
Chapter 7

Data Clustering in Non-stationary

Environments using a Local Network

Neighbourhood Artificial Immune System

A non-stationary environment can be defined as feature vectors in space which move or adapt to

different spatial positions over time [64]. The data is thus dynamic over time. Clustering of non-

stationary data results into different partitions of the data at different points in time and depends

on the severity and the frequency of change in the data. Therefore, from a clustering perspective

in a non-stationary environment, the initial formed clusters of a data set can adapt over time.

This means that, at each time step, the feature vectors associated with different clusters can fol-

low different migration types to and from other clusters. The migration of feature vectors from

one cluster to another implies that the centroids of the different clusters can also move in space

to different positions. Therefore, clusters (centroids) may move, disappear and/or new clusters

may appear.

This chapter investigates different data migration types and proposes a technique to generate

artificial non-stationary data which follows different migration types. Furthermore, the chapter

revises the proposed clustering performance measures in section 2.5 which are more applicable

to measure the clustering quality in a non-stationary environment compared to the clustering per-

formance measures for stationary environments. The proposed clustering performance measures

are then used to compare the clustering results of LNNAIS and LNNSDOT with two other network

based artificial immune models.
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Section 7.1 revises the clustering performance measures as discussed in section 2.5 that can be

used to evaluate the partitioning quality of clustering algorithms in non-stationary environments.

This is followed by a discussion and investigation into different data migration types in sec-

tion 7.2. Section 7.3 proposes a technique to generate artificial non-stationary data with different

migration types. Section 7.4 analyses and discusses the sensitivity of the LNNAIS parameters on

the different artificial non-stationary data sets for each of the defined data migration types. Sec-

tion 7.5 discusses and compares the clustering results obtained by LNNAIS, LNNSDOT , SMAIN

and DWB to cluster generated artificial non-stationary data in different dimensions with different

cluster sizes, frequencies of change and severities of change.

7.1 Clustering Performance Measures for Non-stationary En-

vironments

Clustering of a data set at a specific point in time, t, is the partitioning of the data set such that

patterns within the same partition are more similar when compared to patterns which form part

of different partitions. The partitioning of a data set into different clusters may differ among dif-

ferent clustering algorithms at a specific point in time. Also, clusters may differ among different

points in time. Therefore the clustering quality needs to be evaluated at each point in time. The

quality of the clusters can be validated using a cluster validity index. The cluster validity index

used in this chapter was proposed by Ray and Turi [151] (as defined in equation (2.49)).

In the context of clustering of non-stationary environments, Jintra (cluster compactness) and Jinter

(cluster separation) can be used, in addition to the validity index, Qratio, to quantify the quality

of partitioning by clustering algorithms over time. An example of a clustering algorithm’s parti-

tioning in a non-stationary environment was given in section 2.5. The average separation (Jinter)

plotted against time will increase in value if the clusters become more separated in time, i.e. clus-

ters move away from one another. If there is any migration of feature vectors between clusters,

it is expected that the average intra-clustering distance (Jintra) plotted against time will fluctu-

ate from the time of migration until the feature vectors become stationary again (data migration

types are discussed in section 7.2). It is expected that a change in the number of clusters will

result in a change in Jintra and/or Jinter.

The measured clustering quality (Qratio) of different clustering algorithms can be compared by

averaging each algorithm’s clustering quality measure at each step in time over the total running
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time T (as proposed in section 2.8). This will give each algorithm a mean value of measured

clustering quality, Q̄i, for a specific run, i, calculated as

Q̄i =
∑T

t=1 Qbest (t)

T
(7.1)

where Qbest (t) is the cluster quality at time t, calculated as

Qbest (t) = min
{

Qratio

(

K(t)
)

: 1 < K(t) ≤ |P(t)|
}

(7.2)

and Qratio is minimised by an optimal partitioning of data set P(t) into K(t) clusters at time t.

The trajectory of the clustering quality across the entire dynamic landscape is then calculated by

averaging Q̄i over the number of independent runs E, referred to as the collective mean quality.

The collective mean quality, Q̂, is calculated as

Q̂ =
∑E

i=1 Q̄i

E
(7.3)

Q̂ is derived from the collective mean fitness which is defined in [131] for function optimisa-

tion in non-stationary environments. The collective mean fitness takes into account the fitness

trajectory across the entire dynamic landscape [131] by averaging the mean value of measured

performance over the number of runs E.

The next section discusses the different data migration types that can occur in non-stationary

environments, as investigated in this chapter.

7.2 Data Migration Types

Feature vectors in a data set can change at any point in time with different severities. Feature

vectors in a non-stationary data set can follow different migration types. Based on the different

migration types which were discussed in sections 2.4 and 2.5, three generic data migration types

can be identified:

• Pattern migration: A feature vector can migrate from one cluster to another in the data set.

The severity of change, s̃, can be expressed as a percentage of all the feature vectors among

the different clusters in the data set which can each migrate to a randomly selected cluster

in the data set. Pattern migration can result in some clusters to decrease in size while other
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clusters increase in size.

• Cluster migration: Similar to pattern migration, but instead of selecting a ratio of fea-

ture vectors for migration, a fraction of the number of clusters in the data set is selected

for migration. Each pattern of a selected cluster migrates to a randomly selected cluster

(which was not selected for migration). Cluster migration will result in the disappearance

of clusters. In the case where the patterns of the selected cluster migrate to random spatial

positions, new clusters will appear.

• Centroid migration: All the clusters in a data set adapt the spatial position of their centroids

in such a way that feature vectors associated with each cluster remain part of that cluster

after the change. The severity of change for centroid migration is discussed in more detail

in section 7.3. Centroid migration can result in merging or division of clusters.

The number of times data changes occur within a fixed period of time is referred to as the fre-

quency of change, f̃ . A higher number of changes within a fixed period of time results in a higher

frequency of change in the data and vice versa.

The next section discusses the procedure followed to generate artificial non-stationary data with

different frequencies and severities of change in the data.

7.3 Generating Artificial Non-stationary Data

Referring to section 2.1, a cluster, Ck, is a partition of patterns and is represented by a centroid,

ck. The distances between a centroid and the patterns of the cluster determine the compactness of

the cluster. Therefore a cluster can be generated using the following multidimensional Gaussian

function:

g(xk,ck) = aexp
−
[

∑N
n=1

(xk,n−ck,n)
2

2σ2
k,n

]

(7.4)

where a is the amplitude, xk,n is the offset from the centroid ck,n in dimension n, and σk,n is the

spread (compactness) in dimension n. Different types of clusters can be generated using these

Gaussian function parameters differing in centroid position (c), compactness (σ) and patterns

(c±x) which is associated with the cluster.

In order to simulate a non-stationary environment, the generated Gaussian clusters need to follow

a specific migration type (the different migration types were discussed in section 7.2). Focusing
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on centroid migration, the centroid of a cluster needs to change along a specific path. A hyper-

sphere in N-dimensional space ((N-1)-dimensional sphere) with a radius, ϕ, and middle point,

m, was used as the path. A centroid, ck, is represented by an angle vector, θk. The angle vector

is projected onto the surface of the (N-1)-dimensional sphere to determine the centroid ck. A

change in θk,n−1 will result in a projected change in ck,n and move the cluster centroid on the

surface of the (N-1)-dimensional sphere. The severity of change in an angle is a ratio, s̃
10

, of the

angle difference between θk,n−1 and a randomly generated angle sampled from U [0,π].

Let c
′
k,n be the new centroid position in dimension n after a change in θk,n−1. The spread of

patterns in cluster Ck (compactness) needs to remain the same as before the change. Therefore

the offset (vector difference) between c
′
k,n and the previous centroid ck,n needs to be added (vec-

tor addition) to each pattern in cluster Ck.

The remaining migration types are simulated by removing patterns from a cluster and generating

new random patterns for the remaining clusters such that the initial total number of patterns, |P|,
remains the same. The data in this chapter was generated in different dimensions (N ∈ [3,8,15]).

Each data set initially consists of eight clusters (K = 8) which are uniformly distributed on the

surface of the (N-1)-dimensional sphere (ϕ = 15 and m is zero in every dimension). Each cluster

is generated with the Gaussian function of equation (7.4) where a = 1 and σ = 1 (for each di-

mension). Clusters initially have the same size. The clusters are also generated in different sizes

of [10,25,50] (|P| = K × |C| ∈ [80,200,400]). Data was generated for each migration type at

different frequencies, f̃ ∈ [1,2,3,4,5], and different severities of change, s̃ ∈ [1,2,3,4,5] giving

225 different non-stationary data sets for each migration type. The generated artificial non-

stationary data sets represent a good distribution of data clustering problems in non-stationary

environments with the number of features in the range [3,8,15] and the number of patterns in the

range [80,200,400] which change/migrate at different frequencies f̃ ∈ [1,2,3,4,5] and severities

s̃ ∈ [1,2,3,4,5] of change. The different values of f̃ and s̃ are expressed as a ratio
f̃

10
and s̃

10

respectively. The ratio of f̃ is then multiplied with the total number of time steps T to determine

the time step size at which a change occurs (
f̃

10
×T ). Therefore higher values of f̃ imply lower

frequencies of change. The ratio of s̃ is used to determine the severity of change for the applica-

ble migration type. Higher values of s̃ imply higher severities of change.

The following sections discuss the sensitivity of the LNNAIS parameters to changes in dimen-

sion, cluster size, frequency of change and severity of change in the data for each of the migration
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types. All experimental results reported in the following sections are collective means taken over

100 time steps (T = 100) for 50 runs (E = 50) unless stated otherwise. A time step is a sin-

gle presentation of the data set at that specific point in time. The parameter values for each

non-stationary data set were found empirically to deliver the best performance for each of the

models.

7.4 Sensitivity of LNNAIS parameters

This section discusses the sensitivity of the LNNAIS parameters for each of the migration types.

Parallel coordinates [43, 94] is used to illustrate the effect of changes in the non-stationary envi-

ronment (e.g. number of dimensions, cluster size, frequency of change and severity of change)

on the parameters of LNNAIS.

Parallel coordinates is a visualisation technique to analyse multivariate data. The attribute val-

ues of a pattern in an N dimensional data set are each plotted on a parallel line. Each parallel

line represents a dimension, therefore an N dimensional data set has N parallel lines which are

equally spaced and each data pattern is plotted as a polyline with vertices on the parallel axes.

The parallel coordinates visualisation technique was invented by Maurice d’Ocagne [43] and

popularised by Alfred Inselberg [94]. Recently, Franken proposed parallel coordinates as an in-

formation visualisation technique to show any interdependencies and trends between parameters

of a model (if any) [54]. A similar approach is followed in this section.

The optimal set of LNNAIS parameter values for each non-stationary data set is plotted with

the associated environment parameters which defines the specific non-stationary data set. The

LNNAIS parameter values for each data set were found empirically to deliver the best perfor-

mance. The parallel coordinates plot of the optimal set of LNNAIS parameter values will illus-

trate the effect of changes in the environment on the optimal set of parameter values of LNNAIS.

All parallel coordinates plots in this section consist of axes which are represented by letters A to

G. These letters map to the following parameters: A 7→ Bmax, B 7→ ρ, C 7→ εclone, D 7→ N (num-

ber of dimensions), E 7→ |C| (cluster size), F 7→ f̃ (frequency of change) and G 7→ s̃ (severity

of change). The lowest value of each axis in the parallel coordinates plot is at the bottom of the

axis. Furthermore, three dimensional plots of the environment parameters versus the clustering

quality of LNNAIS illustrate the effect of changes in different environments on the clustering

performance of LNNAIS.
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7.4.1 Pattern Migration

Figure 7.1(a) illustrates the parallel coordinates plot for pattern migration environments. Fig-

ure 7.1(a) shows that there is no change in axes B or C for all values of D to G. This means that

changes in the pattern migration environment have no effect on the optimal values of ρ and εclone.

