
CHAPTER 1

INTRODUCTION

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMaallaaddaa,,  AA    ((22000066))  



1.1 Introduction

Reliability theory is one of the most important branches of Operations 

Research and Systems Engineering. Any systems analysis in order to be 

complete, must give due consideration to system reliability. With 

remarkable advances made in electronics engineering, military and 

communication systems have become more sophisticated and when such 

systems fail, very serious situations arise. Thus in the present day context, 

high system reliability has become very important from the view point of 

both makers and the users.

A system designer is often faced with problems of determining the various 

system measures like reliability, availability and interval reliability etc. He 

also has to suggest ways by which the efficiency of a given system can be 

improved. Due to the nature of the subject, the methods of Probability 

Theory and Mathematical Statistics are necessary to study and solve the 

problems that arise in reliability theory.

Many mathematical models have been proposed to evaluate various 

measures of system performance and methods of improving them. These 

models, which describe the various operational characteristics of the 

system taking into account its essential features, can be studied only with 

the help of probability theory. The present work is a study of some 

mathematical models representing the behaviour of a few complex 

systems. Introduction of redundancy and repair maintenance are two 

important methods of improving system reliability.

The manufacturing of tools and special equipment is part of human nature. 

At first experience, faults and accidents were the only schools for learning 

to make safer and more reliable equipment. Before structural design 
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became an engineering science, the reliability of a bridge was tested with a 

team of elephants. It is collapsed, a stronger bridge was built and tested 

again! Obviously, these methods could not continue and is human skills 

developed a wide variety of very reliable items and structures were 

designed and 

manufactured. One example is the undersea telephone cables built by Bell 

Telephone Laboratories.

Man’s earliest preoccupation with reliability was undoubtedly related to 

weaponry. Interest as a result of the terrible non-reliability of electronic 

weapons systems used during World War II. Increasingly complex 

systems, such as the first missiles, also emphasized the importance of 

successful operation of equipment in a specific environment during a 

certain time period. The V-1 missile, developed in Germany with high 

quality parts and careful attention, was catastrophic: the first 10 missiles 

either exploded on the launching pad, or landed short of their targets.

Technological developments lead to an increase in the number of 

complicated systems as well as an increase in the complexity of the 

systems themselves. With remarkable advancements made in electronics 

and communications, systems became more and more sophisticated. 

Because of their varied nature, these problems have attracted the attention 

of scientists from various disciplines especially the systems engineers, 

software engineers and the applied probabilists. An overall scientific 

discipline, called reliability theory, that deals with the methods and 

techniques to ensure the maximum effectiveness of systems (from known 

qualities of their component parts) has developed. ‘Reliability theory 

introduces quantitative indices of the quality of production’ (Gnedenko et 

al. (1969)) and these are carried through from the design and subsequent 

manufacturing process to the use and storage of technological devices. 
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Engineers, Scientists and Government leaders are all concerned with 

increasing the reliability of manufactured goods and operating systems. As 

‘Unreliability has consequences in cost, time wasted, the psychological 

effect of inconvenience, and in certain instances personal and national 

security’ (Lloyd & Lipow (1962)). In 1963 the first journal on reliability, 

IEEE-Transactions on Reliability saw the light.

Due to the very nature of the subject, the methods of Probability theory 

and Mathematical statistics (information theory, queuing theory, linear and 

nonlinear programming, mathematical logic, the methods of statistical 

simulation on electronic computers, demography, manufacturing, etc.), 

play an important role in the problem solving of reliability theory. Other 

areas include contemporary medicine, reliable software systems, 

geoastronomy, irregularities in neuronal activity, interactions of 

physiological growth, fluctuations in business investments, and many 

more. In human behaviour mathematical models based on probability 

theory and stochastic process are helpful in rendering realistic modelling 

for social mobility of individuals, industrial mobility of labour, 

educational advancements, diffusion of information and social networks. 

