
Chapter 5

A Local Network Neighbourhood Artificial

Immune System with Application to

Unsupervised Data Clustering

The co-operation and co-stimulation or suppression between lymphocytes to respond and adapt

to invading antigens can result in the formation of lymphocyte network structures in the nat-

ural immune system, according to the network theory of immunology. An antigen stimulated

lymphocyte not only secretes antibodies but also proliferates by generating mutated clones to

adapt to the antigen structure. The proliferation of a lymphocyte stimulates the immediate neigh-

bouring lymphocytes, which in turn might also proliferate to adapt to the antigen structure and

stimulate neighbouring lymphocytes. Thus, a network of lymphocytes learns the structure of

an antigen by co-stimulating each other. The network topology of co-stimulated lymphocytes

inspired the modelling of the local network neighbourhood artificial immune system (LNNAIS).

The different parts of the LNNAIS algorithm are discussed in sections 5.1 to 5.4. The differ-

ences and similarities between existing network based AIS models and the proposed LNNAIS

are discussed in section 5.5.

5.1 The Algorithm

The proposed LNNAIS algorithm is given in pseudo code in algorithm 5.1 and consists of seven

high level steps to respond to an antigen/training pattern. Figure 5.1 shows a flow chart for the

steps in the LNNAIS algorithm. These steps are:

1. Initialise the ALC population
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2. Present an antigen to each ALC in the population and return the ALC with the highest

calculated binding affinity with the antigen.

3. The returned highest affinity ALC reacts to the antigen pattern by initialising the antigen

pattern as an antigen mutated clone and binds to the clone.

4. If the highest affinity ALC activates, the activated ALC spawns a mutated clone.

5. The spawned clone then binds to those antigen mutated clones of the activated ALC with

which the spawned clone has a higher binding affinity than the activated ALC.

6. The mutated clone or activated ALC then co-stimulates ALCs which is within the local

neighbourhood of the activated ALC.

7. Co-stimulation of neighbouring ALCs can result in co-suppression and/or the non-proliferation

of other ALCs in the population.

The first step initialises the ALC population. The second and third step simulate the affinity

maturation of a lymphocyte in the natural immune system. The second step models the clonal

selection of the natural immune system. The antigen pattern selects the ALC with which the

antigen has the highest binding affinity for cloning. The third step models the proliferation of a

lymphocyte in the natural immune system. When a lymphocyte reaches a certain level of prolifer-

ation (clone size), the lymphocyte activates and spawns a mutated clone (somatic hyper mutation

in the fourth step). The fifth and sixth steps simulate the network theory of co-stimulation and/or

suppression, and the final step the non-proliferation of other lymphocyte clones due to the prolif-

eration of neighbouring lymphocytes. The above high level steps are grouped into four phases,

namely initialise, react, adapt and suppress. Each of these phases are explained next.

5.2 Initialising an ALC and the ALC population

The ALC population, B , in LNNAIS is initialised as an empty set. The ALC population expands

to a maximum size, Bmax, over time. The patterns in data set, A , that needs to be partitioned

are seen as antigen patterns and are randomly presented to the ALC population. The ALCs and

antigen mutated clones in LNNAIS are encoded with the same structure as the antigen patterns

in A . If patterns in the data set are real-valued (or binary) vectors then the ALCs and antigen

mutated clones are also real-valued (or binary) vectors. ALCs with antigen mutated clones are

used in LNNAIS to adapt to the antigen patterns to form network structures and eventually cluster

124

 
 
 



Figure 5.1 Flow chart of LNNAIS algorithm
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Algorithm 5.1: High Level LNNAIS Algorithm

Set the maximum size of the ALC population as Bmax;

Initialise an empty set of ALCs as population B;

for each antigen, a j ∈ A , at index position j in A do

if |B| = 0 (empty population of ALCs) then

Initialise a new ALC, b, with the same structure as pattern a j;

B = B ∪b;

end

Calculate the antigen affinity between a j and each bi ∈ B using equation (2.3);

Select bh ∈ B , at index h, as the ALC with highest calculated antigen affinity;

Proliferate bh as discussed in section 5.3.2;

if bh is activated (|Ch| > εclone) then

Generate a mutated clone, b
′
h, using equation (5.4);

Secrete an antibody, b∗, as discussed in section 5.3.4;

Determine the local network neighbourhood of bh using equation (5.5);

Co-stimulate the local network neighbourhood of bh with b∗, as discussed in

section 5.4.3;

end

end

the data set. The initialisation of antigen mutated clones and the insertion of initialised ALCs

into B are discussed next.

5.3 Reacting to an Antigen

The high level steps of the react phase are basically the steps responsible for calculating the

affinity levels between the ALCs in population B and an antigen, selecting the ALC with the

highest affinity and proliferating the selected ALC. The sections to follow explain and define

each of these aspects.

5.3.1 Calculating the Affinity

The affinity between an antigen pattern, a, and an ALC, b, is known as the antigen affinity

and is calculated as the Euclidean distance between b and a. Euclidean distance is defined in

equation (2.3) and is also used to measure the network affinity between two ALCs. The affinity

determines the binding strength between an ALC and an antigen pattern or neighbouring ALC.