These axes are removed in figures 7.1(b) and 7.1(c) to focus more on the effect of changes in the

pattern migration environment on parameter Bmax. The polylines for small values of Bmax in

figure 7.1(b) and larger values of Bmax in figure 7.1(c) are highlighted. The highlighted polylines

show that LNNAIS utilises small population sizes for high dimensional environments with small

cluster sizes (illustrated by axes D and E in figure 7.1(b)) and larger population sizes at different

dimensions for large cluster sizes (illustrated by axes D and E in figure 7.1(c)). Note that there

is no effect on Bmax with different frequencies or severities of change. Table 7.1 shows that, in

general, the clustering quality of LNNAIS is the lowest at high frequencies and high severities

of change in pattern migration environments at different dimensions and cluster sizes. The clus-

tering quality of LNNAIS improves with an increase in the cluster size at different dimensions.

Increasing the number of dimensions lowers the clustering quality of LNNAIS at different cluster

sizes.

7.4.2 Cluster Migration

Figure 7.2(a) illustrates the parallel coordinates plot for cluster migration environments. Fig-

ures 7.2(b) and 7.2(c) respectively illustrates a similar trend in Bmax as for pattern migration

environments. The highlighted polylines show that LNNAIS utilises small population sizes for

high dimensional cluster migration environments with small cluster sizes (illustrated by axes D

and E in figure 7.2(b)) and larger population sizes at different dimensions for large cluster sizes

(illustrated by axes D and E in figure 7.2(c)). Note that there is also no effect on Bmax with

different frequencies or severities of change. Table 7.2 shows similar trends on the clustering

performance of LNNAIS for cluster migration environments as for pattern migration environ-

ments (as shown in table 7.1). In general, the clustering quality of LNNAIS in cluster migration

environments is also the lowest at high frequencies and high severities of change at different

dimensions and cluster sizes. The clustering quality of LNNAIS improves with an increase in

the cluster size at different dimensions and an increase in the number of dimensions lowers the

clustering quality of LNNAIS at different cluster sizes.

212

 
 
 



(a) All LNNAIS Parameters

(b) Small Bmax

(c) Large Bmax

Figure 7.1 Parallel Coordinates of LNNAIS Parameters for Pattern Migration
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Table 7.1 Effect of Pattern Migration on Clustering Performance of LNNAIS

|C| = 10 |C| = 25 |C| = 50

N = 3

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

Q̂

f̃

s̃

Q̂

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27

Q̂

f̃

s̃

Q̂

0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.17
0.175
0.18

0.185
0.19

0.195
0.2

0.205
0.21

0.215
0.22

Q̂

f̃

s̃

Q̂

0.17
0.175
0.18
0.185
0.19
0.195
0.2
0.205
0.21
0.215
0.22

N = 8

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

Q̂

f̃

s̃

Q̂

0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

Q̂

f̃

s̃

Q̂

0.54
0.56
0.58
0.6
0.62
0.64
0.66
0.68

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.44
0.46
0.48

0.5
0.52
0.54
0.56

Q̂

f̃

s̃

Q̂

0.44
0.46
0.48
0.5
0.52
0.54
0.56

N = 15

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

Q̂

f̃

s̃

Q̂

0.9
0.95
1
1.05
1.1
1.15
1.2
1.25
1.3

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.88
0.9

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06

Q̂

f̃

s̃

Q̂

0.88
0.9
0.92
0.94
0.96
0.98
1
1.02
1.04
1.06

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86

Q̂

f̃

s̃

Q̂

0.76
0.77
0.78
0.79
0.8
0.81
0.82
0.83
0.84
0.85
0.86

2
1

4

 
 
 



(a) All LNNAIS Parameters

(b) Small Bmax

(c) Large Bmax

Figure 7.2 Parallel Coordinates of LNNAIS Parameters for Cluster Migration
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Table 7.2 Effect of Cluster Migration on Clustering Performance of LNNAIS

|C| = 10 |C| = 25 |C| = 50

N = 3

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

Q̂

f̃

s̃

Q̂

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.15

0.2

0.25

0.3

0.35

0.4

Q̂

f̃

s̃

Q̂

0.15

0.2

0.25

0.3

0.35

0.4

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.15

0.2

0.25

0.3

0.35

0.4

Q̂

f̃

s̃

Q̂

0.15

0.2

0.25

0.3

0.35

0.4

N = 8

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2

Q̂

f̃

s̃

Q̂

0.7
0.75
0.8
0.85
0.9
0.95
1
1.05
1.1
1.15
1.2

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Q̂

f̃

s̃

Q̂

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

Q̂

f̃

s̃

Q̂

0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8

N = 15

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Q̂

f̃

s̃

Q̂

0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.8
0.85

0.9
0.95

1
1.05

1.1

Q̂

f̃

s̃

Q̂

0.8
0.85
0.9
0.95
1
1.05
1.1

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Q̂

f̃

s̃

Q̂

0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

2
1

6

 
 
 



(a) All LNNAIS Parameters

(b) Small Bmax

(c) Large Bmax

Figure 7.3 Parallel Coordinates of LNNAIS Parameters for Centroid Migration
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Figure 7.4 Parallel Coordinates of ρ for Centroid Migration

7.4.3 Centroid Migration

Figure 7.3(a) illustrates the parallel coordinates plot for centroid migration environments. Sim-

ilar to the parallel coordinates plots for pattern and cluster migration environments, there is no

effect on the value of εclone with changes in the centroid migration environment. However, there

is an effect on the value of ρ (where the minority of polylines have ρ = 4): Figure 7.4 highlights

the polylines for ρ = 4. The majority of these are for N = 3 and are investigated next. Figure 7.5

illustrates the heat maps of the clustering performance of LNNAIS at different values of Bmax and

ρ for the centroid migration environments which are highlighted in figure 7.4. These heat maps

show that there is no distinct difference in the clustering quality of LNNAIS with Bmax = 50 and

ρ ≤ 5. Therefore these polylines can be seen as outliers to the norm of ρ = 3.

Figures 7.3(b) and 7.3(c) respectively illustrate a similar trend in Bmax as for pattern and cluster

migration environments. The highlighted polylines show that LNNAIS utilises small population

sizes with small cluster sizes (illustrated by axis E in figure 7.3(b)) and larger population sizes for

large cluster sizes (illustrated by axis E in figure 7.3(c)). Different to the pattern and cluster mi-

gration environments, LNNAIS utilises small and large population sizes at different dimensions.

Again note that there is also no effect on Bmax with different frequencies or severities of change.

Similar trends on the clustering performance of LNNAIS for pattern and cluster migration envi-

ronments are shown in table 7.3 for centroid migration environments. The clustering quality of

LNNAIS in centroid migration environments is the lowest at high frequencies and high severities

of change at different dimensions and cluster sizes, the clustering quality of LNNAIS improves

with an increase in the cluster size at different dimensions, and an increase in the number of di-
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(a) |C| = 25, f̃ = 1, s̃ = 4
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(b) |C| = 50, f̃ = 2, s̃ = 1
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(c) |C| = 25, f̃ = 3, s̃ = 1
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(d) |C| = 50, f̃ = 4, s̃ = 1

Figure 7.5 Heat Maps of LNNAIS Parameters for Centroid Migration (N = 3)

219

 
 
 



Table 7.3 Effect of Centroid Migration on Clustering Performance of LNNAIS

|C| = 10 |C| = 25 |C| = 50

N = 3

1 1.5 2 2.5 3 3.5 4 4.5 5 1
1.5

2
2.5

3
3.5

4
4.5

5

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Q̂

f̃

s̃

Q̂

0.65
0.7
0.75
0.8
0.85
0.9
0.95
1
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mensions lowers the clustering quality of LNNAIS at different cluster sizes. Note that different

to the pattern and cluster migration environments, at high dimensions in the centroid migration

environments, the function of frequency versus severity versus clustering quality tends to flatten

at different cluster sizes. This shows that the frequency and severity of change in high dimen-

sional centroid migration environments have a smaller effect on the clustering performance of

LNNAIS.

7.5 Experimental Results

This section compares the clustering performance of LNNAIS with the clustering performance

of LNNSDOT , SMAIN and DWB for each migration type.

The clustering quality of a model for a specific run can be measured using Q̄i if the data is

non-stationary (as defined in equation (7.1)). This section investigates whether there is a differ-

ence between the mean clustering quality, Q̄, of two models for a specific non-stationary data set

or not. The hypothesis can therefore be defined as

• Null hypothesis, H0: There is no difference in Q̄.

• Alternative hypothesis, H1: There is a difference in Q̄.

A non-parametric Mann-Whitney U test with a 0.95 confidence interval (α = 0.05) was used

to test the above hypothesis. Furthermore, the clustering quality (Qratio, Jintra, Jinter and K) is

plotted against time to quantify the quality of partitioning of the non-stationary environment by

each clustering algorithm over time.

Due to the prohibitively large number of generated non-stationary data sets, a representative

configuration of environment parameter values was selected to compare the clustering perfor-

mance of the different models. The environment parameters were set to N = 8, |C| = 25, f̃ = 3

and s̃ = 3. The value of each parameter in the selected configuration is then changed while

the remaining parameter values are kept constant. Therefore each migration type has five data

sets representing different severities of change (with the remaining environment parameters kept

constant), five data sets representing different frequencies of change, three data sets representing

different dimensions and three data sets representing different cluster sizes. This gives a total of

sixteen different non-stationary data sets for each migration type. The results for each of these
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Table 7.4 LNNAIS Parameter Values - Pattern Migration

Environment parameters Bmax ρ εclone

N = 3; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 15; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 8; |C| = 10; f̃ = 3; s̃ = 3 10 3 5

N = 8; |C| = 50; f̃ = 3; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 1; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 2; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 4; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 5; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 1 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 2 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 4 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 5 50 3 5

migration types are discussed next. The parameter values used by each model for each of the mi-

gration types are summarised in tables 7.4 - 7.12 for LNNAIS, DWB and SMAIN, respectively.

7.5.1 Pattern Migration

Figure 7.6 illustrates the quality of partitioning by the different models over time for pattern mi-

gration. Note the increase in the ALC population size for the SMAIN model with every change

in the data (figure 7.6(d) at t = 30, t = 60 and t = 90). Figure 7.6(a) shows that LNNAIS initially

finds clusters with a lower quality (high Qratio value) when compared to the other models. As

time progresses, the quality of the clusters found by LNNAIS improves (as illustrated in fig-

ures 7.6(b), 7.6(c) and 7.6(e) the number of clusters found increases, becomes more compact

and separated). LNNAIS delivers clusters of a higher quality than DWB and LNNSDOT for all

pattern migration environments. Figure 7.6(f) illustrates the average number of clusters and the

number of clusters with the highest frequency which was dynamically determined by LNNSDOT .

