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CHAPTER 2

CONFIDENCE LIMITS FOR EXPECTED WAITING TIME OF TWO
QUEUEING MODELS

A modified version of this chapter has been published in ORION, Vol. 20, No. 1, 2004
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Introduction

Once one is armed with a queueing model of a system, one which is described
by equations which emulate the relevant birth-death process, parametric
estimation is one of the essential tools to understand the random phenomena
using stochastic models. Whenever systems are fully observable in terms of
their basic random components such as inter arrival times and service times,
standard parametric estimation techniques of statistical theory are quite
appropriate. Most of the studies of several queueing models are confined to only
obtaining expressions for transient or stationary (steady state) solutions and do
not consider the associated inference problems. Recently, Bhat [41] has
provided an overview of methods available for estimation, when the information
is restricted to the number of entities in the system at certain discrete points in
time. Narayan Bhat has also described how maximum likelihood estimation
(MLE) is applied directly to the underlying Markov chain in the queue length

process in M|G|l and GI|M|l. An attempt is made in this chapter to obtain MLE,
a consistent asymptotically normal estimator (CAN) and asymptotic confidence
limits for the expected waiting time per entity in M‘M‘1|oo and M‘MMN queues.

These two models and the expected waiting time per entity for each model are

explained briefly.
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2.1.2 Description of Systems

Model I The (M|M|I):(FCFS]ele=) queue

It can be readily seen that (Taha [3]) the difference-differential equations

governing M‘M|1 are given by
PO =Ap, ()= (A+u)p, )+ up,, (1), n=123,...

po()=—=Ap, )+ up, (1), n=0 (2.1.2)

As t—>, the steady state solution can be proved to exist, when A< u.

Assuming that p/(r) >0and p,(t) > p, as t - e, for n=0,1,2,... , it is clear that

~Apy+4p, =0,  n=0

(2.1.3)
W,y =A+)p, +4p,, =0, n=123..

(2.1.4)
Solving these difference-differential equations,
p,=U-p)p",  n=012,..

(2.1.5)

where p=£<1.
U

Clearly (2.1.5) corresponds to the probability mass function of the Geometric
distribution. The expected waiting time per entity in the queue is given by
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A

A —
O uu—A)

(2.1.6)
Model Il The (M|M|I):(GD|N|e) queue

The model is essentially the same as Model I, except that the maximum number
of entities in the system is limited to N (maximum queue length is N-1) (Taha [3]).

The steady state equations for the model are given by

- pp,+p, =0, n=0 (2.1.7)

ppn—l _(p+1)pn +pn+1 :Oa n :1,2,3,-..,N—1

(2.1.8)

PPy — Py =0, n=N
(2.1.9)

The solution of the above difference-differential equations is given by

d-p)
=——"7—p", =0,12,...,N
-

(2.1.10)

The expected number of entities in the system is given by

. _pli=v e+ Np

#1
T A" P

(2.1.11)

Since the queue length is limited and some entities are lost, it is necessary to

compute the effective arrival rate 4,,, which is given by
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ﬂeﬂ =A(1-py).

The expected number of entities in the queue L, is

Ay
o =L —
Y7
_ ,oz[l—N,oN‘l +(N—1)pN]
(1=p)1-p")

L

(2.1.12)

Hence the expected waiting time per entity in the queue is given by

Al -4 - N - )]
pu(u =A™ =A%)

(2.1.13)
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2.1.3 The ML and CAN estimators for expected waiting time
2.1.3.1 The ML Estimator

Considering X, X,,, ..., X,

m

(with i =1,2 representing Models | and Il) to be

random samples of size n, each randomly drawn from different exponential inter

arrival time populations with the parameter A. and letting Y,.Y,,,.... Y, (with
i =1,2 representing Models | and IlI) be random samples of size n, each drawn

from different exponential service time populations with the parameter u, it
follows that E()?l.):% and E(Z):l, where X, and Y,, i=12, are the sample
U

means of inter arrival times and service times respectively corresponding to

Models | and Il. Further X, and Y, (with i =12 representing Models | and Il) are

the MLEs of 1 and 1 respectively. Let 6, _1 and 6, _1 respectively.
A Y7, A Y7,

Model |

The average waiting time per entity in the queue given in (2.1.6) reduces to
6,

Ye=6 -0,
(2.1.14)

and hence the MLE of W, is given by

(2.1.15)

29



University of Pretoria etd — Erasmus, G B (2006)
Model Il
The average waiting time per entity in the queue given in (2.1.13) reduces to

w = 0L —6)+ NOY(8, - 6)]
B (8, -6 —6)

(2.1.16)

and hence the MLE of W, is given by

O GO AP P AP Y)
oe (Yz_Xz)(YzN_XéV)
(2.1.17)

It may be noted that ,WQ given in (2.1.15) and (2.1.17) are real valued functions

in X, and Y,, i=1,2, which are also differentiable. The following application of

the multivariate central limit theorem may be considered (Rao [42]).

