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CHAPTER 5

AN M/G/1 QUEUEING SYSTEM WITH TWO MODES OF FAILURE
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Introduction

In the previous chapter, queueing systems with an exponential service
distribution were considered. However in real life situations the service
distribution need not be exponential. It may be of phase type or k-Erlang as in
the case of buying cosmetics and provisions in a default mental state, taking
X-rays, blood test etc. in a hospital; receiving cash from a bank. Besides,
exponential service is found in industry or in production or in mechanical
devices. Hence the study of such systems is absolutely essential. In this
chapter, an M/G/1 queueing system where the service facility is subject to
failure in two modes is considered, partial and total.

Model description

In this model the inter-arrival time of entities follows a negative exponential
distribution i.e. the arrival process is Poisson. The service time Xn of the nth
entities follows a general distribution by with an average service rate of
when the service channel is in the normal working condition. The service rate
of the nth customer follows a general distribution and the average service time
is denoted by u,(< u,) when the service channel is in a partial failure mode.

After completion of the repair of the total failure mode the channel directly
changes to the normal mode without passing through the partial failure mode.
If the service channel repair in the partial failure mode is completed, the
system enters the normal working mode; otherwise it goes into the total failure
mode. The repair times of the partial failure mode and the total failure mode
are exponentially distributed with different densities. The failure times from
normal to partial, and partial to total failure mode are also exponentially
distributed with different densities. If the repairs in the partial failure mode are
in the process of being completed, the system will not enter the total failure
mode. Further, it is assumed that the repair process starts instantaneously

after the completion of repair.
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System description

A:
W (n,t):

S, (x,1):

R, (1):

a,(o,)dt:

By (B,)dt:

My (x)dx

Arrival rate of entities (41>0).
The joint probability that at time f, there are n (n>0) entities in the
system with elapsed service time lying between x and x+dx and the
service channel is in the normal working condition.
The joint probability that at time f, there are n (n>0) entities in the
system with elapsed service time lying x and x+dx and the service
channel is in the partial failure mode.

The probability that at time t, there are n (n>0) entities in the system

and the service channel is in the total failure mode.

The first order probability that a total (partial) failure occurs during
the short interval of time dt.

The first order probability that the repair of the service channel is in
the total (partial) failure mode will be complete during the short
interval of time dt. As soon as the service channel is subject to total
failure, it ceases to provide service instantaneously.

The first order probability that the service will be complete in time x
and x+dx, when the service channel is in normal working condition,
given that the same was not complete till time x and is related to the
density function Bj(x) by the relation.

B, (x) = 1, (x) GXp|:— Iﬂl (y)dy:|

M, (x)dx

The first order probability that the service will be complete in time x
and x+dx, when the service channel is in the partial failure mode,
given that the same was not complete till time x and is related to the
density function Bx(x) by the relation.

B, (x) = i, (x) eXp|:— J/‘z ()’)d)’}
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Equations governing the system

Using probability arguments, the following partial difference-differential

equations are obtained.

iWn (x,0)+ EW,T () +[A+ 1, (x) + o, W, (x,1) = AW, _ (x,1)
ox ot in>1
(5.4.1)
0 0
—W,(x, )+ —W, (x,8) +[A + u, (x) + &, W, (x,) =0
o0x ot
(5.4.2)
J -
W) +[A+ 0, W, (1) = [W, ey, () + B Ry (1) + B,S, (1)
0
(5.4.3)
0 0
—S, (0, +=S,(x,)+[A+u,(x)+a, + B,1S,(x,1) =S, (x,1)
ox ot n >1
(5.4.4)
0 0
—S,(x6,)+=—S,(6,)+[A+ 1, (x)+a, + B,1S,(x,1) =0
0x ot
(5.4.5)
J -
7 SoO+[ A+, + B,1S,t) = ISI (x, )L, (x)dx + o, W, (1)
0
(5.4.6)
4 R (t)+[A+B/IR, (1)=AR_,(t)+ S, (1)
dt ;n>0
(5.4.7)
%RO &) +[A+ B1R,(t) =, S, (1)
(5.4.8)
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subject to boundary conditions