The number of clusters detected with the highest frequency was K = 3 at every point in time

with an average number of clusters between K = 3 and K = 3.6. Although LNNSDOT was unable

to detect the correct number of clusters (K = 8), figure 7.6(f) shows that there was no change

in the number of clusters over time, which is expected for pattern migration where data patterns

randomly migrate between a static number of clusters. Section 7.5.3 discusses the argument for

222

 
 
 



Table 7.5 LNNAIS Parameter Values - Cluster Migration

Environment parameters Bmax ρ εclone

N = 3; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 15; |C| = 25; f̃ = 3; s̃ = 3 10 3 5

N = 8; |C| = 10; f̃ = 3; s̃ = 3 10 3 5

N = 8; |C| = 50; f̃ = 3; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 1; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 2; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 4; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 5; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 1 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 2 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 4 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 5 50 3 5

Table 7.6 LNNAIS Parameter Values - Centroid Migration

Environment parameters Bmax ρ εclone

N = 3; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 3 50 3 5

N = 15; |C| = 25; f̃ = 3; s̃ = 3 30 3 5

N = 8; |C| = 10; f̃ = 3; s̃ = 3 10 3 5

N = 8; |C| = 50; f̃ = 3; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 1; s̃ = 3 30 3 5

N = 8; |C| = 25; f̃ = 2; s̃ = 3 30 3 5

N = 8; |C| = 25; f̃ = 4; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 5; s̃ = 3 40 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 1 40 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 2 40 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 4 40 3 5

N = 8; |C| = 25; f̃ = 3; s̃ = 5 40 3 5
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Table 7.7 DWB Parameter Values - Pattern Migration

Environment parameters Bmax φinit mmin A amin amax kclone ς τ τα τβ kcompress

N = 3; |C| = 25; f̃ = 3; s̃ = 3 84 0.705 0.114 55 6 6 6 0.93 8 8 8 6

N = 8; |C| = 25; f̃ = 3; s̃ = 3 34 0.184 0.634 91 23 41 12 0.297 9 3 6 6

N = 15; |C| = 25; f̃ = 3; s̃ = 3 29 0.262 0.43 73 74 74 9 0.571 10 4 6 5

N = 8; |C| = 10; f̃ = 3; s̃ = 3 43 0.213 0.213 38 63 63 10 0.888 7 2 7 4

N = 8; |C| = 50; f̃ = 3; s̃ = 3 44 0.648 0.395 12 24 24 7 0.536 7 1 5 3

N = 8; |C| = 25; f̃ = 1; s̃ = 3 32 0.986 0.733 74 37 37 2 0.423 8 9 6 1

N = 8; |C| = 25; f̃ = 2; s̃ = 3 40 0.149 0.543 85 13 13 4 0.459 4 3 3 6

N = 8; |C| = 25; f̃ = 4; s̃ = 3 44 0.648 0.395 12 24 24 7 0.536 7 1 5 3

N = 8; |C| = 25; f̃ = 5; s̃ = 3 37 0.402 0.234 95 17 71 4 0.655 5 8 9 1

N = 8; |C| = 25; f̃ = 3; s̃ = 1 34 0.184 0.634 91 23 41 12 0.297 9 3 6 6

N = 8; |C| = 25; f̃ = 3; s̃ = 2 37 0.402 0.234 95 17 71 4 0.655 5 8 9 1

N = 8; |C| = 25; f̃ = 3; s̃ = 4 41 0.508 0.873 15 15 15 13 0.62 5 7 6 6

N = 8; |C| = 25; f̃ = 3; s̃ = 5 37 0.606 0.944 44 7 7 2 0.944 4 5 6 4
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Table 7.8 DWB Parameter Values - Cluster Migration

Environment parameters Bmax φinit mmin A amin amax kclone ς τ τα τβ kcompress

N = 3; |C| = 25; f̃ = 3; s̃ = 3 95 0.74 0.346 82 30 34 13 0.318 6 9 6 7

N = 8; |C| = 25; f̃ = 3; s̃ = 3 27 0.81 0.501 93 47 54 5 0.895 8 8 6 2

N = 15; |C| = 25; f̃ = 3; s̃ = 3 31 0.325 0.775 75 26 75 12 0.775 8 8 3 3

N = 8; |C| = 10; f̃ = 3; s̃ = 3 35 0.677 0.93 58 77 95 1 0.677 10 2 4 6

N = 8; |C| = 50; f̃ = 3; s̃ = 3 31 0.325 0.775 75 26 75 12 0.775 8 8 3 3

N = 8; |C| = 25; f̃ = 1; s̃ = 3 29 0.262 0.43 73 74 74 9 0.571 10 4 6 5

N = 8; |C| = 25; f̃ = 2; s̃ = 3 31 0.325 0.775 75 26 75 12 0.775 8 8 3 3

N = 8; |C| = 25; f̃ = 4; s̃ = 3 32 0.986 0.733 74 37 37 2 0.423 8 9 6 1

N = 8; |C| = 25; f̃ = 5; s̃ = 3 27 0.81 0.501 93 47 54 5 0.895 8 8 6 2

N = 8; |C| = 25; f̃ = 3; s̃ = 1 44 0.648 0.395 12 24 24 7 0.536 7 1 5 3

N = 8; |C| = 25; f̃ = 3; s̃ = 2 36 0.445 0.304 10 33 33 3 0.81 9 9 2 6

N = 8; |C| = 25; f̃ = 3; s̃ = 4 36 0.445 0.304 10 33 33 3 0.81 9 9 2 6

N = 8; |C| = 25; f̃ = 3; s̃ = 5 39 0.923 0.388 56 17 17 14 0.107 5 7 2 4
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Table 7.9 DWB Parameter Values - Centroid Migration

Environment parameters Bmax φinit mmin A amin amax kclone ς τ τα τβ kcompress

N = 3; |C| = 25; f̃ = 3; s̃ = 3 95 0.74 0.346 82 30 34 13 0.318 6 9 6 7

N = 8; |C| = 25; f̃ = 3; s̃ = 3 53 0.838 0.923 3 31 88 9 0.866 3 6 2 7

N = 15; |C| = 25; f̃ = 3; s̃ = 3 68 0.747 0.297 4 10 29 14 0.409 8 6 7 5

N = 8; |C| = 10; f̃ = 3; s̃ = 3 53 0.17 0.311 52 27 27 11 0.733 1 4 5 7

N = 8; |C| = 50; f̃ = 3; s̃ = 3 53 0.838 0.923 3 31 88 9 0.866 3 6 2 7

N = 8; |C| = 25; f̃ = 1; s̃ = 3 95 0.74 0.346 82 30 34 13 0.318 6 9 6 7

N = 8; |C| = 25; f̃ = 2; s̃ = 3 53 0.838 0.923 3 31 88 9 0.866 3 6 2 7

N = 8; |C| = 25; f̃ = 4; s̃ = 3 40 0.149 0.543 85 13 13 4 0.459 4 3 3 6

N = 8; |C| = 25; f̃ = 5; s̃ = 3 68 0.747 0.297 4 10 29 14 0.409 8 6 7 5

N = 8; |C| = 25; f̃ = 3; s̃ = 1 46 0.768 0.712 79 68 68 8 0.515 7 2 1 7

N = 8; |C| = 25; f̃ = 3; s̃ = 2 69 0.543 0.937 54 14 93 12 0.29 9 4 8 3

N = 8; |C| = 25; f̃ = 3; s̃ = 4 69 0.543 0.937 54 14 93 12 0.29 9 4 8 3

N = 8; |C| = 25; f̃ = 3; s̃ = 5 55 0.311 0.958 98 12 12 5 0.198 6 7 3 7
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Table 7.10 SMAIN Parameter Values - Pattern Migration

Environment parameters Binit Rγ RΛ NAT Rk Rmax Rinit

N = 3; |C| = 25; f̃ = 3; s̃ = 3 0.042 0.824 22 1.445 0.852 819 31

N = 8; |C| = 25; f̃ = 3; s̃ = 3 0.057 0.73 3 3.238 0.539 269 62

N = 15; |C| = 25; f̃ = 3; s̃ = 3 0.122 0.828 29 4.872 0.531 875 47

N = 8; |C| = 10; f̃ = 3; s̃ = 3 0.198 0.797 10 2.566 0.719 925 29

N = 8; |C| = 50; f̃ = 3; s̃ = 3 0.147 0.793 40 3.751 0.914 969 50

N = 8; |C| = 25; f̃ = 1; s̃ = 3 0.074 0.992 71 3.911 0.734 488 72

N = 8; |C| = 25; f̃ = 2; s̃ = 3 0.098 0.848 5 3.559 0.68 606 98

N = 8; |C| = 25; f̃ = 4; s̃ = 3 0.115 0.969 7 4.231 0.938 550 44

N = 8; |C| = 25; f̃ = 5; s̃ = 3 0.241 0.52 20 3.687 0.711 831 21

N = 8; |C| = 25; f̃ = 3; s̃ = 1 0.216 0.977 37 3.527 0.078 713 38

N = 8; |C| = 25; f̃ = 3; s̃ = 2 0.203 0.941 73 3.302 0.492 856 74

N = 8; |C| = 25; f̃ = 3; s̃ = 4 0.154 0.902 25 3.366 0.57 494 47

N = 8; |C| = 25; f̃ = 3; s̃ = 5 0.154 0.902 25 3.366 0.57 494 47

Table 7.11 SMAIN Parameter Values - Cluster Migration

Environment parameters Binit Rγ RΛ NAT Rk Rmax Rinit

N = 3; |C| = 25; f̃ = 3; s̃ = 3 0.226 0.926 2 1.38 0.898 281 76

N = 8; |C| = 25; f̃ = 3; s̃ = 3 0.057 0.73 3 3.238 0.539 269 62

N = 15; |C| = 25; f̃ = 3; s̃ = 3 0.244 0.965 13 4.904 0.195 994 84

N = 8; |C| = 10; f̃ = 3; s̃ = 3 0.053 0.629 11 2.79 0.367 956 54

N = 8; |C| = 50; f̃ = 3; s̃ = 3 0.182 0.703 4 3.847 0.281 675 23

N = 8; |C| = 25; f̃ = 1; s̃ = 3 0.147 0.793 40 3.751 0.914 969 50

N = 8; |C| = 25; f̃ = 2; s̃ = 3 0.216 0.977 37 3.527 0.078 713 38

N = 8; |C| = 25; f̃ = 4; s̃ = 3 0.091 0.957 33 3.174 0.836 331 95

N = 8; |C| = 25; f̃ = 5; s̃ = 3 0.203 0.941 73 3.302 0.492 856 74

N = 8; |C| = 25; f̃ = 3; s̃ = 1 0.203 0.941 73 3.302 0.492 856 74

N = 8; |C| = 25; f̃ = 3; s̃ = 2 0.057 0.73 3 3.238 0.539 269 62

N = 8; |C| = 25; f̃ = 3; s̃ = 4 0.098 0.848 5 3.559 0.68 606 98

N = 8; |C| = 25; f̃ = 3; s̃ = 5 0.147 0.793 40 3.751 0.914 969 50
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Table 7.12 SMAIN Parameter Values - Centroid Migration

Environment parameters Binit Rγ RΛ NAT Rk Rmax Rinit

N = 3; |C| = 25; f̃ = 3; s̃ = 3 0.021 0.945 18 2.245 0.516 363 77

N = 8; |C| = 25; f̃ = 3; s̃ = 3 0.036 0.602 12 4.552 0.828 913 13

N = 15; |C| = 25; f̃ = 3; s̃ = 3 0.22 0.812 63 4.488 0.125 300 64

N = 8; |C| = 10; f̃ = 3; s̃ = 3 0.115 0.969 7 4.231 0.938 550 44

N = 8; |C| = 50; f̃ = 3; s̃ = 3 0.036 0.602 12 4.552 0.828 913 13

N = 8; |C| = 25; f̃ = 1; s̃ = 3 0.151 0.582 8 4.199 0.086 531 70

N = 8; |C| = 25; f̃ = 2; s̃ = 3 0.158 0.723 30 4.584 0.43 806 73

N = 8; |C| = 25; f̃ = 4; s̃ = 3 0.158 0.723 30 4.584 0.43 806 73

N = 8; |C| = 25; f̃ = 5; s̃ = 3 0.115 0.969 7 4.231 0.938 550 44

N = 8; |C| = 25; f̃ = 3; s̃ = 1 0.036 0.602 12 4.552 0.828 913 13

N = 8; |C| = 25; f̃ = 3; s̃ = 2 0.158 0.723 30 4.584 0.43 806 73

N = 8; |C| = 25; f̃ = 3; s̃ = 4 0.244 0.965 13 4.904 0.195 994 84

N = 8; |C| = 25; f̃ = 3; s̃ = 5 0.212 0.641 16 4.359 0.906 375 60

LNNSDOT not being able to detect the correct number of clusters for pattern and cluster migration

data sets. Overall, there is no significant change in Qratio, Jintra, Jinter and K for all the models

(t > 40) in pattern migration environments.

The Mann-Whitney U statistical hypothesis test rejects H0 that the mean clustering quality, Q̄, are

the same at a 0.05 level of significance between LNNAIS and LNNSDOT , SMAIN and DWB for

different dimensions (as summarised in table 7.13), different clusters sizes (as summarised in ta-

ble 7.14), for all frequencies of change (as summarised in table 7.15) and all severities of change

(as summarised in table 7.16). There is thus a statistical significant difference in the clustering

quality of all the pattern migration data sets between LNNAIS and all the other models.

