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1.1 INTRODUCTION 

 

The manufacturing of tools and special equipment is part of human nature. In earlier 

days faults and accidents were the only way of learning to make safer and more reliable 

equipment. Before structural design became an engineering science, the reliability of a 

bridge was tested with a team of elephants. If it collapsed, a stronger bridge was built and 

tested again! Obviously, these methods could not continue and as human skills developed a 

wide variety of very reliable items and structures were designed and manufactured. One 

example is the undersea telephone cables built by Bell Telephone Laboratories. 

Man’s earliest preoccupation with reliability was undoubtedly related to weaponry. 

Interest flowered as a result of the terrible non-reliability of electronic weapons systems 

used during World War II. Increasingly complex systems, such as the first missiles, also 

emphasized the importance of successful operation of equipment in a specific environment 

during a certain time period. The V-1 missile, developed in Germany with high-quality 

parts and careful attention, was catastrophic: the first 10 missiles either exploded on the 

launching pad, or landed short of their targets. 

Technological developments lead to an increase in the number of complicated systems 

as well as an increase in the complexity of the systems themselves. With remarkable 

advancements made in electronics and communications, systems became more and more 

sophisticated. Because of their varied nature, these problems have attracted the attention of 

scientists from various disciplines especially the systems engineers, software engineers and 

the applied probabilists. An overall scientific discipline, called reliability theory, that deals 

with the methods and techniques to ensure the maximum effectiveness of systems (from 
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known qualities of their component parts) has developed. ‘Reliability theory introduces 

quantitative indices of the quality of production’ (Gnedenko et al. (1969)) and these are 

carried through from the design and subsequent manufacturing process to the use and 

storage of technological devices. Engineers, Scientists and Government leaders are all 

concerned with increasing the reliability of manufactured goods and operating systems. As 

‘Unreliability has consequences in cost, time wasted, the psychological effect of 

inconvenience, and in certain instances personal and national security’ (Lloyd & Lipow 

(1962)). In 1963 the first journal on reliability, IEEE-Transactions on Reliability saw the 

light. 

Due to the very nature of the subject, the methods of Probability theory and 

Mathematical statistics (information theory, queuing theory, linear and nonlinear 

programming, mathematical logic, the methods of statistical simulation on electronic 

computers, demography, manufacturing, etc.), play an important role in the problem 

solving of reliability theory. Other areas include contemporary medicine, reliable software 

systems, geoastronomy, irregularities in neuronal activity, interactions of physiological 

growth, fluctuations in business investments, and many more. In human behaviour 

mathematical models based on probability theory and stochastic processes are helpful in 

rendering realistic modelling for social mobility of individuals, industrial mobility of 

labour, educational advancements, diffusion of information and social networks. In the 

biological sciences stochastic models were first used by Watson and Galton (1874) in a 

study of extinction of families. Research on population genetics, branching process, birth 

and death processes, recovery, relapse, cell survival after irradiation, the flow of particles 

through organs, etc. then followed. In business management, analytical models evolved for 
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the purchasing behaviour of the individual consumer, credit risk and term structure, income 

determination under uncertainty and many more related subjects. Traffic flow theory is a 

well known field for stochastic models and studies have been developed for traffic of 

pedestrians, freeways, parking lots, intersections, etc. 

Problems encountered in the design of highly reliable technical systems have led to the 

development of high-accuracy methods of reliability analysis. Two major problems can be 

identified, namely: 

• creating classes of probability-statistical models that can be used in the description 

of the reliability behaviour of the system, and 

• developing mathematical methods for the examination of the reliability 

characteristic of a class of systems. 

  Considering only redundant systems the classical examples are the models of Markov 

processes with a finite set of states (in particular birth and death processes) (Gnedenko et 

al. (1969)), Barlow (1984), Gertsbakh (1989) and Kovalenko et al. (1997)), the renewal 

process method (Cox (1962)), the semi-Markov process method and its generalizations 

(Cinlar (1975a, b)), generalized semi-Markov process (GSMP) method (Rubenstein 

(1981)), spacial models for coherent systems (Aven (1996)) and systems in random and 

variable environment (Ozekici (1996)) and Finkelstein (1999a, b, c)). 

  Depending on the nature of the research, the applicable form of reliability theory can 

be introduced to each. A stochastic analysis is made based on some good probability 

characteristics. It is, however, not simply a case of changing terminology in standard 

probability theory (say, “random variable” changes to “lifetime”), but reliability 
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distinguishes itself by providing answers and solutions to a series of new problems not 

solved in the “standard” probability theory framework. Gertsbakh (1989) points out that 

reliability, 

• of a system is based on the information regarding the reliability of the system’s 

components 

• gives a mathematical description of the ageing process with the introduction of 

several formal notations of ageing (failure rate, etc.) 

