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CHAPTER 3 

 

LITERATURE REVIEW ON EFFICIENCY, MEASUREMENT AND 

EMPIRICAL APPLICATIONS 

 

3.1 Introduction 

 

The objective of this chapter is to give an overview of the concept of efficiency and 

frontier models, the different approaches to its measurement in the context of frontier 

models and empirical studies on efficiency. Approaches to efficiency measurement 

are broadly specified into parametric and non parametric approaches. Given the large 

volume of theoretical and empirical literature in the field of efficiency measurement, 

the review of empirical studies is further subdivided into three namely: a review of 

empirical comparative studies in agriculture, a review of empirical comparative 

studies in other sectors where the distance function approach was used and finally a 

review of empirical studies in Nigerian agriculture. The review is intended not only to 

provide a proper understanding of  the specific area of research but it also helps the 

researcher to establish a vivid framework to be employed for analysis. 

  

 

3.2 The Concept of Efficiency and Frontier Models 

 

In microeconomic theory a production function is defined in terms of the maximum 

output that can be produced from a specified set of inputs, given the existing 

technology available to the firms involved (Battese, 1992). The maximum possible 

output becomes relevant in order to answer certain economic questions such as the 

measurement of efficiency of firms, hence the introduction of frontier production 

functions which estimates the maximum output as function of inputs.  Similarly, a 

cost frontier function would give the minimum cost as a function of output quantity 

and input prices.  

 

The papers by Debreu (1951) and Koopmans (1951) mark the origin of discussion on 

the measurement of productivity and efficiency in the economic literature. The work 
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of Debreu and Koopmans was first extended by Farrell (1957) in order to perform the 

measurement of productivity and efficiency. The productivity of an economic agent 

can be measured simply as a scalar ratio of outputs to inputs that the agent uses in its 

production process. Productivity could be measured either as partial productivity such 

as yield per hectare (land productivity) or output per person (labour productivity) or 

more appropriately as total factor productivity (TFP) which is defined as ratio of 

aggregate outputs to aggregate inputs. An economic agent’s productivity may vary 

based on differences in production technology, in the efficiency of the production 

process, in the environment in which production occurs, and finally in the quality of 

inputs used by the agent (Haghiri, 2003). On the other hand, efficiency is measured by 

comparing observed and optimal values of the agent’s outputs and inputs. Prior to 

Farrell’s work, efforts were made to measure efficiency by interpreting the average 

productivity of inputs, then to construction of efficiency indexes. However, these 

methods were found unsatisfactory by economists and agricultural economists as the 

methods suffered from one shortcoming to another. The use of the traditional least 

squares methods for estimating the production function has been critiqued as this is 

not consistent with the definition of the production function. The estimated functions 

could at best be described as average or response functions because such regression 

estimates the mean output (rather than the maximal output) given quantities of inputs 

(Schmidt, 1986). This led to the development of a better-founded theoretical method 

for measuring efficiency, i.e. the frontier method. Frontiers models are described as 

bounding functions (Coelli, 1995b).  

 

The frontier approach holds a number of advantages over average or response 

functions as well as over non-frontier models. There are two main benefits that result 

from estimating frontier functions, as compared to estimating average functions using 

ordinary least squares (OLS) approach. First, when a frontier function is estimated, 

the result is strongly influenced by the best performing firm, and therefore the frontier 

reflects the technology set that the most efficient firm employs. However, the 

estimation of an average function only reflects the technology set employed by an 

average firm. Second, frontier functions provide a useful performance benchmark. 

These functions normally represent best practice technology, against which the 

efficiency of other firms within the industry can be measured. Frontier models also 

provide a number of advantages over non-frontier models like the one proposed by 
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Lau and Yotopoulos (1971). A non-frontier model yields efficiency measures for 

groups of firms, whereas a frontier model can provide firm specific efficiency 

measures to the researcher. Another advantage of the frontier methodology is that the 

word ‘frontier’ is consistent with the theoretical definition of a production, cost, and 

profit function, i.e., a solution to a maximum and minimum problem. These 

advantages make the frontier methodology popular in applied economic research 

(Forsund et al., 1980; Bravo-Ureta and Pinherio, 1993; Haghiri, 2003; Alene, 2003).  

 

Frontier functions can be classified based on certain criteria. First, based on the way 

the frontier is specified, frontiers may be specified as parametric function of inputs or 

non-parametric. Second, it may be specified as an explicit statistical model of the 

relationship between observed output and the frontier or it may not. Finally, a frontier 

function can be classified according to how one interprets the deviation of a group of 

agents or firms from the best performing agents in the sample. In this sense, frontier 

functions can be either deterministic or stochastic. In the sub-sections that follow, we 

broadly classify the frontier models into parametric or non-parametric frontiers. 

 

3.3 Non-Parametric Frontier Approach 

 

A non-parametric approach neither specifies a functional form for the production 

technology nor makes an assumption about the distribution of the error terms. In other 

words it is robust with respect to the particular functional form and to the distribution 

assumptions. The non-parametric approach is mainly deterministic in nature. In a 

deterministic production frontier model, output is assumed to be bounded from above 

by a deterministic (non-stochastic) frontier. However, the possible influence of 

measurement errors and other statistical noise upon the shape and positioning of the 

estimated frontier is not accounted for.  

 

The original work of Farrell (1957) serves an important starting point for discussion 

of non-parametric frontiers. Farrell illustrated the measurement of efficiency using an 

input-oriented approach. His argument is embodied in figure 3.1. This illustration was 

done by considering a firm  using two inputs x1 and x2 to produce output y, such that 

the production frontier is ),( 21 xxfy =  Assuming constant returns to scale , then one 
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can write )/,/(1 21 yxyxf= , that is the frontier technology can be characterized by a 

unit isoquant and this is denoted SS ′  in figure 3.1. Knowledge of the unit isoquant of 

a fully efficient firm permits the measurement of technical efficiency.  For a given 

firm using *),( 21 xx ∗ defined by point A )/*,/( 21 yxyx ∗  to produce a unit of output 

*y , the ratio OQ/OA measures technical efficiency and it defines the ability of a firm 

to maximize output from a given set of inputs. The ratio measures the proportion of  

),( 21 xx  needed to produce *y . Technical efficiency takes a value between zero and 

one and therefore provides an indication of technical inefficiency. Thus, the technical 

inefficiency of the firm, 1-OQ/OA, measures the proportion by which *),( 21 xx ∗ could 

be reduced (holding the input ratio 21 / xx  constant) without reducing output. A firm 

that is fully technically efficient would lie on the efficient isoquant (example, point Q) 

and it takes a value of 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Technical, Allocative and Economic Efficiency 

 

Further, Farrell demonstrated that the unit isoquant can provide a set of standards for 

measuring allocative (referred to as price efficiency by Farrell) efficiency. Let 'PP  

represent the ratio of input prices. Then the ratio OR/OQ measures the allocative 

efficiency (the ability of a firm to use inputs in optimal proportions, given the 

respective prices at point A). Correspondingly, allocative inefficiency is 1- OR/OQ. 

The distance RQ is the reduction in production costs which would have been achieved 

had production occurred at Q*- the allocatively and technically efficient point, rather 
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than Q- the technically efficient, but allocatively inefficient point. Finally, the ratio 

OR/OA measures the economic efficiency (referred to as overall efficiency by Farrell) 

and correspondingly 1-OR/OA measures the total inefficiency. The distance RA is the 

cost reduction achievable which is obtained from moving from A (the observed point) 

to Q* (the cost minimizing point). 

 

In this approach, the efficient unit isoquant is not observable; it must be estimated 

from a sample of observations. The approach is non-parametric because Farrell 

simply constructs the free disposal convex hull of the observed input-output ratios by 

linear programming techniques which are supported by a sub-set of the sample, with 

the rest of the sample points lying above it. 

 

According to Forsund et al. (1980), the major advantage of non-parametric approach 

is that no functional form is imposed on the data. One disadvantage of the approach is 

that the frontier is computed from a supporting subset of observations, and is therefore 

particularly susceptible to extreme observations and measurement error. A second 

disadvantage is that the estimated functions have no statistical properties upon which 

inferences can be made; however, recent developments are attempting to overcome 

this drawback. 

 

Farrell’s approach has been extended by Charnes et al. (1978) giving rise to what is 

known as data envelopment analysis (DEA). The technique envelopes observed 

production possibilities to obtain an empirical frontier and measures efficiency as the 

distance to the frontier. Efficient firms are those that produce a certain amount of or 

more outputs while spending a given amount of inputs, or use the same amount of or 

less inputs to produce a given amount of outputs, as compared with other firms in the 

test group. This approach generalizes Farrell’s approach of computing the efficiency 

frontier as a piecewise-linear convex hull in the input coefficient space to multiple 

outputs. Charnes et al. (1978) reformulated Farrell’s approach into calculating the 

individual input saving efficiency measures by solving a linear programming problem 

for each unit under the constant returns to scale (CRS) assumption while Banker et al. 

(1984) extended it to the case of variable returns to scale (VRS) since imperfect 

competition, financial constraints may cause a firm not to be operating on an optimal 

scale, the assumption upon which CRS is appropriate. Charnes et al. (1978) proposed 
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a model which had an input-orientation. The DEA can be considered as a non-

parametric approach to estimation of distance functions (Färe et al., 1985; 1994). 

 

Assuming there is data on K inputs and M outputs on each of N firms. For the ith  

firm, these are represented by the vectors ix  and iy , respectively. The K x N input 

matrix, X and the M x N output matrix, Y, represent the data of all N firms. The 

purpose of the approach is to construct a non-parametric envelopment frontier over 

the data points such that all observed points lie on or below the production frontier.  

 

The input-oriented constant returns to scale DEA frontier is defined by the solution to 

N linear programs of the form: 

 

θ
λθ ,

min , 

subject to  ,0≥+− λYyi  

        ,0≥− λθ Xxi        (3.1) 

        0≥λ  

 

where θ  is a scalar and λ  is an Nx1 vector of constants. The value of θ  is an index 

of technical efficiency for the ith firm and will satisfy 10 ≤≤ θ , with value of 1 

indicating a point on the frontier and hence a technically efficient firm, according to 

Farrell (1957) definition. Thus, θ−1  measures how much a firm’s inputs can be 

proportionally reduced without any loss in output.  

