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CHAPTER 4

AN M/M/1 QUEUEING SYSTEM WITH BATCH ARRIVALS OF
VARYING SIZE, SERVICE OF FIXED BATCH SIZE AND TWO MODES
OF FAILURE OF SERVICE FACILITY
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Introduction

In many industrial processes, the service is interrupted because of the
occurrence of breakdown in the facility that provides the service. The entities
will not be serviced unless the facility is repaired. The server if human, may be
in need of rest from time to time (Yadavalli et al [44]) or if non-human may be
subject to two modes of failure, partial or total. That is, when the service
facility is in partial failure mode, it gives service with a lower rate than in
normal operating conditions. Various authors have analysed queueing
systems where the service facility is subject to two modes of failure (Madan
[49], Jain and Sharma [50], Reddy [51], and Sridharan and Jayashree [52]).
Queueing systems with two modes of failure and arrivals and services in
batches have not been considered so far. Such types of service interruptions
are common in industry, factories, telephone booths and in operation of
mechanical devices such as electronic computers, etc. In this chapter an
M/M/1 queueing system is considered where the service facility is subject to
two modes of failure, arrivals are in batches of varying size and service is

rendered for batches of fixed size.

Model description

In this model units arrive at the system in batches of varying size and batches
are pre-ordered for service purposes. The service of units is rendered in
batches of fixed size and the service times of successive batches are

distributed exponentially by a single server with rate g in normal working
condition and at a slower rate u, ,(u, <) in case of partial failure of the

service channel.

One of the underlying assumptions about the repair process is that it starts
instantaneously. If the service channel repair in the partial failure mode is
complete, the unit enters the normal working mode; otherwise it goes to the

failure mode.
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After the repair of the service channel in total failure is complete, the unit goes
directly to the normal working mode without passing through the partial failure
mode. The repair times of failure modes, and the failure times are

exponentially distributed with different derivatives.

Assumptions and notation

The system may be described as follows:
Entities arrive in batches in varying size. Let Ac,dt(i =1,2,3...,k) denote

the probability that a batch of i entities arrives in a small interval of time

k
dt, where 0<¢, <land Zci =land A4>0is the mean arrival rate of

i=1

batches which are pre-ordered for service purposes.

2. The service of entities is rendered in batches of fixed size b, (b>1) and

the service times of successive batches are distributed exponentially

with mean service time i, (u,>0) and L, (u,>0) when the service
1 2

channel is in the normal and partial failure mode respectively.

3. a,(a,)dris the first order probability that a total (partial) failure occurs

during a short interval of time df.

4. B,(B,)dtis the first order probability of completion of a repair of total

(partial) failure during a short interval of time dt.

5. Wi (t) is the joint probability that at time ¢, there are (n> 0) entities in the

queue when the service channel is in the normal working mode (i.e.

excluding the batch of entities in service if any).

6. Sn(t) is the joint probability that at time t. there are n entities (n> 0) in the

queue when the service channel is in partial failure mode(i.e. excluding

the batch of entities in service if any).

7. Rn(t) is the probability that at time t, there are (n> 0) entities in the

queue when the service channel is in total failure mode (i.e. excluding

the batch of entities in service if any)
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Q(t) is the probability that at time t, there are no entities either in service
or in the queue and the service channel is in normal working mode, and
though operative, is idle

F(t) is the probability that at time t, there are no entities either in service
or in the queue, and the service channel is in partial failure mode, and
though partially operative, is idle.

Pn(t) is the probability that there are (n> 0) entities in the queue
irrespective  of the state of the service channel and that
Pn(t)=Wn(t)+Sn(t)+Rn(t).

If repair in the partial failure mode is in the process of being completed,
the system will not enter the total failure mode.

Equations describing the system

Using probability arguments, the following difference-differential equations are

obtained:

d n
_Wn (t) + (2’—'—#1 + aZ )Wz (t) = ZﬂciWn—i (t) +ﬂlW1+b (t) + lBan (t) + IBZSn (t) ’ n >O’
i=1

dt

(4.4.1)
%WO () + A+, + o)W, (1) = 20(t) +,ulkZ::Wk )+ BR,(t)+ B,S, (1),

(4.4.2)
%Sn O+A+u, +a,+B,)S, ()= Zﬂc,sn_i )+ u,S,.,, O+a,W (t); n>0,

(4.4.3)
%SO O+ A+, +a,+B,)S,(t) = ,uzkz::Sk @) +a,W, (1) + AF (1),

(4.4.4)
%Rn )+ A+ B)R, (1) = lZ::/iciRn_,. O +a,S, (1)

