
 

 

 

 

 

 

CHAPTER 6 

 

A STOCHASTIC MODEL OF A RELIABILITY SYSTEM 

WITH A HUMAN OPERATOR 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



6.1 INTRODUCTION 

 

With the advancement of methods and developments in artificial intelligence, computer 

systems and electronic systems, we find a high degree of automation all around. 

Nevertheless, it cannot be overlooked that human beings are inseparable parts of systems. 

Radars, motor vehicles, aircrafts and ships are examples of systems which are continuously 

monitored by human operators. Errors that are caused by human operators are referred to as  

‘human-errors’ (Dhillon, 1980, 1984; Yadavalli & Bekker, 2005). 

Dhillon has analysed several models incorporating the concepts of human reliability (1981, 

1984). Yadavalli & Bekker (2005) studied a stochastic model of a two unit system with 

human error and common-cause failures. Their main focus was on the estimation of the 

steady-state availability (both classical and Bayesian) with the assumption of human error 

and common-cause failures. One common feature of all the models is that they are 

Markovian in nature. Kumar et al. (1986) analysed systems operating in fluctuating weather 

conditions and subject to critical human error, the models are being Markovian. Dhillon 

and Rayapati (1985) studied five models for a system which needs a human operator. In 

their models, a human operator is assumed to be working in one of the three states: normal, 

moderate stress and extreme stress. In all three states, the system is assumed to be subject 

to two failure modes, i.e. from each state, the system may fail because of self-corrected-

human error and non-self-corrected human error. The system can recover from a self-

corrected-human failure state, whereas it remains in a failed state when this occurs because 

of non-self-corrected human error. All the underlying failure distributions are assumed to 

be exponential. The organization of this chapter is as follows: Section 6.2 presents the 
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system description and relevant notation; in Section 6.3, we represent transition probability 

functions and sojourn times, which are used in the subsequent analyses; Section 6.4 is a 

study of reliability analysis and the mean time to system failure; the availability analysis is 

presented in Section 6.5; the study of expected number of visits to a state and the profit 

analysis are presented in Section 6.6. 

 

6.2 SYSTEM DESCIPTION AND NOTATION 

1. The system is operated by a human operator. The system may fail because of its built-in 

nature or because of the human operator. 

2.  The human operator working on the system can be in one of three states: normal, 

moderate stress or extreme stress. The human operator is more prone to commit errors 

while in extreme stress state than in the other two states. 

3. The system is subject to two failure modes irrespective of the state of the human 

operator: (a) failure because of self-corrected human-error, (b) failure because of non-

self-corrected human error. 

4. The rates of change of human operator condition from normal to moderate stress, to 

extreme stress and vice versa are all exponential. Further, human errors also occur at an 

exponential rate. 

5. Repair time distributions for the system failed from the three human operator conditions 

are arbitrary and different from one another. 

6.  Failures are statistically independent. 

7. The repaired system is as good as new. 
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NOTATION 

λij Constant rate of occurrence of human error, where i denotes the state of human 

  operator and j denotes the system states 

αlm  Constant rate of change of the state of human operator from lth state to mth state; 

  l = 1, 2, 3 and m = 1, 2, 3 (l ≠ m) 

Gij(t) Repair time distribution for the system, where i denotes the state of human 

operator from which the system failed and  j denotes the system state; 

   i = 1, 2, 3 and j = 1, 2. 

Pij One-step transition probability from state Si  to Sj

P Transition probability matrix  

µi Mean unconditional sojourn time of the system in Si 

µ ( )1  The diag (µ0, µ3, µ6) 

ξ , column vector ( , , )1 1 1 ′

Nij Total time spent in a transit state Sj before the system failure, given that the  

  system starts in Si 

N ( )1  Nij , matrix 

′ti  Total time spent in up-states given that the system starts to Si 

vi E ti( )′  

V ( )1  , column vector ( , , )v v v0 3 6 ′

bij P[System is absorbed in Sj │system started in Si] 

B bij  
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E {0, 1, 2, ... , 8} 

E1 {0, 3, 6}, up-states 

E2 {1, 2, 4, 5, 7, 8}, down-states 

Πi Limiting probability that the Markov-Chain in Si , (i ∈ E) 

di Determinant of the minor of D 

ψi Limiting probability of the system being in Si , (i ∈ E) 

Yi Earning rate of the system per unit time in Sj   

g Expected profit per unit time in steady state 

rij Fixed transition reward for a transition from Si to Sj   

 

6.3 TRANSITION PROBABILITIES AND SOJOURN TIMES 

     At any instant, the system can be in one of the following states: (See figure 6.1) 

(i) Up-states: 

 S0 (1, 0),   S3 (2, 0),   S6 (3, 0), 

(ii) Down-states: 

S1 (1, 1),   S2 (1, 2),   S4 (2, 1), 

S5 (2, 2), S7 (3, 1), S8 (3, 2). 