2.1.3.2 An application of the multivariate central limit theorem

Suppose T/,T,,T,,... are independent and identically distributed & -dimensional

random variables such that

T =(T,,T,,, Ty, T,), n=123..

having the first and second order moments E(7,)=ux and Var(T,)=X. The

sequence of random variables may be defined as

T =T,.T,,, Ty, ... T,,), n=123..
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n

2.7,

where T, ==—,  i=12,..k and j=12,.,n
n

Then, Vn(T, — 1) —~—>N(0,X)as n — oo

2.1.3.3 The CAN Estimator

Model |

By applying the multivariate central limit theorem given to (2.1.15), it readily
follows that

Vnl(X,,Y)) = (6,,6,)] —— N(0,%)

as n — o, where the dispersion matrix X =((o;)) is given by
Y =diag(6;,6;)

From (Rao [42]), it follows that

Jn(W,—W,)—%>N(0, 6(8)), as n— o, where 6 =(6,,6,) and

2 (W,
162(9)22( (—;eiQ] i

i=1

_ 6,167 +6;(26,-6,)"]
(01 _02)4

(2.1.18)
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Hence, IWQ is a CAN estimator of \W,. There are several methods for

generating CAN estimators and the Method of Moments and the Method of
Maximum likelihood are commonly used to generate such estimators (Sinha
[43]).

Model li

As in Model |,

Jn(W, - W ) —L5N(0,, 6>(8)), as n — o, where 8=(6,.6,), .W, and W, are
2 o 20 2 1 2 270 2" 0

given by (4.16) and (4.17) respectively. Further, ,0°(8) is computed from the

a,W .
partial derivatives ( seQ} i=12 as in Model I. Thus ,W, is a CAN estimator of

i

W,

Confidence limits for the expected waiting time

Let .0%(8) be the estimator of .6>(6) (with i =1,2 representing Models | and )
obtained by replacing @ by a consistent estimator ié namely

O=(X..Y), i=12. Let .6*=.0%(f). Since .c>(0) is a continuous function of
¥, .67 is a consistent estimator of .c%(8), i.e., ,6°—L2— c’(@)as n— =,

i =1,2. By the Slutsky theorem
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where k,is obtained from Normal tables. Hence, a 100(1-a)% asymptotic

LS}

confidence interval for W, is given by

1,2 (2.1.19)

~.

©Q
2R
e
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Numerical Results

Table 2

Confidence limits for M/M/1/ o : FCFS with 99% confidence interval and sample size of 20

P

0.04

0.06

0.08

0.1

0.01

(8.289842877:8.376823789)

(3.316926722:3.349739944)

(1.777150118:1.794278453)

(1.105858754:1.116363468)

0.02

(24.83223528:25.16776472)

(8.286718407:8.37994826)

(4.144904413:4.18842892)

(2.487402722:2.512597278)

0.03

(74.16104529:75.83895471)

(16.55477386:16.77855947)

(7.456343866:7.543656134)

(4.262400695:4.309027877)

Table 3

Confidence limits for M/M/1/N: FCFS with 99% confidence interval and sample size of 20

