
 

 

 

 

 

 

CHAPTER 3 

 

TWO-UNIT PRIORITY REDUNDANT SYSTEM WITH 

‘DEADTIME’ FOR THE OPERATOR 
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3.1 INTRODUCTION 

 Two-unit standby redundant systems have attracted the attention of many applied 

probabilists and reliability engineers. A bibliography of the work done has been 

prepared by Osaki and Nakagawa (1976), Lie et al. (1977), Kumar and Agarwal (1980), 

Sarma (1982). Goel et al. (1985) analysed a two-unit cold standby system under the 

assumption that the operator of the system does not need rest, i.e. he is capable to work 

on the system without any rest. The literature available so far has the assumption that the 

operator is continuously available to repair the failed units. But it is reasonable to expect 

that a preparation time or rest period might be needed to get the operator ready before 

the next repair could be taken up. If this preparation is started only when a unit arrives 

for repair, it is easy to solve the problem, since the preparation time plus the actual 

repair time of the operator must be taken as the total repair time. But this preparation 

time usually starts immediately after each repair completion, so that the operator 

becomes available at the earliest. In our daily life the situations come about when a 

person needs such a preparation time. This preparation time of the operator is similar to 

the ‘Dead time’ in the counter models Ramakrishnan and Mathews (1953), 

Ramakrishnan (1954), Takács (1956, 1957). Yadavalli et al. (2002) studied several 

Markovian and non-Markovian models by introducing the ‘Dead time’. Cold standby 

redundant systems in which the ‘priority of units’ and ‘dead time’ are introduced in this 

chapter. 

     The organisation of this chapter is as follows: Section 3.1 is introductory in nature 

describing the model considered in this chapter. In section 3.2, the basic assumptions 

and notation are presented. Various auxiliary functions (transition probabilities and 
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sojourn times) are derived in section 3.3. The important system measures, Reliability 

and MTSF, are presented in section 3.4. The other important measures like mean up time 

in a particular interval, mean down time, expected number of visits by a repairman are 

studied in section 3.5. In sectin 3.6, the profit analysis is studied. Some special cases are 

presented in section 3.7. The system considered in this section is illustrated numerically 

in section 3.8. 

 

3.2. SYSTEM DESCRIPTION AND NOTATION 

1. The system consists of two dissimilar units each having two modes- Normal (N) 

and Total Failure (F). 

2. Initially one unit of the system is operative, called the priority (P) unit and the                   

other is kept as cold standby, called the non-priority or ordinary unit (O). 

3. P-unit gets preference for both operation and repair over O-unit. When P-unit 

fails, the standby unit is switched to operate with a perfect switching device. 

4. There is only one operator. Each unit is new after repair. 

5. After each repair completion, the operator is not available for a random time.          

This corresponds to the ‘dead time’ in counter models and will be interpreted 

here as the ‘rest time’ or ‘preparation time’ needed before another repair could be 

taken up. 

6. Switch is perfect and switchover is instantaneous. When the P-unit fails, it will 

be instantaneously switched over to the O-unit from standby state to online. 
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7. The lifetime of a unit, while online for P-unit and O-unit is arbitrarily distributed 

with pdf’s and f1( )⋅ f2 ( )⋅ . 

8. The repair time of units (P-unit and O-unit) are exponentially distributed random 

variables with parameters β1 and β2 respectively. 

9. The ‘Dead time’ of the operator is an arbitrarily distributed random variable with 

pdf . k ( )⋅

 

NOTATION: 

F1( )⋅  and  The c.d.f of the life time of P-unit and O-unit respectively F2 ( )⋅

E           Set of regenerative events ≡ (E0, E1, E2, E3, E4, E5, E6)

η   Constant rate of working time of the operator 

K( )⋅    The c.d.f of the ‘dead time’ of the operator 

Pij   Transition probability from regenerative event Ei to Ej 

qij ( )⋅ , Qij    The p.d.f. and c.d.f. of transition time from regenerative event E( )⋅ i to Ej 

ψi   Mean sojourn time in event Ei  

Ri(t)   Reliability of the system when Ei ∈ E (i = 0, 1, 2, 3, 4, 5, 6) 

Ui(t)  Probability that the system is up when the events are E0, E1 or  E5  at 

                         epoch given that Ei;(i = 0, 1, 2, 3, 4, 5, 6) 

Di(t)  Probability that the system is down when the events are E2, E4 or  E6  at  

 epoch given that Ei;(i = 0, 1, 2, 3, 4, 5, 6) 

Bi(t)  Probability that the system is busy at epoch starting from Ei ∈ E. 