 

However, the assumption of CRS is correct only as long as firms are operating at an 

optimal scale (Coelli et al, 2002). Using the CRS DEA model when firms are not 

operating at their optimal scale will cause the technical efficiency measures to be 

influenced by scale efficiencies and thus the measure of technical efficiency will be 

incorrect. The CRS linear programming problem can easily be modified to account 

for variable returns to scale by adding the convexity constraint: 1'1 =λN to equation 

(3.1) to provide an input-oriented VRS model: 

 

θ
λθ ,

min  
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subject to  ,0≥+− λYyi  

        ,0≥− λθ Xxi        (3.2) 

        1'1 =λN  

       0≥λ  

 

where N1 is an Nx1 vector of ones. This approach forms a convex hull of intersecting 

planes which envelope the data points more tightly than the CRS conical hull and thus 

provide technical efficiency scores which are greater than or equal to those obtained 

using the CRS model.  

 

The output-oriented models are very similar to their input-oriented counterparts. For 

instance, the output-oriented VRS model is defined by solution to N linear programs 

of the form: 

 

φ
λφ ,

max  

subject to  ,0≥+− λφ Yyi  

        ,0≥− λXxi        (3.3) 

        1'1 =λN  

       0≥λ  

 

where ,1 ∞<≤ φ  and φ  is the proportional increase in output that could be achieved 

by the ith firm, with input held constant.  φ/1  defines a technical efficiency score 

which varies between zero and one. The CRS output-oriented model can be defined 

similarly by removing the convexity constraint, 1'1 =λN  from equation (3.3). 

 

In the input-oriented models, the method sought to identify technical inefficiency as a 

proportional reduction in input usage. They are input-oriented because they try to find 

out how to improve the input characteristics of the firm concerned so as to become 

efficient. The output-oriented measure sought to identify technical inefficiency as a 

proportional increase in output production. The input and output orientations provide 

the same value under CRS but are unequal under the assumption of a VRS. Thus, the 

input- and output-oriented models will estimate exactly the same frontier and 
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therefore, by definition, identify the same set of firms as being efficient. It is only the 

efficiency measures associated with the inefficient firms that may differ between the 

two methods. Given that linear programming cannot suffer from such statistical 

problems as simultaneous equation bias, the choice of an appropriate orientation is not 

very crucial.  Essentially, one should select an orientation according to which 

quantities (inputs or outputs) the managers have most control over. In many instances, 

the choice of orientation will have only minor influences upon the scores obtained 

(Coelli, 1995b, Coelli and Perelman, 1999). 

 

With availability of price information, it is possible to consider a behavioural 

objective, such as cost minimization or revenue maximization so that both technical 

and allocative efficiency can be measured. For the case of a VRS cost minimization, 

one would run the input-oriented DEA model set out in equation (3.2) to obtain 

technical efficiency (TE). One would then run the following cost minimization DEA  

 

*,min
ixλ  *' ii xw , 

subject to  ,0≥+− λYyi  

        ,0* ≥− λXxi        (3.4) 

        1'1 =λN  

       0≥λ  

 

where iw is a vector of input prices for the ith firm and *ix  is the cost minimizing 

vector of input quantities for the ith firm given the input prices iw  and the output 

levels iy  and this is calculated by the linear programming. The total cost efficiency 

(CE) or economic efficiency of the ith firm would be calculated as 

 

ii

ii

xw

xw
CE

'

*'
=          (3.5) 

 

That is, the ratio of minimum cost to observed cost. One can then use equation (3.5) 

to calculate the allocative efficiency residually as 
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TE

CE
AE =          (3.6) 

 

This procedure will include any slacks into the allocative efficiency measure. This is 

often justified on the grounds that slack reflects an inappropriate input mix (Ferrier 

and Lovell, 1990). 

 

The aim of DEA analysis is not only to determine the efficiency rate of the units 

reviewed, but also to find target values for inputs and outputs for an inefficient unit. 

After reaching these values, the unit would arrive at the threshold of efficiency. The 

major disadvantage of the deterministic DEA approach is that it takes no account of 

possible influence of measurement error and other noise in the data and as such it has 

been argued that it produces biased estimates in the presence of measurement error 

and other statistical noise. However, it has the advantage of removing the necessity to 

make arbitrary assumptions about the functional form of the frontier and the 

distributional assumption of the error term. With DEA, multiple output technologies 

can be examined very easily without aggregation.  

 

As it has been stated earlier, one of the main drawbacks of non-parametric techniques 

is their deterministic nature. This is what traditionally has driven specialised literature 

on this issue to describe them as non-statistical methods. Nevertheless, recent 

literature has shown that it is possible to define a statistical model allowing for the 

determination of statistical properties of the non-parametric frontier estimators 

(Murillo-Zamorano, 2004). For instance, DEA models with stochastic variations have 

recently received attention (Banker, 1993; Land et al., 1993; Sengupter 2000a;  Simar 

and Wilson, 1998, 2000a, 2000b; Huang and Li, 2001; Kao and Liu, 2009; Shang et 

al., 2009). Simar and Wilson (1998, 2000a, 2000b) for example, methodically studied 

statistical properties of DEA models, and developed bootstrap algorithms which can 

be used to examine the statistical properties of efficiency scores generated through 

DEA. Therefore, one might conclude that today statistical inference based on non-

parametric frontier approaches to the measurement of economic efficiency is available 

either by using asymptotic results or by using bootstrap. However, a couple of main 

issues still remain to be solved, namely the high sensitivity of non-parametric 

approaches to extreme values and outliers, and also the way for allowing stochastic 
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noise to be considered in a non-parametric frontier framework (Murillo-Zamorano, 

2004). 

 

3.4 Parametric Frontier Approach 

 

The parametric approach involves a specification of a functional form for the 

production technology and an assumption about the distribution of the error terms. 

The major advantage of the parametric approach compared to the non-parametric 

approach is the ability to express the frontier technology in a simple mathematical 

form. However, the parametric approach imposes structure on the frontier that may be 

unwarranted. The parametric approach often imposes a limitation on the number of 

observations that can be technically efficient. For example, in the case of 

homogeneous Cobb-Douglas form, when the linear programming algorithm is used, 

there will in general be only as many technically efficient observations as there are 

parameters to be estimated (Forsund et al, 1980). This approach can be subdivided 

into deterministic and stochastic frontiers. The parametric deterministic approach is 

further subdivided into statistical and non-statistical methods. 

 

3.4.1 Deterministic Non-Statistical Frontiers 

 

Few people adhered to the non-parametric approach by Farrell (1957). Almost as an 

after thought, Farrell (1957) proposed a second approach. In this approach, Farrell 

proposed computing a parametric convex hull of the observed input-output ratios. He 

recommended the Cobb-Douglas production function for this purpose given the 

limited selection of functional form then. He acknowledged the undesirability of 

imposing a specific (and restrictive) functional form on the frontier but also noted the 

advantage of being able to express the frontier in a simple mathematical form. This 

suggestion was however not followed up by Farrell. 

 

Aigner and Chu (1968) were the first to follow Farrell’s suggestion. In order to 

express the frontier in a mathematical form, they specified a Cobb-Douglas 

production frontier, and required all observations to be on or beneath the frontier. 

Their model may be written as:  
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=iyln ii uxf −);(ln α ;       0≥u       (3.7) 

 

where iy is the output of the ith sample firm; ix is the inputs of the ith firm, iu is a 

one-sided non-negative random variable associated with firm-specific factors that 

contribute to the ith firm inability to attain maximum efficiency of production. The 

one sided error term, iu forces )(xfy ≤ . The elements of the parameter vector, α , 

may be estimated either by linear programming (minimizing the sum of the absolute 

values of the residuals subject to the constraint that each residual is non-positive) or 

by quadratic programming (minimizing the sum of squared residuals, subject to the 

same constraint). Although Aigner and Chu (1968) did not do so, the technical 

efficiency of each observation can be computed directly from the vector of residuals, 

since u  represents technical efficiency. 

 

A major problem with this approach is that it produces estimates that lack statistical 

properties. That is, the programming procedure produces estimates without standard 

errors, t-ratios, etc. This is because no statistical assumptions are made about the 

regressors or the disturbance term in equation (3.7) and therefore inferences cannot be 

obtained. 

 

3.4.2 Deterministic Statistical Frontiers 

 

The previous models were critiqued on their lack of statistical properties. This 

problem can be addressed by making some assumptions about the disturbance term. 

The model in equation (3.7) can be written as  

 

,)(ln uexfy −=          (3.8) 

or 

[ ]uxfy −= )(lnln ,          (3.9) 

 

where 0≥u , implying 10 ≤≤ −u
e , [ ])(ln xf  is linear in the Cobb-Douglas case 

presented in equation (3.7). Some assumptions are usually made about u and x and 

that is, that u are independently and identically distributed (iid), with mean µ and 
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finite variance and that x  is exogenous and independent of u . Any number of 

distributions for u (or u
e

− ) could be specified. Aigner and Chu (1968) did not 

explicitly assume such a model though it seems clear it was assumed implicitly. 

However, the first to explicitly propose this type of model was Afriat (1972), who 

proposed a two-parameter beta distribution for u
e

− , and that the model be estimated 

by maximum likelihood method. This amounts to gamma distribution for u , as 

considered further by Richmond (1974). On the other hand Schmidt (1976) has 

demonstrated that if u is exponential, then Aigner and Chu’s linear programming 

procedure is maximum likelihood, while their quadratic programming procedure is 

maximum likelihood if u  is half-normal.  

 

In the frontier setting, there are some problems with maximum likelihood. First, 

maximum likelihood estimates (MLE) depend on the choice of distribution for u such 

that different assumptions yield different estimates. This is a problem because there 

are no good a priori arguments for choice of any particular distribution. Second, the 

range of the dependent variable (output) depends on the parameters to be estimated 

(Schmidt, 1976). This is because )(xfy ≤  and )(xf  involves the parameters which 

are to be estimated. For any one-sided error distribution, )(xfy ≤  violates one of the 

usual regularity conditions for consistent and asymptotic efficiency of maximum 

likelihood estimators (namely, that the range of the random variable should not 

depend on the parameters). Thus, the statistical properties of the MLE’s are in general 

uncertain. Greene (1980a) finds sufficient conditions on the distribution of u for the 

MLE’s to have their usual desirable asymptotic properties: (i) if g is the density of u , 

g(0) = 0, i.e. the density of u is zero at u  = 0 and ( ii) 0)( →′ ug  as 0→u , i.e. the 

derivative of the density of u  with respect to its parameters approaches zero as u  

approaches zero. However, as Schimdt (1986) noted, it is clearly not desirable that 

one’s assumptions about the error term be governed by the need to satisfy such 

conditions. 