X 0.04 0.06 0.08 0.1
A
0.01 (8.331269275:8.334920554) | (3.331916366:3.334744788) | (1.784518941:1.786909398) | (1.110057009:1.112165194)
N=10 |0.02 (24.75248955:24.7587519) | (8.328275966:8.332745576) | (4.164721818:4.168373097) | (2.498408635:2.501570885)
0.03 (60.07542472:60.08759256) | (16.50061597:16.50687832) | (7.490679322:7.495571505) | (4.283054105:4.287193479)
4 | 0.04 0.06 0.08 0.1
A
0.01 (8.331507591:8.335159075) | (3.33191912:3.334747547) | (1.784519057:1.786909514) | (1.110057019:1.112165204)
N=20 |0.02 (24.99636102:25.0026853) | (8.33109717:8.335569306) | (4.164840925:4.168492408) | (2.498418861:2.501581139)
0.03 (73.40387298:73.41482651) | (16.66318663:16.66951092) | (7.497549755:7.502448733) | (4.283644082:4.287784475)
4 | 0.04 0.06 0.08 0.1
A
0.01 (8.331507591:8.335159075) | (3.33191912:3.334747547) | (1.784519057:1.786909514) | (1.110057019:1.112165204)
N=40 |0.02 (24.99683772:25.00316228) | (8.331097265:8.335569401) | (4.164840925:4.168492409) | (2.498418861:2.501581139)
0.03 (74.98446701:74.99541962) | (16.66350439:16.66982894) | (7.49755051:7.50244949) (4.283644089:4.287784482)
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As is to be expected, W is an increasing function of A, and a decreasing

function of u, for both M/M/1/e and M/M/1/N queueing systems [See Tables
2&3].
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2.2 Statistical analysis for a tandem queue with blocking

A maximum likelihood estimator (MLE), a consistent asymptotically normal
(CAN) estimator and asymptotic confidence limits for the expected service
time per customer in the system in a two station tandem queue with zero

queue capacity and with blocking are obtained.

Introduction

Many studies of queueing models are confined to obtaining expressions for
transient or stationary (steady state) solutions and do not consider the
associated statistical inference problems. Parametric estimation is one of the
essential tools to understand random phenomena using stochastical models.
Analysis of queueing systems in this context has not received due attention.
Whenever the systems are fully observable in terms of their basic random
components such as inter-arrival times and service times, standard
parametric techniques of statistical theory are quite appropriate. Recently
Bhat [41] has provided an overview of methods available for estimation, when
the information is restricted to the number of entities in the system at some
discrete point in time. Bhat has also described how maximum likelihood
estimation is applied directly to the underlying Markov chain in the queue
length process in M/G/1 and GI/M/1 queues. Yadavalli et al [44] have
obtained asymptotic confidence limits for the expected waiting time per
customer in the queues of M/M/1/e and M/M/1/N. Further, Yadavalli et al [45]
have extended the same results to ¢ parallel servers (c> 1).

Generally speaking, the queueing models assume that each service channel
consists of only one station. Situations do exist, where each service channel
may consist of several stations in series. In this situation, an entity must
successively pass through all the stations before completing service. Such
situations are known as queues in series or tandem queues. Examples of
such situations are as follows:
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a) In a manufacturing process, units must pass through a series of service
channels (work stations), where each service channel performs a given
task or job.

b) In a University registration process, each registrant must pass through
a series of counters such as advisor, departmental chairman (Head of
the Department), Cashier etc.

C) In a clinical physical examination procedure, a patient goes through a
series of stages such as laboratory tests, Electro Cardio Graph, Chest
X-ray etc.

In all these model structures, it is not only sufficient to know how many

persons are in the system but also where they are.
An attempt is made in this paper to study a two station tandem queue with

blocking in detail, Taha [3]. An MLE, CAN and asymptotic confidence limits

are obtained for the expected service time per entity in the system.
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2.2.2 System description and assumptions

Consider a simplified single channel queueing system consisting of two series
stations as below:

Service centre

Input Station 1 .| Station 2 Output

L

\ 4
A 4

Fig. 2.2.1 System configuration

An entity arriving for service must pass through station 1 and station 2 before
completion of service. The precise assumptions of the model are as follows:
(i) Arrivals occur according to a Poisson distribution with a mean rate 4.
(i) Service times at each station are exponentially distributed with a
service rate u.
(ili)  Queues are not permitted ahead of station 1 or station 2.
(iv)  Each station is either free or busy.
(V) Station 1 is said to be blocked when the entity in station 1 completes
service before station 2 becomes free. In such a case the entity cannot

wait between the stations, since this is not allowed.

