
 

 

 

 

 

 

CHAPTER 5 

 

COST ANALYSIS OF A THREE-UNIT STANDBY REDUNDANT 

SYSTEM 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



5.1 INTRODUCTION 

 

In the study of standby redundant systems, two unit systems have been examined 

extensively in the past. However, the study of n-unit redundant systems has received much 

less attention because of the built-in difficulties in the analysis. Kistner and Subramanian 

(1974) considered an n-unit warm standby system with a single repair facility. In this case, 

the pdf of the life time of the online unit was taken to be arbitrary while all the other 

distributions were exponential; these results were later extended to cover the case of 

several repair facilities by Subramanian, Venkatakrishnan and Kistner (1976). In the dual 

problem, viz., the n-unit system in which the pdf’s of the repair time is arbitrary has been 

studied by Gopalan (1975). Gupta, Bajaj and Singh (1986) have studied the cost-benefit 

analysis of a single three unit redundant system with inspection, delayed replacement and 

two types of repair. Kalpakam et al. (1987) have considered a multi-component system in 

which n identical units connected in series; one needed for the system function, the units 

being supported by m spares and a single repair facility. Subramanian et al. (1987) studied 

a n-unit system in which the pdf of the life time is arbitrary and with the varying repair 

rate. Gupta and Bansal (1991) have analysed a cost function for a three unit standby system 

subject to random shocks and linear failure rates. It can be seen that in almost all the 

articles on standby systems in which the number of units is greater than two, at least one of 

the associated distributions is taken to be exponential. 

The study of n-unit systems, even in the case of cold standbys, appears to be rather 

complicated when the pdf of both the life time of the online unit and that of the repair time 
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are arbitrary. However, in this chapter, we study the case when n=3 and obtain elegantly 

many interesting performance measures. 

     The organisation of the chapter is as follows: In section 5.2, assumptions and notation 

are given and in section 5.3, the various system measures are obtained. In section 5.4 

special cases are considered and in section 5.5 a comprehensive cost function is 

constructed. In section 5.6 numerical results are given to illustrate some of the results 

obtained. 

 

5.2 ASSUMPTIONS AND NOTATION 

5.2.1 ASSUMPTIONS 

1. The system consists of three identical units with a single repair facility. Each individual 

unit performs the system function satisfactorily. 

2.  Initially at t=0, one unit is switched online and the other two units are installed as cold 

standbys. The initial condition is denoted by E0. 

3.  After the completion of repair, a unit is installed back into the system as cold standby if 

at the epoch another unit functions online; else it is installed as the online unit. 

The following table 5.1 describes all possible events: 
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Event N(t-0) N(t) The system is 

E1 0 1 operable 

E2 1 2 operable 

E3 2 3 just not operable

E4 2 1 operable 

E5 3 2 just operable 

E6 1 0 operable 

      

Table 5.1 

 

5.2.2 NOTATION 

 

The following functions are defined only for regenerative events Ei. 

Ni(t) = Number of events of the type Ei in (0, t] 

Ui(t) = P[System unavailable at time t | Ei at t= 0] 

Mi(t) = lim |
∆

∆ Ε
∆→

)    = 0]
0

P ai[a repair commencement in (t,  t +  t t    

φ(t) = lim |
∆

∆ Ε
∆→

)    = 0]
0

P ai[first system failure in (t,  t +  t t    

Pij(t) = lim
( ) , ( ) , , |

∆

∆ Ε

∆→

+ = = =    = 0]
0

1 0 15P t N t k at tk i[N j  ,    for i, j = 1, 5 

Pi3(t) = lim ( ) , ( ) , , , |
∆

∆ Ε
∆→

+ = = =    = 0]
0

1 0 1 3 5P t N t k at tk i[N3    

Πi3 (t) = P[System in down state at time t, no E1 or E5 events in (0, t] Ei at t= 0] 
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f ( )⋅ = pdf of the life time of a unit, while operating online 

g( )⋅ = pdf of the repair time of a failed unit. 

 

5.3 ANALYSIS 

     It is noted that the events E1 and E5 listed in table 5.1 are regenerative, while the rest are 

not. 