Table 7.13: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Pattern migration at different dimensions

(|C|=25; f̃ =3; s̃=3)

N LNNSDOT DWB SMAIN

3 z = 3.999 z = 6.646 z = 6.646

3 p < 0.001 p < 0.001 p < 0.001

3 Reject H0 Reject H0 Reject H0

8 z = 6.646 z = 6.446 z = 6.402

Continued on next page
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N LNNSDOT DWB SMAIN

8 p < 0.001 p < 0.001 p < 0.001

8 Reject H0 Reject H0 Reject H0

15 z = 6.646 z = 5.988 z = 6.646

15 p < 0.001 p < 0.001 p < 0.001

15 Reject H0 Reject H0 Reject H0

Table 7.14: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Pattern migration at different cluster sizes

(N=8; s̃=3; f̃ =3)

|C| LNNSDOT DWB SMAIN

z = 6.084 z = 6.646 z = 6.646

10 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.446 z = 6.402

25 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.542 z = 6.646 z = 6.224

50 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

Table 7.15: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Pattern migration at different frequencies of

change (N=8; |C|=25; s̃=3)

f̃ LNNSDOT DWB SMAIN

z = 6.557 z = 6.646 z = 6.572

1 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.246 z = 6.646 z = 6.646

Continued on next page
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f̃ LNNSDOT DWB SMAIN

2 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.446 z = 6.402

3 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.439 z = 6.594

4 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.646 z = 6.557

5 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

Table 7.16: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Pattern migration at different severities of

change (N=8; |C|=25; f̃ =3)

s̃ LNNSDOT DWB SMAIN

z = 6.646 z = 6.646 z = 6.409

1 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.106 z = 6.646 z = 6.15

2 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.446 z = 6.402

3 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.439 z = 6.646 z = 6.616

4 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.402 z = 6.646 z = 6.416

5 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0
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Figure 7.6 Pattern Migration (N = 8,|C| = 25, f̃ = 3,s̃ = 3): Quantifying each model’s partitioning quality with regards to Qratio,

|B|, Jintra, Jinter and K
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Although SMAIN tends to find clusters with a higher quality than LNNAIS for different dimen-

sions (see table 7.17), cluster sizes (see table 7.18), frequencies of change (see table 7.19) and

severities of change (see table 7.20), SMAIN utilises a larger ALC population size than LNNAIS

for all pattern migration data sets. The larger ALC population size which is utilised by SMAIN

is an indication of overfitting of the data which results in clusters of higher quality for pattern mi-

gration environments. This drawback can have a major impact in the scalability of the SMAIN

model where the number of clusters changes (cluster migration environments) and where the

centroids of clusters are non-stationary (centroid migration environments).

Table 7.17: Descriptive Statistics: Pattern migration at different dimensions (|C|=25; f̃ =3; s̃=3)

N LNNSDOT LNNAIS DWB SMAIN

K 5.28 8 7.96 8

(±)2.06 (±)0 (±)0.02 (±)0

Jintra 5.318 1.826 3.245 1.667

(±)2.787 (±)0.212 (±)0.08 (±)0.013

3 Jinter 21.349 21.616 20.095 21.643

(±)0.782 (±)0.137 (±)0.117 (±)0.047

Q̂ 0.368 0.248 1.578 0.151

(±)0.135 (±)0.168 (±)0.083 (±)0.002

|B| 49.3 49.3 84 84.51

(±)0.45 (±)0.45 (±)0 (±)2.3

K 3.14 7.99 7.92 8

(±)0.32 (±)0.01 (±)0.04 (±)0

Jintra 5.997 2.863 4.004 2.793

(±)0.348 (±)0.07 (±)0.117 (±)0.014

8 Jinter 21.557 19.887 18.53 19.869

(±)0.219 (±)0.068 (±)0.32 (±)0.084

Q̂ 0.335 0.586 1.286 0.436

(±)0.029 (±)0.183 (±)0.094 (±)0.012

|B| 45.97 45.97 34 83

(±)1.26 (±)1.26 (±)0 (±)2.89
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N LNNSDOT LNNAIS DWB SMAIN

K 4.75 7.97 7.92 7.84

(±)0.74 (±)0.05 (±)0.06 (±)0.23

Jintra 5.699 4.059 5.347 4.266

(±)0.803 (±)0.064 (±)0.19 (±)0.068

15 Jinter 22.169 20.565 19.685 20.607

(±)0.464 (±)0.106 (±)0.312 (±)0.224

Q̂ 0.425 0.973 1.225 0.663

(±)0.102 (±)0.117 (±)0.059 (±)0.015

|B| 43.79 43.79 29 84.18

(±)1.67 (±)1.67 (±)0 (±)3.37

Table 7.18: Descriptive Statistics: Pattern migration at different cluster sizes (N=8; s̃=3; f̃ =3)

|C| LNNSDOT LNNAIS DWB SMAIN

K 3.09 3.66 7.92 8

(±)0.09 (±)0.07 (±)0.04 (±)0

Jintra 6.508 5.99 3.619 2.582

(±)0.157 (±)0.13 (±)0.055 (±)0.005

10 Jinter 21.098 19.888 18.606 19.972

(±)0.125 (±)0.137 (±)0.197 (±)0.04

Q̂ 0.497 0.874 1.194 0.408

(±)0.173 (±)0.096 (±)0.038 (±)0.006

|B| 9.99 9.99 43 71.51

(±)0.02 (±)0.02 (±)0 (±)1.53

K 3.14 7.99 7.92 8

(±)0.32 (±)0.01 (±)0.04 (±)0

Jintra 5.997 2.863 4.004 2.793

(±)0.348 (±)0.07 (±)0.117 (±)0.014

25 Jinter 21.557 19.887 18.53 19.869

(±)0.219 (±)0.068 (±)0.32 (±)0.084

Q̂ 0.335 0.586 1.286 0.436
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|C| LNNSDOT LNNAIS DWB SMAIN

(±)0.029 (±)0.183 (±)0.094 (±)0.012

|B| 45.97 45.97 34 83

(±)1.26 (±)1.26 (±)0 (±)2.89

K 3.11 8 7.95 8

(±)0.31 (±)0 (±)0.03 (±)0

Jintra 6.018 2.84 3.915 2.819

(±)0.307 (±)0.019 (±)0.105 (±)0.017

50 Jinter 21.683 19.965 18.546 20.107

(±)0.267 (±)0.035 (±)0.334 (±)0.107

Q̂ 0.326 0.499 1.296 0.439

(±)0.044 (±)0.043 (±)0.06 (±)0.015

|B| 39.7 39.7 44 72.02

(±)0.28 (±)0.28 (±)0 (±)3.92

Table 7.19: Descriptive Statistics: Pattern migration at different frequencies of change (N=8;

|C|=25; s̃=3)

f̃ LNNSDOT LNNAIS DWB SMAIN

K 3.21 7.99 7.94 8

(±)0.59 (±)0.02 (±)0.03 (±)0

Jintra 6.021 2.891 4.077 2.891

(±)0.519 (±)0.034 (±)0.077 (±)0.019

1 Jinter 21.934 20.158 18.772 20.226

(±)0.342 (±)0.051 (±)0.199 (±)0.093

Q̂ 0.335 0.559 1.287 0.435

(±)0.049 (±)0.089 (±)0.054 (±)0.015

|B| 46.07 46.07 32 61.01

(±)1.36 (±)1.36 (±)0 (±)2.78

K 3.09 8 7.94 8

(±)0.29 (±)0.01 (±)0.03 (±)0

Jintra 6.118 2.861 3.87 2.825

(±)0.313 (±)0.047 (±)0.071 (±)0.016
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f̃ LNNSDOT LNNAIS DWB SMAIN

2 Jinter 21.967 19.965 18.67 20.253

(±)0.255 (±)0.116 (±)0.225 (±)0.105

Q̂ 0.335 0.629 1.287 0.409

(±)0.082 (±)0.111 (±)0.054 (±)0.009

|B| 38.4 38.4 40 64.06

(±)0.66 (±)0.66 (±)0 (±)2.77

K 3.14 7.99 7.92 8

(±)0.32 (±)0.01 (±)0.04 (±)0

Jintra 5.997 2.863 4.004 2.793

(±)0.348 (±)0.07 (±)0.117 (±)0.014

3 Jinter 21.557 19.887 18.53 19.869

(±)0.219 (±)0.068 (±)0.32 (±)0.084

Q̂ 0.335 0.586 1.286 0.436

(±)0.029 (±)0.183 (±)0.094 (±)0.012

|B| 45.97 45.97 34 83

(±)1.26 (±)1.26 (±)0 (±)2.89

K 3.05 7.99 7.94 8

(±)0.06 (±)0.02 (±)0.03 (±)0

Jintra 6.213 2.881 3.855 2.974

(±)0.07 (±)0.072 (±)0.075 (±)0.044

4 Jinter 21.548 19.806 18.53 19.939

(±)0.11 (±)0.109 (±)0.248 (±)0.174

Q̂ 0.332 0.635 1.269 0.426

(±)0.02 (±)0.198 (±)0.073 (±)0.02

|B| 46.19 46.19 44 37.09

(±)1.78 (±)1.78 (±)0 (±)2.45

K 3.1 7.98 7.95 8

(±)0.26 (±)0.03 (±)0.02 (±)0

Jintra 6.033 2.85 3.908 2.845

(±)0.24 (±)0.041 (±)0.062 (±)0.113

5 Jinter 21.636 19.877 18.558 20.187

(±)0.185 (±)0.04 (±)0.171 (±)0.207
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f̃ LNNSDOT LNNAIS DWB SMAIN

Q̂ 0.323 0.601 1.274 0.437

(±)0.028 (±)0.119 (±)0.048 (±)0.017

|B| 38.2 38.2 37 55.03

(±)1.06 (±)1.06 (±)0 (±)2.9

Table 7.20: Descriptive Statistics: Pattern migration at different severities of change (N=8;

|C|=25; f̃ =3)

s̃ LNNSDOT LNNAIS DWB SMAIN

K 3.02 7.99 7.95 8

(±)0.03 (±)0.02 (±)0.02 (±)0

Jintra 6.067 2.829 3.945 2.762

(±)0.052 (±)0.051 (±)0.149 (±)0.017

1 Jinter 21.822 19.963 18.71 20.045

(±)0.065 (±)0.066 (±)0.271 (±)0.096

Q̂ 0.314 0.594 1.263 0.435

(±)0.012 (±)0.146 (±)0.096 (±)0.018

|B| 45.42 45.42 34 68.13

(±)1.67 (±)1.67 (±)0 (±)2.96

K 3.17 7.99 7.96 8

(±)0.56 (±)0.02 (±)0.02 (±)0

Jintra 5.931 2.862 3.88 2.776

(±)0.371 (±)0.072 (±)0.063 (±)0.015

2 Jinter 21.765 19.898 18.605 20.072

(±)0.438 (±)0.097 (±)0.173 (±)0.067

Q̂ 0.346 0.6 1.26 0.453

(±)0.125 (±)0.142 (±)0.041 (±)0.016

|B| 45.76 45.76 37 73.46

(±)1.74 (±)1.74 (±)0 (±)2.73

K 3.14 7.99 7.92 8

(±)0.32 (±)0.01 (±)0.04 (±)0

Jintra 5.997 2.863 4.004 2.793
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s̃ LNNSDOT LNNAIS DWB SMAIN

(±)0.348 (±)0.07 (±)0.117 (±)0.014

3 Jinter 21.557 19.887 18.53 19.869

(±)0.219 (±)0.068 (±)0.32 (±)0.084

Q̂ 0.335 0.586 1.286 0.436

(±)0.029 (±)0.183 (±)0.094 (±)0.012

|B| 45.97 45.97 34 83

(±)1.26 (±)1.26 (±)0 (±)2.89

K 3.06 7.99 7.9 8

(±)0.36 (±)0.02 (±)0.05 (±)0

Jintra 6.202 2.898 3.977 2.81

(±)0.641 (±)0.057 (±)0.107 (±)0.015

4 Jinter 21.648 19.941 18.497 20.008

(±)0.398 (±)0.096 (±)0.388 (±)0.093

Q̂ 0.337 0.598 1.275 0.438

(±)0.047 (±)0.122 (±)0.095 (±)0.014

|B| 45.7 45.7 41 78.81

(±)1.38 (±)1.38 (±)0 (±)3.21

K 3.23 7.99 7.95 8

(±)0.87 (±)0.03 (±)0.02 (±)0

Jintra 6.023 2.891 3.944 2.82

(±)0.898 (±)0.045 (±)0.053 (±)0.015

5 Jinter 21.649 19.976 18.578 20.163

(±)0.471 (±)0.076 (±)0.208 (±)0.068

Q̂ 0.339 0.601 1.269 0.444

(±)0.058 (±)0.119 (±)0.04 (±)0.011

|B| 45.88 45.88 37 78.66

(±)1.67 (±)1.67 (±)0 (±)2.71

7.5.2 Cluster Migration

Figure 7.7 illustrates the quality of partitioning by the different models over time for cluster

migration. Similar trends as for pattern migration are illustrated for cluster quality (see fig-
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ure 7.7(a)) and ALC population sizes (see figure 7.7(d)). As for pattern migration there is an

increase in the ALC population size for the SMAIN model with every change in the data (fig-

ure 7.7(d) at t = 30, t = 60 and t = 90). The drawback of SMAIN to potentially overfit the

data is emphasised with cluster migration environments, since it is expected to utilise a smaller

