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CHAPTER 2

A STUDY OF A TWO UNIT PARALLEL SYSTEM WITH 

ERLANGIAN REPAIR TIME

A modified version of this chapter has been published in Bul.Al.Math.soc, vol.19, 2005
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2.1 INTRODUCTION

In order to improve the reliability, availability, quality and safety 

operational systems the well known tools to be used are redundancy, 

repair and preventive maintenance, etc. (Birollini et al, (1994)). Most of 

the past studies of reliability systems are confined to obtaining expressions 

for various measures of system performance and do not consider the 

associated inference problems. Chandrasekhar and Natarajan (1994), 

Yadavalli et al (2001), (2002) have considered a two unit parallel system 

and obtained exact confidence limits for the steady state availability of the 

system, when the failure rate of an operative unit is constant and the repair 

time of the failed unit is a two stage Erlang distribution. The Bayesian 

methods for these problems were subsequently studied by Yadavalli et al 

(2003).

In general, the failure- free time and repair time are independent random 

variables. Thus there is need to study a model by relaxing this imposed 

condition. An attempt is made in this paper to study a two-unit parallel 

system, wherein the failure rate of a unit is constant and the repair time 

distribution is a two Erlangian distribution under the assumption that an 

operative unit has a zero failure rate if a failed unit is in the second stage 

of repair. Apart from expressions for the system reliability, MTBF, 

availability and steady state availability, we obtain a CAN estimator and 

an asymptotic confidence interval for the steady state availability of the 

system and the MLE of the system reliability.
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2.2 MODEL AND ASSUMPTIONS

The system under consideration is a two unit parallel system with a single 

repair facility, subjected to the following assumptions:

(i) The units are similar and statistically independent. Each unit has a 

constant failure rate λ.

(ii) There is only one repair facility and the repair time distribution is a 

two stage Erlangian distribution with probability density function 

(p.d.f) given by

( ) ( ) 0,2 22 yeyg yµµ −= < y < ∞ , µ > 0 (2.1)

(iii) Each unit is new after repair.

(iv) Switch is perfect and the switchover is instantaneous.

(v) An operative unit has a zero failure rate if a failed unit is in the 

second stage of repair.

2.3 ANALYSIS OF THE SYSTEM

To analyze the behaviour of the system, we note that at any time t, the 
system may be in any one of the mutually exclusive and exhaustive states

So: Both units are operating

S1: One unit is operating and the other is in the first stage of repair.
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.

Since an Erlang distribution is the distribution of the sum of two 

independent and identically distributed exponential random variables, the 

stochastic 

process describing the behaviour of the system is a Markov process. Let 

( )tpi , i = 0, 1, 2, 3, 4 be the probability that the system is in state at S i

time t. Clearly, the infinitesimal generator of the Markov process is given

by: 
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It should be noted that states S 0 , S 1 and S 2 are up-states, whereas S 3 and 

S 4 are down states. We assume that initially, both the units are operative.

2.3.1. Reliability

The system reliability R (t) is the probability of failure free operation of the 

system in (0, t]. To derive an expression for the reliability of the system, we 

restrict the transitions of the Markov process to the system, we restrict the 

transitions of the Markov process to the system up-states namely 10 , SS and 

S2: One unit is operating and the other is in the second stage of repair.

S3: One unit is in the first stage  of repair and the other is waiting for repair

S4: One unit is in the second stage of repair and the other is waiting for repair.
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2S .Using the infinitesimal generator given in (2.2) pertaining to these up-

states and standard probabilities arguments, we obtain the following system 

of differential-difference equations

( ) ( ) ( )tptptp o 20 22 µλ +−=′

( ) ( ) ( ) ( )tptptp 101 22 µλλ +−=′

( ) ( ) ( )tptptp 212 22 µµ −=′ .

With the condition ( ) 100 =p and ( ) 00 =ip for  2,1=i . Thus, 

( ) 1
2

0

=∑
=

tp
i

i .

