
Chapter 6

Dynamically Determining the Number of

Clusters Found by a Local Network

Neighbourhood Artificial Immune System

A challenge in data clustering is to determine the optimal number of clusters in a data set. Sec-

tion 2.4 discussed a number of approaches to validate and determine the number of clusters in a

data set. These approaches include validation of the formed clusters by visual inspection and/or

multiple execution of the clustering algorithm, each time with a different number of clusters and

validating the clustered data set with a cluster validity index. The former visual approach be-

comes infeasible for multidimensional problems where the number of dimensions is greater than

three and even though the latter multiple execution approach is familiar in the field, it is com-

putationally expensive and time consuming. Therefore a clustering technique or model which

can dynamically determine the number of clusters in a data set and which is computationally

inexpensive will have an added advantage.

Although most of the existing network based artificial immune models do not require any user

specified parameter of the number of required clusters to cluster the data, these models do have

a drawback in the techniques used to determine the number of clusters. These techniques and

their drawbacks were discussed in section 5.5.6. All of the techniques share a mutual drawback

which is the user specified parameter of the number of required clusters.

This chapter discusses some of the existing data clustering methods to dynamically determine

the number of clusters in a data set. Two techniques are then proposed which can be used with
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the local network neighbourhood artificial immune model to dynamically determine the number

of clusters in a data set. The first technique utilises cluster validity indices and is similar to the

multiple execution approach, though computationally less expensive. The second technique is

based on sequential deviation outlier detection, which was discussed in section 2.6. The end

result of both techniques is an enhanced LNNAIS model that can dynamically determine the

number of clusters in a data set.

Experimental results of K-means clustering using the multiple execution technique are compared

with the results of the proposed LNNAIS techniques.

6.1 Dynamic Data Clustering Methods

Dynamically determining the optimal number of clusters in a data set is a challenging task, since

a priori knowledge of the data is required and not always available. As discussed in section 2.4,

cluster validity indices can be used with a multiple execution of the clustering algorithm to dy-

namically determine the number of clusters. A disadvantage of the multiple execution approach

is that the technique is computationally expensive and time consuming. Other techniques and

clustering models have also been proposed in the literature and are discussed next.

Ball and Hall [10] proposed the Iterative Self-Organising Data Analysis Technique (ISODATA)

to dynamically determine the number of clusters in a data set. As with K-means clustering,

ISODATA iteratively assigns patterns to the closest centroids. Different to K-means cluster-

ing, ISODATA utilises two user-specified thresholds to respectively merge two clusters (if the

distance between their centroids is below the first threshold) and also split a cluster into two

clusters (based on the second threshold). Even though ISODATA has an advantage above K-

means clustering to dynamically determine the number of clusters in the data set, ISODATA has

two additional user parameters (merging and splitting thresholds) which have an effect on the

number of clusters determined. A similar model to ISODATA is the Dynamic Optimal Cluster-

seek (DYNOC) which was proposed by Tou [172]. DYNOC also follows an iterative approach

with splitting and merging of clusters but at the same time maximises the ratio of the minimum

inter-clustering to the maximum intra-clustering distance. DYNOC also requires a user specified

parameter which determines the splitting of a cluster. SYNERACT was proposed by Huang [87]

as an alternative to ISODATA. SYNERACT uses a hyperplane to split a cluster into smaller clus-

ters for which the centroids need to be calculated. Similar to ISODATA and DYNOC, an iterative
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approach is followed to assign patterns to available clusters. Even though SYNERACT is faster

than ISODATA and does not require the initial location of centroids or the number of clusters to

be specified, SYNERACT does require values for two parameters which have an effect on the

splitting of a cluster.

Veenman proposed a partitional clustering model which minimises a cluster validity index in

order to dynamically determine the number of clusters in a data set [175]. The initial number

of clusters is equal to the number of patterns in the data set. An iterative approach is followed

to determine the splitting and merging of clusters. In each iteration, tests which are based on

the minimisation of the cluster validity index determine the splitting or merging of clusters. The

proposed algorithm has similar drawbacks as the multiple execution approaches, namely that the

model is computationally expensive and has user parameters for the cluster validity index which

influences the clustering results.

Another K-means based model was proposed by Pelleg and Moore [128] and uses model se-

lection. The model is called X-means and initially start with a single cluster, K = 1 (which is the

minimum number of clusters in any data set). The first step is then to apply K-means clustering

on the K clusters which are then split in a second step according to a Bayesian Information Cri-

terion (BIC) [106]. If the BIC is improved with the splitting of the clusters, the newly formed

clusters are accepted, otherwise it is rejected. These steps are repeated until a user specified up-

per bound on K is reached. X-means clustering dynamically determines the number of clusters

in the data set as the value of K which has the best BIC value. X-means also has a drawback

of a user specified parameter for the upper bound on K. Hamerly and Elkan proposed a similar

model as X-means clustering, called G-means clustering [72]. G-means also starts with a small

value of K but only splits clusters which data do not have a Gaussian distribution. This is also a

drawback of G-means clustering, since it is assumed that the data has spherical and/or elliptical

clusters [72].

There are also other models proposed in the literature which is either based on K-means cluster-

ing or utilises K-means with similar approaches of splitting and merging clusters. These models

are Snob [176] and Modified Linde-Buzo-Gray (MLBG) [154]. All of the discussed models suf-

fer from either user parameters which influence the clustering results or can only cluster data sets

with specific characteristics.
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The following section proposes two techniques which can be used with the local network neigh-

bourhood artificial immune model to dynamically determine the number of clusters in a data

set.

6.2 Dynamic Clustering Techniques for LNNAIS

This section proposes two alternative techniques which can be used by LNNAIS to dynami-

cally determine the number of clusters in a data set. Both of these techniques have advantages

and drawbacks which are also discussed. This section first recapitulates the technique used by

LNNAIS to determine a user specified number of clusters (as discussed in section 5.5.6).

Different to other network based AIS models, LNNAIS need not to follow a hybrid approach

nor a proximity matrix of network affinities in order to determine the formed ALC networks

in the ALC population. This is due to the index based neighbourhood topology utilised by

LNNAIS. An index based neighbourhood results in the formation of a ring-like network topol-

ogy as illustrated in figure 5.3. The required number of ALC networks (or rather clusters), K,

can be determined by sorting the network affinities in descending order and selecting the first K

network affinities in the sorted set. The K selected network affinities determine the boundaries

of the ALC networks.

