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CHAPTER 6

A STOCHASTIC MODEL OF A RELIABILITY SYSTEM
WITH A HUMAN OPERATOR
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6.1 INTRODUCTION

With the advancement of methods and developments in artificial intelligence, computer
systems and electronic systems, we find a high degree of automation all around.
Nevertheless, it cannot be overlooked that human beings are inseparable parts of systems.
Radars, motor vehicles, aircrafts and ships are examples of systems which are continuously
monitored by human operators. Errors that are caused by human operators are referred to as
‘human-errors’ (Dhillon, 1980, 1984; Yadavalli & Bekker, 2005).

Dhillon has analysed several models incorporating the concepts of human reliability (1981,
1984). Yadavalli & Bekker (2005) studied a stochastic model of a two unit system with
human error and common-cause failures. Their main focus was on the estimation of the
steady-state availability (both classical and Bayesian) with the assumption of human error
and common-cause failures. One common feature of all the models is that they are
Markovian in nature. Kumar et al. (1986) analysed systems operating in fluctuating weather
conditions and subject to critical human error, the models are being Markovian. Dhillon
and Rayapati (1985) studied five models for a system which needs a human operator. In
their models, a human operator is assumed to be working in one of the three states: normal,
moderate stress and extreme stress. In all three states, the system is assumed to be subject
to two failure modes, i.e. from each state, the system may fail because of self-corrected-
human error and non-self-corrected human error. The system can recover from a self-
corrected-human failure state, whereas it remains in a failed state when this occurs because
of non-self-corrected human error. All the underlying failure distributions are assumed to

be exponential. The organization of this chapter is as follows: Section 6.2 presents the
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system description and relevant notation; in Section 6.3, we represent transition probability

functions and sojourn times, which are used in the subsequent analyses; Section 6.4 is a

study of reliability analysis and the mean time to system failure; the availability analysis is

presented in Section 6.5; the study of expected number of visits to a state and the profit

analysis are presented in Section 6.6.

6.2 SYSTEM DESCIPTION AND NOTATION

(O8]

The system is operated by a human operator. The system may fail because of its built-in
nature or because of the human operator.

The human operator working on the system can be in one of three states: normal,
moderate stress or extreme stress. The human operator is more prone to commit errors

while in extreme stress state than in the other two states.

. The system is subject to two failure modes irrespective of the state of the human

operator: (a) failure because of self-corrected human-error, (b) failure because of non-
self-corrected human error.

The rates of change of human operator condition from normal to moderate stress, to
extreme stress and vice versa are all exponential. Further, human errors also occur at an
exponential rate.

Repair time distributions for the system failed from the three human operator conditions
are arbitrary and different from one another.

Failures are statistically independent.

The repaired system is as good as new.
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NOTATION

A

Oy

Gii(t)

Constant rate of occurrence of human error, where i denotes the state of human
operator and j denotes the system states

Constant rate of change of the state of human operator from I™ state to m™ state;
[=1,2,3andm=1,2,3 (I #m)

Repair time distribution for the system, where i denotes the state of human

operator from which the system failed and j denotes the system state;

i=1,2,3andj=1,2.

One-step transition probability from state S; to S;

Transition probability matrix

Mean unconditional sojourn time of the system in S;

The diag (po, ps, 1)

(1, 1, 1)", column vector

Total time spent in a transit state S; before the system failure, given that the
system starts in S;

[N U] , matrix

Total time spent in up-states given that the system starts to S;

E(t))

(vg» V3, Vg)', column vector

P[System is absorbed in S; | system started in S;]

2]
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E {0, 1,2, ..., 8}

E, {0, 3, 6}, up-states

E, {1,2,4,5,7, 8}, down-states

I1; Limiting probability that the Markov-Chain in S;, (i € E)
d; Determinant of the minor of D

Wi Limiting probability of the system being in S;, (i € E)

Y; Earning rate of the system per unit time in S;
g Expected profit per unit time in steady state
T Fixed transition reward for a transition from S; to S;

6.3 TRANSITION PROBABILITIES AND SOJOURN TIMES
At any instant, the system can be in one of the following states: (See figure 6.1)
(1) Up-states:
So(1,0), S3(2,0), S6(3,0),
(i1) Down-states:
Si(1, 1), S:(1,2), S4(2,1),
Ss(2,2),S7(3, 1), Ss(3, 2).
The first symbol in parenthesis denotes the human operator state and the second symbol

denotes the state of the system.
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]'12 ﬂ'll
System failure due to non- -« Human operator performing » System failure due to self-
self-corrected-human error in his task correctly in normal corrected-human error in
normal state (1) state (1) normal state (1)
S, > S - S,
Gy(0 Gi(0)
A
a,, 23%3
AZZ 1’21
System failure due to non- |«— | Human operator performing » System failure due to self-
self-corrected-human error in his task correctly at moderate corrected-human error at
moderate stress (2) stress (2) moderate stress (1)
S, . S, - S,
G,(®) G, (1)
/
s Uy
 J
/132 /131
System failure due to non- |« Human operator performing » System failure due to self-
self-corrected-human error in his task correctly at extreme corrected-human error at
extreme stress (2) stress (3) extreme stress (1)
S — S h S
Gy(t Gy (¢

