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CHAPTER 6  

 

 

CHAOS THEORY BASED MODELS OF SIMPLE SYSTEMS OF 
CONGESTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A modified version of this Chapter was presented at a Southern African Institute for Industrial 
Engineering Conference, 2004. 
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6.1 Introduction 
 

When embarking on the use of Chaos Theory in modelling simple Systems of 

Congestion it is considered prudent to provide a benchmark based on the 

classical M/M/1 queue to serve as the necessary introductory backdrop to 

the investigation: 

 

6.1.1 The classical Poisson arrival system 

6.1.1.1 The general modelling approach 

Modelling a completely random arrival process traditionally involves using the 

Poisson distribution (negative exponentially distributed inter-arrival times) as 

the cornerstone of analysis in generating an ordered sequence of arrival 

events. This implies that the arrival system is treated as being Markovian. 

 

If arrivals are considered to occur within a temporal sequence of equal time 

intervals, the cumulative Poisson distribution can adequately generate arrivals 

with the passage of time. 

The Poisson distribution of arrivals is given by 

 

!n
e

P
n

n

λλ −

=    n=0,1,2…  and λ  > 0   (6.1) 

 

where  n  = no. of arrivals in a given time interval 

  λ = average no. of arrivals in the temporal sequence of time intervals 

 

An example of the generation of a Poisson based arrival process for 8=λ  

over 200 one minute time intervals is shown in Fig. 6.1.1. 

 

The generation of the arrival process is driven by a random number 

generator. The adequacy of the generation process is demonstrated by the 

achieved results. 
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Fig. 6.1.1 GENERATION OF THE ORBIT OF POISSON ARRIVAL EVENTS 
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6.1.2 The classical exponential service system 

6.1.2.1 The general modelling approach 

In a similar fashion to the modelling of completely random arrivals (See par. 

6.1.1), the modelling of a single completely random service process often 

involves the Poisson distribution (negative exponentially distributed service 

times) in generating an ordered sequence of service events. This implies that 

the service system is treated as being Markovian. 

 

If consecutive service events are considered to occur within a temporal 

sequence of equal time intervals (synchronously identical to the arrival time 

intervals) the cumulative Poisson distribution can adequately generate service 

events with the passage of time. 

 

The Poisson distribution of service events is given by 
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=  n=0,1,2… and µ  > 0     (6.2) 

 

where  n  = no. of service events offered in a given time interval 

µ = average no. of service events offered in the temporal sequence 

of time intervals 

 

An example of the generation of the service process for 10=µ  over 200 one 

minute time intervals is shown in Fig. 6.1.2 

 

The generation of the service process is driven by a random number 

generator. The adequacy of the generation process is demonstrated by the 

achieved results. 
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Fig. 6.1.2 GENERATION OF THE ORBIT OF POISSON SERVICE EVENTS 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  EErraassmmuuss,,  GG  BB    ((22000066))  



 95 

6.1.3 The classical M/M/1 queue 

6.1.3.1 The general modelling approach 

From the point of view of analyzing Systems of Congestion recent significant 

developments have addressed approximations and numerical techniques in 

manipulating steady-state and non steady-state systems. With this in mind 

and obeying the requirement of model simplicity and robustness, the 

concept of studying a temporal sequence of equal time intervals plays a 

central role in modelling the M/M/1 queueing system as it deals with arrival 

and service events. The novelty of the proposed system model is based on 

the flow of entities as follows: During a given time interval (t) the number of 

entities in the system at the end of time t equals the number of system entities 

at the beginning of time t plus the number of arrival events in time t minus the 

number of service events offered (available) in time t, i.e. 

