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SUMMARY 

Two well-known methods of improving the reliability of a system are 

(i) provision of redundant units, and 

(ii) repair maintenance. 

In a redundant system more units are made available for performing the system function 

when fewer are actually required. There are two major types of redundancy – parallel and 

standby. 

 

Some of the typical assumptions made in the study of standby redundant systems are: 

(a) the repair facility can take up a failed unit for repair at any time, if no other unit  

     is undergoing repair 

(b) the state of the standby unit is either cold or warm throughout 

(c) the random variables like failure times and repair times are independent 

(d) the failures can be in one mode 

(e) estimation of operating characteristics. 

In this testis, an attempt is made to study a few complex and novel models of standby 

redundant repairable systems by relaxing one or more of these assumptions. 

A number of interesting and important characteristics useful for reliability practioners 

and system designers are obtained for several models. Further, emphasis is also laid on the 

construction of comprehensive cost functions and their numerical optimization. We give 

below the conclusions and the possible extensions for future work. These conclusions are 

drawn from a limited but reasonably exhaustive numerical work carried out. 

 vii
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The thesis contains six chapters. Chapter 1 is introductory in nature and contains a brief 

description of various types of systems and the mathematical techniques used in the 

analysis of redundant systems. 

 

In Chapter 2, a stochastic model of an urea decomposition system in the fertilizer industry 

is studied. A set of difference-differential equations for the state probabilities are 

formulated under suitable conditions. The state probabilities are obtained explicitly and the 

steady state availability of the system is obtained analytically as well as illustrated 

numerically. Confidence limits for the steady state availability are also obtained. 

     A two dissimilar unit system with different modes of failure is studied in Chapter 3. The 

system is a priority system in which one of the units is a priority unit and the one other unit 

is an ordinary unit. The concept of ‘dead time’ is introduced with the assumption that the 

‘dead time’ is an arbitrarily distributed random variable.  The operating characteristics like 

MTSF, Expected up time, Expected down time, and the busy period analysis, as well as the 

cost benefit analysis is studied. These characteristics have been demonstrated numerically. 

     Chapter 4 is a study of a two unit cold standby system with varying physical conditions 

of the repair facility. The system measures like MTSF, Availability, Busy period of the 

repairman, etc. are studied. Confidence limits, the steady state availability and the busy 

period of the repairman in the steady state are also obtained. 

       In most of the available literature on n-unit standby systems, many of the associated  

 viii
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distributions are taken to be exponential, one of the main reasons for this assumption is the 

number of built-in difficulties otherwise faced while analysing such systems. In Chapter 5, 

this exponential nature of the distributions is relaxed and a general model of a three unit 

cold standby redundant system, where the failure and repair time distributions are arbitrary, 

is studied. 

     In Chapter 6, a stochastic model of a reliability system which is operated by a human 

operator is studied. The system fails due to the failure of the human operator. Once again, it 

is assumed that the human operator can be in any one of the three states; namely, normal 

stress, moderate stress or extreme stress. Different operating characteristics like 

availability, mean number of visits to a particular state and the expected profit are obtained.      

The results are illustrated numerically. 

 
 

 ix
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1.1 INTRODUCTION 

 

The manufacturing of tools and special equipment is part of human nature. In earlier 

days faults and accidents were the only way of learning to make safer and more reliable 

equipment. Before structural design became an engineering science, the reliability of a 

bridge was tested with a team of elephants. If it collapsed, a stronger bridge was built and 

tested again! Obviously, these methods could not continue and as human skills developed a 

wide variety of very reliable items and structures were designed and manufactured. One 

example is the undersea telephone cables built by Bell Telephone Laboratories. 

Man’s earliest preoccupation with reliability was undoubtedly related to weaponry. 

Interest flowered as a result of the terrible non-reliability of electronic weapons systems 

used during World War II. Increasingly complex systems, such as the first missiles, also 

emphasized the importance of successful operation of equipment in a specific environment 

during a certain time period. The V-1 missile, developed in Germany with high-quality 

parts and careful attention, was catastrophic: the first 10 missiles either exploded on the 

launching pad, or landed short of their targets. 

Technological developments lead to an increase in the number of complicated systems 

as well as an increase in the complexity of the systems themselves. With remarkable 

advancements made in electronics and communications, systems became more and more 

sophisticated. Because of their varied nature, these problems have attracted the attention of 

scientists from various disciplines especially the systems engineers, software engineers and 

the applied probabilists. An overall scientific discipline, called reliability theory, that deals 

with the methods and techniques to ensure the maximum effectiveness of systems (from 
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known qualities of their component parts) has developed. ‘Reliability theory introduces 

quantitative indices of the quality of production’ (Gnedenko et al. (1969)) and these are 

carried through from the design and subsequent manufacturing process to the use and 

storage of technological devices. Engineers, Scientists and Government leaders are all 

concerned with increasing the reliability of manufactured goods and operating systems. As 

‘Unreliability has consequences in cost, time wasted, the psychological effect of 

inconvenience, and in certain instances personal and national security’ (Lloyd & Lipow 

(1962)). In 1963 the first journal on reliability, IEEE-Transactions on Reliability saw the 

light. 

Due to the very nature of the subject, the methods of Probability theory and 

Mathematical statistics (information theory, queuing theory, linear and nonlinear 

programming, mathematical logic, the methods of statistical simulation on electronic 

computers, demography, manufacturing, etc.), play an important role in the problem 

solving of reliability theory. Other areas include contemporary medicine, reliable software 

systems, geoastronomy, irregularities in neuronal activity, interactions of physiological 

growth, fluctuations in business investments, and many more. In human behaviour 

mathematical models based on probability theory and stochastic processes are helpful in 

rendering realistic modelling for social mobility of individuals, industrial mobility of 

labour, educational advancements, diffusion of information and social networks. In the 

biological sciences stochastic models were first used by Watson and Galton (1874) in a 

study of extinction of families. Research on population genetics, branching process, birth 

and death processes, recovery, relapse, cell survival after irradiation, the flow of particles 

through organs, etc. then followed. In business management, analytical models evolved for 
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the purchasing behaviour of the individual consumer, credit risk and term structure, income 

determination under uncertainty and many more related subjects. Traffic flow theory is a 

well known field for stochastic models and studies have been developed for traffic of 

pedestrians, freeways, parking lots, intersections, etc. 

Problems encountered in the design of highly reliable technical systems have led to the 

development of high-accuracy methods of reliability analysis. Two major problems can be 

identified, namely: 

• creating classes of probability-statistical models that can be used in the description 

of the reliability behaviour of the system, and 

• developing mathematical methods for the examination of the reliability 

characteristic of a class of systems. 

  Considering only redundant systems the classical examples are the models of Markov 

processes with a finite set of states (in particular birth and death processes) (Gnedenko et 

al. (1969)), Barlow (1984), Gertsbakh (1989) and Kovalenko et al. (1997)), the renewal 

process method (Cox (1962)), the semi-Markov process method and its generalizations 

(Cinlar (1975a, b)), generalized semi-Markov process (GSMP) method (Rubenstein 

(1981)), spacial models for coherent systems (Aven (1996)) and systems in random and 

variable environment (Ozekici (1996)) and Finkelstein (1999a, b, c)). 

  Depending on the nature of the research, the applicable form of reliability theory can 

be introduced to each. A stochastic analysis is made based on some good probability 

characteristics. It is, however, not simply a case of changing terminology in standard 

probability theory (say, “random variable” changes to “lifetime”), but reliability 
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distinguishes itself by providing answers and solutions to a series of new problems not 

solved in the “standard” probability theory framework. Gertsbakh (1989) points out that 

reliability, 

• of a system is based on the information regarding the reliability of the system’s 

components 

• gives a mathematical description of the ageing process with the introduction of 

several formal notations of ageing (failure rate, etc.) 

• introduces well-developed techniques of renewal theory 

• introduces redundancy to achieve optimal use of standby components (an excellent 

introduction to redundant systems is given in Gnedenko et al. (1969) 

• includes the theory of optimal preventative maintenance (Beichelt and Fischer 

(1980)) 

• is a study of statistical inference (often from censored data) 

Generally, the mathematical problems of lifetime studies of technical objects 

(reliability theory) and of biological entities (survival analysis) are similar, differing only in 

the notation. The term “lifetime” therefore does not apply to lifetimes in the strictest literal 

sense, but can be used in the figurative sense. The idea is that the statistical analysis done 

in this thesis should be true in any of the applicable disciplines, although the notation is 

mostly as for engineering (systems, components, units, etc.). With minor modifications the 

discipline can be changed to biological, or financial, etc. 
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1.2 FAILURE 

 

‘A failure is the result of a joint action of many unpredictable, random processes going 

on inside the operating system as well as in the environment in which the system is 

operating.’ (Gertsbakh (1989)). Functioning is therefore seriously impeded or completely 

stopped at a certain moment in time and all failures have a stochastic nature. In some cases 

the time of failure is easily observed. But if units deteriorate continuously, determination of 

the moment of failure is not an easy task. In this study we assume that failure of a unit can 

be obtained exactly. Failure of a system is called a disappointment or a death and failure 

results in the system being in the down state. This can also be referred to as a breakdown 

(Finkelstein (1999a)). 

     Zacks (1992) points out that there are two types of data to consider, namely: 

• data from continuous monitoring of a unit until failure is observed 

• data from observations made at discrete time points, therefore failure counts 

     Villemeur (1992) gives an extensive list of possible failures and inter-dependent 

failures. There are catastrophic failures, determined by a sharp change in the parameters 

and drift failures (the result of wear or fatigue), arising as a result of a gradual change in 

the values of the parameters. 

 

1.3 REPAIRABLE SYSTEMS 

 

Failed units of a system may be replaced by new ones, but this may prove to be 

expensive. To repair the failed units at a repair facility is usually a more cost-effective 
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option than replacement. A repairable (or renewable) system can be described as one 

where the system can be made operable again. If a system can be renewed, the reliability is 

increased, resulting in an increase in its time of service. If no repair facility is free, failed 

units queue up for repair. The life time of a unit while on-line, while in standby as well as 

the repair times, are all independent random variables. It is assumed that the distributions 

of these random variables are known and that they have probability density functions. 

     Repairable systems have been the subject of intensive investigation for a long time. 

Different random variables can form the basis for research, such as  

• availability (or non-availability) and reliability 

• time necessary for repair 

• number of repairs that can be handled 

• switch over time to and from the repair facility 

• possibility of a vacation time for the repair facility, and many more. 

 

Barlow (1962) considered some ‘repairman’ (or repair-facility) problems and they have 

much in common with queuing problems while Rau (1964) analyzed the problem of 

finding the optimum value of an k-out-of-n: G system for maximum reliability. Ascher 

(1968) has pointed out some inconsistencies in modelling of repairable systems by renewal 

theory. Several authors, notably Buzacott (1970), Shooman (1968) have used continuous 

time discrete state Markov process models for describing the behaviour of a repairable 

system. These models, although conceptually simple, are not practically feasible in the case 

of a large number of states. Gaver (1964), Gnedenko et al. (1969), Srinivasan (1966) and 

Osaki (1970a) have used semi-Markov processes for calculation of the reliability of a 
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system with exponential failures. Osaki (1969) has used signal flow graphs to discuss a 

two-unit system. With the use of semi-Markov processes Kumagi (1971) studied the effect 

of different failure distributions on the availability through numerical calculations. Branson 

and Shah (1971) also used semi-Markov process analysis to study repairable systems with 

arbitrary distributions. Srinivasan and Subramanian (1980), Venkatakrishnan (1975), 

Ravichandran (1979), Natarajan (1980) and Sarma (1982) have used regeneration point 

techniques to analyze repairable systems with arbitrary distributions. More references in 

this  and related topics can be found in various papers by Subba Rao and Natarajan (1970), 

Osaki and Nakagawa (1976), Pierskalla and Voelker (1976), Lie et al. (1977), Kumar and 

Agarwal (1980), Birolini (1985) and Yearout et al. (1986) and Finkelstein (1993a, 1993b). 

Jain and Jain (1994) have considered the regulation of ‘up’ and ‘down’ times of a 

repairable system to improve the efficiency of the system. 

 

1.4 REDUNDANCY AND DIFFERENT TYPES OF REDUNDANT SYSTEMS 

 

In a redundant system more units are built into it than is actually necessary for proper 

system performance. Redundancy can be applied in more than one way and a definite 

distinction can be made between parallel and standby (sequential) redundancy. In parallel 

redundancy the redundant units form part of the system from the start, whereas in a standby 

system, the redundant units do not form part of the system from the start (until they are 

needed). 

 

1.4.1 Parallel systems 
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A parallel redundant system with n units is one in which all units operate 

simultaneously, although system operation requires at least one unit to be in operation. 

Hence a system failure only occurs when all the components have failed. 

Let k be a non-negative integer, such that k ≤ n, counting the number of units in an n-unit 

system. It is customary to refer to such a system as k-out-of-n system. 

 

1.4.2 k-out-of-n: F system 

If k-out-of-n system fails, that is when k units fail, it is called an F-system. The 

functioning of a minimum number of units ensures that the system is up (Sfakianakis and 

Papastavridis (1993)). 

 

1.4.3 k-out-of-n: G-system 

     A G-system is operational if and only if at least k units out of n units of the system are 

operational. Recent work related to this topic can be seen in Zhang and Lam (1998) and 

Liu (1998). Suppose a radar network has n radar control stations covering a certain area: 

the system can be operable if and only if at least k of these stations are operable. In other 

words, to ensure functioning of the system it is essential that a minimum number of units, 

k, are functioning. 

     Lately attention moved to load-sharing k-out-of-n: G systems, where 

• the serving units share the load 

• the failure rate of a component is affected by the magnitude of the load it shares. 
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1.4.4 n-out-of-n: G system 

A series that consists of n units and when the failure of any one unit causes the system to 

fail. Although this type of system is not a redundant system, as all the units are in series 

and have to be operational, it can still be considered as a special vas of a k-out-of-n system. 

There are many papers on the reliability of these systems. Scheuer (1988) studied reliability 

for shared-load k-out-of-n: G systems, where there is an increasing failure rate in survivors, 

assuming identically distributed components with constant failure rates. Shao and 

Lamberson (1991) considered the same scenario, but with imperfect switching. Then 

Huamin (1998) published a paper on the influence of work-load sharing in non-identical, 

non-repairable components, each having an arbitrary failure time distribution. He assumed 

that the failure time distribution of the components can be represented by the accelerated 

failure time model, which is also a proportional hazards model when base-line reliability is 

Weibull. 

 

1.4.5 Standby redundancy 

Standby redundancy consists in attaching to an operating unit one or more redundant 

(standby) units, which can, on failure of the operating unit, be switched on-line (if 

operable). Gnedenko et al. (1969) classifies standby units as cold, warm or hot. 

1. A cold standby is completely inactive and because it is not hooked up, it cannot (in 

theory) fail until it is replacing the primary unit. Also assume that, having been in a 

non-operating state its reliability will not change when it is put into an operating 

state. 
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2. A warm standby has a diminished load because it is only partially energized. The 

standby unit is not subject to the same loading conditions as the on-line unit and 

failure is generally due to some extraneous random influence. So, although such 

warm standby can fail, the probability of it failing is smaller than the probability of 

the unit on-line failing. This the most general type of standby because of hot 

standby’s failure rate and cold standby’s possible time lapse before it is operable. 

3. A hot standby is fully active in the system (although redundant) and the probability 

of loss of operational ability of a hot standby is the same as that of an operating unit 

in the standby state. The reliability of a hot standby is independent of the instant at 

which it takes the place of the operable unit. 

 

1.4.6 Priority redundant systems 

A priority system consists of n (≥ 2) units in which some of the units are given priority 

(p-units) and the other units are termed as ordinary units (o-units). The operating on-line 

unit must be the p-unit and this p-unit is never used in the status of a standby and, in the 

event of a failure, it is immediately taken up for repair – if the repair facility is available. 

On the other hand, the o-unit only operates on-line when the p-unit has failed and is under 

repair. Different policies can be adopted (Jaiswal (1968)) if the p-unit fails during the 

repair of an o-unit, namely pre-emptive and non-pre-emptive priorities. 

 

1.4.6.1 Pre-emptive priority 

The repair of the o-unit will be interrupted by the p-unit if the p-unit fails when the 
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repair for o-units is on. After completion of the repair of the p-unit, the repair of the o-unit 

is continued in one of two ways: 

(i) pre-emptive resume, where the repair of the o-unit continues from the previous 

point of interruption 

(ii) pre-emptive repeat, where repair of the o-unit is started afresh after completion 

of the previous interruption. This implies that the time spent by the I-unit before 

it was pre-empted from the repair has no influence on the re-started repair time. 

 

1.4.6.2 Non-pre-emptive priority 

The repair of the o-unit continues and the repair of the p-unit is entertained only after 

completion of the repair of the o-unit. 

 

1.5 INTERMITTENTLY USED SYSTEMS 

 

When a system is turned on and off intermittently for the purpose of performing a 

certain function it is referred to as an intermittently used system. It is obvious that for such 

a system continuous failure free performance is not so absolutely necessary. In such cases 

consideration has to be given to the fact that the system can be in the down state during 

certain time intervals without any real consequence. The probability that the system is in 

the up state is not an important measure; what is really important is the probability that the 

system is available when needed. Operational reliability is thus a function of the readiness 

and the probability of continuous functioning over a specified period of time and it can 

grow or decline with age, depending on the nature of the system. 
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     Gaver (1964) pointed out that it is pessimistic to evaluate the performance of an 

intermittently used system solely on the basis of the distribution of the time to failure. 

Srinivasan (1966), Nakagawa et al. (1976), Srinivasan and Bhaskar (1979a, 1979b, 1979c), 

Kapur and Kapoor (1978, 1980), Sarma (1982) and Yadavalli and Hines (1991) extended 

Gaver’s results for two-unit and n-unit systems, and, obtained various system measures. 

 

1.6 MEASURES OF SYSTEM PERFORMANCE 

In the previous sections a brief discussion was given of the various types of redundant 

systems as discussed in the literature. In this section the discussion is about measures of 

system performance as applicable in different contexts (Barlow & Proschan (1965) and 

also Gnedenko et al. (1969)). 

 

1.6.1 Reliability 

Reliability engineering has developed, and advanced substantially during the past 50 

years, mainly due to the use of high risk and complex systems (Beichelt (1997)). Reliability 

is a quantitative measure to ensure operational efficiency. ‘The reliability of a product is 

the measure of its ability to perform its function, when required, for a specific time, in a 

particular environment. It is measured as a probability.’ (Leitch (1995)). This implies that 

reliability contains four parts, namely 

• the expected function of a system 

• the environment of a system (climate, packaging, transportation, storage, 

installation, pollution, etc.) 

•  time, which is often negatively correlated with reliability 
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• probability, which is time-dependent, thus causing the need for a statistical analysis. 

     One can distinguish between mission reliability, when a device is constructed for the 

performance of one mission only and operational reliability, when a system is turned on 

and off intermittently for the purpose of performing a certain function. In the latter case we 

refer to an intermittently used system. 

     Ordinarily the period of time intended is (0, t]. 

Let {φ (t), t ≥0} be the performance process of the system. 

For fixed t this φ (t) is a binary variable, defined as follows: 

             φ(t) =
0
1

  
if the system is functioning at time t

if the system is in a failed state at time t.
RST  

 

1.6.1.1 The reliability function 

The reliability function, R(t) gives the probability that the system does not fail up to t, 

that is 

 R(t)  =  P[system is functioning in (0, t]] 

          =  P[φ (u) = 0 ∀  u such that 0 < u ≤ t]. 

 

1.6.1.2 Interval reliability 

If the number of system failures in the interval (t, t + x] is considered, the perfor- 

mance measure 

 R(t, x)  =  P[φ (u) = 0 ∀  u such that 0 < u ≤ t + x] 

is referred to as the interval reliability. 
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If t = 0 the interval reliability becomes the reliability R(x). 

 

1.6.1.3 Limiting interval reliability 

Limiting interval reliability is defined as the limit of R(t, x) as t → ∞, and is denoted 

R∞(x). 