Figure 6.1: Transition Diagram
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As indicated earlier, the states of human operator are (1) normal (2) moderate stress and (3)
extreme stress. Similarly, the system states are 0: operative, 1: failed because of self-
corrected-human error and 2: failed because of non-self-corrected-human error.

The system behavior can be described by a stochastic process {Z(z),¢ > 0} with state space
E =1{0,1,....8} , where Z(#) denotes the state of the system at time z. It may be noted that the
process Z(f), is a semi-Markovian and as such the well-known properties of Semi-
Markovian Process (SMP) (see Cinlar (1975)) are applied to study the system behavior in
detail.

The transition probabilities are given by:

P()]: Z e_(lll‘*'ﬂlz*'alz‘*'am)tdt
1

0

ﬂ“ll

= 6.1)
Antdn,ta,+ag,
P()Z — Z ze_(/112+}“ll+a12+a13)tdt
0
A
- 2 (62)
Antdnta,+ag,
P()3 — zlze—(alz‘*'ﬂn+/1|2+9‘|3)1dt
0
(04
— 12 (63)

Antdpta,tag,

P()6 = z 36_(0‘13+0‘12+}~11+112)de
|

0
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2

= (6.4)
Apta+A,+4,
P]():Pgo: 1 (65)
P30 — z; le—(azﬁ/llz‘*’lzz*'ﬂzs)tdt
0
a
= 21 (6.6)
Ap+dp+ay, +ay,
P34 — Zle—(/121+/122 +0‘21+0‘23)tdt
0
A
= 21 (6.7)
Ap+ Ay +ay +ay,
P35 — Zze—(ﬂzz +421 +021+a23)fdt
0
A
= 22 (6.8)
Ap+ Ay +ay +ay,
P36 — z; 36—(0’23+/122+121+0’21)fdt
0
[04
= 23 (6.9)
Ap+ Ay +ay +ay,
Ps;=Ps;=1 (6.10)

P67 — Z le*(im*ﬂsz*a’sz*am)ldt

0
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/131

= (6.11)
Ay +tdy,tas +as
P68 — Zze_(ﬂu*lsl*asz*an)’dt
0
= /132 (6.12)
Ay +tidytas +a,,
P60 — Zle_(am*lsl*iu*au)’dt
0
= %31 (6.13)
Ay + A5+ A, +ay,
P63 — Zze—(asz ozt A3+ 45, )tdt
0
- ) (6.14)
Ay tidytas +a,,
and P76:P86: 1. (615)
The unconditional mean sojourn time of the system in state S; are given below:
Uy = z—(ﬂlﬁllzﬂllz*am)’dt
0
1
= (6.16)
Antdpta,tag,
My = Zl(t)dt =m, (say) (6.17)

0
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1y = 2 (0t = m, (say) (6.18)
0
Ly = 2(/121+}~22+0‘21+0‘23)fdt
0
= ! (6.19)
Ay + Ay +ay +ay,
Hy= Zz ()dt = m, (say) (6.20)
0
1y = (03t = m (say) (621)
0
U = Z(ﬂm*%z*“n*asl)fdt
0
= ! (6.22)
Ay +Ap +ay, +ay,
1y = Lot =m, (say) (6.23)
0
and sty = fon (Ot = m, (say). (6.24)

0

6.4 RELIABILITY ANALYSIS

We need to find the MTSF using reliability analysis. To obtain MTSF, we convert the

down-states of the system into absorbing states, so that the transition probability matrix
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(TPM) is steadily available in a canonical form and to obtain MTSF by the SMP approach

(Agarwal et al. (1986)).