• introduces well-developed techniques of renewal theory 

• introduces redundancy to achieve optimal use of standby components (an excellent 

introduction to redundant systems is given in Gnedenko et al. (1969) 

• includes the theory of optimal preventative maintenance (Beichelt and Fischer 

(1980)) 

• is a study of statistical inference (often from censored data) 

Generally, the mathematical problems of lifetime studies of technical objects 

(reliability theory) and of biological entities (survival analysis) are similar, differing only in 

the notation. The term “lifetime” therefore does not apply to lifetimes in the strictest literal 

sense, but can be used in the figurative sense. The idea is that the statistical analysis done 

in this thesis should be true in any of the applicable disciplines, although the notation is 

mostly as for engineering (systems, components, units, etc.). With minor modifications the 

discipline can be changed to biological, or financial, etc. 
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1.2 FAILURE 

 

‘A failure is the result of a joint action of many unpredictable, random processes going 

on inside the operating system as well as in the environment in which the system is 

operating.’ (Gertsbakh (1989)). Functioning is therefore seriously impeded or completely 

stopped at a certain moment in time and all failures have a stochastic nature. In some cases 

the time of failure is easily observed. But if units deteriorate continuously, determination of 

the moment of failure is not an easy task. In this study we assume that failure of a unit can 

be obtained exactly. Failure of a system is called a disappointment or a death and failure 

results in the system being in the down state. This can also be referred to as a breakdown 

(Finkelstein (1999a)). 

     Zacks (1992) points out that there are two types of data to consider, namely: 

• data from continuous monitoring of a unit until failure is observed 

• data from observations made at discrete time points, therefore failure counts 

     Villemeur (1992) gives an extensive list of possible failures and inter-dependent 

failures. There are catastrophic failures, determined by a sharp change in the parameters 

and drift failures (the result of wear or fatigue), arising as a result of a gradual change in 

the values of the parameters. 

 

1.3 REPAIRABLE SYSTEMS 

 

Failed units of a system may be replaced by new ones, but this may prove to be 

expensive. To repair the failed units at a repair facility is usually a more cost-effective 
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option than replacement. A repairable (or renewable) system can be described as one 

where the system can be made operable again. If a system can be renewed, the reliability is 

increased, resulting in an increase in its time of service. If no repair facility is free, failed 

units queue up for repair. The life time of a unit while on-line, while in standby as well as 

the repair times, are all independent random variables. It is assumed that the distributions 

of these random variables are known and that they have probability density functions. 

     Repairable systems have been the subject of intensive investigation for a long time. 

Different random variables can form the basis for research, such as  

• availability (or non-availability) and reliability 

• time necessary for repair 

• number of repairs that can be handled 

• switch over time to and from the repair facility 

• possibility of a vacation time for the repair facility, and many more. 

 

Barlow (1962) considered some ‘repairman’ (or repair-facility) problems and they have 

much in common with queuing problems while Rau (1964) analyzed the problem of 

finding the optimum value of an k-out-of-n: G system for maximum reliability. Ascher 

(1968) has pointed out some inconsistencies in modelling of repairable systems by renewal 

theory. Several authors, notably Buzacott (1970), Shooman (1968) have used continuous 

time discrete state Markov process models for describing the behaviour of a repairable 

system. These models, although conceptually simple, are not practically feasible in the case 

of a large number of states. Gaver (1964), Gnedenko et al. (1969), Srinivasan (1966) and 

Osaki (1970a) have used semi-Markov processes for calculation of the reliability of a 
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system with exponential failures. Osaki (1969) has used signal flow graphs to discuss a 

two-unit system. With the use of semi-Markov processes Kumagi (1971) studied the effect 

of different failure distributions on the availability through numerical calculations. Branson 

and Shah (1971) also used semi-Markov process analysis to study repairable systems with 

arbitrary distributions. Srinivasan and Subramanian (1980), Venkatakrishnan (1975), 

Ravichandran (1979), Natarajan (1980) and Sarma (1982) have used regeneration point 

techniques to analyze repairable systems with arbitrary distributions. More references in 

this  and related topics can be found in various papers by Subba Rao and Natarajan (1970), 

Osaki and Nakagawa (1976), Pierskalla and Voelker (1976), Lie et al. (1977), Kumar and 

Agarwal (1980), Birolini (1985) and Yearout et al. (1986) and Finkelstein (1993a, 1993b). 

Jain and Jain (1994) have considered the regulation of ‘up’ and ‘down’ times of a 

repairable system to improve the efficiency of the system. 

 

1.4 REDUNDANCY AND DIFFERENT TYPES OF REDUNDANT SYSTEMS 

 

In a redundant system more units are built into it than is actually necessary for proper 

system performance. Redundancy can be applied in more than one way and a definite 

distinction can be made between parallel and standby (sequential) redundancy. In parallel 

redundancy the redundant units form part of the system from the start, whereas in a standby 

system, the redundant units do not form part of the system from the start (until they are 

needed). 

 

1.4.1 Parallel systems 
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A parallel redundant system with n units is one in which all units operate 

simultaneously, although system operation requires at least one unit to be in operation. 

Hence a system failure only occurs when all the components have failed. 

Let k be a non-negative integer, such that k ≤ n, counting the number of units in an n-unit 

system. It is customary to refer to such a system as k-out-of-n system. 

 

1.4.2 k-out-of-n: F system 

If k-out-of-n system fails, that is when k units fail, it is called an F-system. The 

functioning of a minimum number of units ensures that the system is up (Sfakianakis and 

Papastavridis (1993)). 