In the biological sciences stochastic models were first used by Watson and 

Galton (1874) in a study of extinction of families. Research on population 

genetics, branching process, birth and death process, recovery, relapse, 

cell survival after irradiation, the flow of particles through organs, etc, 

then followed. In business management, analytical models evolved for the 

purchasing behaviour of the individual consumer, credit risk and term 

structure. Income determination under uncertainty and more related 

subjects. Traffic flow theory is a well known field for stochastic models 

and studies have been developed for traffic of pedestrians, freeways, 

parking lots, intersections, etc. (Erasmus,2005)
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Problems encountered in the design of highly reliable technical systems 

have led to the development of high accuracy methods of reliability 

analysis. Two major problems can be identified, namely:

• Creating classes of probability-statistical models that can be used in 

the description of the reliability behaviour of the systems, and

• Developing mathematical models for the examination of the reliability 

characteristic of a class of systems.

Considering only redundant systems the classical examples are the models 

of Markov processes with a finite set of states (in particular birth and 

death processes) (Gnedenko et al. (1969)), Barlow (1984), Gertbakh 

(1989) and 

Kovalenko et al. (1997)), the renewal process method (Cox (1962)), the 

semi-Markov process method and its generalisations (Cinlar (1975a, b)), 

generalized semi-Markov process (GSMP) method (Rubenstein (1981)), 

special models for coherent systems (Aven (1966)) and systems in random 

and variable environment (Ozekici (1996)) and Finkelstein (1999a, b, c)), 

van Schoor (2005), Muller (2005).

Depending on the nature of the research, the applicable form of reliability 

theory can be introduced to each. A stochastic analysis is made based on 

some good probability characteristics. It is, however, not simply a case of 

changing terminology in standard probability theory (say, “random 

variable” changes to “lifetime”), but reliability distinguishes itself by 

providing answers and solutions to a series of new problems not solved in 

the “standard” probability theory framework. Gertbakh (1989) points out 

that reliability,

• of a system is based on the information regarding the reliability of 

the system’s components

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMaallaaddaa,,  AA    ((22000066))  



• gives a mathematical description of the ageing process with the 

introduction of several formal notations of ageing (failure rate, 

etc.)

• introduces well-developed techniques of renewal theory

• introduces redundancy to achieve optimal use of standby 

components (an excellent introduction to redundant systems is 

given in Gnedenko et al. (1969))

• includes the theory of optimal preventative maintenance (Beichelt 

and Fischer (1980))

• is a study of statistical inference (often from censored data)

Generally, the mathematical problems of lifetime studies of technical 

objects (reliability theory) and of biological entities (survival analysis) are 

similar, differing only in the notation. The term “lifetime” therefore does 

not apply to lifetimes in the strictest literal sense, but can be used in the 

figurative sense. The idea is that the statistical analysis done in this thesis 

should be true in any of the applicable disciplines, although the notation is 

mostly as for engineering 

(systems, components, units, etc). With minor modifications the discipline 

can be changed to biological, or financial, or any other disciplines.

1.2 FAILURE

‘A failure is the result of a joint action of many unpredictable, random 

processes going on inside the operating system as well as in the 

environment in which the system is operating.’ (Gertbakh (1989)). 

Functioning is therefore seriously impeded or completely stopped at a 

certain moment in time and all failures have a stochastic nature. In some 

cases the time of failure is easily observed. But if units deteriorate 

continuously, determination of the moment of failure is not an easy task. 

In this study we assume that failure of a unit can be obtained exactly. 
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Failure of a system is called a disappointment or a death and failure results 

in the system being in the down state. This can also be referred to as a 

breakdown (Finkelstein (1999a)).

Zacks (1992) points out that there are two types of data to consider, 

namely:

• data from continuous monitoring of a unit until failure is observed

• data from observations made at discrete time points, therefore failure 

counts

Villermeur (1992) gives an extensive list of possible failures and inter-

dependent failures. There are catastrophic failures, determined by a sharp 

change in the parameters and drift failures (the result of wear or fatique), 

arising as a result of gradual change in the values of the parameters. 

(Muller, 2005).

1.3 REDUNDANCY AND DIFFERENT TYPES OF REDUNDANT

 SYSTEMS

In a redundant system more units are built into it than is actually necessary 

for proper system performance. Redundancy can be applied in more than 

one way 

and a definite distinction can be made between parallel and standby

(sequential) redundancy. In parallel redundancy the redundant units form 

part of the system from the start, whereas in a standby system, the 
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redundant units do not form part of the system from the start (until they 

are needed).