5.3.1 AUXILLIARY FUNCTIONS 

     The following expressions for the probabilities Pij(t)’s and Πij (t)’s can be obtained: 

By definition, Pij(t)  (i, j = 1, 5) denote the probability that an Ej  event occurring in 

(t, t + dt) given that an event Ei had occurred at time t = 0 and that no E1 or E5 event occurs 

in (0, t]. Similarly Pi3(t)dt refers to the probability of a system breakdown on Ei  event had 

occurred at time t = 0 and that no E1 or E5 event occurs in (0, t]. Hence,  

 P11(t) = f t G t f u g v f u u g v v g v vn n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

−zz∑ 1 1 2 1 2 1 1
1

 

     f t u G t v du dv du dvn n n( ) ( ) ... n− − 1 1 , 
                            0 1 1≤ ≤ ≤ ≤ ≤ ≤u v u vn n... t . (5.1) 
 
This equation is obtained by considering the following two mutually exclusive and 

exhaustive cases: 

(a) The repair of a unit commenced at t = 0 is completed before the online unit fails 

(b) The online unit fails before this repair completion. 

     In this case, since by definition of P11(t), no E3 event (since no E5 event can occur) can 

occur in (0, t], the third unit cannot fail before the repair completion. This way a sequence 

of E2 and E4 can occur any number of times before the repair completion. This way a 
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sequence of E2 and E4 can occur any number of times before the ultimate occurrence of an 

E1 event. 

By similar arguments, we get 

P15(t) =  

      

f u F t u g t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

F t u g t v du dv du dv dun n n n( ) ( ) ... n− −+ +1 1 1 1

n

    (5.2)
  

P13(t) =  

      

f u f t u G t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

f t u G t v du dv du dv dun n n n( ) ( ) ...− −+ +1 1 1 1

n

.  (5.3) 
 
Also, by its definition, (t) refer to the state probabilities of the system being down given 

that at time t = 0, E

Πi3

i  had occurred and that no E1 or E5 event occurred in (0, t]. We have  

Πi3 (t) =  f u F t u G t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

F t u G t v du dv du dv dun n n n( ) ( ) ...− −+ +1 1 1 1

 

n

   (5.4) 

P51(t) =  g u G t u f t du g u f v g u u f v v g u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ +
=

∞

0
1 1 2 1 2 1 1

1

      f t v G t v du dv du dv dun n n n( ) ( ) ...− − + +1 1 1 1

t

.  (5.5) 
 
For all these expressions, the integrations have to be performed for 

 while for the following expressions, it has to be 

performed for 0

0 1 1 1≤ ≤ ≤ ≤ ≤ ≤ <+u v u v un n n...

1 1≤ ≤ ≤ ≤ ≤ <u v u v tn n... . 

 

P55(t) = g t F t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

n−zz∑ 1 2 1 2 1
1

1

n

 

      f v v F t v g t u du dv du dvn n n n n( ) ( ) ( ) ...− − −−1 1 1

−

       (5.6) 
 

P53(t) = f t G t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞ zz∑ 1 1 2 1 2 1
1

1  
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     f v v f t v G t u du dv du dvn n n n n( ) ( ) ( ) ... n− − −−1 1 1

−

      (5.7) 
 
 

Π53 (t) = F t G t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞ zz∑ 1 1 2 1 2 1
1

1

n

 

   f v v F t v G t u du dv du dvn n n n n( ) ( ) ( ) ...− − −−1 1 1  . (5.8) 
 

 
5.3.2 RELIABILITY ANALYSIS 
 
We have  
 

ϕ 0 ( ) ( )t f t= ©ϕ1( )t  

 

ϕ1( )t = P t11( ) ©ϕ1( )t + .            

(5.9) 
P t13( )

 
The equation ϕ( )t is derived by observing the fact that the online unit has to fail before t, if 

there is to be a system failure in (t, t + ∆). The equation for ϕ1( )t  is obtained by 

considering the following mutually exclusive and exhaustive cases: 

(a) E1 event occurs in (u, u + du), u < t 

(b) no E1 event occurs before t and the system fails in (t, t + ∆). 

 

Hence the reliability of the system is given by 

R t u du
t

0 0( ) ( )=
∞zϕ .                      (5.10) 

5.3.3 AVAILABILITY ANALYSIS 

It is easier to write the equations governing the unavailability of the system. We have, by 

arguments similar to those in reliability analysis: 

U t f t0 ( ) ( )= ©U  t1( )
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U t1( ) = P t11( ) ©U + ©U + t1( ) P t15( ) t1( ) π 13( )t  

 

U t5( ) = P t51( ) ©U + ©U + t1( ) P t55( ) t5( ) π 53( )t .                  

(5.11) 
 

Solving the equations in (5.11), by using the Laplace transform technique, we get 

 U s f s P s s s P s
P s P s P s P s0

15 53 13 55

11 55 15 51

1
1 1

* *
* * * *

* * * *( ) ( ) ( ) ( ) ( )[ ( )]
[ ( )][ ( )] ( ) ( )]

=
+ −

− − −
Π Π . 