W, (0,1) = TWM (.0 (x)dx+ 5,8, () + BiR, (1) ; n>T
0
(5.4.9)
W, (0,7) = TWZ (x, ), (x)dx + B,S,(t) + AW, (¢)
0
(5.4.10)
S,0,1)= TS,M (e, (x)dx +a,W, (1) ; n>1
0
(5.4.11)
S,(0,1) = TSZ (O, (X)dx + W, (1) + AS, (1)
0
(5.4.12)

Without loss of generality it may be assumed that the system is initially empty
and the server is in an idle period when the service channel is in the normal

working condition W, (0) =1and all other initial probabilities are zero. i.e.
Ww,(0)=6,,where ¢, ,is Kronecker’s delta function
S,(0)=0, forn=0

R.(0)=0, forn=0 (5.4.13)
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Time dependant solution

Denoting the Laplace transform of a function f(t) by f*(s),and taking the
Laplace transform of equations (5.4.1) to (5.4.12) and using (5.4.13), it follows
that

aiwj (x,8)+[s+ A+ 4,(x)+a, W, (x,5) = AW, (x,s) ,Nn>1
X

(5.5.1)
aiWI* (x,8) +[s+ A+ 4,(x)+, W, (x,5)=0
X
(5.5.2)
(s+A+a,)W, (5) = [W,' (x, )1, (x)dx + B, R, (5) + B,8, (5)+1
0
(5.5.3)
aiS:(x,s)+[s+/1+,u2(x)+al + 3,18, (x,8) = AS, (x,5) ,n >1
X
(5.5.4)
aiSl*(x,s)+[s+/1+,uz(x)+0!2 + 5,18, (x,5)=0
X
(5.5.5)
(s+ A+, +B,)S,(5) = [ 8 (x, ), ()dx + 2, W, (5)
0
(5.5.6)
(s+A+B)R (s)=AR _,(s)+,S, (s) ,n>0
(5.5.7)
(s+ A+ B)R,(s)=,S,(s) , >0
(5.5.8)
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subject to boundary conditions

W, (0.5) = [ W, (xe5)pt, (s + £S5 (9)+ BR(5) ;N >1
0
(5.5.9)
W, (0,5) = TWJ (6,8 (X)dx + B, () + BR () + AW, (5)
0
(5.5.10)
$1(0.5) = [ S}y (x.)ta (s + W, ) ;0 >1
0
(5.5.11)
S;(0,s) = Tsz (x, )L, (x)dx + a, W, (s) + AS, (s)
0
(5.5.12)
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Defining the following probability generating functions:

W (x,s,2) :ZW:(x,s)z"

n=l1

W (0,5,2) =Y W, (0,5)z"
n=l1
W (s,2) =W, (s)+ JW*(x,s, z)dx
0
S (x,5,2)=).8,(x,5)z"
n=1

5°(0,5,2)=).S,(0,5)z"

n=1

S (5,2) = S, (8) + [ S7 (x5, 2)dx
0

R'(s,2) = iR; (s)z"

n=0

oo

Zz” *(5.5.1) + z*(5.5.1) and using (5.5.13), it follows that

n=2
a * *
a—W (x,8,2)+[s+A+Az+u,(x)+ 0, W (x,5,2)=0
X
Integrating this from 0 to x gives

W'(x,s,2) = W*(O,s,z)exp{— (s+A+Az+a, )x—J‘,u1 (x)dx}
0

oo

> z"*(5.5.4) + z*(5.5.5) and using (5.5.13), it follows that

n=2

aiS*(x,s,z)+[s+/1—/12+,u2(x)+0{1 +,18"(x,5,2)=0
X
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Integrating this from 0 to x
S (x,5,2)=S"(0,s,2)exp| — (s + A+ Az + ¢, +ﬁ2)x—J.,uz(x)dx}
0

(5.5.15)

