
Chapter 5

RELIABILITY STOCHASTIC OPTIMIZATION 

WITH BRANCH AND BOUND TECHNIQUE

An Application of Stochastic Programming with 

Branch and Bound technique - n stage series system 

with m chance constraints.

A modified version of this chapter is submitted to South African Journal of 

Science.

5.1 INTRODUCTION
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In the past three decades, numerous reliability optimization 

techniques have been proposed (Tillman et al 1977, 1980, Kuo et 

al. 1987, Chen 1992). Stochastic programming models for general 

redundancy-optimization problems have been studied by (Zhao et 

al 2003). Stochastic programming models arise as reformulations 

or extensions of reliability optimization problems with random 

parameters. Moreover, the resource elements vary and it is 

reasonable to regard them as stochastic variables. Problems in this 

area are not easy to solve. Most researchers in this area 

concentrated on developing approximate solution methods as 

optimal solutions. However, efficiency in the complex theoretical 

aspect is usually not considered. Quality statements mostly remain 

restricted to convergence to an optimal solution without 

accompanying implications on the running time of the algorithms 

for attaining most accurate solutions. Very recently the complexity 

of stochastic programming problems has been addressed, 

confirming these problems are harder than most combinatorial 

optimization problems.

This chapter addresses chance constrained reliability stochastic 

optimization (CCRSO) problem. Chance constraint programming 

technique has been first proposed by (Charnes and Cooper, 1954).

The objective is to maximize system reliability for the given 

chance constraints. A methodology is illustrated to determine 

optimal solutions to n stage series system with m chance 

constraints of the redundancy allocation problem. Various cases of 

randomness have been discussed with known distributions like 

Uniform, Normal, and Log-normal distributions, when the resource 

variables are random. Once the real number solution is obtained 

using the technique of chance constraint, the B&B technique is 

used to obtain the integer 
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solution. In this chapter, a 4-stage series system with two chance 

constraints is numerically illustrated for the redundancy allocation 

problem.

This chapter has been organized as follows, stochastic integer 

programming problem for n stage series system with m chance 

constraint discussed and then the required algorithm to get integer 

solution is provided along with numerical example, which 

illustrate the model effectively. 

1.1 Stochastic Integer Programming (SIP): n Stage Series 

System

 with m Chance Constraints

The chance constraint optimization problem for n stage series 

system with m chance constraint can be formulated as

Max Rs(X) = ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 (5.1)      

Subject to,  ( ) 1 iiiP g x b α  ≤ ≥ − ,   i = 1, 2, …, m;  1jx ≥ , j =1, 2, …, 

n, where resource vector b is random in nature,

Rs - reliability of the system

,j jqr - reliability, unreliability of components j; 1j jqr + ≡

jx - number of components used at stage j

( )ig x -chance constraint i

ib - amount of resource i available (random

iα - level of significance. 
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5.1.1 Case 1:  b follows uniform distribution

Let ib ∼U ( )ii ul , , the constraint in system (1) is equivalent 

to ( ) iig x τ≤ , where 1 iiβ α= − ,

i

ui

i
i i

dx
u l

τ

β
 

= 
− ∫

i i i iiu lβτ α= + .

Hence, the deterministic equivalent of system (5.1) is:

MaxRs(X)= ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 

(5.2)

subject to

( ) i i iiig x u lβα≤ + ,   i = 1, 2, …, m;  1jx ≥ , j =1, 2, …, n.

5.1.2 Case 2:  b follows normal distribution
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Let ib ∼ ( )2, biibN σ  , where 2, bb ii
µ σ are mean and variance of the 

normal random variable ib . Using the ith chance constraint of the 

system (5.1), restate the chance constraint as ( ) 1 ii iP g xb α ≥  ≥ − ,   

i = 1, 2,…, m, this expression can be further stated as 

/( )/ 1( ( ) )
ii bb i ibb i ii gP xb µµ σσ α 

 −− ≥ ≥ − ,  i =1, 2, …, m. 

Using the cumulative density function of the standard normal 

random variable, it can be simplified as:

/1 [ ] 1( ( ) ) bi ibi ig x µ σ α−− ≥ −Φ ,   i=1,2,…, m, 

where

21( ) exp .
2 2

z tz dt
π −∞

 
= ∫  

 
Φ

This can be further simplified as 

/[ ]( ( ) ) ( )bi ib ii
g x K αµ σ− ≤Φ Φ − , i =1, 2, …, m.

The chance constraint can be transformed into deterministic 

constraint as 

( )i iii bbg x Kαµ σ≤ − , i =1,2, …, m.

Hence, the deterministic equivalent of system (1) is:

MaxRs(X)= ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 (5.3)
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subject to

( ) bbi iii
g x Kαµ σ≤ − , i = 1, 2, …, m;  1jx ≥ ,  j =1, 2, …, n.

5.1.3 Case 3:  b follows log-normal distribution

Let ib ∼ ( )2, IILN σµ , where 2, iiµ σ are the mean and variance of 

the log normal random variable ib . Using the ith chance constraint 

of the system (5.1), we restate the chance constraint as

( ) 1ln lni iiP gb x α ≥ ≥ −  ,   i = 1, 2, …, m.

This expression can be further stated as 

( )/ 1/ln ln( ( ) ) iiii ii iP b g xµ µσ ασ − ≥ ≥ −−  ,  i =1, 2, …, m. The 

following deterministic ith constraint is obtained by similar 

arguments made in case 2.

( ) exp( )iiiig x Kαµ σ≤ − , i =1, 2, …, m. 