Vi(t)  Expected number of visits by the repairman in (0,t] given that Ei ∈ E. 
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~ ( ) ( )Q s e dQ tij
st

ij= −∞z0 , where ~ is the symbol for Laplace-Stieltjes transform 

q s e q dtij
st

ij
* ( ) = −∞z0  , the symbol * for Laplace transform 

ψ i
j

ijtdQ t= =z∑ ( )  - q Qij
j

ij
j

*' '( ) ( )0 0∑ ∑=  

©  Symbol for ordinary convolution 

A(t) © B(t) =  A t u B u du
t

( ) ( )−z
0 

ⓢ  Symbol for Stieltjes convolution 

A(t)ⓢB(t) =  A t u dB u
t

( ) (−z
0 

)

 

Symbols for the Events of the System: 

For the study of this system, we need to define the following states (see EL-Said & EL-

Sherbeny (2005)). The reliability with dependent repair modes was also studied by Lim 

& Lie (2000). 

 

Na : unit in N-mode and operative 

Ns : unit in N-mode and standby 

Fr : unit in F-mode and under repair 

Fw : unit in F-mode and waiting for repair 

Nd : unit in N-mode when operator is in ‘dead time’ 

 

We make use of the events given in Table 3.1 for the reliability analysis. 
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                                             State of 
Event P-unit O-unit 
E0(No,Ns) operative operable standby 
E1(Fr,No) failed and under repair  operable 
E2(No,Ns) not operating due to operator in 

‘dead time’ 
operable 

E3(Fr,Fw) failed and under repair failed and waiting for repair 
E4(Fw,Nd) failed and waiting for repair not operating due to operator in 

‘dead time’ 
E5(No,Fr) operative under repair 
E6(Nd,Fw) not operating due to operator in 

‘dead time’ 
failed and waiting for repair 

 

Table 3.1 

 

 

Transitions between events are shown in Figure 3.1 
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3.3 AUXILIARY FUNCTIONS (TRANSITION PROBABILITIES AND SOJOURN 

TIMES) 

Let O = T0, T1, … denote the epochs at which the system enters any state Ei ∈ E. 

Let Xn denote the state visited at epoch Tn +, i.e. just after the transition at Tn. Then  

Qij(t) = P[Xn+1 = j, Tn+1- Tn ≤ t │ Xn = i]. 

The transition probability matrix is given by  

P = [Pij] = [Qij(∞)] = Q(∞) with non-zero elements. 

Further, 

P01 = ~ ( )F1 η , P02 =  1- ~ ( )F1 η  

P10 =  [ ~ ( )]1 2 1 1

1

− +
+

F β η β
β η

 

P13 =  ~ (F2 1β η+ ) , P14 =  [ ~ ( )1 2 1

1

− +
+

F β η
β η

]η  

P20 = p35 = 1, p41 = ~( )K β1 , P40
(2) =1 - ~( )K β1  

P53 = ~ (F1 2β η+ ) , P51
(0) = ~ ( )F1 η - ~ ( )F1 2β η+  

P56 =  [ ~ ( )1 2 2

2

− +
+

F β η
β η

]η  

P52
(0) =  1 11 1 2

2

− − − +
+

~ ( ) [ ~ ( )F Fη β
β η

]η η  

and      P60
(2) = 1 - ~( )K β 2 , P65 = ~( )K β 2 . 

It can easily be verified that  
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P01 +  P02  = 1,     P10 + P13  +  P14 = 1,   P20 = P35  = 1 

P40
(2) + P41 = 1,   P51

(0) + P52
(0) + P53  + P56 = 1 

P60
(2) + P65 = 1. 

To calculate mean sojourn time ψ0 in state E0, there is no transition to E1 and E2. Hence 

if T0 denotes the sojourn time in E0 then 

ψ0 =  = P T t dt[ ]0
0

>
∞z 1 1− ~ ( )F η

η
. 

Similarly 

ψ1 = [ ~ ( )1 2 1

1

− +
+

F β η
β η

]  

ψ2 = K t dt( )
0

∞z = m1 (say) where K t K t( ) ( )= −1  

ψ3 = 1

1β
 

ψ4 = 1 1

1

− ~( )K β
β

 

ψ5 = 1 1 2

2

− +
+

~ ( )F β η
β η

 

and                  ψ6 = 1 2

2

− ~( )K β
β

. 

