
 

 

 

 

 

 

CHAPTER 2 

 

CONFIDENCE LIMITS FOR THE STEADY-STATE AVAILABILITY 

OF A STOCHASTIC MODEL OF UREA DECOMPOSITION SYSTEM 

IN THE FERTILIZER INDUSTRY 
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2.1 INTRODUCTION: 

The role and importance of reliability has been a core issue in any Engineering industry 

for the last three decades. Reliability is of importance to both manufacturers and consumers. 

From the consumers and manufacturers point of view reliability provides quality and vice 

versa. So, the reliability measure is very important, as the improvement in reliability is 

achieved through quality. While this measure of reliability assumes great importance in 

industry there are many situations where continuous failure free performance of the system, 

though desirable, may not be absolutely necessary.  

In such situations it may be eminently reasonable to introduce another measure called 

‘availability’, which denotes the probability that the system is functioning at any time point. 

In the process industry like the fertilizer industry, we come across many processes like 

synthesis decomposition, crystallization, prilling and recovery [see U.N. Fertiliser Manual 

(1967), Kumar et al. (1991)]. 

The gas liquid mixture (urea, NH3, CO2, Biuret) flows from the reactor at 126°C into the 

upper part of a high-pressure decomposer where the flushed gases are separated. The liquid 

falls through a sieve plate, which comes in contact with high temperature gas available from 

the boiler and the falling film heater. The process is repeated in a low-pressure absorber. The 

solution is further heated to 165°C in the falling film heater, which reduces the Biuret 

formation and hydrolysis of urea (see figure 1). 

The overhead gases from the high-pressure decomposition go to the high-pressure absorber 

cooler. The liquid flows to the top of the low-pressure absorber and is cooled in a heat 

exchanger. Additional flushing of the solution takes place in the upper part of the low-pressure 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMuulllleerr,,  MM  AA  EE    ((22000066))  



 

 

 

37

absorber to reduce the solution pressure from 17.5 to 2.5 kg/cm2. The low-pressure absorber 

has four sieve trays and a packed bed. In the packed bed, the remaining ammonia is stripped 

off by CO2 gas. 

The overhead gases go to the low-pressure absorber cooler, in which the pressure is controlled 

at 2.2 kg/cm2. Most of the excess ammonia and carbonate is separated from the solution 

flowing to the gas separator. The gas separator has two parts: 

(i) the upper part is at 105°C and 0.3 kg/cm2 and here the remaining small amounts of 

ammonia and CO2 are recovered by reducing the pressure; the sensible heat of the solution is 

enough to vaporize these gases. 

(ii) The lower part has a packed section at 110°C and atmospheric pressure. 

 

Air containing a small amount of ammonia and CO2 is fed off from the gas absorber by an 

on/off gas blower, to remove the remaining small amounts of ammonia and CO2 present on the 

solution. Off gases from the lower and upper parts are mixed and led to the off-gas condenser. 

The urea solution concentrated to 70-75% is fed to a crystallizer. 

It is well known that the steady state availability is a satisfactory measure for systems, 

which are operated continuously (e.g. a detection radar system). 

A point estimator of steady state availability is usually the only statistic calculated, 

although decisions about the true steady state availability of the system should take uncertainty 

into account. Since 

A MTBF
MTBF MTTR∞ = +

, 

the uncertainties in the values of the MTBF and MTTR reflect an uncertainty in the values of 
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the point steady state availability (where MTBF stand for Mean Time Between Failures and 

MTTR for Mean Time To Repair). 

By treating these uncertain parameters as random variables, we can obtain the distribution 

of point steady state availability by combining the distribution of operation and repair times. 

Hence we can construct estimators and confidence limits for the steady state availability, 

which are consistent with equivalent statements on the operating time and repair time 

parameters. Thomson (1966) has derived techniques for placing a lower confidence limit on 

the system’s steady state availability that differ significantly from a specified value, when 

MTBF and MTTR are estimated from test data. 

Gray and Lewis (1967) established the exact confidence interval for steady state 

availability of systems assuming that the time between failures is described by an exponential 

random variable and that the time to repair is described by a lognormal random variable. 