> z"*(5.5.7) + z*(5.5.8) and using (5.5.13), it follows that

(s+A+Az+ B)R (s,2) =, S (s,2)
(5.5.16)

oo

Zz"“ *(5.5.9) + z2*(5.5.10)+z*(5.5.3) and using (5.5.13), it further follows that

n=2
W 0,5, 2)+(s+A+a,) W, (s) = jw’"‘(x,s,z)u1 (x)dx+ 3,28 (5,2)
0

+ PR (5,2) + AW, (s)+z2
(5.5.17)

iz"“ *(5.5.11) + z2*(5.5.12)+z*(5.5.6) and using (5.5.13), it results in
n=2

28" (0,5,2) + (s + A+, + B,)28, () = [ 8" (x,5, )ty (W) + 0, 2W " (5,2) + A2 S, (5)
0

(5.5.18)
Denoting s+ A—Azby n and using (5.5.14) in (5.5.17), and then integrating

from Oto «, it is clear that
(77+0!2)[z*— B (n+a, )]W*(S’Z) :
1—,31(77+012) 1_131(77"'“2)
+ 83,28 (s,2)+ BzR (s,2) + 2

_(mtay)(z-Dp; (77+a2)W*(S)
- 0

(5.5.19)
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Using (5.5.15) in (5.5.18), and then integrating from 0 to «, it follows that
n+a +,52)[z—,3;(7]+0!2 + 5] o _ (n+a +162)(Z_1)ﬁ;(77+a’2 +5,)

* S (s, - S,
1—,32(774-0!2-!-,32) (S Z) l—ﬂ2(7]+0!2+,32) O(S)
+a,zW (s,2)
(5.5.20)
n+B)R (s,z) =S (s,2)
(5.5.21)
Using (5.4.20) and (5.5.21) and simplifying
. M+a,)z-DB (n+a,) , m+o+B)lz— B, +0o,+ )]
K(s,2W (s,2) = - * - *m+ LW,
(s,2)W (s,2) - f ) LI EYA M+ BOW, ()
Wz=D@+o+B,) . :
+ 1_,3;(77+0(1+,32) [ﬂz(ﬂ+ﬂl)+alﬂl][ﬂz(77+a1+132)]So(s)
n Z(77*'131)(774'@'1 +:32)[Z_IB;(77+0{1 +:32)]
1—,3§(77+051+,32)
(5.5.22)
K(s.2)8"(s.0) = N RN= B+ )L, 1+ f)n+ 00+ f) =D+ +fy) g )
-8 (n+a,) 1-B,(n+a,+ 5,
(7]+6¥2)(Z—1)ﬁ;(77+0(1 +ﬁ2) st
(5.5.23)
K(S,Z)R*(S,Z) — a1(77+0{2)[*2_,81*(77+0{2)] % n+a +,32)(*z—1),32*(7]+0{1 +:32) *S;(s)
1_181(77""@'2) 1—,32(7]-!-0{14-,32)
m+o)z-DB (n+a,) . -
+a1a2z{z+ 1—[7’1*(774'0!2) W, (s)}
(5.5.24)
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where

m+a,)(z- B (n+a,)) ,
1_,31*(77+0{2)
(n+a, +132)(Z_,B;(n+a1 +/,))
1-8,n+a, + 5,

K(s,2)=m+B) _ala2ﬂlzz

_0’2132Zz

Since W' (s,z)is a regular function and denominator of (5.5.22) i.e. K(s,z)
vanishes for some zin |z| <1, the numerator also vanishes for the same value
of z. Applying Rouche’s theorem the unknown W, (s) and S,(s) can be

determined. Hence W'(s,2),S (s,z)andR’(s,z) can be completely

determined.
Special cases

If it is assumed that the service is in the normal working condition and that
partial failure of the service channel is exponential, then

* H,
+A-Az+a,) =
pils et ) s+tA-Az+a, + 1,

* Hy
+A-Az+a + B,) =
Pals e+ p) S+A-Az+a, + B, + i,

Consequently equations (5.5.22) to (5.5.24) would become
K (5,2W (s,2) =+, + B, + 1)z — 1, 1%+ B) *[z+ (z = DW, (s)]

+z(z-1D* [,32(77 + 181) + auBl] */*12S;(S)
(5.5.25)
Kl(&Z)S*(S,Z) = 0/’21(77"' 161) *[z "':ul(Z _I)WO*(S)]

+(+ o, + 1)z — 1= @+ B (z =D Sy (s)
(5.5.26)

K(s,2)R (s,2) =, zlz+ 1, (z = DW, ()] + &, [+, + 1)z — 1, 11, (2 = DS, ()
(5.5.27)
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where
K (s,2)=(+A-Az+ B)*[(s+A-Az+a,) — i 1*

[(s+A—Az+a, + B, + 1)z -, 1-a, 5,7 1 - o, B2
Since W'(s,z)is a regular function W, (s)and S,(s)can be determined as

before.

