
CHAPTER 3

AN n UNIT SYSTEM OPERATING IN 

A RANDOM ENVIRONMENT

A modified version of this chapter has been published in OPSEARCH, Vol.42, No.3, 

169-176, 2005.
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3.1 INTRODUCTION

In the probabilistic analysis of multi-unit redundant systems it is 

usually assumed that a constant number of units perform the 

system operation at all times. However, we have situations in 

which this assumption is not true. For example, to increase the 

thermal power plant availability, an additional induced draft fan 

(ID fan) may be installed in 200 MW sets, though two ID fans are 

normally used to handle flue gas and fly ash during full load 

operation of the plant, i.e., the load on a system may change 

randomly (see Das and Acharya, 1988). Again, in a 

telecommunication network, the success of sending a message 

from an origin to a destination depends upon the existence of at 

least one path connecting the origin to a destination depends upon 

the existence of at least one path connecting the origin with the 

destination with all units determining the path in the operable state. 

Therefore, the number of units required for sending the message 

successfully at any time is determined by the availability of units 

in the intermediate stations and the locations of the origin and 

destination. Hence the number of units required for the satisfactory 

performance of the system may depend on the environment in 

which the system is functioning and the environment is also 

changing with time.

Sharafali et al (1988) have considered a two-unit n system with 

similar assumption and obtained expressions for the mean time to 
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the first disappointment and expected number of disappointments 

in an interval. (see Limnios and Cocozza (1992)).

An attempt is made in this chapter to study a system consisting of 

n units with the assumption that the number of units required for 

the satisfactory performance of the system at any time t is 

prescribed by 

the state of a randomly changing environment described by a 

Markov process {Y (t): t ≥ 0}. The model is discussed in detail in 

the following section.

3.2 THE MODEL AND ASSUMPTIONS

The system under consideration is an n unit system with a single 

repair facility. Precisely; the assumptions of the model are as 

follows:

(i) There are n identical units in the system, which are 

statistically independent. The failure rate of an operable 

unit during the need period is a constant.

(ii) The environment determining the number of units required 

for the satisfactory performance of the system at any time t 

is a Markov process {Y(t): t ≥ 0} with the state space 

{0,1,2,…,n}.It may be noted that the environment process 

is independent of the system behaviour.

(iii) The infinitesimal generator of the environment process { Y 

( t ) : t ≥ 0 } is given by:
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(iv) If any time t, Y (t ) =  i, then  i ( i = 0,1,….,n) of the n 

identical units are online (if operable) and the remaining 

operable units will be kept as warm standbys. These i units 

which online behave like a series system.

(v) Whenever an online unit fails a standby unit if operable is 

switched online instantaneously.

(vi) A unit in standby can also fail and its failure rate is a 

constant.

(vii) The failed units are taken up for repair in FIFO order.

However, a repair for a failed unit cannot commence, when 

the environment process is in state zero. Repair is perfect 

and the repair rate is a constant ‘μ’.

(viii) Whenever the number of units in the operable state is less 

than the number of units required at that instant of time for 

the satisfactory performance of the system, the system 

enters the down state.

(ix) When the system is in the down state, an operable unit 

cannot fail.
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3.3 THE NOTATION

n number of units in the system

a constant failure rate of an operable unit 

during the need period

b constant failure rate of a standby unit ( b < a 

)

μ constant repair rate of a failed unit

{Y (t): t ≥ 0} state of the environment process that 

determines the number of units required for 

the satisfactory performance of the system

Matrix A the infinitesimal generator of {Y (t): t ≥ 0}

( )tX number of failed units in the system at time t

E and Q respectively the state space and infinitesimal 

generator of the Markov Process 

{(X (t), Y (t)): t ≥ 0}

3.4 STATE OF THE SYSTEM

Let X (t) represent the number of failed units at time t and Y(t), the 

number of units required for the satisfactory performance of the 
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system at time t. Clearly {(X (t), Y (t)): t≥0} is a Markov Process 

on the state space:

E = nEEEE UUUU ...210

where

iE = {(i , 0),( i , 1),…,( i , n)}, i = 0, 1, 2,. . ., n.