Butterworth and Nikolaisen (1973) have obtained the bounds on the availability function 

for the general repair time distribution. Masters and Lewis (1987) have derived exact 

confidence limits for the system steady state availability with Gamma life time and lognormal 

repair time. Masters et al. (1992) have proposed a method of establishing exact confidence 

limits for steady state availability of systems when the time between failure and time to repair 

are independent Weibull and lognormal random variables respectively. 

Abu-Salih et al. (1990) have derived 100(1- α)% confidence limits for the steady state 

availability of a two unit parallel system with the assumption that the failure time distribution 

is exponential and the repair time has a two stage Erlangian distribution. They have also 

assumed that an upstate unit will not fail when the other unit is in the second stage of repair.  
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Chandrasekhar and Natarajan (1994a, b) have considered and n-unit parallel system with 

the assumption that the failure time distribution is exponential and the repair time has a two 

stage Erlangian distribution. Further they have assumed that an operable unit can also fail 

while the other unit is in the second stage of repair. In particular they have derived a 100(1- 

α)% confidence limits for the steady state availability of a two unit parallel system. Yadavalli 

et al. (2001, 2002, 2005) have studied the 100(1- α)% confidence limits for different types of 

systems (parallel and standby) with the assumption that the repair facility is not available for a 

random time.   

The organisation of this chapter is as follows: Section 2.1 is introductory in nature, the 

system description and notation is given in Section 2.2. The availability analysis of the system 

is studied in Section 2.3. In Section 2.4, the interval estimation for  is studied, and 

subsequently the numerical results for Sections 2.3 and 2.4 are shown in Section 2.5.  

A∞
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              Figure 2.1  Urea plant (by courtesy of Balance Kapuni, South Taranaki, New Zealand) 
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2.2 SYSTEM DESCRIPTION AND NOTATION 

The complex system described above consisting of four subsystems connected in series. 

 

1. Subsystem (Ai) has two units. Unit A1 is the boiler for the high-pressure absorber and 

A2 is the falling filter heater for the low-pressure absorber. This subsystem (Ai) fails by 

failure of A1 or A2. 

2. Subsystem Bi has two units in series. Unit B1 is called the high-pressure absorber and 

unit B2 is called the low-pressure absorber. Failure of either causes complete failure of 

the system. 

3. Subsystem D, the gas separator, has one unit only, arranged in series with B1 and B2. 

Failure of unit D causes complete failure of the system. 

4. Subsystem Ei the heat exchanger has one unit in standby. Failure occurs only when 

both units fail. 

5. The life time of the units (Ai, Bi, D, E; i = 1,2) are exponentially distributed random 

variables with parameters λi;  i=1,2,3,4,5,6. 

6. The repair time of the units are exponentially distributed random variables with 

parameters µj;  j = 1,2,3,4,5,6. 

7. Each unit is as good as new after the repair. 

8. Spare parts and the repair facility are always available. 

9. The standby unit in E is of the same nature and capacity as the operating active unit. 
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10. The repair is done at regular time interval or at the time of failure. The repair includes 

the replacement as well. 

11. There is no simultaneous failure among subsystems. 

12. State O indicates the operating state without using standby unit and state 6 indicates 

the operating state using the standby state in subsystem E. 

13. E1 is the state of the system running at full capacity with a standby unit in subsystem E. 
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2.3 AVAILABILITY ANALYSIS OF THE SYSTEM 

Let Pi(t)  = P[ system is in state i, with only failure at time t] 

Pi = . (t)P   t i∞→
lim

Writing the application of flow balance (Ravindran et al. (1982)), the steady state probability 

can be determined from the following equations: 

With the help of Figure 2.2, we obtain the following differential equations describing the state 

probabilities: 
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In the steady state, the equations (2.3.1) – (2.3.5) become: 

p   = p ) ( ii

6

1 = i
0i

6

1 = i

µλ ∑∑                                                                              (2.3.6) 

p  + p   = p ) +  ( 066 + ii
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66i
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1 = i
λµµλ ∑∑                                                   (2.3.7) 
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Solving the system of simultaneous equations (2.3.6) - (2.3.10), the steady state availability A∞ 

can be obtained as 

µ
λ
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  ) + (1 + 1

 + 1
 = p + p = A

∑
∞ . 

