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APPENDICES
Aggendix 1: Ferric iron nucleation and solubility curves
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Figure Al.1. Nucleation data for ferric iron determined at 50, 70 and 90°C. The pH
was changed stepwise in increments of 0.5 pH units every 20 minutes. The pH was

controlled by adding Ca(OH),, ZnO powder and 98% H;SO,.
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Figure Al.2. Solubilization data for ferric iron determined at 50, 70 and 90°C. The
pH was changed stepwise in increments of 0.5 pH units every 20 minutes. The pH

was controlled by adding Ca(OH),, ZnO powder and 98% H,S0..
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Figure Al.3. Particle size distribution of the seed material used to determine the

influence of seed mass on agglomeration as determined by a Malvern Mastersizer.

Appendix 2: Ferric iron equilibrium solubility data as calculated by

STABCAL™
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Figure A2.1. Ferric ion stability diagram determined with the STABCAL™ NBS-

database at 50°C.
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Figure A2.2. Ferric ion stability diagram determined with the STABCAL™ NBS-
database at 70°C.
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Figure A2.3. Ferric ion stability diagram determined with the STABCAL™ NBS-
database at 90°C.
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Appendix 3:

Table A3.1. Spreadsheet used to calculate particle population density from Malvern

particle analysis data.

_ total solid mass (g)
rho solid (kg/m3)
vol ppted (m3)

*SIZES*um

0.05
0.06
0.07
0.08
0.09
0.1t
0.13
0.15

41.43
48.27
56.23
65.51
76.32
88.91
103.58
12067
140.58
163.77
190.80
22228
258.95
301.68
35146
40945
477.01
555,71
647.41

5.085+01
3232
1.56E-05

Vol %

0.00
0.0004%
0.00126
0.00326
0.00836
0.02145
0.05364
0.12592

0.56631
0.33668
0.21086
0.05121
0.00937
0.00258
0.0005%
0.00007

s}
0.00764
0.50994
1.92305
3.96071
4.71965
3.57416
1.78791
046826

0

1}

measured from the total mass of sample or calcujated from a process mass balance

Delta L {m)

1.00E-08
1.00E-08
1.00E-08
1.00E-08
2.00E-08
1.50E-08
2.06E-08

5.87E-06
6.84E-06
7.96E-06
9.28E-06
1.08E-05
1.26E-05
1.47E-05
1.71E-05
1.99E-05
2.32E-05
2.70E-05
3.15E-05
3.67E-058
4.27E-05
4 98E-05
5.80E-05
6.76E-05
7.87E-65
9.17E-05

Lbar (m)

6.50E-08
7.50E-08
8.50E-08
9.50E-08
1.20E-07
1.33E-07
1.56E-07

4 44E-05
5.17E-05
6.02E-05
1.01E-05
8.17E-05
9.52E-05
1.11E-04
1.28E-04
1.51E-04
1.75E-04
2.04E-04
2.38E-04
2.77E-04
3.23E-04
3.76E-04
4.38E-04
S1E-D4
5.95E-04
6.93E-04
md
m1
m2
m3
m4
thart,0

N (1/m3)

2.83E+12
2.87E+11
6.06E+11
1.12E+12
1.43E+12
2.72E+12
4.18E+12

2.42E+06
1.226+06
5.3TE+05
1.81E+05
2.77E+04
3,21E+03
5.59E+02
6.98E+01
8.06E+00
0.00E+00
2.65E+02
1.12E+04
2.66E+04
34TE+04
2.62E+04
1.25E+04
3.96E+03
6.57E+02
0.00E+00
B.18E+13
8.89E+06
3.7TE+0D
8.98E-06
1.34E-10
1.09E-07

n{L) {1/m4}
=N/Delta L

2.83E+20
2.87E+19
6.06E+H19
1.12E+20
7.16E+19
1.82E+20
2.035+20

4,13E+11
1.78E+11
8.74E+10
1.95E+10
2.57E+09
2. 65E+08
3.81E+07
4.09E+H06
3.05EH05
0.00E+00
9.80E+06
3.55E+08
7.27E+08
8.12E+08
5.26E+08
2.16E+08
5.87EHI7
8.34E-+H06
0.00E+00

n(L) * Lbar
(1/m3}

1.84E+13
2.15E+12
5.13EH12
1.07E+13
8.58E+12
241E+13
3ATEH3

1.83E+07
9_20E+06
4 0GE+06
1.36E+06
2.10E+05
2 43E+04
4.22E+03
5.28E+02
4 SS5E+01
0.00E+00
2.00E+03
8.45E+04
2.01E+05
2 62E+05
1.98E+05
GATEHM4
3.00E+04
4 96E+03
0.00E+00
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