 

1.6.1.4 Mean time to system failure 

The expectation of the random variable representing the duration of time, measured  

from the point the system starts operating, till the instant it fails for the first time is called 

mean time to system failure (MTSF). This is obtained from the relation  

MTSF = . R u du( )
0

∞z
1.6.2 Availability 

This measure of system performance ‘…denotes the probability that the system is 

available for use (in operable condition) at any arbitrary instant t’. Availability is 

therefore the probability that, at the given time t, the system will be operational. It 

combines aspects of reliability, maintainability and maintenance support and implies that 

the system is either in active operation or is able to operate if required. 

Availability pertains only to systems which undergo repair and are restored after failure, or 

to intermittently used systems. As such, it is eminently reasonable to introduce an 

availability function A(t). In theory A(0) should be 100%, but even equipment coming 

directly out of storage may be defective. A high availability can be obtained either by 

increasing the average operational time until the next failure, or by improving the 
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maintainability of the system. Gnedenko and Usnakov (1995) defines different coefficients 

of availability for one-unit systems. 

 

1.6.2.1 Instantaneous or pointwise availability 

     This is a point function which describes the probability that a system will be able to 

operate at a given instant of time (Klaassen and Van Peppen (1989) and Beasley (1991)). 

In symbols: 

A(t) = P[φ (t) = 0]. 

 

1.6.2.2 Interval availability  

Given an interval of time (and with given tolerances), interval availability is the 

expected fraction of this time that the system will be able to operate. 

 

1.6.2.3 Average availability 

If a failed unit is repaired and is then ‘as good as new’, the average availability is 

defined as 

   Average Availability = MTSF
MTSF MTSR+

 

where MTSF and MTSR are the Mean Time to System Failure and Mean Time to System 

Repair respectively. 
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1.6.2.4 Asymptotic or steady-state or limiting availability 

The limiting availability, A∞, is the expected fraction of time that the system operates 

 satisfactorily in the long run (Barlow and Proschan (1965)): it is the probability that the 

system will be in an operational state at time t, when t is considered to be infinitely large  

A∞ = . lim ( )
t

A t
→∞

 

1.6.3 Time to first disappointment 

The system is said to be in a state of disappointment if the number of operable units at 

any time is less than the number of units required for the satisfactory performance of the 

system at that instant of time. For an intermittently used system, Gaver (1964) pointed out 

that a disappointment realizes in one of two possible ways: the system enters the down 

state during a need period, or a need for the system arises and at that time the system is in 

the down state. The event ‘disappointment’ is very useful as it renders the distribution of 

the time to the first disappointment, the mean number of disappointments over an arbitrary 

interval and also the mean duration of the disappointments.  

 

1.6.4 Mean number of events in (0, t] 

Let N(a, t) denote the number of a particular type of a event (e.g. a disappointment, 

system recovery, system down, etc.) in (0, t]. The mean number of events in (0, t] is then 

given by  

E[N(a, t)] = 1
1

0t
h u du

t

( )z  
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where h1(u) is the first order product density of the events (product densities are defined in 

a subsequent section of this chapter). 

     The mean stationary rate of occurrence of these events is given by 

E[N(a)] = lim
t→∞

E[N(a,  t)]
t

 

1.6.5 Confidence limits for the steady state availability 

A 100(1 – α)% confidence interval for A∞ is defined by 

P[a < A∞ < b] = 1 – α 

where the numbers a and b (a < b) are determined using the appropriate statistical tables. It 

may be noted that A∞ is a function of the parameters of operating time distribution, repair 

time, need and no-need period distributions, etc. 

 

1.7 STOCHASTIC PROCESSES USED IN THE ANALYSIS OF REDUNDANT 

      SYSTEMS 

Previous sections briefly looked at different types of redundant systems and the various 

measures of system performance. In this section the techniques used in the analysis of 

redundant repairable systems will be summarized. 

 

1.7.1 Renewal theory 

In renewal theory there exists times, usually random, from which onward the future of 

the process is a probabilistic replica of the original process and interest is in the lifetime (a 

stochastic variable) of a unit. At time t = 0 a repairable unit is put into operation and is 

functioning. At each failure the unit is replaced by a new one of the same type, or subjected 
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to maintenance that completely restores it to an ‘as good as new’ condition. This process is 

repeated and replacement time is taken as negligible. The result is a sequence of lifetimes, 

and the study is restricted to these renewal points. The probability object in these sums of 

non-negative independently identically distributed random variables lies in the number of 

renewals Nt up to some time t. 

Renewal processes are extensively used by many researchers to study specific 

reliability problems. The homogeneous Poisson process is the simplest renewal process and 

has received considerable attention. As in all other processes, the time parameter can be 

considered as either discrete or continuous. Feller (1950) gave a proper lead for the discrete 

and this was followed by the very lucid account of Cox (1962) for the continuous case (he 

provided an introduction to renewal theory in the case of a repair facility not being 

available and failed units queuing up for repair). Barlow (1962) applied queuing theory in 

his research on repairable systems. Srinivasan (1971) studied some operating 

characteristics of a one unit system, Gnedenko et al. (1969) obtained the mean life time to 

system failure of a two-unit standby system, Buzacott (1970) studied some priority 

redundant systems, etc. 

Although renewals can take on different forms, the system starts a new cycle after each 

renewal (which is independent of the previous ones). If repair time is not negligible, each 

cycle consists of a lifetime and a repair time and both are random variables with individual 

distributions (repair time can also be considered as a fixed time). The process is called  

• an ordinary renewal process if the time origin is the initial installation of the 

system and the repair time is considered negligibly small in comparison with the 

lifetime of the unit – renewal is taken as instantaneous, or 
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• a general renewal process if the time origin is some point subsequent to the 

initial installation of the system (Cox (1962)). Høyland and Rausand (1994) 

calls this a modified renewal process, while Feller (1957) refers to such a 

process considering the residual life time of a system at an arbitrary chosen time 

origin as a delayed renewal process.  

 

1.7.1.1 Ordinary renewal process: instantaneous renewal 

     Consider a basic model of continuous operation where a unit begins operating at instant 

t = 0 and stays operational for a random time T1 and then fails. At this instant it is replaced 

by a new and statistically identical unit, which operates for a length of time T2, then fails 

and is again replaced etc. These random component life lengths T1, T2, …, Tr … of the 

identical units are independent, non-negative and identically distributed random variables 

that constitute a random flow or ordinary renewal process. 

     Let P[Ti ≤ t] = F(t) ; t > 0, i  = 1, 2, … be the underlying distribution of the renewal 

process. 

The time until the rth renewal is given by 

tr =  T1 + T2 +…. + Tr = Ti
i

r

=
∑

1
. 

     Let the random variable N(t) = max {r; Rr ≤ t} indicate the number of times a renewal 

takes place in the interval (0; t], then the number of renewals in an arbitrary time interval 

(t1, t2] is equal to N(t2 ) - N(t1 ). 

     A renewal function H(t), which is the expected value of N(t) in the time interval (0; t], 

can be defined as 
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H(t) =  E[N(t)] =   F tr

r

( ) ( )
=

∞

∑
1

where F(r) (·) is the r-fold convolution of F. 

Furthermore, (Cox (1962)), 

H(t) = F(t) + . H t x dF x
t

( ) (−z
0

)

The renewal density function h(t) satisfies the equation 

h t f tr

n

( ) ( )( )=
=

∞

∑
1

 

and the renewal density function h(t) satisfies the equation 

h(t) = f(t) + . h t x f x dx
t

( ) ( )−z
0

     Seeing that [ exactly one renewal point in h t t P( )∆ = ( , ]t t + ∆ ], 

which implies that the renewal density  h(t) basically differs from the hazard rate h0(t), as 

h (t) =  f(t)
R(t)

 =  f(t)
(1- F(t))

0 . 

 

1.7.1.2 Random renewal time 

     Suppose the time for renewal is not instantaneous but considered as a random variable 

that is included in the consecutive time-periods, or cycles, of the systems’ performance. 

Each cycle then consists of a time to failure and a time to repair and both are stochastic 

variables. Instants of failure and cycles of renewal can be identified. 
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     Let F(t) be the life distribution and G(x) be the repair length function with respective 

probability density functions f(t) and g(x), then the density function of the cycles C of the 

life time and repair time, say k(t) is obtained by the convolution formula 

k(t) = .  f x g t x dx
t

( ) ( )−z
0

     If NF(t) counts the number of failures and NR(t) the number of repairs in (0; t], define   

                              W(t) = E[NF(t)] 

and 

    V(t) = E[NR(t)] 

and let Q(t) = W(t) – V(t); t, assuming that ∀ w t W t( ) ( )= ′  and v t V t( ) ( )= ′ . 

     The failure and repair intensities can be then respectively be defined as  

λ( ) ( )
( )

t w t
A t

=  

where A(t) is the availability function 

µ(t) =  v(t)
Q(t)

;      Q(t) ≠ 0. 

 

1.7.1.3 Alternating renewal processes 

     Alternating renewal processes were first studied in detail by Takács (1957) and are 

discussed in many textbooks (Birolini (1994) and Ross (1970)). A generalization of the 

ordinary renewal process discussed previously where the state of the unit is given by the 

binary variable  
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X (t) =
0
1

  
if the system is functioning at time t

  otherwise.
RST  

     The two alternating states may be ‘system up’ and ‘system down’. If these alternating 

independent renewal processes are distributed according to F(x) and G(x), there are two 

renewal processes embedded in them for the different transitions from ‘system up’ to 

‘system down’. 

     One-item repairable structures are generally described by alternating renewal processes 

with the assumption that after each repair the item is like new. 

 

1.7.1.4 The age and remaining lifetime of a unit 

     In the notation of 1.7.1(a), let tr indicate the random component life lengths, that is  

     t T . 
r i

i

r

=
=
∑

1

Let Rr,  r ∈ N, represent the length of the rth repair time, then the sequence  

T1, R1, T2, R2, … forms an alternating renewal process. Define 

t R Tn r
r

n

r= +
=

−

+∑ ( )
1

1

1 ;     n ∈Ν  

and set . t t o
0 0 0= =

      This sequence tn  generates a delayed renewal process. 

     If B1(t) denotes the forward recurrence time at time t, then 

 

  B1(t) =          or  Bt -
N t +1

t t1(t) =  t -
N t

o +1

Hence, 
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• B1(t) equals the time to the next failure time if the system is up at time t, or 

• B1(t) equals the time to complete the repair if the system is down at time t. 

Hence, 

• B2(t) equals the age of the unit if the system is up at time t, or 

• B2(t) equals the duration of the repair if the system is down at time t. 

      Returning to the renewal function H(t), define the elementary renewal theorem (Feller 

(1949)), stating that, for an ordinary renewal process with underlying exponential 

distribution (parameter λ and H(t) = λt) 

lim
t→∞

=
H(t)

t
1
µ

 

with µ = E(Ti) = 1/ λ, the mean lifetime. 

     If the renewals correspond to component failures, the mean number of failures in (0, t] 

is approximately (for t large) 

H(t)  =  E[N(t)]  ≈  1 1
µ

=
MTSF

. 

 

1.7.2 Semi-Markov and Markov renewal processes 

     Consider a general description of a process where a system 

• moves from one state to another with random sojourn times in between 

• the successive states visited form a Markov chain 

• the sojourn times have a distribution which depend on the present state as well as 

the next state to be entered. 
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This describes a Markov chain if all sojourn states are equal to one, a Markov process if the 

distribution of the sojourn times are all exponential and independent of the next state and a 

renewal process if there is only one state (then allowing an arbitrary distribution of the 

sojourn times). 

     Denote the state space by the set of non-negative integers {0, 1, 2 ...} and the transition 

probabilities by pij, i, j = 0, 1, 2 ... If Fij (t), t > 0 is the conditional distribution function of 

the sojourn time in state i, given that the next transition will be into state j, let 

Qij (t)   =  pij Fij (t),  i, j = 0, 1, 2 ...

denote the probability that the process makes a transition into state j in an amount of time  

less than or equal to t, given that it just entered state i at t = 0. The functions Qij (t) satisfy 

the following conditions 

Qij (0)  =   0,     Qij (∞) = pij 

Qij (t)    ≥   0,     i, j = 0, 1, 2 ... 

Q tij
j

( )
=

∞

∑
0

 =  1 

Let J0 and Jn respectively denote the initial state and the state after the nth transition 

occurred. The embedded Markov chain {Jn , n = 0, 1, 2 ... } then describes a Markov chain 

with transition probabilities pij.   

Let Ni(t) denote the number of transitions into state i in (0, t] and  

N(t)  =  N ti
i=

∞

∑
0

( )
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The stochastic process {X(t), t ≥ 0} with X(t) = i denoting the process is in state i at time t is 

called a semi-Markov process (SMP) and it is clear that X(t) = JN(t). A SMP is a pure jump 

process and all states are regeneration states. The consecutive states form a time-

homogeneous Markov chain, but it is a process without memory at the transition point from 

one state to the next. 

      The vector stochastic process {N1(t) , N2(t) ...} for  t ≥ 0 is called a Markov renewal 

process (MRP). This implies that the SMP records the state of the process at each time 

point, while the MRP is a counting process keeping track of the number of visits to each 

state. 

      Assuming that the time-intervals in which the random variables X(t) continues to 

remain in the n-point state are independently distributed such that 

lim
t→∞

∀ ≤ ≠P[X(t +  x) =  j,  X(t +  u) =  i:   u   x X(t) =  i,  X(t - )  i]∆  

= fij (x) ; i, j = 0, 1, 2 ... 

     If the transition of X(t) is characterized by a change of state, then the quantities  fii (·) are 

zero functions. Such a process which is a Markov chain with a randomly transformed time 

scale is called a MRP. 

     To remove the consequence that fii (·) = 0, another function of a MRP can be given, 

namely defining it as a regenerative stochastic process {X(t)} in which the epochs at which 

X(t) visits any member of a certain countable set of states are regeneration points; the visits 

being regenerative events. 
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     In a combination of a Markov chain and a renewal process to form a SMP, the purpose 

is to create a tool that is more powerful than what either could provide individually. SMP 

were independently introduced by Lévy (1954) and Smith (1955). Detailed use of SMP and 

MRP can be found in Pyke (1961a, 1961b), Cinlar (1975) and Ross (1970). Barlow and 

Proschan (1965) used these processes to determine the MTSF in a two-unit system. Cinlar 

(1975), Osaki (1970a, 1970b), Arora (1976), Nakagawa & Osaki (1974, 1976) and 

Nakagawa (1974) have used the theory of SMP to discuss certain reliability problems. 

 

1.7.3 Regenerative processes 

     In a regenerative stochastic process X(t) there exists a sequence t0, t1, ... of stopping 

times such that t = {tn; n N∈ } is a renewal process. If a point of regeneration happens at 

 t = t1, then the knowledge of the history of the process prior to t1 loses its predictive value; 

the future of the process is totally independent of the past. Thus X(t) regenerates itself 

repeatedly at these stopping times and the times between consecutive renewals are called 

regeneration times. The application of renewal theory to regenerative processes makes 

renewal theory such an important tool in elementary probability theory. 

     The delayed renewal process is defined as follows:  if  is a renewal 

process such that t

$ { ;t t t n Nn= − ∈0 }

0 ≥ 0 is independent of , (implying that the time t$t 0 of the first renewal is 

not necessarily the time origin) it is called a delayed renewal process. A delayed 

regenerative process is a process with a sequence t = { ; }t n Nn ∈ of stopping times which 

form a delayed renewal process. As an example: for any initial state i, the times of 

successive entrances to a fixed state j in a Markov process form a delayed renewal process. 
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     In some cases non-exponentially distributed repair times and/or failure free operating 

times may lead to semi-Markov processes, but in general it leads to processes with only a 

few states (or even to non-regenerative processes). Recent research in this field is 

concerned with Brownian motion with the interest on the random set of all regeneration 

times and on the excursions of the process between generations. 

 

1.7.4 Stochastic point processes 

     Among discrete stochastic processes, point processes are widely used in reliability 

theory to describe the appearance of events in time. A renewal process is a well known 

type of point process, used as a mathematical model to describe the flow of failures in time.  

It is a point process with restricted memory and each event is a regeneration point. In 

practical reliability problems, the interest is often in the behaviour of a renewal process in a 

stationary regime, i.e., when t → ∞, as repairable systems enter an ‘almost stationary’ 

regime very quickly. A generalization of a renewal process is the so-called alternating 

renewal process, which consists of two types of independently identically distributed 

random variables alternating with each other in turn.  

     This theory of recurrent events has a huge variety of applications ranging from classical 

physics, biology, management sciences, cybernetics and many other areas. The result is 

that point processes have been defined differently by individuals in the different fields of 

application. The properties of stationary point processes were first studied by Wold (1948) 

and Bartlett (1954), to whom we owe the current terminology. Moyal (1962) gave a formal 

and well-knit theory of the subject that even provides an extension to cover non-Euclidean 
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spaces. Srinivasan (1974), Srinivasan and Subramanian (1980) and Finkelstein (1998, 

1999c) extensively used point processes in reliability theory and applications. 

      Our interest in point processes lies in those applications which, in general, lead to the 

development of multivariate point processes. For this purpose we can define a point 

process as a stochastic process ‘whose realizations are related to a series of point events 

occurring in a continuous one-dimensional parameter space (such as time, etc)’. The 

sequence of times {tn} are the “renewal” epochs which generates the point process and the 

two random variables of interest are 

• the number of points that fall in the interval (t; t + x] 

• the time that has lapsed since the nth point after (or before) t. 

     The characterization property of stationarity applies to certain point processes, namely 

that the density function of observed events in a time interval does not depend on its 

position on the time axis, but only on the length of the interval. There are different types of 

stationarity that can be defined, namely simply stationary, weakly stationary and 

completely stationary (Srinivasan and Subramanian (1980)).  

Furthermore, define p(n; t, x) = P[N(t, x) = n] and if P n t t o
n

( ; , ) ( )+ =
≥
∑ ∆

2

∆ for small ∆, the 

point process is said to be orderly or regular (there are no multiple events, or clusters of 

events with probability one). 

 

1.7.4.1 Multivariate point processes 

      Applications for multivariate stationary point processes can be found in many fields 

and the properties of these processes have been studied in depth by Cox and Lewis (1970). 
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     If the constraint of independence of the intervals in a stationary renewal process is 

relaxed, a stationary point process is obtained; if the same constraint is removed in the case 

of a Markov renewal process a multivariate point process is obtained. 

 

1.7.4.2 Product densities 

     Ramakrishnan (1954) developed, analyzed and perfected the product density technique 

as a sophisticated tool for the study of point processes. A point process is described by the 

triplet ( , B, P), where P is a probability distribution on some σ-field BΦ   of subsets of the 

space of all states. Describe the state of a set of objects by a point x of a fixed set of 

points X. Assume for this discussion that X is the real number line. Define A

Φ

k as intervals 

and N (.)  as a counting measure which is uniquely associated with a sequence of points 

{ti} such that: 

 N(A)  =  the number of points of the sequence { ti : ti ∈ A} 

 N(t, x)  =  the number of points (events) in the interval (t; t + x] 

 ′N (t, x)  =  the number of points (events) in (t + x; t + x + ∆]. 

The central quantity of interest in the product density technique is , denoting the 

number of entities with parametric values between x and x + ∆ at time t. 

′N (t,  x)

     From the factorial moment distribution the product density of order , which represents 

the probability of an event in each of the intervals  

(x1, x1 + ∆1), (x2, x2 + ∆2), ..., (xn, xn + ∆n),  

can be defined. It is expressed as the product of the density of expectation measures at 

different points, namely 
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hn(x1, x2, ..., xn)  = lim
[ ( , )]

..., ...,∆ ∆ ∆

Π ∆

∆ ∆ ∆1 2 0

1

1 2n

E N x
i

n

i i

n
→

= x x xn1 2 ; ≠ ≠ ≠...  

or equivalently 

hn(x1, x2, ..., xn)  = lim [ ( , ) , , ..., ]
..., ...,∆ ∆ ∆

∆
∆ ∆ ∆1 2 0

1 2

1 1 2
n

P N x i ni i

n
→

≥ =  ;  x x xn1 2≠ ≠ ≠...  