1.3.1 Parallel systems

A parallel redundant system with n units is one in which all units operate 

simultaneously, although system operation requires at least one unit to be 

in operation. Hence a system failure only occurs when all the components

have failed.

Let k be a non-negative integer, such that k < n, counting the number of 

units in an n-unit system. It is customary to refer to such a system as k-

out-of-n system.

1.3.2  k-out-of-n: F system

If k-out-of-n system fails, when k units fail, it is called an F-system. The 

functioning of a minimum number of units ensures that the system is up 

(Sfakianakis and Papastavridis (1993)).

1.3.3 k-out-of-n: G-system

A G-system is operational if and only if at least k units of the system are 

operational. Recent work related to this topic can be seen in Zhang and 

Lorn (1998) and Liu (1998). Suppose a radar network has n radar control 

stations covering a certain area: the system can be operable if and only if 
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at least k of these stations are operable. In other words, to ensure 

functioning of the system it is essential that a minimum number of units, 

k, are functioning.

Lately attention moved to load-sharing k-out-of-n: G systems, where

• the serving units share the load

• the failure rate of a component is affected by the magnitude of the 

load it shares.

1.3.4   n-out-of-n: G system

A series that consists of n units and when the failure of any one unit 

causes the system to fail. Although this type of system is not redundant 

system, as all the units are in series and have to be operational, it can still 

be considered as a special case of a k-out-of-n system. There are many 

papers on the reliability of these systems. Scheuer (1988) studied 

reliability for shared-load k-out-of-n: G systems, where there is an 

increasing failure rate in survivors, assuming identically distributed 

components with constant failure rates. Shao and Lamberson (1991) 

considered the same scenario, but with imperfect switching. Then Huamin 

(1998) published a paper on the influence of work-load sharing in non-

identical, non-repairable components, each having an arbitrary failure time 

distribution. He assumed that the failure time distribution of the 

components can be represented by the accelerated failure time model, 

which is also a proportional hazards model when base-line reliability is 

Weibull. (Muller, 2005)

1.4   REPAIRABLE SYSTEM
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In order to increase the system reliability, failed units may be replaced by 

new ones. However when this proves to be very expensive, resort is made 

to repair the failed units. On failure, a unit is sent to a repair facility. If the 

repair facility is not free, failed units queue up for repair. The life time of a 

unit while online, while in standby and the repair time are all independent 

random variables. It is assumed that the distribution functions of these 

random variables are known and that they have probability density 

functions.

Barlow (1962) had considered some repairman problems and they have 

much in common with queuing problems. Rau (1964) had discussed the 

problem of finding the optimum value of m in an m out of n: G system for 

maximizing reliability.

Ascher (1968) has pointed out some inconsistencies in the modelling of 

repairable systems by renewal theory. Several authors, notably Barlow and 

Proschan (1965), Sandler (1963), Shooman (1968), Buzacott (1970) and 

Doyon and Berssenbrugge (1968) have used continuous time discrete state 

Markov renewal process model for describing the behaviour of a 

repairable system.

These conceptionally simple methods are not practically feasible for 

systems with large number of states. Gaver (1963), Gnedenko et al (1969), 

Osaki (1969, 70 a, b) and Srinivasan (1966) have employed the techniques 

of Semi-Markov processes for finding the reliability of a system with 

exceptional failures. By the use of Semi-Markov processes, Kumagi 

(1971) studied the effect of different failure distributions on the 

availability through numerical calculations. Branson and Shah (1971) 

studied repairable systems with arbitrary failure distributions using Semi-

Markov Processes. Srinivasan and Subramanian (1977), Venkatakrishnan 
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(1975), Ravichandran (1979), Natarajan (1980), Sarma (1982), Botha 

(2001), Muller (2005) have used 

regeneration point technique to analyse repairable systems with many, 

though not all, arbitrary distributions. More references in related topics 

can be found in the review papers by Subba Rao and Natarajan (1970), 

Osaki and Nakagawa (1976), Pierskalla and Voelker (1976) and Lie, 

Wang and Tillman (1977) and Kumar and Agarwal (1980), Gopalan 

(2004).