For different parameters, Tables 2.3.1(a) – 2.3.1 (e) and the Figure 2.3 explain the availability 
function. 
 
 
2.4. INTERVAL ESTIMATION FOR A∞ 

Let be random samples of size n, each drawn from 

different exponential populations with failure rates λ

X X X ; (i =  1, 2, . . ., 6i i in1 2, ,..., , )

i, similarly 

be random samples each drawn from exponential populations 

with parameters µ

Y Y Y ;  (i =  1, 2, . . ., 6i i in1 2, ,..., , )

i. Since λi ‘s are the parameters of the exponential distribution, then an 
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estimate can be found for λi  or for 1/λi = αi (say), which is equal to the mean value of the 

time of failure-free operation.  

For the analysis, let 

µ
β

λ
α

i
i

i
i

1 =  ,1 = . 

Then the maximum likelihood estimates (MLE) of αi and βi are given by 

1
n
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By an application of the multivariate central limit theorem (Rao (1973)), it follows that 

)  0, ( N  )  - x ( n 6
D Σ⎯→⎯θ as n → ∞ where X X X X X X X Y Y Y Y Y Y= ( , , , , , , , , , , , )1 2 3 4 5 6 1 2 3 4 5 6  

We know that is a real-valued function in $A∞ Xi  and Yi ; i = 1, 2, ..., 6. 

)  , , , , , , , , , , , ( = 654321654321 ββββββααααααθ . 

The dispersion matrix  is given by )( = 12x12ijσΣ
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From Rao (1973), as n → ∞, i.e. using the multivariate central limit theorem,  
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Replacing by its consistent estimator 

$ ( , ,..., , , ,..., )θ = X X X Y Y Y1 2 6 1 2 6 , it follows that is a consistent estimator of  )(  = 22 θσσ ˆˆ

)( 2 θσ . Since is a consistent estimator of )( 2 θσ θ , we know that is a consistent 

estimator of 

σ θ2 ( $ )

θ  (see Wackerly et al. (2002)). 

Then by Slutsky's theorem (Slutsky (1928)) 

)  , ( N  
) A - A ( n D 10

ˆ
ˆ

⎯→⎯∞∞

σ
as n → ∞. 

This implies that 

P [ -  k   n ( A  -  A  )   k  ] =  1 -  
2 2
α α

σ
α≤ ≤∞ ∞$

$
, 

where  is obtained from normal tables, i.e. 100(1 – α)% confidence interval is given  by kα /2

     . $ $ ( )/A k∞ ± α σ θ2

 

 

 
2.5 NUMERICAL ILLUSTRATION 

 

For different values of the parameters, the numerical computations for  are shown in 

Tables 2.5.1(a) – 2.5.1(e) and Figure 2.3.  

A∞

 

The confidence limits for were also obtained and shown Table 2.5.2. A∞
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  A∞

Α1=α2 Α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1.00000 0.99998 0.99994 0.99985 0.99974 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.90909 0.90907 0.90903 0.90897 0.90888 0.90877 0.90863 0.90846 0.90827 0.90806 

 0.010 0.83333 0.83332 0.83328 0.83323 0.83316 0.83306 0.83294 0.83280 0.83264 0.83247 

            

0.001 0.0 0.99602 0.99600 0.99595 0.99587 0.99577 0.99563 0.99546 0.99526 0.99503 0.99478 

 0.005 0.90578 0.90578 0.90574 0.90568 0.90559 0.90548 0.90534 0.90517 0.90498 0.90477 

 0.010 0.83056 0.83055 0.83052 0.83046 0.83039 0.83029 0.83018 0.83004 0.82988 0.82970 

            

0.005 0.0 0.98037 0.98037 0.98033 0.98025 0.98015 0.98002 0.97985 0.97966 0.97944 0.97919 

 0.005 0.89284 0.89284 0.89280 0.89274 0.89266 0.89254 0.89241 0.89255 0.89207 0.89186 

 0.010 0.81967 0.81966 0.81962 0.81957 0.81950 0.81941 0.81929 0.81916 0.81901 0.81883 