Figure 5.3 illustrates this technique where K = 3. Separate ALC networks are formed by prun-

ing the edges of the K selected boundaries (illustrated as dotted lines in figure 5.3). The centroid

of each of the formed ALC networks (illustrated as clouds in figure 5.3) is calculated using

equation (2.18). An alternative approach to sorting the network affinities is to plot the network

affinities against the numbered edges (as illustrated in figure 6.1). The K edges in the graph

with the lowest plotted network affinity (highest Euclidean distance) are then selected as the

boundaries of the ALC networks.

Iterative Pruning Technique (IPT): Instead of specifying K, the above pruning technique

is done with an iterative value of K. First K is set to 2 where only the top two boundaries are

selected for pruning (top two network affinities in the sorted set of network affinities). The quality

of the clusters is then measured with a cluster validity index of choice. The same procedure is

followed for K = {3,4,5, . . . ,Bmax}, measuring the quality with a cluster validity index for each

value of K. The value of K with the highest (or lowest, depending on the validity index used)
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Figure 6.1 Network Affinity Plot

cluster validity index is then selected as the optimal number of clusters. It is also possible to set a

minimum and maximum for K, but this can also be seen as a drawback since two parameters need

to be specified. If no minimum/maximum is specified it could also be a time consuming task (to

a lesser extent when compared to the multiple execution technique) to iterate through all values

of K, especially with large values of Bmax. Whether K is bounded by a minimum/maximum or

not, an advantage of the Iterative Pruning Technique to dynamically determine the number of

clusters is that the LNNAIS model needs not to be executed for each value of K as in the case of

the multiple execution technique. Therefore the Iterative Pruning Technique is computationally

less expensive.

Sequential Deviation Outlier Technique (SDOT): Section 2.6 defined outliers and explained

three different approaches for outlier detection. One of these approaches is the sequential ex-

ception technique which forms part of the deviation based techniques for outlier detection. The

reader is referred to section 2.6 for a refresher on the sequential exception technique. As il-

lustrated in figure 6.1, the network affinities which form clear boundaries between the ALC

networks tend to be outliers to the remainder of the network affinities.

In the context of dynamically determining the boundaries between the ALCs in LNNAIS, the

sequential exception technique can be applied to a sorted set (descending) of network affinities

between the ALCs in LNNAIS. The set of network affinities is sorted to guarantee that the lowest

network affinities (potential outliers with the highest Euclidean distance) forms part of the first
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sequential subsets. The first subset, S1, will then contain the lowest network affinity, followed

by S2 which consists of S1 and the second lowest network affinity and so forth. The function of

dissimilarity D(So) in equation (2.67) is calculated as the variance between the network affinities

in subset So. Therefore the exception set Se contains the lowest network affinities between the

ALCs in LNNAIS and eventually determines the boundaries between the ALCs.

An added advantage of the Sequential Deviation Outlier Technique (SDOT) is that not only

is the technique computationally less expensive, but it also has no need for any boundary con-

straints on K. K is solely determined by the size of Se. Furthermore, SDOT is a non-parametric

technique. The following section discusses the time complexity of SDOT and IPT.

6.3 Time Complexity of SDOT and IPT

The time complexity of both SDOT and IPT are based on the complexity of sorting the network

affinities between the ALCs in the ALC population and determining the number of boundaries

between the ALCs in the ALC population of size Bmax. The maximum number of boundaries

in an ALC population of size Bmax is Bmax. The time complexity of sorting the Bmax network

affinities depends on the sorting algorithm used. Assume the time complexity of the sorting algo-

rithm is some constant, χ1, and that the time complexity of the selected validity index is χ2. The

worst case of time complexity for IPT is when the clustering quality of all possible boundaries

needs to be calculated, giving a time complexity of O(χ2Bmax |A |N) where |A | is the size of the

data set that needs to be partitioned and N is the number of dimensions of data set A . The Bmax

and χ2 parameters are fixed in advance and usually Bmax << |A |. If Bmax << |A | then the time

complexity of IPT is O(|A |) and if Bmax ≈ |A | then the time complexity of IPT is O
(

|A |2
)

.

Focusing on SDOT, the maximum number of smoothing factor function evaluations is equal to

the size of the ALC population, which is Bmax. Assume the time complexity of the smoothing

function is χ3. The worst case of time complexity for SDOT is when the smoothing factor of

Bmax subsets need to be calculated to determine the exception set Se (as discussed in section 2.6).

This gives a time complexity of O(χ3Bmax) for SDOT. Compared to the time complexity of IPT,

the time complexity of SDOT is not influenced by the size of data set A and also not by the

number of dimensions, N.

The following section discusses and compares the results obtained from K-means clustering

using the multiple execution technique to determine the number of clusters in a data set and the
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Table 6.1 LNNAIS Parameter Values

Data set Bmax ρ εclone

iris 25 3 5

two-spiral 20 3 5

hepta 40 3 5

engytime 20 3 10

chainlink 40 3 5

target 30 3 5

ionosphere 20 3 20

glass 20 3 5

image segmentation 30 3 20

spambase 10 5 20

results obtained from LNNAIS using SDOT and IPT to determine the number of clusters in a

data set.

6.4 Experimental Results

This section compares and discusses the clustering results obtained by K-means clustering,

LNNAIS using IPT, and LNNAIS using SDOT to dynamically determine the number of clus-

ters in a data set. K-means utilises the multiple execution technique with the QDB (as defined in

equation (2.41)) and QRT (as defined in equation (2.51)) validity indices, referred to as KMDB

and KMRT , respectively. Two of the LNNAIS models utilises the iterative pruning technique

with the same QDB and QRT validity indices as K-means, referred to as LNNDB and LNNRT ,

respectively. For the QRT validity index, parameter c was set to 10 in all the experiments. The

value of c was found empirically and values of c > 10 have no effect on QRT for all the data sets.

LNNSDOT utilises the sequential deviation outlier technique and thus need no validity index.

All experimental results reported in this section are averages taken over 50 runs, where each

run consisted of 1000 iterations of a data set. The parameter values for each data set were em-

pirically found to deliver the best performance for each of the algorithms. The value of K was

iterated from K = 2 to K = 12 for all data sets. Table 6.1 summarises the parameter values used

by the respective algorithms for each data set. The clustering quality of the algorithms (based on

the number of clusters determined by each of the algorithms) is determined by the Qratio index,

Jintra and Jinter performance measures (as defined in equations (2.49),(2.17) and (2.16), respec-
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Figure 6.2 Optimal number of clusters obtained by K-means and LNNAIS for the iris data set

tively). The following hypothesis is defined to determine whether there is a difference between

the clustering quality of two algorithms for a specific data set or not:

• Null hypothesis, H0: There is no difference in the clustering quality, Qratio.