8 0 3 6
! !
2
4 O
;
P=7
) B
; 0
:
2 4 s 7 8
0 £, 0 0 O 0
R3& P, P, O 0 0
N o 0o 0 r p
3 6
0% Ry F
Q=3 0 P
6 P, 0

Then we know that (See Agarwal et al. (1986))
N(l): (| _ Q)—l M(l)
vO=N®

The elements of V" produces the MTSF, given that the system starts in a transient state.
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Specifically,
1 - P%P(ﬁ)/uo (Pos + P()()Pés)/v% (PO6 + POSP%),Uﬁ
N = B ot BBty (=R Fpy  (Pg+ BBy b=r®
ot Polo)ty (Bo+ BB (1= Ry Py) i
1 Py By) pty + (Fos + By Py s + (Fyg + By Py ) 1
V(I)ZB 0 +P60Psﬁ),uo + (1= Ry Fyo) 15 +(P36 + Fys Py ) Mg
ot P30Ps3),uo + (P63 + R)3Rso)ﬂ3 +(1- Po3P30),U6
where

D= [(1_ PaéP63)_ P30(Po3 + P()6P<33)+ P()o(E)() + EBP%)] .

After substituting the required values into (6.25) and (6.26), we obtain

B
V=
B
Vi=—
B
B
Vo=

where
By=M +(a, +a,+a,) M\M,+(a,, +a; +a,,) M, M, + PM, M, M,
B =M, +(ay, +o, +a) MM+ (o, +a, +a) M, M, + PM,M, M,
B =M, +(a;, +a,+oa,) MM+ (a,, +a,, +a, )M, M, + PM,M, M,
B=1+(a,+a, )M +(a,,+a;) M,

(o, +ta,) M, + KM, M, + K, M M, +K,M M,
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K=o, (ay+ay)+ayay
K, =a,(ay, +as) + oo, (6.30)

K, =ay(a,+a,)+a,a;,

P=(a,00,; + a0 + 050, H (@03 + 0 + 0 a3)
Ha,aq + 030, +aya;) (6.31)

VAL N VA
An+,, Ay + 4, Ay + 45

In fact, M;, M, and M; are MTSF’s of respective decomposed subsystems, corresponding
to normal, moderate and extreme stress states. It can be noted that (6.27) is in agreement
with Dhillon and Rayapati (1985).
According to Agarwal et al. (1986), the absorption probabilities, i.e. the probabilities that
the process starting from S; (i = 0, 3, 6) enters the absorbing states S; (j =1, 2, 4, 5, 7, 8) are
given by the matrix B = [bj;], namely

B=[I-QOI''R

1 2 4 5 7 8
CO] P()2 CO] P34 C02 1335 C‘02 1)67 CO3 P68 COS
=3 C31 PO2 C31 P_’>4 C34 P35C32 P67 COS P68 C33
C61 1)02 C6l ])34 C()Z 1)35 C62 })67 C63 1)68 C63

where
Co=(-Pgh3);  Cp=(Fy+Fehy);
Cos = (Fos + By Pg) 5 Coy = (B + By Pg) ;
Cp,=(1-FsFy); Gy =(Ps+FsPy);
Co1 = (Foo + PyFy) 5 C = (B + B3Fy) 5

Cos =(1=F3hy). (6.32)
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6.5 AVAILABILITY ANALYSIS

To obtain the steady-state availability A, the limiting probabilities o;’s are required

_ HiTT,

vis z,ui”i

ieE

_ E, (6.33)

_Z/J;di > 'S

icE
A, =y, +ty,+y,. (6.34)
Since d;’s are the determinants of the minors of D,
dy= (=P, = Ps)(1 = F; = Fg) — B3 Py (6.35)
dy = (1= F)[(1= By = Ps)(1- By = Fig) = Fi3 Py
=Py B (1= Fyy = Fig) + Fis Pyg ]
—Fool Fs P + B (1= By = Pys)] (6.36)
dy = (=Bl = Py = Ps)(1= By = By) = Fi B
=Py [ By (1= By = Fig) + B By ]
—Fool Fs P + o (1= By = Bs)] (6.37)
dy=(1-F, - F,) (1= F; = Fy) = Fy By (6.38)
d, = (1= Fy = F)l(1= Ps)(1 = F; = Bg) = Fis Py
=P[Ry (1= By = Fig) + B B ]
—Fo b (1= By) = By By Py (6.39)
ds = (1= Ry = B )l(1= B )(1= By = Fig) — Fiy Py ]

_P30[P03(1_ P67 - R’)g) + P63P06]
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~Foo By (1= Py) = Bo B By (6.40)
do=(1=Fy = Fy)(1= By = Bs) = By R, (6.41)
dy = (1= B, = B,)[(1= By = Ps)(1 = Bg) = Fiy By

— Py [ Ry (1= Fog) + B Fis ]

~Foo[ B3 P + Fos (1= By = By5)] (6.42)
dy = (1= B = F)l(1= By = Bs)(1= Fy) = By By

—Py[ Ry (1= F7) + B Fs ]

