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CHAPTER 7

A COMPLEX SYSTEM WITH CORRELATED
FAILURES

7.1 INTRODUCTION
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Most reliability models assume the continuous operation of the
unit ( or system) until a failure occurs. However, situations may
arise where the unit (or system) needs rest after its operation for
some time [Muller, 2005]. Very few attempts have been made in
this direction. Murari and Muruthachalan (1981), Sarma (1982),
Botha (2002), Hargreaves (2003) considered a two-unit system
with a provision for rest for the system. The working and the rest
are assumed to be random variables with negative exponential
distributions. However, the idea of preparation time for the system
may prove expensive as no output is obtained from the system
during rest. This situation can be avoided in a two-unit cold
standby system by providing rest to each unit alternately and
operating the other unit when one requires rest. Further, in
repairable systems, the dependence of repair time on the failure
time of unit is a common experience of systems engineers, but this
fact has also been ignored so far by reliability researchers. Keeping
these factors in view, we analyse in this chapter a two-unit cold
standby system with independent failure and repair times, with

provision for the rest of the operative unit.

7.2 SYSTEM DESCRIPTION

1. The system consists of two identical units; initially, one is

operative and the other is kept as a cold standby.

2. After operating for a random amount of time, the operating unit
may require rest and again become fit for operation. The
operating time and rest periods are independent random
variables which are distributed exponentially.

3. As soon as the operative unit goes to rest, the standby unit

starts operation.
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. There is a single repair facility

. The repair facility is available instantaneously to repair the

failed unit. The failure and repair are distributed according to
bivariate exponential law.

Both units cannot go for rest simultaneously.

If the operative unit fails (after operating for time X =x) while
the other unit is under repair. The unit failed later is repaired
first and its repair time Y follows the bivariate exponential
density jointly with X . The repair time already spent in the
repair of the earlier failed unit is wasted and the further repair
time Y’ of this unit need not depend on x. It is assumed to
have an independent negative exponential distribution with

parameter0 .

7.3 NOTATION

Let O,S,R,F.,F, andF,, denote respectively the operative,

standby, under rest, under repair, under repair from previous state,

and waiting for repair states of the unit. With these notation, the

possible states of the system are:

Up states Down states
S, S) S, (R,F.)
S, (O,R) S, (F.,R)
S, (F.,0)

Ss (F,.F)
S, (F.,0)

(0.F,)
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The possible transitions together with the corresponding transition

probability density functions are shown in Figure 7.1

X,Y :random variables representing respectively

the failure and repair times of a unit.

f(x,y) joint pdf of (X,Y)

fay)=Au(=r)e 2 1,2 uwxy ) X, ¥, 4, > 05r<1
(7.1)

with

10(2 lurxy)=§;%
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kiy|xi

g (x)

g (x)

ux g (x)

FIGURE 7.1
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g(x),G(x) :;pdfand cdf of X

G(x)=1-e77); <.

h(y)=p(l=r)e 0, y>0

H(y)=1—-e0; Ir]<1.

k(y/x),k(y/x): :conditional pdf and cdf of y given x

k(y/x)=pe v+ 10(2 l,urxy)

k(y/x)= k(t/x)dt X, v, A, u>0,r <.

r

O C—y

u(y’), U(y") : pdfand cdf of Y', the random variable

representing the repair time of a unit whose

repair was interrupted.
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¢(u), CD(u) :pdfand cdf of the working period of a unit

(p(v),l;/(v) : pdf and cdf of the rest period of a unit.

y(v)=1-e"

q; (k,1,....) :pdf of transition time from state S, 70§,
(both  regenerative) passing through
Y Y

Ql./.(k’l """ ) :cdf of transition time from state S; 70§
passing through S, ,S,.....

Pg(;k/i ) :steady state probability of transformation

from

state S, 70§, (or first retum to state
S if j=i)
through states S,,S,,...given that the

system

entered S, after a sojourn for time x in the

preceeding state.
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l.(/.k”"") :steady state probability of transition from
state S, 705, (both regenerative) passing
through S, ,S,.,....
Py : steady-state probability of direct transition
from state S, 70§ given that the system

entered states S, after a sojourn time x in

the

preceeding state.

v,(¢) : cdf of sojourn time in state S,

7.4 TRANSITION PROBABILITIES AND SOJOURN
TIMES

We know that p, =1.

