative spliceforms of transcripts, and

was made available as the CUFFLINKS package (Trapnell et al., 2010). CUFFLINKS performs a de novo

prediction of splice junctions, and generates a set of detected gene models with their corresponding

expression values (FPKM). The following section describes the workflow developed to detect transcript

expression values for an organism where no annotated gene information is available (Figure 2.14, available

as the ”FPKM calculation” workflow in the BCBU server). The workflow starts of by mapping an input

73

Figure 2.14: Calculating gene expression (FPKM) values for unigene aligned regions from a genome with
no gene models available. The input dataset for the workflow is a reference genome (B), the forward and
reverse reads of an mRNA-Seq lane (C and D), and a FASTA file containing a set of ESTs (A). TopHat
aligns the mRNA-Seq reads to the genome (F) and also against the splice junction regions using the
Bowtie aligner. The alignment file (SAM format) is then used in calculating some short read mapping
statistics (I), and as input for CUFFLINKS (J). The unigenes input dataset is aligned against the genome
with EXONERATE (E), and the GFF output of EXONERATE is converted to the required GTF format (H)
for CUFFLINKS. The GTF and SAM files are used to calculate the FPKM values (J).

set of mRNA-Seq reads to a target genome with TopHat (Trapnell et al., 2009), as well as aligning a set

of cDNA sequences to the genome with the EXONERATE aligner (Slater and Birney, 2005). The workflow

further generates a gene model file from the cDNA alignment, and calculates the FPKM values for each

of the transcripts present in the alignment.

The normalised transcript expression values (FPKM) are calculated by mapping reads to a target

genome, constructing splice sites where reads span intron junctions, and then calculating the number

of fragments that map per unit transcript. The TopHat mapping program (Trapnell et al., 2009) was

designed to determine the splice junction alignment when mapping to genome sequences. A single lane

of 76 bp Illumina mRNA-Seq data was trimmed to shorter lengths and mapped to the Eucalyptus grandis

draft genome sequence. Since longer reads require more reagents during sequencing, a key question to

address is how a difference in read length influences the read mapability. Figure 2.15 indicates that there

is an increase in the number of paired reads that map uniquely to a genome when the read length is

increased from 40 bp to 50 bp, but beyond 50 bp there is not a marked difference in the number of paired

74

Figure 2.15: A breakdown of the number of reads which map uniquely, and non-uniquely as pairs or
single reads to a target genome for different read lengths. No increase in read specificity can be detected
when paired reads are longer than 50 bp in terms of unique paired mapping to the genome. Up to 97%
(50-65 bp) of the reads were mappable to the genome, but this includes reads that map to regions outside
gene models and within repeat regions. There is a significant increase in the number of reads that did
not map to the genome when the read length was 70 bp.

reads that map to the genome. These results indicate that a paired read or fragment of 50 bp has a high

enough specificity in the genome to map uniquely, and longer reads are not necessarily more specific.

Reads longer than 70 bp shows a decrease in mappability, due to the stringency associated with the

number of mismatches allowed when aligning a read to the target sequence. These mismatches have a

higher probability to occur in longer reads, mostly due to the effect of sequencing errors in longer reads,

but also due to SNPs present in a sequenced sample.

CUFFLINKS makes use of the genomic coordinates of genes or transcripts to calculate the FPKM

expression value. The coordinates file needs to be supplied in the GTF (a condensed GFF3 file format)

format to CUFFLINKS. The genome coordinates for a genome where no annotation, i.e. no GFF3 file

exists, can be determined by performing a gapped alignment of cDNA sequences to the genome with

EXONERATE. Output from EXONERATE needs to be reformatted to the GFF3 format and converted to the

75

GTF format before serving as input to CUFFLINKS. CUFFLINKS can calculate the FPKM values for the

annotated genes present in the GTF file, or if no reference gene models are provided, it will identify new

expressed transcripts.

Lists of genes and their expression values can serve as input to one of several statistical packages to

determine groups of genes that are differentially expressed between experiments. The R package DEGseq

(Wang et al., 2010a) was used to determine a list of genes differentially expressed between immature

xylem and young leaf tissue of a Eucalyptus grandis hybrid tree (Chapter 3). Figure 2.16 present the

results from the DEGseq package used to determine differential expression. The figure presents the MA

plot (where M = log2tissue1 − log2tissue2, A = 1/2(log2tissue1 + log2tissue2)) of differential expressed

genes identified with a 2X fold change method to detect differential expression. The Venn diagrams

below the MA plot shows the number of genes detected to be differentially expressed in immature xylem

and in young leaf tissue, and the set of genes not being differentially expressed.