 

An alternative method of estimation based on ordinary least squares was first 

proposed by Richmond (1974) and is called corrected OLS or COLS. Suppose 

equation (3.9) is assumed to be linear (Cobb-Douglas)  and letting µ  be the mean of 

u , then  
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)(ln)(ln
1

0 µαµα −−+−= ∑
=

uxy
n

i

ii        (3.10) 

 

where the new error term has zero mean. Since the error term satisfies all the usual 

ideal conditions except normality, equation (3.10) can be estimated by OLS to obtain 

best linear unbiased estimates of )( 0 µα − and of iα . If a specific distribution is 

assumed for u , and if the parameters of the distribution can be derived from higher-

order (second, third, etc.) central moments, then these parameters can be consistently 

estimated from the moments of the OLS residuals. Since µ  is a function of these 

parameters, it can also be estimated consistently, and this estimate can be used to 

correct the OLS constant term, which is consistent estimate of )( µα − . Thus, COLS 

provides consistent estimates of all the parameters of the frontier. However, this 

technique poses some difficulties. First, some of the residuals may still have wrong 

signs after correcting the constant term so that these observations end up above the 

estimated production frontier. This makes COLS seem not to be a very good 

technique for computing technical efficiency of individual observations. There are 

two ways of resolving this problem namely, by use of stochastic frontier approach or 

to estimate equation (3.10) by OLS, then correct the constant term not as above, but 

by shifting it up until no residual is positive, and one is zero. Another difficulty with 

COLS technique is that the correction to the constant term is not independent of the 

distribution assumed for u . That is, different assumptions yields systematically 

different corrections for the constant term, and systematically different estimates of 

technical efficiency, except for the special case var (u ) =1. However, this problem 

again can be resolved by shifting the function upward until no residual is positive, and 

one is zero.  

 

3.4.3 Stochastic Frontiers 

 

They emerged as an improvement over average functions and deterministic frontiers. 

In the deterministic frontiers, all variations in the firm performance are attributed 

solely to variation in firm efficiencies relative to the common family of frontiers, be it 

production, cost or profit frontiers. Thus, the idea of a deterministic frontier shared by 

all firms ignores the very real possibility that a firm’s performance may be affected by 

 
 
 



 57 

factors that are entirely outside its control such as bad weather, input supply 

breakdowns etc as well as factors under its control (inefficiency). To lump these 

effects of exogenous shocks, both fortunate and unfortunate, together with the effects 

of measurement error and inefficiency into a single one-sided error term, and to label 

the mixture inefficiency is questionable and is a major weakness of deterministic 

frontiers. 

 

Forsund et al. (1980) noted that this conclusion is reinforced if one considers also the 

statistical noise that every empirical relationship contains. The standard interpretation 

is that first, there may be measurement error on the dependent variable. Second, the 

equation may not be completely specified with the omitted variables individually 

unimportant. Both of these arguments hold just as well for production functions as for 

any kind of equation, and it is dubious at best not to distinguish this noise from 

inefficiency, or to assume that noise is one-sided. It is on this basis that the stochastic 

frontier (composed error) model was independently proposed by Aigner et al. (1977) 

and Meeusen and van den Broeck (1977). The vital idea behind the stochastic frontier 

model is that the error term is composed of two parts. A symmetric component 

permits random variation of the frontier across firms, and captures the effects of 

measurement error, other statistical noise, and random shocks outside the control of 

the firm. A one-sided component captures the effects of inefficiency relative to the 

stochastic frontier. 

 

The stochastic frontier function may be defined according to Battese (1992) as: 

 

),( αii xfy = exp ),( iε  Ni ,.....1=        (3.11) 

 

where iε = .ii uv −          (3.12) 

 

The stochastic frontier is ),( αixf exp ),( iv iy is the output of the ith firm and is 

bounded above by the stochastic quantity, ix are the inputs of the ith firm. iε is a 

random variable. iv is the random error having zero mean, and is associated with 

random effects of measurement errors and exogenous shocks that cause the 
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deterministic kernel ),( αixf  to vary across firms. Technical inefficiency is captured 

by the one-sided error component exp ),( iu− where 0≥iu implying that all 

observations must lie on or beneath the stochastic production frontier.  

 

The random errors, iv were assumed to be independently and identically distributed as 

),0( 2
vN σ random variables and independent of the iu ’s , which were assumed to be 

non-negative truncations of the half-normal distribution i.e., ),0(
2

uN σ or exponential 

distribution i.e. EXP ),(
2

uσµ . Aigner et al. (1977) considered half-normal and 

exponential distributions but Meeusen and van den Broeck (1977) considered 

exponential distribution only. Stevenson (1980) has shown how the half-normal and 

exponential distributions can be generalized to truncated normal ( ),(
2

uN σµ ) and 

gamma distributions, respectively. There was a tendency for researchers to use the 

half-normal and truncated normal distributions probably because of ease of estimation 

and interpretation and more so, as there were no standard tests for distribution 

selection. However, Lee (1983) proposed a Lagrange-Multiplier test to assess 

different distributions for the inefficiency term. Given the assumptions of the 

stochastic frontier model (3.11), inference about the parameters of the model can be 

based on the maximum likelihood estimators because the standard regularity 

conditions are satisfied.  

 

Technical efficiency of an individual firm is defined in terms of the ratio of the 

observed output to the corresponding frontier output, conditional on the levels of 

inputs used by that firm. Thus, the technical efficiency of firm i  in the context of the 

stochastic production function expressed in equations (3.11) and (3.12) is given as 

 

*
.

i

i

i
y

y
TE = )exp(

)exp();( * i

ii

i u
vxf

y
−==

α
      (3.13) 

 

The prediction of technical efficiencies of individual firms associated with the 

stochastic frontier production function (3.11) was considered impossible until the 

appearance of Jondrow et al. (1982). Following Jondrow et al. (1982) and Battese and 
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Corra (1977) reparameterization, the firm specific technical efficiency can be 

predicted by the conditional expectation of the non-negative random variable, iu , 

given that the random variable, iε , is observable. The technical efficiency of the ith 

firm is then given by: 

 




















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−

⋅−

⋅
=

2/1

1)(1
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)/(

γ

γ

σ

ε

σ

σσ
ε ivu

ii
F

f
uE       (3.14) 

 

where iε  are the estimated residuals for each firm, )(⋅f and )(⋅F are the values of the 

standard normal density function and standard normal distribution function, 

respectively, evaluated at 

2/1

1 








− γ

γ

σ

ε i . The parameters of the model, i.e. α , 

222

uv σσσ +=  and  22
/σσγ u=  can be obtained from the maximum likelihood 

estimation of equation (3.11). γ  is bounded between zero and one and it explains the 

total variation of output from the frontier which can be attributed to technical 

inefficiency.  The estimates of iv  and iu  can be obtained by substituting the estimates 

of iε , γ , and σ . Thus, the technical efficiency of individual firms can be measured 

as )/(exp( iii uETE ε−= which represents the level of technical efficiency of the  ith 

firm relative to the frontier firm. However Battese and Coelli (1988) derived the best 

predictor of TE given as 




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−
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One can test whether any form of stochastic frontier production is needed at all by 

testing the significance of the γ  parameter. If the null hypothesis, that γ  equals zero, 

is accepted, this would indicate that 
2

uσ  is zero and hence  that the iu  should be 

removed from the model, leaving a specification with parameters that can be 

consistently estimated using ordinary least squares (Coelli, 1996a). 

 

There are two approaches to estimating the inefficiency effect models, that is, the 

second part of the stochastic frontier models that provides explanation for variation in 

efficiency of firms. These may be estimated with either a one step procedure or a two 
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step procedure. In a one step procedure estimates of all the parameters are obtained in 

one step. The inefficiency effects are defined as a function of the firm specific factors 

(as in the two-stage approach) but they are then incorporated directly into the MLE. 

That is, both the production frontier and the inefficiency effect models are estimated 

simultaneously.  For the two-step procedure, the production frontier is first estimated 

and the technical efficiency of each firm is derived. These are subsequently regressed 

against a set of variables, z, which are hypothesized to influence the firms' efficiency. 

The two-stage procedure has been critiqued of inconsistency in the assumptions about 

the distribution of the inefficiencies. This is because in the first stage, the 

inefficiencies are assumed to be independently and identically distributed (iid) in 

order to estimate their values. However, in the second stage, the estimated 

inefficiencies are assumed to be a function of a number of firm specific factors, and 

hence are not identically distributed unless all the coefficients of the factors are 

simultaneously equal to zero (Coelli, et al. 1998, Herrero and Pascoe, 2002). Thus, the 

distributional assumptions used in either step contradict each other (Coelli, et al, 

2005). Kumbhakar et al. (1991) argued that the estimated technical coefficients and 

technical efficiency indices are biased when the determinants of technical efficiency 

are not included in the first step of the regression. They provided a one-step procedure 

which determines the influence of socioeconomic variables on technical efficiency 

while estimating technical coefficients of the production frontier. Kalirajan (1991), on 

the other hand, has defended the practice of the two-step regression on the basis that 

socioeconomic variables have a roundabout effect on production.  

 

Although the two-step procedure is critiqued of producing biased results, there seems 

to be little evidence on the severity of this bias. For example, Caudill and Ford (1993) 

provide evidence on the bias of the estimated technological parameters, but not on the 

efficiency levels or their relationship to the explanatory variables. However, Wang 

and Schmidt (2002) identified two sources of bias namely, that the first step of the 

two-step procedure is biased for the regression parameters if the z and the inputs, xi 

are correlated. Secondly, that even if z and x are independent, the estimated 

inefficiencies are under-dispersed when the effect of z on inefficiency is ignored. This 

causes the second-step estimate of the effect of z on inefficiency to be biased 

downward (toward zero). Therefore, they suggested that a one step procedure be 

employed to overcome this problem. There appear to be no consensus in the 
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literatures on the use of either one step or two step procedure and the choice may be 

solely that of the analyst. 