Therefore, a lower Euclidean distance implies a higher affinity (stronger binding) between an
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ALC and an antigen pattern or neighbouring ALC, and vice versa.

5.3.2 Proliferating the Clonal Selected ALC

The ALC with the highest binding affinity with an antigen pattern is selected as bh, where h

is the index position of the selected ALC in B . The antigen pattern a is then initialised as an

antigen mutated clone a
′
. The antigen mutated clone a

′
is grouped with bh by inserting a

′
at the

first index position of the clonal set Ch. Each ALC, bi, at index position i in B , contains a set of

antigen mutated clones, Ci. Inserting an antigen mutated clone into Ci increases the clonal level

of bi. Whenever the clonal level, |C |, of an ALC exceeds the clonal level threshold, εclone, the

ALC activates and generates a mutated ALC clone. When an antigen mutated clone is inserted

at the first index of C and |C | > εclone, the antigen mutated clone at the last index position |C |, is

removed from C . This gives more current antigen mutated clones a higher probability to survive

and influence the generation of the mutated ALC clone. The sections to follow discuss different

definitions used to generate a mutated ALC clone.

5.3.3 Normalising the Affinity of an Antigen Mutated Clone

The normalised affinity between an antigen mutated clone, a
′ ∈ Ci, and an ALC bi, is defined as

σ∗
(

bi,a
′
,Ci

)

= 1.0−
σ
(

bi,a
′
)

σmax +1.0
(5.1)

where

σmax = maxc=1,...,|Ci|
{

σ
(

bi,a
′
c

)}

(5.2)

and a
′
c is an antigen mutated clone at index position c in clonal set Ci of ALC bi. In the above

definition, σ∗ calculates the normalised affinity between an antigen mutated clone, a
′
c ∈ Ci, and

an ALC, bi, with respect to the lowest affinity (highest Euclidean distance) in the set of antigen

mutated clones, Ci. A lower affinity between an antigen mutated clone and an ALC will result in

a lower normalised affinity and vice versa. Thus the higher an ALC’s affinity towards an antigen

mutated clone, the more the ALC’s clone will be mutated towards the antigen mutated clone, as

explained in the next section.
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5.3.4 Generating a Mutated Clone of an Activated ALC

The vector difference between two vectors q and r is defined as:

θ(r,q) = q− r (5.3)

The above function, θ, returns a vector with the same number of attributes (components) as q.

These attributes are calculated by subtracting each attribute in r from the corresponding attribute

in q. The set of antigen mutated clones, Ci, which is contained by an ALC bi determines the

mutated clone which will be generated when an ALC is activated. The mutated clone, b
′
i, is

calculated using

b
′
i = bi +

∑
|Ci|
c=1 σ∗

(

bi,a
′
c,Ci

)

θ
(

bi,a
′
c

)

∑
|Ci|
c=1 σ∗ (bi,a

′
c,Ci

)

(5.4)

In the above definition, bi is mutated by adding a calculated average vector (second term in

equation (5.4)) to bi. The numerator of the fraction in the second term contains the product of the

normalised affinity between bi and an antigen mutated clone, and the vector difference between

bi and the applicable antigen mutated clone. The normalised affinity between an ALC and an

antigen mutated clone was discussed in section 5.3.3. The influence of the vector difference

between bi and an antigen mutated clone is therefore weighted by the normalised affinity. The

numerator is thus calculated as the sum of weighted vector differences for all the antigen mutated

clones contained by bi. Antigen mutated clones in Ci with a higher binding affinity with ALC

bi have a higher influence on the mutation of the clone in comparison with antigen mutated

clones with a lower binding affinity. The result is that the ALC clone is mutated more towards

higher affinity antigen mutated clones in Ci. The calculated sum of weighted vector differences

(numerator) is then divided by the sum of the normalised affinities to obtain an average vector

for mutating bi.

5.3.5 Secreting an Antibody for Co-stimulation

The antigen mutated clones in Ci with which b
′
i has a higher affinity than the parent ALC bi, is

added to the clonal set of b
′
i (bind to b

′
i). If more than half of the number of antigen mutated

clones in Ci bind to b
′
i, the parent ALC bi is added as an antigen mutated clone to the clonal

set of b
′
i. The parent ALC is then replaced by b

′
i in B and secreted as a co-stimulating antibody

to neighbouring ALCs. If less than half of the number of antigen mutated clones in Ci bind to

b
′
i, the parent ALC bi is suppressed by removing all of the antigen mutated clones in Ci. This
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prevents frequently activated ALCs from dominating the population. The mutated ALC clone, b
′
i,

is then inserted into Ci; not only to co-stimulate the parent ALC, but also to preserve the memory

of the antigen structure. The mutated ALC clone is secreted as a co-stimulating antibody to

neighbouring ALCs. The following section discusses the co-stimulation of neighbouring ALCs

within a local network neighbourhood.

5.4 Adapting the ALCs in a Local Network Neighbourhood

The co-stimulating antibody which is secreted during the activation of a proliferated ALC is pre-

sented to the immediate ALC neighbour(s) in the local network neighbourhood of the activated

ALC. The neighbouring ALCs within a local network neighbourhood adapt to the antibody as

it would react to an antigen (as explained in section 5.3). The following sections discuss the

manner in which a local network neighbourhood of an activated ALC is determined.