(4.4.5)

%RO )+ A+ B)HR, (1) =, S, (1)
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(4.4.6)
L 0+ A0() = W, ()
dt

(4.4.7)
LR @)+ AF () = 11,5, (1)
dt

(4.4.8)

It is assumed that the system initially starts when there are m entities in the

queue and the service channel is in the normal working condition so that the
initial conditions are

w,(0)=9,,where

lifn=m
5n’m — { 0fn%m }
S (0)=0,Yn>0

R,(0)=0,Vn20
(4.4.9)

4.5 Time dependant solution

Let f"(s) be the Laplace transform of f(t). Taking the Laplace transform of equations

(4.4.1)-(4.4.8) and using (4.4.9), it follows that:

(s+A+u+a,)W, (s)=6,, + ch,.wj_,. )+ W, ,(s)+ BR (s)+ B,S. (s), n>0
i=1

(4.5.1)
(s+ A+ + 0, )Wy (5) = 5, + A0 (5) +ﬂIZb:W,f () + BR, (5)+ 3,S, (5)
(4.5.2)
(54 A4ty +0, + B,)S, () = Zﬂcs (8)+ 1S,y () + W, (5)
(4.5.3)
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b
(S+A+ 1, + 0+ B)So ()= 11, S, () +a,W, (5)+ AF " (s)

k=1

(s+A+p )R:(S) = iﬂc{R*

n—i
i=1

(s)+a,S, (s)

(s+A+ ,BI)R; (8)= alS; (s)
(s+A)Q () = 1, W, (s)
(s+ D)F"(s) = 1,5, (s)

The following probability generating functions are defined as follows:

Wi (s,z)= iW:(s)z"

n=0

S"(s,z) = iS:(s)z"

n=0

R'(s,2)= iR:(s)z”
n=0

C(z) = ici z'
i=1

oo

D " #(4.5.1)+ 2" *(4.5.2)and using (4.5.9), it follows that

z=1
b
[(77"'/11 +a2)zb _:ul]W*(s»Z) =" +zulz(zb = ZOW, (5) = Wy (5)

i=1

+ SR (s,2)+ B,2"S (5,2) + 2"Q"(s)
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D " #(4.53)+ 7" *(4.5.4)and using (4.5.9), the result is

z=1

b
[+, + B, + 1) = 1,87 (5,20 = 1, D (2" = 2)S] (9) = 1,55 ()
i=1
+a, "W (s,2) + A2 F " (s)

(4.5.11)

> 2" *#(4.5.5)+ (4.5.6) and using (4.5.9), it follows that
z=1

(n+ B)R (5.2 =S (5.2)
(4.5.12)
where n=s+A-AC(z)
Simplification of (4.5.10),(4.5.11) and (4.5.12) yields
K(s,2W ' (s,2) = (77+ﬂ1)[(77+,u2 +a,+B,)" —,112]*

b
1,3 (2 = W () + A0 ()2 —MVVO*(S)}r
i=1

Zb[(”"' :31 )132 +0{1p1]>k
B b
1,3 =28 () + AF (912" — 1,5, <s>}

i=1

(4.5.13)

b

azzb(znﬁh +ﬂ12(zb _ ZI)M* (S) +AQ*(S)ZI) _ﬂIWO«(S)J
i=1

K(S,Z)S*(S,Z):(n‘i'ﬁl)

b

o+ + @)’ —ﬂl)*(/‘zZ(Zh —zi)sf(s)j+ﬂF*(s)z” — 14,8, (s)

i=1

(4.5.14)

b
K(s, 2R (5,2) = al[azz”(z"’“’ (= W ()4 20" ()" — Wy <s>ﬂ

i=1

i=1

b
+ {((77 it an)z - {MZ(Z” -z )ij () + AF" (5)2" = 1,5, (S)}

(4.5.15)
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(s+D)Q () = i, W, ()

(4.5.16)
(s+F (s) = 14,8, (s)

(4.5.17)

where

K(s,z) = (77+161)[((77+;U1 t+a, )Zh —H, X(ﬂ"‘ﬂz t+a, +ﬂ2 )Zb "':uz)_0‘(216212[)]_0‘(10‘(2161Z2]7

((5+ 2= 2@ + 1, + )" - )
(2)=(s+A-AC(2)+ )
f(z ) Z ﬁl |:((s+/1—/1C(Z)+:u2 +a, +ﬂ2)zb —,Uz)_azﬁzZZh
g(Z) = a’1a2:3122b