The first symbol in parenthesis denotes the human operator state and the second symbol 

denotes the state of the system. 
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System failure due to non-
self-corrected-human error in
normal state (1)

S2

Human operator performing
his task correctly in normal
state (1)

S0

System failure due to non-
self-corrected-human error in

moderate stress (2)
S5

System failure due to self-
corrected-human error in
normal state (1)

S1

Human operator performing
his task correctly at moderate
stress (2)

S3

System failure due to self-
corrected-human error at
moderate stress (1)

S4

System failure due to self-
corrected-human error at
extreme stress (1)

S7

Human operator performing
his task correctly at extreme
stress (3)

S6

System failure due to non-
self-corrected-human error in

extreme stress (2)
S8

α 31α13

α 23α 32

α12α 21

λ11

G t11( )G t11( )

G t11( )G t11( )

λ21λ22

λ12

λ31λ32

G t32( ) G t31( )

 

 

Figure 6.1: Transition Diagram 
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As indicated earlier, the states of human operator are (1) normal (2) moderate stress and (3) 

extreme stress. Similarly, the system states are 0: operative, 1: failed because of self-

corrected-human error and 2: failed because of non-self-corrected-human error. 

The system behavior can be described by a stochastic process { ( ), }Z t t ≥ 0 with state space 

E = { , ,..., }0 1 8 , where Z(t) denotes the state of the system at time t. It may be noted that the 

process Z(t), is a semi-Markovian and as such the well-known properties of Semi-

Markovian Process (SMP) (see Cinlar (1975)) are applied to study the system behavior in 

detail. 

The transition probabilities are given by: 

  P01 =  λ λ λ α α
11

0

11 12 12 13e dt− + + +
∞z ( ) t

               = λ
λ λ α α

11

11 12 12 13+ + +
                                                                       (6.1) 

P02 =  λ λ λ α α
12

0

12 11 12 13e dt− + + +
∞z ( ) t

               = λ
λ λ α α

12

11 12 12 13+ + +
                                                                       (6.2) 

  P03 =  α α λ λ α
12

0

12 11 12 13e dt− + + +
∞z ( ) t

          = α
λ λ α α

12

11 12 12 13+ + +
                                                                       (6.3) 

P06 =  α α α λ λ
13

0

13 12 11 12e dt− + + +
∞z ( ) t
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          = α
α α λ λ

13

12 13 11 12+ + +
                                                                       (6.4) 

 

   P10 = P20 = 1                                                                                               (6.5)  

  P30 =  α α λ λ λ
21

0

21 12 22 23e dt− + + +
∞z ( )

                                                           

t

               = α
λ λ α α

21

21 22 21 23+ + +
                                                                       (6.6) 

P34 =  λ λ λ α α
21

0

21 22 21 23e dt− + + +
∞z ( ) t

         = λ
λ λ α α

21

21 22 21 23+ + +
                                                                       (6.7) 

P35 =  λ λ λ α α
22

0

22 21 21 23e dt− + + +
∞z ( ) t

          = λ
λ λ α α

22

21 22 21 23+ + +
                                                                       (6.8) 

P36 =  α α λ λ α
23

0

23 22 21 21e dt− + + +
∞z ( ) t

          = α
λ λ α α

23

21 22 21 23+ + +
                                                                       (6.9) 

 

P43 = P53 = 1                                                                                            (6.10)  

  P67 =  λ λ λ α α
31

0

31 32 32 31e dt− + + +
∞z ( ) t
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             = λ
λ λ α α

31

31 32 31 32+ + +
                                                                   (6.11) 

 

P68 =  λ λ λ α α
32

0

32 31 32 31e dt− + + +
∞z ( ) t

                  = λ
λ λ α α

32

31 32 31 32+ + +
                                                                      (6.12) 

P60 =  α α λ λ α
31

0

31 31 32 32e dt− + + +
∞z ( ) t

              = α
α λ λ α

31

31 31 32 32+ + +
                                                                      (6.13) 

P63 =  α α α λ λ
32

0

32 31 31 32e dt− + + +
∞z ( ) t

      = α
λ λ α α

32

31 32 31 32+ + +
                                                                      (6.14) 

and      P76 = P86 = 1.                                                                                             (6.15)  

 

The unconditional mean sojourn time of the system in state Si are given below: 