5.4.1 Determining the Local Network Neighbourhood of an Activated ALC

An ALC’s neighbourhood, N , is determined by a network neighbourhood window of size, ρ,

and the highest average network affinity between the potential neighbouring ALCs. The neigh-

bourhood, Ni,ρ, of an ALC, bi ∈ B , is defined as

Ni,ρ =

{

∀b j ∈ B : min
j=i−(ρ−1),...,i

{µ( j, j +(ρ−1))}
}

(5.5)

where

ρ ≤ |B| (5.6)

Ni,ρ ⊆ B (5.7)

bi ∈ Ni,ρ (5.8)

and µ calculates the average network affinity between ALCs in the population from index position

i to i +(ρ−1); µ is defined in section 5.4.2. The above definition is a network window of size

ρ which starts at position i− (ρ−1), sliding over the ALC population in search of the highest

average network affinity (minimum average distance). Figure 5.2 illustrates a local network

neighbourhood where ρ = 5 and the network with the highest average network affinity starts at

index position h−2.
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Figure 5.2 Adapting an ALC Network Neighbourhood

5.4.2 Average Network Affinity in a Local Network Neighbourhood

The average network affinity level of a network of ALCs starting at index position x to y, is

defined as

µ(x,y) =
∑

y−1
i=x σ(bi,bi+1)

y− x
(5.9)

where σ is the Euclidean distance (as defined in equation (2.3)).

5.4.3 Co-stimulating the Local Network Neighbourhood

The neighbouring ALCs within a local network neighbourhood, Ni,ρ, adapt to the secreted an-

tibody of its predecessor in the neighbourhood. Figure 5.2 illustrates a local network neigh-

bourhood with ρ = 5 adapting to an antigen. In this figure, ALC bh is selected by the antigen

for cloning and proliferation (as explained in section 5.3.2). As a result of proliferating bh, the

ALC became active (|Ch| > εclone) and secreted an antibody for co-stimulation of the immedi-

ate neighbours of bh. The immediate neighbours of bh at indices h− 1 and h + 1 react to the

secreted antibody by adding the clonal set of the antibody to Ch−1 and Ch+1, respectively. If

either or both of the neighbouring ALCs, bh−1 and bh+1 becomes activated, either or both will

secrete antibodies (as explained in section 5.3.4), which will co-stimulate their immediate ALC

neighbours at indices h− 2 and h + 2, respectively. If a neighbouring ALC is not activated by

the co-stimulation of a predecessor’s antibody, the antibody is inserted into the local network

at the index of the neighbouring ALC, increasing the population size through clonal expansion

(discussed in section 5.4.4). The neighbouring ALCs with the highest network affinity in the
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population, which are not within the local network neighbourhood, are merged to stabilise the

population size. Merging of ALCs simulate the non-proliferation of other ALC clones in the

population (discussed in section 5.4.5). The process of co-stimulation continues until the ALCs

on the boundary of the local network neighbourhood are co-stimulated or until a neighbouring

ALC is not activated by the co-stimulation of a predecessor’s antibody. Algorithm 5.2 lists the

pseudo code for adapting the ALCs in a local network neighbourhood.

5.4.4 Clonal Expansion of a Local Network Neighbourhood

A local network neighbourhood is clonally expanded whenever a neighbouring ALC, bi, is not

activated by the co-stimulation of a predecessor’s secreted antibody. The secreted antibody, b∗,

is inserted at position i∗ which is defined as

i∗ (b∗,bi) =

{

i if
σ(b∗,bi−1)+σ(b∗,bi)

2
<

σ(b∗,bi)+σ(b∗,bi+1)
2

i+1 otherwise
(5.10)

The secreted antibody is inserted at the index position where the average network affinity is the

highest between the secreted antibody and its potential neighbouring ALCs.

5.4.5 Non-proliferation of the ALC Population

The maximum ALC population size, Bmax, is exceeded whenever clonal expansion occurs in a

local network neighbourhood. Therefore, the non-proliferation and suppression of other ALCs

in the population keeps the size of the ALC population stable. Non-proliferation (suppression)

is simulated by merging two ALCs in the population which are not within the clonally expanded

local network neighbourhood, and which have the highest network affinity in the population.

5.5 Similarities and Differences with Other Network based

AIS Models

This section discusses some of the differences and similarities between the proposed algorithm

and existing network based AIS models.
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Algorithm 5.2: Adapting the Neighbourhood, Nh,ρ, to an Activated ALC, bh

Let b∗ be the secreted antibody of the activated ALC bh;

l = h−1;r = h+1;

Let b∗
l = b∗ and b∗

r = b∗ be the secreted antibodies for co-stimulation of neighbouring

ALCs bl and br, respectively;

Activated=true;

Costimulated=false;

for bl ∈ Nh,ρ and Activated do

Add antigen mutated clones of b∗
l to clonal set Cl of neighbouring ALC bl;

if bl is activated (i.e. |Cl| > εclone) then

Generate a mutated clone, b
′
l , using equation (5.4);

Secrete an antibody b∗
l from bl , as discussed in section 5.3.4;

l = l−1;

Costimulated=true;

end

else

Activated=false;