Let ( )je∆ be diagonal matrix of order (n + 1) with the first leading

(j + 1) diagonal elements being the integers 0, 1, 2,…, j and the 

remaining elements zero. That is:

( ) =∆ je diag (0, 1, 2, j -1, j, … , 0, 0, 0), j = 1,2,…,n

Also, let ( )
i

f∆ be a diagonal matrix of order (n + 1) with the first 

leading ( n-i+1) diagonal elements being the integers 

(n – i) , (n – i – 1), (n – i – 2), . . ., 2, 1, 0 and the remaining 

elements

( n-i). that is:

( )
i

f∆ = diag (n – i, n – i – 1, n – i – 2, . . ., 2, 1, 0)

Then, the infinitesimal generator of this process is easily seen to 

be:

 njo EEEEE ......21
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  (3.1)  

where the partitioned matrices ijQ~ are given by:

00
~Q = A – a ( )ne∆ –b ∆ ( )

0
f , 

nnQ~ = A – μI

iiQ ,
~ = μI  for i = 1, 2, . . ., n,

iiQ ,
~ = A – μI – a ( )ine −∆ – b ( ),

i
f∆

( ) ( )
iinii fbeaQ ∆+∆= −+1,

~

and

jiQ ,
~ = 0, for other values of i and j.

It may be noted that Q is a square matrix of order (n + 1)2 × ( n + 

1)2. Let
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( ) ( ) ( ){ } njijtYitXtp ij .,..,2,1,0,;;Pr ====

represent the probability that the system is in state (i, j) at time t. 

Also let:

.

 

To derive an expression for ( )tp , we note that ( )tp satisfies the 

Kolmogorov equation which leads to:

( )
( ).Qtp

dt
tpd

=

Solving this differential equation, we obtain:

( ) ( ) Qt.e0ptp = (3.2)

where

( )0p is the vector of initial state probabilities.

3.5 STATIONARY DISTRIBUTION

Let ( )nππππ ...,,,, 210=π where ( )knkk πππ ...,,1,0=kπ for

k = 0, 1, 2, n is the stationary distribution corresponding to the 

Markov process {(X (t), Y (t)): t ≥ 0}. This is the solution of the 

equation:

( ) ( ) ( ) ( )( )tptptp nm,, 0100=tp
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0Qπ = (3.3)

with

1
0

=∑
=

e
n

k
kπ (3.4)

where

( ) .1,1,1 T=e

Equation (3.3) gives:

( ) ( )( ) 0100 =+∆−∆− πµπ fbeaA n  

(3.5)

( ) ( )( ) ( ) ( )( ) 0211100 =+∆−∆−−+∆+∆ − πµµππ fbeaIAfbea nn  

(3.6)

( ) ( )( ) ( ) ( )( ) 03222111 =+∆−∆−−+∆+∆ −− πµµππ fbeaIAfbea nn

(3.7)

…

 

( ) ( )( ) ( ) ( )( ) 0
111222 =+∆−∆−−+∆+∆

−−−− nnnnn fbeaIAfbea πµµππ (3.8)

( ) ( )( ) ( ) 0
111 =−+∆+∆

−− IAfbea nnn µππ  

(3.9)
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Addition of all these equations in (3.5) – (3.9) yields 

( nπππ +++ ...10 ) A = 0. These, together with equation (3.4) 

implies that ( nπππ +++ ...10 ) must be the invariant measure of 

the Markov process {( X(t),Y(t)):t ≥ 0} with the generator A. 

Assume that a possess the invariant measure and let it be η. Hence:

ηπππ =+++ n...10 (3.10)

We can express nπππ .,..,, 10 in terms of 0π by solving 

(3.5) – (3.9). Using equation (3.10), we can get explicit expression 

for ( nπππ .,..,, 10 ).