Steady state solution

In taking the steady state probability corresponding to Wi(t), Sn(t) Rn(t) as Wh,
Sn, Rn, and the corresponding probability generations as W(z), S(z) and R(z)
by using the Tauberian property (see Widder [47]).

lirr(}sf*(s) = lim £ ()

if the limit on the right exists.

The steady state solution can be obtained from (5.5.22), (5.5.23) and (5.5.24)
as

(7, +a2)(1_1)ﬂ1(771 +a,) " (n +o +/62)*[Z_ﬂ2(771 T +ﬂ2)]

K(2)W = % 114
(W 1= B+ ) =B, +a,+ ) 0+ AWy
2z=-D*(p+a+ By, ¥ g
+ l—ﬁl(nl+al+ﬁ2) [ﬂ2(771+161)+a1161] 0
(5.6.1)

(m+ao,)z-Df(n+a,) W 4 (n+a)lz— f(n +a,)]

0

K(2)S(2) = az(m + ) *

1_/61(771"'“2) l_ﬂl(nl +0!2)
*(771+a1+52)(z_1)52(771+a1+52)>|< + )S
1_ﬂ2(771 +q +ﬂ2) (77 ﬂl ’
(5.6.2)
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K(2)R(2) = ar, * (m+a)lz=Bm+a)], (m+a+B)z-DBm+o+B,) v
l 1= B,(m +ay) 1-8,(m+o,+ B,) 0

raa.z* (m+a,)z-Df(1n+a,) W
14

1- B +a,) '
(5.6.3)
where n, =41 - 4z and
(771+a2)[z_181(771+a2)]*(77 +a +ﬂ)>l<
1_ﬂ1(771 +0!2) 1 1 ’ 2
K()=@+pB)* —aa,fz

[z—B,(n +a, + f5,) 2
-
1_ﬁq(771 +a, +ﬂ1) ZIBZZ

As earlier, applying Rouche’s theorem, the two unknowns W, and So may be
determined.

Some special cases

Case 1
If the service times in the normal working mode and the partial failure mode
are exponential, then

M,
A-Az+a,) =
pA=dzta) A—Dz+a, + 1,

Hy
A-2 -
hA-Rra+f) A=Az+a, + B, + 1,

Therefore equations (5.6.1), (5.6.2) and (5.6.3) become
Kl(Z)W(Z) =(z-D* [(771 +a + 132 + luz)z - ,uz] g (771 + ﬂl):ulwo

+z2(z=D*[B,(m + B) + 1% 1,8,
(5.6.4)
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K (2)S(z) = a,z(n, + B * (=D Wy +(n, + B) ¥, +a, + 1)z — 1% (2 =D, S,

(5.6.5)

K[ (Z)R(Z) = alazz(z - 1)#1W0 + a1 [(771 + az + ;u1 )Z - ,Ul ] * (Z - 1)/1250
(5.6.6)

where

K\ (2) =@, + L) *[((m, + oy + w)z— ) * (), + o, + B, +ﬂ2)z—ﬂ2)—O{Zﬁzzz]—alazﬂlzz

The two unknowns Wy and Sy can be determined as before

Case 2
If there is no failure at all, then o, =a, =0. Using this in (5.6.1) to (5.6.3), it
follows that
_ (z-DB,(A-1A2)
=B A=Az °

(z=DS,(A-A2) s
Z_ﬂz(/%_/zz) 0

W(z)

S(z) =

R(z)=0

The identical forms of W(z) and S(z) confirm that the service time distributions
in the normal working condition and the partial failure mode are the same

when there is no failure at all.

Concluding remarks

At this juncture of the modelling process one may admire the modelling

elegance achieved despite the attendant intricacy of applications in practice.
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