Insert b∗
l into Nh,ρ at position i∗

(

b∗
l ,bl

)

(as defined in equation (5.10));

Merge two ALCs in the population with the highest network affinity, as discussed

in section 5.4.5;

end

end

Activated=true;

for br ∈ Nh,ρ and Activated do

Add antigen mutated clones of b∗
r to clonal set Cr of neighbouring ALC br;

if br is activated (i.e. |Cr| > εclone) then

Generate a mutated clone, b
′
r, using equation (5.4);

Secrete an antibody b∗
r from br, as discussed in section 5.3.4;

r = r +1;

Costimulated=true;

end

else

Activated=false;

Insert b∗
r into Nh,ρ at position i∗ (b∗

r ,br) (as defined in equation (5.10));

Merge two ALCs in the population with the highest network affinity, as discussed

in section 5.4.5;

end

end

if not Costimulated and |B| < Bmax then

Insert b∗ into Nh,ρ at position i∗ (b∗,bh) (as defined in equation (5.10));

end
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5.5.1 Training Data

Although the proposed LNNAIS model can be trained on normalised data, the normalisation

of training data is not a prerequisite for LNNAIS. Similar to other network based AIS models,

LNNAIS sees all training patterns as antigen patterns.

5.5.2 Population of ALCs

The population of ALCs can be initialised with a number of randomly initialised ALCs or a

number of randomly selected training patterns as ALCs, i.e. a cross section of the training data

is used to initialise the ALCs. The initial population of ALCs in LNNAIS is an empty set. The

first randomly selected training pattern is initialised as an ALC and added to the population

of ALCs. This concept is known as dendritic injection in the natural immune system. The

population of ALCs are grown and pruned in LNNAIS. The growth of the population of ALCs

in LNNAIS is based on the process of affinity maturation. When an activated ALC of a local

network neighbourhood does not adapt to the presented antigen pattern, the clonal level of the

ALC is penalised and a mutated clone of the ALC is inserted into the local network of ALCs.

5.5.3 ALC Presentation

An ALC in LNNAIS is presented by a continuous-valued array with the same dimension as the

antigen patterns in the training set, as is the case for other network based AIS models.

5.5.4 Affinity Measurement

The affinity between an antigen pattern and an ALC is measured using the Euclidean distance

as defined in section 5.3.1. The affinity between two ALCs, referred to as network affinity, is

also measured using the Euclidean distance. Some of the existing network based AIS models

also measure antigen and network affinity using Euclidean distance. The difference between

LNNAIS and the existing network based AIS models is that LNNAIS has no threshold to de-

termine whether two ALCs are linked to form a network. LNNAIS introduces a new concept

of an ALC network neighbourhood size, as defined in section 5.4.1 and proposed by Graaff and

Engelbrecht [64].
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5.5.5 Learning the Antigen Structure

Another similarity between existing network based AIS models and the proposed LNNAIS is

that some ALCs are cloned and mutated to adapt to antigen patterns. LNNAIS also models the

process of affinity maturation to introduce new ALCs into the population as discussed in section

5.4.3. LNNAIS also models the non-proliferation of ALCs, as discussed in section 5.4.3. The dif-

ference between LNNAIS and existing network based AIS models is that expansion of the ALC

population is done on a per local network neighbourhood bases. LNNAIS models the idiotopic

network theory of ALCs. This means that the insertion of new ALCs into a population will be

done within a local network neighbourhood (as discussed in section 5.4.3). Non-proliferation on

the other hand is only done on ALCs which do not form part of the activated local network neigh-

bourhood. This means that only ALCs outside a network neighbourhood will be non-proliferated

in the ALC population (as discussed in section 5.4.3). This approach penalises the population

of ALCs by non-proliferating the population but also reinforces the network neighbourhood by

clonal expansion.

5.5.6 Determining the Number of Clusters

The number of ALC networks formed in existing network based AIS models represent potential

clusters in the data set. In most of the existing network based AIS models the number of ALC

networks in a population is determined by a network affinity threshold or a hybrid approach is

taken by clustering the ALC population into sub-nets (as discussed in section 4.6). The threshold-

ing technique uses a proximity matrix of network affinities between the ALCs in the population.

The ALCs with a network affinity below the threshold value are allowed to be linked and form

networks. Therefore the specified value of the network affinity threshold determines the number

of ALC networks and it can be a formidable task to specify the correct network affinity threshold

to obtain the correct or required number of clusters. A potential drawback of the hybrid approach

is that the clusters (sub-nets) might contain ALCs which do not have a good or generic represen-

tation of the data. Both of these techniques are also computationally expensive.

The proposed LNNAIS model has the advantage that an ALC can only link to its immediate

neighbours to form an ALC network. This is due to the network topology and an index based

neighbourhood technique. Therefore, there is no need for a network affinity threshold and/or a

proximity matrix of network affinities to determine the number of ALC networks in LNNAIS. It

is also not necessary to follow a hybrid approach of clustering the ALC population. Determining
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the number of clusters in LNNAIS is thus computationally less expensive and is explained next.