 

No. in system at the end of (t+ t∆ )=  [No. in system at the beginning of t] + 

      [No. of arrival events in t∆ ] –  

      [No. of service events offered in t∆ ]   (6.3) 

 

The model calculates the average number in the system during the interval 

( t∆ ) as follows: 

 

If the number of service events offered in t∆  exceeds the sum of the number 

in the system at t plus the number of arrival events in t∆ , the average number 

of units in the system during t∆  is given by: 

[(No. at t + No. of arrival events in t∆ )/2]X 

[(No. at t + No. of arrival events in t∆ ) /  

(No. of service events in t∆ )]      (6.4) 

 

If the sum of the number in the system at t plus the number of arrival events in 

t∆ exceeds the number of service events offered in t∆  the average number of 

units in the system during t∆ is given by: 
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[(No. at t + No. of arrival events in t∆ )+  

(No. at t +No. of arrival events in t∆ - No. of service events offered in t∆ )]/2

          (6.5) 

 

A model of the events which take place within a time interval is an example of 

a highly simplified model of a deterministic instantaneous replenishment 

inventory system which allows shortages to occur during the time interval i.e. 

when some service events are analogously on offer but not used within the 

interval as a result of insufficient arrivals. 

 

One may speculate that such an elementary model does not meet the 

requirement of mathematical elegance, or that an attempt is being made to 

approach the modelling problem pragmatically to avoid immersion into higher 

mathematics. At this juncture of the modelling process one should await the 

results which follow, results which are based on further development of the 

system modelling approach before prematurely judging the merit of the model. 

 

The resulting orbit of number of entities in the system which is obtained by 

merging the arrival and service processes used in sections 6.1.1 and 6.1.2 

does not deliver the required theoretical mean number in the system for the 

temporal sequence of time intervals. To compensate for this state of affairs 

the data stream of system entities must be manipulated by means of a 

designer equation(Appendix B) The designer equation is a necessary 

adjunct to equations (6.3) and (6.4) to shape the data stream of system 

entities to reflect reality of system operation modelled via passing reference to 

interevent times (arrival and service). 

 

The generation of the system state with the passage of time is driven by 

random number generation and is shown in Fig. 6.1.3. The adequacy of the 

generation process, which includes the use of a designer equation, is 

demonstrated by achieved results. 
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The model can now be used in spreadsheet form for the analysis of steady 

state and transient operation of an M/M/1 queue. Consequently it may also 

serve as a touchstone in evaluating the use of the Chaos based models 

which follow. One should however not lose sight of the fact that the 

Poisson/exponential assumption is a mathematical concept and that no real 

process can be expected to constantly be in agreement with it. It is however 

heartening to know that use of it as a benchmark will lead to a conservative 

evaluation of alternative modelling methods. 
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Fig. 6.1.3 GENERATION OF THE ORBIT OF A CLASSICAL POISSON M/M/1 

SYSTEM 
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6.2 Introduction to Chaos generation 
 

Having established the classical M/M/1 queue as the benchmark for the 

general use of chaos based models the research may progress to create the 

relevant method of analysis for a chaos driven single channel queue with an 

average arrival rate of λ =8 and an average service rate of µ =10. The initial 

research efforts are based on: 

• Verhulst logistic mapping 

• Weibull based mapping 

• Trigonometric mapping 

Fig. 1.1 serves as an example which displays the nature of iterative mapping 

of the Verhulst type. 

6.2.1 The Verhulst generated arrival system 

6.2.1.1 The general modelling approach 

In attempting to emulate arrival events of an M/M/1 system by using the 

Verhulst logistic generation method it is necessary to at least achieve 

“Poissonness” (Grosh [4]) by:  

• selecting an appropriate logistic parameter to ensure that “chaotic” 

randomness is generated, and  

• creating an emulated mean and standard deviation which are related as 

in a Poisson distribution. 

At this juncture it must be emphasized that the use of a designer equation 

(Appendix A) becomes mandatory to fashion the data stream of generated 

arrivals effectively. 