• Alternative hypothesis, H1: There is a difference in the clustering quality, Qratio.

A non-parametric Mann-Whitney U test with a 0.95 confidence interval (α = 0.05) was used

to test the above hypothesis. The result is statistically significant if the calculated probability

(p-value is the probability of H0 being true) is less than α. In cases where there is a statistical

significant difference between the clustering quality of two algorithms, the algorithm with the

lowest critical value, z, tends to find clusters in the data set with a higher quality. The results for

each of the data sets used are discussed next.

6.4.1 Iris data set

Figure 6.2 illustrates the QRT values where c = 10 for KMRT and LNNRT on the y1-axis at differ-

ent values of K. The QDB values for KMDB and LNNDB is illustrated on the y2-axis of figure 6.2.

Figure 6.2 highlights that the optimal number of clusters in the iris data set is obtained by KMRT

and LNNRT at K = 4 and by KMDB and LNNDB at K = 2. Therefore, the optimal range of K is

K = 2 to K = 4 for the iris data set. The average number of clusters determined by LNNSDOT

is K = 2.64 which falls within the optimal range of K as determined above. Figure 6.3 illus-

trates for the iris data set the number of clusters respectively determined by the SDOT and IPT
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Figure 6.3 Convergence of LNNAIS using SDOT and IPT to optimal K for iris data set

techniques over time. The value of K for IPT rapidly increases to 4 in the first few iterations

and remains at 4 for the most of the remaining iterations. The value of K for SDOT increases

to 2.7 and oscillates between 2.4 and 3.3 around an average K of 2.64 for the remaining itera-

tions. Since LNNAIS is a stochastic algorithm which utilises a dynamic population of ALCs,

the affinities between neighbouring ALCs change over time. Thus, it is expected that the net-

work boundaries detected by SDOT to determine the value of K will also differ over time and

oscillate around an average K. Figure 6.4 illustrates a histogram of the frequency distribution of

the number of clusters determined by LNNSDOT for the iris data set. The figure illustrates that

LNNSDOT has high frequencies at K = 2 and K = 3. The figure also illustrates that LNNSDOT

obtained K = 4 for some of the runs, still being within the optimal range of K for the iris data set.

Table 6.2 shows the results obtained by the different models to determine the optimal number

of clusters in the iris data set. Referring to table 6.12, the Mann-Whitney U statistical hypothesis

test rejects H0 that the Qratio means are the same at a 0.05 level of significance between KMRT

and LNNSDOT (z = 7.58, p < 0.001) and between LNNRT and LNNSDOT (z = 6.69, p < 0.001).

Thus, there is a statistical significant difference in the clustering quality, Qratio, of the iris data

set between KMRT and LNNSDOT and between LNNRT and LNNSDOT . LNNSDOT tends to find

clusters in the iris data set with a higher quality.
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Figure 6.4 Histogram of the number of clusters detected in the iris data set by LNNSDOT

Table 6.2 Descriptive Statistics: Iris

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 0.856 3.927 0.218 0.405

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

KMRT 4.00 0.581 3.048 0.575 0.805

(± 0.00) (± 0.021) (± 0.153) (± 0.165) (± 0.045)

LNNDB 2.00 0.923 3.994 0.233 0.432

(± 0.00) (± 0.097) (± 0.352) (± 0.035) (± 0.072)

LNNRT 4.00 0.618 3.126 0.488 0.798

(± 0.00) (± 0.036) (± 0.221) (± 0.154) (± 0.154)

LNNSDOT 2.64 0.788 3.738 0.364 0.643

(± 0.77) (± 0.109) (± 0.466) (± 0.552) (± 0.858)
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Figure 6.5 Optimal number of clusters obtained by K-means and LNNAIS for the two-spiral data

set

6.4.2 Two-spiral data set

The optimal range of K as determined by the different models for the two-spiral data set is [3,12]

(as illustrated in figure 6.5). Furthermore, figure 6.5 shows that although the optimal number of

clusters in the two-spiral data set is obtained by KMDB at K = 12, the majority of the models

obtain the optimal number of clusters in the two-spiral data set at K = 4. The average number of

clusters determined by LNNSDOT is K = 4.06 which is similar to the optimal number of clusters

obtained by the majority of the models. Figure 6.6 illustrates a histogram of the frequency

distribution of the number of clusters determined by LNNSDOT for the two-spiral data set. The

figure illustrates that LNNSDOT has high frequencies for 2 ≤ K ≤ 5. Figure 6.7 illustrates that

for the two-spiral data set the IPT technique converges to K = 4 and SDOT oscillates between

K = 3.5 and K = 5 around an average K = 4.2 which is near the value of K as determined by

IPT. The statistical hypothesis test rejects H0 that the Qratio means are the same between KMRT

and LNNSDOT (z = 8.328, p < 0.001). There is thus a statistical significant difference between

the clustering quality of KMRT and LNNSDOT . KMRT tends to find clusters in the two-spiral data

set with a higher quality than LNNSDOT . There is however no statistical significant difference

between the Qratio means of LNNRT and LNNSDOT (statistical hypothesis test accepts H0, refer

to table 6.12). Table 6.3 shows the results obtained by the different models to determine the

optimal number of clusters in the two-spiral data set.
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Figure 6.6 Histogram of the number of clusters detected in the two-spiral data set by LNNSDOT
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Figure 6.7 Convergence of LNNAIS using SDOT and IPT to optimal K for two-spiral data set
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Table 6.3 Descriptive Statistics: Two-spiral

Algorithm K Jintra Jinter Qratio QDB

KMDB 12.00 0.212 1.018 0.504 0.812

(± 0.00) (± 0.004) (± 0.024) (± 0.084) (± 0.034)

KMRT 4.00 0.369 0.993 0.437 0.870

(± 0.00) (± 0.003) (± 0.011) (± 0.016) (± 0.031)

LNNDB 3.00 0.477 1.115 0.544 0.992

(± 0.00) (± 0.023) (± 0.146) (± 0.122) (± 0.191)

LNNRT 4.00 0.405 1.021 0.616 1.043

(± 0.00) (± 0.019) (± 0.099) (± 0.149) (± 0.168)

LNNSDOT 4.06 0.427 1.021 0.699 1.116

(± 1.89) (± 0.087) (± 0.088) (± 0.736) (± 0.537)