Table 2.5.1 (a): Effect of Failure Rate (taking β1 =β2 = 0.5; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25) 

  A∞

α1=α2 Α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1 0.99998 0.99994 0.99986 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.9090 0.90908 090904 0.90894 0.90888 0.90877 0.90863 0.90846 0.90827 0.90806 

 0.010 0.83333 0.83332 0.83329 0.83323 0.83316 0.83316 0.83306 0.83294 0.83280 0.83247 

            

0.001 0.0 0.99668 0.99666 0.99661 0.99654 0.99643 0.99629 0.99612 0.99592 0.99569 0.99544 

 0.005 0.90634 0.90633 0.90629  0.90623 0.90614 0.90602 0.90588 0.90572 0.90553 0.90532 

 0.010 0.83102 0.83101 0.83098 0.83093 0.83085 0.83075 0.83064 0.83050 0.83034 0.83016 

            

0.005 0.0 0.98361 0.98359 0.98355 0.98347 0.98336 0.98323 0.98306 0.98287 0.98265 0.98240 

 0.005 0.89552 0.89551 0.89547 0.89541 0.89532 0.89521 0.89507 0.89491 0.89473 0.89452 

 0.010 0.82192 0.82191 0.82187 0.82182 0.82175 0.82165 0.82154 0.82140 0.82125 0.82107 

Table 2.5.1 (b): Effect of Failure Rate (taking β1 =β2 = 0.6; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25) 
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  A∞

α1=α2 Α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1 0.99998 0.99994 0.99986 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.92308 0.92306 0.92302 0.92296 0.92286 0.92274 0.92260 0.92243 0.92223 0.92201 

 0.010 0.85714 0.85713 0.85710 0.85704 0.85696 0.85685 0.92260 0.92243 0.92223 0.92201 

            

0.001 0.0 0.99715 0.99714 0.99709 0.99701 0.99690 0.99676 0.99659 0.99639 0.99617 0.99591 

 0.005 0.92065 0.92064 0.92060 0.92053 0.92044 0.92032 0.92017 0.92000 0.91981 0.91969 

 0.010 0.85505 0.85504 0.85500 0.85494 0.85486 0.85476 0.84637 0.84623 0.84606 0.84588 

            

0.005 0.0 0.98592 0.98590 0.98585 0.98578 0.98567 0.98553 0.98537 0.98517 0.98495 0.98470 

 0.005 0.91106 0.91105 0.91101 0.91094 0.91085 0.91074 0.91060 0.91043 0.91024 0.91003 

 0.010 0.84677 0.84676 0.84673 0.84667 0.84659 0.84649 0.84637 0.84623 0.84606 0.84588 

Table 2.5.1 (c): Effect of Failure Rate (taking β1 =β2 = 0.7; β3 = β4 = 0.3; β5 = 0.1; β6 = 0.25) 
 
  A∞

α1=α2 α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 0.99998 0.99994 0.99986 0.99975 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.005 0.93023 0.93022 0.93018 0.93011 0.93001 0.92989 0.92975 0.92957 0.92937 0.92915 

 0.010 0.86957 0.86955 0.86952 0.86946 086937 0.8627 0.86914 0.86899 0.86882 0.86862 

            

0.001 0.0 0.99751 0.99749 0.99744 0.99736 0.99726 0.99712 0.99695 0.99675 0.99652 0.99626 

 0.005 0.92807 0.92806 0.92802 0.92795 0.92786 0.92774 0.92759 0.92742 0.92722 0.92700 

 0.010 0.86768 0.86767 0.86763 0.86757 0.86749 0.86738 0.86726 0.86711 0.86893 0.86674 

            

0.005 0.0 0.98765 0.98764 0.98759 0.98752 0.98741 0.98727 0.98711 0.98691 0.98669 0.98644 

 0.005 0.91954 0.91953 0.91949 0.91942 0.91933 0.91921 0.91906 0.91890 0.91870 0.91848 

 0.010 0.86022 0.86020 0.86017 0.86011 0.86003 0.85992 0.85800 0.85970 0.85948 0.85929 