     Since hn(...) is a product of the density of expectation measures at different points, the 

density is aptly called the product density. 

      Considering the ordinary renewal process as defined in 1.7.1(a), the renewal function 

H(t) is the expected number of random points in the interval (0; t]. Modify the process by 

allocation of all integral values to { ti } and consider a corresponding sequence of points on 

the real line. In the point process then generated by the random variables { ti }, the counting 

process N(t, x) represents the number of points in the interval (t, t + x] and the product 

density is  

hm(t, t1,  t2, ..., tm)  =  E[N (t, t ) N (t, t ) ...  N  (t, t )]1 2 m′ ′ ′  

    The product density of degree m is  

hm(t, t1,  t2, ..., tm)  =  h1(t, t1) h(t2 - t1) h(t3 - t2) ... h(tm - tm-1);  

           (t1 <  t2  < ... <  tm). 

 

1.8 SCOPE OF THE WORK 

 

     A stochastic model of an urea decomposition system in the fertilizer industry is studied 

in Chapter 2. A set of difference-differential equations for the state probabilities are 

formulated under suitable conditions. The state probabilities are obtained explicitly and the 
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steady state availability of the system is obtained analytically as well as illustrated 

numerically. Confidence limits for the steady state availability are also obtained. 

     In Chapter 3, a dissimilar unit system with different modes of failure is studied. The 

system is a priority system in which one of the units is a priority unit and the other unit one 

is an ordinary unit. The concept of ‘dead time’ is introduced with the assumption that the 

‘dead time’ is an arbitrarily distributed random variable.  The operating characteristics like 

MTSF, Expected up time, Expected down time, and the busy period analysis, as well as the 

cost benefit analysis is studied.  

     A two unit priority redundant system is studied in Chapter 4. The main aim of this 

chapter is to consider the physical conditions of the repair facility since the repair time 

distribution is affected by such conditions. Various system measures are studied, and the 

confidence limits for the availability and busy period are obtained in the steady state case.  

     In most of the available literature on n-unit standby systems, many of the associated 

distributions are taken to be exponential, one of the main reasons for this assumption is the 

number of built-in difficulties otherwise faced while analysing such systems. In Chapter 5 

this exponential nature of the distributions is relaxed and a general model of a three unit 

cold standby redundant system, where the failure and repair time distributions are arbitrary, 

is studied. 

     In Chapter 6, a stochastic model of a reliability system which is operated by a human 

operator is studied. The system fails due to the failure of the human operator. Once again, it 

is assumed that the human operator can be in any one of the three states; namely, normal 

stress, moderate stress or extreme stress. Different operating characteristics like 

availability, mean number of visits to a particular state and the expected profit are obtained. 
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     Results are illustrated numerically at the end of the chapters. 

 

1.9 GENERAL NOTATION 

X(·)   A stochastic process describing the state of a system 

p.d.f.    Probability density function  

r. v.   Random variable 

f(·)    The p.d.f. of the lifetime of a unit while on-line 

g(·)    The p.d.f. of the repair time of a unit  

©   Convolution symbol 

f n( ) ( )⋅   n-fold convolution of a function f(·)  with itself, where f(·)  is arbitrary 

f s*( )    Laplace transform of the function f(t) 

F(t)   Cumulative distribution function:   f u du
t

( )
0
z

F (t)  Survivor function:  1 – F(t) 

Ei    Regenerative event of type i 

A    Availability 

Ai (t)   P(system is up at t / Ei at t = 0) 

A∞   Steady state availability 

R    Reliability 

Ri (t)   P(system is up in (0, t] / Ei at t = 0) 

MLE    Maximum likelihood estimator 

MTSF   Mean time to system failure (also MTTF) 
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MTSR   Mean time to first appointment 

SMP   Semi-Markov process 

MRP   Markov renewal process 
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CHAPTER 2 

 

CONFIDENCE LIMITS FOR THE STEADY-STATE AVAILABILITY 

OF A STOCHASTIC MODEL OF UREA DECOMPOSITION SYSTEM 

IN THE FERTILIZER INDUSTRY 
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2.1 INTRODUCTION: 

The role and importance of reliability has been a core issue in any Engineering industry 

for the last three decades. Reliability is of importance to both manufacturers and consumers. 

From the consumers and manufacturers point of view reliability provides quality and vice 

versa. So, the reliability measure is very important, as the improvement in reliability is 

achieved through quality. While this measure of reliability assumes great importance in 

industry there are many situations where continuous failure free performance of the system, 

though desirable, may not be absolutely necessary.  

In such situations it may be eminently reasonable to introduce another measure called 

‘availability’, which denotes the probability that the system is functioning at any time point. 

In the process industry like the fertilizer industry, we come across many processes like 

synthesis decomposition, crystallization, prilling and recovery [see U.N. Fertiliser Manual 

(1967), Kumar et al. (1991)]. 

The gas liquid mixture (urea, NH3, CO2, Biuret) flows from the reactor at 126°C into the 

upper part of a high-pressure decomposer where the flushed gases are separated. The liquid 

falls through a sieve plate, which comes in contact with high temperature gas available from 

the boiler and the falling film heater. The process is repeated in a low-pressure absorber. The 

solution is further heated to 165°C in the falling film heater, which reduces the Biuret 

formation and hydrolysis of urea (see figure 1). 

The overhead gases from the high-pressure decomposition go to the high-pressure absorber 

cooler. The liquid flows to the top of the low-pressure absorber and is cooled in a heat 

exchanger. Additional flushing of the solution takes place in the upper part of the low-pressure 
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absorber to reduce the solution pressure from 17.5 to 2.5 kg/cm2. The low-pressure absorber 

has four sieve trays and a packed bed. In the packed bed, the remaining ammonia is stripped 

off by CO2 gas. 

The overhead gases go to the low-pressure absorber cooler, in which the pressure is controlled 

at 2.2 kg/cm2. Most of the excess ammonia and carbonate is separated from the solution 

flowing to the gas separator. The gas separator has two parts: 

(i) the upper part is at 105°C and 0.3 kg/cm2 and here the remaining small amounts of 

ammonia and CO2 are recovered by reducing the pressure; the sensible heat of the solution is 

enough to vaporize these gases. 

(ii) The lower part has a packed section at 110°C and atmospheric pressure. 

 

Air containing a small amount of ammonia and CO2 is fed off from the gas absorber by an 

on/off gas blower, to remove the remaining small amounts of ammonia and CO2 present on the 

solution. Off gases from the lower and upper parts are mixed and led to the off-gas condenser. 

The urea solution concentrated to 70-75% is fed to a crystallizer. 

It is well known that the steady state availability is a satisfactory measure for systems, 

which are operated continuously (e.g. a detection radar system). 

A point estimator of steady state availability is usually the only statistic calculated, 

although decisions about the true steady state availability of the system should take uncertainty 

into account. Since 

A MTBF
MTBF MTTR∞ = +

, 

the uncertainties in the values of the MTBF and MTTR reflect an uncertainty in the values of 
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the point steady state availability (where MTBF stand for Mean Time Between Failures and 

MTTR for Mean Time To Repair). 

By treating these uncertain parameters as random variables, we can obtain the distribution 

of point steady state availability by combining the distribution of operation and repair times. 

Hence we can construct estimators and confidence limits for the steady state availability, 

which are consistent with equivalent statements on the operating time and repair time 

parameters. Thomson (1966) has derived techniques for placing a lower confidence limit on 

the system’s steady state availability that differ significantly from a specified value, when 

MTBF and MTTR are estimated from test data. 

Gray and Lewis (1967) established the exact confidence interval for steady state 

availability of systems assuming that the time between failures is described by an exponential 

random variable and that the time to repair is described by a lognormal random variable. 

Butterworth and Nikolaisen (1973) have obtained the bounds on the availability function 

for the general repair time distribution. Masters and Lewis (1987) have derived exact 

confidence limits for the system steady state availability with Gamma life time and lognormal 

repair time. Masters et al. (1992) have proposed a method of establishing exact confidence 

limits for steady state availability of systems when the time between failure and time to repair 

are independent Weibull and lognormal random variables respectively. 

Abu-Salih et al. (1990) have derived 100(1- α)% confidence limits for the steady state 

availability of a two unit parallel system with the assumption that the failure time distribution 

is exponential and the repair time has a two stage Erlangian distribution. They have also 

assumed that an upstate unit will not fail when the other unit is in the second stage of repair.  
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Chandrasekhar and Natarajan (1994a, b) have considered and n-unit parallel system with 

the assumption that the failure time distribution is exponential and the repair time has a two 

stage Erlangian distribution. Further they have assumed that an operable unit can also fail 

while the other unit is in the second stage of repair. In particular they have derived a 100(1- 

α)% confidence limits for the steady state availability of a two unit parallel system. Yadavalli 

et al. (2001, 2002, 2005) have studied the 100(1- α)% confidence limits for different types of 

systems (parallel and standby) with the assumption that the repair facility is not available for a 

random time.   

The organisation of this chapter is as follows: Section 2.1 is introductory in nature, the 

system description and notation is given in Section 2.2. The availability analysis of the system 

is studied in Section 2.3. In Section 2.4, the interval estimation for  is studied, and 

subsequently the numerical results for Sections 2.3 and 2.4 are shown in Section 2.5.  

A∞

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



  

 

40

         

              Figure 2.1  Urea plant (by courtesy of Balance Kapuni, South Taranaki, New Zealand) 
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2.2 SYSTEM DESCRIPTION AND NOTATION 

The complex system described above consisting of four subsystems connected in series. 

 

1. Subsystem (Ai) has two units. Unit A1 is the boiler for the high-pressure absorber and 

A2 is the falling filter heater for the low-pressure absorber. This subsystem (Ai) fails by 

failure of A1 or A2. 

2. Subsystem Bi has two units in series. Unit B1 is called the high-pressure absorber and 

unit B2 is called the low-pressure absorber. Failure of either causes complete failure of 

the system. 

3. Subsystem D, the gas separator, has one unit only, arranged in series with B1 and B2. 

Failure of unit D causes complete failure of the system. 

4. Subsystem Ei the heat exchanger has one unit in standby. Failure occurs only when 

both units fail. 

5. The life time of the units (Ai, Bi, D, E; i = 1,2) are exponentially distributed random 

variables with parameters λi;  i=1,2,3,4,5,6. 

6. The repair time of the units are exponentially distributed random variables with 

parameters µj;  j = 1,2,3,4,5,6. 

7. Each unit is as good as new after the repair. 

8. Spare parts and the repair facility are always available. 

9. The standby unit in E is of the same nature and capacity as the operating active unit. 
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10. The repair is done at regular time interval or at the time of failure. The repair includes 

the replacement as well. 

11. There is no simultaneous failure among subsystems. 

12. State O indicates the operating state without using standby unit and state 6 indicates 

the operating state using the standby state in subsystem E. 

13. E1 is the state of the system running at full capacity with a standby unit in subsystem E. 
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2.3 AVAILABILITY ANALYSIS OF THE SYSTEM 

Let Pi(t)  = P[ system is in state i, with only failure at time t] 

Pi = . (t)P   t i∞→
lim

Writing the application of flow balance (Ravindran et al. (1982)), the steady state probability 

can be determined from the following equations: 

With the help of Figure 2.2, we obtain the following differential equations describing the state 

probabilities: 

′ = − +
= =
∑ ∑P t P t P ti
i

i i
i

0 0
1

6

1

6

( ) ( ) ( ) ( )λ µ                                                    (2.3.1) 

′ = − + + +
= =

+∑ ∑P t P t P t P ti
i

i
i

i6
1

6

6 6
1

6

6 6 0( ) ( ) ( ) ( ) ( )λ µ µ λ                            (2.3.2)   

µ µ µi
i

i i
i

i i
i

P t P t P t
= = =
∑ ∑ ∑′ = − +

1

5

1

5

1

5

0( ) ( ) ( )        i = 1, 2, ... , 5            (2.3.3) 

µ µ µi
i

i i
i

i i
i

P t P t P t
=

+
=

+
=

∑ ∑ ∑′ = − +
1

6

6
1

5

6
1

6

6( ) ( ) ( )      i = 1, 2, ... , 6         (2.3.4) 

P ti
i

( )
=
∑ =

1

6

1                                                                                 (2.3.5) 
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In the steady state, the equations (2.3.1) – (2.3.5) become: 

p   = p ) ( ii

6

1 = i
0i

6

1 = i

µλ ∑∑                                                                              (2.3.6) 

p  + p   = p ) +  ( 066 + ii

6

1 = i
66i

6

1 = i
λµµλ ∑∑                                                   (2.3.7) 

5  ,... 2, 1, = i ; p   = p  0i

5

1 = i
ii

5

1 = i
λµ ∑∑                                                         (2.3.8) 

6  ,... 2, 1, = i ; p   = p  i 6

6

1 = i
6 + ii

6

1 = i
λµ ∑∑                                                      (2.3.9) 

1 = p i

6

1 = i
∑ .                                                                                        (2.3.10) 

Solving the system of simultaneous equations (2.3.6) - (2.3.10), the steady state availability A∞ 

can be obtained as 

µ
λ

µ
λ
µ
λ

i

i
6

1 = i6

6

6

6

60

  ) + (1 + 1

 + 1
 = p + p = A

∑
∞ . 

For different parameters, Tables 2.3.1(a) – 2.3.1 (e) and the Figure 2.3 explain the availability 
function. 
 
 
2.4. INTERVAL ESTIMATION FOR A∞ 

Let be random samples of size n, each drawn from 

different exponential populations with failure rates λ

X X X ; (i =  1, 2, . . ., 6i i in1 2, ,..., , )

i, similarly 

be random samples each drawn from exponential populations 

with parameters µ

Y Y Y ;  (i =  1, 2, . . ., 6i i in1 2, ,..., , )

i. Since λi ‘s are the parameters of the exponential distribution, then an 
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estimate can be found for λi  or for 1/λi = αi (say), which is equal to the mean value of the 

time of failure-free operation.  

For the analysis, let 

µ
β

λ
α

i
i

i
i

1 =  ,1 = . 

Then the maximum likelihood estimates (MLE) of αi and βi are given by 

1
n

  X  =  X  , 
j = 1

n

ij i∑      1
n

  Y  =  Y  
j = 1

n

ij i∑ .  

Hence                                

x

y
  )

x

y
 + (1 + 1

x

y
 + 1

 = A

i

i
6

1 = i6

6

6

6

∑
∞ˆ . 

By an application of the multivariate central limit theorem (Rao (1973)), it follows that 

)  0, ( N  )  - x ( n 6
D Σ⎯→⎯θ as n → ∞ where X X X X X X X Y Y Y Y Y Y= ( , , , , , , , , , , , )1 2 3 4 5 6 1 2 3 4 5 6  

We know that is a real-valued function in $A∞ Xi  and Yi ; i = 1, 2, ..., 6. 

)  , , , , , , , , , , , ( = 654321654321 ββββββααααααθ . 

The dispersion matrix  is given by )( = 12x12ijσΣ

)   ,. . . , ,  ,. . . , ( diag = 2
6

2
1

2
6

2
1 ββααΣ . 

From Rao (1973), as n → ∞, i.e. using the multivariate central limit theorem,  

) )(  0, ( N ) A - A ( n 2
6

D θσ⎯→⎯∞∞ˆ  where 

∑∑
=

∞∞

∂
∂

∂
∂ 6

1i
i i

i

2

i i
i

26

1 = i

2   )
 
A  +  )

 
A (  = )( σβσ
α

θσ  
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Replacing by its consistent estimator 

$ ( , ,..., , , ,..., )θ = X X X Y Y Y1 2 6 1 2 6 , it follows that is a consistent estimator of  )(  = 22 θσσ ˆˆ

)( 2 θσ . Since is a consistent estimator of )( 2 θσ θ , we know that is a consistent 

estimator of 

σ θ2 ( $ )

θ  (see Wackerly et al. (2002)). 

Then by Slutsky's theorem (Slutsky (1928)) 

)  , ( N  
) A - A ( n D 10

ˆ
ˆ

⎯→⎯∞∞

σ
as n → ∞. 

This implies that 

P [ -  k   n ( A  -  A  )   k  ] =  1 -  
2 2
α α

σ
α≤ ≤∞ ∞$

$
, 

where  is obtained from normal tables, i.e. 100(1 – α)% confidence interval is given  by kα /2

     . $ $ ( )/A k∞ ± α σ θ2

 

 

 
2.5 NUMERICAL ILLUSTRATION 

 

For different values of the parameters, the numerical computations for  are shown in 

Tables 2.5.1(a) – 2.5.1(e) and Figure 2.3.  

A∞

 

The confidence limits for were also obtained and shown Table 2.5.2. A∞

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



 

 

 

48

  A∞

Α1=α2 Α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1.00000 0.99998 0.99994 0.99985 0.99974 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.90909 0.90907 0.90903 0.90897 0.90888 0.90877 0.90863 0.90846 0.90827 0.90806 

 0.010 0.83333 0.83332 0.83328 0.83323 0.83316 0.83306 0.83294 0.83280 0.83264 0.83247 

            

0.001 0.0 0.99602 0.99600 0.99595 0.99587 0.99577 0.99563 0.99546 0.99526 0.99503 0.99478 

 0.005 0.90578 0.90578 0.90574 0.90568 0.90559 0.90548 0.90534 0.90517 0.90498 0.90477 

 0.010 0.83056 0.83055 0.83052 0.83046 0.83039 0.83029 0.83018 0.83004 0.82988 0.82970 

            

0.005 0.0 0.98037 0.98037 0.98033 0.98025 0.98015 0.98002 0.97985 0.97966 0.97944 0.97919 

 0.005 0.89284 0.89284 0.89280 0.89274 0.89266 0.89254 0.89241 0.89255 0.89207 0.89186 

 0.010 0.81967 0.81966 0.81962 0.81957 0.81950 0.81941 0.81929 0.81916 0.81901 0.81883 

Table 2.5.1 (a): Effect of Failure Rate (taking β1 =β2 = 0.5; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25) 

  A∞

α1=α2 Α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1 0.99998 0.99994 0.99986 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.9090 0.90908 090904 0.90894 0.90888 0.90877 0.90863 0.90846 0.90827 0.90806 

 0.010 0.83333 0.83332 0.83329 0.83323 0.83316 0.83316 0.83306 0.83294 0.83280 0.83247 

            

0.001 0.0 0.99668 0.99666 0.99661 0.99654 0.99643 0.99629 0.99612 0.99592 0.99569 0.99544 

 0.005 0.90634 0.90633 0.90629  0.90623 0.90614 0.90602 0.90588 0.90572 0.90553 0.90532 

 0.010 0.83102 0.83101 0.83098 0.83093 0.83085 0.83075 0.83064 0.83050 0.83034 0.83016 

            

0.005 0.0 0.98361 0.98359 0.98355 0.98347 0.98336 0.98323 0.98306 0.98287 0.98265 0.98240 

 0.005 0.89552 0.89551 0.89547 0.89541 0.89532 0.89521 0.89507 0.89491 0.89473 0.89452 

 0.010 0.82192 0.82191 0.82187 0.82182 0.82175 0.82165 0.82154 0.82140 0.82125 0.82107 

Table 2.5.1 (b): Effect of Failure Rate (taking β1 =β2 = 0.6; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25) 
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  A∞

α1=α2 Α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1 0.99998 0.99994 0.99986 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.92308 0.92306 0.92302 0.92296 0.92286 0.92274 0.92260 0.92243 0.92223 0.92201 

 0.010 0.85714 0.85713 0.85710 0.85704 0.85696 0.85685 0.92260 0.92243 0.92223 0.92201 

            

0.001 0.0 0.99715 0.99714 0.99709 0.99701 0.99690 0.99676 0.99659 0.99639 0.99617 0.99591 

 0.005 0.92065 0.92064 0.92060 0.92053 0.92044 0.92032 0.92017 0.92000 0.91981 0.91969 

 0.010 0.85505 0.85504 0.85500 0.85494 0.85486 0.85476 0.84637 0.84623 0.84606 0.84588 

            

0.005 0.0 0.98592 0.98590 0.98585 0.98578 0.98567 0.98553 0.98537 0.98517 0.98495 0.98470 