ALC population size with a decrease in the number of clusters in the data (as illustrated in fig-

ures 7.7(d) and 7.7(e), the ALC population size of SMAIN increases even with a decrease in the

number of clusters). Figure 7.7(e) illustrates that LNNAIS and SMAIN detected the change in

the number of clusters at t = 30. The expected number of clusters for t ≥ 30 is K = 6 which is

correctly obtained by LNNAIS and SMAIN. DWB tends to cluster the data into slightly more

than six clusters (6 < K < 7), because of the hybrid approach followed by DWB (using K-means

clustering). The DWB model partitions the ALC population into the initial eight clusters (eight

sub-nets) at each step in time. This results into an average of 6.97 clusters at t ≥ 30 (as illustrated

in figure 7.7(e)), which explains the lower quality of clusters found by DWB when compared to

SMAIN and LNNAIS (as illustrated in figure 7.7(a)). Again, LNNSDOT did not detect the correct

number of clusters, but did however detect a change in the data at t = 30, t = 60 and t = 90 (see

figure 7.7(f)). Overall, there is no significant change in Qratio, Jintra, Jinter and K for all the mod-

els (t > 40) in cluster migration environments except for LNNSDOT where K fluctuates between

K = 2 and K = 3 at every change in the data (explained in section 7.5.3).

The Mann-Whitney U statistical hypothesis test rejects H0 that the mean clustering quality, Q̄, are

the same at a 0.05 level of significance between LNNAIS and LNNSDOT , SMAIN and DWB for

different dimensions (as summarised in table 7.21), different clusters sizes (as summarised in ta-

ble 7.22), for all frequencies of change (as summarised in table 7.23), and all severities of change

(as summarised in table 7.24). There is thus a statistical significant difference in the clustering

quality of all the cluster migration data sets between LNNAIS and all the other models.

Table 7.21: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Cluster migration at different dimensions

(|C|=25; f̃ =3; s̃=3)

N LNNSDOT DWB SMAIN

3 z = 4.568 z = 6.646 z = 6.646

3 p < 0.001 p < 0.001 p < 0.001

3 Reject H0 Reject H0 Reject H0

8 z = 6.646 z = 6.646 z = 6.646
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N LNNSDOT DWB SMAIN

8 p < 0.001 p < 0.001 p < 0.001

8 Reject H0 Reject H0 Reject H0

15 z = 5.455 z = 5.862 z = 5.64

15 p < 0.001 p < 0.001 p < 0.001

15 Reject H0 Reject H0 Reject H0

Table 7.22: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Cluster migration at different cluster sizes

(N=8; s̃=3; f̃ =3)

|C| LNNSDOT DWB SMAIN

z = 6.646 z = 6.527 z = 6.646

10 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.646 z = 6.646

25 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.646 z = 3.785

50 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

Table 7.23: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Cluster migration at different frequencies of

change (N=8; |C|=25; s̃=3)

f̃ LNNSDOT DWB SMAIN

z = 6.631 z = 6.631 z = 6.631

1 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 5.877 z = 6.646 z = 6.616
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f̃ LNNSDOT DWB SMAIN

2 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.646 z = 6.646

3 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.646 z = 6.631

4 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.35 z = 6.276 z = 6.579

5 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

Table 7.24: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Cluster migration at different severities of

change (N=8; |C|=25; f̃ =3)

s̃ LNNSDOT DWB SMAIN

z = 6.291 z = 6.202 z = 6.646

1 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.601 z = 6.646 z = 6.646

2 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.646 z = 6.646 z = 6.646

3 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.431 z = 6.527 z = 6.631

4 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.328 z = 6.601 z = 6.32

5 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0
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Figure 7.7 Cluster Migration (N = 8,|C| = 25, f̃ = 3,s̃ = 3): Quantifying each model’s partitioning quality with regards to Qratio,

|B|, Jintra, Jinter and K
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Similar to the pattern migration environments, SMAIN utilises a larger ALC population size

than LNNAIS and tends to overfit the data. This results in clusters of higher quality for cluster

migration environments when compared to LNNAIS at different dimensions (see table 7.25),

cluster sizes (see table 7.26), frequencies of change (see table 7.27) and severities of change (see

table 7.28). The drawback of overfit is even more emphasised in cluster migration environments

where the ALC population size of the SMAIN model does not scale with the number of clusters.

LNNAIS delivers clusters of a higher quality than DWB and LNNSDOT for all cluster migration

environments. LNNAIS also obtains the correct number of clusters at different severities of

change with no significant change in the ALC population size (see table 7.28 where an increase

in s̃ increases the number of clusters migrating and disappearing in the data, i.e. decreasing the

number of clusters in the data).

Table 7.25: Descriptive Statistics: Cluster migration at different dimensions (|C|=25; f̃ =3; s̃=3)

N LNNSDOT LNNAIS DWB SMAIN

K 4.38 6.46 7.25 6.58

(±)1.31 (±)0.08 (±)0.08 (±)0

Jintra 5.565 1.66 2.711 1.555

(±)2.487 (±)0.132 (±)0.106 (±)0.008

3 Jinter 21.426 21.609 20.031 21.707

(±)0.585 (±)0.147 (±)0.163 (±)0.053

Q̂ 0.367 0.224 1.468 0.14

(±)0.124 (±)0.102 (±)0.093 (±)0.002

|B| 49.15 49.15 95 83.15

(±)0.47 (±)0.47 (±)0 (±)2.51

K 2.62 6.43 6.97 6.58

(±)0.18 (±)0.09 (±)0.2 (±)0

Jintra 6.174 2.835 3.835 2.75

(±)0.282 (±)0.046 (±)0.164 (±)0.015

8 Jinter 21.799 19.979 18.717 20.118

(±)0.21 (±)0.085 (±)0.315 (±)0.074

Q̂ 0.326 0.59 1.214 0.45

(±)0.023 (±)0.105 (±)0.088 (±)0.011
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N LNNSDOT LNNAIS DWB SMAIN

|B| 45.49 45.49 27 79.97

(±)1.63 (±)1.63 (±)0 (±)3.83

K 3.69 3.8 7.45 6.64

(±)0.11 (±)0.06 (±)0.14 (±)0.11

Jintra 6.705 6.845 4.93 4.034

(±)0.225 (±)0.163 (±)0.183 (±)0.083

15 Jinter 21.52 20.84 19.678 20.739

(±)0.155 (±)0.165 (±)0.344 (±)0.169

Q̂ 0.553 0.856 1.219 0.633

(±)0.13 (±)0.188 (±)0.046 (±)0.019

|B| 10 10 31 79.7

(±)0 (±)0 (±)0 (±)3.19

Table 7.26: Descriptive Statistics: Cluster migration at different cluster sizes (N=8; s̃=3; f̃ =3)

|C| LNNSDOT LNNAIS DWB SMAIN

K 3.11 3.7 7.2 6.58

(±)0.09 (±)0.05 (±)0.13 (±)0

Jintra 6.046 5.389 3.671 2.752

(±)0.185 (±)0.109 (±)0.117 (±)0.008

10 Jinter 21.989 20.648 18.821 20.097

(±)0.252 (±)0.149 (±)0.343 (±)0.054

Q̂ 0.386 0.816 1.132 0.421

(±)0.045 (±)0.105 (±)0.067 (±)0.009

|B| 10 10 35 71.79

(±)0.01 (±)0.01 (±)0 (±)1.11

K 2.62 6.43 6.97 6.58

(±)0.18 (±)0.09 (±)0.2 (±)0

Jintra 6.174 2.835 3.835 2.75

(±)0.282 (±)0.046 (±)0.164 (±)0.015

25 Jinter 21.799 19.979 18.717 20.118
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|C| LNNSDOT LNNAIS DWB SMAIN

(±)0.21 (±)0.085 (±)0.315 (±)0.074

Q̂ 0.326 0.59 1.214 0.45

(±)0.023 (±)0.105 (±)0.088 (±)0.011

|B| 45.49 45.49 27 79.97

(±)1.63 (±)1.63 (±)0 (±)3.83

K 3.04 6.56 7.24 6.58

(±)0.14 (±)0.13 (±)0.14 (±)0

Jintra 5.565 2.851 3.808 2.864

(±)0.231 (±)0.018 (±)0.108 (±)0.017

50 Jinter 21.576 19.938 18.27 20.021

(±)0.153 (±)0.083 (±)0.44 (±)0.1

Q̂ 0.295 0.522 1.236 0.452

(±)0.023 (±)0.104 (±)0.068 (±)0.017

|B| 48.89 48.89 31 72

(±)0.73 (±)0.73 (±)0 (±)3.05

Table 7.27: Descriptive Statistics: Cluster migration at different frequencies of change (N=8;

|C|=25; s̃=3)

f̃ LNNSDOT LNNAIS DWB SMAIN

K 2.95 6.26 7.03 6.25

(±)0.2 (±)0.12 (±)0.12 (±)0.05

Jintra 5.617 2.833 3.617 2.822

(±)0.472 (±)0.041 (±)0.067 (±)0.017

1 Jinter 21.667 19.686 18.281 20.307

(±)0.173 (±)0.156 (±)0.357 (±)0.075

Q̂ 0.303 0.77 1.203 0.445

(±)0.044 (±)0.167 (±)0.062 (±)0.016

|B| 37.97 37.97 29 69.26

(±)0.73 (±)0.73 (±)0 (±)2.75

K 3.19 6.38 7.2 6.38

(±)0.37 (±)0.15 (±)0.11 (±)0
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f̃ LNNSDOT LNNAIS DWB SMAIN

Jintra 5.764 2.832 3.681 2.793

(±)0.613 (±)0.046 (±)0.078 (±)0.015

2 Jinter 21.561 19.94 18.429 20.145

(±)0.679 (±)0.112 (±)0.323 (±)0.087

Q̂ 0.366 0.671 1.217 0.439

(±)0.11 (±)0.141 (±)0.062 (±)0.016

|B| 45.68 45.68 31 74.82

(±)1.64 (±)1.64 (±)0 (±)2.84

K 2.62 6.43 6.97 6.58

(±)0.18 (±)0.09 (±)0.2 (±)0

Jintra 6.174 2.835 3.835 2.75

(±)0.282 (±)0.046 (±)0.164 (±)0.015

3 Jinter 21.799 19.979 18.717 20.118

(±)0.21 (±)0.085 (±)0.315 (±)0.074

Q̂ 0.326 0.59 1.214 0.45

(±)0.023 (±)0.105 (±)0.088 (±)0.011

|B| 45.49 45.49 27 79.97

(±)1.63 (±)1.63 (±)0 (±)3.83

K 2.95 6.68 7.61 6.78

(±)0.45 (±)0.12 (±)0.13 (±)0

Jintra 5.691 2.895 3.702 2.783

(±)0.477 (±)0.046 (±)0.063 (±)0.022

4 Jinter 21.621 19.878 18.223 19.944

(±)0.372 (±)0.115 (±)0.205 (±)0.064

Q̂ 0.324 0.658 1.221 0.455

(±)0.054 (±)0.136 (±)0.038 (±)0.015

|B| 45.96 45.96 32 83.78

(±)1.6 (±)1.6 (±)0 (±)2.24

K 3.03 6.96 7.45 6.98

(±)0.28 (±)0.16 (±)0.24 (±)0

Jintra 6.086 2.932 3.965 2.828

(±)0.728 (±)0.079 (±)0.129 (±)0.012
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f̃ LNNSDOT LNNAIS DWB SMAIN