Table 2.5.1 (d): Effect of Failure Rate (taking β1 =β2 = 0.8; β3 = β4 = 0.4; β5 = 0.1; β6 = 0.25) 
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  A∞

α1=α2 α3=α4=α5 α6=  

0.0 

α6= 

0.001 

α6= 

0.002 

α6= 

0.003 

α6= 

0.004 

α6= 

0.005 

α6= 

0.006 

α6= 

0.007 

α6= 

0.008 

α6= 

0.009 

0.0 0.0 1 0.99998 0.99994 0.99986 0.99975 0.99961 0.99944 0.99924 0.99901 0.99875 

 0.001 0.93458 0.93457 0.93452 0.93446 0.93436 0.93424 0.93409 0.93391 0.93371 0.93349 

 0.005 0.87719 0.87718 0.87714 0.87708 0.87100 0.87689 0.87676 0.87661 0.87643 0.87623 

            

0.001 0.0 0.99778 0.99777 0.99772 0.99764 0.99753 0.99739 0.99722 0.99702 0.99680 0.99654 

 0.001 0.93264 0.93263 0.93259 0.93252 0.93242 0.93230 0.93215 0.93198 0.93178 0.93156 

 0.005 0.87549 0.87547 0.87544 0.87538 0.87529 0.87519 0.87506 0.87490 0.87473 0.87453 

            

0.005 0.0 0.98901 0.98900 0.98895 0.98887 0.98876 0.98863 0.98846 0.98827 0.98804 0.98779 

 0.001 0.92497 0.92496 0.92492 0.92485 0.92476 0.92464 0.92449 0.92432 0.92413 0.92391 

 0.005 0.86873 0.86871 0.86868 0.86862 0.86854 0.86843 0.86830 0.86815 0.86798 0.86778 

Table 2.5.1 (e): Effect of Failure Rate (taking β1 =β2 = 0.9; β3 = β4 = 0.5; β5 = 0.1; β6 = 0.25) 
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                     β (repair time)                      α (failure - free operation time)  

 

Figure 2.3: Availability for different α (failure-free operation time) 

and β (repair time) values 
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Table 2.5.2 presents the α = 95% and α = 99% confidence intervals for different simulated 
samples. 
 
 

 
For α1=α2 = 0; α3=α4=α5 = 0; α6 = 0.001      

β1 =β2 = 0.5; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25
   

α = 95% α = 99% 

n = 100 20 (0.79414; 0.96586) (0.76702; 0.99298) 

 40 (0.62674; 0.78366) (0.60196; 0.80824) 

 60 (0.54593 ; 0.68317) (0.52533; 0.69537) 

 80 (0.50775; 0.61515) (0.48552; 0.62088) 

 100 (0.47816; 0.56924) (0.45556; 0.57544) 

n = 200 20 (0.81928; 0.94072) (0.80008; 0.95992) 

 40 (0.64986; 0.76074) (0.63234; 0.77826) 

 60 (0.57289; 0.66421) (0.55843; 0.67867) 

 80 (0.52347; 0.59943) (0.51147; 0.61143) 

 100 (0.49148; 0.55592) (0.48128; 0.56612) 

n = 2000 20 (0.86080; 0.89920) (0.85468; 0.90532) 

 40 (0.68790; 0.72270) (0.67998; 0.73062) 

 60 (0.60409; 0.63301) (0.59953; 0.63757) 

 80 (0.54945; 0.57345) (0.54567; 0.57723) 

 100 (0.51356; 0.53384) (0.51032; 0.53708) 

 

Table 2.5.2 

 

It can be observed that, as n increases, the steady state availability decreases. 
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2.6 CONCLUSION 

     The availability of equipment used for de-composition process in the urea production 

system is discussed. The system consisted of four subsystems, with a standby unit in one of the 

sub-systems. The failure and repair rates in each subsystem are taken to be constants. The log-

run availability of the system is calculated, and the asymptotic confidence limits are obtained 

for the steady-state availability. The results are illustrated numerically for different measures.  

In tables 2.5.1(a) – (e), Figure 2.3 and table 2.5.2 shows that, as the repair time increases, the 

steady state availability decreases. This has been noticed in point availability and in the 

confidence limits.  
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