By inverting U , wet get U . s0
*( ) t0 ( )

The steady state availability is given by A0 = 1 – U0 where U0 is the steady state value of 

U0 (t) obtained by using the relation 

lim ( )*

s
sU s U

→
=

0 0 0 . 

 

5.3.4 MEASURES OF SYSTEM PERFORMANCE 

5.3.4.1 EXPECTED NUMBER OF TRANSITIONS FROM STATE 0 TO STATE 1 in 

            (0, t] 

The expected number of visits by the repairman in (0, t] is given by . V u du
t

0
0

( )z
The equations governing V t  are: i ( )

V t f t0 ( ) ( )= ©V t  f t1( ) ( )+
 
V t1( ) = P t11( ) + ©V t + ©V t  P t11( ) 1( ) P t15( ) 5( )
 

and ©V t + ©V t .                     

(5.12) 
V t5( ) = P t51( ) 1( ) P t55( ) 5( )

 
 

 can be obtained using the Laplace transform technique. V t0 ( )
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5.3.4.2 EXPECTED NUMBER OF REPAIRS COMMENCED IN (0, t] 

The expected number of repairs commenced in (0, t] is given by . The 

governing equations for  are: 

M u du
t

0
0

( )z
M t0 ( )

M t f t0 ( ) ( )= + ©  f t( ) M t1( )
 

M t1( ) = P t11( ) + © + + © +P t11( ) M t1( ) P t15( ) P t15( ) M t5( ) ξ121( )t  

 

M t5( ) = P t51( ) © + + © +M t1( ) P t55( ) P t55( ) M t5( ) ξ 21( )t       

(5.13) 
 

where 
 

ξ121( )t =  f u F t u g t du f u g v f u u g v v f u u
t

n n
n

( ) ( ) ( ) ... ( ) ( ) ( ) ( )... ( )− + − − −z zz∑ −
=

∞

0
1 1 2 1 2 1 1

2

                 F t u g t v du dv dv dvn n n( ) ( ) ... n− − − −1 1 1 1  
 

ξ 21( )t = g t F t g u f v g u u f v v g u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

−zz∑ 1 1 2 1 2 1
1

1

n

 

        f v v F t v g t v du du dvn n n n n( ) ( ) ( ) ...− − −−1 1 . 
 
These integrals are to be evaluated for 0 1 1 1≤ ≤ ≤ ≤ ≤ ≤ ≤+u v u v un n n... t . 
 
 
5.3.4.3 EXPECTED NUMBER OF REPAIRS COMPLETED IN (0, t] 
 

The expected number of repairs completed in (0, t] is given by . We have  M u du
t

0
0

( )z
 
M t0 ( ) = f t( ) ©  M t1( )
 
M t1( ) = © + © +P t11( ) M t1( ) P t15( ) M t5( ) η1( )t  
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M t2 ( ) = P t51( ) © + + © +M t1( ) P t55( ) P t55( ) M t5( ) η2 ( )t                  

(5.14) 
 
where 

 

η1( )t = g t F t f u g v f u u f v v f u un n
n

( ) ( ) ... ( ) ( ) ( ) ( )... ( )+ − − −
=

∞

−zz∑ 1 1 2 1 2 1 1
1

 

    { ( ) ( ) ( ) ( ) ...g t v g v v g t v F t u du dv du dvn n n n n n n− + − − −− −1 1 1 1 ; 
    
        0 1 1≤ ≤ ≤ ≤ ≤ ≤u v u vn n... t  
 
 

η2 ( )t =  g t F t g u g t u F t du g u f v g u u
t

n

( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( )+ − +z zz∑
=

∞

0
1 1 2 1

1

−

    f v v f v v g t u g u u g t vn n n n n n( )... ( ){ ( ) ( ) ( )2 1 1 1 1− − − + − −− + +  

F t v du dv du dv dvn n n n( ) ...− +1 1 1 . 

M t0 ( ) can be solved from this set of equations. 
 
 
5.3.4.4 EXPECTED NUMBER OF SYSTEM BREAKDOWNS IN (0, t] 
 

The expected number of system breakdowns is given by . We have  D u du
t

0
0

( )z
 
D t0 ( ) = f t( ) ©  D t1( )
 
D t1( ) = © + © +  P t11( ) D t1( ) P t15( ) D t5( ) P t13( )
 
D t2 ( ) = P t51( ) © + © +                             

(5.15) 
D t1( ) P t55( ) D t5( ) P t53( )

 
 
By Laplace transforms technique, we get . D t0 ( )
 
5.3.4.5 EXPECTED NUMBER OF SYSTEM RECOVERIES IN (0, t] 
 

The expected number of system recoveries is given by . In this case, the  S u du
t

0
0

( )z
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govening equations for are: S t0 ( )
 

S t0 ( ) = f t( ) ©  S t1( )
 
S t1( ) = © + © S t +  P t11( ) S t1( ) P t15( ) 5( ) P t15( )
 

and © + © + .                            