6.4.3 Hepta data set

The average number of clusters determined by LNNSDOT for the hepta data set is K = 6.64 which

is close to the true number of clusters in the hepta data set (hepta consists of seven clusters)

and falls within the optimal range of K which is [4,7] (as illustrated in figure 6.8). Figure 6.9

illustrates a histogram of the frequency distribution of the number of clusters determined by

LNNSDOT for the hepta data set. Figure 6.9 highlights that LNNSDOT has the highest frequency

at seven clusters, which is the number of clusters in the hepta data set. Figure 6.10 illustrates

for the hepta data set the number of clusters respectively determined by the SDOT and IPT

techniques over time. The value of K for IPT converges to 6. The value of K for SDOT oscillates

between K = 6 and K = 7 around an average K of 6.7 for the remaining iterations. Referring

to table 6.12, there is a statistical significant difference between the clustering quality of KMRT

and LNNSDOT and between LNNRT and LNNSDOT . Although KMRT and LNNRT tend to find

clusters in the hepta data set with a higher quality than LNNSDOT (refer to table 6.4), LNNSDOT

was able to determine the number of clusters in the hepta data set more accurately.

6.4.4 Engytime data set

Table 6.5 shows the results obtained by the different models to determine the optimal number

of clusters in the engytime data set. Figure 6.11 illustrates that the optimal range of K for the

engytime data set is 2 ≤ K ≤ 7 (also shown in table 6.5). LNNSDOT determined the number of

clusters in the engytime data set as K = 3.86. The histogram of the frequency distribution of the

number of clusters determined by LNNSDOT for the engytime data set illustrates that LNNSDOT
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Figure 6.8 Optimal number of clusters obtained by K-means and LNNAIS for the hepta data set
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Figure 6.9 Histogram of the number of clusters detected in the hepta data set by LNNSDOT
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Figure 6.10 Convergence of LNNAIS using SDOT and IPT to optimal K for hepta data set

Table 6.4 Descriptive Statistics: Hepta

Algorithm K Jintra Jinter Qratio QDB

KMDB 7.00 0.993 4.041 1.112 0.870

(± 0.00) (± 0.199) (± 0.148) (± 0.459) (± 0.247)

KMRT 4.00 1.680 3.902 0.630 1.006

(± 0.00) (± 0.083) (± 0.184) (± 0.419) (± 0.153)

LNNDB 6.98 0.740 4.161 0.371 0.494

(± 0.14) (± 0.122) (± 0.097) (± 0.259) (± 0.219)

LNNRT 5.98 1.019 4.307 0.316 0.661

(± 0.14) (± 0.052) (± 0.146) (± 0.059) (± 0.049)

LNNSDOT 6.64 0.830 4.120 1.015 0.541

(± 1.21) (± 0.397) (± 0.231) (± 4.978) (± 0.365)
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Figure 6.11 Optimal number of clusters obtained by K-means and LNNAIS for the engytime

data set

has high frequencies for 2 ≤ K ≤ 4 which is within the optimal range of K (refer to figure 6.12

for frequency distribution). Figure 6.13 illustrates that IPT obtains K = 4 for all iterations and

SDOT oscillates around an average K of 4.4 over time for the engytime data set. There is no

statistically significant difference between the clustering quality of any of the models (refer to

table 6.12). Therefore, all models tend to deliver clusters with similar quality. LNNSDOT has

the advantage of dynamically determining the number of clusters in the engytime data set with

similar clustering quality as the other models.

6.4.5 Chainlink data set

The optimal range of K for the chainlink data set is [8,12] (as illustrated in figure 6.14). Figure 6.15

illustrates that LNNSDOT has high frequencies for K = 2 and 4 ≤ K ≤ 7 which are not within the

optimal range of K. However, the figure also shows that there are cases where LNNSDOT de-

termined the number of clusters within the optimal range of K at lower frequencies. Note that

the similarity between the range of determined clusters in figure 6.15 and the range of K for the

iterative and multiple execution approaches in figure 6.14 is a coincidence. Figure 6.16 illus-

trates that IPT obtains K = 8 for all iterations and SDOT oscillates around an average K of 6.5

between K = 5.5 and K = 8 over time for the chainlink data set. The average number of clusters

determined by LNNSDOT for the chainlink data set is K = 5.76 (refer to table 6.6). Table 6.6

shows the results obtained by the different models to determine the optimal number of clusters

in the chainlink data set.
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Figure 6.12 Histogram of the number of clusters detected in the engytime data set by LNNSDOT
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Figure 6.13 Convergence of LNNAIS using SDOT and IPT to optimal K for engytime data set
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Table 6.5 Descriptive Statistics: Engytime

Algorithm K Jintra Jinter Qratio QDB

KMDB 3.00 1.165 3.184 0.396 0.797

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

KMRT 7.00 0.805 3.188 0.502 0.873

(± 0.00) (± 0.004) (± 0.109) (± 0.021) (± 0.017)

LNNDB 2.00 1.833 4.133 0.465 0.910

(± 0.00) (± 0.213) (± 1.032) (± 0.107) (± 0.194)

LNNRT 4.00 1.284 4.020 0.616 1.000

(± 0.00) (± 0.113) (± 0.712) (± 0.226) (± 0.258)

LNNSDOT 3.86 1.381 3.978 0.582 0.992

(± 1.62) (± 0.304) (± 0.808) (± 0.217) (± 0.287)
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Figure 6.14 Optimal number of clusters obtained by K-means and LNNAIS for the chainlink

data set
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Figure 6.15 Histogram of the number of clusters detected in the chainlink data set by LNNSDOT

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

0 100 200 300 400 500 600 700 800 900 1000

K

Iteration
SDOTIPT

Figure 6.16 Convergence of LNNAIS using SDOT and IPT to optimal K for chainlink data set
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Table 6.6 Descriptive Statistics: Chainlink

Algorithm K Jintra Jinter Qratio QDB

KMDB 12.00 0.262 1.500 0.367 0.576

(± 0.00) (± 0.009) (± 0.025) (± 0.063) (± 0.017)

KMRT 10.00 0.308 1.509 0.358 0.629

(± 0.00) (± 0.007) (± 0.031) (± 0.028) (± 0.030)

LNNDB 9.00 0.384 1.475 0.629 0.906

(± 0.00) (± 0.018) (± 0.068) (± 0.210) (± 0.144)

LNNRT 8.00 0.427 1.464 0.624 0.962

(± 0.00) (± 0.021) (± 0.057) (± 0.302) (± 0.190)

LNNSDOT 5.76 0.588 1.402 0.770 1.283

(± 2.76) (± 0.184) (± 0.235) (± 0.400) (± 0.666)

Referring to table 6.12, the statistical hypothesis test rejects H0 that the Qratio means are the same

between KMRT and LNNSDOT (z = 8.483, p < 0.001). There is thus a statistical significant dif-

ference between the clustering quality of KMRT and LNNSDOT . KMRT tends to find clusters in

the chainlink data set with a higher quality than LNNSDOT . There is also a statistical significant

difference between the Qratio means of LNNRT and LNNSDOT (z = 2.547, p = 0.011). LNNRT

tends to find clusters in the chainlink data set with a higher quality than LNNSDOT .