µ λ λ α α
0

0

11 12 12 13= − + + +
∞ze t( ) dt                                 

     =
+ + +

1

11 12 12 13λ λ α α
                                                                                   (6.16) 

µ1 11
0

1= =
∞zG t dt m( )  (say)                       (6.17) 
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µ 2 12
0

2= =
∞zG t dt m( )  (say)                       (6.18) 

µ λ λ α α
3

0

21 22 21 23= − + + +
∞ze dt( ) t   

      =
+ + +

1

21 22 21 23λ λ α α
                                                                              (6.19) 

µ 4 22
0

4= =
∞zG t dt m( )  (say)                       (6.20) 

µ5 22
0

5= =
∞zG t dt m( )  (say)                       (6.21) 

µ λ λ α α
6

0

31 32 32 31= − + + +
∞ze dt( ) t   

      =
+ + +

1

31 32 32 31λ λ α α
                                                                              (6.22) 

µ 7 31
0

7= =
∞zG t dt m( )  (say)                       (6.23) 

and µ8 32
0

8=
∞zF t dt m( ) =  (say).                       (6.24) 

 
6.4 RELIABILITY ANALYSIS 

 

     We need to find the MTSF using reliability analysis. To obtain MTSF, we convert the 

down-states of the system into absorbing states, so that the transition probability matrix 
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(TPM) is steadily available in a canonical form and to obtain MTSF by the SMP approach 

(Agarwal et al. (1986)). 

 

       2     4     5     6     7     8        0      3     6 1

P = 

1

2

4

5

7

8

0

3

6

I O

R Q

L

N

MMMMMMMMMMMM

O

Q

PPPPPPPPPPPP

 

 
 
             2           4         5         7          8 1

R = 
0

3

6

01 02

34 35

67 68

0
0 0

0

0

0
0
0

0
0

0
0

P P
P P

P P

L
N
MMM

O
Q
PPP

 

 
 
 
    
                         3           6    0 

Q = 
0

3

6

0
0

0
30

60

03

63

06

36P
P

P

P

P
P

L
N
MMM

O
Q
PPP

 

Then we know that (See Agarwal et al. (1986)) 

N = (I – Q) M  ( )1 −1 ( )1

V = N  ( )1 ( )1

The elements of V produces the MTSF, given that the system starts in a transient state. ( )1
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Specifically,  

N
( )

( )
( )
( )

( )
( )

( )

( )
( )
( )

1
36 63 0

30 60 36 0

60 30 63 0

03 06 63 3

06 60 3

63 03 60 3

06 03 36 6

36 06 30 6

03 30 6

1
1

1
1

=
−
+
+

+
−
+

+
+
−

L
N
MMM

O
Q
PPPD

P P
P P P
P P P

P P P
P P

P P P

P P P
P P P

P P

µ
µ
µ

µ
µ
µ

µ
µ
µ

= V       (6.25) ( )1

 

 V
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) (

1
36 63 0 03 06 63 3 06 03 36 6

30 60 36 0 06 60 3 36 06 30 6

60 30 63 0 63 03 60 3 03 30 6

1
1

1
1

=
− + + + +
+ + − + +
+ + + + − )

L
N
MMM

O
Q
PPPD

P P P P P P P P
P P P P P P P P
P P P P P P P P

µ µ µ
µ µ
µ µ

µ
µ

      (6.26) 

where 

 D P P P P P P P P P P= − − + + +( ) ( ) (1 36 63 30 03 06 63 60 06 03 36 ) . 

After substituting the required values into (6.25) and (6.26), we obtain 

   V B
B0

0=             (6.27) 

   V B
B3

3=             (6.28) 

   V B
B6

6=             (6.29) 

where 

 B M M M0 1 21 12 23 1 2= + + +( )α α α + ( )α α α32 31 13 1 3 1 2 3+ + +M M PM M M  

 B M M M3 2 31 32 23 2 3= + + +( )α α α + ( )α α α21 12 13 2 3 1 2 3+ + +M M PM M M  

 B M M M6 3 31 12 13 1 3= + + +( )α α α + ( )α α α32 23 21 2 3 1 2 3+ + +M M PM M M  

 B M= + +1 12 13 1( )α α + ( )α α23 31 2+ M  

+ ( )α α31 32 3 1 2 3 2 1 3 3 1 2+ + + +M K M M K M M K M M  
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K
K
K

1 31 23 21 21 3

2 12 32 31 32 1

3 23 12 13 21 3

= 2

3

2

+ +
= + +
= + +

α α α α α
α α α α α
α α α α α

( )
( )
( )

        (6.30) 

 
P= + + + + +( ) ( )α α α α α α α α α α α α12 23 23 31 31 12 23 13 32 21 21 13  
   + + +( )α α α α α α12 32 31 21 23 13       (6.31) 
 

M1
11 12

1
=

+λ λ
;  M2

21 22

1
=

+λ λ
  ; M3

31 32

1
=

+λ λ
. 