—Foo[ Bz P + Fos (1= Py = By5)]. (6.43)

Using the d;’s, the steady-state availability A, can be obtained as

K +K,+K,
A, = —K1 X K (6.44)
4, A, A,
1
where A =

T
+a11+a12

1
A=
1+a,, +a,,

1
A =———
1+a,;, +a,,

a, =AM, ; a,=4,M, ;
ay =AyM, ;5 ay =21y, M ;
ay = Ay M 5 asy = A5, M.
In fact, A;, A, and A; are the steady-state availabilities of the decomposed sub-systems

corresponding to normal, moderate and extreme stress states respectively. It may be noted
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that A is the harmonic mean of A;, A, and A; with the weights K;, K, and K; which are
functions of o;’s. Also

(1) Min 4. < A, < Max 4,

1<i<3 1<i<3

(i)  The above range of A is independent of o;’s.

6.6 EXPECTED NUMBER OF VISITS TO A STATE AND EXPECTED PROFIT
5ot
2 Hd,
iek
Hence, from equations 6.16 — 6.24 and 6.35 — 6.43,

3 K
’ Ay +A,+ta,+a;)T

5 = MK
booor
5 - M,K
T
~ K
P (A + Ay +ay + )T
S :m4K
T
5. - mK
T
S, = K
(A + Ay tay, +a,)T
5 - M.K
! T
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and O0g =

where
K = (ﬂ’ll + /}{’12 + alZ + alS)(ﬂ’Zl + 1’22 + a21 + a23)(/131 + /132 + a31 + a32)

— Kl

=1 K, +§
4,

T — .
4, 4

—+

We follow the same approach as in Agarwal (1988), to find the expected profit

27V,

WA

MV, = z Biry +y,u; .
Hence g can be calculated as
_Z
77

where

_ K,
Ay +A,+ta,+ags)

8 [A 0T + Aialog + @ty + @376 + V]

/’i’llKl /IIZKI

+

[Mr,+ ]+

1 2

[ M1y + ¥, ]

K,
Ay + Ay +tay+ay)

[Aoiry + Agalys + Apsliyg + Ay + 5]

A, K A,,K
+L[M4’”43+y4]+ 22 2[M5r53+y5]
M, 5
K,

[Asier + Asalg + Qaply + syl + V6]
Ay + A, +ag, +ay)
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A K ALK
+#[M7’”76+y7]+ ;\24 3[M8’%6+y8]-

7 8

6.7 NUMERICAL ILLUSTRATION

As a numerical illustration, the behaviour of qy, the mean time to system filure, has
been studied with respect to changes in M;, M, and M3, the mean times to failure of
decomposed sub-systems. It may be noted that MTSF increases as M; increases but there is
always an upper bound on the MTSF when other factors M, and M; are kept constant. This
i1s convincing, as, after a certain change, any improvement in M; is not likely to improve
the MTSF value. In fact, for fixed values of M, and M3, qy takes the form

M, 1
qo = <—
a+bM, b

where a and b are functions of M, and M; and thus may be treated as constants as long as

M; and M; are fixed. The above inequality gives the least upper bound for qy.

For example, for M, = 100, least upper bounds for gy are given as follows for varying M3;:

M; 25 40 60 100 0

Jo 97.03 126.48 155.65 194.09 324.80
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o, = 0.04, o, = 0.1, Oy = 0.03, o, = 0.006, Oy = 0.15, oy = 0.03
180 T T T T T T T

160

140

120"

MTSF

100

80

80 | | | | 1 | |
100 200 300 400 500 600 700 800 900
Ml
Figure 6.1

As the Mean time to failure of decomposed subsystem 1 (M;) increases Mean Time to
System Failure (MTSF) is an increasing function of M; (for different values of M3 and

fixed values of a2, 023, 031, 021, 032 and oy 3).
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M1 = 300, M2 = 100, M3 = 80, Oy = 0.4, Oy = 0.2, Oy = 0.5

120 T T T T T T

MTSF

85
100 200 300 400 500 600 700 800 900
le
Figure 6.2

As the constant rate of change from first to second state, a;», increases Mean Time to
System Failure (MTSF) is a decreasing function of a,, (for different values of a3, and fixed

values of M|, M, M3, a3, a3, 021, and a3z).
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6.8 CONCLUSION

A repairable system with a human operator is considered. The operator could be in one
of the three states — normal, moderate stress and extreme stress. The system can fail due to
self-corrected and non-self-corrected errors. With the help of a semi-Markovian process
and a regeneration point technique various characteristics, like availability and MTSF are
obtained (results in Figures 6.1 — 6.2). A cost-benefit analysis is also obtained for such a

system.
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