For |¢[=1

(s+2-2C@)+ B (s +A-AC() + 1, + )" — ;)

(2)|=
|f - | ((S-I-ﬂ—ﬂC(z)-l—,uz t+a, +,32)Zb _/Jz)_azﬂzz%

=|(s+ A-AC(z) + B,)
|[((S+/1_1C(Z)+,U1 ta, )Zb — K, )K(S+/1_}LC(Z)+/12 +a, + f, )Zb _ﬂz)_azﬂzz%

(s +A=2C() + 1, + )|z’ |~ 1))

2|s+/1+/1C(Z)+,31| b 2
(s+A-AC(D)+u, +, +ﬂ2)|z |_luz)_a2ﬂ2|Z |

(s+A-AC()+u, +a,)— 1)

=ls+A-AC(2) +
|S (@) ’B"((s+/1—2C(z)+ﬂ2+a2+ﬁ2)—ﬂ2)—a2ﬁz

((s+4 TH T, _/1|C(Z)|) - M)

2|5+ A+ B - A|C(2)
(s+ A+, +a, + B, = AC(2)) — 1) — 0, B,
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(s+A+p +a,—A— )
(s+A+u,+o,+B,-A-a,)-a,p,

>|s+A+ B, -
=|s+ B |(s+a,)(s+a, + B,) -, B,
(~ Re(s)>0

Z |,31||0{2(a'1 +,52)—012,52|

2|f ||
= ala2ﬂl
For |¢[=1
|g(Z)| = a1a2ﬁ1‘Z2h‘ =a,a,p,

~|f@]>[g@[on [d=1
Since f(z) and g(z) are differentiable inside and on the contour |z|=1and
|f(2)>[g(2)] on |¢=1, f(z)-9(z), ie. the denominator of equations
(4.5.13),(4.5.14) and (4.5.15) have the same number of zeros inside|z| =1as that

of f(z) by Rouche’s theorem. The zeros are given by the equations

s+A-AC(z)+ B, =0and

ls+A-AC()+u, + @)z’ =, |#|(s + A= AC() + i, + @, + B,)z" — g, |-, 8,22 =0

The later equation has 2b zeros inside |z|=1. Thus the denominator K(s,z)

has 2b zeros inside |z]=1. Since W(s,z)is regular inside the contour |z =1,
the numerator must vanish from the zeros of the denominator, as such there

are 2b linear equations in 2b unknowns, V?:(s),rzl,Z...b, S_f(s),rzl,z...b.

These together with (4.5.16) and (4.5.17) are sufficient to determine all the
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2b+2 unknowns. W (s,z) and hence S (s,z) and R (s,z) can be completely

determined.

The steady state solution
If Wn, Sn, Rn, Q and F represent the respective steady state probabilities
corresponding to Wy(t), Sn(t) Ra(t), Q(t) and F(t), and correspondingly W(z),
S(z) and R(z) are the probability generating functions of W, Sy, Rn, then the
steady state solution can be obtained by using the Tauberian property (see
Widder [47]).
lin%sf*(s) =lim £ (¢) if the limit on the right hand side exists.
Thus equations (4.5.13),(4.5.14) and (4.5.15) yield
N
W(z) =L 4.6.1
(z) D, ( )
N
S(z7) =2 4.6.2
(2) D ( )
N
R(z)=—" 4.6.3
(2) D ( )
A0 = uw, (4.6.4)
AF = 11,8, (4.6.5)
where

b
N, =(A=-AC(2)+ BIA-AC(2) + u, +a, + 5,)7" —uz){uIZ(z” A ﬂsz—,ulWO}

i=1

i=1

b
+7'[(A-AC(2) + B) B, +a1/51]{y22(z” — S, + A"F —,UZSO}

b
o, 2" (1, ) (2" ='W, + 2"Q = i, Wy) + (A= AC(2) + 1ty + )z — ) *

i=1

N,=(A-IC()+B)|,
(ﬂzZ(Zb ~2')S, + AFz’ _ﬂzsoj
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b
@2 (4, ) (2" =2 W, + " Q= W) + (A= AC(2) + 4y +0,)2" — ) *

i=1

b
(ﬂzZ(Zb ~2')S, + AF7’ _ﬂzsoj

i=1
and

((ﬂ_ﬂc(z)'klul +a2)zb _,ul)zb —,Lll)*
(A= 2C@) +py +a, + B)" — 1)) -, B,

As earlier the unknowns can be determined by applying Rouche’s theorem.