Let L i (s) be the Laplace transform of p i (t), i = 0, 1, 2. Taking Laplace 

transforms for ( )tpi , we get

( ) ( ) ( ) 122 20 =−+ ∗∗ spsps µλ

( ) ( ) ( ) 022 01 =−++ ∗∗ spsps λµλ

 ( ) ( ) ( ) 022 12 =−+ ∗∗ spsps µµ

( ) ( )( )[ ]
( )

t
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++++
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3

1
3

1

4232 (2.3)

where α1, α2, and α3 are the roots of the cubic equation:
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( ) ( ) 04410243 22223 =++++++ µλµλµλµλ sss

2.3.2 Mean Time Before Failure (MTBF)

The system mean time before failure is given by

( ) ( ) ( ) 2210 2
25000

λ
µλ +

=++= LLLMTBF

2.3.3 System Availability

The system availability A (t) is the probability that the system operates 

(within the tolerances) at a given instant of time t.

Using the infinitesimal generator given in (2.2), we obtain the following 

system of differential-difference equations:

( ) ( ) ( )tptptp 200 22 µλ +−=′ (2.4)

( ) ( ) ( ) ( ) ( )tptptptp 4101 222 µµλλ ++−=′ (2.5)

( ) ( ) ( )tptptp 212 22 µµ −=′ (2.6)

( ) ( ) ( )tptptp 313 2µλ −=′ (2.7)

( ) ( ) ( )tptptp 434 22 µµ −=′ (2.8)

with the condition ( ) 10 =op and 
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( ) 1
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Taking the Laplace transforms for the equations (2.4) – (2.8), we get

( ) ( ) ( ) 122 20 =−+ ∗∗ spsps µλ (2.10)

( ) ( ) ( ) ( ) 0222 401 =−−++ ∗∗∗ spspsps µλµλ (2.11)

( ) ( ) ( ) 022 12 =−+ ∗∗ spsps µµ (2.12)

( ) ( ) ( ) 02 13 =−+ ∗∗ spsps λµ (2.13)

( ) ( ) ( ) 022 34 =−+ ∗∗ spsps µµ (2.14)

solving the equations (2.10) – (2.14) using the relation (2.9), we get 

( )spi
∗ , 4.,..,2,1,0=i .

Inverting ( )spi
∗ , we get
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where α1, α2 and α3 are the roots of the cubic equation.

( ) ( ) ( ) 0868223 22223 =+++++++ µλµµλµλµλ sss (2.20)

Since S0, S1 and S2 are the up-states, the availability of the system is given 

by:

( ) ( ) ( ) ( )tptptptA 210 ++= (2.21)
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2.3.4 Steady State Availability

The system steady state availability is given by:
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( ) ( )
( )2

2lim
µλ

µλµ
+

+
==

∞→∞ tAA
t

(2.22)

which is in  agreement with Mohammed Abu-Salih et al. (1990).

In the following sections, we obtain a CAN estimator, a 100(1- α) % 

asymptotic confidence interval for steady state availability of the system 

and the MLE of the system reliability.

2.4 CONFIDENCE INTERVAL FOR STEADY-STATE  

 AVAILABILITY OF THE SYSTEM

Let X1, X2,…,Xn be a random sample of failure free-times of a unit with 

probability density function (p.d.f) given by

( ) 0;xexf λλ −= < x < ∞ , λ > 0 (2.23)

Let Y1, Y2, . . ., Yn be a random sample of the repair times with the p.d.f 

given by ( ) yeyg µµ −= .It is clear that ( )
λ
1

=XE and
µ
1

2
=







 YE , where X

and Y are respectively the sample means of the failure-free times and the

repair times of s unit. It can be shown that  X and 
2
Y are respectively 

the maximum likehood estimators (MLE’s) of  
λ
1 and

µ
1 .
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Let  
λ

θ 1
1 = and

µ
θ

1
2 = . Clearly, the steady state availability, given by 

(2.16), reduces to

( )
( )2

21

211 2
θθ

θθθ
+

+
=∞A

Hence, the MLE of  ∞A is given by 

( )
( )2
2

4

YX

YXXA
+

+
=∞ (2.24)

It should be noted that ∞A is real valued differential function in X and Y. 

Now consider the following application of the multiplicative central limit 

theorem (Rao, 1974).