3.4 RELIABILITY ANALYSIS 

Let the random variable Ti denote time to system failure from event Ei  
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(i = 0, 1, …,6).  

The reliability of the system is given by 

Ri(t) = P[Ti > t] 

To determine the reliability of the system we regard the failed state of the system (E3) as 

absorbing. By probabilistic arguments 

R0(t) = e-ηt F t1( )  + q01(t) © R1(t) + q02(t) © R2(t)              (3.4.1) 

R1(t) = e-(η β+  1 ) t F t2 ( )  + q10(t) © R0(t) + q14(t) © R4(t)             (3.4.2) 

R2(t) = K t( )  + q20(t) © R0(t)                  (3.4.3) 

R4(t) = K t( )  + q40
(2)(t) © R0(t) + q41(t) © R1(t)              (3.4.4) 

R5(t) = e-(η β+  2 )t F t1( )  + q51
(0)(t) © R1(t) + q52

(0)(t) © R2(t) + q56(t) © R6(t) 

                    (3.4.5) 

R6(t) = K t( )  + q60
(2)(t) © R0(t) + q65(t) © R5(t).                         (3.4.6) 

Taking Laplace transforms for the equations (3.4.1) – (3.4.6) and simplify for  and 

omitting the argument ‘s’ for brevity, we get  

R (s)0
*

R (s)0
* = N s

D s
1

1

( )
( )

                  (3.4.7) 

where 

N s1( )  = (1 – q56
* q65

*) [ F1
*( )η (1  - q14* q41*) + K s*( ) q02

* (1 - q14
* q41*) 

                                      + F2
*(η β+ 1) q01*  + K s*( ) q01* q14*] 

and  

  = (1 – qD s1( ) 56
* q65

*) [1 - q14* q41* - q01* q10*  - q40
*(2) q01*q14* - q02* q20*  
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               + q02* q20* q14* q41*]. 

Note: For simplicity in this chapter, is written as . q sij
* ( ) qij

*

From (3.4.7), the Mean Time to System Failure (MTSF) can be obtained 

  E(T0) = lim  ( ) lim ( )*

t s
R t sR s

→∞ →
=0 0 0

           = ( )( )1 14 41 0 2 02 1 01 1 01 14

01 13

− + + +p p p p m p p
p p

ψ ψ ψ .            (3.4.8) 

 

3.5 SYSTEM MEASURES 

3.5.1 MEAN UP TIME IN (0, t] 

 As defined earlier Ui(t) is the probability that the system is up in E0, E1 or E5 at t given 

that . Hence we get E  Ei ∈

  

 U0(t) = e-ηt  F t1( )  + q01(t) © U1(t) + q02(t) © U2(t)              (3.5.1) 

U1(t) = e-(η β+  2 )t F t2 ( )  + q01(t) © U0(t) + q13(t) © U3(t) + q14(t) © U4(t)  (3.5.2)

 U2(t) = q20(t) © U0(t)                             (3.5.3) 

 U3(t) = q35(t) © U5(t)                             (3.5.4) 

 U4(t) = q40
(2)(t) © U0(t) + q41(t) © U1(t)               (3.5.5) 

U5(t) = e-(η β+  2 )t F t1( )  + q51
(0)(t) © U1(t) + q52

(0)(t) © U1(t) + q53(t) © U3(t) 

                                       + q56(t) © U6(t)                         (3.5.6) 

and     U6(t) = q60
(2)(t) © U0(t) + q65(t) © U5(t).               (3.5.7) 

Taking Laplace transforms for  (3.5.1) – (3.5.7), we get 
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 U N s
D s0

2

2

* ( )
( )

=                    (3.5.8) 

where  

N s2 ( )  = F1
*( )η [(1 - q56

* q65
* - q35

* q53
* - q51

(0) q13
* q35

* - q14
* q41

* - q14
* q41

*q56
* q65

*  

    + q14
* q41

*q35
* q53

*] + F2
*(η β+ 1) [q01

* - q01
* q56

* q65
* - q01

* q35
* q53

* ] 

    + F1
*(η β+ 1) [ q01

* q13
* q35

*] 

 

 = [1 – qD s2 ( ) 56
* q65

*] [1 - q14
* q41

* - q40
*(2) q01

*q14
* - q02

* q20
*  

 + q02
* q20

* q14
*q41

* - q01
* q10

*] - q35
* q53

*[1 - q14
* q41

*

 - q40
*(2) q01

*q14
* - q02

* q20
* + q02

* q20
* q14

*q41
* - q01

* q10
*] 

-q13
* q35

* [q51
*(0) + q52

*(0) q20
* q01

* + q60
*(2) q01* q56

* q02
* q20

* q51
*(2)]. 