 

The Cobb-Douglas functional form is the commonly used in estimating the stochastic 

production frontier. Although its most attractive feature is simplicity, but this is 

associated with a number of restrictions. Most notably the returns to scale are 

restricted to take the same value across all firms in the sample, and elasticities of 

substitution are assumed equal to one. However, more flexible functional forms like 

the translog production function have also received attention. The translog form 

imposes no restriction upon returns to scale or substitution possibilities, but has the 

drawback of being susceptible to multicollinearity and degrees of freedom problems 

(Coelli, 1995b). In any case, the choice of appropriate function form can be made by 

conducting a likelihood ratio test between competing models. 

 

Stochastic frontier analysis (SFA) has both advantages and disadvantages. The 

advantages include first, it controls for random unobserved heterogeneity among the 

firms. The inefficiency effect can be separated from statistical noise. With non-

parametric methods, any deviation of an observation from the frontier must be 

attributed to inefficiency, which makes the results very sensitive to outliers or 

measurement errors and uncertainty. Second, by using SFA, the statistical 

significance of the variables determining efficiency can be verified using statistical 

tests, though this is also true for recent bootstrapped DEA models. Third, the firm 

specific inefficiency is not measured in relation to the “best” firm, as it is done in non-

parametric approaches. Hence, SFA is again less sensitive to outliers in the sample. 

Disadvantages of the SFA approach consist of the need for distributional assumptions 

for the two error components as well as the assumption of independence between the 

error terms and the regressors. Further, implementation of the model requires the 

choice of an explicit functional form, the appropriateness of which raises questions.  

 

The stochastic frontier specification has been altered and extended in a number of 

ways. These extensions include: consideration of panel data and time-varying 

technical efficiencies, the extension of the methodology to cost, revenue and profit 

frontiers, estimation of stochastic input and output distance functions, the estimation 

of systems of equations, the decomposition of the cost frontier to account for both 
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technical and allocative efficiency. A review of most of these extensions is provided 

by Forsund et al. (1980), Schmidt (1986), Bauer (1990), and Coelli (1995b). 

However, in the subsequent sub-sections brief explanations of some these extensions 

are given. 

 

3.4.3.1 Panel Data  

 

Cross sectional data provides a snapshot of producers and their efficiency. Panel data 

provides more reliable evidence on their performance, because they enable one to 

track the performance of each producer through sequence of time periods. In the Panel 

data model, a time varying or time invariant inefficient effect may be specified. Also, 

the model may assume either a fixed or random effect. A significant advantage of 

panels is that given consistently large time periods, they permit consistent estimation 

of the efficiency of individual producers, whereas the Jondrow et al. (1982) technique 

does not generate consistent estimators in a cross-sectional context (Kumbhakar and 

Lovell, 2000). Another advantage of the panel data is that the distributional 

assumptions about the efficiency term upon which stochastic frontier rely is no longer 

necessary. Also the assumption of independence between the inefficiency term and 

input levels is unnecessary with panel data.  Again, panel data increases degrees of 

freedom for estimation of parameters and it permits the simultaneous estimation of 

technical change and technical inefficiency changes over time. However, the dearth of 

panel data on farmers especially in developing country agriculture has constrained the 

use of panel data methodologies.  

 

3.4.3.2 Duality Considerations and Cost System Approaches 

 

The consideration of duality extends not only to cost minimization but also profit 

maximization, though cost minimization is often made in the dual frontier literatures. 

Thus, the discussion here is basically on cost minimization behaviour. It is very 

simple to change the sign of the inefficiency error component iu  and convert the 

stochastic production frontier model to a stochastic cost frontier model such that we 

have: 
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)exp().;,( iiiii uvwycC += β        (3.15) 

 

where iC  is the cost of production of the ith firm, )exp().;,( iii vwyc β is the stochastic 

cost frontier, iw is a vector of input prices of the ith firm, iy  is output of the ith firm; 

β  is an vector of unknown parameters; iv  are random variables which are assumed to 

be independently and identically distributed ),0(
2

vN σ and independent of , iu , which 

are non-negative random variables which are assumed to account for the cost of 

inefficiency in production, which are often assumed to be iid ),0(
2

uN σ . In this cost 

function, the iu  now defines how far the firm operates above the cost frontier. If 

allocative efficiency is assumed, then iu  is closely related to the cost of technical 

efficiency. If this assumption is not made, the interpretation of the iu  in a cost frontier 

is less clear, with both technical and allocative inefficiencies possibly involved 

(Coelli, 1996a). The Jondrow et al. (1982) technique may be used to provide an 

estimate of the overall cost inefficiency, but the difficult remaining problem is to 

decompose the estimate of iu  into estimates of the separate costs of technical and 

allocative inefficiency. Schmidt and Lovell (1979) accomplished the decomposition 

for the Cobb-Douglas case while Kopp and Diewert (1982) obtained the 

decomposition for the more general translog case based on deterministic frontier.  

 

According to Coelli (1995b) there are basically three reasons for considering the 

alternative of dual forms of the production technology, such as the cost or profit 

function. First, is to reflect alternative behavioural objectives such as cost 

minimization. Second is to account for multiple outputs. Third, is to simultaneously 

predict both technical and allocative efficiency. The choice of whether to estimate a 

production or cost frontier may be based on exogeneity assumptions. It is more 

natural to estimate a production frontier if inputs are exogenous and a cost frontier if 

output is exogenous (Schmidt, 1986). Schmidt and Lovell (1979) suggested a 

maximum likelihood system estimation of their Cobb-Douglas frontier, involving the 

cost function and k-1 factor demand equations as this is expected to improve the 

precision of the parameter estimates. Such a system can be specified as follows: 
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ijji uvxAy −++= ∑ lnln α        (3.16) 
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where y  is output, x ’s inputs, p ’s are prices, i  indexes firms and j  indexes inputs. 

Equation (3.16) is a stochastic production frontier, while equation (3.17) is the set of 

first order conditions for cost minimization. Equation (3.18) is the cost function. ijε  

represents allocative efficiency. ∑
=

=
k

j

jr
1

α  is the returns to scale, iE (equation 3.19) is 

given as a function of ε ’s and the parameters. The cost of technical inefficiency is 

iu
r

1
, while the cost of allocative inefficiency is )( InrEi − . The latter is non-negative, 

and zero if 0=ijε  for all j .  
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This approach faces two serious draw backs. First, in some cases it may not be 

practical or appropriate to estimate a cost frontier. For instance, it will not be practical 

to estimate a cost function when input prices do not vary among firms and it will not 

be appropriate when there is a systematic deviation from cost-minimising behaviour 

in an industry. Second, Schmidt and Lovell (1979) systems estimation and the 

technical and allocative efficiency measurement are limited to self-dual functional 

forms like the Cobb-Douglas. Once one specifies a more flexible functional form like 

the translog forms which are not self-dual, a problem arises. The major problem with 

employing a translog form is associated with how to model the relationship between 

the allocative inefficiency error which appears in the input share equations and that 

which appears in the cost function (sometimes referred to as the ‘Green Problem’ 

because it was first noted by Green (1980b). Although a number of approaches have 

been suggested and applied in modelling the Greene problem ranging from analytic 

solution (e.g. Kumbhakar, 1989), approximate solution (e.g. Schmidt, 1984) to 
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qualitative solution (e.g. Greene 1980b), debate still continues on how best to address 

this problem. Coelli (1995b) noted that a sound approach to take (given that the cost 

minimizing assumption is appropriate and suitable price data are available) is to 

estimate the cost function using single equation maximum likelihood method and then 

use the method proposed by Kopp and Diewert (1982), and refined by Zeischang 

(1983) for deterministic frontier case or that extended by Bravo-Ureta and Rieger 

(1991) for stochastic frontier case following the primal route, to decompose the cost 

efficiencies into their technical and allocative components. If the Cobb-Douglas 

functional form is considered appropriate, then the procedure involved simplify to 

those which are outlined in Schmidt and Lovell (1979). Berger (1993) found that 

efficiency estimates using no cost share equations, partially restricted share equations, 

and fully restricted share equations gave very similar efficiency results. 

 

3.4.3.3 Production Frontier and Efficiency Decomposition 

 

Given that it may not be appropriate to estimate a cost function when there is little or 

no variation in prices among sample firms, Bravo-Ureta and Rieger (1991) developed 

an alternative approach to decompose the cost efficiency into technical and allocative 

efficiencies. They followed a primal route in their methodology. The methodology 

involved using the level of output of each firm adjusted for statistical noise, the 

observed input ratio and the parameters of the stochastic frontier production function 

(SFPF) to decompose economic efficiency into technical and allocative efficiency. 

Then the cost function is analytically derived from the parameters of the SFPF. To 

illustrate the approach, a stochastic frontier production function is given as: 

 

iii XfY εβ += );(          (3.20) 

iii uv −=ε           (3.21) 

 

where iε  is the composed error term.  The two components iv  and iu  are assumed to 

be independent of each other, where iv  is the two-sided, normally distributed random 

error  and iu  is the one-sided efficiency component with a half normal distribution. iY  

is the observed output of the ith firm, iX  is the input vectors of ith firm and β is 
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unknown parameters to be estimated.  The parameters of the SFPF were estimated 

using the maximum likelihood method.  Subtracting iv  from both sides of the 

equation (3.20) results in   

 

iiiii uXfvYY −=−= );(
*

β         (3.22) 

 

where 
*

iY is the observed output of the ith firm adjusted for statistical noise captured 

by iv . From equation (3.22), the technically efficient input vector, T

iX , for a given 

level of 
*

iY is derived by solving simultaneously equation (3.22) and the input ratios, 

)1(/1 >= kXX kk ρ , where kρ  is the ratio of the observed inputs.  

 

Assuming the production function is self-dual function like the Cobb-Douglas 

production function, the corresponding dual cost frontier can be derived and written in 

a general form as: 

 

);,(
*

δiii YWhC =          (3.23) 

 

where iC is the minimum cost of the ith firm associated with output
*

iY ; iW  is a vector 

of input prices of the ith firm; and δ is a vector of parameters which are functions of 

the parameters in the production function. 