1.5 SYSTEMS WITH NON-INSTANTANEOUS SWITCHOVER

In the study of redundant systems it is generally assumed that when the 

unit operating online fails, the unit in standby is automatically switched 

online and the switchover from the standby state to online state is 

instantaneous. Srinivasan (1968), Osaki (1972), Khalil (1977), 

Subramanian and Ravichandran (1978 a), Gopalan and Marathe (1978, 

80), Singh et al (1979) and Kalpakam and Shahul Hameed (1980), 

Subramanian and Sarma (1982) have studied redundant systems 

incorporating non-negligible switchover times.

1.6 SYSTEMS WITH IMPEREFCT SWITCH

To transfer a unit from the standby state to the online state, a device 

known as ‘switching device’ is required. Generally we assume that the 

switching device is perfect in the sense that it does not fail. However; 

there are practical situations where the switching device can also fail. This 

has been pointed out by Gnedenko et al (1969). Such systems in which the 

switching device can fail are called systems with imperfect switch.
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Chow (1971), Osaki (1972), Nakagawa and Osaki (1975 a), Nakagawa 

(1977), Venkatakrishnan (1975), Prakash and Kumar (1970), Srinivasan 

and Subramanian (1980) and Subramanian and Natarajan (1980), 

Subramanian & Sarma (1984) have considered models where the 

switching device can also fail. 

1.7   INTERMITTENTLY USED SYSTEMS 

In almost all the models of redundant systems studied so far, it is assumed 

that the system under consideration is needed all the time. But in some 

practical 

situations continuous failure free performance may not be necessary. In 

such cases we have to take into consideration the fact that the system can 

be in down state during certain intervals without any real consequence. In 

this case the probability that the system is in the up state is not an 

important measure; what is really important is the probability that the 

system is available when it is needed. Gaver (1964) pointed out that is 

pessimistic to evaluate the performance of an intermittently used system 

solely on the basis of the distribution of the time to failure. Srinivasan 

(1966), Nakagawa et al (1976), Srinivasan and Bhaskar (1979 a, b, c), 

Kapur and Kapoor (1978, 80) extended Gaver’s results for two-unit 

systems. Detailed study of an n-unit intermittently used system is made. 

The statistical inference of some of these models has been studied recently 

by Yadavalli et al (2000, 2001).

1.8 MEASURES OF SYSTEM PERFORMANCE

The previous sections briefly describe the various types of redundant 

systems discussed in the literature. In this section some of the important 
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measures of system performance useful in different contexts are discussed 

(Barlow and Proschan (1965), Gnedenko et al (1969)).

(a) Reliability:

Reliability is the probability that the system will perform satisfactorily for 

a given period of time in its intended application. Let {ξ (t), t≥0} be the 

performance process of the system; then for a fixed t, ξ(t) is a binary 

random variable which takes the value 1 if the system operates 

satisfactorily at a given time t, and takes the value 0 otherwise. 

Then the reliability R (t) is given by

R (t) = Pr [system is up in (0, t]]

= Pr [ξ (u) = 1; for all u such that 0≤u≤t]

The expectation of the random variable representing the duration of time 

measured from the point the system starts operating till the instant it fails 

for the first time is called Mean time to System Failure (MTSF).It can be 

obtained from R (t) from the relation 

MTSF = ∫
∞

0

)( duuR

(b) Pointwise Availability:

This is defined as the ‘probability that the system is able to operate within 

the tolerances at a given instant of time’. In symbols:

Pointwise availability A (t) = Pr [ξ (t) = 1]
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(c) Asymptotic or Steady-State Availability:

 Steady-state availability ( )tAA
t ∞→∞ = lim .

It can be shown (Barlow and Proschan (1975)) that this is equal to the 

expected fraction per unit time in the long run that the system operates 

satisfactorily.

(d) Interval Reliability:

The interval reliability R (t, x) is the probability that the system is up in 

the interval[ ]xtt +, .

