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CHAPTER 6

A two unit cold standby system with non-

instantaneous switchover

6.1 INTRODUCTION
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Gopalan et al (1984) have analysed a single-server two-unit cold
standby system subject to a slow switch and have obtained
expressions for the expected switchover time of unit from standby
to operative state in (0,t] and the expected repair time of a unit in
(0,t]. Sharma et al (1986) modified that model by taking a two-unit
warm standby system and obtained several reliability
characteristics. They did not take into account the partial failure
mode. The purpose of the present chapter is to study a two-unit
cold standby system with three modes of the system subject to
slow switch. The system fails totally only through the partial
failure mode. When a unit fails partially, its repair starts
immediately and the installation of a new unit in place of a
partially failed unit remains operative. Regenerative point

technique is used for the analysis.

6.2 MODEL ASSUMPTION
The system compromises two identical units. Initially one is
operative and the other is a cold standby.
(1) Each unit is has three possible modes: normal (N), partial
failure
( P) and total failure (F).
(2) The system fails totally only through the partial failure mode.
(3) The failure and switchover times are distributed negative
exponentially whereas the repair times of units are distributed
arbitrarily.
(4) When a unit fails partially, repair of the partially failed unit
starts
instantaneously and installation of the standby for operation is
not

permitted.



University of Pretoria etd — Malada, A (2006)

state

(5) When a unit fails completely from the partially failed state,
repair

of the failed unit and installation of the standby for operation
start

simultaneously and independently.

(6) The repaired system is as good as new.

6.3 NOTATION
o, Constant failure rates from N to P and P to F modes
n Constant rate of switchover time of a unit from

standby state to operative state

f(@),F(t) pdfand cdf of repair time of a unit from P state

g(®),G(?) pdfand cdf of repair time of a unit from F state

Symbols for states of the system

N,,N; system operative in N mode

P, unit operative in P mode and under repair mode

F unit in F mode and under repair

F, unit in F mode and its repair continued from earlier
F, system in F mode and waiting for repair

bso standby being switched over

Thus the following states are possible:
S, =(Ny,N5); S, =(P,,Ns); S, =(F,,bso);
S3 = (NsabSO);S4 = (FR aNo);Ss = (FW,PW);
S6 = (Fr’NO);S7 = (Fr’F'w)’

Up states-§, §,,S, — S,;down states- S, S, 5.
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The underlined states are non-regenerative. Possible states and
transitions are shown

in Figure 6.1.

6.4. TRANSITION PROBABILITIES AND SOJOURN
TIMES

Let T, (= 0),7,,... denote the epochs at which the system enters any

state S, € Eand X, be the state visited at time 7,

n+ 2

i.e. just after
the transition at 7. Then {X,T,} is a Markov renewal process
with state space. Let

0,6)=P X, =T, T.X =i

n+T"n<t“"n
then the transition probability matrix of embedded Markov Chain

1S
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by _ nGla)-aGln)]
25 9
(n-a)

P56=1_P57=ﬁ(ﬁ)’ P60=1_P65=G(a)'

Evidently,
Ry + P, =1L, P; + P, =1,P, + PWy + Py =1,

P+ Py =1,P, +Fs =1.

Mean sojourn times u, in state S, are

L _=FB)
.Uo—aa.ul—.us_ B )
Hy = 1—5(77) > Hs :l,

n n
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Figure 6.1
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6.5 TIME TO SYSTEM FAILURE

Time to system failure can be regarded as the first passage to the
failed state. To obtain it we consider down states as absorbing. We

obtain the following recursive relations for 7, (t) , the cdf of time

to system failure when the system starts from state S,

7(0)= 0 () © 7, (1) (6.1)
ﬂl(t):Qlo(t)@)ﬂo(t)"'Qu(t) (6.2)
ﬂs(t)zgss(t)©”6(t)+Q57(t) (6.3)
776(t):Qso(t)@)”o(t)+Q65(t)©775(t) (6.4)