 0.005 0.91106 0.91105 0.91101 0.91094 0.91085 0.91074 0.91060 0.91043 0.91024 0.91003 

 0.010 0.84677 0.84676 0.84673 0.84667 0.84659 0.84649 0.84637 0.84623 0.84606 0.84588 

Table 2.5.1 (c): Effect of Failure Rate (taking β1 =β2 = 0.7; β3 = β4 = 0.3; β5 = 0.1; β6 = 0.25) 
 
  A∞

α1=α2 α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 0.99998 0.99994 0.99986 0.99975 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.93023 0.93022 0.93018 0.93011 0.93001 0.92989 0.92975 0.92957 0.92937 0.92915 

 0.010 0.86957 0.86955 0.86952 0.86946 086937 0.8627 0.86914 0.86899 0.86882 0.86862 

            

0.001 0.0 0.99751 0.99749 0.99744 0.99736 0.99726 0.99712 0.99695 0.99675 0.99652 0.99626 

 0.005 0.92807 0.92806 0.92802 0.92795 0.92786 0.92774 0.92759 0.92742 0.92722 0.92700 

 0.010 0.86768 0.86767 0.86763 0.86757 0.86749 0.86738 0.86726 0.86711 0.86893 0.86674 

            

0.005 0.0 0.98765 0.98764 0.98759 0.98752 0.98741 0.98727 0.98711 0.98691 0.98669 0.98644 

 0.005 0.91954 0.91953 0.91949 0.91942 0.91933 0.91921 0.91906 0.91890 0.91870 0.91848 

 0.010 0.86022 0.86020 0.86017 0.86011 0.86003 0.85992 0.85800 0.85970 0.85948 0.85929 

Table 2.5.1 (d): Effect of Failure Rate (taking β1 =β2 = 0.8; β3 = β4 = 0.4; β5 = 0.1; β6 = 0.25) 
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  A∞

α1=α2 α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1 0.99998 0.99994 0.99986 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.001 0.93458 0.93457 0.93452 0.93446 0.93436 0.93424 0.93409 0.93391 0.93371 0.93349 

 0.005 0.87719 0.87718 0.87714 0.87708 0.87100 0.87689 0.87676 0.87661 0.87643 0.87623 

            

0.001 0.0 0.99778 0.99777 0.99772 0.99764 0.99753 0.99739 0.99722 0.99702 0.99680 0.99654 

 0.001 0.93264 0.93263 0.93259 0.93252 0.93242 0.93230 0.93215 0.93198 0.93178 0.93156 

 0.005 0.87549 0.87547 0.87544 0.87538 0.87529 0.87519 0.87506 0.87490 0.87473 0.87453 

            

0.005 0.0 0.98901 0.98900 0.98895 0.98887 0.98876 0.98863 0.98846 0.98827 0.98804 0.98779 

 0.001 0.92497 0.92496 0.92492 0.92485 0.92476 0.92464 0.92449 0.92432 0.92413 0.92391 

 0.005 0.86873 0.86871 0.86868 0.86862 0.86854 0.86843 0.86830 0.86815 0.86798 0.86778 

Table 2.5.1 (e): Effect of Failure Rate (taking β1 =β2 = 0.9; β3 = β4 = 0.5; β5 = 0.1; β6 = 0.25) 
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                     β (repair time)                      α (failure - free operation time)  

 

Figure 2.3: Availability for different α (failure-free operation time) 

and β (repair time) values 
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Table 2.5.2 presents the α = 95% and α = 99% confidence intervals for different simulated 
samples. 
 
 

 
For α1=α2 = 0; α3=α4=α5 = 0; α6 = 0.001      

β1 =β2 = 0.5; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25
   

α = 95% α = 99% 

n = 100 20 (0.79414; 0.96586) (0.76702; 0.99298) 

 40 (0.62674; 0.78366) (0.60196; 0.80824) 

 60 (0.54593 ; 0.68317) (0.52533; 0.69537) 

 80 (0.50775; 0.61515) (0.48552; 0.62088) 

 100 (0.47816; 0.56924) (0.45556; 0.57544) 

n = 200 20 (0.81928; 0.94072) (0.80008; 0.95992) 

 40 (0.64986; 0.76074) (0.63234; 0.77826) 

 60 (0.57289; 0.66421) (0.55843; 0.67867) 

 80 (0.52347; 0.59943) (0.51147; 0.61143) 

 100 (0.49148; 0.55592) (0.48128; 0.56612) 

n = 2000 20 (0.86080; 0.89920) (0.85468; 0.90532) 

 40 (0.68790; 0.72270) (0.67998; 0.73062) 

 60 (0.60409; 0.63301) (0.59953; 0.63757) 

 80 (0.54945; 0.57345) (0.54567; 0.57723) 

 100 (0.51356; 0.53384) (0.51032; 0.53708) 

 

Table 2.5.2 

 

It can be observed that, as n increases, the steady state availability decreases. 
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2.6 CONCLUSION 

     The availability of equipment used for de-composition process in the urea production 

system is discussed. The system consisted of four subsystems, with a standby unit in one of the 

sub-systems. The failure and repair rates in each subsystem are taken to be constants. The log-

run availability of the system is calculated, and the asymptotic confidence limits are obtained 

for the steady-state availability. The results are illustrated numerically for different measures.  

In tables 2.5.1(a) – (e), Figure 2.3 and table 2.5.2 shows that, as the repair time increases, the 

steady state availability decreases. This has been noticed in point availability and in the 

confidence limits.  
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CHAPTER 3 

 

TWO-UNIT PRIORITY REDUNDANT SYSTEM WITH 

‘DEADTIME’ FOR THE OPERATOR 
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3.1 INTRODUCTION 

 Two-unit standby redundant systems have attracted the attention of many applied 

probabilists and reliability engineers. A bibliography of the work done has been 

prepared by Osaki and Nakagawa (1976), Lie et al. (1977), Kumar and Agarwal (1980), 

Sarma (1982). Goel et al. (1985) analysed a two-unit cold standby system under the 

assumption that the operator of the system does not need rest, i.e. he is capable to work 

on the system without any rest. The literature available so far has the assumption that the 

operator is continuously available to repair the failed units. But it is reasonable to expect 

that a preparation time or rest period might be needed to get the operator ready before 

the next repair could be taken up. If this preparation is started only when a unit arrives 

for repair, it is easy to solve the problem, since the preparation time plus the actual 

repair time of the operator must be taken as the total repair time. But this preparation 

time usually starts immediately after each repair completion, so that the operator 

becomes available at the earliest. In our daily life the situations come about when a 

person needs such a preparation time. This preparation time of the operator is similar to 

the ‘Dead time’ in the counter models Ramakrishnan and Mathews (1953), 

Ramakrishnan (1954), Takács (1956, 1957). Yadavalli et al. (2002) studied several 

Markovian and non-Markovian models by introducing the ‘Dead time’. Cold standby 

redundant systems in which the ‘priority of units’ and ‘dead time’ are introduced in this 

chapter. 

     The organisation of this chapter is as follows: Section 3.1 is introductory in nature 

describing the model considered in this chapter. In section 3.2, the basic assumptions 

and notation are presented. Various auxiliary functions (transition probabilities and 
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sojourn times) are derived in section 3.3. The important system measures, Reliability 

and MTSF, are presented in section 3.4. The other important measures like mean up time 

in a particular interval, mean down time, expected number of visits by a repairman are 

studied in section 3.5. In sectin 3.6, the profit analysis is studied. Some special cases are 

presented in section 3.7. The system considered in this section is illustrated numerically 

in section 3.8. 

 

3.2. SYSTEM DESCRIPTION AND NOTATION 

1. The system consists of two dissimilar units each having two modes- Normal (N) 

and Total Failure (F). 

2. Initially one unit of the system is operative, called the priority (P) unit and the                   

other is kept as cold standby, called the non-priority or ordinary unit (O). 

3. P-unit gets preference for both operation and repair over O-unit. When P-unit 

fails, the standby unit is switched to operate with a perfect switching device. 

4. There is only one operator. Each unit is new after repair. 

5. After each repair completion, the operator is not available for a random time.          

This corresponds to the ‘dead time’ in counter models and will be interpreted 

here as the ‘rest time’ or ‘preparation time’ needed before another repair could be 

taken up. 

6. Switch is perfect and switchover is instantaneous. When the P-unit fails, it will 

be instantaneously switched over to the O-unit from standby state to online. 
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7. The lifetime of a unit, while online for P-unit and O-unit is arbitrarily distributed 

with pdf’s and f1( )⋅ f2 ( )⋅ . 

8. The repair time of units (P-unit and O-unit) are exponentially distributed random 

variables with parameters β1 and β2 respectively. 

9. The ‘Dead time’ of the operator is an arbitrarily distributed random variable with 

pdf . k ( )⋅

 

NOTATION: 

F1( )⋅  and  The c.d.f of the life time of P-unit and O-unit respectively F2 ( )⋅

E           Set of regenerative events ≡ (E0, E1, E2, E3, E4, E5, E6)

η   Constant rate of working time of the operator 

K( )⋅    The c.d.f of the ‘dead time’ of the operator 

Pij   Transition probability from regenerative event Ei to Ej 

qij ( )⋅ , Qij    The p.d.f. and c.d.f. of transition time from regenerative event E( )⋅ i to Ej 

ψi   Mean sojourn time in event Ei  

Ri(t)   Reliability of the system when Ei ∈ E (i = 0, 1, 2, 3, 4, 5, 6) 

Ui(t)  Probability that the system is up when the events are E0, E1 or  E5  at 

                         epoch given that Ei;(i = 0, 1, 2, 3, 4, 5, 6) 

Di(t)  Probability that the system is down when the events are E2, E4 or  E6  at  

 epoch given that Ei;(i = 0, 1, 2, 3, 4, 5, 6) 

Bi(t)  Probability that the system is busy at epoch starting from Ei ∈ E. 

Vi(t)  Expected number of visits by the repairman in (0,t] given that Ei ∈ E. 
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~ ( ) ( )Q s e dQ tij
st

ij= −∞z0 , where ~ is the symbol for Laplace-Stieltjes transform 

q s e q dtij
st

ij
* ( ) = −∞z0  , the symbol * for Laplace transform 

ψ i
j

ijtdQ t= =z∑ ( )  - q Qij
j

ij
j

*' '( ) ( )0 0∑ ∑=  

©  Symbol for ordinary convolution 

A(t) © B(t) =  A t u B u du
t

( ) ( )−z
0 

ⓢ  Symbol for Stieltjes convolution 

A(t)ⓢB(t) =  A t u dB u
t

( ) (−z
0 

)

 

Symbols for the Events of the System: 

For the study of this system, we need to define the following states (see EL-Said & EL-

Sherbeny (2005)). The reliability with dependent repair modes was also studied by Lim 

& Lie (2000). 

 

Na : unit in N-mode and operative 

Ns : unit in N-mode and standby 

Fr : unit in F-mode and under repair 

Fw : unit in F-mode and waiting for repair 

Nd : unit in N-mode when operator is in ‘dead time’ 

 

We make use of the events given in Table 3.1 for the reliability analysis. 
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                                             State of 
Event P-unit O-unit 
E0(No,Ns) operative operable standby 
E1(Fr,No) failed and under repair  operable 
E2(No,Ns) not operating due to operator in 

‘dead time’ 
operable 

E3(Fr,Fw) failed and under repair failed and waiting for repair 
E4(Fw,Nd) failed and waiting for repair not operating due to operator in 

‘dead time’ 
E5(No,Fr) operative under repair 
E6(Nd,Fw) not operating due to operator in 

‘dead time’ 
failed and waiting for repair 

 

Table 3.1 

 

 

Transitions between events are shown in Figure 3.1 
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E6

E5 E0

E3
E1 E4

E2

K ( )⋅

η

F1( )⋅ β 1

F2 ( )⋅ K ( )⋅

K ( )⋅

β 2

β 2

β 1

η

β 1 F1 ( )⋅

η

Upstate

Down

Failed

state

state
 

Figure 3.1 
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3.3 AUXILIARY FUNCTIONS (TRANSITION PROBABILITIES AND SOJOURN 

TIMES) 

Let O = T0, T1, … denote the epochs at which the system enters any state Ei ∈ E. 

Let Xn denote the state visited at epoch Tn +, i.e. just after the transition at Tn. Then  

Qij(t) = P[Xn+1 = j, Tn+1- Tn ≤ t │ Xn = i]. 

The transition probability matrix is given by  

P = [Pij] = [Qij(∞)] = Q(∞) with non-zero elements. 

Further, 

P01 = ~ ( )F1 η , P02 =  1- ~ ( )F1 η  

P10 =  [ ~ ( )]1 2 1 1

1

− +
+

F β η β
β η

 

P13 =  ~ (F2 1β η+ ) , P14 =  [ ~ ( )1 2 1

1

− +
+

F β η
β η

]η  

P20 = p35 = 1, p41 = ~( )K β1 , P40
(2) =1 - ~( )K β1  

P53 = ~ (F1 2β η+ ) , P51
(0) = ~ ( )F1 η - ~ ( )F1 2β η+  

P56 =  [ ~ ( )1 2 2

2

− +
+

F β η
β η

]η  

P52
(0) =  1 11 1 2

2

− − − +
+

~ ( ) [ ~ ( )F Fη β
β η

]η η  

and      P60
(2) = 1 - ~( )K β 2 , P65 = ~( )K β 2 . 

It can easily be verified that  
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P01 +  P02  = 1,     P10 + P13  +  P14 = 1,   P20 = P35  = 1 

P40
(2) + P41 = 1,   P51

(0) + P52
(0) + P53  + P56 = 1 

P60
(2) + P65 = 1. 

To calculate mean sojourn time ψ0 in state E0, there is no transition to E1 and E2. Hence 

if T0 denotes the sojourn time in E0 then 

ψ0 =  = P T t dt[ ]0
0

>
∞z 1 1− ~ ( )F η

η
. 

Similarly 

ψ1 = [ ~ ( )1 2 1

1

− +
+

F β η
β η

]  

ψ2 = K t dt( )
0

∞z = m1 (say) where K t K t( ) ( )= −1  

ψ3 = 1

1β
 

ψ4 = 1 1

1

− ~( )K β
β

 

ψ5 = 1 1 2

2

− +
+

~ ( )F β η
β η

 

and                  ψ6 = 1 2

2

− ~( )K β
β

. 

3.4 RELIABILITY ANALYSIS 

Let the random variable Ti denote time to system failure from event Ei  
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(i = 0, 1, …,6).  

The reliability of the system is given by 

Ri(t) = P[Ti > t] 

To determine the reliability of the system we regard the failed state of the system (E3) as 

absorbing. By probabilistic arguments 

R0(t) = e-ηt F t1( )  + q01(t) © R1(t) + q02(t) © R2(t)              (3.4.1) 

R1(t) = e-(η β+  1 ) t F t2 ( )  + q10(t) © R0(t) + q14(t) © R4(t)             (3.4.2) 

R2(t) = K t( )  + q20(t) © R0(t)                  (3.4.3) 

R4(t) = K t( )  + q40
(2)(t) © R0(t) + q41(t) © R1(t)              (3.4.4) 

R5(t) = e-(η β+  2 )t F t1( )  + q51
(0)(t) © R1(t) + q52

(0)(t) © R2(t) + q56(t) © R6(t) 

                    (3.4.5) 

R6(t) = K t( )  + q60
(2)(t) © R0(t) + q65(t) © R5(t).                         (3.4.6) 

Taking Laplace transforms for the equations (3.4.1) – (3.4.6) and simplify for  and 

omitting the argument ‘s’ for brevity, we get  

R (s)0
*

R (s)0
* = N s

D s
1

1

( )
( )

                  (3.4.7) 

where 

N s1( )  = (1 – q56
* q65

*) [ F1
*( )η (1  - q14* q41*) + K s*( ) q02

* (1 - q14
* q41*) 

                                      + F2
*(η β+ 1) q01*  + K s*( ) q01* q14*] 

and  

  = (1 – qD s1( ) 56
* q65

*) [1 - q14* q41* - q01* q10*  - q40
*(2) q01*q14* - q02* q20*  
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               + q02* q20* q14* q41*]. 

Note: For simplicity in this chapter, is written as . q sij
* ( ) qij

*

From (3.4.7), the Mean Time to System Failure (MTSF) can be obtained 

  E(T0) = lim  ( ) lim ( )*

t s
R t sR s

→∞ →
=0 0 0

           = ( )( )1 14 41 0 2 02 1 01 1 01 14

01 13

− + + +p p p p m p p
p p

ψ ψ ψ .            (3.4.8) 

 

3.5 SYSTEM MEASURES 

3.5.1 MEAN UP TIME IN (0, t] 

 As defined earlier Ui(t) is the probability that the system is up in E0, E1 or E5 at t given 

that . Hence we get E  Ei ∈

  

 U0(t) = e-ηt  F t1( )  + q01(t) © U1(t) + q02(t) © U2(t)              (3.5.1) 

U1(t) = e-(η β+  2 )t F t2 ( )  + q01(t) © U0(t) + q13(t) © U3(t) + q14(t) © U4(t)  (3.5.2)

 U2(t) = q20(t) © U0(t)                             (3.5.3) 

 U3(t) = q35(t) © U5(t)                             (3.5.4) 

 U4(t) = q40
(2)(t) © U0(t) + q41(t) © U1(t)               (3.5.5) 

U5(t) = e-(η β+  2 )t F t1( )  + q51
(0)(t) © U1(t) + q52

(0)(t) © U1(t) + q53(t) © U3(t) 

                                       + q56(t) © U6(t)                         (3.5.6) 

and     U6(t) = q60
(2)(t) © U0(t) + q65(t) © U5(t).               (3.5.7) 

Taking Laplace transforms for  (3.5.1) – (3.5.7), we get 
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 U N s
D s0

2

2

* ( )
( )

=                    (3.5.8) 

where  

N s2 ( )  = F1
*( )η [(1 - q56

* q65
* - q35

* q53
* - q51

(0) q13
* q35

* - q14
* q41

* - q14
* q41

*q56
* q65

*  

    + q14
* q41

*q35
* q53

*] + F2
*(η β+ 1) [q01

* - q01
* q56

* q65
* - q01

* q35
* q53

* ] 

    + F1
*(η β+ 1) [ q01

* q13
* q35

*] 

 

 = [1 – qD s2 ( ) 56
* q65

*] [1 - q14
* q41

* - q40
*(2) q01

*q14
* - q02

* q20
*  

 + q02
* q20

* q14
*q41

* - q01
* q10

*] - q35
* q53

*[1 - q14
* q41

*

 - q40
*(2) q01

*q14
* - q02

* q20
* + q02

* q20
* q14

*q41
* - q01

* q10
*] 

-q13
* q35

* [q51
*(0) + q52

*(0) q20
* q01

* + q60
*(2) q01* q56

* q02
* q20

* q51
*(2)]. 

 
The steady-state availability U is given by  0

U0  = lim ( ) ( )
( )

*

s
sU s N

D→
=

′0 0
2

2

0
0

                 (3.5.9) 

where 

N P P P P P P P P P P P P2 14 41 53 56 65 13 51
0

01 0 01 53 56 65 10 1 1 1( ) [( )( ) ( )] ( )( )= − − − − − + − −ψ ψ  

and 

D N P P P P P P P P m P P P P2 2 01 14 53 56 65 01 13 56 1 3 01 13 56 650 0 1 1' ( ) ( ) [ ( ) ] [ ( )]= + − − − + −ψ

 . + − − − − − − +ψ 2 02 14 41 53 56 65 02 13 53 56 13 52
01 1 1[ ( )]( ) ( ) ( )P P P P P P P P P P P P ]

u

 
Mean up time of the system during (0,t] is 

µ up

t

t U u d( ) ( )=z0
0

 so that 
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µ up s U s
s

*
*

( ) ( )
= 0 .                (3.5.10) 

 

3.5.2. MEAN DOWN TIME DURING (0, t] 

To obtain mean down-time during (0, t], we consider Di(t) as the probability that the 

system is in state E2, E4 or E6 at epoch t given that Ei has occurred at t = 0. 