We first obtain the steady-state conditional probabilities as

follows:

P = me 1 (2 pray Je B D gy
:ﬂ’exp{—lm{l —ﬂ’ﬂ
H H

where

p=u+a+i(l-r)
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=Pso/x

Py« :O‘J‘e_[l(l_r)m]de’TH e_”j_hxl(%/l u rxy)dz
y

:m{l—ﬁexp{"”x[ _uﬂ}}

= Psax

Pasix = I)“(l - r)e_[l(l_r)M]xdy [T.ue_w_hxlo (2V)“HI’XS)er
v

=ﬁ{l—ﬁexp{—lm{l—ﬁ}}}

DPiax zje"ﬂy,ue"“y"’“x 10(2 A,urxy)dy

—).rx[l—ﬂr+[3]
_ou

Cp+p

=Pax

D35/« Zjﬁ e_ﬂde’T,Ue_“Z_Mxlo (2 l,urxz)dz
¢

= [Be " K(ylx)

i u e—).rx[l—%+ﬂ]
p+p

= Das/x
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P, zjue‘“y"l”lo(2 A,urxy)dy

Using these conditional probabilities we obtain the following

unconditional probabilities:

P :jp20/x g(x)dx

- {uﬂJ exp {— Ar x{l - %J}[(l —r)e ) ]

ul-r)
(},+,u)(1 - r)+a

=psy = (4, say)

Do :J‘m [1 —up'™! exp{— A rx(l — '™ )}]A(l —r)exp[= A(1 - r)x]dx

(l + ,u)((lx— r)+a

=ps, = (4,, say)

Similarly,

A 1-
P2 =Pse = (+‘UX 7”)

= =A
% (A+,u)(l—r)+a( 3,say)

ull-r)

wi-n=p OB

P31 =Py =
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P3s = Pas :% (EZI_B)

Per =1

The other unconditional transition probabilities are

P = 9 ;(:cl;say)
0+a +Z,(l—r)
P = - ;(:czasay)
9+a+},(l—r)
_ M=)
Prgran (i) o)
(04
 ——————————— :D
Por l(l—r)+a’ ( ,say)

Hence the non-zero elements of the transition probability matrix

p=bot ot o)
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are

Po =D, p(()zl’4) =BA2 B
pP43Y =D A, BA,
piy =D A4,

p49 =D 4, B4,
p&® = pl) =D 4,

P&t = pli* =D 4, B 4,
po=E :py’)=EB4,
pD=EB; p®*—EBA,B A,
pi* Y =p**Y =EB 4, B 4,
p34Y —EB 4, B4,

pu=C P47 =C.B4

pg‘:) =C,B, pg‘l"s’z‘) =C, Z_3A2

p§3) =Gy, p§§7576) =G, §A3
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These transition probabilities are seen to satisfy the following relations.

P+ o6+ PGt 4 )+ pg Y+ pl ) 4 p Y =1 (7.2)
o BB e
P e <) |
pro + P57+ P+ pi Y 4 pl) - pl o =1 (7.4)
The sojourn times in various regenerative states are
o = o+ A(1=7)[" (7.5)
w=[p+2(-r)]" (7.6)
w,=la+6+A1(1-r)" (7.7)

7.5 MEANTIME TO SYSTEM FAILURE

Time to system failure can be regarded as the first passage time to
the failed states S, (i:3,4,6). Considering the states as absorbing

we have, by simple probabilistic reasoning

7 di =0 (1)© 7, (1) + 0, (N© 7, (1) + 057 (1) + O (1) (7:8)
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7,(6)= 0 () ®© 7, (1) + 0 ¢) (7.9)

Taking Laplace-Stieltjes transform and solve for 7, (s), we get

N N L0 L0 0O
%, = [Q04 Ng;)s NQ%QB] (7.10)
1- 00 _Q01Q10

which gives

+
MTSF — mO(z) pOlml
1= pg’ = PuPo
where

— (2) (2) (2)
My =my +my, + My, + Mg

m, =m, +m;

and

ml(/k /) have their usual meaning.

7.6 AVAILABILITY ANALYSIS

Let 4, (t)= P [the system is up at any time t | S, att=0]

From the arguments used in the theory of regenerative processes,
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A,(0)=1g2 )+ 42+ (1)j© 4, (¢)
+ {%1 (t)+ Q(()%A)(t)*‘ qg""s"‘)(t)}@ 4, (t)
B0 a0 40

{(A-ﬁ—u)(l—r)-*—a}t

re el Lo ()©e (7.11)

A,0)=1g,,() + 57 @)+ 4539 ()}© 4, (1)
gD @)+ g (@) + ¢ ()je 4,()

+1g859(0) + ¢339 (1)} © 4, (1) + & +I*PY (7.12)