Hence:

 R (t, x) = Pr [ξ (u) = 1, for all u such that t ≤ u ≤ t + x]

We observe that the reliability R(x) and the pointwise availability A (t)

can be                                   obtained from the interval reliability R (t, x) 

by putting t = 0 and x = 0 respectively.

(e) Limiting interval reliability:

This is defined as the limit of R (t, x) as t→∞, and hence is denoted  

by )(xR∞ , which is the ordinary reliability function.

(f) Mean number of events in (0, t):
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Let N(x, t) denote the number of particular type of event (like break down 

etc.) in ( ]txx +, .Then the mean number of events in (0, t) is given by 

 E [N (0, t)] = duuh
t

)(
0

1∫

where )(1 th is the first order product density of the events (product 

densities are defined in a subsequent section in this chapter) .The 

stationary rate of occurrence of those events is given by:

 E [N] = ( )[ ]
t

tNE
t

,0lim
∞→

1.9 TECHNIQUES USED IN THE ANALYSIS OF 

REDUNDANT SYSTEMS.

This section is a compilation of the techniques used in the analysis 

of redundant repairable systems.

1.9.1 Renewal Theory

Renewal theory forms an important in the study of stochastic 

processes and applied probability models, and is extensively used 

by many to study specific reliability problems. Feller (1968) made 

significant contributions to renewal theory giving the proper lead. 
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Smith (1958) gave an extensive review and highlighted the 

applications of renewal theory to a variety of problems. A lucid 

account of renewal theory is given by Cox (1962).

Definition 1.1

A renewal process is a sequence of independent, non-negative and 

identically distributed random variables { iY , i = 1, 2,...} which are 

not all zero with probability one.

We assume that these random variables are defined on the same 

probability space and have finite mean µ.A renewal process is 

completely determined by means of f (.), the pdf of Xi. Associated 

with a renewal process is a r.v N (t) which represents the number 

of renewals in the time interval (0, t]; N (t) is also known as the 

renewal counting process (Parzen, 1962, Beichelt and Fatti (2002).

If policy 0 is the practical background of a renewal process, then 

iY denotes the time between the ( ) thi −−1 and the thi − renewal. 

If at time 0=t policy 0 has already been in effect for a while, then 

1Y is a residual lifetime in the sense of section 1.2.3. However, the 

age of the 

system working at time 0=t need not to be known. But if at time 

0=t a new system started working, then all the random variables 

,..., 21 YY are identically distributed.

Let the random variables ,..., 32 YY be identically distributed as 

Y with distribution function ( ) ( )tYPtF ≤= , whereas 1Y has 

distribution function ( ) ( )tYPtF ≤= 11 .

Definition 1.2 (see Beichelt and Fatti, 2002)
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A renewal process is called delayed if ( )tF1 ≢ ( )tF and ordinary if  
( )tF1 ( )tF≡ .

Since, by assumption, the renewal occur in negligible time, nT

defined by

∑
=

=
n

i
in YT

1

; n = 1,2,…;

is the time point at which the nth failure ( renewal ) takes place. 

Hence, nT is called a renewal time. The time intervals between two 

neighbouring renewals are called renewal cycles.

Let the renewal counting process ( ){ }0, ≥ttN be defined by

( ) =tN
( )





<
≤

10
;max

Ttfor
tTn n

( )tN is the random number of renewals occurring in ( ]t,0 .Since 

( ) ntN ≥ if and only if tTn ≤ ,

( ) ( ) ( )( ),ntNPtTPtF nTn
≥=≤=

where, because of the independence of the iY , ( )tF
nT is the 

convolution of 1F with the ( ) thn −−1 convolution power of F .

( ) 1FtF
nT =  ( )( )tF n 1− , ( ) ( )tF 0 ,...2,1;0,1 =≥≡ nt
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If the densities ( ) ( )tFtf 11 ′= and ( ) ( )tFtf ′= exist, then the density of 

nT is

( ) 1ftf
nT =  ( ) ( )tf n 1− , ( ) ( ) 10 ≡tf , ,...2,1;0 =≥ nt

1Y 2Y 3Y

0 1T 2T 3T

Figure: illustration of a renewal process

Definition 1.3

The expected value of N (t) is called the renewal function and is 

denoted by ( )tH . The derivative of ( )tH , if it exists, is denoted by 

( )th and is called the renewal density. The quantity ( )dtth is the 

probability that a renewal occurs in ( )dttt +, .