Taking Laplace-Stieltjies transforms of equations (1)-(4) and

solving for 7, (s), we have

Qméz(l - Qsiééi)
- Qleo XI - Q56Q65)

7?0(5)2 (1

- (—)Q%Qz , 6.5)
1- Q01Q10

where, for brevity, the argument ‘s’ is omitted.
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The mean time to system failure (MTSF), when the system starts

from S, is

MTSF = E(T) _ [D; ((2_((])\;; (O)] (“0];:'2.“1 ) (6.6)

6.6 AVAILABILITY ANALYSIS

Let M, (¢) be the probability that the system which started from
state S, has reached time ¢ without making any transition into any

other regenerative state belonging to E. By probabilistic

arguments, we have

From then theory of regenerative process, the pointwise

availabilities 4, (t) of a system which has started from a given

regenerative point are seen to satisfy the following recursive

relations:

Ao(t):Mo(t)+%1(t)©A1(t) (6.7)
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Al(t):Ml(t)"‘%o(t)@Ao(t)"'%z(t)@Az(t) (6.8)

4, (t): 920(4)(t)© 4, (t)"' 9 (t)© A4, (t)"' %5(4)(t)©A5 (t) (6.9)

4(0) =43 (1)© 4, (1) (6.10)
As(t): MS(t)+q56(t)©Aé(t)+q57(t)©A7(t) (6.11)
As(t): Ms(t)+%0 (t)©A0(t)+Q65 (t)©A5(t) (6.12)
4;(t)= (1) © 4, (¢). (6.13)

Taking Laplace-transforms of equations (6.7)-(6.12) and solving

for 4, (s) we have

* NI(S)
A% = D) (6.14)
Mo(t)z e

Where
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Ny ()= (1= q2q0s — 3% a5 )< (M + oM7)
v ananai) < (M7 +qi M)

D,(5)=(1-glqis - xa503 )x (1= gq7,)
~qndn [(1 ~ G56qes )X (q;(()4) + qg}q;o)*‘ 612561;66120]

The steady-state availability of the system is

4, =lims Ag(s)zﬂ

s—0 !

(6.15)

N, Z(I_Psspss _P2(54)P57X.u0 +P01H1)+P01Plzpz(54)(“1 +Pss.us)

’ 0/
D, Z(.uo +H1)(1_Psspss _Pzips7)+P12(l_P56P65){%+P23.u3}+

P12P2(54)(au1 + Pyl + Ps7.U7)

6.7 BUSY PERIOD ANALYSIS

As defined earlier, B, (t) is the probability that the system is under
repair at time ¢ given that the system entered regenerative state s,

at ¢ = 0. By probabilistic arguments we have

By(t)= 9, (t)© B, (¢) (6.16)
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B,(t)=W,(t)+4,,()© B, () + 4, (t) © B, (¢) (6.17)
B() =W, (1) + 40 © B, (1) + 4., (1)@ B, (1) (6.18)
+ q§2)©35 (t)

By(t)= 45, (1)© B, (1) (6.19)
Bs(t):Ws(t)+%6(t)©Bé(t)+%7(t)©B7(t) (6.20)
By (t) =W (t)+ 9o (t)© B, (t)+ 965 (t)© B (t) (6.21)

B, (1)=W,(t)+4,,(1)© B, (1) 6.22)

where

Taking Laplace-transforms of relations (6.16)-(6.22) we have
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By(s)= 10 (6.23)

where

Nz(s)zqgl (1—61;6125 —613561;761;z)>< VVI* +6151611*z
[(1 ~ G565 )Wz* + q;:(s4)(W5* +qsWe +qs W )]

In the long run, the fraction of time for which the system is under

repair is given by

B, =lim B, (¢)=lims B, (s):ﬂ

t—o s50 !