4, (0)= g (0)+ 4557 ()} © 4,(0)
+Hal )+ a5 (0)f© 4,()

n {q;? (t)+ qu;,5,6)}© 4, (t)+e_{e+a+z(1_r)}, (7.13)

Taking Laplace transforms for (7.11) — (7.13) and solving for

A, (s), we get
* N (S)
A _ N
0 (S) Dl (S)
where
N, (S)
1 (1_q(3)*ll —q(3’5’4)*11 —q(3’5’4’5’4)*11)

| ) N T T M TP T

Ty e ARG SRy I

(g2 4+ gL gl 4 glioor)
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I [(qﬂqé?“”qéf“‘”) x (g0 + g )+ (g0 + gl

+9+a+l(l—r)+s X(l_ql(l) g3 ql(f,5,4,5,4))

and

D (S)_(l_ o (245){(1 qg) ql(iﬂ q1?5454 Xl Q77 Q7A7‘56) )}_
o (afr
q

900 — 400 (4,54 Y ,(3,5,4,5,6) (3,5.,6)
71 +Q71 X% +47 )

( N (2,4) (2,4,5,4) (910 + qg Ty 910’5’4’5 Xl Q77 q% SoF )
do1 Y4901 " T 90 (35,6 3,5.4,5,6)
(Q70+Q70 X% +Q17 )

( (2,6) (2.4,5,6) (%0 +Q1(3 o +Q13546 qul +Q7T54) ) (q;o +q§3’5)*)
~\o " Ty () (3.5.4) (3.5.4,5.4)%
(1_%1 — 41 —q5 )

The steady state availability of the system is

1 1 1
U, + U, + U,
y AMl-r)+a A(1-r)+p 0+o+Al-r)
” nU, +nU, +n,U,
where
(1 3) (3,5,4) (3,5,4,5,4) Xl () (456)) ( (.56 (35456))
U = Py —PnT TP P —Pn D7 p
1
(p71) +P(454))

U, =[1-p@ = po* N1= 2% = P30 )= (03 + p5**0 N + 23 )|
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v {(1 P =P = pl = pi1oY — pl1ot0)
R

(2,4) (2,4,5,4) 3,5) (3,5,4,5)
Po+Po +Po Xp10+p10 + Pio )

kil,..
o =2y

Zm(kz .....

=S mé sk 1=2,3,4,5,6.
J

Therefore the interval availability (Sarma, 1982), for the interval

(0, ) is

4, (t)=%jA0 (1) du (7.14)

so that

A (s)=T A) 4, (7.15)
0 u

The inherent (limiting interval) availability of the system is

t—o0 s—0
0

A,(0)=1im 4, (¢) = lims” LD 4, (u)du}
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7.6 BUSY PERIOD ANALYSIS

By probabilistic arguments, we obtain the following equations for
Bile).
ﬁi(t) = P[ the repairman is busy at t | S, att=0]

Bu(1)=1{ai (1) + ai** (1))@ B, (1)
g0 (0)+ a6 (1) + g5+ ()@ B, ()

g0 () + g (1)}o B, (¢) (7.16)

B, (6) =g, (6)+ 452 () + 455 (e)}© B, (1)
g0 () + g5 (1) + g9 (1)} B, (1)

+ g8 90+ g8 (1)} B, (1) (7.17)

B, (0)=lg0(0)+ 4% }© B, (¢)

a0+ g5 (e B, (0)

+g9(0)+ g5 (O © B, )+ (7.18)
Taking the Laplace transforms for (4.16) — (4.18) and solve for

Bg (S), we get

B, (S): Y, (S)

D, (s) (7.19

where
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1
N3(S) 0+ [(QO1+QO3154 +QO315454 XQ1356 +Q135456) (1_%(1) —q\v
™+ g)

and D, (s) is same as D, (s).

Then the steady state probability that the repairman will be busy is

B =lim . ()=tim s (1) 525

x U
N3(O)=?3

The expected busy period of the repairman in (0, t] is

w, (6)= [ By () du (7.20)

so that

U,(s)= puls) (7.21)
S

and the expected idle period of the repairman in (0, t] is

i (0)=1-p,(0) (7.22)

so that

(3.5.4y
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uils)=— = pyls) (7.23)

As B, (s) is known explicitly, these quantities can easily be

calculated.