2.2.3 Analysis of the system

Let the symbols 0,1 and b represent free, busy or blocked states of a station.
Let X () and Y (¢) respectively denote the states of station 1 and station 2 and

the vector process Z(t) = {(X (¢),Y(r)),t > 0} with state space
E ={(0,0.(0.1),(1,0), (1,1), (b.D)}, (2.2.3.1)
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the state of the system at time t. Since the inter-arrival and service times are

exponential, it follows that the process Z(t) is a Markov process with the

infinitesimal generator given by

E ALY 0.1} (1.0}
om | -z 0 1
0.1) N —(d+ ) 0
(1.0} 0 # TH
{L.1) 0 0 H
bl | 0 = 0

(2.2.3.2)

Let p,(t)= plZ(t) =, j),V(,j) € E represent the probability that the system

is in state (i,j) at time t with the initial condition p,(0)=1. From the

infinitesimal generator given in (2.2.3.2), the following system of differential-

difference equations is obtained:

% == AP o (1) + 1Py, (1)

L) Gt 1) pos 0+ 9,00+ 19, )
% = Aoy (6) = Hp o (1) + p,, (1)
% = Apoy(6) = 241p,, (1)

% = Up, (1) = pp,, ()

39
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2.2.3.1 Transient Solution

Solving the system of equation (2.2.3.3)-(2.2.3.7) along with the equation

Zpij (r) =1 and using Laplace transforms, it is evident that:

(i,j)eE
24’ 2 (@, +2ﬂ) a
poo(t)z /’l z e’
G +44u + 24> ) ! (e, +/1)H(0’ - ;)
]¢l
(2.2.3.8)
P L Y 1) Yo e R
TGRS a, H(a -a;)
j¢l
(2.2.3.9)
s ot
()= 2,1(,14-2;1) : Y 22 Qo +A+2u) 3 e + /1}“ et
Gl +4Au+2u”) = o (a; + @, + u) (a; —a)) eamw
i
(2.2.3.10)
pe S !
. +}31u b
! G +4Au+2u°) ;0!,- ﬁ.(“i —a;)
1
(2.2.3.11)
ya 2, 2% ! t & ”
P () = + A uy \ Y "
GV + 44 +2u°) o (o +u) Ii(ai - ;) =
j#l
(2.2.3.12)

where «,,a,and «a, are the roots of

T+ QA+ AT + (A +TAu+5u%)s + uBA +4Au+2u°)=0
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2.2.3.2 The Steady state solution

Since the stationary behaviour of the system is to be modelled, let

}i_r)gpij(t)=pij. Let p=(Pu Pois Pro- P1is Py) be the stationary distribution

corresponding to the Markov process z(r). It readily follows from (2.2.3.8)-
(2.2.3.12) that

2

2u
)=
Poo (1) G2 +4Au+2u°)
(2.2.3.13)
24u
)=
Por (1) G2 +4Au+2u°)
(2.2.3.14)
()= AA+2u)
OGR4+ 2u?)
(2.2.3.15)
22
)=
Pul) GA +4Au+2u*)
(2.2.3.16)
22
)=
Pu(®) G2 +4Au+2u°)
(2.2.3.17)

It may be noted that the solution given in (2.2.3.13)-(2.2.3.17) is in agreement

with Taha [3] with p=2
Y7,
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2.2.3.3 Expected service time per entity in the system

The expected number of entities in the system is given by

L = i np,
n=0

=(po + Pyo) +2(py, + pyy)
A A+4w)
GA +4Au+2u*)

(2.2.3.18)
The probability that an entity will enter station 1 is
(Poo + Por)
_ 2u(A+p
GA +4Au+2u*)
(2.2.3.19)

W; represents the expected service time per entity in the system since
queues are allowed and is given by
L L _(5A4+4u)

5 s

/?’eﬁ - A(Poo + Por) - 2u(A+ p)

R

(2.2.3.20)
In the next section, the maximum likelihood and consistent asymptotically
normal estimators for the expected service time per entity in the system are

obtained.

2.2.4 MLE and CAN estimator for the expected service time per entity in the system

2.2.4.1 The ML estimator

Let X1,Xz,...,Xn and Y1,Y2,...,Yn be random samples of size n, each drawn

from exponential inter-arrival time and exponential service time populations

with parameters Aand u respectively. It is clear that E()?):% and E(Y)=l,
U

where X, and Y, are the sample means of inter-arrival times and service time

respectively.
42



University of Pretoria etd — Erasmus, G B (2006)

It can be shown that X and Y are MLEs of % and - respectively.
U

Let 6, :% and 6, = l. The average service time per customer in the system
U

given in (2.2.3.20) reduces to
_0,(46, +50,)

’ 2(6, +6,)
(2.2.4.1)
and hence the MLE of Ws is given by
W= 17(4_)? + E?)
‘ 2(Y + X)
(2.2.4.2)

It may be noted that WS given in (2.2.4.2) is a real valued function in X and

Y, which are also differentiable. Consider the following application of the
multivariate central limit theorem. See Rao [42].