5 Jinter 21.726 19.77 18.519 20.023

(±)0.295 (±)0.181 (±)0.405 (±)0.095

Q̂ 0.337 0.695 1.215 0.439

(±)0.076 (±)0.208 (±)0.079 (±)0.012

|B| 46.05 46.05 27 80.23

(±)1.77 (±)1.77 (±)0 (±)3.46

Table 7.28: Descriptive Statistics: Cluster migration at different severities of change (N=8;

|C|=25; f̃ =3)

s̃ LNNSDOT LNNAIS DWB SMAIN

K 3.02 7.99 7.95 8

(±)0.26 (±)0.02 (±)0.02 (±)0

Jintra 6.336 2.892 3.908 2.807

(±)0.69 (±)0.067 (±)0.103 (±)0.013

1 Jinter 21.911 20.105 18.692 20.178

(±)0.303 (±)0.081 (±)0.251 (±)0.062

Q̂ 0.342 0.609 1.262 0.422

(±)0.065 (±)0.168 (±)0.063 (±)0.017

|B| 46.07 46.07 44 73.39

(±)1.53 (±)1.53 (±)0 (±)2.82

K 3.04 7.26 7.75 7.29

(±)0.1 (±)0.18 (±)0.09 (±)0

Jintra 6.118 2.747 3.722 2.705

(±)0.251 (±)0.06 (±)0.072 (±)0.02

2 Jinter 21.617 19.827 18.552 20.051

(±)0.228 (±)0.193 (±)0.201 (±)0.078

Q̂ 0.328 0.616 1.27 0.384

(±)0.027 (±)0.157 (±)0.047 (±)0.01

|B| 45.84 45.84 36 69.04

(±)1.32 (±)1.32 (±)0 (±)3.22
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s̃ LNNSDOT LNNAIS DWB SMAIN

K 2.62 6.43 6.97 6.58

(±)0.18 (±)0.09 (±)0.2 (±)0

Jintra 6.174 2.835 3.835 2.75

(±)0.282 (±)0.046 (±)0.164 (±)0.015

3 Jinter 21.799 19.979 18.717 20.118

(±)0.21 (±)0.085 (±)0.315 (±)0.074

Q̂ 0.326 0.59 1.214 0.45

(±)0.023 (±)0.105 (±)0.088 (±)0.011

|B| 45.49 45.49 27 79.97

(±)1.63 (±)1.63 (±)0 (±)3.83

K 3.06 5.75 7.29 5.87

(±)0.11 (±)0.15 (±)0.07 (±)0

Jintra 5.787 2.81 3.448 2.79

(±)0.398 (±)0.036 (±)0.068 (±)0.017

4 Jinter 21.516 19.729 17.926 19.754

(±)0.356 (±)0.171 (±)0.231 (±)0.11

Q̂ 0.322 0.689 1.207 0.425

(±)0.058 (±)0.211 (±)0.044 (±)0.014

|B| 45.6 45.6 36 63.18

(±)1.64 (±)1.64 (±)0 (±)2.33

K 3.11 4.86 6.4 5.13

(±)0.29 (±)0.08 (±)0.11 (±)0.09

Jintra 5.634 2.863 3.473 2.879

(±)0.575 (±)0.042 (±)0.074 (±)0.088

5 Jinter 21.489 19.832 18.296 19.861

(±)0.637 (±)0.109 (±)0.272 (±)0.148

Q̂ 0.333 0.615 1.176 0.437

(±)0.07 (±)0.142 (±)0.059 (±)0.021

|B| 45.49 45.49 39 65.09

(±)1.45 (±)1.45 (±)0 (±)2.89
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7.5.3 Centroid Migration

Figure 7.8 illustrates the quality of partitioning by the different models over time for centroid

migration. Different to the pattern and cluster migration data sets, the centroids in the centroid

migration data sets are non-stationary. Non-stationary centroids result in merging of clusters and

division of clusters. Figure 7.8(e) illustrates that LNNAIS and SMAIN detected the change in the

number of clusters at t = 30, t = 60 and t = 90. The expected number of clusters for 30 ≤ t < 60

and 60 ≤ t < 90 is K = 6 and K = 4 for t ≥ 90 which is correctly obtained by LNNAIS and

SMAIN. A similar drawback of DWB for cluster migration as for pattern and cluster migration

is that DWB tends to cluster the data into slightly more clusters, because of the hybrid approach

followed by DWB (using K-means clustering). The DWB model partitions the ALC population

into the initial eight clusters (eight sub-nets) at each step in time. Different to pattern and cluster

migration, LNNSDOT detected the change in the data at t = 30, t = 60 and t = 90 and determined

the correct number of clusters. LNNSDOT did not determine the correct number of clusters for

t < 30. Since the centroids in the centroid migration is non-stationary, the distances between

these centroids change over time. This has a direct influence on the network affinity between

the ALCs in LNNAIS, since the ALCs adapt to the clusters. As a result of the changes in the

distance between the centroids, the sequential outlier technique detects more network affinities

as outliers (utilised by LNNSDOT to dynamically determine the ALC network boundaries, as

explained in section 6.2). Detecting more ALC network boundaries correctly determines the

number of clusters in the data set. This highlights a potential drawback of the sequential devi-

ation outlier detection technique used by LNNSDOT which is that if the centroids of clusters in

a data set are uniformly distributed with equal distances, the ALC networks formed in LNNAIS

will have equal network affinities between each other, resulting in no outlier network affinities.

This is expected since the sequential deviation outlier detection technique will detect no outliers

and therefore no boundaries between the ALC networks. This was the case for the pattern and

cluster migration environments where the spatial positions of the centroids remain stationary (re-

fer to figures 7.6(f) and figures 7.7(f) where K ≤ 3 at all time steps). The same argument applies

to centroid migration where t < 30 as illustrated in figure 7.8(f), since prior to this point in time

none of the centroids have changed their spatial positions and only three boundaries between the

ALC networks were detected by LNNSDOT .

The drawback of SMAIN to potentially overfit the data is also highlighted with centroid mi-

gration environments, since it is expected to utilise a smaller ALC population size with a de-

crease in the number of clusters in the data (as illustrated in figures 7.8(d), 7.8(e) and 7.8(a); the
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ALC population size of SMAIN increases even at a decrease in the number of clusters with no

significant gain in the cluster quality). Furthermore the clusters found by SMAIN become less

compact at each change (as illustrated in figure 7.8(b)). Figures 7.8(a) shows that the quality of

clusters found by LNNAIS lowers at each change, but that LNNAIS succeeds to recover from the

change and improve on the cluster quality as time progresses, even though the number of clusters

changes and clusters become less compact (as illustrated in figures 7.8(b) and 7.8(e)). LNNAIS

delivers clusters of a higher quality than DWB (for all t) and similar quality as LNNSDOT (for

t > 30) for all centroid migration environments.

Table 7.29: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Centroid migration at different dimensions

(|C|=25; f̃ =3; s̃=3)

N LNNSDOT DWB SMAIN

3 z = 3.326 z = 6.646 z = 5.914

3 p < 0.001 p < 0.001 p < 0.001

3 Reject H0 Reject H0 Reject H0

8 z = 4.805 z = 6.646 z = 6.646

8 p < 0.001 p < 0.001 p < 0.001

8 Reject H0 Reject H0 Reject H0

15 z = 6.498 z = 6.646 z = 6.276

15 p < 0.001 p < 0.001 p < 0.001

15 Reject H0 Reject H0 Reject H0

Table 7.30: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Centroid migration at different cluster sizes

(N=8; s̃=3; f̃ =3)

|C| LNNSDOT DWB SMAIN

z = 6.232 z = 6.209 z = 6.646

10 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 4.805 z = 6.646 z = 6.646

Continued on next page
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|C| LNNSDOT DWB SMAIN

25 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 5.67 z = 6.646 z = 4.709

50 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

Table 7.31: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Centroid migration at different frequencies

of change (N=8; |C|=25; s̃=3)

f̃ LNNSDOT DWB SMAIN

z = 3.674 z = 6.646 z = 6.646

1 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 6.158 z = 6.646 z = 6.631

2 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 4.805 z = 6.646 z = 6.646

3 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 4.687 z = 6.646 z = 5.722

4 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 5.241 z = 6.453 z = 6.646

5 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0
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Table 7.32: Statistical Hypothesis Testing between LNNAIS and Other Models (α = 0.05; with

continuity correction; unpaired; non-directional) for Centroid migration at different severities of

change (N=8; |C|=25; f̃ =3)

s̃ LNNSDOT DWB SMAIN

z = 5.345 z = 6.646 z = 0.074

1 p < 0.001 p < 0.001 p = 0.941

Reject H0 Reject H0 Accept H0

z = 5.98 z = 6.646 z = 6.527

2 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 4.805 z = 6.646 z = 6.646

3 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 4.273 z = 6.646 z = 5.781

4 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

z = 4.938 z = 6.646 z = 6.646

5 p < 0.001 p < 0.001 p < 0.001

Reject H0 Reject H0 Reject H0

The Mann-Whitney U statistical hypothesis test rejects H0 that the mean clustering quality, Q̄,

are the same at a 0.05 level of significance between LNNAIS and LNNSDOT , SMAIN and DWB

for different dimensions (as summarised in table 7.29), different clusters sizes (as summarised in

table 7.30), for all frequencies of change (as summarised in table 7.31) and severities of change

greater than one (as summarised in table 7.32). There is thus a statistical significant difference in

the clustering quality of all the centroid migration data sets between LNNAIS and all the other

models except for s̃ = 1 between LNNAIS and SMAIN where the Mann-Whitney U statistical

hypothesis test accepted H0.

252

 
 
 



Table 7.33: Descriptive Statistics: Centroid migration at different dimensions (|C|=25; f̃ =3; s̃=3)

N LNNSDOT LNNAIS DWB SMAIN

K 3.4 5.69 6.73 5.63

(±)0.84 (±)0.25 (±)0.12 (±)0.18

Jintra 7.111 2.49 2.949 2.694

(±)2.193 (±)0.246 (±)0.078 (±)0.163

3 Jinter 20.43 21.022 19.256 21.102

(±)1.01 (±)0.3 (±)0.22 (±)0.127

Q̂ 0.493 0.392 1.238 0.253

(±)0.1 (±)0.121 (±)0.067 (±)0.015

|B| 49.18 49.18 95 60.01

(±)0.62 (±)0.62 (±)0 (±)2.13

K 4.73 5.94 6.84 6.36

(±)0.55 (±)0.18 (±)0.08 (±)0.2

Jintra 4.919 4.01 4.5 4.386

(±)0.621 (±)0.198 (±)0.093 (±)0.11

8 Jinter 20.933 20.522 18.828 20.548

(±)0.316 (±)0.196 (±)0.245 (±)0.136

Q̂ 0.507 0.62 1.18 0.443

(±)0.101 (±)0.092 (±)0.065 (±)0.011

|B| 45.97 45.97 53 50.09

(±)1.6 (±)1.6 (±)0 (±)2.82

K 5.56 5.98 6.66 6.06

(±)0.31 (±)0.41 (±)0.18 (±)0.38

Jintra 4.973 4.885 5.639 7.728

(±)0.258 (±)0.315 (±)0.118 (±)1.248

15 Jinter 20.601 20.069 18.641 20.45

(±)0.29 (±)0.51 (±)0.281 (±)0.775

Q̂ 0.529 0.772 1.184 1.28

(±)0.056 (±)0.114 (±)0.064 (±)0.43

|B| 28.94 28.94 68 28.22

(±)0.64 (±)0.64 (±)0 (±)3.32
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Table 7.34: Descriptive Statistics: Centroid migration at different cluster sizes (N=8; s̃=3; f̃ =3)