 

An example of the temporal sequence of the number of arrival events in equal 

time intervals for an average arrival rate of λ =8 as generated by a Verhulst 

logistic model over 200 one minute time intervals is shown in Fig. 6.2.1. The 

adequacy of the generation process is demonstrated by the achieved results. 
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Fig. 6.2.1 GENERATION OF THE ORBIT OF VERHULST ARRIVAL EVENTS 
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6.2. The Verhulst generated service system 

6.2.2.1 The general modelling approach 

In attempting to emulate service events of an M/M/1 system by using the 

Verhulst generation method it is necessary as in the case of arrival events to 

at least achieve “Poissonness” (Grosh [4]) by: 

• selecting an appropriate logistic parameter to ensure that “chaotic” 

randomness is generated, and 

• creating an emulated mean and standard deviation which are related as 

in a Poisson distribution. 

An example of the temporal sequence of the number of service events in 200 

one minute equal time intervals for an average service rate of µ =10 as 

generated by a Verhulst logistic model is shown in Fig. 6.2.2. The adequacy 

of the generation process is demonstrated by the achieved results. 
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Fig. 6.2.2 GENERATION OF THE ORBIT OF VERHULST SERVICE EVENTS 
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6.2.3 The Verhulst generated single channel queue 

6.2.3.1 The general modelling approach 

If as at the outset of this chapter considering the use of chaos generation 

methods to model a single channel queueing system by means of 

approximations and numerical techniques is heeded, and robustness and 

simplicity of modelling is to be achieved, the concept of studying a temporal 

sequence of equal time intervals which accommodate arrival and service 

events is justified. 

 

As in the case of the classical M/M/1 queue analysis of par. 6.1.3.1 the 

Verhulst system model makes use of the highly simplified model described in 

equation (6.3) which also requires manipulation of the generated data stream 

by designer equations. 

 

The generation of the system state with the passage of time is driven by 

chaos iterative generation and is shown in Fig 6.2.3. The adequacy of the 

generation process, which includes the use of a designer equation, is 

demonstrated by the achieved results. 
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Fig. 6.2.3 GENERATION OF THE ORBIT OF A VERHULST SINGLE CHANNEL 

QUEUEING SYSTEM 
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6.2.4 Benchmarking the Verhulst generated single channel queue model 

Comparison of the Poisson M/M/1 and Verhulst methods of generating 

system dynamics as depicted in Figs. 6.1.3 and 6.2.3 respectively results in 

• achieving equivalence of mean and standard deviation values for the 

arrival and service processes, 

• achieving graphical plausibility of system orbit likeness i.e. applying the 

TLAR criterion (“that looks about right”) in comparing the two system 

entity orbits. 

No quantitative justification for “Poissonness” other than the foregoing 

parameter determination and application of the TLAR plausibility criterion has 

been carried out. 

 

As a further matter of interest the Verhulst methods of generating system 

dynamics over 200 one minute intervals are shown in Fig. 6.2.4 for a general 

service distribution queueing system for 10,8 == µλ  and 010.0=σ . The 

average number of entities in the system is given by: 

ρ+= qLL         (6.6) 

for 
)1(2

222

ρ
ρσλ

−
+=qL        (6.7) 

and 
µ
λρ =         (6.8) 

where: 

L  = the average number of entities in the system 

qL  =the average number of entities in the queue 

ρ  =the traffic intensity 

λ  =the average number of arrivals entering the system per 

unit time 
2σ   =the variance of the service time 

µ  =the average number of services offered per unit time 
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The results indicate 

• achieving equivalence of mean and standard deviation values for the 

arrival and service processes, 

• achieving graphical plausibility of system orbit likeness i.e. applying the 

TLAR criterion in comparing the two system entity orbits. 
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Fig. 6.2.4 GENERATION OF THE ORBIT OF A VERHULST QUEUEING SYSTEM 

(GENERAL SERVICE DISTRUBUTION) 
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6.2.5 Extending the Verhulst generated single channel queue model to deal with 

variable traffic intensity 

Having achieved a degree of likeness greater than a scant semblance 

between the classical M/M/1 and Verhulst queueing system one may embark 

on extending the Verhulst model to include a range of traffic intensities which 

may prove to be beneficial in analysing the transient (dynamic) and steady 

state operation of a single channel queue. 