In order to obtain a specified number of clusters, K, the network affinities between neighbouring

ALCs in the population need to be calculated. The boundaries of each cluster are then determined

by pruning the network links between the K lowest calculated network affinities. Figure 5.3 il-

lustrates this technique where K = 3. The edges between ALCs have an associated network

affinity. The K edges that forms the boundaries between the ALCs (dotted lines) have the lowest

network affinity in the ALC population, i.e. highest Euclidean distance. The centroid of each of

the formed ALC networks (illustrated as clouds) is calculated using equation (2.18).

Figure 5.3 Determining the Number of Clusters in LNNAIS

5.5.7 The Number of Parameters

Focusing on existing network based AIS models which are used in the experimental work of this

chapter, there is also a significant difference in the number of parameters that need to be specified

for each of the models. The DWB model has a total of 12 parameters, SMAIN has a total of seven

parameters and Opt-aiNet a total of six parameters. The proposed LNNAIS model has only three

parameters which are the maximum population size, Bmax, the neighbouring radius, ρ, and the

activation level for ALC cloning, εclone.
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5.6 Time Complexity of LNNAIS

The time complexity of LNNAIS is based on the complexity of partitioning A , sorting the net-

work affinities between the ALCs in the ALC population and pruning K boundaries between the

ALCs in the ALC population of size Bmax to obtain K ALC networks (clusters). The time com-

plexity of partitioning A is based on presenting A to ALC population B and adapting the ALC

population. Assume that t1 is the number of iterations taken by LNNAIS to converge. The worst

case of time complexity for LNNAIS to partition A is when there is always an activated ALC

in B and when the network neighbourhood size of the activated ALC is the entire ALC pop-

ulation (N = B). Then the time complexity of partitioning A is O
(

t1 |A |(Bmax)
2Nχ1

)

where

|A | is the size of the data set that needs to be partitioned and N is the number of dimensions of

A . The χ1 parameter is the time complexity for an activated ALC to generate an antibody for

co-stimulation of neighbouring ALCs. The t1, Bmax, N and χ1 parameters are fixed in advance

and usually Bmax << |A | and
∣

∣N
∣

∣<< Bmax. If t1BmaxNχ1 << |A | then the time complexity of

partitioning A is O(|A |). If however, Bmax ≈ |A | and
∣

∣N
∣

∣ ≈ Bmax then the time complexity of

partitioning A is O
(

|A |2
)

. The maximum number of boundaries in an ALC population of size

Bmax is Bmax. The time complexity of sorting the Bmax network affinities depends on the sorting

algorithm used. Assume the time complexity of the sorting algorithm is some constant, χ2. The

worst case of time complexity for LNNAIS to determine K ALC networks is when K = Bmax,

giving a time complexity of O(Bmax).

5.7 Experimental Results and Analysis

This section discusses and compares the clustering results obtained by K-means, CPSO, SMAIN,

DWB, Opt-aiNet and LNNAIS. Furthermore, a sensitivity analysis of LNNAIS is done on the

different data sets.

5.7.1 Data clustering problems

Table 5.1 lists the selection of data sets used to benchmark the clustering performance and qual-

ity of the proposed LNNAIS model against the clustering quality of existing clustering methods

like K-means clustering and CPSO (as discussed in sections 2.3.2 and 2.7.1, respectively) and

network based AIS models for data clustering like SMAIN, DWB-AIS and Opt-aiNet (as dis-

cussed in section 4.6). The characteristics of each data set are also listed in the table. These are

the number of patterns in the dataset (|P|), the number of features per pattern in the data set (N
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Table 5.1 List of Eleven Benchmarking Data Sets for Clustering

Category Data set name |P| N σmax K Overlap?

Group 1 Iris 150 4 7.7 3 Y

Two-spiral 190 2 3.045 12 Y

Hepta 212 3 13.383 7 N

Group 2 Engytime 4096 2 14.806 2 Y

Chainlink 1000 3 4.383 6 Y

Target 770 2 8.627 5 Y (outliers)

Group 3 Ionosphere 351 34 11.358 2 Y

Glass 214 9 16.449 6 Y

Group 4 Image Segmentation 2310 19 1775.117 7 Y

Spambase 4601 57 18758.75 2 Y

Letter Recognition 20000 16 60 26 Y

- number of dimensions), the maximum distance between the patterns in the data set (σmax), the

number of clusters selected for partitioning the data set (K) and whether there are any overlap-

ping patterns in the data set. The two-spiral, hepta, engytime, chainlink and target data sets are

part of a fundamental clustering problems suite [95]. The other data sets were collected from the

UCI Machine Learning repository [6].

The data sets in table 5.1 can be categorised into four groups:

• Group 1 (small number of features / small number of patterns): The data sets within this

group have a small number of features and a small number of patterns. The iris data set,

two-spiral problem and hepta data set form part of this group. All of these data sets have

less than 500 patterns and less than five features per pattern.

• Group 2 (small number of features / large number of patterns): The data sets within this

group also have a small number of features but a larger number of patterns in comparison

to the data sets in group 1. The engytime data set, chainlink data set and the target data

set (to a lesser extent) form part of this group. All of these data sets have more than 500

patterns and less than five features per pattern.