 
The steady-state availability U is given by  0

U0  = lim ( ) ( )
( )

*

s
sU s N

D→
=

′0 0
2

2

0
0

                 (3.5.9) 

where 

N P P P P P P P P P P P P2 14 41 53 56 65 13 51
0

01 0 01 53 56 65 10 1 1 1( ) [( )( ) ( )] ( )( )= − − − − − + − −ψ ψ  

and 

D N P P P P P P P P m P P P P2 2 01 14 53 56 65 01 13 56 1 3 01 13 56 650 0 1 1' ( ) ( ) [ ( ) ] [ ( )]= + − − − + −ψ

 . + − − − − − − +ψ 2 02 14 41 53 56 65 02 13 53 56 13 52
01 1 1[ ( )]( ) ( ) ( )P P P P P P P P P P P P ]

u

 
Mean up time of the system during (0,t] is 

µ up

t

t U u d( ) ( )=z0
0

 so that 
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µ up s U s
s

*
*

( ) ( )
= 0 .                (3.5.10) 

 

3.5.2. MEAN DOWN TIME DURING (0, t] 

To obtain mean down-time during (0, t], we consider Di(t) as the probability that the 

system is in state E2, E4 or E6 at epoch t given that Ei has occurred at t = 0. 

Here we have 

D0(t) = q01(t) © D1(t) + q02(t) © D2(t)               (3.5.11) 

D1(t) = q10(t) © D0(t) + q13(t) © D3(t) +  q14(t) © D4(t)           (3.5.12) 

D2(t) = K t( ) + q20(t) + D0(t)               (3.5.13) 

D3(t) = q35(t) © D5(t)                (3.5.14) 

D4(t) = K t( ) + q40
(2)(t) © D0(t) + q41(t) © D1(t)            (3.5.15) 

 D5(t) = q51
(0)(t) © D1(t) + q52

(0)(t) © D2(t) + q53(t) © D3(t) 

  + q56(t) © D6(t)               (3.5.16) 

and D6(t) = K t( )  + q60
(2)(t) © D0(t) + q65(t) © D5(t).            (3.5.17) 

Taking Laplace transforms for the equations (3.5.11) - (3.5.17) and simplifying for 

we get D s0
*( )

D s N s
D s0

3

2

*( ) ( )
( )

=                                                   

(3.5.18) 

     where 

)(3 sN = )( 1
*

2 βη +F [q01
* q13

*q35
*  + qq52

0( )
02

*(1 - q56
* q65

* - q35
* q53

*) - q02
* q13

*q35
*   q51

0( )
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        - q02
* q14

* q41
* (1 - q56

* q65
* - q35

* q53
*)] + )(sK q01

* q14
* (1 - q56

* q65
* - q35

* 

q53
*) 

         + )(sK q01
* q13

* qV35
* q56

* 

The value of can be obtained on taking the inverse Laplace transform of . 

The steady-state probability of the system being down is given by  

D t0 ( ) D s0
*( )

  = D0 lim ( )
( )

( )
( )'s

sN s
D s

N
D→

=
0

3

2

3

2

0
0

                           (3.5.19) 

where 

 . N m p p p p p p p p p p p p p p p3 1 01 10 13 51
0

02 14 41 56 65 14 41 01 14 56 650 1 1( ) [ ( ) ]( )= − − − + − +

Now the mean down-time of the system during (0, t] is  

   µ dn

t

t D u d( ) ( )=z0
0

u

 µ dn s D s
s

*
*

( ) ( )
= 0               (3.5.20) 

   and the mean failed time in (0, t] is 

  µ µ µf upt t t t( ) ( ) ( )= dn− −  

   so that  

  µ µ µf ups
s

s s* *( ) ( ) ( )= − −
1
2 dn

* .                      (3.5.21)   

 

3.5.3 BUSY PERIOD ANALYSIS 

Bi(t) is defined as the probability that the system is busy at epoch t starting from state Ei, 

Ei  E. We have the following recursive relations ∈
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B0(t) = q01(t) © B1(t) + q02(t) © B2(t)               (3.5.22) 