 

The  economically efficient (cost minimizing) input vector,  E

iX , is derived by using 

Shephard’s Lemma and then substituting the firm’s input prices and adjusted output 

quantity into the system of demand equations: 
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For a given level of output, the corresponding technically efficient, economically 

efficient and actual costs of production are equal to T

ii XW , E

ii XW and ii XW , 
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respectively. These three cost measures are then used as the basis for calculating the 

technical and economic (cost) efficiency indices for the ith firm : 

 

ii

T

ii
i
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XW
TE =          (3.25) 

and  
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E
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EE =          (3.26) 

 

Following Farrel (1957), allocative efficiency can be calculated by dividing economic 

efficiency (EE) by technical efficiency (TE): 

 

T
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XW

XW
AE =          (3.27) 

 

3.4.3.4 Distance Functions and Efficiency Decomposition 

 

The production, cost, profit and perhaps revenue functions are well known alternative 

methods of describing a production technology. These functions have been used by 

economists to measure efficiencies. Of recent the application of distance functions is 

growing. The majority of recent distance function studies have been motivated by a 

desire to calculate technical efficiencies or shadow prices. The principle advantage of 

the distance function representation is that it allows the possibility of specifying a 

multiple-input, multiple-output technology when price information is not available or 

alternatively when price information is available but cost, profit or revenue function 

representations are precluded because of violations of the required behavioural 

assumptions (Coelli and Perelman 2000). The distance function contains the same 

information about technology as does the cost function but may have some 

advantages econometrically over the cost function if, for example, input prices are the 

same for firms, but input quantities vary across firms (Bauer, 1990). 
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The output distance function measures how close a particular level of output is to the 

maximum attainable level of output that could be obtained from the same level of 

inputs if production is technically efficient. In other words, it represents how close a 

particular output vector is to the production frontier given a particular input vector 

(Mawson et al., 2003). The definition of an output-distance function starts with a 

definition of the production technology of the firm using the output set, )(xP , which 

represents the set of all output vectors, MRy +∈ , which can be produced using the 

input vector, KRx +∈ . That is, 

 

)(xP = xRy M :{ +∈ can produce y }       (3.28)              

 

The output-distance function is then defined on the output set, )(xP , as  

 

{ })()/(:min),( xPyyxDO ∈= θθ        (3.29) 

 

),( yxDO  is non-decreasing, positively linearly homogeneous and convex in y , and 

decreasing in x (Lovell et al., 1994). The distance function, ),( yxDO , will take the 

value which is less than or equal to one if the output vector, y, is an element of the 

feasible production set, )(xP . That is, 1),( ≤yxDO  if )(xPy ∈ . Furthermore, the 

distance function will take the value of unity if y is located on the outer boundary of 

the production possibility set. That is, 

 

),( yxDO =1 if ∈y  Isoq )(xP  

    = { }1),(),(: >∉∈ ωω xPyxPyy ;      (3.30) 

 

A Stochastic Output Distance Function (SODF) is not the same as a Stochastic 

Frontier Production Function (SFPF). Both consider the maximum feasible output 

from a given set of inputs. The difference is that SODF is defined in a set theoretic 

framework which involves vector of outputs and inputs and can only be implemented 

empirically by normalizing using one of the outputs whereas SFPF is simply defined 

for the case of one output or aggregated outputs and does not require normalization.  

 
 
 



 69 

 

An input-distance function is defined in a similar manner as the output distance 

function. However, rather than looking at how the output vector may be 

proportionally expanded with the input vector held fixed, it considers by how much 

the input vector may be proportionally contracted with the output vector held fixed. 

The input-distance function may be defined on the input set, )(yL , as 

 

{ })()/(:max),( yLpxyxDI ∈= ρ        (3.31) 

 

where the input set, )(yL , represents the set of all input vectors, KRx +∈ , which can 

produce the output vector, MRy +∈ . That is, 

 

{)( =yL KRx +∈ : x can produce y}       (3.32) 

 

),( yxDI is non-decreasing, positively linearly homogenous and concave in x , and 

increasing in y . The distance function, ),( yxDI , will take a value which is greater 

than or equal to one if the input vector, x , is an element of the feasible input set, 

)( yL . That is, 1),( ≥yxDI  if ).(yLx ∈  Furthermore, the distance function will take a 

value of unity if x  is located on the inner boundary of the input set. 

 

Under the assumption of constant returns to scale (CRS), the input distance function is 

equivalent to the inverse of the output distance function (i.e., DO = 1/DI) (Färe et al. 

1993, 1994). That is, the proportion by which one is able to radially expand output 

(with input held fixed), will be exactly equal to the proportion by which one is able to 

radially reduce input usage (with output held constant). However, under variable 

returns to scale (VRS) this condition need not hold.  

 

The distance function can be illustrated graphically. For instance, the input distance 

function as exemplified in Coelli et al. (2003) is shown in figure 3.2. Here two inputs, 

1x  and 2x , are used to produce output y. The isoquant SS ′ , is the inner boundary of 

the input set, reflecting the minimum input combinations that may be used to produce 

a given output vector. In this case, the value of the distance function for a firm 
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producing output y, using the input vector defined by point P, is equal to the ratio, 

OP/OQ.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The input distance function and the input set 

 

In empirical literatures on efficiency measurement involving distance functions, 

different methods have been employed to estimate the function. These include the 

construction of parametric frontier using linear programming methods (Färe et al., 

1994; Coelli and Perelman, 1999; Alene and Manfred, 2005); the construction of non-

parametric piece-wise linear frontier using the linear programming method known as 

data envelopment analysis (DEA) (e.g. Färe et al., 1989; Färe et al., 1994; Coelli and 

Perelman, 1999; Alene and Manfred, 2005); estimation of parametric frontier using 

corrected ordinary least square (COLS) (e.g. Lovell et al., 1994; Grosskopf et al., 

1997; Coelli and Perelman, 1999) and maximum likelihood estimation (MLE) of a 

parametric stochastic distance frontier (e.g. Coelli et al., 2003; Irz and Thirtle, 2004; 

Solis et al., 2009). However all of these studies have basically focused on analysing 

technical efficiency except that of Coelli et al. (2003) that applied the cost 

decomposition approach to estimate both technical and allocative efficiency. 

 

Decomposition of cost efficiency in a single equation stochastic input distance 

frontiers framework was first developed by Coelli et al. (2003) to overcome the 

problems that arise when one either tries to estimate a cost frontier and then use 

duality to derive the implicit production frontier as in Schmidt and Lovell (1979) or 
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alternatively estimating a primal production technology, and then derive the implicit 

cost frontier as in Bravo-Ureta and Rieger (1991). The input distance function 

approach avoids all of these problems because first it does not require price 

information to vary among firms. Second, it is robust to systematic deviations from 

cost minimising behaviour. Third, it does not suffer from simultaneous equations bias 

when firms are cost minimisers or shadow cost minimisers (Coelli, 2000; Coelli et al., 

2003). Finally, the approach has an added advantage over production function in that 

it can easily accommodate multiple outputs without aggregation as in production 

function. 

 

A general framework of the decomposition approach is described below using the 

parametric input distance function. It is noted that the value of the distance function is 

not observed so that imposition of a functional form for ),( yxDI does not permit its 

direct estimation. A convenient way of handling this problem was suggested by 

Lovell et al. (1994) who exploit the property of linear homogeneity of the input 

distance function. Given a general form of a parametric input distance function as: 

 

( )yxfDI ,=          (3.33) 

 

where f  is a known functional form such as Cobb-Douglas or translog. Linear 

homogeneity implies:  

 

( )yxfDI ,λλ =  0>∀λ       (3.34) 

 

Assuming x  is a vector of K  inputs and setting 1/1 x=λ , where 1x  is its (arbitrarily 

chosen) first component, then equation (3.34) can be expressed in a logarithmic form 

as: 

 

),/(ln)/ln( 11 yxxfxDI =        (3.35) 

or 

),/(ln)ln()ln( 11 yxxfxDI =−       (3.36) 

and  hence  
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)ln(),/(ln)ln( 11 IDyxxfx −=−       (3.37) 

 

where )ln( ID−  is defined as uv −=ε  to indicate that the distance term may be 

interpreted as a traditional stochastic frontier analysis disturbance term. That is, the 

distances in a distance function (which are radial distances between the data points 

and the frontier) could be due to either noise (v ) or technical inefficiency (u ) which 

is the standard SFA error structure (Coelli et al., 2003). Therefore equation (3.37) can 

be rewritten as: 

 

uvyxxfx −+=− ),/(ln)ln( 11         (3.38) 

 

The random errors, v are assumed to be independently and identically distributed as 

),0( 2
vN σ random variables and independent of the u ’s , which are assumed to either 

be a half-normal distribution i.e., ),0(
2

uN σ or exponential distribution i.e. 

EXP ),(
2

uσµ  or truncated normal (( ),(
2

uN σµ ) or gamma distributions. The 

predicted radial input-oriented measure of TE for an ith firm is given as: 

 

iiiIi uvuEDET −== )[exp(ˆ/1ˆ ]      (3.39) 

 

In other words, iET ˆ1−  measures the proportion by which costs would be reduced by 

improving technical efficiency, without reducing output. A value greater than one for 

the input distance function ( ID̂ ) indicates that the observed input-output vector is 

technically inefficient. When the producer is operating on the technically efficient 

frontier or the isoquant, the parametric input distance function attains a value of one.  

The technically efficient input quantities can be predicted as follows: 

 

iji

T

ji ETxx ˆˆ ×= ;   Kj ...2,1=      (3.40) 

 

Using the first order condition for cost minimisation, the duality between the cost and 

input distance function can be derived and expressed in a general form as: 
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}1),(:{),( ≥= iiIii
x

iii yxDxwMinywC      (3.41) 

 

where C  is the cost of production and w denotes a vector of input prices. From this 

minimisation problem, it is possible to relate the derivatives of the input distance 

function to the cost function and by making use of Shephard’s Lemma, allocative 

efficiency and cost efficiency can then be computed.  

 

The current study makes a comparison of the production function and distance 

function frontier results and proposes an integrated efficiency model for resolution of 

model selection problems in efficiency studies and agricultural policy analysis. 

 

3.5 Empirical Studies on Efficiency Measurement  

 

A number of empirical studies both in agricultural and non-agricultural sectors have 

applied the frontier models since the pioneering work of Farrell (1957). However, 

given the large volume of theoretical and empirical literature in the field of efficiency 

measurement, a general review of comparative studies in agriculture and other sectors 

is provided. The review of comparative studies in other sectors is limited to those 

involving the use of distance functions since the application of distance functions is 

not vast yet. Finally, to place this section in the Nigerian context, a review of some of 

the efficiency studies in Nigeria that used either one or more of the frontier 

approaches is provided.   