|C| LNNSDOT LNNAIS DWB SMAIN

K 3.05 3.62 6.81 5.73

(±)0.1 (±)0.09 (±)0.13 (±)0.14

Jintra 7.143 6.531 4.562 4.61

(±)0.178 (±)0.175 (±)0.084 (±)0.091

10 Jinter 21.198 19.536 18.374 19.971

(±)0.252 (±)0.257 (±)0.222 (±)0.137

Q̂ 0.511 0.894 1.131 0.479

(±)0.113 (±)0.107 (±)0.048 (±)0.014

|B| 10 10 53 45.68

(±)0.01 (±)0.01 (±)0 (±)2.22

K 4.73 5.94 6.84 6.36

(±)0.55 (±)0.18 (±)0.08 (±)0.2

Jintra 4.919 4.01 4.5 4.386

(±)0.621 (±)0.198 (±)0.093 (±)0.11

25 Jinter 20.933 20.522 18.828 20.548

(±)0.316 (±)0.196 (±)0.245 (±)0.136

Q̂ 0.507 0.62 1.18 0.443

(±)0.101 (±)0.092 (±)0.065 (±)0.011

|B| 45.97 45.97 53 50.09

(±)1.6 (±)1.6 (±)0 (±)2.82

K 4.62 5.79 6.75 5.37

(±)0.46 (±)0.26 (±)0.13 (±)0.19

Jintra 4.774 3.958 4.492 4.532

(±)0.593 (±)0.218 (±)0.087 (±)0.119

50 Jinter 21.195 20.542 18.53 20.706

(±)0.283 (±)0.212 (±)0.321 (±)0.144

Q̂ 0.441 0.542 1.241 0.489

(±)0.05 (±)0.062 (±)0.049 (±)0.021

|B| 39.72 39.72 53 59.29

(±)0.18 (±)0.18 (±)0 (±)2.83
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Table 7.35: Descriptive Statistics: Centroid migration at different frequencies of change (N=8;

|C|=25; s̃=3)

f̃ LNNSDOT LNNAIS DWB SMAIN

K 5.28 5.66 5.88 5.24

(±)0.46 (±)0.33 (±)0.17 (±)0.32

Jintra 4.588 4.154 5.012 7.429

(±)0.618 (±)0.254 (±)0.099 (±)0.437

1 Jinter 19.49 19.046 18.411 20.122

(±)0.741 (±)0.54 (±)0.312 (±)0.615

Q̂ 0.55 0.636 1.131 1.071

(±)0.084 (±)0.096 (±)0.056 (±)0.172

|B| 29.5 29.51 95 29.31

(±)0.4 (±)0.39 (±)0 (±)2.43

K 4.51 5.36 6.3 4.81

(±)0.35 (±)0.34 (±)0.14 (±)0.36

Jintra 4.815 4.128 4.591 5

(±)0.381 (±)0.301 (±)0.098 (±)0.289

2 Jinter 20.159 19.389 17.782 20.035

(±)0.45 (±)0.691 (±)0.355 (±)0.452

Q̂ 0.483 0.65 1.178 0.455

(±)0.073 (±)0.105 (±)0.046 (±)0.019

|B| 29.51 29.52 53 56.85

(±)0.36 (±)0.35 (±)0 (±)5.91

K 4.73 5.94 6.84 6.36

(±)0.55 (±)0.18 (±)0.08 (±)0.2

Jintra 4.919 4.01 4.5 4.386

(±)0.621 (±)0.198 (±)0.093 (±)0.11

3 Jinter 20.933 20.522 18.828 20.548

(±)0.316 (±)0.196 (±)0.245 (±)0.136

Q̂ 0.507 0.62 1.18 0.443

(±)0.101 (±)0.092 (±)0.065 (±)0.011

|B| 45.97 45.97 53 50.09

(±)1.6 (±)1.6 (±)0 (±)2.82
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f̃ LNNSDOT LNNAIS DWB SMAIN

K 5.56 6.69 7.09 6.82

(±)0.35 (±)0.26 (±)0.13 (±)0.3

Jintra 4.535 3.807 5.03 3.949

(±)0.434 (±)0.243 (±)0.103 (±)0.389

4 Jinter 21.091 20.623 19.153 20.657

(±)0.201 (±)0.129 (±)0.215 (±)0.208

Q̂ 0.448 0.544 1.251 0.415

(±)0.134 (±)0.106 (±)0.069 (±)0.028

|B| 38.18 38.18 40 32.22

(±)0.72 (±)0.72 (±)0 (±)4.88

K 4.71 7.38 7.34 7.47

(±)0.75 (±)0.24 (±)0.08 (±)0.09

Jintra 5.581 3.49 4.634 3.521

(±)0.919 (±)0.185 (±)0.074 (±)0.114

5 Jinter 21.024 20.229 18.954 20.36

(±)0.209 (±)0.253 (±)0.159 (±)0.12

Q̂ 0.469 0.652 1.203 0.42

(±)0.096 (±)0.144 (±)0.044 (±)0.018

|B| 38.12 38.12 68 51.92

(±)0.58 (±)0.58 (±)0 (±)3.76

Table 7.36: Descriptive Statistics: Centroid migration at different severities of change (N=8;

|C|=25; f̃ =3)

s̃ LNNSDOT LNNAIS DWB SMAIN

K 4.59 7.81 7.47 7.35

(±)0.86 (±)0.21 (±)0.11 (±)0.12

Jintra 6.045 3.162 4.934 4.121

(±)1.106 (±)0.143 (±)0.097 (±)0.083

1 Jinter 21.012 20.319 18.815 20.031

(±)0.345 (±)0.139 (±)0.24 (±)0.182

Q̂ 0.409 0.523 1.288 0.496
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s̃ LNNSDOT LNNAIS DWB SMAIN

(±)0.031 (±)0.096 (±)0.066 (±)0.02

|B| 37.89 37.89 46 46.68

(±)0.95 (±)0.95 (±)0 (±)2.43

K 5.68 6.53 6.91 6.02

(±)0.59 (±)0.31 (±)0.07 (±)0.35

Jintra 4.576 3.806 4.842 4.441

(±)0.677 (±)0.232 (±)0.097 (±)0.288

2 Jinter 20.175 19.618 18.485 19.986

(±)0.38 (±)0.307 (±)0.177 (±)0.264

Q̂ 0.461 0.623 1.21 0.456

(±)0.054 (±)0.086 (±)0.047 (±)0.024

|B| 37.81 37.81 69 39.93

(±)0.91 (±)0.91 (±)0 (±)3.75

K 4.73 5.94 6.84 6.36

(±)0.55 (±)0.18 (±)0.08 (±)0.2

Jintra 4.919 4.01 4.5 4.386

(±)0.621 (±)0.198 (±)0.093 (±)0.11

3 Jinter 20.933 20.522 18.828 20.548

(±)0.316 (±)0.196 (±)0.245 (±)0.136

Q̂ 0.507 0.62 1.18 0.443

(±)0.101 (±)0.092 (±)0.065 (±)0.011

|B| 45.97 45.97 53 50.09

(±)1.6 (±)1.6 (±)0 (±)2.82

K 5.38 5.92 6.66 5.88

(±)0.51 (±)0.21 (±)0.1 (±)0.24

Jintra 4.778 4.422 5.043 5.282

(±)0.61 (±)0.219 (±)0.099 (±)0.27

4 Jinter 20.589 20.286 18.759 20.661

(±)0.337 (±)0.271 (±)0.24 (±)0.18

Q̂ 0.491 0.585 1.204 0.466

(±)0.097 (±)0.091 (±)0.06 (±)0.025

|B| 38.42 38.42 69 47.99

Continued on next page
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s̃ LNNSDOT LNNAIS DWB SMAIN

(±)0.72 (±)0.72 (±)0 (±)2.84

K 4.91 6.1 6.59 5.67

(±)0.45 (±)0.25 (±)0.14 (±)0.15

Jintra 4.586 3.728 4.743 4.305

(±)0.426 (±)0.187 (±)0.075 (±)0.15

5 Jinter 20.852 20.309 18.845 20.672

(±)0.348 (±)0.24 (±)0.252 (±)0.122

Q̂ 0.503 0.635 1.222 0.441

(±)0.076 (±)0.09 (±)0.046 (±)0.015

|B| 38.15 38.15 55 56.85

(±)0.78 (±)0.78 (±)0 (±)3.54

Again, due to the tendency of SMAIN to overfit the data, the quality of clusters found by SMAIN

for centroid migration environments generally tends to be higher than the quality of the clusters

found by LNNAIS (see tables 7.33 - 7.36 for centroid migration environments with different

dimensions, clusters sizes, frequencies of change and severities of change). Note that in cases

where the ALC population of SMAIN has a similar size as the ALC population of LNNAIS,

LNNAIS tends to deliver cluster of a higher quality than SMAIN. This is shown in table 7.33

for N = 15 where |B| ≈ 28 and K ≈ 6 for LNNSDOT , LNNAIS and SMAIN. Note that with

these parameter values LNNAIS tends to deliver clusters with a higher quality than SMAIN

and LNNSDOT tends to deliver clusters of a higher quality than both SMAIN and LNNAIS. The

advantage of LNNSDOT is that the clusters were dynamically determined. This is also shown in

table 7.35 for f̃ = 1 where |B| ≈ 29 and K ≈ 5 for LNNSDOT , LNNAIS and SMAIN. LNNAIS

tends to deliver clusters with a higher quality than SMAIN and LNNSDOT tends to deliver clusters

of a higher quality than both SMAIN and LNNAIS. In general, LNNAIS delivers clusters of a

higher quality than DWB for all centroid migration environments. LNNAIS also obtains the

correct number of clusters at different severities of change with no significant change in the ALC

population size (see table 7.36 where an increase in s̃ increases the ratio of centroid migration, i.e.

decreasing the number of clusters in the data). In general, where LNNSDOT obtained the correct

number of clusters, the quality of the clusters tends to be higher than those clusters delivered by

LNNAIS at different dimensions, cluster sizes, frequencies of change and severities of change

(see tables 7.33- 7.36). Furthermore, as discussed above, LNNSDOT also tends to deliver clusters
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of higher quality than SMAIN and DWB in cases where the data is not overfitted by SMAIN and

a similar number of clusters are obtained.

7.6 Conclusion

The chapter discussed and investigated different data migration types in a non-stationary environ-

ment. These migration types were pattern migration, cluster migration and centroid migration.

A procedure to generate artificial non-stationary data sets with different environment parameters

and migration types was proposed. Also, clustering performance measures for a non-stationary

environment were proposed. The proposed clustering performance measures were used for com-

parison between four network based artificial immune system models for clustering of the gen-

erated artificial non-stationary data sets. These models were LNNAIS, LNNSDOT , DWB and

SMAIN. A sensitivity analysis of the LNNAIS parameters was done on the different artificial

non-stationary data sets for each of the defined data migration types.

A sensitivity analysis of the LNNAIS parameters shows that for all migration types, LNNAIS

utilises small population sizes with small cluster sizes and larger population sizes for large clus-

ter sizes. There is also no effect on Bmax with different frequencies or severities of change. The

clustering quality of LNNAIS is the lowest at high frequencies and high severities of change for

all of the migration environments at different dimensions and cluster sizes. The clustering qual-

ity of LNNAIS improves with an increase in the cluster size at different dimensions. Increasing

the number of dimensions lowers the clustering quality of LNNAIS at different cluster sizes. A

difference between the migration types is that LNNAIS utilises small and large population sizes

at different dimensions for centroid migration environments; but, for the other migration types

LNNAIS utilises small population sizes for high dimensional environments with small cluster

sizes. Also, the frequency and severity of change in high dimensional centroid migration en-

vironments have a smaller effect on the clustering performance of LNNAIS when compared to

pattern and cluster migration environments.

Overall, the SMAIN model tends to find clusters of a higher quality for all types of data migra-

tion environments (at the cost of overfitting the data), followed by LNNAIS. The higher quality

of clusters found by SMAIN is due to a larger ALC population size which is utilised by SMAIN.

The drawback of overfit by SMAIN is even more emphasised in cluster and centroid migration

environments where the ALC population size of the SMAIN model does not scale with the num-
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ber of clusters, since it is expected to utilise a smaller ALC population size with a decrease in

the number of clusters in the data. LNNAIS delivers clusters of a higher quality than DWB

and LNNSDOT for all pattern and cluster migration environments. In centroid migration envi-

ronments, LNNAIS succeeds to recover from any changes and improve on the cluster quality as

time progresses, even though the number of clusters changes and clusters become less compact.