Suppose that '
1T , '

2T , '
3T , . . . are independent and identically distributed k-

dimensional random variables such that:

( )knnnn TTTT .,..,, 21=′

has first and second order moments

( ) µ=nTE and ( ) ∑=nTD .

Define the sequence of random variables ( )knnnn TTTT .,..,, 21= , 

2,1=n where:
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Then, ( ) ( )Σ→− ,0NTn d
n µ as n → ∞. Hence, the applying the 

Multivariate Central Limit theorem, it follows that:
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where the dispersion matrix ( )( )
22xij∑= σ is given by 
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1 2
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x
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θ

Again from Rao (1974), we have:

( ) ( )( ) ,,0ˆ 2 ∞→→− ∞∞ nasNAAn d θσ

where ( )21 , θθθ = and
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Consequently ∞Â is a CAN estimator of A ∞ :

Let ( )θσ ˆ2 be the estimator of ( )θσ 2 obtained by replacing θ by a 

consistent estimator θ̂ namely:
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
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
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
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2
,ˆ YXθ . 

Moreover, let ( )θσθ ˆˆ 22 = . Since ( )θσ 2 is a continuous function of  θ , 

2
2σ̂ is a consistent estimator of ( )θσ 2 , i.e. 2

2σ̂ ( )θσ 2→p as n→∞.

By Slutskey’s theorem

( ) ( )1,0
ˆ

ˆ
NAAn d→

− ∞∞

σ

That is, 

P
( ) ( ),1

ˆ

ˆ

22
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
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−
<− ∞∞ k

AAn
k

where k
2
α is obtainable from normal tables. Hence, a 100 (1 – α) % 

asymptotic confidence interval for A ∞ is given by  
n

kA σ
α .ˆ
2

±∞

2.5 MLE OF SYSTEM RELIABILITY

Since X and 
2
Y are the MLE’s of 

λ
1 and 

µ
1 respectively, we obtain by 

applying a method given in Zacks (1972), the MLE of system reliability as 
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where 32,1 ˆˆˆ ααα and are the roots of the cubic equation

( ) ( ) ( ) .082201638 22232
=++++++ YsYYXXsYXYXsYX

2.6 NUMERICAL ILLUSTRATION

For ( )
( )2

2
µλ

µλµ
+

+
=∞A

When λ = 0.01, 0.015, 0.02, 0.025 and µ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35.
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µ

Figure 2.1

The λ and µ values are chosen from an exponential data available (Yadavalli et 

al, 2005)

From Figure 2.1, it is observed that as repair time increases, the steady state 

availability decreases.

Table 2.1 : CONFIDENCE INTERVALS FOR THE MODEL

For 

=λ
=λ
=λ
=λ
=λ
=λ
=λ
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λ=0.10

n µ 95% CI 99% CI 
100 0.01 (0.8101,0.9991) (0.7811,0.9999)

0.015 (0.7006,0.8192) (0.6933,0.8399)
0.02 (0.5218,0.6368) (0.6066,0.6566)

0.025 (0.5006,0.6019) (0.4888,0.5771)
200 0.01 (0.8332,0.9673) (0.8206,0,9709)

0.015 (0.7161,0.8006) (0.7988,0.8113)
0.02 (0.6314,0.7091) (0.6111,0.7108)

0.025 (0.5822,0.6641) (0.5316,0.5669)
2000 0.01 (0.8608,0.8992) (0.8541,0.9053)

0.015 0.6879,0.7227) (0.6790,0.7306)
0.02 0.6041,0.6330) (0.5991,0.6376)

0.025 (0.5911,0.6130) (0.5444,0.5619)

Table 2.1 presents the 95% and 99% confidence intervals for different 

simulated samples. It can be observed that, as n increases, the steady state 

availability decreases.

CONCLUSION:

A two-unit system with Erlangian repair time is studied in this chapter. The 

system of simultaneously differential equations is developed to obtain the 

availabilities analytically. The asymptotic confidence limits for steady state 

availability are studied at the end of this chapter. A numerical example 

illustrated the results. The results show that, as n increases ∞A decreases.
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