• Group 3 (large number of features / small number of patterns): This group contains data

sets with a larger number of features in comparison to groups 1 and 2, but a small number

of patterns. The ionosphere data set and the glass data set form part of this group and both

have less than 500 patterns, with each pattern having more than eight features.
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• Group 4 (large number of features / large number of patterns): The last group contains data

sets with a larger number of features (compared to groups 1 and 2) and a larger number of

patterns (compared to groups 1 and 3). The image segmentation data set, spambase data

set and letter recognition data set form part of this group. All of these data sets have more

than 500 patterns and more than eight features.

Taken as a whole, the data sets listed in table 5.1 represent a good distribution of data clustering

problems with the number of patterns in the range [150,20000] and the number of features in the

range [2,57]. All the data sets have overlapping patterns except the hepta data set. The target

data set also contains outlier patterns.

5.7.2 Experimental setup and methodology

All experimental results in this chapter are averages taken over 50 runs, unless stated other-

wise. The stopping criteria for all algorithms was set to 1000 iterations (tmax = 1000). Popula-

tions/Swarms in the respective algorithms were initialised by randomly selecting patterns from

the data set. The patterns in a data set were randomly presented to each model. None of the data

sets were normalised for training. All algorithms were implemented using the Java 6 framework

which interfaced to a MySQL 5 database for collection of data sets and exporting of results.

Algorithms were executed on a 24 core Sun Grid Engine. Tables 5.2 to 5.6 summarise the pa-

rameter values used by the respective algorithms for each data set. All parameter values for the

respective algorithms were found empirically to deliver the best performance for clustering the

applicable data set. The Qratio validity index (defined in equation (2.49)), intra error distance

(Jintra as defined in equation (2.17)) and inter error distance (Jinter as defined in equation (2.16))

are used as performance measures to determine the clustering quality of the different models.

These clustering performance measures were discussed in sections 2.3.2 and 2.4, respectively.

The following sections investigate whether there is a difference between the clustering quality,

Qratio, of two models for a specific data set or not. The hypothesis is defined as

• Null hypothesis, H0: There is no difference in Qratio.

• Alternative hypothesis, H1: There is a difference in Qratio.

The above hypothesis was tested with a non-parametric Mann-Whitney U hypothesis test (0.95

confidence interval, i.e. α = 0.05) between the clustering quality of LNNAIS and the clustering
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Table 5.2 CPSO Parameter Values

Data set K |S| d w c1 c2 δ
Iris 3 6 3 0.82 1.33 1.218 0.301

Two-spiral 12 9 4 0.558 0.656 1.94 0.326

Hepta 7 44 4 0.697 1.696 0.963 0.62

Engytime 2 63 11 0.641 0.719 0.156 0.359

Chainlink 6 11 5 0.234 0.656 1.969 0.266

Target 5 23 2 0.789 0.422 1.658 0.258

Ionosphere 2 45 8 0.683 1.518 1.207 0.961

Glass 6 13 6 0.914 1.344 1.246 0.115

Image Segmentation 7 10 5 0.77 0.875 1.545 0.312

Spambase 2 42 18 0.812 0.125 1.152 0.938

Letter Recognition 26 49 3 0.836 0.828 1.641 0.055

Table 5.3 SMAIN Parameter Values

Data set K Binit Rγ RΛ NAT Rk Rmax Rinit

Iris 3 0.25 0.836 3 1.115 0.422 238 37

Two-spiral 12 0.182 0.516 91 0.039 0.656 975 92

Hepta 7 0.191 0.938 38 0.259 0.375 900 88

Engytime 2 0.019 0.672 35 2.322 0.469 725 36

Chainlink 6 0.2 0.859 23 0.038 0.094 425 91

Target 5 0.049 0.824 22 0.077 0.852 819 31

Ionosphere 2 0.157 0.637 34 0.099 0.727 319 68

Glass 6 0.157 0.637 34 0.015 0.727 319 68

Image Segmentation 7 0.29 0.926 2 24.618 0.898 281 76

Spambase 2 0.123 0.805 33 6.571 0.359 388 43

Letter Recognition 26 0.051 0.93 24 8.595 0.109 988 68
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Table 5.4 DWB Parameter Values

Data set K Bmax φinit mmin A amin amax kclone ς τ τα τβ kcompress

Iris 3 39 0.362 0.087 37 49 49 1.688 0.24 14 5 10 6

Two-spiral 12 46 0.668 0.025 55 6 6 2.438 0.913 12 13 13 5

Hepta 7 47 0.959 0.959 78 35 54 1.625 0.592 1 6 15 2

Engytime 2 39 0.485 0.209 24 24 86 3.188 0.852 6 6 1 4

Chainlink 6 40 0.592 0.102 41 72 91 2.125 0.714 7 11 2 2

Target 5 47 0.554 0.982 36 62 62 3.844 0.89 13 12 11 3

Ionosphere 2 17 0.561 0.929 44 7 68 1.25 0.929 5 7 9 3

Glass 6 46 0.845 0.018 13 11 11 4.031 0.569 2 5 9 7

Image Segmentation 7 47 0.201 0.538 16 2 2 2.906 0.477 12 14 7 1

Spambase 2 46 0.27 0.546 71 9 9 4.562 0.025 3 8 4 4

Letter Recognition 26 45 0.148 0.423 9 27 46 3.062 0.148 8 10 13 3

1
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Table 5.5 Opt-aiNET Parameter Values