Here we have 

D0(t) = q01(t) © D1(t) + q02(t) © D2(t)               (3.5.11) 

D1(t) = q10(t) © D0(t) + q13(t) © D3(t) +  q14(t) © D4(t)           (3.5.12) 

D2(t) = K t( ) + q20(t) + D0(t)               (3.5.13) 

D3(t) = q35(t) © D5(t)                (3.5.14) 

D4(t) = K t( ) + q40
(2)(t) © D0(t) + q41(t) © D1(t)            (3.5.15) 

 D5(t) = q51
(0)(t) © D1(t) + q52

(0)(t) © D2(t) + q53(t) © D3(t) 

  + q56(t) © D6(t)               (3.5.16) 

and D6(t) = K t( )  + q60
(2)(t) © D0(t) + q65(t) © D5(t).            (3.5.17) 

Taking Laplace transforms for the equations (3.5.11) - (3.5.17) and simplifying for 

we get D s0
*( )

D s N s
D s0

3

2

*( ) ( )
( )

=                                                   

(3.5.18) 

     where 

)(3 sN = )( 1
*

2 βη +F [q01
* q13

*q35
*  + qq52

0( )
02

*(1 - q56
* q65

* - q35
* q53

*) - q02
* q13

*q35
*   q51

0( )
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        - q02
* q14

* q41
* (1 - q56

* q65
* - q35

* q53
*)] + )(sK q01

* q14
* (1 - q56

* q65
* - q35

* 

q53
*) 

         + )(sK q01
* q13

* qV35
* q56

* 

The value of can be obtained on taking the inverse Laplace transform of . 

The steady-state probability of the system being down is given by  

D t0 ( ) D s0
*( )

  = D0 lim ( )
( )

( )
( )'s

sN s
D s

N
D→

=
0

3

2

3

2

0
0

                           (3.5.19) 

where 

 . N m p p p p p p p p p p p p p p p3 1 01 10 13 51
0

02 14 41 56 65 14 41 01 14 56 650 1 1( ) [ ( ) ]( )= − − − + − +

Now the mean down-time of the system during (0, t] is  

   µ dn

t

t D u d( ) ( )=z0
0

u

 µ dn s D s
s

*
*

( ) ( )
= 0               (3.5.20) 

   and the mean failed time in (0, t] is 

  µ µ µf upt t t t( ) ( ) ( )= dn− −  

   so that  

  µ µ µf ups
s

s s* *( ) ( ) ( )= − −
1
2 dn

* .                      (3.5.21)   

 

3.5.3 BUSY PERIOD ANALYSIS 

Bi(t) is defined as the probability that the system is busy at epoch t starting from state Ei, 

Ei  E. We have the following recursive relations ∈
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B0(t) = q01(t) © B1(t) + q02(t) © B2(t)               (3.5.22) 

 B1(t) = e t− +( )η β1 )(2 tF  + q01(t) © B0(t) + q13(t) © B3(t) + q14(t) © B4(t)        (3.5.23) 

 B2(t) = q20(t) + B0(t)                           (3.5.24) 

B3(t) = e  + qt−β1 35(t) © B5(t)                               (3.5.25) 

 B4(t) = e t−β1 K t( ) + q40
(2)(t) © B0(t) + q41(t) © B1(t)            (3.5.26) 

B5(t) = e t− +( )η β1 )(1 tF  + q51
(0)(t) © B1(t) + q52

(0)(t) © B2(t) + q53(t) © B3(t) 

   + q56(t) © B6(t)              (3.5.27) 

and      B6(t) = e t−β 2 K t( )  + q60
(2)(t) © B0(t) + q65(t) © B5(t) .                      (3.5.28) 

Taking Laplace transforms for the equations (3.5.22) to (3.5.28) and simplifying for 

, we get B s0
*( )

B s0
*( ) =

N s
D s

4

2

( )
( )

                                               (3.5.29) 

where 

N s4 ( ) = )( 1
*

2 βη +F q01
* [1 - q56

*q65
* - q35

* q53
*] + 1

1β + s
q01

* q13
* [1 - q56

* q65
*]    

    + )( 2
* sK +β q01

* q14
* [1 - q56

* q65
* - q35

* q53
*] + )( 2

*
1 sF ++ βη q01

* q13
* q35

* 

  + )( 2
* sK +β q01

* q13
* q35

* q56
* . 

The steady-state probability that the system is under repair starting from state E0, i.e. 

probability that in the long run the repairman will be busy is given by 

   = B0 lim ( ) ( )
( )

*
's

sB s N
D→

=
0 0

4

2

0
0

             (3.5.30) 

   where 

N P P P P P P P P P P4 01 53 56 65 1 4 14 01 13 5 6 56 3 56 650 1 1( ) [ ]( ) [ ( )]= − − + + + + −Ψ Ψ Ψ Ψ Ψ . 
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The expected duration of busy time of repairman in (0, t] is 

µb

t

t B u d( ) ( )=z0
0

u , 

   so that 

µb s B s
s

*
*

( ) ( )
= 0                (3.5.31) 

     and the expected idle time of repairman in (0, t] is 

µ µI bt t t( ) ( )= −  

   so that 

µ µI bs
s

s* *( ) ( )= −
1
2 .              (3.5.32) 

 

3.5.4 EXPECTED NUMBER OF VISITS BY THE REPAIRMAN IN (0, t] 

According to the definition of Vi(t), by elementary probability arguments we have the 

following relations: 

 V0(t) = Q01(t) ⓢ [1 + V1(t)] + Q02(t) ⓢ V2(t)             (3.5.33) 

 V1(t) = Q01(t) ⓢ V0(t) + Q13(t) ⓢV3(t) + Q14(t) ⓢ V4(t)                      (3.5.34) 

 V2(t) = Q20(t) ⓢV0(t)                           (3.5.35) 

 V3(t) = Q35(t) ⓢV5(t)                                           (3.5.36) 

V4(t) = Q40
(2)(t) ⓢ V0(t) + Q41(t) ⓢ V1(t)                        (3.5.37) 

 V5(t) = Q51
(0)(t) ⓢ [1 + V1(t)] + Q52

(0)(t) ⓢ V2(t) + Q53(t) ⓢ V3(t) 
  + Q56(t) ⓢV6(t)                          (3.5.38) 
 
and V6(t) = Q60

(2)(t) ⓢ V0(t) + Q65(t) ⓢV5(t).                             (3.5.39) 
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Taking Laplace-Stieljes transforms and simplifying ~ ( )V s0 , we get 

  ~ ( )
~ ( )
~ ( )

V s N s
D s0

5

2

=                   (3.5.40) 

where 

  ~ ( ) ~ ( ~ ~ )[ ~ ~ ~ ~ ]N s Q Q Q Q Q Q Q5 01 14 41 56 65 351 1= − − − 53 .  

In the steady state, the number of visits per unit time is given by                

V0 = lim ( ) ~ ( )
~ ( )'t

V t
t

N
D→∞

=0 5

2

0
0

              (3.5.41) 

  ~ ( )N5 0 = P01 [1- P14P41][1 – P35 – P56P65]. 

 

3.6 COST BENEFIT ANALYSIS 

We are now in the position to obtain the profit function by the system considering mean 

up time, mean down time in (0, t], busy period and expected number of visits by the 

repairman in (0, t]. The next expected profit incurred in (0, t] is 

C(t) = expected total revenue in (0, t] – expected total repair cost in (0, t]  

– expected cost of visit by the repairman in (0, t] 

                    = (C0 – C1) µup(t) - C1µdn(t) – c2µb(t) – c3V0(t).                                      (3.6.1) 

 

The expected total profit per unit of time in steady state is 

 C = lim ( ) lim ( )*

t s

C t
t

s C s
→∞ →

=
0

2 .  

That is,  
C = (C0 – C1) V0 - C1 D0 – C2 B0 – C3V0                                                            (3.6.2) 
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where C0 is the revenue per unit uptime, C1 is the salary of the operator per unit time, C2 

is the cost per unit for which the system is under repair and C3 is the cost per visit by the 

repairman. 

 

3.7 SPECIAL CASES 

CASE I 

When the ‘dead time’ of the operator is zero, i.e. η = 0, then the results are as follows: 

E(T0) = n
P

1 1

13

+ φ  

U0 =  n P P P
X

1 10 53 1 51
01( ) ( )− + φ  

B0 = P P
X

13 3 5 1 51
0( ) ( )φ φ φ+ +  

and               V0 = P
X
51

0( )

 

   where  

X =  P n P P13 3 5 1 10 51
0

1 51
0( ) ( ) ( )φ φ φ+ + + P

   and 

n1 = F t dt1z( ) ;   φ1= 1 2 1

1

− ~ ( )F β
β

 

φ3= 1

1β
;    φ5= 1 2 2

2

− ~ ( )F β
β

 

P10 = 1 2 2− ~ ( )F β ; P13 = ~ ( )F2 2β  

P53 = ~ ( )F1 2β , P F51
0

1 21( ) ~ ( )= − β .  
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CASE II 

When failure time distributions of both units in case I are negative exponential i.e. 

F1(t) = 1 - e ;  Ft−λ1 2(t) = 1 - e  t−λ 2

   then the results are as follows: 

E(T0) = β λ λ
λ λ

1 1

1 2

+ + 2  

U0 =  β β λ β λ λ β1 2 1 1 2 1 2( ( ) ( ))+ + +
Y

 

B0 = λ λ λ β β β λ λ β1 1 2 1 2 1 2 2 2( )+ + +
Y

 

V0 = λ β β β λ1 1 2 1 2( )+
Y

 

   where  

Y = β β λ β λ λ λ β β1 2 1 1 1 2 1 1 2( ) (+ + )+ + . 

 

 

 

 

 

 

 

3.8 NUMERICAL ANALYSES 

 

Figure 3.2(i) shows graphically the change for β1 versus E(T0)  
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Figure 3.2  

 
 
 
As the repair time of the priority unit, β1 , increases the mean expected time to 
failure  is an increasing function of  E t( )0 β1  (for different values of λ1  and λ 2 ). 
 
 
Figure 3.3 shows graphically the change for β2 versus U0   
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Figure 3.3 
   
 
 
 

As the repair time of the ordinary unit, β 2 , increases the steady-state availability 
 is an increasing function of U0 β 2   (for different values of  λ1  , λ 2  and β1). 

 
 
 
 
Figure 3.4 shows graphically the change for β2 versus B0 
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Figure 3.4 

 
 
 

As β 2  increases the probability that the system is busy, , is a decreasing 
function of 

B0

β 2 (for different values of  λ1  , λ 2  and β1). 
 

 
 
 
Figure 3.5 shows graphically the change for β2 versus V0 
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Figure 3.5 
 
 

As β 2  increases the expected number of visits by the repairman,V , is an 
increasing function of 

0

β 2  (for different values of  λ1  , λ 2  and β1). 
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3.9 CONCLUSION 
 

     A two-unit single server priority redundant repairable system with two modes – 

normal and total failure has been studied. The priority unit got preference both in 

operation and repair. It is assumed that the repair facility is not available for a random 

time (Dead time). The system fails when both units are in total failure mode. Identifying 

the regeneration point technique, various operating characteristics of the system are 

obtained. The cost-benefit analysis is studied, and the results are illustrated numerically. 

The numerical results as shown in Figures 3.2 – 3.5 justify the results. 
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CHAPTER 4 

 

CONFIDENCE LIMITS FOR A TWO-UNIT COLD STANDBY 

PRIORITY SYSTEM WITH VARYING PHYSICAL CONDITIONS OF 

THE REPAIR FACILITY AND WITH IMPERFECT SWITCHING 

DEVICE 
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4.1 INTRODUCTION 

In the literature of reliability extensive studies have been made on different types of 

two-unit standby systems owing to their frequent use in modern business and industrial 

systems. Nakagawa and Osaki (1974) have studied the behaviour of a two-unit (priority 

and ordinary) standby system with two modes for each unit. They have taken exponential 

failure and repair time distributions for the ordinary unit, while the distributions for the 

priority unit are arbitrary. Much work related to the switching device in standby systems 

has been done by various authors including Goel and Gupta (1984a, b). The cost analysis 

of such systems has also been discussed by Murari and Goel (1984) and Goel et al. (1985).   

Goel et al (1985) have discussed a man-machine system considering the physical 

conditions of the repair facility, namely poor and good. The physical conditions of the 

repair facility also affect the operation of the system. However, no previous work has 

considered the physical conditions of the repair facility. It is reasonable to expect the repair 

facility to work with a higher repair rate if it is in a poor physical condition. Consequently 

the repair time distribution will be different in these two situations. The purpose of the 

present chapter is to analyze such a system. The system under consideration is a two 

dissimilar unit cold standby system with an imperfect switch. Initially, one unit is operative 

and is called a priority unit (p) and the other is a cold standby or ordinary unit (o). The p-

unit gets priority for both operation and repair (Shi and Liu (1996)). When the p-unit fails 

the standby unit is switched to operate with the help of a switching device. The switch may 

be available at the time of need with known probability p (1 – q). 

The distribution of random variables denoting time to failure and time to repair are 

taken to be arbitrary. Depending on the physical conditions (good or poor) of the repair 
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facility, there are two different repair time distributions to be considered. The probability 

that at any time the repairman’s condition will be good is p q1 1( 1)− . We analyze the system 

by using the regenerative point technique and obtain various operating characteristics. The 

confidence limits for the standby state availability and the busy period in steady-state are 

obtained. 

The organisation of this chapter is as follows: Section 4.1 is introductory in nature, and 

the notation of this chapter is discussed in section 4.2. Various auxiliary functions 

(transition probabilities and sojourn times) are derived in section 4.3. The reliability 

analysis is discussed in section 4.4. In section 4.5, availability analysis is discussed. The 

busy period analysis and the cost benefit analysis have been studied in sections 4.6 and 4.7 

respectively. The confidence limits, for the steady state availability, are studied in section 

4.8, under the assumption that all the underlying distributions are exponential, with 

different parameters. In section 4.9, the system is illustrated numerically. 

 

4.2 NOTATION 

 E0  State of the system at t=0 

 E  Set of regenerative states 

E   Set of non-regenerative states 

p1  P[ the switch is good at the time of need];    p q1 11= −  

f1(t), F1(t) The p.d.f. and c.d.f. of the life time of the p-unit  

f2(t), F2(t) The p.d.f. and c.d.f. of the life time of the o-unit  

gi(t), Gi(t) The p.d.f. and c.d.f. of the repair of the p-unit (i = 1, 2) 
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ki(t), Ki(t) The p.d.f. and c.d.f. of the repair of the o-unit (i = 1, 2) 

hi(t), Hi(t) The p.d.f. and c.d.f. of the time to repair of the switching device; i = 1, 2 

i  = 
1
2

if the repair facility is in good condition 
if the repair facility is in bad condition 

RST
UVW 

 p2  P[ the repair facility’s condition is good];    p q2 21= −  

qij(t), Qij(t) The p.d.f. and c.d.f. of direct transition time from one regenerative state Si to  

another regenerative state Sj   

pij P[the system transits from regenerative state Si to regenerative state Sj ] 

 = ∞Qij ( )

q (t),  Q (t)ij
(k)

ij
(k)  The p.d.f. and c.d.f. of transition time from regenerative state Si to Sj via 

non-regenerative state Sk  

pij
( )k   Steady-state probability that the system transits from state Si to Sj via non- 

regenerative states Sk;  Q  ij
k( ) ( )∞

π i ( )⋅   The c.d.f. of the time to system failure when the starting state E S Ei0 = ∈  

Ai ( )t   P[System is up at time t  E S Ei0 = ∈ ] 

Bi ( )t   P[System is under repair at time t  E S Ei0 = ∈ ] 

µ i   Mean sojourn time in states S Ei ∈  

~ ( )Q sij    e dQ tst
ij

−
∞z ( )
0

q sij
* ( )    e q t dtst

ij
−

∞z ( )
0
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µ i     = = − = −∑z∑ ∑
∞

tdQ t Q qij ij
jj

ij
j

( ) ~ ( ) ( )*'

0 0
0

©  Symbol for ordinary convolution 

ⓢ  Symbol for Stieltjes convolution 

 

4.3 AUXILIARY FUNCTIONS  

     For the reliability and unavailability analyses, and the busy period analysis, we need to 

derive various auxiliary functions (transition probabilities and sojourn times). We need to 

define first the following states (see EL-Said & EL-Sherbeny (2005)): 

 

Up states: S0  (N0 , Ns) ;      S2  (Fr, N0);      S4   (N0, Fr), 

Down states: S1  (Fw, Ns, Sr) ;  S3  (Fr, Fw), 

where 

N0 : unit in normal mode and operative 

Ns : unit in normal mode and standby 

Fr : unit in failure mode and repair from the epoch of entry into the state 

Fw : unit in failure mode and waiting for repair 

Sr : switching device under repair 

Fr : unit in failure mode and under repair with the repair continued from the earlier 

state. 

 

The order of the position of units in the states specifies the type of unit. Possible 

transitions between states, with the failure and repair time c.d.f’s, are shown in Figure 4.1 . 
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U U
n ni iv ve er rs si it ty y  o of f  P Pr re et to or ri ia a  e et td d  – –  M M

u ul ll le er r, ,  M M
  A A  E E    ( (2 20 00 06 6) )  



It is observed that the epoch of entry into the states S1, S2 and S4 are degenerative 

points and therefore these states are regenerative states. E denotes the set of these states. 

Furthermore, the epochs of entry into the states S3 from S4 and S0 from S2 are regenerative 

and the epoch of entry into S3 from S2 and S0 from S4 are non-regenerative. Therefore these 

states will behave as regenerative states only with respect to S4 and S2 respectively. 

Let 0 = T0, T1, ... denote the epochs of entry into the states S Ei ∈  and  denote the 

state visited at epoch T , i.e. just after the transition at T . Then { , } is a Markov 

renewal process with state space E. 

Xn

n
+

n Xn Tn

Further 

Q t P X j T T t X iij n n n n( ) [ , ]= = − ≤+ +1 1 =   

where 

Q t q f u du q F t
t

01 1 1 1 1
0

( ) ( ) ( )= =z  

Q t p f u du p F t
t

02 1 1 1 1
0

( ) ( ) ( )= =z  

Q t p dH t q dH t
tt

12 2 1 2 2
00

( ) ( ) ( )= + zz  

             = +p H t q H t2 1 2 2( ) ( )  

  Q t p F t dG u q F u dG u
tt

20 2 2 1 2 2 2
00

( ) ( ) ( ) ( ) ( )= + zz  

   

    Q t p f u dG u q f u dG u
tt

24
3

2 2 1 2 2 2
00

( ) ( ) ( ) ( ) ( ) ( )= + zz
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     = Q t23( )

   Q t p G t q G t34 2 1 2 2( ) ( ) ( )= +  

    Q t q p k u dF u q k u dF u
tt

41
0

1 2 1 1 2 2 1
00

( ) ( ) [ ( ) ( ) ( ) ( )= + zz ]

]Q t p p k u dF u q k u dF u
tt

42
0

1 2 1 1 2 2 1
00

( ) ( ) [ ( ) ( ) ( ) ( )= + zz  

 and  Q t p K u dF u q K u dF u
tt

43 2 1 1 2 2 1
00

( ) ( ) ( ) ( ) ( )= + zz . 

    Letting and usingt →∞ p Qij ij= ∞( ) , we get the transition probability matrix 

P pij= with the following non-zero elements 

p q01 1= ; p p02 1=  ; p p12 34 1= =            (4.1) 

p p F t dG t q F t dG t20 2 2 1 2 2 2
00

= +
∞∞ zz( ) ( ) ( ) ( )  

    p p F t dG t q F t dG t24
3

2 2 1 2 2 2
00

( ) ( ) ( ) ( ) ( )= +
∞∞ zz

    p q p k t dF t q k t dF t41
0

1 2 1 1 2 2 1
00

( ) [ ( ) ( ) ( ) ( )= +
∞∞ zz ]

]p p p k t dF t q k t dF t42
0

1 2 1 1 2 2 1
00

( ) [ ( ) ( ) ( ) ( )= +
∞∞ zz  

and   p p K t dF t q K t dF t43 2 1 1 2 2 1
00

= +
∞∞ zz ( ) ( ) ( ) ( ) . 