LNNAIS delivers clusters of a higher quality than DWB for centroid migration environments

and in cases where the ALC population of SMAIN has a similar size as the ALC population of

LNNAIS, LNNAIS also tends to deliver clusters of a higher quality than SMAIN. LNNAIS also

obtains the correct number of clusters at different severities of change with no significant change

in the ALC population size. Wherever LNNSDOT obtained the correct number of clusters, the

quality of the clusters tends to be higher than those clusters delivered by LNNAIS at different di-

mensions, clusters sizes, frequencies of change and severities of change. Furthermore, LNNSDOT

also tends to deliver clusters of higher quality than SMAIN and DWB in cases where the data is

not overfitted by SMAIN and a similar number of clusters are obtained.

An advantage of LNNAIS and LNNSDOT , compared to the other models, is that both models

have less user specified parameters and are computationally less expensive since neither follows

a hybrid approach like SMAIN and DWB to determine the number of ALC networks. A fur-

ther advantage of LNNSDOT is that the clusters are dynamically determined. A drawback of the

SMAIN model in non-stationary environments is the increase in the ALC population size with

each change in the data. This drawback has a major impact on the scalability of the SMAIN

model. A drawback of the LNNSDOT model is in cases where there are no outlier network

affinities between ALC networks. The lack in outlier network affinities results in less network

boundaries and therefore less ALC network (cluster) formations.

From the results presented, it can be concluded that LNNAIS, having a small set of control

parameters, is an efficient clustering model for different non-stationary environments. LNNSDOT

is most suitable for centroid migration environments where the number of clusters in the data is

not known and needs to be quantified over time.
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Chapter 8

Conclusion

This chapter briefly highlights the findings and contributions of this thesis and discusses direc-

tions for future research.

8.1 Summary

This thesis investigated the application of a network theory inspired artificial immune model to

data clustering problems in stationary and non-stationary environments.

Chapter 5 presented a new network based artificial immune model, namely the local network

neighbourhood AIS (LNNAIS). The proposed model utilises an index based network topology

to determine the network connectivity between the artificial lymphocytes (ALCs). The applica-

tion of LNNAIS to data clustering problems in stationary environments was investigated. The

clustering performance of the LNNAIS model was compared against classical clustering algo-

rithms (K-means clustering and CPSO) and existing network based AIS models (SMAIN, DWB

and Opt-aiNet). In most cases, LNNAIS produced better or similar results with reference to the

clustering quality, compactness and separation of the clusters. Although SMAIN tends to deliver

clusters of a higher quality than LNNAIS, further investigation into the size of the ALC popu-

lations showed that SMAIN utilised a larger ALC population to cluster the data. This explained

the superior clustering quality of SMAIN but also highlighted a potential drawback of SMAIN

that tend to overfit the data. Compared to SMAIN in view of these findings, the LNNAIS model

delivers clusters of high quality without overfitting the data. A sensitivity analysis was done

on the parameters of LNNAIS. The results suggest that an increase in the ALC population size

increases diversity which obtains the required number of clusters and improves the clustering
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quality. Smaller neighbourhood sizes deliver more compact and more separated clusters when

compared to larger neighbourhood sizes, and also tend to obtain the required number of clusters.

Therefore small neighbourhood sizes deliver clusters of a higher quality. Furthermore, the clonal

level threshold influences the compactness of the clusters and is problem specific.

Chapter 6 presented two different techniques which can be used by LNNAIS to dynamically

determine the number clusters in a data set. These techniques are the iterative pruning technique

(IPT) and the sequential deviation outlier technique (SDOT). Both of these techniques are com-

putationally less expensive than the multiple execution approaches to dynamically determine the

number of clusters in a data set. The IPT technique is computationally slightly more expensive

than SDOT since IPT needs to iterate through all possible edges (to a maximum of Bmax). A

range for K can be specified, but this makes IPT parameter dependant. An advantage of IPT is

that the technique can use any cluster validity index to determine the number of clusters. The

SDOT technique neither uses a cluster validity index nor does it require any boundary constraints

on K. SDOT is a non-parametric technique. This is an advantage, since it is not always feasible

to visually inspect the formed clusters and a specified range for K might not contain the optimum

number of clusters. Both techniques were applied on different data sets to determine the optimal

number of clusters. These results were compared to the results obtained from K-means clustering

which used the multiple execution approach to determine the optimal number of clusters in each

data set. In general, LNNAIS using SDOT tends to deliver clusters of similar or higher quality

for all data sets, followed by LNNAIS using IPT and K-means clustering. The influence of the

different LNNAIS parameters (using SDOT) was then investigated.

Chapter 7 presented and investigated different data migration types in a non-stationary environ-

ment. These migration types were pattern migration, cluster migration and centroid migration.

A procedure to generate artificial non-stationary data sets with different environment parameters

and migration types was proposed. Also, clustering performance measures for a non-stationary

environment were proposed. The proposed clustering performance measures were used for com-

parison between four network based artificial immune system models for clustering of the gen-

erated artificial non-stationary data sets. A sensitivity analysis of the LNNAIS parameters shows

that for all migration types, LNNAIS utilises small population sizes with small cluster sizes and

larger population sizes for large cluster sizes. The clustering quality of LNNAIS is the lowest at

high frequencies and high severities of change for all of the migration environments at different

dimensions and cluster sizes. The clustering quality of LNNAIS improves with an increase in the
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cluster size at different dimensions. Increasing the number of dimensions lowers the clustering

quality of LNNAIS at different cluster sizes. The clustering performance of the LNNAIS model

and the enhanced version utilising SDOT (LNNSDOT ) were compared against the clustering per-

formance of SMAIN and DWB in non-stationary environments. The higher quality of clusters

found by SMAIN when compared to LNNAIS is due to a larger ALC population size which is

utilised by SMAIN and overfits the data. This is more emphasised in cluster and centroid mi-

gration environments where the ALC population size of the SMAIN model does not scale with

the number of clusters. LNNAIS delivers clusters of a higher quality than DWB and LNNSDOT

for all pattern and cluster migration environments. In centroid migration environments, LNNAIS

succeeds to recover from any changes and improve on the cluster quality as time progresses, even

though the number of clusters changes and clusters become less compact. LNNAIS delivers clus-

ters of a higher quality than DWB for centroid migration environments and in cases where the

data is not overfitted by SMAIN and the ALC population has similar sizes, LNNAIS also tends

to deliver clusters of a higher quality than SMAIN. LNNAIS also obtains the correct number of

clusters at different severities of change with no significant change in the ALC population size.

Wherever LNNSDOT obtained the correct number of clusters, the quality of the clusters tends

to be higher than those clusters delivered by LNNAIS at different dimensions, clusters sizes,

frequencies of change and severities of change. Furthermore, LNNSDOT also tends to deliver

clusters of higher quality than SMAIN and DWB in cases where the data is not overfitted by

SMAIN and a similar number of clusters are obtained.

From the results presented in this thesis, it can be concluded that LNNAIS and LNNSDOT are effi-

cient clustering models for different stationary and non-stationary environments. This is achieved

even in light of the smaller set of control parameters compared to other network based AIS mod-

els. LNNSDOT can dynamically determine the number of clusters in a stationary data set and is

most suitable for centroid migration non-stationary environments where the number of clusters

in the data is not known and needs to be tracked over time.

8.2 Future Research

Several new directions for future research are briefly summarised below.

Decreasing neighbourhood sizes: Although the clustering performance of LNNAIS is the best

at small neighbourhood sizes, a hybrid approach of a linear decrementing neighbourhood size
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needs to be investigated. An initial large neighbourhood size (ρ = Bmax) will have a more greedy

approach to adapt the ALCs as one ALC network to the data patterns. More ALC networks

are formed by linearly decreasing the neighbourhood size, which results into a more refined and

specific search to the clusters in the data by different ALC networks. The model might initially

prematurely adapt to the data, but eventually converge to different cluster centroids with the final

set of ALC networks.

Alternative network neighbourhood topologies: The proposed LNNAIS in this thesis utilises

a ring topology to determine the network connections between the ALCs. Although the cluster-

ing performance of LNNAIS at different neighbourhood sizes was investigated, future research

needs to investigate the clustering performance of LNNAIS utilising different network topologies

which includes rectangular grid (used in SOM), star and wheel (used in PSO) and Caylee trees.

In addition to the investigation of the clustering performance of LNNAIS with different network

topologies, the time of convergence and the coverage of the search space by the ALCs need to

be investigated.

Hierarchical grouping: The clusters obtained by LNNAIS are represented by the formed ALC

networks. The ALC networks are determined by pruning the network links between those ALCs

with the lowest network affinity until the required number of clusters are obtained (or in the case

of LNNSDOT the number of clusters is dynamically determined by the outlier network affinities).

There is a potential risk that at the time of pruning the network links to determine the ALC

network boundaries, an ALC might have been in the process of adapting to a neighbouring ALC.

This can result into an ALC which has a low network affinity between the ALC’s predecessor and

an even lower network affinity with the ALC’s successor in the population. When the adapting

ALC is grouped with an ALC network, the calculated mean of the ALCs in that network might

not represent the most appropriate centroid of the cluster in the data, since the ALC is becoming

an outlier to the network of ALCs. This will have an impact on the clustering performance of

LNNAIS. Therefore, a hierarchical agglomerative approach needs to be investigated to determine

whether there is less influence of adapting ALCs to the calculated centroid of an ALC network.

Another potential risk is that the adapting ALC can have equal network affinities between its

neighbouring ALCs. These network affinities might be the lowest in the population resulting in

an ALC network which consists of a single ALC and which does not contain any data patterns.

These risks of the behaviour of ALCs need to be investigated.
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LNNSDOT with IPT: Since the sequential deviation outlier technique (SDOT) used by LNNAIS

depends on outlier network affinities between the ALC networks in order to dynamically deter-

mine the ALC network boundaries, a hybrid approach of SDOT and the iterative pruning tech-

nique (IPT) needs to be investigated. SDOT can be used to determine the initial number of

clusters as a starting value of K for IPT. IPT can then increment and/or decrement the value of

K with each iteration. The stopping criteria depend on whether the validity index used by IPT is

a monotonic increasing or decreasing function. In the case of a monotonic increasing function,

if the validity index decreases with an increment or decrement in the value of K, the search ter-

minates. In the case of a monotonic decreasing function, if the validity index increases with an

increment or decrement in the value of K, the search terminates. The search continues in both

cases until the stopping criteria are met. The hybrid approach will dynamically determine the

number of clusters with SDOT if outlier network affinities exist, otherwise the IPT technique is

initialised with the result of SDOT and the search continues with the IPT technique.

Generating non-stationary environments: The generated non-stationary environments in this

thesis contained clusters with fixed and equal spreads. For all the migration types defined, further

investigation is needed into the clustering performance of the models on non-stationary environ-

ments where the spread of clusters changes with migrating patterns. This means that with each

migrated pattern joining a cluster, the spread of the cluster should increase by a certain ratio. The

same reasoning should be followed for patterns migrating from a cluster. The spread of clusters

from which patterns migrate should decrease by a certain ratio. The dynamic spread of clusters

will result in non-stationary environments with clusters which not only have different sizes (as

those used in this thesis), but also different spreads and densities.

Image segmentation and classification problems: The proposed LNNAIS can be applied to

the problem of image segmentation and classification problems. Since LNNAIS is an unsuper-

vised learning algorithm, no changes are necessary to apply LNNAIS to image segmentation

problems. The pixels of an image are then seen as the data set of antigen patterns. The ALC pop-

ulation of LNNAIS will adapt to these antigen patterns by forming ALC networks and eventually

cluster the pixels of the image. Each cluster represents a segment of the image. In the context

of non-stationary environments, a sequence of images of specific scenery can be segmented to

identify any moving objects in the image. Focusing on classification problems, LNNAIS needs

to be changed in such a way that ALCs are labeled with the same class labels as in the antigen

set of patterns. This means that ALCs can then only adapt to antigen patterns of the same class.

Eventually each of the formed ALC networks will represent a specific class in the data set of
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antigen patterns. This is a more semi-supervised learning approach of LNNAIS for classification

problems.
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