 

3.5.1 Empirical Comparative Studies in Agriculture  

 
Ferrier and Lovell (1990) compared two techniques for estimating production 

economies and efficiencies with each having both advantages and disadvantages. One 

approach involved the econometric estimation of a cost frontier; the second was a 

series of linear programs which calculate a production frontier. Their results showed 

that the two different techniques yielded very similar results regarding cost 

economies, and dissimilar results regarding cost efficiencies.  
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Kalaitzandonakes and Dunn (1995) in their study on the relationship between 

technical efficiency and education calculated technical efficiency with three 

alternative frontier methods for a sample of Guatemalan corn farms namely, a 

deterministic statistical frontier (COLS), a stochastic production frontier estimated by 

MLE technique and a non-parametric DEA. The three alternative frontier methods 

resulted in significant differences both in the average technical efficiency of the 

sample and the efficiency rankings of individual farms. Furthermore, following two-

step procedures where technical efficiency is regressed against a set of explanatory 

variables, it was shown that the choice of efficiency measurement technique can alter 

the importance of education as a contributing factor to increased technical efficiency. 

The study therefore recommended that inferences based on efficiency studies should 

be cautious as technical efficiency may not be dependable when difficulties in the 

empirical measurement of conceptual variables and other measurements errors are not 

explicitly accounted for. Hence, an alternative approach was therefore presented for 

investigating the relationship between education and efficiency while accounting for 

difficulties in the measurement of conceptual variables and measurement errors. 

 

Sharma et al. (1997) compared the performance of stochastic and DEA production 

frontiers in predicting technical efficiencies for a sample of Hawaii swine producers. 

Under the stochastic method, the efficiency measures were estimated under the 

specifications of the Cobb-Douglas production frontier for which the inefficiency 

effects have the truncated-normal distribution. In the DEA analyses, the output-

oriented frontiers were estimated under the specifications of constant and variable 

returns to scale. The estimated mean technical efficiency in the stochastic frontier is 

larger than those obtained from the DEA analyses. The correlation between the 

technical efficiency rankings of the two approaches was positive and highly 

significant.  

 

Sharma et al. (1999) analyzed technical, allocative and economic efficiency measures  

derived for a sample of swine producers in Hawaii using the parametric stochastic 

efficiency decomposition technique and nonparametric data envelopment analysis. 

The results from both approaches revealed considerable inefficiencies in swine 

production in Hawaii. The estimated mean technical and economic efficiencies 

obtained from the parametric technique were higher than those from DEA for CRS 
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models but quite similar for VRS models, while allocative efficiencies were generally 

higher in DEA. However, the efficiency rankings of the sample producers based on 

the two approaches were highly correlated, with the highest correlation being 

achieved for the technical efficiency rankings under CRS. Based on mean comparison 

and rank correlation analyses, the return to scale assumption was found to be crucial 

in assessing the similarities or differences in inefficiency measures obtained from the 

two approaches. Analysis of the role of various firm-specific factors on productive 

efficiency shows that farm size had strong positive effects on efficiency levels. 

Similarly, farms producing market hogs were more efficient than those producing 

feeder pigs.  

 

Mbaga et al. (2000) measured the technical efficiency of two groups of dairy farms in 

Quebec. While the actual production technology was unknown, they checked three 

commonly used functional form (Cobb-Douglas, translog, and generalized Leontief) 

along with three alternative potential inefficiency distributions (half-normal, 

truncated-normal, and exponential). To gain information about the robustness of the 

obtained technical efficiency, they also estimated a production frontier using data 

envelopment analysis (DEA) as an alternative methodology. The authors obtained 

cross-sectional data on 1143 farms that specialized in dairy production in 1996. They 

divided these farms into two groups (non-maize and maize regions) as proxies for 

differences in climate and soil quality. Their results indicated that all the correlation 

coefficients, as well as the rank correlation coefficients between the DEA scores and 

those of the parametric models, were relatively low. The average efficiency scores 

obtained from the DEA approach were 0.9215 for the non-maize region and 0.95 for 

the maize region. For the maize region, the average DEA score was similar to those 

generated by the generalized Leontief (GL) function, but scores were somewhat lower 

for the non-maize region. The DEA model showed that about 66 percent of the farms 

were classified as being over 90 percent efficient, while more than 93 percent of the 

farms fell in this category with the GL function, irrespective of the efficiency 

distribution.  

 

Wadud and White (2000) compared DEA and stochastic frontiers production function 

(SFPF) measures of the efficiency of 150 rice farmers in two villages in Bangladesh. 

For the stochastic frontier model both the one-stage and two-stage procedures were 
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implemented. The technical efficiency estimates SFPF from was lower than that from 

CRS DEA but greater than that of the VRS DEA. Efficiency rankings were however 

positive and significant. Results from both approaches indicate that technical 

efficiency is significantly influenced by factors measuring environmental degradation 

and irrigation infrastructure.  

 

Wadud (2003) assessed estimates of technical, allocative and economic efficiency of 

farms using farm- level survey data for rice farmers in Bangladesh. Results from the 

stochastic production efficiency decomposition technique and Data Envelopment 

Analysis were compared. Inefficiency effects were modelled as a function of farm 

specific human capital variables, irrigation infrastructure and environmental factors. 

The results from both approaches showed that there was substantial technical, 

allocative and economic inefficiency in production and that analysis of technical, 

allocative and economic inefficiency in terms of land fragmentation, irrigation 

infrastructure and environmental factor were robust. 

 

Premanchandra (2002) evaluated the extent to which alternative methods of 

estimation vary from one another in measuring technical efficiency. Using data from 

the New Zealand dairy industry for the year 1993, the paper calculated farm-specific 

technical efficiency estimates and mean technical efficiency estimates for each 

estimation method. The methods adopted include the stochastic frontier production 

function, corrected ordinary least squares regression (COLS) and Data Envelopment 

Analysis. The results derived show that the mean technical efficiency of an industry is 

sensitive to the choice of the production frontier method. In general, the SFPF and 

DEA frontiers resulted in higher mean technical efficiency estimates compared to the 

COLS production frontier. The resulting mean TE estimate from the SFPF production 

frontier was significantly higher than that of DEA, except under the variable returns to 

scale DEA model. The results from the DEA and SFP frontiers also indicate that New 

Zealand dairy farmers were operating nearer to or at the efficiency frontier. All three 

methods are consistent in ranking individual production units in terms of technical 

efficiency.  

 

Haghiri (2003) used a stochastic nonparametric frontier regression analysis to 

estimate and compare the technical efficiency of a large set of dairy producers in 
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Canada with their counterparts in the U.S. Using a panel data set, an iterative 

procedure called a smoothing process was used to estimate the mean response 

function and its parameters constructed in a generalized additive model (GAM). 

Using the method of locally scoring smoothing, the parameters of the regression 

function were estimated by employing two separate nonparametric techniques: locally 

weighted scatter plot smoothing (LOWESS), and spline smoothing. After estimating 

the response function and its parameters, the technical efficiency scores were 

computed. These efficiency indices were also compared with the one obtained from 

conducting a stochastic parametric (translog) frontier function using both the 

maximum likelihood estimation (assuming a half-normal distribution) and the COLS 

methods. The results show that the overall mean technical efficiency obtained from 

translog function for all regions is higher than that of the corresponding values 

obtained from the nonparametric approaches. Both parametric and nonparametric 

methodologies indicated evidence of differences between the mean technical 

efficiency of dairy farms in all regions meaning that various policies implemented in 

the two countries significantly impacted the performance of dairy producers.  

 

Jaforullah and Premanchandra (2004) estimated technical efficiency for the New 

Zealand dairy industry  using three different estimation techniques under both 

constant returns to scale and variable returns to scale in production. The approaches 

used were the econometric stochastic production frontier (SPF), corrected ordinary 

least squares (COLS) and data envelopment analysis (DEA). Mean technical 

efficiency of the industry was found to be sensitive to the choice of estimation 

technique. In general, the SPF and DEA frontiers resulted in higher mean technical 

efficiency estimates than the COLS production frontier. 

 

Alene and Manfred (2005) compared the performances of the parametric deterministic 

distance functions (PDF) and DEA with applications to adopters of improved cereal 

technology in Eastern Ethiopia. Although they found positive and significant 

correlations between the two approaches, the result from PDF was more robust when 

analysis was subjected to sensitivity to possible outliers. The results from the 

preferred PDF approach revealed that adopters of improved technology have average 

technical efficiencies of 79 percent, implying that they could potentially raise their 
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food crop production by an average 21 percent through full exploitation of the 

potentials of improved varieties and mineral fertilizer. 

 

Herrero (2005) compared four different approaches data envelopment analysis, 

stochastic production frontier, panel data, and distance function to estimation of 

technical efficiency of the Spanish Trawl Fishery that was operated in Moroccan 

water. Their findings show that the efficiency estimates were similar and highly 

correlated. Thus, they conclude that none of the methodologies can be said to be 

better than the rest; rather, the most appropriate methodology depends on the 

characteristics of the production process, the degree of stochasticity, number of 

outputs and possibility of aggregation. 

 

Johansson (2005) estimated  technical, allocative and economic efficiency scores for 

an unbalanced panel of Swedish dairy farms, using data envelopment analysis and the 

stochastic production frontier approach. The mean technical, allocative and economic 

efficiency indices for the entire period were 0.55, 0.75, and 0.41, respectively in the 

SFPF model. However, when the data envelopment analysis was applied, the 

technical, allocative and economic efficiency indices were 0.74, 0.61, and 0.45, 

respectively. Thus, the mean technical and economic efficiency indices were higher 

under DEA than under SFPF whereas the reverse was the case for allocative 

efficiency. A paired t-test results showed that the measures of technical and economic 

efficiency were significantly higher under the DEA approach while allocative 

efficiency was higher under SFPF approach. However, both SFPF and DEA provided 

similar rankings. Further results showed a positive relationship between size and 

efficiency. Finally it was concluded that the main challenge facing the Swedish dairy 

farms is to enhance their cost minimizing skills. 

 

Tingley et al. (2005) calculated technical efficiency for segments of the English 

Channel fisheries using the econometric stochastic production frontier (SPF) and the 

non-stochastic, linear-programming data envelopment analysis (DEA) methodologies. 