We can easily verify that 

   p p01 02 1+ =                 (4.2)  
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                (4.3)    

 and 

p p p20 24
3

23 1+ + =( )

   .             (4.4) p p p41
0

42
0

43 1( ) ( )+ + =

To calculate the mean sojourn time µ 0 in state , we observe that so long as the system 

is in , there is no transition on to  or  . Hence if T denotes the sojourn time in 

state , then 

S0

S0 S1 S2

S0

µ 0
0

= >
∞zP T t dt[ ]   

     = +
∞ ∞z zp F t dt q F t dt1 1
0

1 1
0

( ) ( )  

=
∞zF t dt1
0

( )              (4.5) 

µ1 2 1 2
0

2
0

= +
∞ ∞z zp H t dt q H t dt( ) ( )            (4.6) 

µ 2 2 1 2 2
0

2 2
0

= +
∞ ∞z zp G t F dt q G t F dt( ) ( )            (4.7) 

µ 3 2 1 2
0

2
0

= +
∞ ∞z zp G t dt q G t dt( ) ( )            (4.8) 

and µ 4 2 1 1 2
0

2 1
0

= +
∞ ∞z zp K t F dt q K t F dt( ) ( ) .           (4.9) 
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4.4 RELIABILITY ANALYSIS 

 

The time to system failure (TSF) can be regarded as the first passage time to either of 

the failed states S1 or S3. To obtain it we regard these states as absorbing. Employing the 

arguments used for regenerative processes we obtain the following 

 

π 0 01 02( ) ( ) ( )t Q t Q t= + ⓢπ 1( )t             (4.10) 

π 2 23 20( ) ( ) ( )t Q t Q t= + ⓢπ 0 ( )t           (4.11) 

and  ⓢπ 4 41
0

42
0( ) ( ) ( )( ) ( )t Q t Q t= + π 2 ( )t + Q .         (4.12) t43( )

 

Taking the Laplace-Stieljes transform of the equations (4.10) to (4.12), the solution of 

π i s( ) ,  ( can be written in the following form , , )i = 0 2 4

~
~
~

~
~

~

~
~

~ ~

π
π
π

0

2

4

02

20

42

1

01

23

41 43

1 0
1 0

0 1

F
H
GG

I
K
JJ=

−
−

−

F
H
GGG

I
K
JJJ +

F
H
GGG

I
K
JJJ

−
Q

Q
Q

Q
Q

Q Q
.        (4.13) 

 

We have omitted the argument ‘s’ for simplicity from ~ ( )Q sij and ~ ( )π ij s . Simplifying 

(4.13), we get  

~ ( ) ( )
( )

π 0
1

1

s N s
D s

=            (4.14) 

where  

  N s Q Q Q1 01 02( ) 23
~ ~ ~= +            
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  D s Q Q1 01( ) 2 20
~ ~= − . 

 

Making use of relations (4.1) – (4.4), it can be shown that ~ ( )π 0 0 = 1, which implies that 

π 0 ( )t  is a proper distribution. Now, the mean time to system failure, given that the system 

started from S0, 

    E t d
ds

s s( ) ~ ( )= − =π 0 0  

    =
+
−

µ µ0 2

201
p

p p
.

.
.           (4.15)  

 

4.5 AVAILABILITY ANALYSIS 

 

Let  be the probability that the system, having started from SM ti ( ) i, is up at time t, 

without making any transition to any other regenerative state belonging to E. 

By simple probabilistic arguments we have 

M t p F t q F t F t0 1 1 1 1 1( ) ( ) ( ) ( )= + =             (4.16) 

M t F t p G t q G t2 2 2 1 2 2( ) ( )[ ( ) ( )]= +          (4.17) 

and  M t F t p K t q K t4 1 2 1 2 2( ) ( )[ ( ) ( )]= + .         (4.18) 

From the arguments used in the theory of regenerative process, the pointwise 

availabilities are seen to satisfy the following relations: A ti ( )

A t q t0 01( ) ( )= © A t q t1 02( ) ( )+ © A t M t2 0( ) ( )+         (4.19) 

A t q t1 12( ) ( )= ©             (4.20) A t2 ( )
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A t q t2 20( ) ( )= © ©A t q t0 24
0( ) ( )( )+ A t M t4 2( ) ( )+         (4.21) 

A t q t3 34( ) ( )= ©             (4.22) A t4 ( )

0 1 0 0
0 1 0

0 0 0 1
0 1

*

*

*

*

*

* *

*

* *

*

* * *

( )
( )
( )
( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

and © © © .      (4.23) A t q t4 43( ) ( )= A t q t3 41
0( ) ( )( )+ A t q t1 42

0( ) ( )( )+ A t M t2 4( ) ( )+

Taking Laplace transforms of (4.19) – (4.23), the solution for can be written in 

the matrix form 

A si
*( )

 

A s
A s
A s
A s
A s

q s q s
q s

q s q s
q s

q s q s q s

0

1

2

3

4

01 02

12

20 24

34

41 42 43

1 0 0L

N

MMMMMM

O

Q

PPPPPP
=

− −
−

− −
−

− − −

L

N

MMMMMM

O

Q

PPPPPP

M s

M s

M s

0

2

4

0

0

*

*

*
.

( )

( )

( )

L

N

MMMMMM

O

Q

PPPPPP
       (4.24) 

 

Simplifying (4.24) for , the Laplace transform of pointwise availability when the 

system started operation from state , we get 

A s0
*( )

S0

   A s N s
D s0

2

2

*( ) ( )
( )

=  

where  N s q q M M q q q2 34 43 0 2 01 121( ) ( )[ ( )]* * * * * * *= − + + 02

+ ]

1 1* * * * * *( ) ( )[ ( )= − − +

    − + +q M q q q M q q q24 0 41 12 42 4 01 12 02
* * * * * * * * *[ ( ) ( )

and 

 . D s q q q q q q2 34 43 20 01 12 02
* ] − +q q q q24

3
42

0
41

0
12

( )* ( )* ( )* *( )

Here   q s qij ij
* *( ) =

The steady state availability , is given by A∞
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  A sA s N
Ds∞ →∞

= =lim ( )*
0

2

2

 

where 

    N p p p2 43 20 0 2 24
3

01= − + +( )[ )] ( )µ µ µ

  D p p q p2 43 20 0 1 20 11= − m+ +( )[ ]µ µ  

    + +p p p n24
3

41
0

1 43 3
( ) ( )[ ]µ µ +

u

   m p tdG t q tdG t= +
∞ ∞z z2 1 2
0

2
0

( ) ( )

and  . n tdF t=
∞z 1
0

( )

Now the expected up-time of the system in (0, t] is 

   µ u

t

t A u d( ) ( )=z0
0

so that 

  µ u s A s
s

*
*

( ) ( )
= 0  

and the expected down-time of the system in (0, t] is 

   µ µd ut t t( ) ( )= −

so that  

µ µd us
s

s* *( ) ( )= −
1
2 . 

Since is known explicitly, the above quantities can be computed easily. A s0
*( )
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4.6 BUSY PERIOD ANALYSIS  

 

Let be the probability that the repair facility is busy given that the system entered 

state  at t = 0. 

B ti ( )

Si

By probabilistic arguments, we have  

B t q t0 01( ) ( )= © B t q t1 02( ) ( )+ ©          (4.29) B t2 ( )

B t q t1 12( ) ( )= © B t v t2 1( ) ( )+            (4.30) 

B t q t2 20( ) ( )= © ©B t q t0 24
3( ) ( )( )+ B t v t4 2( ) ( )+         (4.31) 

B t q t4 41( ) ( )= © © ©       (4.32) B t q t1 42
0( ) ( )( )+ B t q t2 43( ) ( )+ B t v t3 4( ) ( )+

where 

  v t p H t q H t1 2 1 2 2( ) ( ) ( )= +  

  v t p G t q G t2 2 1 2 2( ) ( ) ( )= +  

v t p G t q G t3 2 1 2 2( ) ( ) ( )= +  

and  v t F t p K t q K t4 1 2 1 2 2( ) ( )[ ( ) ( )]= + .          (4.33) 

Taking Laplace transforms of equations (4.29) – (4.33) and solving for , B s0
*( )

  B s N s
D s0

3

2

*( ) ( )
( )

=  

   N s v q q q q q q q3 1 01 43 34 24
3

41
0

01 431 1( ) [ ( ) ( )]* * * * ( )* ( )* * *= − + − −

    + + − + +( )[( )* * * * * * * ( )* * ( )* *q q q q q v q q v q v01 12 02 43 34 2 42 24
3

3 24
3

41 .]

 

In the long run, the fraction of time for which the system is under repair is given by 
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  B B t sB s N
Dt s∞ →∞ →

= = =lim ( ) lim ( )*
0 0 0

3

2

 

   N p q p p p p m p3 1 43 1 20 24
3

4
0

24
3

4 431 1= − + + + −µ µ( ) [ ] (( ) ( ) ( ) p20 )]

u

The expected busy period of the repair facility in (0, t] is 

   µb

t

t B u d( ) ( )=z0
0

so that 

  µb s B s
s

*
*

( ) ( )
= 0 . 

 

4.7 COST ANALYSIS 

 

We now obtain the cost function of the system considering the mean up-time of the 

system and the expected busy period of the repair facility. 

Let us define C1 as the revenue per unit-time and C2 as the cost of repairs per unit time. 

Then the expected total profit earned in (0, t] is 

G(t) = expected total revenue in (0, t] – expected repair cost in (0, t] 

          = C t C tu1 2 0µ µ( ) ( )− . 

The expected profit per unit time is 

  g t G t
t

( ) ( )
=  
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4.8 CONFIDENCE LIMITS 

 

When failure and repair time distributions are exponentially distributed and the switch 

is perfect, i.e. ;  p p1 2 1= = q q1 2 0= =  

   ;     f t e t
1 1

1( ) = −α α f t e t
2 2

2( ) = −α α

   ;   g t e t( ) = −β β
1

1 k t e t( ) = −β β
2

2

then 

  MTSF =
+ +β α α
α α

1 1

1 2

2            (4.34) 

 A∞ =
+ + +

+ + + + +
β β β α α α α

β β β α α α α β β α
1 2 1 1 2 1 2

1 2 1 1 2 1 2 1 2 1

[ ( ) ]
( ) ( )

         (4.35) 

and 

 B∞ =
+ + + +

+ + + + +
α β β α β β α α α

β β β α α α α β β α
1 1 2 2 1 2 1 1 2

1 2 1 1 2 1 2 1 2 1

[ ( )
( ) (

]
)

n

.         (4.36) 

 

4.8.1 CONFIDENCE LIMITS FOR  A∞

 

Let ;  (i = 1, 2) be random samples of size n, each drawn from 

exponential populations with failure rates, 

X X Xi i i1 2, ,...,

( , )α α1 2 respectively. 

Similarly ;  (i = 1, 2) be random samples of size n, each drawn from 

exponential populations with repair rates (both p-unit and o-unit) (

Y Y Yi i i1 2, ,..., n

, )β β1 2 respectively. 
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If α 1 is the parameter of the exponential distribution, then an estimate can be found for 

either α 1 , or for the parameter θ
α1

1

1
= , which is equal to the mean value of the time of 

failure-free operation of the p-unit. 

For the sake of analysis, let 

  θ
α1

1

1
= , θ

α2
2

1
= , θ

β3
1

1
= ,θ

β4
2

1
= . 

The maximum likelihood estimator (MLE) of θ 1 is given by X
n

X i
i

n

1
1

1
=

=
∑ 1 . Similarly 

X 2 , X 3 and X 4  are the MLE’s of θ 2 ,θ 3  and θ 4 respectively. 

 

  $ [( ) ]
( ) (

A X X X Y X X Y YY
X X X X Y Y X Y X Y X Y YY∞ =

+ + +
+ + + + +
1 1 2 1 2 2 2 1 2

1 1 2 1 1 1 2 1 1 2 1 1 1 2 )
  

$A∞ is a real-valued function in X X X X1 2 3, , , 4 , which is also differentiable. 

By an application of the central limit theorem [Rao (1973)], it follows that 

n ( X -   )  N  ( ,  )Dθ ⎯ →⎯ 4 0 Σ as n → ∞. 

where 

X X X Y Y= ( , ,,1 2 1 2 )  

θ θ θ θ θ= ( , , , )1 2 3 4 . 

The dispersion matrix Σ = ( )σ ij 4 4x  is given by 

Σ = diag( , , , )θ θ θ θ1
2

2
2

3
2

4
2 . 

From (Rao (1973)), as n → ∞ 
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 n ( A  -  A  )  N ( , D
∞ ∞ ⎯ →⎯$ ( ))0 2σ θ  where 

σ θ
θ

σ2

11

4 2

( ) = ∂
∂

F
HG

I
KJ∞

=
∑ A
i

ii  

=
∂
∂

F
HG

I
KJ∞

=
∑ A

ii
iθ

θ
1

4 2
2 . 

Replacing  θ  by its consistent estimator $ ( , , ,θ = X X Y Y1 2 1 2 ) , it follows that 

$ ( $ )σ σ θ2 2= is a consistent estimator of (see Wackerly et al (2002). σ θ2 ( )

Then by Slutzky’s theorem, (Slutsky (1928)), 

  n ( A  -  A  )   N ( , D )D∞ ∞ ⎯ →⎯
$

$σ
0  as n → ∞. 

This implies 

  P [ -  k   n ( A  -  A  )   k  ] =  1 -  
2 2
α α

σ
α≤ ≤∞ ∞$

$
  

where  is obtained from normal tables, i.e. the 100(1 – α)% confidence interval is given  

by 

kα /2

   $ $
/A k

n∞ ± α
σ

2 . 

 

4.8.2 CONFIDENCE LIMITS FOR B∞

 

The procedure is identical to section 4.8.1 except 

$ [( ) ]
( ) (

B Y X X Y X X Y YY
X X X X Y Y X Y X Y X Y YY∞ =

+ + +
+ + + + +

1 1 2 1 2 1 1 1 2

1 1 2 1 1 1 2 1 1 2 1 1 1 2 )
. 
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When we follow the procedure as in section 4.8.1, we get the confidence limits for . 

The confidence limits for are  

$β∞

$β∞

  $ $
/B k

n∞ ± α
σ

2 . 

 

4.9 NUMERICAL ILLUSTRATION 

 

Assuming that the units are identical, the switch is perfect and failure and repair rates 

are constant, that is 

  f t f t e t
1 2( ) ( )= = −α α

  g t g t e t
1 2( ) ( )= = −β β

 . k t k t e t
1 2( ) ( )= = −γ γ

The expressions for MTSF and  reduce to the following forms: A∞

MTSF p q
p q

=
+ + + + + +
+ + − + − +

( )( ) [ ( ) ( )
[( )( ) ( ) ( )]

]α β α γ α α γ α β
α α β α γ β α γ γ α β

2 2

2 2

 

and A A
B C∞ = +

 

where   A = + +βγ α β α γ( ) (2 2)

B p q p q= + − + + + +[ {( ) ( )} ][ { ( ) }α β γ γ β βγ βγ α γ β βγ2 2 2 2  

    + + + + +α α β γ αβγ γ β3 2
2 2( ) ( p q )]

and  

C p q p q p q= + + + + + + + +[ ( )][{ ( )}( ) ( )( )]α α γ β α α γ β γ β βγ α β α γ2
2 2

3 2
2 2 2 2 . 
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Taking β = 4, γ = 1 and β = 15, γ = 5, the values for MTSF and steady state availability 

corresponding to p2 = 1, 0.5 and 0 and for different values of α can be calculated. 

Figures 4.2 and 4.3 represent the values for and MTSF respectively. A∞

These graphs clearly indicate that the better the physical condition of the repair facility 

the better the performance of the system. 

 

Figure 4.2 

As α  increases the steady-state availabity, , is a decreasing function of A∞ α  (for different 

values of β , γ and ). p2
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Figure 4.3 

As α  increases the Mean Time to System Failure (MTSF) is a decreasing function of  α  

(for different values of β , γ and ). p2
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4.10 CONCLUSION 

     A single server two-unit priority cold standby system is studied with varying physical 

conditions for the repairman, since the repair time’s distribution is affected by such 

conditions. It is assumed that the switching device (the device which transfers the unit from 

cold standby state to operating online state) is not perfect, i.e. the switch can also fail. 

Identifying the regeneration points, various operating characteristics are obtained, both 

analytically and numerically. Explicit expressions for the steady state availability and the 

busy period in the steady state are obtained, when all underlying distributions are 

exponential. For these two measures, the asymptotic confidence limits are also obtained. 

These results were shown in Figure 4.2 (For an increasing α  the steady-state availability  

( ) decreases for different values of A∞ β , γ and ) and Figure 4.3 (For an increasing p2 α  

the Mean Time to System Failure (MTSF) decreases for different values of β , γ and ). p2
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CHAPTER 5 

 

COST ANALYSIS OF A THREE-UNIT STANDBY REDUNDANT 
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5.1 INTRODUCTION 

 

In the study of standby redundant systems, two unit systems have been examined 

extensively in the past. However, the study of n-unit redundant systems has received much 

less attention because of the built-in difficulties in the analysis. Kistner and Subramanian 

(1974) considered an n-unit warm standby system with a single repair facility. In this case, 

the pdf of the life time of the online unit was taken to be arbitrary while all the other 

distributions were exponential; these results were later extended to cover the case of 

several repair facilities by Subramanian, Venkatakrishnan and Kistner (1976). In the dual 

problem, viz., the n-unit system in which the pdf’s of the repair time is arbitrary has been 

studied by Gopalan (1975). Gupta, Bajaj and Singh (1986) have studied the cost-benefit 

analysis of a single three unit redundant system with inspection, delayed replacement and 

two types of repair. Kalpakam et al. (1987) have considered a multi-component system in 

which n identical units connected in series; one needed for the system function, the units 

being supported by m spares and a single repair facility. Subramanian et al. (1987) studied 

a n-unit system in which the pdf of the life time is arbitrary and with the varying repair 

rate. Gupta and Bansal (1991) have analysed a cost function for a three unit standby system 

subject to random shocks and linear failure rates. It can be seen that in almost all the 

articles on standby systems in which the number of units is greater than two, at least one of 

the associated distributions is taken to be exponential. 

The study of n-unit systems, even in the case of cold standbys, appears to be rather 

complicated when the pdf of both the life time of the online unit and that of the repair time 
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are arbitrary. However, in this chapter, we study the case when n=3 and obtain elegantly 

many interesting performance measures. 

     The organisation of the chapter is as follows: In section 5.2, assumptions and notation 

are given and in section 5.3, the various system measures are obtained. In section 5.4 

special cases are considered and in section 5.5 a comprehensive cost function is 

constructed. In section 5.6 numerical results are given to illustrate some of the results 

obtained. 

 

5.2 ASSUMPTIONS AND NOTATION 

5.2.1 ASSUMPTIONS 

1. The system consists of three identical units with a single repair facility. Each individual 

unit performs the system function satisfactorily. 

2.  Initially at t=0, one unit is switched online and the other two units are installed as cold 

standbys. The initial condition is denoted by E0. 

3.  After the completion of repair, a unit is installed back into the system as cold standby if 

at the epoch another unit functions online; else it is installed as the online unit. 

The following table 5.1 describes all possible events: 
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Event N(t-0) N(t) The system is 

E1 0 1 operable 

E2 1 2 operable 

E3 2 3 just not operable

E4 2 1 operable 

E5 3 2 just operable 

E6 1 0 operable 

      

Table 5.1 

 

5.2.2 NOTATION 

 

The following functions are defined only for regenerative events Ei. 

Ni(t) = Number of events of the type Ei in (0, t] 

Ui(t) = P[System unavailable at time t | Ei at t= 0] 

Mi(t) = lim |
∆

∆ Ε
∆→

)    = 0]
0

P ai[a repair commencement in (t,  t +  t t    

φ(t) = lim |
∆

∆ Ε
∆→

)    = 0]
0

P ai[first system failure in (t,  t +  t t    

Pij(t) = lim
( ) , ( ) , , |

∆

∆ Ε

∆→

+ = = =    = 0]
0

1 0 15P t N t k at tk i[N j  ,    for i, j = 1, 5 

Pi3(t) = lim ( ) , ( ) , , , |
∆

∆ Ε
∆→

+ = = =    = 0]
0

1 0 1 3 5P t N t k at tk i[N3    

Πi3 (t) = P[System in down state at time t, no E1 or E5 events in (0, t] Ei at t= 0] 
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f ( )⋅ = pdf of the life time of a unit, while operating online 

g( )⋅ = pdf of the repair time of a failed unit. 