7.7 PROFIT ANALYSIS

The expected up-time of the system in (O,t] can be calculated from

the pointwise availability as

so that

wha(s)= 4,(s) (7.24)

Let k, represent the expected revenue per unit up-time
andk,, the expected repair cost per unit time, then the

expected profit in (0,7] is

G(t)=ky 1, (6) =k, 1, (¢) (7.25)

The expected net profit per unit time in the long run is
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G:nm@:ko A, — kB,

t— t

7.8 SPECIAL CASES

1. When the failure and repair times are independent; i.e.

r=0

MTSF = Ho + Doy + Pl (7.26)
1- (pozpzo + p01p10)

N
A —_1 ; =-_ =

3D, =D,

N, =p, [(1 - pzs)_ (p23p32 )]
+ 4, [(1 — P )(pm + p31)+ P (p02p31 ~PouPxn )]

+ U, [poz + Pis (p01p32 ~ PP )]

D, = u, [pzo (1 ~ P3P )_ P10P23p32]+ H [pm(l - pzs)_ P23p32]
+ 4, [poz (1 - p13p31)+ p01p13p32]

+ U, [p13 (1 - pzs)_p13p02p20]+ He [p26 (1 ~— P13 P31 — PorPo )]

N, = (.uz + P M )[p01p13p32 + Doy (1_P13P31)]+.U3 [p01p13 (l_pzs)_pozpzs]

2. When ¢(u)=w(v)=0 and then the states S,,S;,S, and S5 do

not exist. Then
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_ pu+21
MTSF = ) (7.27)
re222(-1)7]"
e
B. = i (7.29)

O(p+21)+22(1-r)

3. When there is no provision for rest and failure and repair times

are independent

MTSF = HH24 (7.30)
12

" ,u(2l + y)+ 217

}.«2

b= ,u(2l + y)+ A

(7.32)
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7.10 NUMERICAL ILLUSTRATION

When u=60 =10; a=£=0.

Table 7.1

Profit

r=-0.5 =0 r=0.5
0 100.0010 100.0911 100.1101
2 929110 93.1525 94.6616
4 79.1502 81.5612 85.0315
6 66.8816 73.6116 80.1506
8 54.1606 61.4441 69.7012
10 43.2806 53.3315 62.1111
12 40.0015 47.6106 56.0152
14 36.1585 42.6150 49.1566
16 32.6617 39.9915 45.8106
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Table 7.2

CONCLUSIONS:

Profit
A a=4,=3 a=p=0
0 100.0911 100.0911
2 90.9106 93.1525
4 77.5505 81.5612
6 67.8819 73.6116
8 62.5531 61.4441
10 53.3316 53.3315
12 49.1606 47.6106
14 44.1629 42.6150
16 42.8718 39.4915
Table 7.2
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From Table 7.1 we conclude that as failure rate increases the mean time to
system failure (MTSF) decreases. For both models as the failure rate
increases the MTSF of the system decreases but as the failure rate

continues increasing MTSF goes on decreasing.

From Table 7.2 we conclude that for both models as the failure rate
increases the profit of the system decreases but comparatively less when
the failure rate increases less; model 2 is more beneficial than model 1 and
as the failure rate continues increase the profit difference goes on
decreasing. As cost per visit of the repairman increases, the profit of the

system decreases.

To observe the effect of correlation and rest on the profit (in the steady
state), we plot the profit function against A,

setting =0 =10,k, =100 and k, =20.The curves so obtained are
shown in Table 7.1 and 7.2 respectively. In Table 7.1, in addition, we set
o = 8 =0 and obtain three different curves for profit function vs

A .Taking r=-0.5, 0.0 and 0.5 respectively. In table 7.2, we put r=0 in
addition to the values of u,0,k,,k, and obtain two different values of
profit function against A ,one

with a =4, f§ =3(i.e. when there is provision for rest) and the other with
o = 8 =0(i.e. when there is no provision for rest).

These values reveal two important facts:

1. The profit/unit time (in steady state) decreases with respect to the
increase inA. However, for the same A the profit increases with
increases in r. Thus a high positive correlation between failure and
repair times tends to increase the profit earned by the system in steady

state.
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The effect of providing rest for the operative unit depends on the
proportion of values of A andpu. Although in both cases (i.e. when
a=P=0 or whenax =4, =3) the profit decreases with increase in
failure rate, a favourable effect of providing rest is observed when only
when A>p, i.e. when the failure rate is higher than the repair rate. As
long as A <u, the provision of rest is nothing but a costly burden on the
systems manager, and when A=, the profit with or without rest is the
same, so there is no advantage in providing rest. Thus, one must avoid
providing rest as long as A < u . But since, in practice, most of the time,
the failure rate is much higher than the repair rate, a considerable increase
in profit can be obtained by providing rest to the operative unit and taking

output from the standby unit during the rest time of the operating unit.
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