(6.24)

where, in terms of

w; (0) = Hs,

w; (0) _ (Ws —al, )

m-a) ~

we have
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N, = (1 — Pis Bys _P2(54)Ps7 ).ul
+ [(P2(54)(H1 + P g + Ps7.u7)+ (1 — Pis Ps )(W6 — O, ))]Plz

6.8 EXPECTED NUMBER OF VISITS BY THE
REPAIRFACILITY

We define V,(¢) as the expected number of visits by the repairman
in (O,t] given that the system initially starts from regenerative
states S,. By probabilistic arguments, we have the following

recursive relations:

Vo(6)= 0y (e)O[1+7,(¢)] (6.25)
()= 0,(0)er,6)+0,(e)or, () (6.26)
v, (e)=

Q20(4) © Vo (t)"' Q23 (t)© V3 (t) + Q(4)25 (t)© Vs (t)(6~27)

V,(1)=0, ()07, () (6.28)
V(1) = 05 () © V(1) + O, (1) © V5 ¢) (6.29)
Vé(t):Qso(t)©V0(t)+Q65(t)©V5(t) (6~30)

V()= 0, (t)or,() (6.31)
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Taking the Laplace-Stieltjes transforms of the above equations and

solving for ¥, (s), we have

AN
—~
[
~—
I\.)D uaz
|
L | \1
~——

(6.32)

where
N3 (S) = Qm (1 - Q56§65 - §25(4)§57§72 )

Dz (S): (1 - §56Q65 - §25(4)§57§72 Xl - émélo )
- émélz [(1 - éss éss X§20(4) + én éw )+ §(4)25 stésa ]

In the steady state, the number of visits per unit time is given by

v, = limVO—(t) =lims* ¥, (s):ﬂ, (6.33)

5o ¢ 50 4
where
N, = (1= PP - P,YP,).
6.9 SWITCHOVER ANALYSIS

We define 7,(¢) as the probability that the standby unit being
switched is under switching device in (0, t] , given that the system
entered regenerative state S, at¢ = 0. By probabilistic arguments,

we have

1,(t)=q,(1)©1,(2) (6.34)
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1,(6)= 4, ()0 1,(t) + 4., ()0 1, 1) (6.35)

+a," (O 1) (6:36)
L(0)= H,(t)+ 45, (1) © 1, (1) (6.37)
I5(6)= 45, (1) 0 I, (1) + 45, () © 1, 1) (6.38)
I4(t)= 460 () O 1, (1) + 455 (1) © 1, 1) (6.39)
1,(t)= 4, ()0 1,(¢) (6.40)

where
H,(t)=e"G(t),

H3(t): e M.

Taking the Laplace-transforms of relations (6.34) — (6.40), we have

Io(s) =2 ), (6.41)

N, (S):q*mq*lz (1 - qsé*qés*XH*z + q*z3H3*)
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In the steady-state, the fraction of time for which the system is

under switch activation is given by

I, =lim7,(¢) = limsI*o(s)= Ns

t—0 s50 !

(6.42)

where, in terms of

Hz*(o)z.uza

H*3(0)= Hs,

we have

N, :Plz(l_PssPss)(.uz +P23.u3)~

6.10 COST ANALYSIS

(1) The expected uptime of the system in (O, t] is

A, (u )du

* J—
Howp =

O C—y
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so that

A*O(S)

Wls)= (6.43)

(2) The expected duration of the repairman’s busy time in (0, t] is

so that

wh(s)= (s) (6.44)

so that

w'i(s)= (s) (6.45)

The expected total cost (gain) incurred in (0,] is

G(t) = Cl.uup (t)_ C,u, (t)_ GV, (t)_ C4.u1(t) (6.46)
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where C, is the revenue per unit up time, C, is the cost per unit for

which the system is under

repair, C, is the cost per visit by the repairman and C, is the cost

per unit time for which the
system is under switch activation device.
The expected profit per unit time in the steady state is

fim mzlimszG*(s)
t—>o t §20

G =

=C A, —C,B, - C,V, - C,I, (6.47)
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