 

5.3 ANALYSIS 

     It is noted that the events E1 and E5 listed in table 5.1 are regenerative, while the rest are 

not. 

5.3.1 AUXILLIARY FUNCTIONS 

     The following expressions for the probabilities Pij(t)’s and Πij (t)’s can be obtained: 

By definition, Pij(t)  (i, j = 1, 5) denote the probability that an Ej  event occurring in 

(t, t + dt) given that an event Ei had occurred at time t = 0 and that no E1 or E5 event occurs 

in (0, t]. Similarly Pi3(t)dt refers to the probability of a system breakdown on Ei  event had 

occurred at time t = 0 and that no E1 or E5 event occurs in (0, t]. Hence,  

 P11(t) = f t G t f u g v f u u g v v g v vn n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

−zz∑ 1 1 2 1 2 1 1
1

 

     f t u G t v du dv du dvn n n( ) ( ) ... n− − 1 1 , 
                            0 1 1≤ ≤ ≤ ≤ ≤ ≤u v u vn n... t . (5.1) 
 
This equation is obtained by considering the following two mutually exclusive and 

exhaustive cases: 

(a) The repair of a unit commenced at t = 0 is completed before the online unit fails 

(b) The online unit fails before this repair completion. 

     In this case, since by definition of P11(t), no E3 event (since no E5 event can occur) can 

occur in (0, t], the third unit cannot fail before the repair completion. This way a sequence 

of E2 and E4 can occur any number of times before the repair completion. This way a 

 104

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



sequence of E2 and E4 can occur any number of times before the ultimate occurrence of an 

E1 event. 

By similar arguments, we get 

P15(t) =  

      

f u F t u g t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

F t u g t v du dv du dv dun n n n( ) ( ) ... n− −+ +1 1 1 1

n

    (5.2)
  

P13(t) =  

      

f u f t u G t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

f t u G t v du dv du dv dun n n n( ) ( ) ...− −+ +1 1 1 1

n

.  (5.3) 
 
Also, by its definition, (t) refer to the state probabilities of the system being down given 

that at time t = 0, E

Πi3

i  had occurred and that no E1 or E5 event occurred in (0, t]. We have  

Πi3 (t) =  f u F t u G t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

F t u G t v du dv du dv dun n n n( ) ( ) ...− −+ +1 1 1 1

 

n

   (5.4) 

P51(t) =  g u G t u f t du g u f v g u u f v v g u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

      f t v G t v du dv du dv dun n n n( ) ( ) ...− − + +1 1 1 1

t

.  (5.5) 
 
For all these expressions, the integrations have to be performed for 

 while for the following expressions, it has to be 

performed for 0

0 1 1 1≤ ≤ ≤ ≤ ≤ ≤ <+u v u v un n n...

1 1≤ ≤ ≤ ≤ ≤ <u v u v tn n... . 

 

P55(t) = g t F t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

n−zz∑ 1 2 1 2 1
1

1

n

 

      f v v F t v g t u du dv du dvn n n n n( ) ( ) ( ) ...− − −−1 1 1

−

       (5.6) 
 

P53(t) = f t G t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞ zz∑ 1 1 2 1 2 1
1

1  
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     f v v f t v G t u du dv du dvn n n n n( ) ( ) ( ) ... n− − −−1 1 1

−

      (5.7) 
 
 

Π53 (t) = F t G t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞ zz∑ 1 1 2 1 2 1
1

1

n

 

   f v v F t v G t u du dv du dvn n n n n( ) ( ) ( ) ...− − −−1 1 1  . (5.8) 
 

 
5.3.2 RELIABILITY ANALYSIS 
 
We have  
 

ϕ 0 ( ) ( )t f t= ©ϕ1( )t  

 

ϕ1( )t = P t11( ) ©ϕ1( )t + .            

(5.9) 
P t13( )

 
The equation ϕ( )t is derived by observing the fact that the online unit has to fail before t, if 

there is to be a system failure in (t, t + ∆). The equation for ϕ1( )t  is obtained by 

considering the following mutually exclusive and exhaustive cases: 

(a) E1 event occurs in (u, u + du), u < t 

(b) no E1 event occurs before t and the system fails in (t, t + ∆). 

 

Hence the reliability of the system is given by 

R t u du
t

0 0( ) ( )=
∞zϕ .                      (5.10) 

5.3.3 AVAILABILITY ANALYSIS 

It is easier to write the equations governing the unavailability of the system. We have, by 

arguments similar to those in reliability analysis: 

U t f t0 ( ) ( )= ©U  t1( )
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U t1( ) = P t11( ) ©U + ©U + t1( ) P t15( ) t1( ) π 13( )t  

 

U t5( ) = P t51( ) ©U + ©U + t1( ) P t55( ) t5( ) π 53( )t .                  

(5.11) 
 

Solving the equations in (5.11), by using the Laplace transform technique, we get 

 U s f s P s s s P s
P s P s P s P s0

15 53 13 55

11 55 15 51

1
1 1

* *
* * * *

* * * *( ) ( ) ( ) ( ) ( )[ ( )]
[ ( )][ ( )] ( ) ( )]

=
+ −

− − −
Π Π . 

By inverting U , wet get U . s0
*( ) t0 ( )

The steady state availability is given by A0 = 1 – U0 where U0 is the steady state value of 

U0 (t) obtained by using the relation 

lim ( )*

s
sU s U

→
=

0 0 0 . 

 

5.3.4 MEASURES OF SYSTEM PERFORMANCE 

5.3.4.1 EXPECTED NUMBER OF TRANSITIONS FROM STATE 0 TO STATE 1 in 

            (0, t] 

The expected number of visits by the repairman in (0, t] is given by . V u du
t

0
0

( )z
The equations governing V t  are: i ( )

V t f t0 ( ) ( )= ©V t  f t1( ) ( )+
 
V t1( ) = P t11( ) + ©V t + ©V t  P t11( ) 1( ) P t15( ) 5( )
 

and ©V t + ©V t .                     

(5.12) 
V t5( ) = P t51( ) 1( ) P t55( ) 5( )

 
 

 can be obtained using the Laplace transform technique. V t0 ( )
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5.3.4.2 EXPECTED NUMBER OF REPAIRS COMMENCED IN (0, t] 

The expected number of repairs commenced in (0, t] is given by . The 

governing equations for  are: 

M u du
t

0
0

( )z
M t0 ( )

M t f t0 ( ) ( )= + ©  f t( ) M t1( )
 

M t1( ) = P t11( ) + © + + © +P t11( ) M t1( ) P t15( ) P t15( ) M t5( ) ξ121( )t  

 

M t5( ) = P t51( ) © + + © +M t1( ) P t55( ) P t55( ) M t5( ) ξ 21( )t       

(5.13) 
 

where 
 

ξ121( )t =  f u F t u g t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ −
=

∞

0
1 1 2 1 2 1 1

2

                 F t u g t v du dv dv dvn n n( ) ( ) ... n− − − −1 1 1 1  
 

ξ 21( )t = g t F t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

−zz∑ 1 1 2 1 2 1
1

1

n

 

        f v v F t v g t v du du dvn n n n n( ) ( ) ( ) ...− − −−1 1 . 
 
These integrals are to be evaluated for 0 1 1 1≤ ≤ ≤ ≤ ≤ ≤ ≤+u v u v un n n... t . 
 
 
5.3.4.3 EXPECTED NUMBER OF REPAIRS COMPLETED IN (0, t] 
 

The expected number of repairs completed in (0, t] is given by . We have  M u du
t

0
0

( )z
 
M t0 ( ) = f t( ) ©  M t1( )
 
M t1( ) = © + © +P t11( ) M t1( ) P t15( ) M t5( ) η1( )t  
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M t2 ( ) = P t51( ) © + + © +M t1( ) P t55( ) P t55( ) M t5( ) η2 ( )t                  

(5.14) 
 
where 

 

η1( )t = g t F t f u g v f u u f v v f u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

−zz∑ 1 1 2 1 2 1 1
1

 

    { ( ) ( ) ( ) ( ) ...g t v g v v g t v F t u du dv du dvn n n n n n n− + − − −− −1 1 1 1 ; 
    
        0 1 1≤ ≤ ≤ ≤ ≤ ≤u v u vn n... t  
 
 

η2 ( )t =  g t F t g u g t u F t du g u f v g u u
t

n

( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( )+ − +z zz∑
=

∞

0
1 1 2 1

1

−

    f v v f v v g t u g u u g t vn n n n n n( )... ( ){ ( ) ( ) ( )2 1 1 1 1− − − + − −− + +  

F t v du dv du dv dvn n n n( ) ...− +1 1 1 . 

M t0 ( ) can be solved from this set of equations. 
 
 
5.3.4.4 EXPECTED NUMBER OF SYSTEM BREAKDOWNS IN (0, t] 
 

The expected number of system breakdowns is given by . We have  D u du
t

0
0

( )z
 
D t0 ( ) = f t( ) ©  D t1( )
 
D t1( ) = © + © +  P t11( ) D t1( ) P t15( ) D t5( ) P t13( )
 
D t2 ( ) = P t51( ) © + © +                             

(5.15) 
D t1( ) P t55( ) D t5( ) P t53( )

 
 
By Laplace transforms technique, we get . D t0 ( )
 
5.3.4.5 EXPECTED NUMBER OF SYSTEM RECOVERIES IN (0, t] 
 

The expected number of system recoveries is given by . In this case, the  S u du
t

0
0

( )z
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govening equations for are: S t0 ( )
 

S t0 ( ) = f t( ) ©  S t1( )
 
S t1( ) = © + © S t +  P t11( ) S t1( ) P t15( ) 5( ) P t15( )
 

and © + © + .                            

(5.16) 
S t2 ( ) = P t51( ) S t1( ) P t55( ) S t5( ) P t55( )

 
 
Equations (5.16) can be solved for . S t0 ( )
 
 
REMARK: 
 

It is noted that the steady state value of these expected numbers also represent the 

respective expected numbers per unit time in the steady state. Further, in the steady state, 

the expected number per unit time of the system breakdowns and recoveries are equal 

while that of the repair commencements is equal to repair completions. 

 

5.4 SPECIAL CASES: 

In this section, we consider two important special cases of the general model studied. 

5.4.1 MODEL 1 

All the results obtained in section 5.3 are deduced for the special case where the life time 

distribution of the online unit is general and the repair time distribution is exponential. 

By setting g(t) = , the various Pµ µe t−
ij(t) and Πi3 (t)’s reduce to simpler form. For 

illustration purposes, we consider P11(t): 

Substituting g(t) = in equation (5.1), we have µ µe t−
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P11(t) = f t e f u f u u f u u f t ut
n n n

n
vvt

n

n

( )[ ] ... ( ) ( ) ( ) ( )1 1 2 1 1
1

0001

1

− + − − −−
−

−

=

∞ zzz∑µ µ  

[ ] ...µ µµ µe e du dv du dvv t
n n

n− −− 1 1 . 
 

  Changing the order of integration, we have 
 

P11(t) =  f t e f u u u f u u f u ut
n n

uut

n

n

( )[ ] ... ( ) ( ) ( )... ( )1 1 2 1 2 1 1
0001

2

− + − − −−
−

=

∞ zzz∑µ µ  

           
    f  u u f t u e e f t u e du dv dun n n

u t u
n

t
n

n n n( ) ( ) [ ( ) ] ...( ) ( )− − − − −−
− − − − −

1 1 11µ µ µ µµ
 

    which gives 
 

P t f t e f t et t
11 1( ) ( )[ ] ( )= − +− −µ µ © © . { ( ) }( )f t te t n

n

µ µ− −

=

∞

∑ 1

1

f t e tet t( )[ ]1− −− −µ µµ

The simplified expressions for the other Pij(t)’s and Πi3 (t)’s are obtained by similar 

arguments. By substituting these expressions in the corresponding integral equations and 

solving them, we get the results for the various system characteristics as: 

MTSF = − + + +f f f f
f

* * * *

*

' '

( )[ ( ) ( ) { ( )} ]
{ ( )}

0 1 2

2

µ µ µ µ
µ

 

 A0 =
− +

− −
µ µ µ

µ µ µ µ
f f

f f f f

* *

* * *

' '

' ' '

( )[ ( )]
{ ( )} ( ) ( ) ( )

0 1
0 02 2 *

 

 V0 =
µ µ µ µ

µ µ µ µ

2

2 2

1
0 0

[ ( ) ( )]
{ ( )} ( ) ( ) ( )

* *

* * *

'

' ' '

+ −
− −

f f
f f f f *

 

 m0 = M0 =
µ µ µ

µ µ µ µ
[ ( )]

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

1
0 02 2

+
− −

f
f f f f *

 

D0 = S0 =
µ µ

µ µ µ µ
{ ( )}

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

f
f f f f

2

2 2 0 0− − *
. 
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As is to be expected, m0  and D0  are equal to M0 and S0 respectively. 
 
 

5.4.2 MODEL 2 

In this section, the various system characteristics are deduced for the special case when the 

life time distributions of the online unit is exponential with parameter λ and the repair time 

distribution is general. By following the same procedure as in Model 1, all Pij(t)’s and 

(t)’s reduce to simpler form and the system measures become Πi3

MTSF = 3 2 2
1
+ −

− +
λ λ λ

λ λ λ
g g

g g

* *

* *

( ) ( )
[ ( ) (

'

λ)]
 

 A0 =
[ ( )]

{ ( )} ( ) ( ) ( )

*

* * *' ' '

1
0 02 2

+
− −

λ λ
λ λ λ λ

g
g g f g*

 

 V0 =
λ λ

λ λ λ λ
{ ( )}

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

g
g g g g

2

2 2 0 0− − *
 

 m0 = M0 =
λ λ

λ λ λ λ
[ ( )]

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

1
0 02 2

+
− −

g
g g g g*

 

D0 = S0 =
λ λ λ λ

λ λ λ λ
[ ( ) ( )]

{ ( )} ( ) ( ) ( )

* *

* * *

'

' ' '

1
0 02 2

− +
− −

g g
g g g g*

. 
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5.5 COST ANALYSIS 
 
In this section, we construct a comprehensive cost function per unit time in the steady state. 

1. The costs due to the visits by the repairman to the repair facility per unit time is 

βV0, where β is the cost per visit. 

2. The cost associated with the repair rate is r ( 1
MRT

) , where r ( > 0) is the constant 

of proportionality associated with the mean repair rate. 

CF U V V
MRT

D= + + +α β η0 0
1( ) 0       (5.17) 

This cost function is to be optimised with respect to the control parameter MRT within 

some known bounds. 

 

5.6 NUMERICAL RESULTS 

In this section, some of the results obtained for models 1 and 2 are illustrated with 

numerical examples. We consider the following special cases for this purpose 

 

MODEL 1 

We assume that 

 f t a a
a a

e ea t a t( ) ( )=
−

−− −1 2

2 1

1 2 ;              a a1 20 0> >,  
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In figures 5.1 to 5.6, three cases are considered for each characteristic corresponding to 

three different mean failure times to three different failure times of the online unit; (a1, a2) 

were chosen randomly in increasing order, namely 

( , ):( . , . ),( . , . ), ( . , . )a a1 2 0 058 0 2 0 067 0 2 0 076 0 2 . 

 

MODEL 2 

In this model, we assume that  

 . g t te t( ) = −µ µ2

Then MRT is 2
µ

. For this model also, three cases are considered for each characteristic 

corresponding to the three values of mean failure times, viz., 0.058, 0.067 and 0.076. 

Figures 5.7 to 5.12 gives the variation of the various characteristics when MRT is varied. 

The results demonstrate the following results, viz., as the MRT of a failed unit increase, for 

the assumed parametric structure thereby giving a unique optimal. 
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Figure 5.1 (Model 1) 

 

As the Mean Repair Time (MRT) increases the steady-state availability is a decreasing 

function of MRT (for the different values of α 1  and α 2 ). 
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Figure 5.2 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Mean Time to System Failure (MTSF) is a 

decreasing function of MRT (for different values of α 1  and α 2 ) with almost convergence 

of MTSF at MRT = 7. 
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Figure 5.3 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Expected number of visits of the repairman 

is a decreasing function of MRT (for different values of α 1  and α 2 ). 
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Figure 5.4 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Expected repairs completed is a decreasing 

function of MRT (for different values of α 1  and α 2 ). 
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Figure 5.5 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Expected number of system downs is an 

increasing function of MRT (for different values of α 1  and α 2 ). 
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Figure 5.6 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Cost function first decreases but then 

increases after MRT = 4.5 (for different values of α 1  and α 2 ). 
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Figure 5.7 (Model 2) 

 

As the Mean Repair Time (MRT) increases the steady-state availability is a decreasing 

function of MRT (for the different values of 2 / µ ). 
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Figure 5.8 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Mean Time to System Failure (MTSF) is a 

decreasing function of MRT (for different values of 2 / µ ) with almost convergence of 

MTSF at MRT =  8. 
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Figure 5.9 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Expected number of visits of the repairman 

is a decreasing function of MRT (for different values of 2 / µ ). 
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Figure 5.10 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Expected repairs completed is a decreasing 

function of MRT  (for different values of 2 / µ ). 
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Figure 5.11 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Expected number of system downs is an 

increasing function of MRT (for different values of 2 / µ ). 
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Figure 5.12 (Model 2) 

As the Mean Repair time (MRT) increases the Cost function first decreases but then 

increases after MRT = 4.  
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5. 7 CONCLUSION 

     Contrary to the previous chapters a three unit system is considered in this chapter. The 

life time distributions are all assumed to be non-Markovian. The problem is very 

challenging when we assume that all the distributions are arbitrary. The system measures, 

like expected number of transitions from different states, expected number of repairs 

commenced, expected number of repairs completed, expected number of system 

breakdowns, expected number of recoveries, are obtained. Results are shown in Figures 5.1 

– 5.12. 
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CHAPTER 6 

 

A STOCHASTIC MODEL OF A RELIABILITY SYSTEM 

WITH A HUMAN OPERATOR 
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6.1 INTRODUCTION 

 

With the advancement of methods and developments in artificial intelligence, computer 

systems and electronic systems, we find a high degree of automation all around. 

Nevertheless, it cannot be overlooked that human beings are inseparable parts of systems. 

Radars, motor vehicles, aircrafts and ships are examples of systems which are continuously 

monitored by human operators. Errors that are caused by human operators are referred to as  

‘human-errors’ (Dhillon, 1980, 1984; Yadavalli & Bekker, 2005). 

Dhillon has analysed several models incorporating the concepts of human reliability (1981, 

1984). Yadavalli & Bekker (2005) studied a stochastic model of a two unit system with 

human error and common-cause failures. Their main focus was on the estimation of the 

steady-state availability (both classical and Bayesian) with the assumption of human error 

and common-cause failures. One common feature of all the models is that they are 

Markovian in nature. Kumar et al. (1986) analysed systems operating in fluctuating weather 

conditions and subject to critical human error, the models are being Markovian. Dhillon 

and Rayapati (1985) studied five models for a system which needs a human operator. In 

their models, a human operator is assumed to be working in one of the three states: normal, 

moderate stress and extreme stress. In all three states, the system is assumed to be subject 

to two failure modes, i.e. from each state, the system may fail because of self-corrected-

human error and non-self-corrected human error. The system can recover from a self-

corrected-human failure state, whereas it remains in a failed state when this occurs because 

of non-self-corrected human error. All the underlying failure distributions are assumed to 

be exponential. The organization of this chapter is as follows: Section 6.2 presents the 
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system description and relevant notation; in Section 6.3, we represent transition probability 

functions and sojourn times, which are used in the subsequent analyses; Section 6.4 is a 

study of reliability analysis and the mean time to system failure; the availability analysis is 

presented in Section 6.5; the study of expected number of visits to a state and the profit 

analysis are presented in Section 6.6. 