Data set K Binit η εnetwork ε f itness ϕ 1
ς

Iris 3 44 10 0.186 1.317 0.131 0.356

Two-spiral 12 14 1 0.324 0.902 0.219 0.169

Hepta 7 39 1 0.297 1.54 0.491 0.459

Engytime 2 29 2 0.037 0.412 0.403 0.322

Chainlink 6 7 22 0.178 0.723 0.306 0.283

Target 5 12 3 0.362 1.109 0.338 0.412

Ionosphere 2 28 3 0.477 1.97 0.294 0.144

Glass 6 35 1 0.155 0.961 0.456 0.431

Image Segmentation 7 14 5 0.021 1.184 0.316 0.134

Spambase 2 6 5 0.32 1.985 0.409 0.191

Letter Recognition 26 45 2 0.416 1.258 0.444 0.394

Table 5.6 LNNAIS Parameter Values

Data set K Bmax ρ εclone

Iris 3 14 3 8

Two-spiral 12 39 3 6

Hepta 7 29 3 6

Engytime 2 10 3 22

Chainlink 6 24 3 8

Target 5 28 3 6

Ionosphere 2 10 3 17

Glass 6 24 3 8

Image Segmentation 7 20 2 27

Spambase 2 10 5 22

Letter Recognition 26 104 3 10
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quality of each of the other models. The result is statistical significant if the calculated probability

(p-value is the probability of H0 being true) is less than α. The results for each data set group are

discussed next.

5.7.3 Testing for statistical significance - data group 1

Table 5.7 summarises the results obtained for data group 1 using the applicable parameter values

in tables 5.2-5.6 for each of the data sets. The corresponding statistical hypothesis tests between

LNNAIS and the remaining models for each of the data sets in group 1 are summarised in ta-

ble 5.8 (based on the clustering quality, Qratio). The Mann-Whitney U statistical hypothesis test

accepts H0 that the means are the same at a 0.05 level of significance between LNNAIS and Opt-

aiNet and between LNNAIS and CPSO for data set hepta. The remainder of the Mann-Whitney

U statistical hypothesis tests showed a significant difference in performance between LNNAIS

and the other clustering algorithms. LNNAIS tends to deliver clusters of a higher quality when

compared to K-means, CPSO, DWB and Opt-aiNet for data sets iris and hepta. Although SMAIN

tends to deliver clusters of a higher quality when compared to LNNAIS for all data sets in group

1, LNNAIS delivers more compact clusters for the iris data set. Also, K-means tends to deliver

clusters of a higher quality for data set two-spiral (refer to table 5.7). SMAIN tends to find

clusters in the data sets of group 1 with a higher quality, followed by LNNAIS.

5.7.4 Testing for statistical significance - data group 2

The results obtained for data group 2 with the applicable parameter values in tables 5.2-5.6 are

summarised in table 5.9. The Mann-Whitney U statistical hypothesis test accepts H0 that the

mean clustering quality, Qratio, are the same between LNNAIS and DWB for data set chainlink;

and rejects H0 for all other cases (as summarised in table 5.10). Referring to table 5.9, LNNAIS

tends to deliver clusters of a higher quality when compared to CPSO, DWB and Opt-aiNet for

all data sets in group 2. K-means tends to deliver clusters of a higher quality when compared to

LNNAIS for data sets chainlink and target, but of lower quality for data set engytime. SMAIN

also tends to deliver clusters of a higher quality for all data sets in group 2, followed by LNNAIS.

5.7.5 Testing for statistical significance - data group 3

The results of the Mann-Whitney U statistical hypothesis test accepts H0 that the mean clustering

quality, Qratio, are the same between LNNAIS and DWB, and LNNAIS and CPSO for data set
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Table 5.7 Descriptive Statistics: Data Group 1

Data set Algorithm Jintra Jinter Qratio

K-means 0.689 3.269 0.509

(± 0.073) (± 0.201) (± 0.268)

CPSO 0.725 2.964 0.658

(± 0.089) (± 0.201) (± 0.354)

Iris SMAIN 0.766 3.705 0.295

(± 0.041) (± 0.207) (± 0.021)

DWB 0.753 3.103 0.547

(± 0.152) (± 0.282) (± 0.304)

Opt-aiNet 0.887 2.977 0.882

(± 0.021) (± 0.095) (± 0.168)

LNNAIS 0.738 3.546 0.333

(± 0.054) (± 0.309) (± 0.048)

K-means 0.212 1.014 0.521

(± 0.005) (± 0.021) (± 0.102)

CPSO 0.251 0.829 1.648

(± 0.025) (± 0.079) (± 0.978)

Two-spiral SMAIN 0.213 1.096 0.433

(± 0.004) (± 0.013) (± 0.015)

DWB 0.241 0.988 1.094

(± 0.010) (± 0.065) (± 0.501)

Opt-aiNet 0.279 0.813 2.740

(± 0.027) (± 0.105) (± 3.020)

LNNAIS 0.233 1.030 0.847

(± 0.009) (± 0.041) (± 0.296)

K-means 0.976 4.041 0.999

(± 0.232) (± 0.147) (± 0.465)

CPSO 0.893 3.930 1.095

(± 0.355) (± 0.344) (± 1.748)