In fact, M1, M2 and M3 are MTSF’s of respective decomposed subsystems, corresponding 

to normal, moderate and extreme stress states. It can be noted that (6.27) is in agreement 

with Dhillon and Rayapati (1985). 

According to Agarwal et al. (1986), the absorption probabilities, i.e. the probabilities that 

the process starting from Si (i = 0, 3, 6) enters the absorbing states Sj (j = 1, 2, 4, 5, 7, 8) are 

given by the matrix B = [bij], namely  

    B I Q R= − −[ ] 1

          1                     2                     4                    5                     7                    8     

       =
1

0

3

6

01 01

01 31

01 61

02 01

02 31

02 61

34 02

34 34

34 62

35 02

35 32

35 62

67 03

67 03

67 63

68 03

68 33

68 63

D

P C
P C
P C

P C
P C
P C

P C
P C
P C

P C
P C
P C

P C
P C
P C

P C
P C
P C

L
N
MMM

O
Q
PPP 

 
where 

 ;     C P01 36 631= −( )P C P P P02 03 06 63= +( ) ; 

 ; C P P P03 06 03 36= +( ) C P P P04 30 60 36= +( ) ; 

C P32 06 601= −( )P ;     C P P P33 36 06 30= +( ) ; 

 ; C P P P61 60 30 63= +( ) C P P P62 63 03 60= +( ) ; 

 .             (6.32) C P63 03 301= −( )P
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6.5 AVAILABILITY ANALYSIS 

To obtain the steady-state availability A∞, the limiting probabilities αi’s are required 

  ψ µ π
µ πi
i i

i i
i E

=

∈
∑

 

            =

∈
∑
µ
µ
i i

i i
i E

d
d

 ;   i E∈ 1            (6.33) 

  A∞ = + +ψ ψ ψ0 3 6

P36

.            (6.34) 

Since di’s are the determinants of the minors of D, 

 d P P P P P0 34 35 67 68 631 1= − − − − −( )( )           (6.35) 

 d P P P P P P P1 02 34 35 67 68 631 1 1= − − − 36− − −( )[( )( ) ]  

   − − − +P P P P P P30 03 67 68 63 361[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )]          (6.36) 

 d P P P P P P2 01 34 35 67 68 63 361 1 1= − − − P− − −( )[( )( ) ] 

   − − − +P P P P P P30 03 67 68 63 361[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )]          (6.37) 

 d P P P P P3 01 02 67 68 601 1= − − − P06− −( )( )           (6.38) 

 d P P P P P P4 01 02 35 67 68 631 1 1= − − − P36− − −( )[( )( ) ] 

   − − − +P P P P P P30 03 67 68 63 061[ ( ) ]  

   − − −P P P P P P60 06 34 60 03 361( )           (6.39) 

d P P P P P P5 01 02 34 67 68 631 1 1= − − − P36− − −( )[( )( ) ]      

   − − − +P P P P P P30 03 67 68 63 061[ ( ) ]  
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   − − −P P P P P P60 06 34 60 03 361( )          (6.40)

 d P P P P P6 01 02 34 35 301 1= − − − P04− −( )( )          (6.41) 

           d P P P P P P7 01 02 34 35 68 631 1 1= − − − P36− − −( )[( )( ) ] 

  − − +P P P P P30 03 68 06 631[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )]          (6.42) 

 d P P P P P P8 01 02 34 35 67 631 1 1= − − − P36− − −( )[( )( ) ]  

  − − +P P P P P30 03 67 06 631[ ( ) ]  

   − + − −P P P P P P60 03 36 06 34 351[ ( )] .        (6.43) 

Using the di’s, the steady-state availability A∞, can be obtained as 

  A K K K
K
A

K
A

K
A

∞ =
+ +

+ +

1 2 3

1

1

2

2

3

3

            (6.44) 

where   A
a a1

11 12

1
1

=
+ +

 

  A
a a2

21 22

1
1

=
+ +

 

  A
a a3

31 32

1
1

=
+ +

 

  a M11 11 1= λ  ;  a M12 12 2= λ  ; 

  a M21 21 4= λ  ;  a M22 22 5= λ  ; 

  a M31 31 7= λ  ;  a M32 32 8= λ . 