 

6.2 SYSTEM DESCIPTION AND NOTATION 

1. The system is operated by a human operator. The system may fail because of its built-in 

nature or because of the human operator. 

2.  The human operator working on the system can be in one of three states: normal, 

moderate stress or extreme stress. The human operator is more prone to commit errors 

while in extreme stress state than in the other two states. 

3. The system is subject to two failure modes irrespective of the state of the human 

operator: (a) failure because of self-corrected human-error, (b) failure because of non-

self-corrected human error. 

4. The rates of change of human operator condition from normal to moderate stress, to 

extreme stress and vice versa are all exponential. Further, human errors also occur at an 

exponential rate. 

5. Repair time distributions for the system failed from the three human operator conditions 

are arbitrary and different from one another. 

6.  Failures are statistically independent. 

7. The repaired system is as good as new. 
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NOTATION 

λij Constant rate of occurrence of human error, where i denotes the state of human 

  operator and j denotes the system states 

αlm  Constant rate of change of the state of human operator from lth state to mth state; 

  l = 1, 2, 3 and m = 1, 2, 3 (l ≠ m) 

Gij(t) Repair time distribution for the system, where i denotes the state of human 

operator from which the system failed and  j denotes the system state; 

   i = 1, 2, 3 and j = 1, 2. 

Pij One-step transition probability from state Si  to Sj

P Transition probability matrix  

µi Mean unconditional sojourn time of the system in Si 

µ ( )1  The diag (µ0, µ3, µ6) 

ξ , column vector ( , , )1 1 1 ′

Nij Total time spent in a transit state Sj before the system failure, given that the  

  system starts in Si 

N ( )1  Nij , matrix 

′ti  Total time spent in up-states given that the system starts to Si 

vi E ti( )′  

V ( )1  , column vector ( , , )v v v0 3 6 ′

bij P[System is absorbed in Sj │system started in Si] 

B bij  
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E {0, 1, 2, ... , 8} 

E1 {0, 3, 6}, up-states 

E2 {1, 2, 4, 5, 7, 8}, down-states 

Πi Limiting probability that the Markov-Chain in Si , (i ∈ E) 

di Determinant of the minor of D 

ψi Limiting probability of the system being in Si , (i ∈ E) 

Yi Earning rate of the system per unit time in Sj   

g Expected profit per unit time in steady state 

rij Fixed transition reward for a transition from Si to Sj   

 

6.3 TRANSITION PROBABILITIES AND SOJOURN TIMES 

     At any instant, the system can be in one of the following states: (See figure 6.1) 

(i) Up-states: 

 S0 (1, 0),   S3 (2, 0),   S6 (3, 0), 

(ii) Down-states: 

S1 (1, 1),   S2 (1, 2),   S4 (2, 1), 

S5 (2, 2), S7 (3, 1), S8 (3, 2). 

The first symbol in parenthesis denotes the human operator state and the second symbol 

denotes the state of the system. 
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System failure due to non-
self-corrected-human error in
normal state (1)

S2

Human operator performing
his task correctly in normal
state (1)

S0

System failure due to non-
self-corrected-human error in

moderate stress (2)
S5

System failure due to self-
corrected-human error in
normal state (1)

S1

Human operator performing
his task correctly at moderate
stress (2)

S3

System failure due to self-
corrected-human error at
moderate stress (1)

S4

System failure due to self-
corrected-human error at
extreme stress (1)

S7

Human operator performing
his task correctly at extreme
stress (3)

S6

System failure due to non-
self-corrected-human error in

extreme stress (2)
S8

α 31α13

α 23α 32

α12α 21

λ11

G t11( )G t11( )

G t11( )G t11( )

λ21λ22

λ12

λ31λ32

G t32( ) G t31( )

 

 

Figure 6.1: Transition Diagram 
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As indicated earlier, the states of human operator are (1) normal (2) moderate stress and (3) 

extreme stress. Similarly, the system states are 0: operative, 1: failed because of self-

corrected-human error and 2: failed because of non-self-corrected-human error. 

The system behavior can be described by a stochastic process { ( ), }Z t t ≥ 0 with state space 

E = { , ,..., }0 1 8 , where Z(t) denotes the state of the system at time t. It may be noted that the 

process Z(t), is a semi-Markovian and as such the well-known properties of Semi-

Markovian Process (SMP) (see Cinlar (1975)) are applied to study the system behavior in 

detail. 

The transition probabilities are given by: 

  P01 =  λ λ λ α α
11

0

11 12 12 13e dt− + + +
∞z ( ) t

               = λ
λ λ α α

11

11 12 12 13+ + +
                                                                       (6.1) 

P02 =  λ λ λ α α
12

0

12 11 12 13e dt− + + +
∞z ( ) t

               = λ
λ λ α α

12

11 12 12 13+ + +
                                                                       (6.2) 

  P03 =  α α λ λ α
12

0

12 11 12 13e dt− + + +
∞z ( ) t

          = α
λ λ α α

12

11 12 12 13+ + +
                                                                       (6.3) 

P06 =  α α α λ λ
13

0

13 12 11 12e dt− + + +
∞z ( ) t
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          = α
α α λ λ

13

12 13 11 12+ + +
                                                                       (6.4) 

 

   P10 = P20 = 1                                                                                               (6.5)  

  P30 =  α α λ λ λ
21

0

21 12 22 23e dt− + + +
∞z ( )

                                                           

t

               = α
λ λ α α

21

21 22 21 23+ + +
                                                                       (6.6) 

P34 =  λ λ λ α α
21

0

21 22 21 23e dt− + + +
∞z ( ) t

         = λ
λ λ α α

21

21 22 21 23+ + +
                                                                       (6.7) 

P35 =  λ λ λ α α
22

0

22 21 21 23e dt− + + +
∞z ( ) t

          = λ
λ λ α α

22

21 22 21 23+ + +
                                                                       (6.8) 

P36 =  α α λ λ α
23

0

23 22 21 21e dt− + + +
∞z ( ) t

          = α
λ λ α α

23

21 22 21 23+ + +
                                                                       (6.9) 

 

P43 = P53 = 1                                                                                            (6.10)  

  P67 =  λ λ λ α α
31

0

31 32 32 31e dt− + + +
∞z ( ) t
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             = λ
λ λ α α

31

31 32 31 32+ + +
                                                                   (6.11) 

 

P68 =  λ λ λ α α
32

0

32 31 32 31e dt− + + +
∞z ( ) t

                  = λ
λ λ α α

32

31 32 31 32+ + +
                                                                      (6.12) 

P60 =  α α λ λ α
31

0

31 31 32 32e dt− + + +
∞z ( ) t

              = α
α λ λ α

31

31 31 32 32+ + +
                                                                      (6.13) 

P63 =  α α α λ λ
32

0

32 31 31 32e dt− + + +
∞z ( ) t

      = α
λ λ α α

32

31 32 31 32+ + +
                                                                      (6.14) 

and      P76 = P86 = 1.                                                                                             (6.15)  

 

The unconditional mean sojourn time of the system in state Si are given below: 

µ λ λ α α
0

0

11 12 12 13= − + + +
∞ze t( ) dt                                 

     =
+ + +

1

11 12 12 13λ λ α α
                                                                                   (6.16) 

µ1 11
0

1= =
∞zG t dt m( )  (say)                       (6.17) 
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µ 2 12
0

2= =
∞zG t dt m( )  (say)                       (6.18) 

µ λ λ α α
3

0

21 22 21 23= − + + +
∞ze dt( ) t   

      =
+ + +

1

21 22 21 23λ λ α α
                                                                              (6.19) 

µ 4 22
0

4= =
∞zG t dt m( )  (say)                       (6.20) 

µ5 22
0

5= =
∞zG t dt m( )  (say)                       (6.21) 

µ λ λ α α
6

0

31 32 32 31= − + + +
∞ze dt( ) t   

      =
+ + +

1

31 32 32 31λ λ α α
                                                                              (6.22) 

µ 7 31
0

7= =
∞zG t dt m( )  (say)                       (6.23) 

and µ8 32
0

8=
∞zF t dt m( ) =  (say).                       (6.24) 

 
6.4 RELIABILITY ANALYSIS 

 

     We need to find the MTSF using reliability analysis. To obtain MTSF, we convert the 

down-states of the system into absorbing states, so that the transition probability matrix 
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(TPM) is steadily available in a canonical form and to obtain MTSF by the SMP approach 

(Agarwal et al. (1986)). 

 

       2     4     5     6     7     8        0      3     6 1

P = 

1

2

4

5

7

8

0

3

6

I O

R Q

L

N

MMMMMMMMMMMM

O

Q

PPPPPPPPPPPP

 

 
 
             2           4         5         7          8 1

R = 
0

3

6

01 02

34 35

67 68

0
0 0

0

0

0
0
0

0
0

0
0

P P
P P

P P

L
N
MMM

O
Q
PPP

 

 
 
 
    
                         3           6    0 

Q = 
0

3

6

0
0

0
30

60

03

63

06

36P
P

P

P

P
P

L
N
MMM

O
Q
PPP

 

Then we know that (See Agarwal et al. (1986)) 

N = (I – Q) M  ( )1 −1 ( )1

V = N  ( )1 ( )1

The elements of V produces the MTSF, given that the system starts in a transient state. ( )1
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Specifically,  

N
( )

( )
( )
( )

( )
( )

( )

( )
( )
( )

1
36 63 0

30 60 36 0

60 30 63 0

03 06 63 3

06 60 3

63 03 60 3

06 03 36 6

36 06 30 6

03 30 6

1
1

1
1

=
−
+
+

+
−
+

+
+
−

L
N
MMM

O
Q
PPPD

P P
P P P
P P P

P P P
P P

P P P

P P P
P P P

P P

µ
µ
µ

µ
µ
µ

µ
µ
µ

= V       (6.25) ( )1

 

 V
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) (

1
36 63 0 03 06 63 3 06 03 36 6

30 60 36 0 06 60 3 36 06 30 6

60 30 63 0 63 03 60 3 03 30 6

1
1

1
1

=
− + + + +
+ + − + +
+ + + + − )

L
N
MMM

O
Q
PPPD

P P P P P P P P
P P P P P P P P
P P P P P P P P

µ µ µ
µ µ
µ µ

µ
µ

      (6.26) 

where 

 D P P P P P P P P P P= − − + + +( ) ( ) (1 36 63 30 03 06 63 60 06 03 36 ) . 

After substituting the required values into (6.25) and (6.26), we obtain 

   V B
B0

0=             (6.27) 

   V B
B3

3=             (6.28) 

   V B
B6

6=             (6.29) 

where 

 B M M M0 1 21 12 23 1 2= + + +( )α α α + ( )α α α32 31 13 1 3 1 2 3+ + +M M PM M M  

 B M M M3 2 31 32 23 2 3= + + +( )α α α + ( )α α α21 12 13 2 3 1 2 3+ + +M M PM M M  

 B M M M6 3 31 12 13 1 3= + + +( )α α α + ( )α α α32 23 21 2 3 1 2 3+ + +M M PM M M  

 B M= + +1 12 13 1( )α α + ( )α α23 31 2+ M  

+ ( )α α31 32 3 1 2 3 2 1 3 3 1 2+ + + +M K M M K M M K M M  
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K
K
K

1 31 23 21 21 3

2 12 32 31 32 1

3 23 12 13 21 3

= 2

3

2

+ +
= + +
= + +

α α α α α
α α α α α
α α α α α

( )
( )
( )

        (6.30) 

 
P= + + + + +( ) ( )α α α α α α α α α α α α12 23 23 31 31 12 23 13 32 21 21 13  
   + + +( )α α α α α α12 32 31 21 23 13       (6.31) 
 

M1
11 12

1
=

+λ λ
;  M2

21 22

1
=

+λ λ
  ; M3

31 32

1
=

+λ λ
. 

In fact, M1, M2 and M3 are MTSF’s of respective decomposed subsystems, corresponding 

to normal, moderate and extreme stress states. It can be noted that (6.27) is in agreement 

with Dhillon and Rayapati (1985). 

According to Agarwal et al. (1986), the absorption probabilities, i.e. the probabilities that 

the process starting from Si (i = 0, 3, 6) enters the absorbing states Sj (j = 1, 2, 4, 5, 7, 8) are 

given by the matrix B = [bij], namely  

    B I Q R= − −[ ] 1

          1                     2                     4                    5                     7                    8     

       =
1

0

3

6

01 01

01 31

01 61

02 01

02 31

02 61

34 02

34 34

34 62

35 02

35 32

35 62

67 03

67 03

67 63

68 03

68 33

68 63

D

P C
P C
P C

P C
P C
P C

P C
P C
P C

P C
P C
P C

P C
P C
P C

P C
P C
P C

L
N
MMM

O
Q
PPP 

 
where 

 ;     C P01 36 631= −( )P C P P P02 03 06 63= +( ) ; 

 ; C P P P03 06 03 36= +( ) C P P P04 30 60 36= +( ) ; 

C P32 06 601= −( )P ;     C P P P33 36 06 30= +( ) ; 

 ; C P P P61 60 30 63= +( ) C P P P62 63 03 60= +( ) ; 

 .             (6.32) C P63 03 301= −( )P
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6.5 AVAILABILITY ANALYSIS 

To obtain the steady-state availability A∞, the limiting probabilities αi’s are required 

  ψ µ π
µ πi
i i

i i
i E

=

∈
∑

 

            =

∈
∑
µ
µ
i i

i i
i E

d
d

 ;   i E∈ 1            (6.33) 

  A∞ = + +ψ ψ ψ0 3 6

P36

.            (6.34) 

Since di’s are the determinants of the minors of D, 

 d P P P P P0 34 35 67 68 631 1= − − − − −( )( )           (6.35) 

 d P P P P P P P1 02 34 35 67 68 631 1 1= − − − 36− − −( )[( )( ) ]  

   − − − +P P P P P P30 03 67 68 63 361[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )]          (6.36) 

 d P P P P P P2 01 34 35 67 68 63 361 1 1= − − − P− − −( )[( )( ) ] 

   − − − +P P P P P P30 03 67 68 63 361[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )]          (6.37) 

 d P P P P P3 01 02 67 68 601 1= − − − P06− −( )( )           (6.38) 

 d P P P P P P4 01 02 35 67 68 631 1 1= − − − P36− − −( )[( )( ) ] 

   − − − +P P P P P P30 03 67 68 63 061[ ( ) ]  

   − − −P P P P P P60 06 34 60 03 361( )           (6.39) 

d P P P P P P5 01 02 34 67 68 631 1 1= − − − P36− − −( )[( )( ) ]      

   − − − +P P P P P P30 03 67 68 63 061[ ( ) ]  
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   − − −P P P P P P60 06 34 60 03 361( )          (6.40)

 d P P P P P6 01 02 34 35 301 1= − − − P04− −( )( )          (6.41) 

           d P P P P P P7 01 02 34 35 68 631 1 1= − − − P36− − −( )[( )( ) ] 

  − − +P P P P P30 03 68 06 631[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )]          (6.42) 

 d P P P P P P8 01 02 34 35 67 631 1 1= − − − P36− − −( )[( )( ) ]  

  − − +P P P P P30 03 67 06 631[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )] .        (6.43) 

Using the di’s, the steady-state availability A∞, can be obtained as 

  A K K K
K
A

K
A

K
A

∞ =
+ +

+ +

1 2 3

1

1

2

2

3

3

            (6.44) 

where   A
a a1

11 12

1
1

=
+ +

 

  A
a a2

21 22

1
1

=
+ +

 

  A
a a3

31 32

1
1

=
+ +

 

  a M11 11 1= λ  ;  a M12 12 2= λ  ; 

  a M21 21 4= λ  ;  a M22 22 5= λ  ; 

  a M31 31 7= λ  ;  a M32 32 8= λ . 

In fact, A1, A2 and A3 are the steady-state availabilities of the decomposed sub-systems 

corresponding to normal, moderate and extreme stress states respectively. It may be noted 
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that A∞ is the harmonic mean of A1, A2 and A3 with the weights K1, K2 and K3 which are 

functions of αi’s. Also 

(i)   Min A A Max A
i i i i1 3 1 3≤ ≤ ∞ ≤ ≤

≤ ≤

(ii) The above range of A∞ is independent of αi’s. 

 

6.6 EXPECTED NUMBER OF VISITS TO A STATE AND EXPECTED PROFIT 

 δ µ
µi

i

i i
i E

d
=

∈
∑

 

Hence, from equations 6.16 – 6.24 and 6.35 – 6.43, 

  δ
λ λ α α0

11 12 12 13

=
+ + +

K
T( )

 

  δ 1
1=

M K
T

 

  δ 2
2=

M K
T

 

  δ
λ λ α α3

21 22 21 23

=
+ + +

K
T( )

 

  δ 4
4=

m K
T

 

  δ 5
5=

m K
T

 

  δ
λ λ α α6

31 32 32 31

=
+ + +

K
T( )

 

  δ 7
7=

M K
T
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  and  δ 8
8=

M K
T

 

  where 

 K = + + + + + + + + +( )( )( )λ λ α α λ λ α α λ λ α α11 12 12 13 21 22 21 23 31 32 31 32  

  T K
A

K
A

K
A

= + +1

1

2

2

3

3

. 

We follow the same approach as in Agarwal (1988), to find the expected profit 

  g
i i i

i

i i
i

=
∑
∑

π µ

π

V

V
  

  . µ µi i ij ij i i
i

P r yV = +∑

Hence g can be calculated as 

   g Z
T

=  

   where 

 g K r r r r y=
+ + +

+ + + +1

11 12 12 13
11 01 12 02 12 03 13 06 0( )

[ ]
λ λ α α

λ λ α α  

       + + + +
λ λ11 1

1
1 10 1

12 1

2
2 20 2

K
M

M r y K
M

M r y[ ] [ ]  

    +
+ + +

+ + + +
K r r r r2

21 22 23 21
21 34 22 35 23 36 21 30 3( )

[ ]
λ λ α α

λ λ α α y  

    + + + +
λ λ21 2

4
4 43 4

22 2

5
5 53 5

K
M

M r y K
M

M r y[ ] [ ]  

   +
+ + +

+ + + +
K r r r r3

31 32 32 31
31 67 32 68 32 63 32 60 6( )

[ ]
λ λ α α

λ λ α α y  
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     + + + +
λ λ31 3

7
7 76 7

32 3

8
8 86 8

K
M

M r y K
M

M r y[ ] [ ] . 

 

6.7 NUMERICAL ILLUSTRATION 

As a numerical illustration, the behaviour of q0, the mean time to system filure, has 

been studied with respect to changes in M1, M2 and M3, the mean times to failure of 

decomposed sub-systems. It may be noted that MTSF increases as M1 increases but there is 

always an upper bound on the MTSF when other factors M2 and M3 are kept constant. This 

is convincing, as, after a certain change, any improvement in M1 is not likely to improve 

the MTSF value. In fact, for fixed values of M2 and M3, q0 takes the form 

 q M
a bM b0

1

2

1
=

+
≤  

where a and b are functions of M2 and M3 and thus may be treated as constants as long as 

M2 and M3 are fixed. The above inequality gives the least upper bound for q0.  

 

For example, for M2 = 100, least upper bounds for q0 are given as follows for varying M3: 

 

M3 25 40 60 100 ... ∞

q0 97.03 126.48 155.65 194.09 ... 324.80
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Figure 6.1 

 

As the Mean time to failure of decomposed subsystem 1 (M1) increases Mean Time to 

System Failure (MTSF) is an increasing function of M1 (for different values of M3 and 

fixed values of α12, α23, α31, α21, α32 and α13). 
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Figure 6.2 

 

As the constant rate of change from first to second state, α12, increases Mean Time to 

System Failure (MTSF) is a decreasing function of α12 (for different values of α31 and fixed 

values of M1, M2, M3, α23, α13, α21, and α32). 
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6.8 CONCLUSION 

     A repairable system with a human operator is considered. The operator could be in one 

of the three states – normal, moderate stress and extreme stress. The system can fail due to 

self-corrected and non-self-corrected errors. With the help of a semi-Markovian process 

and a regeneration point technique various characteristics, like availability  and MTSF are 

obtained (results in Figures 6.1 – 6.2). A cost-benefit analysis is also obtained for such a 

system. 
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