6.4.6 Target data set

The average number of clusters determined by LNNSDOT for the target data set is K = 4.04 which

is close to the optimal range of K (as illustrated in figure 6.17, 5 ≤ K ≤ 8). The frequency distri-

bution of the number of clusters determined by LNNSDOT for the target data set is illustrated in

figure 6.18. LNNSDOT has high frequencies for K ≤ 5. Figure 6.19 illustrates for the target data

set the number of clusters respectively determined by the SDOT and IPT techniques over time.

IPT obtains K = 6 for the majority of the iterations. The value of K for SDOT oscillates between

K = 3 and K = 5.5 around an average K of 4.2 for the remaining iterations. Table 6.7 shows the

results obtained by the different models to determine the optimal number of clusters in the target

data set.

The statistical hypothesis test rejects H0 that the Qratio means are the same between KMRT and

LNNSDOT (z = 7.835, p < 0.001). There is thus a statistical significant difference between the

clustering quality of KMRT and LNNSDOT and KMRT tends to find clusters in the target data
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Figure 6.17 Optimal number of clusters obtained by K-means and LNNAIS for the target data

set
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Figure 6.18 Histogram of the number of clusters detected in the target data set by LNNSDOT
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Figure 6.19 Convergence of LNNAIS using SDOT and IPT to optimal K for target data set

Table 6.7 Descriptive Statistics: Target

Algorithm K Jintra Jinter Qratio QDB

KMDB 5.00 0.533 2.313 0.326 0.653

(± 0.00) (± 0.012) (± 0.102) (± 0.013) (± 0.014)

KMRT 5.00 0.533 2.313 0.326 0.653

(± 0.00) (± 0.012) (± 0.102) (± 0.013) (± 0.014)

LNNDB 7.98 0.538 3.076 0.569 0.836

(± 0.14) (± 0.075) (± 0.343) (± 0.477) (± 0.284)

LNNRT 6.00 0.661 2.806 0.539 0.894

(± 0.00) (± 0.117) (± 0.417) (± 0.178) (± 0.225)

LNNSDOT 4.04 0.878 2.841 0.577 1.024

(± 2.04) (± 0.208) (± 0.751) (± 0.438) (± 0.860)
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Table 6.8 Descriptive Statistics: Ionosphere

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 2.289 3.156 0.730 1.484

(± 0.00) (± 0.098) (± 0.413) (± 0.039) (± 0.153)

KMRT 4.00 2.085 3.438 0.877 1.776

(± 0.00) (± 0.065) (± 0.481) (± 0.164) (± 0.283)

LNNDB 2.00 2.888 4.083 0.720 1.437

(± 0.00) (± 0.278) (± 0.642) (± 0.100) (± 0.257)

LNNRT 5.00 2.473 4.277 0.911 1.755

(± 0.00) (± 0.272) (± 0.517) (± 0.180) (± 0.258)

LNNSDOT 8.28 2.251 5.012 2.791 1.956

(± 2.12) (± 0.322) (± 0.424) (± 6.519) (± 1.737)

set with a higher quality than LNNSDOT . There is however no statistical significant difference

between the Qratio means of LNNRT and LNNSDOT (statistical hypothesis test accepts H0, refer

to table 6.12).

6.4.7 Ionosphere data set

Table 6.8 shows the results obtained by the different models to determine the optimal number of

clusters in the ionosphere data set. Figure 6.20 illustrates that the optimal range of K for the iono-

sphere data set is 2 ≤ K ≤ 5 (also shown in table 6.8). LNNSDOT determined the average number

of clusters in the ionosphere data set as K = 8.28. The frequency distribution of the number of

clusters determined by LNNSDOT for the ionosphere data set illustrates that LNNSDOT has high

frequencies for 8 ≤ K ≤ 11 which is not within the optimal range of K (refer to figure 6.21 for

frequency distribution). Figure 6.22 illustrates for the ionosphere data set the number of clusters

respectively determined by the SDOT and IPT techniques over time. The value of K for IPT

rapidly increases to 5 in the first few iterations and remains at 5 for the majority of the remaining

iterations. The value of K for SDOT rapidly increases to 8 and oscillates between K = 7 and

K = 9 around an average K of 8 for the remaining iterations. Even though there is a difference

in the optimal range of K between the models, there is no statistically significant difference be-

tween the clustering qualities of any of the models (refer to table 6.12). Therefore, all models

tend to deliver clusters with similar quality at different optimal number of clusters. LNNSDOT

has the advantage of dynamically determining the number of clusters in the ionosphere data set

with similar clustering quality as the other models.
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Figure 6.20 Optimal number of clusters obtained by K-means and LNNAIS for the ionosphere

data set
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Figure 6.21 Histogram of the number of clusters detected in the ionosphere data set by LNNSDOT
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Figure 6.22 Convergence of LNNAIS using SDOT and IPT to optimal K for ionosphere data set

6.4.8 Glass data set

Figure 6.23 shows that the optimal number of clusters in the glass data set is obtained by KMDB

and LNNDB at K = 2 and by KMRT and LNNRT at K = 4. Therefore the optimal range of K

as determined by the different models for the glass data set is [2,4]. Figure 6.25 illustrates that

the value of K for IPT rapidly increases to K = 4 and SDOT oscillates around an average K of

3.6 in range [3,4.5] over time for the glass data set. Table 6.9 shows the results obtained by the

different models to determine the number of clusters in the glass data set. The average number

of clusters determined by LNNSDOT is K = 3.34 which falls within the optimal range of K.

A histogram of the frequency distribution of the number of clusters determined by LNNSDOT

for the glass data set is illustrated in figure 6.24. LNNSDOT has high frequencies for K ≤ 5.