(5.16) 
S t2 ( ) = P t51( ) S t1( ) P t55( ) S t5( ) P t55( )

 
 
Equations (5.16) can be solved for . S t0 ( )
 
 
REMARK: 
 

It is noted that the steady state value of these expected numbers also represent the 

respective expected numbers per unit time in the steady state. Further, in the steady state, 

the expected number per unit time of the system breakdowns and recoveries are equal 

while that of the repair commencements is equal to repair completions. 

 

5.4 SPECIAL CASES: 

In this section, we consider two important special cases of the general model studied. 

5.4.1 MODEL 1 

All the results obtained in section 5.3 are deduced for the special case where the life time 

distribution of the online unit is general and the repair time distribution is exponential. 

By setting g(t) = , the various Pµ µe t−
ij(t) and Πi3 (t)’s reduce to simpler form. For 

illustration purposes, we consider P11(t): 

Substituting g(t) = in equation (5.1), we have µ µe t−
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P11(t) = f t e f u f u u f u u f t ut
n n n

n
vvt

n

n

( )[ ] ... ( ) ( ) ( ) ( )1 1 2 1 1
1

0001

1

− + − − −−
−

−

=

∞ zzz∑µ µ  

[ ] ...µ µµ µe e du dv du dvv t
n n

n− −− 1 1 . 
 

  Changing the order of integration, we have 
 

P11(t) =  f t e f u u u f u u f u ut
n n

uut

n

n

( )[ ] ... ( ) ( ) ( )... ( )1 1 2 1 2 1 1
0001

2

− + − − −−
−

=

∞ zzz∑µ µ  

           
    f  u u f t u e e f t u e du dv dun n n

u t u
n

t
n

n n n( ) ( ) [ ( ) ] ...( ) ( )− − − − −−
− − − − −

1 1 11µ µ µ µµ
 

    which gives 
 

P t f t e f t et t
11 1( ) ( )[ ] ( )= − +− −µ µ © © . { ( ) }( )f t te t n

n

µ µ− −

=

∞

∑ 1

1

f t e tet t( )[ ]1− −− −µ µµ

The simplified expressions for the other Pij(t)’s and Πi3 (t)’s are obtained by similar 

arguments. By substituting these expressions in the corresponding integral equations and 

solving them, we get the results for the various system characteristics as: 

MTSF = − + + +f f f f
f

* * * *

*

' '

( )[ ( ) ( ) { ( )} ]
{ ( )}

0 1 2

2

µ µ µ µ
µ

 

 A0 =
− +

− −
µ µ µ

µ µ µ µ
f f

f f f f

* *

* * *

' '

' ' '

( )[ ( )]
{ ( )} ( ) ( ) ( )

0 1
0 02 2 *

 

 V0 =
µ µ µ µ

µ µ µ µ

2

2 2

1
0 0

[ ( ) ( )]
{ ( )} ( ) ( ) ( )

* *

* * *

'

' ' '

+ −
− −

f f
f f f f *

 

 m0 = M0 =
µ µ µ

µ µ µ µ
[ ( )]

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

1
0 02 2

+
− −

f
f f f f *

 

D0 = S0 =
µ µ

µ µ µ µ
{ ( )}

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

f
f f f f

2

2 2 0 0− − *
. 
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As is to be expected, m0  and D0  are equal to M0 and S0 respectively. 
 
 

5.4.2 MODEL 2 

In this section, the various system characteristics are deduced for the special case when the 

life time distributions of the online unit is exponential with parameter λ and the repair time 

distribution is general. By following the same procedure as in Model 1, all Pij(t)’s and 

(t)’s reduce to simpler form and the system measures become Πi3

MTSF = 3 2 2
1
+ −

− +
λ λ λ

λ λ λ
g g

g g

* *

* *

( ) ( )
[ ( ) (

'

λ)]
 

 A0 =
[ ( )]

{ ( )} ( ) ( ) ( )

*

* * *' ' '

1
0 02 2

+
− −

λ λ
λ λ λ λ

g
g g f g*

 

 V0 =
λ λ

λ λ λ λ
{ ( )}

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

g
g g g g

2

2 2 0 0− − *
 

 m0 = M0 =
λ λ

λ λ λ λ
[ ( )]

{ ( )} ( ) ( ) ( )

*

* * *

'

' ' '

1
0 02 2

+
− −

g
g g g g*

 

D0 = S0 =
λ λ λ λ

λ λ λ λ
[ ( ) ( )]

{ ( )} ( ) ( ) ( )

* *

* * *

'

' ' '

1
0 02 2

− +
− −

g g
g g g g*

. 
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5.5 COST ANALYSIS 
 
In this section, we construct a comprehensive cost function per unit time in the steady state. 