2.4. Conclusion

The management and data analysis of large DNA sequence datasets produced with high throughput

biological experiments require sound data management principles, dedicated and sometimes specialised

computational hardware, and a variety of software tools. The Galaxy framework was identified as one

of many potential data management and automated data analysis workflow systems that can be used

and adapted to analyse mRNA-Seq datasets. The framework can easily be extended to include new

analysis tools, which can then be incorporated into complex workflows, which have the ability to make

high throughput data analysis tools available to research groups. The framework effectively reduces the

steep learning curve needed to master the command line interface of an analysis tool, by providing a

web-based form to set the parameters used during the execution of the analysis program.

The quality evaluation of uHTS data is one of the first analysis steps when working with theses

datasets. The current Illumina pipeline (version 3.6) produced quality scores associated with each base

of sequence in an format that differs from the standard Phred based format, which needs to be converted

76

Figure 2.16: Genes identified as differentially expressed in immature xylem and young leaf tissues of
a Eucalyptus grandis hybrid tree. The top figure (A) represent genes identified by the DEGseq tool
as differentially expressed genes based on the MA (where where M = log2tissue1 − log2tissue2, A =
1/2(log2tissue1 + log2tissue2)) using a 2X fold change method. The Venn diagrams representthe same
set of genes identified as being differentially expressed in immature xylem (brown) and young leaf tissue
(green), and the genes that are not detected as being deferentially expressed (Not DE, overlapping area).

77

to the standard Phred format. After conversion, a per base quality graph can be calculated for every

base at every position of the read, and bases removed from the 3’ ends of the reads. Depending on the

amount of data available, it is recommended that a Phred quality value of 20 (base error rate of 1 in

100) is used as a guideline to trim the reads. Erroneous bases at the 3’ ends of the reads have the ability

to prohibit the alignment of a read to a target sequence as it increases the number of mismatches that

will occur between a target sequence and the read, and also with graph-based assemblers it can create

low coverage paths between the nodes of the graph. A default pipeline for the quality evaluation of short

read Illumina data is available as the ”Illumina QC” workflow in the BCBU Galaxy server installed at

the University of Pretoria.

The assembly of a set of representative cDNA sequences from a pool of mRNA reads is still a

challenging endeavor. A workflow which makes uses of the Velvet assembler to assemble contigs was

developed to assist in performing multiple assemblies and keep track of the results. The workflow

re-formats the input datasets to the format required for Velvet, performs the assembly of the input

datasets, and produces a basic statistics file summarising the assembly. De Bruijn assemblers have a

very high memory footprint, and hardware with the required RAM is required to succesfully complete

the assembly. A dataset containing 35 million short reads of (35-50 bp in length) typically requires

up to 120 GB of RAM, depending on the size of kmer used during assembly. A recent thread on the

SeqAnswers forums4 stated that the following formula can be used to calculate the amount of RAM

needed for a genome assembly: RAM = −109635 + 18977 ∗ ReadLength + 86326 ∗ GenomeSize +

233353 ∗ NumberOfReads − 51092 ∗ kmer. No such formula exists to calculate the amount of RAM

needed for a transcriptome assembly, mainly due to the uncertainties of transcriptome size, and number

of alternative isoforms that can be present in a sample. For a typical Illumina dataset consisting of reads

76 bp long, a kmer value between 51 and 55 were found to produce the best assembly using a scoring

function that takes into account the number of bases as well as the number and length of contigs present

in an assembly. The choice of kmer, expected coverage and coverage cutoff depends greatly on the size

and characteristics of the biological sample, as well as the amount and quality of sequence data used for
4 http://seqanswers.com/forums/showthread.php?t=2101

78

the assembly, and therefore no conclusion can be reached in terms of the best parameters to use. One

important aspect when evaluating the contiguity of the assembled transcripts is the comparison against

known, full-length cDNA sequences in order to identify missassembled contigs and critically evaluate an

assembly.