Referring to table 6.12, the Mann-Whitney U statistical hypothesis test rejects H0 that the Qratio

means are the same between KMRT and LNNSDOT (z = 3.364, p < 0.001) and between LNNRT

and LNNSDOT (z = 1.996, p = 0.046). LNNSDOT tends to find clusters in the glass data set with

a higher quality than KMRT and LNNRT .

6.4.9 Image Segmentation data set

Table 6.10 shows the results obtained by the different models to determine the optimal number

of clusters in the image segmentation data set. Figure 6.26 shows that the optimal number of

clusters in the image data set is obtained by KMDB and LNNDB at K = 2, by KMRT at K = 9

and LNNRT at K = 3. The average number of clusters determined by LNNSDOT is K = 3.28
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Figure 6.23 Optimal number of clusters obtained by K-means and LNNAIS for the glass data set

Table 6.9 Descriptive Statistics: Glass

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 1.531 3.879 0.397 1.007

(± 0.00) (± 0.100) (± 0.546) (± 0.019) (± 0.116)

KMRT 4.00 1.212 4.263 0.572 1.025

(± 0.00) (± 0.056) (± 0.627) (± 0.152) (± 0.149)

LNNDB 2.00 2.354 5.792 0.427 0.892

(± 0.00) (± 0.484) (± 1.379) (± 0.121) (± 0.236)

LNNRT 4.00 1.575 5.197 0.512 1.055

(± 0.00) (± 0.208) (± 0.769) (± 0.161) (± 0.266)

LNNSDOT 3.34 2.003 5.998 0.493 0.875

(± 1.56) (± 0.518) (± 0.929) (± 0.310) (± 0.291)
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Figure 6.24 Histogram of the number of clusters detected in the glass data set by LNNSDOT

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000

K

Iteration
SDOTIPT

Figure 6.25 Convergence of LNNAIS using SDOT and IPT to optimal K for glass data set
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Table 6.10 Descriptive Statistics: Image Segmentation

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 101.487 238.922 0.439 0.861

(± 0.00) (± 3.313) (± 83.995) (± 0.041) (± 0.024)

KMRT 9.00 58.442 322.656 0.688 1.021

(± 0.00) (± 0.675) (± 10.779) (± 0.083) (± 0.035)

LNNDB 2.00 168.497 1148.026 0.155 0.551

(± 0.00) (± 33.481) (± 253.897) (± 0.047) (± 0.199)

LNNRT 3.00 137.827 881.290 0.316 1.000

(± 0.00) (± 15.718) (± 141.104) (± 0.253) (± 0.602)

LNNSDOT 3.28 142.847 975.017 43.919 88.577

(± 1.27) (± 21.735) (± 215.461) (± 291.181) (± 613.169)

which falls within the optimal range of K. Figure 6.28 illustrates that IPT obtains K = 3 for all

iterations and SDOT oscillates around an average K of 3.2 in range [2.6,3.7] over time for the

image data set. The frequency distribution of the number of clusters determined by LNNSDOT

for the image segmentation data set is illustrated in figure 6.27. LNNSDOT has high frequencies

for K ≤ 5. Referring to table 6.12, the Mann-Whitney U statistical hypothesis test rejects H0 that

the Qratio means are the same between KMRT and LNNSDOT (z = 6.89, p < 0.001) and between

LNNRT and LNNSDOT (z = 2.337, p = 0.019). LNNSDOT tends to find clusters in the image

segmentation data set with a higher quality than KMRT and LNNRT .

6.4.10 Spambase data set

The average number of clusters determined by LNNSDOT for the spambase data set is K = 2.4

which is within the optimal range of K (as illustrated in figure 6.29, 2 ≤ K ≤ 4). In figure 6.29,

note that QRT < 0 for LNNRT where K ≥ 10. QRT values less than zero indicates that LNNRT

was unable to cluster the data set into the corresponding K clusters. Since Bmax = 10 for data set

spambase (refer to table 6.1), the number of clusters K ≥ 10 is more than the number of available

ALCs in the population. The frequency distribution of the number of clusters determined by

LNNSDOT for the spambase data set is illustrated in figure 6.30. LNNSDOT has high frequencies

for K ≤ 3. Figure 6.31 illustrates that IPT obtains K = 2 for all iterations and SDOT oscillates

around an average K of 2.45 in range [2.2,2.7] over time for the spambase data set. Table 6.11

shows the results obtained by the different models to determine the optimal number of clusters

in the spambase data set. The statistical hypothesis test rejects H0 that the Qratio means are the
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Figure 6.26 Optimal number of clusters obtained by K-means and LNNAIS for the image seg-

mentation data set
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Figure 6.27 Histogram of the number of clusters detected in the image segmentation data set by

LNNSDOT
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Figure 6.28 Convergence of LNNAIS using SDOT and IPT to optimal K for image data set
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Figure 6.29 Optimal number of clusters obtained by K-means and LNNAIS for the spambase

data set
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Figure 6.30 Histogram of the number of clusters detected in the spambase data set by LNNSDOT
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Figure 6.31 Convergence of LNNAIS using SDOT and IPT to optimal K for spambase data set
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Table 6.11 Descriptive Statistics: Spambase

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 216.058 2003.263 0.108 0.586

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

KMRT 4.00 129.353 2165.832 0.229 0.727

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

LNNDB 2.00 771.637 8288.589 0.095 0.546

(± 0.00) (± 317.716) (± 2462.940) (± 0.031) (± 0.077)

LNNRT 2.00 475.834 7639.878 0.071 0.655

(± 0.00) (± 282.100) (± 2648.505) (± 0.053) (± 0.171)

LNNSDOT 2.40 651.896 10416.929 0.076 0.548

(± 0.57) (± 382.136) (± 2798.913) (± 0.042) (± 0.222)

same between KMRT and LNNSDOT (z = 8.269, p < 0.001). There is thus a statistical significant

difference between the clustering quality of KMRT and LNNSDOT and LNNSDOT tends to find

clusters in the spambase data set with a higher quality than KMRT . There is however no statistical

significant difference between the Qratio means of LNNRT and LNNSDOT (statistical hypothesis

test accepts H0, refer to table 6.12).