 B1(t) = e t− +( )η β1 )(2 tF  + q01(t) © B0(t) + q13(t) © B3(t) + q14(t) © B4(t)        (3.5.23) 

 B2(t) = q20(t) + B0(t)                           (3.5.24) 

B3(t) = e  + qt−β1 35(t) © B5(t)                               (3.5.25) 

 B4(t) = e t−β1 K t( ) + q40
(2)(t) © B0(t) + q41(t) © B1(t)            (3.5.26) 

B5(t) = e t− +( )η β1 )(1 tF  + q51
(0)(t) © B1(t) + q52

(0)(t) © B2(t) + q53(t) © B3(t) 

   + q56(t) © B6(t)              (3.5.27) 

and      B6(t) = e t−β 2 K t( )  + q60
(2)(t) © B0(t) + q65(t) © B5(t) .                      (3.5.28) 

Taking Laplace transforms for the equations (3.5.22) to (3.5.28) and simplifying for 

, we get B s0
*( )

B s0
*( ) =

N s
D s

4

2

( )
( )

                                               (3.5.29) 

where 

N s4 ( ) = )( 1
*

2 βη +F q01
* [1 - q56

*q65
* - q35

* q53
*] + 1

1β + s
q01

* q13
* [1 - q56

* q65
*]    

    + )( 2
* sK +β q01

* q14
* [1 - q56

* q65
* - q35

* q53
*] + )( 2

*
1 sF ++ βη q01

* q13
* q35

* 

  + )( 2
* sK +β q01

* q13
* q35

* q56
* . 

The steady-state probability that the system is under repair starting from state E0, i.e. 

probability that in the long run the repairman will be busy is given by 

   = B0 lim ( ) ( )
( )

*
's

sB s N
D→

=
0 0

4

2

0
0

             (3.5.30) 

   where 

N P P P P P P P P P P4 01 53 56 65 1 4 14 01 13 5 6 56 3 56 650 1 1( ) [ ]( ) [ ( )]= − − + + + + −Ψ Ψ Ψ Ψ Ψ . 
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The expected duration of busy time of repairman in (0, t] is 

µb

t

t B u d( ) ( )=z0
0

u , 

   so that 

µb s B s
s

*
*

( ) ( )
= 0                (3.5.31) 

     and the expected idle time of repairman in (0, t] is 

µ µI bt t t( ) ( )= −  

   so that 

µ µI bs
s

s* *( ) ( )= −
1
2 .              (3.5.32) 

 

3.5.4 EXPECTED NUMBER OF VISITS BY THE REPAIRMAN IN (0, t] 

According to the definition of Vi(t), by elementary probability arguments we have the 

following relations: 

 V0(t) = Q01(t) ⓢ [1 + V1(t)] + Q02(t) ⓢ V2(t)             (3.5.33) 

 V1(t) = Q01(t) ⓢ V0(t) + Q13(t) ⓢV3(t) + Q14(t) ⓢ V4(t)                      (3.5.34) 

 V2(t) = Q20(t) ⓢV0(t)                           (3.5.35) 

 V3(t) = Q35(t) ⓢV5(t)                                           (3.5.36) 

V4(t) = Q40
(2)(t) ⓢ V0(t) + Q41(t) ⓢ V1(t)                        (3.5.37) 

 V5(t) = Q51
(0)(t) ⓢ [1 + V1(t)] + Q52

(0)(t) ⓢ V2(t) + Q53(t) ⓢ V3(t) 
  + Q56(t) ⓢV6(t)                          (3.5.38) 
 
and V6(t) = Q60

(2)(t) ⓢ V0(t) + Q65(t) ⓢV5(t).                             (3.5.39) 
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Taking Laplace-Stieljes transforms and simplifying ~ ( )V s0 , we get 

  ~ ( )
~ ( )
~ ( )

V s N s
D s0

5

2

=                   (3.5.40) 

where 

  ~ ( ) ~ ( ~ ~ )[ ~ ~ ~ ~ ]N s Q Q Q Q Q Q Q5 01 14 41 56 65 351 1= − − − 53 .  

In the steady state, the number of visits per unit time is given by                

V0 = lim ( ) ~ ( )
~ ( )'t

V t
t

N
D→∞

=0 5

2

0
0

              (3.5.41) 

  ~ ( )N5 0 = P01 [1- P14P41][1 – P35 – P56P65]. 