3.6 TIME TO THE FIRST DISAPPOINTMENT

The system is said to be in a state of disappointment if the number 

of operable units at any time is less than the number of units 

required for the satisfactory performance of the system at that 

instant of time. i.e., 

n – X (t) < Y (t). In other words, X (t) + Y (t) > n.

Clearly, the set of states of disappointment is:

D ={(1,n), (2,n-1), (2,n), (3,n-2), (3,n-1), (3,n), (n,1), (n,2), (n,n-1), (n,n)}

Let U be the set of upstates, which is the complement of D. By 

suitably altering the rows and coloumns, we can partition the 

matrix Q as:
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Let TD represent the time to the first disappointment. To obtain the 

distribution of the random variable TD, we lump together the states 

of disappointment of the Markov Process {(X (t), Y (t)): t ≥ 0} into 

a single absorbing state D. We obtain the absorbing Markov 

Process with generator:

Q ′  =  







00

eBQ DU (3.12)

Let us assume that the process starts in a state in U and so let 

( )0~
UP be the row vector of the initial state probabilities 

corresponding to this situation. Now the time to the first 

disappointment is the same as the time to absorption in the Markov 

process with the generator Q′ given in (3.12). If GD(t) is the 

distribution function of the random variables TD, then:

GD(t) = 1- ( ) TQ
U

UeP 0~ e ,t>0 (3.13)

It may be noted that the distribution function GD(t) given in (3.13) 

corresponds to the distribution function of a continuous PH-

distribution with representation ( ( ) UU QP ,0~ ) (See Neuts, 1981).

 The raw moments are given by:
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( ) ( ) ( ) 2,1,0,0~!1 =−= − keQPkTE k
UU

K
D (3.14)

3.7 MEAN NUMBER OF DISAPPOINTMENTS

To derive an expression for the mean number of disappointments 

in an arbitrary interval (0, t], we consider the point process 

generated by the events corresponding to the occurrence of a 

disappointment. Let hD(.) be the first order product density of a 

disappointment (See Srinivasan, 1974). Then hD(t)dt is the 

probability that a disappointment occurs in 

( t, t + dt). By considering the various possibilities of entering into 

the states of disappointment, we have:

( ) ( ) ( ) ( )tPtipath ji

n

j

jn

i

j

k
kjni

n

i
iinD ∑∑∑∑

=

−

= =
+−

=
− +=

1 0 1
,

1
, λ (3.15)

 where ( )tPij can be obtained from (3.2).

The above result is in agreement with Chandrasekhar and 

Natarajan (1999). It may be noted that )(thD given in (3.15) is 

independent of the constant failure rate b of the standby unit.

The expected value of N (D, t), the number of disappointments in 

(0, t] is given by :

( )[ ] ( )duuhtDNE
t

D∫=
0

, (3.16)

3.8 MEAN STATIONARY RATE OF DISAPPOINTMENTS
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 The mean stationary rate of disappointments is given by:

( )[ ] ( )thtDNE Dt ∞→
= lim,

 and can be easily obtained from (15) by replacing pki(t) by π ki.

3.9 CONCLUSIONS

This chapter is a study of a more general system in the sense that

the results corresponding to several systems can be deduced as 

special cases as shown below.

3.9.1 Two unit system

 For n = 2, we have:

( ) ( ) ( ) ( ) ( ) ( )tptpatptapthD 200111210022 λλλ ++++=

 This result is in agreement with Sharafali et al. (1988).

3.9.2 Intermittently used n unit standby redundant system

( Yadavalli,1982)

 

We observe that the results corresponding to an intermittently used 

n unit standby redundant system can be obtained as a particular 

case of the model discussed in this paper by taking the state space 

of the stochastic process{Y(t): t ≥ 0} to be consisting of only two 
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states 0 and 1 representing the ‘need’ and ‘no need’ states 

respectively.
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