For completeness, table 6.12 also shows whether there is a statistical significant difference be-

tween the clustering quality of KMRT and LNNRT for all the data sets. Referring to table 6.12,

LNNSDOT and LNNRT tend to deliver clusters with a similar quality as KMRT for two of the data

sets (engytime and ionosphere). Out of the remaining eight data sets, both LNNSDOT and LNNRT

deliver clusters of a higher quality than KMRT for five of the data sets. Comparing LNNSDOT

with LNNRT for five of the data sets (two-spiral, engytime, target, ionosphere and spambase)

LNNSDOT tends to deliver clusters with a similar quality as LNNRT . Out of the remaining five

data sets, LNNSDOT delivers clusters of a higher quality than LNNRT for four of the data sets. In

general, LNNSDOT tends to deliver clusters of similar or higher quality for all data sets, followed

by LNNRT and KMRT .
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Table 6.12 Statistical Hypothesis Testing between All Models for all data sets based on Qratio as

performance criteria (α = 0.05; with continuity correction; unpaired; non-directional)

Data set Model A Model B z of A z of B p Outcome Lowest

z-score

LNNSDOT KMRT -7.58 7.58 < 0.001 Reject H0 LNNSDOT

iris LNNRT KMRT -3.209 3.209 0.001 Reject H0 LNNRT

LNNSDOT LNNRT -6.69 6.69 < 0.001 Reject H0 LNNSDOT

LNNSDOT KMRT 8.328 -8.328 < 0.001 Reject H0 KMRT

two-spiral LNNRT KMRT 7.704 -7.704 < 0.001 Reject H0 KMRT

LNNSDOT LNNRT -0.5 0.5 0.617 Accept H0 LNNSDOT

LNNSDOT KMRT -6.787 6.787 < 0.001 Reject H0 LNNSDOT

hepta LNNRT KMRT -8.145 8.145 < 0.001 Reject H0 LNNRT

LNNSDOT LNNRT -4.391 4.391 < 0.001 Reject H0 LNNSDOT

LNNSDOT KMRT 1.017 -1.017 0.309 Accept H0 KMRT

engytime LNNRT KMRT 1.551 -1.551 0.121 Accept H0 KMRT

LNNSDOT LNNRT -0.855 0.855 0.393 Accept H0 LNNSDOT

LNNSDOT KMRT 8.483 -8.483 < 0.001 Reject H0 KMRT

chainlink LNNRT KMRT 8.566 -8.566 < 0.001 Reject H0 KMRT

LNNSDOT LNNRT 2.547 -2.547 0.011 Reject H0 LNNRT

LNNSDOT KMRT 7.835 -7.835 < 0.001 Reject H0 KMRT

target LNNRT KMRT 8.145 -8.145 < 0.001 Reject H0 KMRT

LNNSDOT LNNRT -0.221 0.221 0.825 Accept H0 LNNSDOT

LNNSDOT KMRT 0.955 -0.955 0.340 Accept H0 KMRT

ionosphere LNNRT KMRT 1.169 -1.169 0.243 Accept H0 KMRT

LNNSDOT LNNRT 0.283 -0.283 0.777 Accept H0 LNNRT

LNNSDOT KMRT -3.364 3.364 < 0.001 Reject H0 LNNSDOT

glass LNNRT KMRT -1.965 1.965 0.049 Reject H0 LNNRT

LNNSDOT LNNRT -1.996 1.996 0.046 Reject H0 LNNSDOT

LNNSDOT KMRT -6.89 6.89 < 0.001 Reject H0 LNNSDOT

image LNNRT KMRT -7.18 7.18 < 0.001 Reject H0 LNNRT

segmentation LNNSDOT LNNRT -2.337 2.337 0.019 Reject H0 LNNSDOT

LNNSDOT KMRT -8.269 8.269 < 0.001 Reject H0 LNNSDOT

spambase LNNRT KMRT -8.269 8.269 < 0.001 Reject H0 LNNRT

LNNSDOT LNNRT 1.275 -1.275 0.202 Accept H0 LNNRT

6.5 Influence of LNNSDOT Parameters

This section investigates the influence of the LNNSDOT parameters on the number of obtained

clusters, K, in a data set. These parameters are the maximum population size, Bmax, the neigh-

198

 
 
 



bourhood size, ρ, and the clonal level threshold, εclone. The influence of each parameter was

evaluated for all the data sets listed in table 6.1 with the remaining parameters fixed at the values

given in table 6.1.

Table 6.13: Effect of Bmax on the number of detected clusters, K, by LNNSDOT

Data set Bmax Optimal K

range

10 2.48 ±0.608

15 2.58 ±0.751

20 2.84 ±0.857

iris 25 [2,4] 2.64 ±0.768

30 2.88 ±1.070

35 2.64 ±0.866

40 2.88 ±0.952

10 3.46 ±1.445

15 4.16 ±1.804

20 4.06 ±1.891

two-spiral 25 [3,12] 4.82 ±2.447

30 4.56 ±2.410

35 4.32 ±2.140

40 5.40 ±3.521

10 4.28 ±1.470

15 5.84 ±1.332

20 6.18 ±1.571

hepta 25 [4,7] 6.40 ±1.281

30 6.60 ±1.149

35 6.82 ±0.712

40 6.64 ±1.213

10 3.32 ±1.009

15 3.98 ±1.543

20 3.86 ±1.625

engytime 25 [2,7] 5.46 ±2.586

30 5.20 ±3.013

Continued on next page
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Data set Bmax Optimal K

range

35 5.48 ±3.093

40 6.34 ±4.043

10 3.48 ±1.330

15 4.64 ±2.278

20 4.74 ±2.423

chainlink 25 [8,12] 6.54 ±3.145

30 6.18 ±3.315

35 5.78 ±3.472

40 5.76 ±2.761

10 3.22 ±1.316

15 4.16 ±1.901

20 4.24 ±1.715

target 25 [5,8] 4.08 ±2.505

30 4.04 ±2.039

35 3.96 ±2.433

40 3.50 ±1.792

10 4.24 ±1.069

15 6.40 ±1.510

20 8.28 ±2.117

ionosphere 25 [2,5] 10.16 ±2.716

30 13.06 ±1.654

35 15.72 ±2.764

40 16.48 ±4.813

10 3.22 ±1.238

15 3.72 ±1.698

20 3.34 ±1.557

glass 25 [2,4] 3.94 ±2.195

30 3.68 ±2.083

35 3.80 ±2.010

40 3.94 ±2.378

10 2.46 ±0.727

Continued on next page
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Data set Bmax Optimal K

range

15 2.78 ±1.045

20 3.08 ±1.197

image 25 [2,9] 3.58 ±1.443

30 3.28 ±1.266

35 3.20 ±1.296

40 3.52 ±2.823

10 2.40 ±0.566

15 2.82 ±1.260

20 3.08 ±1.324

spam 25 [2,4] 2.90 ±0.900

30 3.22 ±1.301

35 3.24 ±1.305

40 3.30 ±1.300

The influence of Bmax was evaluated for all the data sets with the remaining parameters set to the

values as listed in table 6.1. Table 6.13 summarises the results of the average detected K for each

data set at different values of Bmax. There is a gradual to no increase in the number of obtained

clusters, K, with an increase in Bmax (as shown in table 6.13 for data sets iris, two-spiral, hepta,

engytime, ionosphere, glass, image segmentation and spambase). There are also cases where K

increases to a maximum and then starts to decrease with an increase in Bmax (data sets chainlink

and target). The effect of Bmax on the number of obtained clusters for the ionosphere data set

shows that Bmax ≥ 15 tends to overfit the data since the number of obtained clusters is outside the

optimal range. Therefore, the clustering performance of LNNSDOT with regards to K is sensitive

to the value of Bmax.