The renewal density satisfies the following famous integral equation, 

known as the functional equation of renewal theory.

( ) ( ) ( ) ( )duuthuftfth
t

−+= ∫
0

The solution of the above equation is:
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( ) ( )( )tfth
n

n∑
∞

=

=
1

where ( )( )tf n is the n-fold convolution of f(t).

We now briefly indicate how renewal theory has been used in the 

solution of reliability problems. Srinivasan et al (1971) used renewal 

theory to obtain some operating characteristics of a one unit system. 

The integral equation of renewal theory was used by Gnedenko et al 

(1969) to obtain MTSF of a two-unit standby system. Osaki (1970b) 

applied the integral equation to study several redundant systems. 

Buzacott (1971) used renewal theoretic arguments to study some 

priority redundant systems.

1.9.2 SEMI-MARKOV AND MARKOV RENEWAL PROCESS

Now we consider a stochastic process which makes transitions from 

one state to another in accordance with a Markov chain but the 

amount of time spent in each state before a transition is probabilistic. 

Denoting the state space by the set of non-negative integers {0,1, 

2….}. Let the transition probabilities be given by ijp , i,j = 

0,1,2,…..Let )(tFij , t> 0 be 

the conditional distribution function of the sojourn time in state i, 

given that the next transition will be into state j. 

Let

( ) )(tFptQ ijijij = , i, j = 0,1,2,…..
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Then )(tQij denotes the probability that the process makes a transition 

into state j in an amount of time less than or equal to t given that it 

just entered state i at t = 0.The functions )(tQij satisfy the following 

conditions:

 ,0)0( =ijQ  ijij pQ =∞)( ;

 0)( ≥tQij ,                                  i,j = 0,1,2,…

  1)(
0

=∑
∞

=

tQ
j

ij

Let 0J denote the initial state of the process and nJ (n = 1, 2…) the state 

of the process after the n-th transition has occurred. Then the process 

{ nJ , n = 0, 1, 2…} is a Markov Chain with transition 

probabilities ijP .This is called the embedded Markov Chain. Let 

)(tN i denote the number of transitions into state i in (0, t] and define

  N (t) = )(
0

tN
i

i∑
∞

=

Now define a stochastic process {Z (t), t≥0} where Z (t) = i, denotes that 

the process is in state i at time t. Then it is clear that Z (t) = )(tJ n

Definition 1.4

The stochastic process {Z (t), t ≥ 0} is called a Semi-Markov process 

(SMP).
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Definition 1.5

The vector stochastic process { ),(),( 21 tNtN … ,t≥0} is called a Markov 

Renewal Process (MRP).

Thus the SMP records the state of the process at each time point, while the 

MRP is a counting process which keeps track of the number of visits to 

each state. Denote by iX the random variable denoting the time interval 

between two successive visits to state i of the process  { Z (t ), t ≥ 0 

}.Then we observe that { ix } is a renewal process for i = 0,1,2,…. 

Detailed treatments of SMP and MRP can be found in Pyke (1961 a, b), 

Cinlar (1975 a) and Ross (1970).

The survey by of Cinlar (1975 b) demonstrates the usefulness of the theory 

of MRP and SMP in applications. Barlow et al (1965) used these 

processes to determine the MTSF of a two unit system. Srinivasan (1968), 

Cinlar (1975 b), Osaki (1970 a, 1972). Arora (1976 a, b), Nakagawa and 

Osaki (1974, 1976), and Nakagawa (1974) have used the theory of SMP to 

discuss some reliability problems.

1.9.3 STOCHASTIC POINT PROCESSES

Stochastic point processes are more general than those considered in the 

earlier sections. Since point processes have been studied by many with 

varying backgrounds, there have been several definitions of the point 

processes each appearing quite natural from the view point of the 

particular problem under study. [See for example Bartlett (1966), Bhaba 

(1950), Harris (1963) and Khinchine (1955)]. A comprehensive definition 

of point process is due to Moyal (1962) who deals with such processes in a 

general space which is not necessarily Euclidean.
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Roughly speaking a stochastic point process can be defined as 

continuous time parameter discrete state space stochastic process.