Hence, the deterministic equivalent of system (1) is:

MaxRs(X)= ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 (5.4)

subject to
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( ) exp( )iiiig x Kαµ σ≤ − , i = 1, 2, …, m;  1jx ≥ ,  j =1, 2, …, 

n.

5.2 General Algorithm

1. Convert the deterministic form of chance constraint into a linear 

constraint, adopting the technique of sequential linear 

programming (Rao 2000, Jeeva et al 2002,2004 , Charles and 

Dutta, 2003).

2. Code any one of the system (5.2) – (5.4) along with respective 

linearized constraint in MATLAB or LINGO and generate optimal 

solutions by inputting initial values using random function (in later 

stages one can use the existing real solution to generate integer 

solution using the step below given).

3.  Apply the branch and bound algorithm given below to get 

integer solutions.

5.3 Branch-and-bound (B&B) technique

The B&B technique for CCRSO for stochastic optimization is 

given below:
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1. Solve the problem as if all the variables were real numbers i.e. 

not integers, using the general algorithm given above. This 

solution is the upper bound (for maximization problem) of the 

CCRSO problem.

2. Choose one variable at a time that has a non-integer value, say xj

and branch that variable to the next higher integer value for one 

problem and to the next lower integer value for the other. The real 

valued solution of the variable j can be expressed as xj = [xj] + xj
*, 

where [xj] is the integer part of xj and xj
* is the fractional part of xj, 

0< xj
*<1. The lower bound and upper bound constraints of the two 

mutually exclusive problems are xj = [xj] and xj = [xj] + 1, 

respectively. Add these two constraints to both branched problems.

3. Now the variable xj is an integer in either branch. Fix the integer 

of xj for the following steps of branch-and-bound. Select the 

branch that yields the maximum objective function with all 

constraints satisfied. Then repeat step 2 on another variable xk ≠ xj 

for each of the new sub problems until all variables become 

integers.

4. Stop the particular branch if the solution is not satisfying the 

constraints of the original problem else stop the branch when all 

the desired integer values are obtained.

5.4 NUMERICAL EXAMPLE

Example 1
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A four-stage system with chance constraints is formulated as a 

pure stochastic integer programming problem using the data given 

in table 5.1. The decision variables, X = (x1,…,x4), are the number 

of redundancies at each stage. The problem is formulated as in 

Case 1.   

Table 5.1: Data for Example 1

Stage, 

j

1 2 3 4

rj 0.75 0.80 0.75 0.85

Available

Resource

li ui iα

c1j 1.5 3.3 3.2 4.4 b1 50 60 0.10

c2j 4.0 5.0 7.0 9.0 b2 110 140 0.15
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Table 5.2: Solutions for Example 1

With the data given in table 1, the real solutions are obtained using 

the general algorithm, which is exhibited in table 2. This paper 

suggests that the real solution be further elaborated by the B&B 

technique. Let us take one solution X = (11.3697, 7.6831, 1.3097, 

1.0000) from Table 5. 2. Now the integer solution is obtained using 

B&B technique. The following figure 1 gives clear picture about 

B&B network.

 

Initial guess (obtained using 

rand())

S.

No.

x1 x1 x2 x3

x1 x2 x3 x4 Rs(X)

1 1.9501 1.2311 1.6068 1.4860 7.7656 9.5884 1.0344 1 1

2 1.8913 1.7621 1.4565 1.0185 10.857 8.2167 1 1 1

3 1.8214 1.4447 1.6154 1.7919 8.4843 8.6375 1 1.4931 1

4 1.9218 1.7382 1.1763 1.4057 7.7650 6.2088 1 1 0.9999

5 1.9355 1.9169 1.4103 1.8936 10.226 7.5664 1 1.7028 1

6 1.0579 1.3529 1.8132 1.0099 11.370 7.6831 1.3097 1 1

7 1.1389 1.2028 1.1987 1.6038 10.706 8.0460 1 1.1794 1

8 1.2722 1.1988 1.0153 1.7468 10.125 7.9687 1 1.4356 1

9 1.4451 1.9318 1.4660 1.4186 12.011 6.5778 1 1 1

10 1.8462 1.5252 1.2026 1.6721 9.3136 8.5091 1.0046 1.3034 1
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Figure 5. 1: A B&B Network Representation for Example 1

P1 : x1 =11.3697; x2 =7.6831; x3 =1.3097; x4 =1.0000; R=1.0000

P11 : Fathomed

P12 : x1 =11.1175; x2 =7.1284; x3 =2.0000; x4 =1.0000; R=1.0000

P121 : x1 =11.1175; x2 =7.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P122 : x1 =9.2000; x2 =8.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P1211 : x1 =11.0000; x2 =7.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P1212 : Fathomed

P1221 : x1 =9.0000; x2 =8.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P1222 : Fathomed
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Alternative optimal integer is obtained from the B&B process, X = 

(11, 7, 2, 1) and X = (9, 8, 2, 1). 

5.5 CONCLUSION

The combination of the chance constraint technique and the B&B 

technique takes advantage of an exact method and enumerative 

method. In this paper the chance constraint technique, using 

MATLAB program, quickly reaches real solutions that is close to 

optimum. In addition, the B&B technique generates many sets of 

integer solutions. The competitive alternatives provide the 

management with several options and flexibility. Since a good 

approximation is obtained by the chance constraint technique, it 

does not take many branches for the B&B technique to reach the 

integer solution. The B&B algorithm given in this paper can be 

directly applied to the mixed integer stochastic programming 

problem (MISPP). For MISPP, only the integer variables need to 

be enumerated by the B&B procedure. The real variables are free 

of restriction after each step of the B&B technique.  
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