Table 6.14: Effect of εclone on the number of detected clusters, K, by LNNSDOT

Data set εclone Optimal K

range

5 2.64 ±0.768
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Data set εclone Optimal K

range

iris 10 [2,4] 3.04 ±1.326

15 3.08 ±1.383

20 3.62 ±1.864

5 4.06 ±1.891

two-spiral 10 [3,12] 4.92 ±2.415

15 4.62 ±2.297

20 5.14 ±2.136

5 6.64 ±1.213

hepta 10 [4,7] 6.78 ±1.346

15 6.66 ±1.365

20 6.94 ±0.968

5 3.98 ±1.923

engytime 10 [2,7] 3.86 ±1.625

15 4.64 ±2.124

20 4.40 ±1.811

5 5.76 ±2.761

chainlink 10 [8,12] 6.76 ±3.456

15 7.98 ±4.236

20 7.68 ±4.420

5 4.04 ±2.039

target 10 [5,8] 4.30 ±2.385

15 4.24 ±2.526

20 4.60 ±2.400

5 5.38 ±2.553

ionosphere 10 [2,5] 7.50 ±1.652

15 7.50 ±2.238

20 8.28 ±2.117

5 3.34 ±1.557

glass 10 [2,4] 4.32 ±1.794

15 4.54 ±2.427

20 4.56 ±2.080
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Data set εclone Optimal K

range

5 3.20 ±2.000

image 10 [2,9] 3.08 ±1.573

15 3.38 ±2.481

20 3.28 ±1.266

5 2.24 ±0.550

spam 10 [2,4] 2.32 ±0.546

15 2.30 ±0.500

20 2.40 ±0.566

The influence of εclone was evaluated for all the data sets with the remaining parameters set to the

values as listed in table 6.1. Table 6.14 summarises the results of the average detected K for each

data set at different values of εclone. There is a gradual or no increase in the number of obtained

clusters, K, with an increase in εclone for all of the data sets (as shown in table 6.14). Therefore,

the clustering performance of LNNSDOT with regards to K is sensitive to the value of εclone.

Table 6.15: Effect of ρ on the number of detected clusters, K, by LNNSDOT

Data set ρ Optimal K

range

3 2.64 ±0.768

iris 4 [2,4] 2.84 ±0.833

5 2.58 ±0.724

3 4.06 ±1.891

two-spiral 4 [3,12] 3.62 ±1.948

5 4.46 ±3.517

3 6.64 ±1.213

hepta 4 [4,7] 6.58 ±1.812

5 5.80 ±2.307

3 3.86 ±1.625

engytime 4 [2,7] 4.14 ±1.980
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Data set ρ Optimal K

range

5 3.86 ±2.530

3 5.76 ±2.761

chainlink 4 [8,12] 5.32 ±2.596

5 5.10 ±3.775

3 4.04 ±2.039

target 4 [5,8] 4.18 ±2.733

5 4.20 ±2.828

3 8.28 ±2.117

ionosphere 4 [2,5] 6.16 ±2.230

5 5.12 ±1.935

3 3.34 ±1.557

glass 4 [2,4] 3.76 ±2.006

5 3.82 ±2.381

3 3.28 ±1.266

image 4 [2,9] 3.48 ±1.910

5 3.00 ±1.149

3 2.60 ±0.800

spam 4 [2,4] 2.72 ±0.694

5 2.40 ±0.566

The influence of ρ was evaluated for all the data sets with the remaining parameters set to the

values as listed in table 6.1. Table 6.15 summarises the results of the average detected K for each

data set at different values of ρ. There is generally no trend in the number of obtained clusters,

K, with an increase in ρ except for the ionosphere data set where an increase in ρ decreases K

(as shown in table 6.15). Therefore, the clustering performance of LNNSDOT with regards to K

is generally insensitive to the value of ρ.
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6.6 Conclusion

This chapter presented two techniques which can be used with LNNAIS to dynamically deter-

mine the number of clusters in a data set. These techniques are the iterative pruning technique

(IPT) and the sequential deviation outlier technique (SDOT). Although both of these techniques

are computationally less expensive than the multiple execution approaches, the IPT technique ei-

ther needs a specified range for K or needs to iterate through all possible edges (to a maximum of

Bmax) which makes the IPT technique parameter dependant in the former case and computation-

ally slightly more expensive than SDOT in the latter. An advantage of IPT is that the technique

can use any cluster validity index to determine the number of clusters. The SDOT technique

neither uses a cluster validity index nor does it require any boundary constraints on K. SDOT

is a non-parametric technique. This is an advantage, since it is not always feasible to visually

inspect formed clusters, and a specified range for K might not contain the optimum number of

clusters.

LNNRT , LNNDB (both using IPT with QRT and QDB, respectively) and LNNSDOT (using SDOT)

were applied on different data sets to determine the optimal number of clusters. These results

were compared to the results obtained from K-means clustering which used the multiple execu-

tion approach to determine the optimal number of clusters in each data set. Based on the Qratio

index, in general, LNNSDOT tends to deliver clusters of similar or higher quality for all data sets,

followed by LNNRT and KMRT . The influence of the different LNNSDOT parameters was also

investigated.

Since the LNNSDOT model is computationally less expensive and is able to dynamically de-

termine the number of clusters in a data set, the model can be seen as an enhancement to the

LNNAIS model. Due to the possibility of the LNNSDOT model to dynamically determine the

number of clusters, the model might indicate division or merging of clusters in a non-stationary

environment. The next chapter defines and discusses different non-stationary environments

and applies the proposed LNNAIS and LNNSDOT to the clustering of generated synthetic non-

stationary data.
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