 

1.4.3 k-out-of-n: G-system 

     A G-system is operational if and only if at least k units out of n units of the system are 

operational. Recent work related to this topic can be seen in Zhang and Lam (1998) and 

Liu (1998). Suppose a radar network has n radar control stations covering a certain area: 

the system can be operable if and only if at least k of these stations are operable. In other 

words, to ensure functioning of the system it is essential that a minimum number of units, 

k, are functioning. 

     Lately attention moved to load-sharing k-out-of-n: G systems, where 

• the serving units share the load 

• the failure rate of a component is affected by the magnitude of the load it shares. 
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1.4.4 n-out-of-n: G system 

A series that consists of n units and when the failure of any one unit causes the system to 

fail. Although this type of system is not a redundant system, as all the units are in series 

and have to be operational, it can still be considered as a special vas of a k-out-of-n system. 

There are many papers on the reliability of these systems. Scheuer (1988) studied reliability 

for shared-load k-out-of-n: G systems, where there is an increasing failure rate in survivors, 

assuming identically distributed components with constant failure rates. Shao and 

Lamberson (1991) considered the same scenario, but with imperfect switching. Then 

Huamin (1998) published a paper on the influence of work-load sharing in non-identical, 

non-repairable components, each having an arbitrary failure time distribution. He assumed 

that the failure time distribution of the components can be represented by the accelerated 

failure time model, which is also a proportional hazards model when base-line reliability is 

Weibull. 

 

1.4.5 Standby redundancy 

Standby redundancy consists in attaching to an operating unit one or more redundant 

(standby) units, which can, on failure of the operating unit, be switched on-line (if 

operable). Gnedenko et al. (1969) classifies standby units as cold, warm or hot. 

1. A cold standby is completely inactive and because it is not hooked up, it cannot (in 

theory) fail until it is replacing the primary unit. Also assume that, having been in a 

non-operating state its reliability will not change when it is put into an operating 

state. 
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2. A warm standby has a diminished load because it is only partially energized. The 

standby unit is not subject to the same loading conditions as the on-line unit and 

failure is generally due to some extraneous random influence. So, although such 

warm standby can fail, the probability of it failing is smaller than the probability of 

the unit on-line failing. This the most general type of standby because of hot 

standby’s failure rate and cold standby’s possible time lapse before it is operable. 

3. A hot standby is fully active in the system (although redundant) and the probability 

of loss of operational ability of a hot standby is the same as that of an operating unit 

in the standby state. The reliability of a hot standby is independent of the instant at 

which it takes the place of the operable unit. 

 

1.4.6 Priority redundant systems 

A priority system consists of n (≥ 2) units in which some of the units are given priority 

(p-units) and the other units are termed as ordinary units (o-units). The operating on-line 

unit must be the p-unit and this p-unit is never used in the status of a standby and, in the 

event of a failure, it is immediately taken up for repair – if the repair facility is available. 

On the other hand, the o-unit only operates on-line when the p-unit has failed and is under 

repair. Different policies can be adopted (Jaiswal (1968)) if the p-unit fails during the 

repair of an o-unit, namely pre-emptive and non-pre-emptive priorities. 

 

1.4.6.1 Pre-emptive priority 

The repair of the o-unit will be interrupted by the p-unit if the p-unit fails when the 
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repair for o-units is on. After completion of the repair of the p-unit, the repair of the o-unit 

is continued in one of two ways: 

(i) pre-emptive resume, where the repair of the o-unit continues from the previous 

point of interruption 

(ii) pre-emptive repeat, where repair of the o-unit is started afresh after completion 

of the previous interruption. This implies that the time spent by the I-unit before 

it was pre-empted from the repair has no influence on the re-started repair time. 

 

1.4.6.2 Non-pre-emptive priority 

The repair of the o-unit continues and the repair of the p-unit is entertained only after 

completion of the repair of the o-unit. 

 

1.5 INTERMITTENTLY USED SYSTEMS 

 

When a system is turned on and off intermittently for the purpose of performing a 

certain function it is referred to as an intermittently used system. It is obvious that for such 

a system continuous failure free performance is not so absolutely necessary. In such cases 

consideration has to be given to the fact that the system can be in the down state during 

certain time intervals without any real consequence. The probability that the system is in 

the up state is not an important measure; what is really important is the probability that the 

system is available when needed. Operational reliability is thus a function of the readiness 

and the probability of continuous functioning over a specified period of time and it can 

grow or decline with age, depending on the nature of the system. 
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     Gaver (1964) pointed out that it is pessimistic to evaluate the performance of an 

intermittently used system solely on the basis of the distribution of the time to failure. 

Srinivasan (1966), Nakagawa et al. (1976), Srinivasan and Bhaskar (1979a, 1979b, 1979c), 

Kapur and Kapoor (1978, 1980), Sarma (1982) and Yadavalli and Hines (1991) extended 

Gaver’s results for two-unit and n-unit systems, and, obtained various system measures. 

 

1.6 MEASURES OF SYSTEM PERFORMANCE 

In the previous sections a brief discussion was given of the various types of redundant 

systems as discussed in the literature. In this section the discussion is about measures of 

system performance as applicable in different contexts (Barlow & Proschan (1965) and 

also Gnedenko et al. (1969)). 