1.9.4 PRODUCT DENSITIES

One of the ways of characterizing a general stochastic point process is  

through product densities (Ramakrishnan (1950, 1958), Srinivasan 

(1974)).These densities are analogous of the renewal density in the case of 

non-renewal processes. 

Let N (x, t) denote the random variable representing the number of events 

in the interval (t, t + x ), xd N(x , t ) the events in the interval ( t + x, t + x 

+dx) and p(n , x , t) = Pr[N (x , t ) = n].

The product density of order n is defined as:

  nh ( nxxx ,...,2,1 )  = lim
0.,.,., 21 →∆∆∆ n

( )

n

n

i
ixNE

∆∆∆









∆∏

=

...21

1
1 ,

 ....21 nxxx ≠≠

A process is said to be regular if the probability of occurrence of more 

than one event in an interval of length is o (∆). For such process we have:
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These densities represent the probability of an event in each of the 

intervals ( 11,1 ∆+xx ), ( 222 , ∆+xx ),…, ( )nnn xx ∆+, .

Even though the functions nh (.,.,.,..) are called densities, it is important to 

note that their integration will not give probabilities but will yield the 

factorial

moments. The ordinary moments can be obtained by relaxing the 

condition that all ix are distinct.

1.9.5 REGENERATIVE STOCHASTIC PROCESSES

The idea of regeneration point was first introduced by Bellman and Harris 

(1948) while studying population point processes. Feller (1949), in the 

theory of recurrent events, dealt with a special case of regeneration points. 

Later on, Smith (1955) generalized Feller’s results and dealt with more 

general stochastic point processes possessing such regeneration points, 

familiarity known as regenerative processes. A formal theory of such 

processes has been developed by Kingman (1964).

A regenerative event R of a stochastic process {X (t)} is an event that is 

characterized by the property that if it is known that R happens at 1tt = , 

then the knowledge of the history of the process prior to 1t loses its 

predictive value. In some special cases, the event R is the only 

characteristic, so that the process regenerates itself with each occurrence 

of R.  

In more general cases, in addition to the occurrence of R, knowledge of 

X (t) is necessary for the prediction of the process. The renewal process 

can be thought of as a general point process in which each point at which 

the event R occurs is a regeneration point. The occurrence of an event at 
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1tt = uniquely determines the distribution of events from any collection of 

segments of points 1tt ≥ .If we further specialize to the case when the 

intervals between successive events are exponentially distributed, we 

notice that any point (not necessarily a point where an event occurs) on the 

time axis is a regeneration point. Gnedenko (1964), Srinivasan and 

Gopalan (1973 a, b), Birolini (1974, 75), Srinivasan and Subramanian 

(1977), Hines (1987), Hargreaves (2002), 

Botha (2001), Muller (2005) have used such regenerative events to study 

some reliability problems.

1.9.6 CONCLUDING REMARKS AND SCOPE OF 

WORK

Reliability theory is a very important branch of systems engineering and 

operations and deals with general method of evaluating the various 

measures of performance of a system that may be subject to gradual 

deterioration. Several models of redundant systems have been studied in 

the literature and the following are some of the typical assumptions made 

in analyzing such systems:

(i) the repair times are assumed to be exponential

(ii) the   estimated study of the system measures has not been 

made.

(iii) the system is available continuously

(iv) Environmental factors not affecting the system

(v) The failures take place  in one mode

(vi) The switching device is perfect

(vii) System reliability evaluated for given chance constraints
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(viii) The switchover time required to transfer a unit from the 

standby state to online stage is negligible.

(ix) the failures and repairs are assumed to be independent.

However, we frequently come across systems in which one or more of 

these assumptions have to be dropped and hence there is an increasing 

need for studying models in which at least some of these assumptions 

could be relaxed. That is the motivation for the detailed study of the 

models presented in this thesis. This thesis is a study of some redundant 

repairable systems with ‘rest period’ for the operator, non-instantaneous 

switchover, imperfect switch, intermittent use and optimization study.
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