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CHAPTER 3 

 

 

A SINGLE CHANNEL QUEUEING MODEL WITH OPTIONAL 
SERVICE AND SERVICE INTERRUPTION 
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3.1 Introduction 

One of the important characteristics of a queueing system is the service 

process. Entities in the system may be served individually or in batches.  An 

arriving entity may not get satisfactory service rendered by the server. An 

intelligent entity may think of better service from the same server or may seek 

some other server (i.e. leaving the system unsatisfied).  If the service given to 

an intelligent entity is not satisfactory and if it needs a second service, it has 

to join the end of the queue and wait for its turn of service.  Either it may join 

the queue for the second service, or balk since it has waited too long.  To 

satisfy such intelligent entities, the server can offer two kinds of service.  

Either an arriving entity can choose one of two servers before service starts. 

For example, a patient decides to undergo ordinary surgery or laparoscopic 

surgery; or a vehicle uses the existing road or the by-pass road.  Or if an 

arriving entity is not satisfied by the first essential service, it can opt for the 

second optional service immediately.  Else it can opt for the second optional 

service immediately.  The former kind of service has been studied by Madan 

[16] and later by Madan [17] where there is no waiting capacity. However, in 

queueing systems where the server offers two services, one essential and the 

other optional, and interruption may take place; the system implies queueing 

models with service interruption which have been extensively studied in the 

past by Takagi [46].  Service interruption models with more than one service 

offered by a single server have not been considered so far.  To fill the gap this 

chapter presents a Markov queueing model where the server offers two 

services, one essential and the other optional. 

 

3.2 Model description 

The server offers two services, one essential and the other optional.  The 

essential service follows an exponential distribution and the optional service 

follows an arbitrary distribution.  The server offers only one service at a time.  

The first service is essential for all entities while the second service is 

optional.  In addition the service is interrupted for a random period whenever 
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the system becomes empty. It is assumed that the duration of interruptions is 

independent and, identically randomly distributed and is independent of the 

arrival process and the service time.  Therefore the system has three states, 

namely 

 

(i) The operating state providing the first essential service. 

(ii) The operating state providing the second optional service. 

(iii) The state of interruption. 

 

3.3 Assumptions and notation 

 

λ :  average arrival rate of entities. 

 

µ :  the average service rate of the server when offering essential service. 

 

Wn (t):   the joint probability that at time t, there are n>0 entities in the 

system and the server is providing essential service for the entities. 

Sn (x, t):  the joint probability that at time t, there are n>0 entities in the 

system with elapsed service time between R and R+dx and the server is 

offering optional service to the entities. 

 

Vn (x, t):  the joint probability that at time t there are n>0 entities in the system 

with elapsed interruption time lying between R and R+dx and the 

server is interrupted. 

 

On completion of the regular (essential) service, an entity leaves the system 

with probability p and desires to have the second optional service with 

probability q;  p+q=1. 

 

dxx)(1µ :   the first order probability that the optional service will be completed in 

the time interval x and x+dx given that the same was not completed 
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before time x and is related to the density function B1(x) by the hazard 

function relation. 
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Subject to boundary conditions 
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Further, it is assumed that the system starts initially when there are k units in 

the system so that the initial conditions are:  

 

 
 

where nkδ is Kronecker’s delta function 

0)0( =nS  for all n>0 
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(3.4.10) 

3.4 Time dependant solution 

The Laplace transform of a function f(t) is defined as 
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Using the Laplace transform of equations (3.4.1) to (3.4.9) and equations 

(3.4.10), (3.5.1) and (3.5.2) result in: 
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The following generating functions are defined; 
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Integrating the equations (3.5.14) and (3.5.15) from 0 to x, gives 
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Integrating (3.5.8) from 0 to x, gives 
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Integration of (3.5.20) from 0 to  yields 
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From (3.5.11), (3.5.17) and (3.5.21): 
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Using (3.5.16) in (3.5.18): 
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Integrating this from 0 to , gives 
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using (3.5.22) in (3.5.19) and integrating from 0 to  

      

(3.5.24) 

using (3.5.17), (3.5.18), (3.5.19) and (3.5.22) in (3.5.13) and simplifying yields 

 

 
Thus 

     

(3.5.25) 

Since is a regular function and the denominator of the right hand side 

vanishes for some z in , the number at 1 also vanishes for the same 

value of z. Applying Rouche’s theorem the only unknown  can be 

determined. Hence and can be completely 

determined. 

 

3.5 Some special Cases 

Case 1: 

If the optional service is exponential then: 
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Therefore (3.5.23) to (3.5.25) become 

   

(3.5.26) 

         

(3.5.27) 

      

          (3.5.28) 

 

Case 2: 

 

In addition to the condition of case 1, if there is no optional service and the 

server is offering the essential service only, then (3.5.26) to 

(3.5.28) become 
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3.6 The steady state solution 

Taking Wn, Sn and Vn as the respective steady state probabilities 

corresponding to Wn(t), Sn(t) and Vn(t) and correspondingly W(z), S(z) and 

V(z) as the probability generating functions, then the steady state solution can 

be obtained by using the Tauberian theorem Widder [47]. 
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If the limit on the right exists the equations (3.5.23) to (3.5.25) become 

      

(3.6.1) 
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(3.6.3) 

If P(z) is the probability generating function of the number of entities in the 

system irrespective  of the state, then P(z)=W(z)+S(z)+V(z), 

Thus : 

     

(3.6.4) 

Using the normalization condition P(1)=1, 

 
where E(B1) is the expected optional service time and E(V) is the expected 

interruption time 
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Therefore (3.6.4) becomes 

 
or  

   

(3.6.5) 

 
Where 

 

 

 is the probability generating function of the number of entities which 

arrive before an arbitrary entity during an interruption period in which the 

arbitrary entity arrives (Fuhrmann [20]) and PM/M/1(z) is the probability 

generating function of the number of entities in the M/M/1 queueing system 

with additional optional service and 
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3.7 Some special Cases 

Case 1: 

 

If there is no essential service (the server is offering only the optional service), 

then and  (3.6.5) becomes 

     

(3.6.6) 

 
which is the stochastic decomposition for the M/G/1 queueing system Takagi 

[46] 

 

 
Case 2: 

 

Suppose there is no additional optional service so that ,1=ρ 0=q  Then 

(3.6.5) becomes: 

     (3.6.7) 

where  

 
which is the stochastic decomposition for the M/M/1 queueing system by 

Takagi [46] 
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Case 3: 

 

Suppose the additional service follows an exponential distribution. Then 

 
Thus (3.6.5) becomes 

  

(3.6.8) 

Further if there is no additional optional service, then equation (3.6.8) leads to 

(3.6.7) 

 

Case 4: 

 

If E (N) denotes the expected number of entities in the system, then 

at z=1 

Thus 

  

(3.6.9) 

where  

at s=0 

at s=0 

By Little’s [46] formula, the mean entity response time is given by 
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Therefore, 

  

(3.6.10) 

Further if there is no additional optional service so that  then 

equation (3.6.9) and (3.6.10) become: 

and 

 
which are the results given in (Takagi [46]) for the M/M/1 queueing system 

with interruption. On the other hand, if the server offers only the optional 

service so that and then equations (3.6.9) and (3.6.10) 

become 

 

 
which are the results given in Takagi [46] where 

 

 

3.8 Concluding remark 

The description of the queueing system given in the introduction of this 

chapter leads the reader to believe that the low degree of system complexity 

would result in ease of mathematical modelling. The eventual mathematical 

manipulations required to create the model are far from insignificant, rather 

they are extensive and involved, and demand treatment by a highly proficient 

practioner. 
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