 

1.6.1 Reliability 

Reliability engineering has developed, and advanced substantially during the past 50 

years, mainly due to the use of high risk and complex systems (Beichelt (1997)). Reliability 

is a quantitative measure to ensure operational efficiency. ‘The reliability of a product is 

the measure of its ability to perform its function, when required, for a specific time, in a 

particular environment. It is measured as a probability.’ (Leitch (1995)). This implies that 

reliability contains four parts, namely 

• the expected function of a system 

• the environment of a system (climate, packaging, transportation, storage, 

installation, pollution, etc.) 

•  time, which is often negatively correlated with reliability 
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• probability, which is time-dependent, thus causing the need for a statistical analysis. 

     One can distinguish between mission reliability, when a device is constructed for the 

performance of one mission only and operational reliability, when a system is turned on 

and off intermittently for the purpose of performing a certain function. In the latter case we 

refer to an intermittently used system. 

     Ordinarily the period of time intended is (0, t]. 

Let {φ (t), t ≥0} be the performance process of the system. 

For fixed t this φ (t) is a binary variable, defined as follows: 

             φ(t) =
0
1

  
if the system is functioning at time t

if the system is in a failed state at time t.
RST  

 

1.6.1.1 The reliability function 

The reliability function, R(t) gives the probability that the system does not fail up to t, 

that is 

 R(t)  =  P[system is functioning in (0, t]] 

          =  P[φ (u) = 0 ∀  u such that 0 < u ≤ t]. 

 

1.6.1.2 Interval reliability 

If the number of system failures in the interval (t, t + x] is considered, the perfor- 

mance measure 

 R(t, x)  =  P[φ (u) = 0 ∀  u such that 0 < u ≤ t + x] 

is referred to as the interval reliability. 
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If t = 0 the interval reliability becomes the reliability R(x). 

 

1.6.1.3 Limiting interval reliability 

Limiting interval reliability is defined as the limit of R(t, x) as t → ∞, and is denoted 

R∞(x). 

 

1.6.1.4 Mean time to system failure 

The expectation of the random variable representing the duration of time, measured  

from the point the system starts operating, till the instant it fails for the first time is called 

mean time to system failure (MTSF). This is obtained from the relation  

MTSF = . R u du( )
0

∞z
1.6.2 Availability 

This measure of system performance ‘…denotes the probability that the system is 

available for use (in operable condition) at any arbitrary instant t’. Availability is 

therefore the probability that, at the given time t, the system will be operational. It 

combines aspects of reliability, maintainability and maintenance support and implies that 

the system is either in active operation or is able to operate if required. 

Availability pertains only to systems which undergo repair and are restored after failure, or 

to intermittently used systems. As such, it is eminently reasonable to introduce an 

availability function A(t). In theory A(0) should be 100%, but even equipment coming 

directly out of storage may be defective. A high availability can be obtained either by 

increasing the average operational time until the next failure, or by improving the 
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maintainability of the system. Gnedenko and Usnakov (1995) defines different coefficients 

of availability for one-unit systems. 

 

1.6.2.1 Instantaneous or pointwise availability 

     This is a point function which describes the probability that a system will be able to 

operate at a given instant of time (Klaassen and Van Peppen (1989) and Beasley (1991)). 

In symbols: 

A(t) = P[φ (t) = 0]. 

 

1.6.2.2 Interval availability  

Given an interval of time (and with given tolerances), interval availability is the 

expected fraction of this time that the system will be able to operate. 

 

1.6.2.3 Average availability 

If a failed unit is repaired and is then ‘as good as new’, the average availability is 

defined as 

   Average Availability = MTSF
MTSF MTSR+

 

where MTSF and MTSR are the Mean Time to System Failure and Mean Time to System 

Repair respectively. 
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1.6.2.4 Asymptotic or steady-state or limiting availability 

The limiting availability, A∞, is the expected fraction of time that the system operates 

 satisfactorily in the long run (Barlow and Proschan (1965)): it is the probability that the 

system will be in an operational state at time t, when t is considered to be infinitely large  

A∞ = . lim ( )
t

A t
→∞

 

1.6.3 Time to first disappointment 

The system is said to be in a state of disappointment if the number of operable units at 

any time is less than the number of units required for the satisfactory performance of the 

system at that instant of time. For an intermittently used system, Gaver (1964) pointed out 

that a disappointment realizes in one of two possible ways: the system enters the down 

state during a need period, or a need for the system arises and at that time the system is in 

the down state. The event ‘disappointment’ is very useful as it renders the distribution of 

the time to the first disappointment, the mean number of disappointments over an arbitrary 

interval and also the mean duration of the disappointments.  

 

1.6.4 Mean number of events in (0, t] 

Let N(a, t) denote the number of a particular type of a event (e.g. a disappointment, 

system recovery, system down, etc.) in (0, t]. The mean number of events in (0, t] is then 

given by  

E[N(a, t)] = 1
1

0t
h u du

t

( )z  
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where h1(u) is the first order product density of the events (product densities are defined in 

a subsequent section of this chapter). 

     The mean stationary rate of occurrence of these events is given by 

E[N(a)] = lim
t→∞

E[N(a,  t)]
t

 

1.6.5 Confidence limits for the steady state availability 

A 100(1 – α)% confidence interval for A∞ is defined by 

P[a < A∞ < b] = 1 – α 

where the numbers a and b (a < b) are determined using the appropriate statistical tables. It 

may be noted that A∞ is a function of the parameters of operating time distribution, repair 

time, need and no-need period distributions, etc. 