2.2.4.2 An application of the multivariate central limit theorem

Suppose T/,T,,T,,.. are independent and identically distributed k-

dimensional random variables such that

T =(T,.T,,. Ty T,). n=123..

having the first and second order moments E(7,)=ux and Var(T,)=X. The

sequence of random variables may be defined as

I,=T,.T,.T

2n% “3n0°°

T,), n=123.

n?
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n

S,

where T, ="—,  i=12...k and j=12,..,n
n

Then, Vn(T, - 1) —~—>N(0,£)as n — oo

2.2.4.3 The CAN Estimator

By applying the multivariate central limit theorem to (2.2.4.2), it readily follows
that

Vnl(X,7) - (6,,6,)]—— N(0,%)

as n — oo, where the dispersion matrix X = ((0,)) is given by

Y =diag(6}.,6;)

Again from Rao [42] it follows that
Jn(W.—W)—L5N(0,,6%(8)), as n — =, where 6 =(6,,6,) and

0'2(49)—22: W 20'
i=1 ae, o

_[676; + (48} +106,6, +58))]
A4 +9,)*

Thus, W, is a CAN estimator of W,. There are several methods for generation

of CAN estimators and the Method of Moments and the Method of Maximum
likelihood are commonly used to generate such estimators. See Sinha [43].

44



University of Pretoria etd — Erasmus, G B (2006)

2.2.4.4 Confidence limits for the expected waiting time

Let o%(d) be the estimator of o2(8) obtained by replacing 6 by a consistent
estimator 6 namely. Let 62=0%(8). Since () is a continuous function
of@, & is a consistent estimator of o°*(9), i.e., 6> —-— c*(@)as n— =,

i =12 . By the Slutsky theorem
Nn(W, =W,)—L> N(0.1)

. nW,- w,)
ie., Prl—k, <—————"<k, |=(1-a)

2 i0 2

where k,is obtained from Normal tables. Hence, a 100(1-a)% asymptotic
2

confidence interval for W_ is given by

A
A

(o)
W otk, —

As is to be expected, Wy is an increasing function of A4, and a decreasing

(2.2.5.1)

function of u, for a tandem queue with blocking. The numerical illustration of

the confidence interval of this model (tandem queues) is shown in Table 4.
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Numerical Results

Table 4
wnfidence limits for a tandem queue with blocking: 99% confidence interval and sample size of 20

Graph illustrating W, as a function of Aand 4.

46

H 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL | LCL | UCL
0.01] 41.57 | 41.76 | 20.41 20.50 | 13.51 13.57 | 10.10 | 10.14 8.06 8.10 6.71 6.74 5.74 5.77 5.02 5.04
0.015 42.21 | 42.41 20.60 | 20.70 | 13.61 13.67 | 10.15 | 10.20 8.09 8.13 6.73 6.76 5.76 5.79 5.03 5.06
0.02 42.76 | 42.96 | 20.79 | 20.88 | 13.69 | 13.76 | 10.20 | 10.25 8.13 8.17 6.76 6.79 5.78 5.80 5.05 5.07
0.025 43.23 | 43.44 | 2095 | 21.05 | 13.78 | 13.84 | 10.25 | 10.30 8.16 8.20 6.78 6.81 5.80 5.82 5.06 5.09
0.03| 43.65 | 43.85 | 21.10 | 21.20 | 13.86 | 13.92 | 10.30 | 10.35 8.20 8.23 6.80 6.83 5.81 5.84 5.08 5.10
0.035 44.01 | 4422 | 21.25 | 21.35 | 13.93 | 14.00 | 10.35 | 10.40 8.23 8.26 6.83 6.86 5.83 5.86 5.09 5.11
0.04) 44.34 | 4455 | 21.38 | 2148 | 14.00 | 14.07 | 10.39 | 10.44 8.26 8.29 6.85 6.88 5.85 5.87 5.10 5.13
0.045| 4463 | 4484 | 21.50 | 21.60 | 14.07 | 1414 | 1043 | 1048 8.29 8.32 6.87 6.90 5.86 5.89 5.1 5.14
Waiting time
W 40-50
0 30-40
0 20-30
W 10-20
mo-10
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