1. The costs due to the visits by the repairman to the repair facility per unit time is 

βV0, where β is the cost per visit. 

2. The cost associated with the repair rate is r ( 1
MRT

) , where r ( > 0) is the constant 

of proportionality associated with the mean repair rate. 

CF U V V
MRT

D= + + +α β η0 0
1( ) 0       (5.17) 

This cost function is to be optimised with respect to the control parameter MRT within 

some known bounds. 

 

5.6 NUMERICAL RESULTS 

In this section, some of the results obtained for models 1 and 2 are illustrated with 

numerical examples. We consider the following special cases for this purpose 

 

MODEL 1 

We assume that 

 f t a a
a a

e ea t a t( ) ( )=
−

−− −1 2

2 1

1 2 ;              a a1 20 0> >,  
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In figures 5.1 to 5.6, three cases are considered for each characteristic corresponding to 

three different mean failure times to three different failure times of the online unit; (a1, a2) 

were chosen randomly in increasing order, namely 

( , ):( . , . ),( . , . ), ( . , . )a a1 2 0 058 0 2 0 067 0 2 0 076 0 2 . 

 

MODEL 2 

In this model, we assume that  

 . g t te t( ) = −µ µ2

Then MRT is 2
µ

. For this model also, three cases are considered for each characteristic 

corresponding to the three values of mean failure times, viz., 0.058, 0.067 and 0.076. 

Figures 5.7 to 5.12 gives the variation of the various characteristics when MRT is varied. 

The results demonstrate the following results, viz., as the MRT of a failed unit increase, for 

the assumed parametric structure thereby giving a unique optimal. 
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Figure 5.1 (Model 1) 

 

As the Mean Repair Time (MRT) increases the steady-state availability is a decreasing 

function of MRT (for the different values of α 1  and α 2 ). 
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Figure 5.2 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Mean Time to System Failure (MTSF) is a 

decreasing function of MRT (for different values of α 1  and α 2 ) with almost convergence 

of MTSF at MRT = 7. 
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Figure 5.3 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Expected number of visits of the repairman 

is a decreasing function of MRT (for different values of α 1  and α 2 ). 
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Figure 5.4 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Expected repairs completed is a decreasing 

function of MRT (for different values of α 1  and α 2 ). 
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Figure 5.5 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Expected number of system downs is an 

increasing function of MRT (for different values of α 1  and α 2 ). 

 

 

 

 

 119

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



 

Figure 5.6 (Model 1) 

 

As the Mean Repair Time (MRT) increases the Cost function first decreases but then 

increases after MRT = 4.5 (for different values of α 1  and α 2 ). 
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Figure 5.7 (Model 2) 

 

As the Mean Repair Time (MRT) increases the steady-state availability is a decreasing 

function of MRT (for the different values of 2 / µ ). 
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Figure 5.8 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Mean Time to System Failure (MTSF) is a 

decreasing function of MRT (for different values of 2 / µ ) with almost convergence of 

MTSF at MRT =  8. 
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Figure 5.9 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Expected number of visits of the repairman 

is a decreasing function of MRT (for different values of 2 / µ ). 
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Figure 5.10 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Expected repairs completed is a decreasing 

function of MRT  (for different values of 2 / µ ). 
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Figure 5.11 (Model 2) 

 

As the Mean Repair Time (MRT) increases the Expected number of system downs is an 

increasing function of MRT (for different values of 2 / µ ). 
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Figure 5.12 (Model 2) 

As the Mean Repair time (MRT) increases the Cost function first decreases but then 

increases after MRT = 4.  
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5. 7 CONCLUSION 

     Contrary to the previous chapters a three unit system is considered in this chapter. The 

life time distributions are all assumed to be non-Markovian. The problem is very 

challenging when we assume that all the distributions are arbitrary. The system measures, 

like expected number of transitions from different states, expected number of repairs 

commenced, expected number of repairs completed, expected number of system 

breakdowns, expected number of recoveries, are obtained. Results are shown in Figures 5.1 

– 5.12. 
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