 

1.7 STOCHASTIC PROCESSES USED IN THE ANALYSIS OF REDUNDANT 

      SYSTEMS 

Previous sections briefly looked at different types of redundant systems and the various 

measures of system performance. In this section the techniques used in the analysis of 

redundant repairable systems will be summarized. 

 

1.7.1 Renewal theory 

In renewal theory there exists times, usually random, from which onward the future of 

the process is a probabilistic replica of the original process and interest is in the lifetime (a 

stochastic variable) of a unit. At time t = 0 a repairable unit is put into operation and is 

functioning. At each failure the unit is replaced by a new one of the same type, or subjected 
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to maintenance that completely restores it to an ‘as good as new’ condition. This process is 

repeated and replacement time is taken as negligible. The result is a sequence of lifetimes, 

and the study is restricted to these renewal points. The probability object in these sums of 

non-negative independently identically distributed random variables lies in the number of 

renewals Nt up to some time t. 

Renewal processes are extensively used by many researchers to study specific 

reliability problems. The homogeneous Poisson process is the simplest renewal process and 

has received considerable attention. As in all other processes, the time parameter can be 

considered as either discrete or continuous. Feller (1950) gave a proper lead for the discrete 

and this was followed by the very lucid account of Cox (1962) for the continuous case (he 

provided an introduction to renewal theory in the case of a repair facility not being 

available and failed units queuing up for repair). Barlow (1962) applied queuing theory in 

his research on repairable systems. Srinivasan (1971) studied some operating 

characteristics of a one unit system, Gnedenko et al. (1969) obtained the mean life time to 

system failure of a two-unit standby system, Buzacott (1970) studied some priority 

redundant systems, etc. 

Although renewals can take on different forms, the system starts a new cycle after each 

renewal (which is independent of the previous ones). If repair time is not negligible, each 

cycle consists of a lifetime and a repair time and both are random variables with individual 

distributions (repair time can also be considered as a fixed time). The process is called  

• an ordinary renewal process if the time origin is the initial installation of the 

system and the repair time is considered negligibly small in comparison with the 

lifetime of the unit – renewal is taken as instantaneous, or 
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• a general renewal process if the time origin is some point subsequent to the 

initial installation of the system (Cox (1962)). Høyland and Rausand (1994) 

calls this a modified renewal process, while Feller (1957) refers to such a 

process considering the residual life time of a system at an arbitrary chosen time 

origin as a delayed renewal process.  

 

1.7.1.1 Ordinary renewal process: instantaneous renewal 

     Consider a basic model of continuous operation where a unit begins operating at instant 

t = 0 and stays operational for a random time T1 and then fails. At this instant it is replaced 

by a new and statistically identical unit, which operates for a length of time T2, then fails 

and is again replaced etc. These random component life lengths T1, T2, …, Tr … of the 

identical units are independent, non-negative and identically distributed random variables 

that constitute a random flow or ordinary renewal process. 

     Let P[Ti ≤ t] = F(t) ; t > 0, i  = 1, 2, … be the underlying distribution of the renewal 

process. 

The time until the rth renewal is given by 

tr =  T1 + T2 +…. + Tr = Ti
i

r

=
∑

1
. 

     Let the random variable N(t) = max {r; Rr ≤ t} indicate the number of times a renewal 

takes place in the interval (0; t], then the number of renewals in an arbitrary time interval 

(t1, t2] is equal to N(t2 ) - N(t1 ). 

     A renewal function H(t), which is the expected value of N(t) in the time interval (0; t], 

can be defined as 
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H(t) =  E[N(t)] =   F tr

r

( ) ( )
=

∞

∑
1

where F(r) (·) is the r-fold convolution of F. 

Furthermore, (Cox (1962)), 

H(t) = F(t) + . H t x dF x
t

( ) (−z
0

)

The renewal density function h(t) satisfies the equation 

h t f tr

n

( ) ( )( )=
=

∞

∑
1

 

and the renewal density function h(t) satisfies the equation 

h(t) = f(t) + . h t x f x dx
t

( ) ( )−z
0

     Seeing that [ exactly one renewal point in h t t P( )∆ = ( , ]t t + ∆ ], 

which implies that the renewal density  h(t) basically differs from the hazard rate h0(t), as 

h (t) =  f(t)
R(t)

 =  f(t)
(1- F(t))

0 . 

 

1.7.1.2 Random renewal time 

     Suppose the time for renewal is not instantaneous but considered as a random variable 

that is included in the consecutive time-periods, or cycles, of the systems’ performance. 

Each cycle then consists of a time to failure and a time to repair and both are stochastic 

variables. Instants of failure and cycles of renewal can be identified. 
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     Let F(t) be the life distribution and G(x) be the repair length function with respective 

probability density functions f(t) and g(x), then the density function of the cycles C of the 

life time and repair time, say k(t) is obtained by the convolution formula 

k(t) = .  f x g t x dx
t

( ) ( )−z
0

     If NF(t) counts the number of failures and NR(t) the number of repairs in (0; t], define   

                              W(t) = E[NF(t)] 

and 

    V(t) = E[NR(t)] 

and let Q(t) = W(t) – V(t); t, assuming that ∀ w t W t( ) ( )= ′  and v t V t( ) ( )= ′ . 