_a1a2ﬁ112h

D, =(/1—/1C(Z)+ﬂl){

Some special cases
Case 1
If there are single arrivals and single departures, then C1=1, Ci=0 for i#1,
C(z)=z and b=1. Substituting these values in equations (4.6.1),(4.6.2) and
(4.6.3) and using (4.6.4), it follows that
W(z) = Z=DI((A=Az+pu, +a, + By)z— . A=Az + B) ¥ uW, + e, 244,51
Dz
(4.6.6)
S(2) = (z=D(A—=Az+ B,z Wy + (A= Az + p, + &y)z— 1) * 11,5,
D2

(4.6.7)

R(z) = a,(z=Dla,zu Wy + (A =Az+ p, + @)z — 1) * 11,8,
Dz

(4.6.8)

where

D, =(A-Az+ (A -Az+pu, +a,)z—u)(A-Az+u, + +ﬂz)z_:uz)_azﬁzzz]_alazﬂlzz

As earlier, the two unknowns can be determined by applying Rouche's

theorem.
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To determine the unknown Q+F, one may use the normalising condition

W(1)+S(1)+R(1)+Q+F=1
For z=1, the equations (4.6.6),(4.6.7) and (4.5.8) are indeterminate.

Hence using L’'Hospital rule one obtains

W)= P+ £z>(Q+F ) (4.6.9)

sy = 2BAQHF) (4.6.10)
D

R(l):w (4.6.11)
D

where

Dzﬂl (/‘ll(al +ﬂ2)+a2ﬂ2)+ ﬂ(azﬁl +052ﬂ1 +ﬂ1ﬂ2 +a1a2)

and using (4.6.9)-(4.6.11), and simplifying

Ma, B +a, B, + BB, +aa,) (4.6.12)

Q+F=1-
B (u (e, + B,) + m,a,)

This is the steady state probability that the system is in a working condition,

but idle. Therefore, the utilization factor is:

_ A, f, + o, B, + b, + ) (4.6.13)
B (e, + By) + 1,5)

and the steady state condition is given by p<1.
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Further, if there is no failure in the service channel, then setting o, =, =0in

(4.6.12) and (4.6.13), the result is

0+F=1-2
Y7

p=iand p<1.

H

The system state probabilities are
/1,31 (o + :32)

By (i (0 + B,) + 1,,)

Aa, B,
B (e, + b))+ i,a,)

W)=

SO =

Ao,

R() =
B (a, + B,) + m,a,)

Case 2

In addition to the condition of Case 1, if the repair rates, service rates and

failure rates are identical, then setting ¢«,=a,=a,

U, = u, = u it follows that
_ Aa+ B’
Bu(B +2)

and the steady state condition is

A _BB+2a)
u o (a+p)’

0

ﬁlzﬂzzﬁand

If P(z) denotes the queue length probability generating function irrespective of

the state of system, then P(z)= W(z)+S(z)+R(z)

Further, if E(Ny) denotes the expected number of entities in the queue, then

B(N,) =P |,
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Denoting

ﬁl(ﬂlal +ﬂ1,32 +ﬂ2a2)_/1(a1a2 +a1181 +a2181 +131182)by X and

Ao, +a, + B+ B,) = A, + i,a, +2a,0, + i, B, + i, B, + i1, B, + 2, B, + 2, B, + 28, 8,) +
B, + B, + BB, + Bu,a,

by Y.
Then
E(Nq) = [X[Q(_/lz (o +a, + 131 + ﬁz) + /10!10!2 + ﬂ“ﬂzﬂl + ﬂ“alﬁl + /10!2:31 + ﬂﬂlﬁz) +

F(-X (q+a,+ f+ py)+ Ao, + A b + Aa, B + Aa, B + AP B, + Apary) —

(Q+ F) A, + Aoy, + Ao, B, + ABB)OY] X*
(4.6.14)
Further, if there are no failures at all, setting a, =a, =0and g, =u, =4 in
(4.6.14), the end result is
A o’
Tuu-2) 1-p
which is the expected number of entities in the queue for the M/M/1 queueing

E(N,)

system (Saaty [53]).

Concluding remark

The model of the system considered in this chapter of the thesis emphasizes
that the model is constructed mathematically in an advanced and elegant
fashion. However it is suspected that its utility would be limited if it were to be
used in practical applications as a result of complexity of the time dependant

solution model of the system.
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