In fact, A1, A2 and A3 are the steady-state availabilities of the decomposed sub-systems 

corresponding to normal, moderate and extreme stress states respectively. It may be noted 

 142

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



that A∞ is the harmonic mean of A1, A2 and A3 with the weights K1, K2 and K3 which are 

functions of αi’s. Also 

(i)   Min A A Max A
i i i i1 3 1 3≤ ≤ ∞ ≤ ≤

≤ ≤

(ii) The above range of A∞ is independent of αi’s. 

 

6.6 EXPECTED NUMBER OF VISITS TO A STATE AND EXPECTED PROFIT 

 δ µ
µi

i

i i
i E

d
=

∈
∑

 

Hence, from equations 6.16 – 6.24 and 6.35 – 6.43, 

  δ
λ λ α α0

11 12 12 13

=
+ + +

K
T( )

 

  δ 1
1=

M K
T

 

  δ 2
2=

M K
T

 

  δ
λ λ α α3

21 22 21 23

=
+ + +

K
T( )

 

  δ 4
4=

m K
T

 

  δ 5
5=

m K
T

 

  δ
λ λ α α6

31 32 32 31

=
+ + +

K
T( )

 

  δ 7
7=

M K
T
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  and  δ 8
8=

M K
T

 

  where 

 K = + + + + + + + + +( )( )( )λ λ α α λ λ α α λ λ α α11 12 12 13 21 22 21 23 31 32 31 32  

  T K
A

K
A

K
A

= + +1

1

2

2

3

3

. 

We follow the same approach as in Agarwal (1988), to find the expected profit 

  g
i i i

i

i i
i

=
∑
∑

π µ

π

V

V
  

  . µ µi i ij ij i i
i

P r yV = +∑

Hence g can be calculated as 

   g Z
T

=  

   where 

 g K r r r r y=
+ + +

+ + + +1

11 12 12 13
11 01 12 02 12 03 13 06 0( )

[ ]
λ λ α α

λ λ α α  

       + + + +
λ λ11 1

1
1 10 1

12 1

2
2 20 2

K
M

M r y K
M

M r y[ ] [ ]  

    +
+ + +

+ + + +
K r r r r2

21 22 23 21
21 34 22 35 23 36 21 30 3( )

[ ]
λ λ α α

λ λ α α y  

    + + + +
λ λ21 2

4
4 43 4

22 2

5
5 53 5

K
M

M r y K
M

M r y[ ] [ ]  

   +
+ + +

+ + + +
K r r r r3

31 32 32 31
31 67 32 68 32 63 32 60 6( )

[ ]
λ λ α α

λ λ α α y  
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     + + + +
λ λ31 3

7
7 76 7

32 3

8
8 86 8

K
M

M r y K
M

M r y[ ] [ ] . 

 

6.7 NUMERICAL ILLUSTRATION 

As a numerical illustration, the behaviour of q0, the mean time to system filure, has 

been studied with respect to changes in M1, M2 and M3, the mean times to failure of 

decomposed sub-systems. It may be noted that MTSF increases as M1 increases but there is 

always an upper bound on the MTSF when other factors M2 and M3 are kept constant. This 

is convincing, as, after a certain change, any improvement in M1 is not likely to improve 

the MTSF value. In fact, for fixed values of M2 and M3, q0 takes the form 

 q M
a bM b0

1

2

1
=

+
≤  

where a and b are functions of M2 and M3 and thus may be treated as constants as long as 

M2 and M3 are fixed. The above inequality gives the least upper bound for q0.  

 

For example, for M2 = 100, least upper bounds for q0 are given as follows for varying M3: 

 

M3 25 40 60 100 ... ∞

q0 97.03 126.48 155.65 194.09 ... 324.80
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Figure 6.1 

 

As the Mean time to failure of decomposed subsystem 1 (M1) increases Mean Time to 

System Failure (MTSF) is an increasing function of M1 (for different values of M3 and 

fixed values of α12, α23, α31, α21, α32 and α13). 
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Figure 6.2 

 

As the constant rate of change from first to second state, α12, increases Mean Time to 

System Failure (MTSF) is a decreasing function of α12 (for different values of α31 and fixed 

values of M1, M2, M3, α23, α13, α21, and α32). 
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6.8 CONCLUSION 

     A repairable system with a human operator is considered. The operator could be in one 

of the three states – normal, moderate stress and extreme stress. The system can fail due to 

self-corrected and non-self-corrected errors. With the help of a semi-Markovian process 

and a regeneration point technique various characteristics, like availability  and MTSF are 

obtained (results in Figures 6.1 – 6.2). A cost-benefit analysis is also obtained for such a 

system. 
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