     The failure and repair intensities can be then respectively be defined as  

λ( ) ( )
( )

t w t
A t

=  

where A(t) is the availability function 

µ(t) =  v(t)
Q(t)

;      Q(t) ≠ 0. 

 

1.7.1.3 Alternating renewal processes 

     Alternating renewal processes were first studied in detail by Takács (1957) and are 

discussed in many textbooks (Birolini (1994) and Ross (1970)). A generalization of the 

ordinary renewal process discussed previously where the state of the unit is given by the 

binary variable  
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X (t) =
0
1

  
if the system is functioning at time t

  otherwise.
RST  

     The two alternating states may be ‘system up’ and ‘system down’. If these alternating 

independent renewal processes are distributed according to F(x) and G(x), there are two 

renewal processes embedded in them for the different transitions from ‘system up’ to 

‘system down’. 

     One-item repairable structures are generally described by alternating renewal processes 

with the assumption that after each repair the item is like new. 

 

1.7.1.4 The age and remaining lifetime of a unit 

     In the notation of 1.7.1(a), let tr indicate the random component life lengths, that is  

     t T . 
r i

i

r

=
=
∑

1

Let Rr,  r ∈ N, represent the length of the rth repair time, then the sequence  

T1, R1, T2, R2, … forms an alternating renewal process. Define 

t R Tn r
r

n

r= +
=

−

+∑ ( )
1

1

1 ;     n ∈Ν  

and set . t t o
0 0 0= =

      This sequence tn  generates a delayed renewal process. 

     If B1(t) denotes the forward recurrence time at time t, then 

 

  B1(t) =          or  Bt -
N t +1

t t1(t) =  t -
N t

o +1

Hence, 
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• B1(t) equals the time to the next failure time if the system is up at time t, or 

• B1(t) equals the time to complete the repair if the system is down at time t. 

Hence, 

• B2(t) equals the age of the unit if the system is up at time t, or 

• B2(t) equals the duration of the repair if the system is down at time t. 

      Returning to the renewal function H(t), define the elementary renewal theorem (Feller 

(1949)), stating that, for an ordinary renewal process with underlying exponential 

distribution (parameter λ and H(t) = λt) 

lim
t→∞

=
H(t)

t
1
µ

 

with µ = E(Ti) = 1/ λ, the mean lifetime. 

     If the renewals correspond to component failures, the mean number of failures in (0, t] 

is approximately (for t large) 

H(t)  =  E[N(t)]  ≈  1 1
µ

=
MTSF

. 

 

1.7.2 Semi-Markov and Markov renewal processes 

     Consider a general description of a process where a system 

• moves from one state to another with random sojourn times in between 

• the successive states visited form a Markov chain 

• the sojourn times have a distribution which depend on the present state as well as 

the next state to be entered. 
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This describes a Markov chain if all sojourn states are equal to one, a Markov process if the 

distribution of the sojourn times are all exponential and independent of the next state and a 

renewal process if there is only one state (then allowing an arbitrary distribution of the 

sojourn times). 

     Denote the state space by the set of non-negative integers {0, 1, 2 ...} and the transition 

probabilities by pij, i, j = 0, 1, 2 ... If Fij (t), t > 0 is the conditional distribution function of 

the sojourn time in state i, given that the next transition will be into state j, let 

Qij (t)   =  pij Fij (t),  i, j = 0, 1, 2 ...

denote the probability that the process makes a transition into state j in an amount of time  

less than or equal to t, given that it just entered state i at t = 0. The functions Qij (t) satisfy 

the following conditions 

Qij (0)  =   0,     Qij (∞) = pij 

Qij (t)    ≥   0,     i, j = 0, 1, 2 ... 

Q tij
j

( )
=

∞

∑
0

 =  1 

Let J0 and Jn respectively denote the initial state and the state after the nth transition 

occurred. The embedded Markov chain {Jn , n = 0, 1, 2 ... } then describes a Markov chain 

with transition probabilities pij.   

Let Ni(t) denote the number of transitions into state i in (0, t] and  

N(t)  =  N ti
i=

∞

∑
0

( )
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The stochastic process {X(t), t ≥ 0} with X(t) = i denoting the process is in state i at time t is 

called a semi-Markov process (SMP) and it is clear that X(t) = JN(t). A SMP is a pure jump 

process and all states are regeneration states. The consecutive states form a time-

homogeneous Markov chain, but it is a process without memory at the transition point from 

one state to the next. 

      The vector stochastic process {N1(t) , N2(t) ...} for  t ≥ 0 is called a Markov renewal 

process (MRP). This implies that the SMP records the state of the process at each time 

point, while the MRP is a counting process keeping track of the number of visits to each 

state. 

      Assuming that the time-intervals in which the random variables X(t) continues to 

remain in the n-point state are independently distributed such that 

lim
t→∞

∀ ≤ ≠P[X(t +  x) =  j,  X(t +  u) =  i:   u   x X(t) =  i,  X(t - )  i]∆  

= fij (x) ; i, j = 0, 1, 2 ... 

     If the transition of X(t) is characterized by a change of state, then the quantities  fii (·) are 

zero functions. Such a process which is a Markov chain with a randomly transformed time 

scale is called a MRP. 