 

3.6 COST BENEFIT ANALYSIS 

We are now in the position to obtain the profit function by the system considering mean 

up time, mean down time in (0, t], busy period and expected number of visits by the 

repairman in (0, t]. The next expected profit incurred in (0, t] is 

C(t) = expected total revenue in (0, t] – expected total repair cost in (0, t]  

– expected cost of visit by the repairman in (0, t] 

                    = (C0 – C1) µup(t) - C1µdn(t) – c2µb(t) – c3V0(t).                                      (3.6.1) 

 

The expected total profit per unit of time in steady state is 

 C = lim ( ) lim ( )*

t s

C t
t

s C s
→∞ →

=
0

2 .  

That is,  
C = (C0 – C1) V0 - C1 D0 – C2 B0 – C3V0                                                            (3.6.2) 
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where C0 is the revenue per unit uptime, C1 is the salary of the operator per unit time, C2 

is the cost per unit for which the system is under repair and C3 is the cost per visit by the 

repairman. 

 

3.7 SPECIAL CASES 

CASE I 

When the ‘dead time’ of the operator is zero, i.e. η = 0, then the results are as follows: 

E(T0) = n
P

1 1

13

+ φ  

U0 =  n P P P
X

1 10 53 1 51
01( ) ( )− + φ  

B0 = P P
X

13 3 5 1 51
0( ) ( )φ φ φ+ +  

and               V0 = P
X
51

0( )

 

   where  

X =  P n P P13 3 5 1 10 51
0

1 51
0( ) ( ) ( )φ φ φ+ + + P

   and 

n1 = F t dt1z( ) ;   φ1= 1 2 1

1

− ~ ( )F β
β

 

φ3= 1

1β
;    φ5= 1 2 2

2

− ~ ( )F β
β

 

P10 = 1 2 2− ~ ( )F β ; P13 = ~ ( )F2 2β  

P53 = ~ ( )F1 2β , P F51
0

1 21( ) ~ ( )= − β .  
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CASE II 

When failure time distributions of both units in case I are negative exponential i.e. 

F1(t) = 1 - e ;  Ft−λ1 2(t) = 1 - e  t−λ 2

   then the results are as follows: 

E(T0) = β λ λ
λ λ

1 1

1 2

+ + 2  

U0 =  β β λ β λ λ β1 2 1 1 2 1 2( ( ) ( ))+ + +
Y

 

B0 = λ λ λ β β β λ λ β1 1 2 1 2 1 2 2 2( )+ + +
Y

 

V0 = λ β β β λ1 1 2 1 2( )+
Y

 

   where  

Y = β β λ β λ λ λ β β1 2 1 1 1 2 1 1 2( ) (+ + )+ + . 

 

 

 

 

 

 

 

3.8 NUMERICAL ANALYSES 

 

Figure 3.2(i) shows graphically the change for β1 versus E(T0)  
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Figure 3.2  

 
 
 
As the repair time of the priority unit, β1 , increases the mean expected time to 
failure  is an increasing function of  E t( )0 β1  (for different values of λ1  and λ 2 ). 
 
 
Figure 3.3 shows graphically the change for β2 versus U0   
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Figure 3.3 
   
 
 
 

As the repair time of the ordinary unit, β 2 , increases the steady-state availability 
 is an increasing function of U0 β 2   (for different values of  λ1  , λ 2  and β1). 

 
 
 
 
Figure 3.4 shows graphically the change for β2 versus B0 
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Figure 3.4 

 
 
 

As β 2  increases the probability that the system is busy, , is a decreasing 
function of 

B0

β 2 (for different values of  λ1  , λ 2  and β1). 
 

 
 
 
Figure 3.5 shows graphically the change for β2 versus V0 
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Figure 3.5 
 
 

As β 2  increases the expected number of visits by the repairman,V , is an 
increasing function of 

0

β 2  (for different values of  λ1  , λ 2  and β1). 
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3.9 CONCLUSION 
 

     A two-unit single server priority redundant repairable system with two modes – 

normal and total failure has been studied. The priority unit got preference both in 

operation and repair. It is assumed that the repair facility is not available for a random 

time (Dead time). The system fails when both units are in total failure mode. Identifying 

the regeneration point technique, various operating characteristics of the system are 

obtained. The cost-benefit analysis is studied, and the results are illustrated numerically. 

The numerical results as shown in Figures 3.2 – 3.5 justify the results. 
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