The availability of transcriptome specific assembly software, such as trans-ABySS (Robertson et al.,

2010), OASES (Zerbino et al., unpublished) and the recently released Trinity (Grabherr et al., 2011)

software packages will in future make de novo assemblies of full-length transcripts a standard bioinfor-

matic operation. The Velvet-based assembler approach described here does not deal with the assembly

of alternative splice forms, and may assemble some partial transcripts, but the analysis described did

result in the assembly of near full-length, contiguous biological molecules, as described in Chapter 3.

Functional annotation of a set of assembled transcripts occurs mainly through homology-based

searches to identify sequences similar to a newly sequenced organism. Both the InterProScan and

BLAST2GO pipelines makes use of homology-based searches and functional protein domain signatures

to assign functional annotation to a contig. These annotation pipelines have been used with great

success to functionally annotate a vast range of EST and cDNA datasets (Vizoso et al., 2009; Coetzer

et al., 2010; Arnaiz et al., 2010; Blanca et al., 2011; Mondego et al., 2011), The InterProScan pipeline

assigns PROSITE, PRINTS, Pfam, ProDOM and SMART annotations to each contig in the cDNA file, with

the BLAST2GO pipeline makes use of these protein features to assign Gene Ontology, KEGG and InterPro

categories to the contigs. The results from the pipeline is presented in a format that can be viewed by

the BLAST2GO application, or parsed to a delimited text file that can be imported to a database system.

Gene expression calculated with mRNA-Seq data is reported to be more robust than microarray data

(Li et al., 2008a; Marioni et al., 2008; Hiller et al., 2009). Estimating gene expression values from known

and novel genome models and transcripts aids in identifying pathways and functional gene classes that

are over-expressed between different tissues or conditions. Functional expression analysis of different

tissues and/or different stages of development can be viewed as the first steps to a complete functional

characterisation of a species of interest. The first step in estimating gene expression is to re-align or

79

map the Illummina short-read data to the target genome and a set of splice juctions. Results show that

for the Eucalyptus grandis genome, paired end reads longer than 50 bp do not increase the mapability

of the fragments, when reads were aligned with the TopHat program (Trapnell et al., 2009). This value

will differ between different organisms, but can be used as a guideline to determine gene expression for

organisms of similair genome complexity as eucalypts. Several statistical approaches have been developed

to model the distribution of RNA-Seq data across a transcriptome (Langmead et al., 2010; Srivastava

and Chen, 2010; Trapnell et al., 2010; Wang et al., 2010a) and correct for transcript length (Oshlack

and Wakefield, 2009), positional (Bohnert and Rätsch, 2010) and content bias of the technology (Hansen

et al., 2010). Improvements to the CUFFLINKS package to incorporate various normalisation methods

for the detection of differential expression makes it a valueable benchmark to use for expression analysis

(Trapnell et al., 2010; Roberts et al., 2011). The DEGseq package makes use of three different published

methods (Marioni et al., 2008; Bloom et al., 2009; Tang et al., 2009) and two novel methods to identify

differential expression using mRNA-Seq data, and also serves as a good alternative starting point for

different expression analysis. Both CUFFLINKS and DEGseq are available as tools in the BCBU Galaxy

server. Investigations of transcriptome wide gene expression data assist in the selection of target genes

of interest for genetic modification and the elucidation of complex traits when combined with population

genetic data.

The workflows described here serve as a starting point to a whole range of uHTS DNA sequence analy-

ses. The Galaxy environment facilitates easy incorporation of new tools, results storage and tracking, and

a common interface to store and share analysis pipelines and results. Key parameters that can influence

the output of the individual analysis tools that make up the workflows have been discussed and guidelines

provided regarding the effect of these parameters on a dataset. The guidelines provided should, however,

be used with caution, as they are only applicable to the datasets and organism evaluated. The workflows

described here have been used to perform the de novo assembly of a gene catalog from mRNA-Seq, the

subsequent annotation of the assembled gene catalog as well as the expression profiling of the assembled

transcripts as described in Chapter 3.

	Front
	Chapter 1
	CHAPTER 2
	2.1. Introduction
	2.2. Materials and methods
	2.3. Results and discussion
	2.4. Conclusion

	Chapter 3
	Chapters 4-5
	Back