     To remove the consequence that fii (·) = 0, another function of a MRP can be given, 

namely defining it as a regenerative stochastic process {X(t)} in which the epochs at which 

X(t) visits any member of a certain countable set of states are regeneration points; the visits 

being regenerative events. 
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     In a combination of a Markov chain and a renewal process to form a SMP, the purpose 

is to create a tool that is more powerful than what either could provide individually. SMP 

were independently introduced by Lévy (1954) and Smith (1955). Detailed use of SMP and 

MRP can be found in Pyke (1961a, 1961b), Cinlar (1975) and Ross (1970). Barlow and 

Proschan (1965) used these processes to determine the MTSF in a two-unit system. Cinlar 

(1975), Osaki (1970a, 1970b), Arora (1976), Nakagawa & Osaki (1974, 1976) and 

Nakagawa (1974) have used the theory of SMP to discuss certain reliability problems. 

 

1.7.3 Regenerative processes 

     In a regenerative stochastic process X(t) there exists a sequence t0, t1, ... of stopping 

times such that t = {tn; n N∈ } is a renewal process. If a point of regeneration happens at 

 t = t1, then the knowledge of the history of the process prior to t1 loses its predictive value; 

the future of the process is totally independent of the past. Thus X(t) regenerates itself 

repeatedly at these stopping times and the times between consecutive renewals are called 

regeneration times. The application of renewal theory to regenerative processes makes 

renewal theory such an important tool in elementary probability theory. 

     The delayed renewal process is defined as follows:  if  is a renewal 

process such that t

$ { ;t t t n Nn= − ∈0 }

0 ≥ 0 is independent of , (implying that the time t$t 0 of the first renewal is 

not necessarily the time origin) it is called a delayed renewal process. A delayed 

regenerative process is a process with a sequence t = { ; }t n Nn ∈ of stopping times which 

form a delayed renewal process. As an example: for any initial state i, the times of 

successive entrances to a fixed state j in a Markov process form a delayed renewal process. 
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     In some cases non-exponentially distributed repair times and/or failure free operating 

times may lead to semi-Markov processes, but in general it leads to processes with only a 

few states (or even to non-regenerative processes). Recent research in this field is 

concerned with Brownian motion with the interest on the random set of all regeneration 

times and on the excursions of the process between generations. 

 

1.7.4 Stochastic point processes 

     Among discrete stochastic processes, point processes are widely used in reliability 

theory to describe the appearance of events in time. A renewal process is a well known 

type of point process, used as a mathematical model to describe the flow of failures in time.  

It is a point process with restricted memory and each event is a regeneration point. In 

practical reliability problems, the interest is often in the behaviour of a renewal process in a 

stationary regime, i.e., when t → ∞, as repairable systems enter an ‘almost stationary’ 

regime very quickly. A generalization of a renewal process is the so-called alternating 

renewal process, which consists of two types of independently identically distributed 

random variables alternating with each other in turn.  

     This theory of recurrent events has a huge variety of applications ranging from classical 

physics, biology, management sciences, cybernetics and many other areas. The result is 

that point processes have been defined differently by individuals in the different fields of 

application. The properties of stationary point processes were first studied by Wold (1948) 

and Bartlett (1954), to whom we owe the current terminology. Moyal (1962) gave a formal 

and well-knit theory of the subject that even provides an extension to cover non-Euclidean 
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spaces. Srinivasan (1974), Srinivasan and Subramanian (1980) and Finkelstein (1998, 

1999c) extensively used point processes in reliability theory and applications. 

      Our interest in point processes lies in those applications which, in general, lead to the 

development of multivariate point processes. For this purpose we can define a point 

process as a stochastic process ‘whose realizations are related to a series of point events 

occurring in a continuous one-dimensional parameter space (such as time, etc)’. The 

sequence of times {tn} are the “renewal” epochs which generates the point process and the 

two random variables of interest are 

• the number of points that fall in the interval (t; t + x] 

• the time that has lapsed since the nth point after (or before) t. 

     The characterization property of stationarity applies to certain point processes, namely 

that the density function of observed events in a time interval does not depend on its 

position on the time axis, but only on the length of the interval. There are different types of 

stationarity that can be defined, namely simply stationary, weakly stationary and 

completely stationary (Srinivasan and Subramanian (1980)).  

Furthermore, define p(n; t, x) = P[N(t, x) = n] and if P n t t o
n

( ; , ) ( )+ =
≥
∑ ∆

2

∆ for small ∆, the 

point process is said to be orderly or regular (there are no multiple events, or clusters of 

events with probability one). 

 

1.7.4.1 Multivariate point processes 

      Applications for multivariate stationary point processes can be found in many fields 

and the properties of these processes have been studied in depth by Cox and Lewis (1970). 
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     If the constraint of independence of the intervals in a stationary renewal process is 

relaxed, a stationary point process is obtained; if the same constraint is removed in the case 

of a Markov renewal process a multivariate point process is obtained. 