The influence of factors most affecting technical efficiency was analysed using an 

SPF inefficiency model and tobit regression of DEA-derived scores. While the overall 

DEA technical efficiency scores were affected by random error and thus lower that 

those of SPF, the results demonstrated that both techniques were able to produce 
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reasonable models of factors that affect efficiency. With only one exception, the 

analysis of the efficiency scores using the two methods (DEA and SPF) was 

consistent, at least in terms of direction of the effect. They concluded that based on 

the explanatory power of the models and the number, sign and consistency of 

significant variables between models, the tobit regression of DEA-derived scores are 

generally as robust as those of the comparative SPF inefficiency model and therefore, 

tobit regression of DEA-derived technical efficiency scores can be used as an 

alternative method to explain inefficiency where SPF model specification is 

problematic. 

 

Alene et al. (2006) analysed efficiency of intercropping annual and perennial crops in 

Southern Ethiopia by comparing technical efficiency predictions from parametric 

stochastic frontier production function (SFPF), parametric deterministic distance 

functions (PDF) and non-parametric DEA using different orientations. The mean 

technical efficiency from SFPF (72 percent) were lower than that obtained from PDF 

(89-93 percent) and DEA (92-94 percent). Further, SFPF gave higher technical 

efficiency variation across farms but efficiency rankings were similar for the three 

approaches. They concluded that whether stochastic or deterministic frontiers yield 

higher or lower estimates cannot be determined a priori. Testing the stability of 

technical efficiency estimates from the three approaches, they found that PDF and 

DEA are more robust than SFPF. Based on similarity of results from DEA and PDF, 

the final efficiency scores were obtained from their geometric mean. 

 

Bojnec and Latruffe (2007) investigated the determinants of technical efficiency of 

Slovenian farms by comparing results from parametric stochastic frontier production 

function and the non-parametric data envelopment analysis. They obtained consistent 

results for all the included variables except for land where the two methods produced 

contradicting result both in terms of sign and significance. They thus concluded that 

the influence of land is undetermined. 

 

Odeck (2007) compared data envelopment analysis and stochastic frontier analysis to 

assess efficiency and productivity growth of Norwegian grain producers. He found 

consistency between the approaches to the extent that there were potentials for 

efficiency improvements, but the magnitudes depend on the model applied and by 
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segmentation of the data set. However, he warned that policy-makers should not be 

indifferent with respect to the approach used for efficiency and productivity 

measurement at least with respect to the magnitudes of potential for efficiency 

improvements and productivity growth since each approach may give different 

results. 

 

3.5.2 Empirical Comparative Studies in other Sectors involving Distance 

Functions 

 

Coelli and Perelman (1999) investigated technical efficiency in European railways. 

They compared the results obtained from three alternative methods of estimating 

multi-output distance functions. Specifically they considered the construction of a 

parametric frontier using linear programming (PLP); data envelopment analysis 

(DEA) and corrected ordinary least squares (COLS). Input-orientated, output-

orientated and constant returns to scale (CRS) distance functions were estimated and 

results from these were compared. Their results indicated a strong degree of 

correlation between the input- and output-orientated results for each of the three 

methods. Significant correlations were also observed between the results obtained 

using the alternative estimation methods. The strongest correlations were observed 

between the parametric linear programming and the COLS methods. Based on 

similarity of results, they used the geometrical mean of efficiency scores from all 

model results for final ranking. 

 

Coelli and Perelman (2000) compared results from three specifications of distance 

functions estimated by COLS and two specifications of single output production 

frontiers. The study focused on the use of technical efficiency as a measure of 

performance of the European railways. The results obtained indicate substantial 

differences in parameter estimates and technical efficiency rankings, casting 

significant doubt upon the reliability of the single-output models. Therefore, their 

final preferred model was the (unrestricted) input distance function with a mean 

technical efficiency level of 0.863 and mean values for individual companies that 

range from 0.784 for Italy to 0.980 for the Netherlands.  
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Jamasb and Pollitt (2003) compared 63 regional electricity distribution utilities in the 

six European countries. To calculate technical efficiency and to consider the effects of 

choosing the variables and methods, they used six DEA, two COLS, and two SFA 

techniques of estimating input distance functions. Their results show a strong 

correlation between the non-parametric base model DEA-CRS and the parametric 

COLS and SFA models. However, they found that the mean and minimum efficiency 

scores in DEA-CRS base model were significantly lower than the other two models. 

They also found that the DEA-CRS base model efficiency scores were significantly 

lower than those of corresponding DEA-VRS and that the VRS model exhibited a 

somewhat weaker correlation with the latter model than with COLS and SFA models.  

 

Estache et al. (2004) applied DEA and econometric methods for performance 

assessment and ranking of South American electricity units. Specifically they 

estimated two parametric distance models (an input distance function and an input 

requirement function) and four deterministic nonparametric DEA models (two input 

distance functions, one with variable returns to scale and another with constant returns 

to scale, and two input requirement functions, one with variable returns to scale and 

another with constant returns to scale). Testing the internal consistency of results 

obtained from all approaches, first they found that efficiency levels from different 

approaches were significantly different. Secondly, they found high correlation 

between different econometrics as well as DEA models. However, there was low 

correlation between DEA and econometrics models. Thirdly, they found that the best 

and worst performers were identified reasonably well by all the DEA models but the 

selection of a particular SFA model was not a trial choice. They also tested the 

external consistency of different approaches by determining the year-to year stability 

of DEA and SFA efficiency estimates over time. The results suggest that the 

efficiency scores were stable over time. 

 

Cuesta et al. (2009) compared the performance of parametric stochastic hyperbolic 

distance functions with DEA in the analysis of environmental efficiency of U.S. 

electricity generating units and found that although the means and distributions of the 

models were significantly different, the ranking of the units by each model is similar. 
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3.5.3 Recent Empirical Efficiency Studies in Nigerian Agriculture 

 

Ajibefun (2002) analysed the determinants of technical efficiency of small scale 

farmers in Nigeria and the effect of policy changes on technical efficiency, using a 

Cobb-Douglas stochastic frontier production function. The result showed a wide 

variation in the estimated technical efficiencies, ranging between 0.18 and 0.91, and a 

mean value of 0.63, indicating a wide room for improvement in the technical 

efficiency. The results of simulation of policy variables showed that the level of 

technical efficiency significantly increased with rising level of education and farming 

experience. 

 

Ogunyinka and Ajibefun (2004) analysed the determinants of technical inefficiency 

among the farmers that are participating in the Ondo State chapter of the National 

Directorate of Employment program in Nigeria. They obtained an average efficiency 

score of 61 percent which translates to average inefficiency of 39 percent. Employing 

a second stage tobit regression analysis, it was found that extension visits, higher 

education, land input and membership of farm association were significant factors 

influencing technical efficiency with only extension visit having a negative influence, 

while others had the expected positive influence. The study concluded that sound 

education, efficient inputs supply strategy and public awareness of efficient 

technology are key factors necessary for policy consideration. 

 

Ogundele and Okoruwa (2004) examined technical efficiency differentials between 

farmers who planted traditional rice varieties and those who planted improved 

varieties in Nigeria using stochastic production frontier. Results showed that 

significant increase recorded in output of rice in the country could be traced mainly to 

area expansion. Other variables that contributed to technical efficiency were; hired 

labour, herbicides and seeds. The average technical efficiency was 90 and 91 percent 

for traditional and improved rice variety farmers, respectively. Further analysis 

showed that farmers in both categories were operating at a point of increasing return 

to scale. The test of hypothesis on the differentials in technical efficiency between the 

two groups of farmers showed that there was no absolute differential in technical 

efficiency between them. 
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Amaza and Maurice (2005) investigated factors that influence technical efficiency in 

rice-based production systems among fadama farmers in Adamawa State, Nigeria. A 

Cobb-Douglas stochastic frontier production function, which incorporates technical 

inefficiency model, was estimated using the maximum likelihood estimation (MLE) 

technique. Technical efficiencies vary widely among farms, ranging between 0.26 and 

0.97 and a mean technical efficiency of 0.80 implying that efficiency in rice 

production among fadama farmers in Adamawa State could be increased by 20 

percent through better use of available resources, given the current state of 

technology. The inefficiency model reveals that farming experience and education 

significantly affect farmers efficiency levels.  

 

Umeh and Asogwa (2005) analyzed the effect of some government policy packages 

on the technical efficiency of cassava farmers in Benue State, Nigeria. The study used 

the Cobb-Douglas frontier production function and assumed a truncated normal 

distribution for the inefficiency term. Cross-sectional data was used. The parameters 

of the model were estimated by the maximum likelihood estimation method. Their 

results show that majority (63.6 percent) of the cassava farmers operated close to the 

frontier production function. The estimated technical efficiency scores varied between 

31 percent and 100 percent with a mean score of 89 percent. The findings showed that 

cassava production in the state can be improved by increasing farmers’ access to 

policy packages such as extension services, market access, improved cassava variety 

and processing technology. 

 

Ogundari (2006) employed a stochastic frontier profit function to analyse 

determinants of profit efficiency among scale rice farmers in Nigeria. The obtained 

mean profit efficiency of 60 percent. The results also showed age education, farming 

experience and household size has positive and significant effect on profit efficiency. 

 

Ogundari and Ojo (2006) examined the production efficiency of cassava farms in 

Osun state of Nigeria using farm level data. The stochastic frontier production and 

cost function model were used to predict the farm level technical and economic 

efficiencies, respectively. Their results shows that mean TE, EE and AE of 0.903, 

0.89 and 0.807 were obtained from the analysis respectively meaning that TE appears 

to be more significant than AE as a source of gain in EE. 
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Okoruwa et al. (2006) analysed technical, allocative and economic efficiency of 

upland and lowland rice producers in Niger State Nigeria using a stochastic 

production function efficiency decomposition methodology. They obtained an 

average technical efficiency of 81.6 percent for upland rice and of 76.9 percent for 

lowland rice. The analysis of variance (ANOVA) was used to investigate the 

association between EE, TE and AE, and seven socioeconomic characteristics. They 

found that experience, household size, farm size, sex and improved rice variety has 

significant impact on rice farmers. Their results showed that farmers could increase 

output and household income through better use of available resources given the state 

of technology in terms of improved varieties of rice seeds.  

 

Ogundari et al. (2006) estimated a Cobb-Douglas cost frontier function in order to 

examine economies of scale and cost efficiencies of small scale maize farmers in 

Nigeria using a cross-sectional data on 200 farms. The maximum likelihood estimates 

of the frontier cost function and the inefficiency model were obtained simultaneously 

in a one-stage procedure. They obtained mean cost efficiency of 1.16 implying that an 

average maize farm in the area has costs that are 16 percent above the minimum 

defined by the frontier. About 83 percent of the farms included in the sample operated 

close to the frontier level. Farming experience and age were found to have significant 

effect on the cost efficiency of the farmers. 