 

Consequently the Verhulst queueing system has been extended to include a 

range of average arrival rates (0.2 <≤ λ 1) for an average service rate µ =10. 

 

Traffic intensity 
10
λρ =  

 

An example of a Verhulst generated single channel queue for a chronological 

sequence of values of λ of 9.8; 8.0; 9.5; and 7.0 over 200 one minute intervals 

is shown in Fig. 6.2.5. 

 

Each of the chronological values of λ  are employed for four consecutive 

epochs of 50 consecutive intervals. 
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Fig. 6.2.5 GENERATION OF THE ORBIT OF AN EXTENDED VERHULST SINGLE 

CHANNEL QUEUE  
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The system orbit generated for a total of 200 one minute consecutive intervals 

unambiguously displays how the system behaves dynamically in a natural 

sense to being subjected to step functions in average arrival rate, albeit that 

the transitions from one steady state to a following steady state are 

ephemeral. 

 

The extended model is versatile and amenable to use of many values of traffic 

intensity which may occur in practical situations. Such traffic intensity values 

may be selected a priori by external control or by automatically adjusting the 

arrival and service processes by means of internal system feedback 

mechanisms. 
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6.3 Further examples of Chaos generation 
 

The introduction to Chaos generating methods described in par. 6.2 makes 

mention of other methods of mapping which may be considered as 

alternatives to Verhulst logistic mapping i.e. 

• Weibull based mapping, and 

• Trigonometric mapping. (Stewart [38]) 

 

The general modelling approach used for the generation of orbits for the two 

above- mentioned methods of mapping slavishly follows the underlying 

mathematical regimen employed in par.6.2. 

 

The results which have been achieved are shown in : 

• Fig. 6.3.1: Generation of the orbit of Weibull arrival events 

• Fig. 6.3.2: Generation of the orbit of Weibull service events 

• Fig. 6.3.3: Generation of the orbit of a Weibull single channel queueing 

system 

• Fig. 6.3.4: Generation of the orbit of Sin arrival events 

• Fig. 6.3.5: Generation of the orbit of Sin service events 

• Fig. 6.3.6: Generation of the orbit of a Sin single channel queueing 

system. 

 

The orbits shown have all been prepared for an average arrival rate of 8=λ  

and an average service rate of 10=µ . 
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Fig. 6.3.1 GENERATION OF THE ORBIT OF WEIBULL ARRIVAL EVENTS 
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Fig. 6.3.2 GENERATION OF THE ORBIT OF WEIBULL SERVICE EVENTS 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  EErraassmmuuss,,  GG  BB    ((22000066))  



 114 

 
Fig. 6.3.3 GENERATION OF THE ORBIT OF A WEIBULL SINGLE CHANNEL 

QUEUEING SYSTEM 
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Fig. 6.3.4 GENERATION OF THE ORBIT OF SIN ARRIVAL EVENTS 
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Fig. 6.3.5 GENERATION OF THE ORBIT OF SIN SERVICE EVENTS 
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Fig. 6.3.6 GENERATION OF THE ORBIT OF A SIN SINGLE CHANNEL QUEUEING 

SYSTEM 
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Fig. 6.3.7 PICTORIAL COMPARISON OF ORBITS OF SEVERAL SINGLE CHANNEL 

QUEUEING MODELS 
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6.4 Concluding remarks on single channel orbits resulting 
from a menu of methods of generation. 
 

When viewing the various generated orbits shown in Fig. 6.3.7 one perceives 

that 

• the various numerical values of average and standard deviation are 

virtually identical, 

• one is inclined to believe that a measure of similarity exists in the 

histograms, and 

• one consequently cautiously harbours the suspicion that further 

extension and embellishment of the concept of chaos based 

system orbit generation to match examples from the plethora of 

practical complex Systems of Congestion which exist, may be 

attempted. 

 

The practical complex Systems of Congestion which are to be modelled in the 

following chapter are of a divergent nature and of necessity at least contain 

real time feedback rules to support decision making in achieving optimum 

transient and stable system operation. 
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