 

1.7.4.2 Product densities 

     Ramakrishnan (1954) developed, analyzed and perfected the product density technique 

as a sophisticated tool for the study of point processes. A point process is described by the 

triplet ( , B, P), where P is a probability distribution on some σ-field BΦ   of subsets of the 

space of all states. Describe the state of a set of objects by a point x of a fixed set of 

points X. Assume for this discussion that X is the real number line. Define A

Φ

k as intervals 

and N (.)  as a counting measure which is uniquely associated with a sequence of points 

{ti} such that: 

 N(A)  =  the number of points of the sequence { ti : ti ∈ A} 

 N(t, x)  =  the number of points (events) in the interval (t; t + x] 

 ′N (t, x)  =  the number of points (events) in (t + x; t + x + ∆]. 

The central quantity of interest in the product density technique is , denoting the 

number of entities with parametric values between x and x + ∆ at time t. 

′N (t,  x)

     From the factorial moment distribution the product density of order , which represents 

the probability of an event in each of the intervals  

(x1, x1 + ∆1), (x2, x2 + ∆2), ..., (xn, xn + ∆n),  

can be defined. It is expressed as the product of the density of expectation measures at 

different points, namely 
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hn(x1, x2, ..., xn)  = lim
[ ( , )]

..., ...,∆ ∆ ∆

Π ∆

∆ ∆ ∆1 2 0

1

1 2n

E N x
i

n

i i

n
→

= x x xn1 2 ; ≠ ≠ ≠...  

or equivalently 

hn(x1, x2, ..., xn)  = lim [ ( , ) , , ..., ]
..., ...,∆ ∆ ∆

∆
∆ ∆ ∆1 2 0

1 2

1 1 2
n

P N x i ni i

n
→

≥ =  ;  x x xn1 2≠ ≠ ≠...  

     Since hn(...) is a product of the density of expectation measures at different points, the 

density is aptly called the product density. 

      Considering the ordinary renewal process as defined in 1.7.1(a), the renewal function 

H(t) is the expected number of random points in the interval (0; t]. Modify the process by 

allocation of all integral values to { ti } and consider a corresponding sequence of points on 

the real line. In the point process then generated by the random variables { ti }, the counting 

process N(t, x) represents the number of points in the interval (t, t + x] and the product 

density is  

hm(t, t1,  t2, ..., tm)  =  E[N (t, t ) N (t, t ) ...  N  (t, t )]1 2 m′ ′ ′  

    The product density of degree m is  

hm(t, t1,  t2, ..., tm)  =  h1(t, t1) h(t2 - t1) h(t3 - t2) ... h(tm - tm-1);  

           (t1 <  t2  < ... <  tm). 

 

1.8 SCOPE OF THE WORK 

 

     A stochastic model of an urea decomposition system in the fertilizer industry is studied 

in Chapter 2. A set of difference-differential equations for the state probabilities are 

formulated under suitable conditions. The state probabilities are obtained explicitly and the 
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steady state availability of the system is obtained analytically as well as illustrated 

numerically. Confidence limits for the steady state availability are also obtained. 

     In Chapter 3, a dissimilar unit system with different modes of failure is studied. The 

system is a priority system in which one of the units is a priority unit and the other unit one 

is an ordinary unit. The concept of ‘dead time’ is introduced with the assumption that the 

‘dead time’ is an arbitrarily distributed random variable.  The operating characteristics like 

MTSF, Expected up time, Expected down time, and the busy period analysis, as well as the 

cost benefit analysis is studied.  

     A two unit priority redundant system is studied in Chapter 4. The main aim of this 

chapter is to consider the physical conditions of the repair facility since the repair time 

distribution is affected by such conditions. Various system measures are studied, and the 

confidence limits for the availability and busy period are obtained in the steady state case.  

     In most of the available literature on n-unit standby systems, many of the associated 

distributions are taken to be exponential, one of the main reasons for this assumption is the 

number of built-in difficulties otherwise faced while analysing such systems. In Chapter 5 

this exponential nature of the distributions is relaxed and a general model of a three unit 

cold standby redundant system, where the failure and repair time distributions are arbitrary, 

is studied. 

     In Chapter 6, a stochastic model of a reliability system which is operated by a human 

operator is studied. The system fails due to the failure of the human operator. Once again, it 

is assumed that the human operator can be in any one of the three states; namely, normal 

stress, moderate stress or extreme stress. Different operating characteristics like 

availability, mean number of visits to a particular state and the expected profit are obtained. 
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     Results are illustrated numerically at the end of the chapters. 

 

1.9 GENERAL NOTATION 

X(·)   A stochastic process describing the state of a system 

p.d.f.    Probability density function  

r. v.   Random variable 

f(·)    The p.d.f. of the lifetime of a unit while on-line 

g(·)    The p.d.f. of the repair time of a unit  

©   Convolution symbol 

f n( ) ( )⋅   n-fold convolution of a function f(·)  with itself, where f(·)  is arbitrary 

f s*( )    Laplace transform of the function f(t) 

F(t)   Cumulative distribution function:   f u du
t

( )
0
z

F (t)  Survivor function:  1 – F(t) 

Ei    Regenerative event of type i 

A    Availability 

Ai (t)   P(system is up at t / Ei at t = 0) 

A∞   Steady state availability 

R    Reliability 

Ri (t)   P(system is up in (0, t] / Ei at t = 0) 

MLE    Maximum likelihood estimator 

MTSF   Mean time to system failure (also MTTF) 
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MTSR   Mean time to first appointment 

SMP   Semi-Markov process 

MRP   Markov renewal process 
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