 

Okoye et al. (2006) employed stochastic frontier translog cost and production 

functions to measure the level of allocative efficiency and it’s determinants in small-

holder cocoyam production in Anambra state, Nigeria. The parameters of the 

stochastic frontier cost function were estimated using the maximum likelihood 

method. The result of the analysis shows that individual farm level allocative 

efficiency was about 65 percent. The study found age and education to be negatively 

and significantly related to allocative efficiency. Farm size coefficient also had a 

negative relationship with allocative efficiency and was significant. Fertilizer use, 

credit access and farm experience was significant and directly related to allocative 

efficiency. 

 

Amos (2007) estimated a stochastic frontier by maximum likelihood method to 

examine the productivity and technical efficiency of Crustacean production in 
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Nigeria. A Cobb-Douglas stochastic frontier production function was estimated using 

primary data. Two models were tested for the presence of technical inefficiency 

effects using the log likelihood ratio (LR) test. The model without the inefficiency 

term was dropped. The technical efficiency of producers ranged between 0.45 and 

0.98 with a mean of 0.70. The result showed that age and level of education were an 

increasing function of technical inefficiency while family size and leadership role 

were decreasing functions of technical inefficiency. Although the sign of the 

education variable was contrary to the a priori expectation, the explanation given for 

this is that probably the more educated the producers are, the less time they devote to 

Crustacean production and the more time they devote to other activities such as 

politics and merchandising as a form of income diversification. This study also found 

that cost of fishing equipments and other production costs had significant influence on 

Crustacean production in Nigeria. The study therefore recommended that producers 

be encouraged to use better fishing nets and motorized outboard engines to increase 

their production.  It appears that productivity and efficiency were treated as same in 

this study as there was no evidence of measuring productivity as a separate variable. 

 

Idiong (2007) employed a stochastic frontier production function that incorporated 

inefficiency factors to provide estimates of technical efficiency and its determinants 

using data obtained from 112 small scale swamp rice farmers in Cross River State. 

The results indicated that, the rice farmers were not fully technically efficient. The 

mean efficiency obtained was 77 percent indicating a 23 percent allowance for 

improving efficiency. The result also shows that, farmers’ educational level, 

membership of cooperative/farmer association and access to credit significantly 

influenced the farmers’ efficiency positively. 

 

Adewumi and Adebayo (2008) used a cross-sectional data from 152 sweet potato 

farmers from Kwara State, Nigeria to measure the profitability and technical 

efficiency of these farmers. For estimation of technical efficiency, they assumed a 

Cobb-Douglas stochastic frontier production function and estimated the model using 

maximum likelihood method. A mean technical efficiency score of 0.44 was obtained 

showing there is considerable inefficiency among the sweet potato farmers. Farm size, 

education, access to credit, contact with extension agents were found to have 
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significant influence on technical efficiency of the farmers thus improving these 

variables could increase their technical efficiency. 

 

Ajibefun (2008) assessed the sensitivity of technical efficiency predictions to the 

choice of estimation method by comparing results from parametric SFPF and non-

parametric DEA. The SFPF mean technical efficiency (0.68) was somewhat higher 

than that from DEA (0.65) and this was explained by the fact that the DEA model 

being non-stochastic reports noise as inefficiency hence its lower mean technical 

efficiency. The study also observed dissimilar distributions of efficiency distribution. 

The study did not indicate if these differences were statistically significant. The study 

however found that both methods produced similar result for age and education 

variable with respect to the sign and significance of their impact on efficiency.  

 

Kareem et al. (2008) applied the stochastic frontiers production analysis to estimate 

the technical, allocative and economic efficiency among the fish farmers using 

concrete and earthen pond systems in Ogun State. Mean technical efficiency in the 

concrete pond system was 88percent while earthen pond system was 89 percent. 

Similarly, the allocative efficiency results revealed that concrete pond system was 79 

percent while earthen pond had 85 percent. The results of economic efficiency also 

revealed an average of 76 percent in concrete pond system while it was 84 percent in 

the earthen pond system. Further analysis revealed that pond area, quantity of lime 

used, and number of labour used were significant factors that contributed to the 

technical efficiency of concrete pond system while pond, quantity of feed and labour 

are the significant factors in earthen pond system. 

 

Oyekale and Idjesa (2009) employed the stochastic production function to analyse 

adoption of improved maize seeds and technical efficiency of maize farmers in Rivers 

State Nigeria. Their results show that use of hybrid seeds, experience, crop rotation, 

minimum tillage, fertilization and age significantly reduces inefficiency. This study 

however did not provide estimates of technical efficiency of maize farmers. 

 

Okoruwa et al. (2009) examined the relative economic efficiency of small and large 

rice farms in North Central, Nigeria. They found that the use of modern rice varieties 

significantly increases profits. Significant difference in economic efficiency between 
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small and large farms was also discovered.  Therefore, it is suggested that, to improve 

technical efficiency of rice farms, an accelerated program to provide modern rice 

varieties, fertilizer and land availability is needed. The paper provided support to 

eliminate bias distribution of production inputs to large rice farms.  

 

Ojo et al. 2009 examined the implication of resource productivity and farm level 

technical inefficiency in yam production on food security in Niger state, Nigeria using 

a stochastic frontier production function. Their findings showed the return to scale of 

1.686 indicating an increasing return to scale. The study also showed that the levels of 

technical efficiency ranged from 31.72 percent to 95.10 percent with mean of 75.64 

percent which suggests that average yam output falls 24.46 percent short of the 

maximum possible level. Their result further showed that, farmers’ educational level, 

years of farming experience and access to extension service had significant and 

positive impact on farmers’ efficiency. Thus, it was recommended that relevant 

policies that would enhance the technical skill of the farmers and access to extension 

services should be evolved by the stakeholders. 

 

Okoye et al. (2009) employed a Cobb-Douglas stochastic frontier production function 

to examine the relationship between farm size and technical efficiency in small holder 

cassava production in Ideato LGA of Imo state using data from a 2008 farm-level 

survey of 90 rural households. The study showed a strong inverse relationship 

between farm size and technical efficiency. They concluded that policies of de-

emphasizing cassava production in the estate sector while encouraging it in 

smallholdings will foster equity and efficiency. Therefore, the study recommended 

land redistribution policies targeted towards giving lands to the small-holder farmers.  

 

To conclude on the Nigerian studies, a detailed review of a meta analysis of technical 

efficiency in Nigerian agriculture by Ogundari (2009) is provided. A variety of 

sources were explored to compile the list of papers cited in the study. The analysis 

was performed with a truncated regression on a total of sixty four studies covering the 

period 1999-2008. Only studies with the application of primal- stochastic frontier 

production model were used because studies based on dual representations of the 

technology frontier as well as non-parametric (e.g., DEA) models in Nigerian 

agriculture obtained were insignificant in number. None of the studies used panel data 
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showing the dearth of panel survey in Nigeria. The study showed that 63 percent of 

technical efficiency studies in Nigeria were conducted on food crops showing the 

dominant position of this sub-sector in Nigerian agriculture. Sixty (69) percent of the 

studies used single output while 31 percent used aggregate output. Of the studies that 

employed a single output approach, only one was on maize despite the importance of 

maize in Nigeria. Cobb-douglas functional form was employed by 88 percent of the 

studies while only 12 percent employed translog form. Whereas 49 percent of the 

studies were conducted in the Southeast zone, only 12 percent of such study was 

conducted in the Northcentral zone (the intended study area for this current study). 

The results showed that mean technical efficiency (MTE) in Nigerian agriculture 

increased significantly over the years. The overall average MTE computed from all 

the studies was 0.739 which is significantly not different from 0.737 obtained by 

Bravo-Ureta et al. (2007) for African countries and 0.68 obtained by Thiam et al. 

(2001) for developing countries. This finding, however, suggests that, there is a large 

potential for improvement in Nigerian agricultural production systems, as about 26 

percent of the agricultural output in the country could be expanded without any 

additional use of inputs in comparison to what could be achieved under full technical 

efficiency.  The findings further showed that studies in the Southwest region of the 

country produced higher MTE with average of 0.842 whereas the average is 0.720 for 

Northcentral zone implying that improving efficiency and productivity in Nigerian 

agriculture might require regional specific-policy responses.  Regarding the 

unconditional effect of the choice of functional form, the study observed an average 

MTE of 0.79 for studies with Cobb-Douglas, and 0.69 for translog. In contrast, Thiam 

et al. (2001) and Bravo-Ureta et al. (2007) reported higher average MTE for studies 

with translog compared to Cobb-Douglas. The study however, found no statistical 

difference between the MTE of Cobb-Douglas and translog in this study. Study 

specific-characteristics such as sample size, number of inputs used as well as studies 

with focus on crop and livestock production were found to significantly impact MTE. 

Within the sample, seventy one observations contain quantitative results on sources of 

technical efficiency differences usually incorporating socio-economic variables. 

Based on this, fifty three percent identified educations as a significant determinant of 

technical efficiency while thirty eight percent showed that experience is important. 

Extension was shown to be an important determinant by twenty three percent of the 
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observations while nineteen percent identified age as significant determinant of 

technical efficiency in Nigerian agriculture over the years.  

 

All the above studies that compared distance function and other approaches limited 

their analysis to technical or environmental efficiency only. This is not surprising 

given the methodological complexity involved in decomposing cost efficiency into its 

technical and allocative components. Further, with exception of the Herrero (2005) 

and Cuesta et al. (2009) studies, all others considered parametric deterministic 

distance functions, thus the possibility of stochastic noise in the data was ignored. 

Given that the focus of this study is on agriculture which is well known to be affected 

by factors such as weather and macro economic factors that are beyond the control of 

farmers, the neglect of random factors may have serious implications on the study 

conclusions. Thus, the current study intends to fill these gaps by making a comparison 

of parametric stochastic input distance functions (SIDF), non-parametric data 

envelopment analysis (DEA) and conventional parametric stochastic frontier 

production frontier (SFPF) approaches to analysis of technical, allocative and cost 

efficiency and their determinants in the Nigerian maize sector. Based on the result of 

the comparative analysis an integrated model is developed for resolution of model 

selection difficulties. 
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