Hepta SMAIN 0.641 4.147 0.219

(± 0.001) (± 0.005) (± 0.001)

DWB 1.187 3.990 1.254

(± 0.260) (± 0.238) (± 0.618)

Opt-aiNet 1.179 3.681 1.643

(± 0.462) (± 0.499) (± 1.353)

LNNAIS 0.748 4.140 0.345

(± 0.102) (± 0.099) (± 0.206)

143

 
 
 



Table 5.8 Statistical Hypothesis Testing between LNNAIS and Other Models based on Qratio:

Data Group 1 (α = 0.05; with continuity correction; unpaired; non-directional)

Data set Algorithm z p Outcome

K-means 4.539 < 0.001 Reject H0

CPSO 5.958 < 0.001 Reject H0

Iris DWB 5.115 < 0.001 Reject H0

SMAIN 3.726 < 0.001 Reject H0

Opt-aiNet 6.646 < 0.001 Reject H0

K-means 5.773 < 0.001 Reject H0

CPSO 4.361 < 0.001 Reject H0

Two-spiral DWB 2.21 0.027 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 6.246 < 0.001 Reject H0

K-means 3.726 < 0.001 Reject H0

CPSO 1.331 0.183 Accept H0

Hepta DWB 5.892 < 0.001 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 1.804 0.071 Accept H0

ionosphere, and rejects H0 for all other cases (as summarised in table 5.11). LNNAIS tends to

deliver clusters of a higher quality for all data sets in group 3 when compared to K-means, CPSO

and DWB (refer to table 5.12). However, SMAIN and Opt-aiNet tend to deliver clusters of a

higher quality for data set ionosphere when compared to cluster quality of LNNAIS. SMAIN

also tend to deliver clusters of a higher quality for the data sets in group 3, followed by LNNAIS.

LNNAIS does however deliver more compact clusters than SMAIN for the glass data set.

5.7.6 Testing for statistical significance - data group 4

Table 5.13 summarises the results obtained for data group 4. The corresponding statistical hy-

pothesis tests between LNNAIS and the remaining models for each of the data sets in group 4

are summarised in table 5.14. The Mann-Whitney U statistical hypothesis test accepts H0 that

the means are the same between LNNAIS and K-means for data set image segmentation, and

between LNNAIS and Opt-aiNet for data set letter recognition. The Mann-Whitney U statisti-

cal hypothesis test rejects H0 for all other cases (as summarised in table 5.14). In most cases

LNNAIS tends to deliver clusters of a higher quality except for data set image segmentation and

letter recognition where SMAIN tends to deliver clusters of a higher quality (refer to table 5.13).
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Table 5.9 Descriptive Statistics: Data Group 2

Data set Algorithm Jintra Jinter Qratio

K-means 1.431 2.998 0.477

(± 0.000) (± 0.000) (± 0.000)

CPSO 1.435 2.935 0.489

(± 0.001) (± 0.012) (± 0.002)

Engytime SMAIN 2.097 5.975 0.355

(± 0.103) (± 0.670) (± 0.039)

DWB 1.599 3.057 0.540

(± 0.120) (± 0.526) (± 0.115)

Opt-aiNet 1.435 2.932 0.490

(± 0.001) (± 0.025) (± 0.004)

LNNAIS 1.944 4.557 0.438

(± 0.281) (± 1.043) (± 0.069)

K-means 0.488 1.550 0.517

(± 0.006) (± 0.049) (± 0.031)

CPSO 0.592 1.412 1.092

(± 0.053) (± 0.150) (± 0.667)

Chainlink SMAIN 0.487 1.643 0.471

(± 0.007) (± 0.039) (± 0.023)

DWB 0.538 1.506 0.751

(± 0.025) (± 0.074) (± 0.320)

Opt-aiNet 0.646 1.363 1.352

(± 0.059) (± 0.185) (± 0.554)

LNNAIS 0.535 1.493 0.640

(± 0.021) (± 0.116) (± 0.118)

K-means 0.544 2.393 0.337

(± 0.030) (± 0.244) (± 0.032)

CPSO 0.749 2.340 1.133

(± 0.077) (± 0.556) (± 0.578)

Target SMAIN 1.008 5.794 0.238

(± 0.000) (± 0.000) (± 0.001)

DWB 0.649 2.058 0.752

(± 0.059) (± 0.319) (± 0.285)

Opt-aiNet 0.792 2.706 1.750

(± 0.050) (± 0.494) (± 1.491)

LNNAIS 0.804 2.985 0.559

(± 0.124) (± 0.525) (± 0.155)

145

 
 
 



Table 5.10 Statistical Hypothesis Testing between LNNAIS and Other Models based on Qratio:

Data Group 2 (α = 0.05; with continuity correction; unpaired; non-directional)

Data set Algorithm z p Outcome

K-means 3.097 0.002 Reject H0

CPSO 3.4 < 0.001 Reject H0

Engytime DWB 3.888 < 0.001 Reject H0

SMAIN 4.931 < 0.001 Reject H0

Opt-aiNet 3.4 < 0.001 Reject H0

K-means 4.886 < 0.001 Reject H0

CPSO 3.748 < 0.001 Reject H0

Chainlink DWB 0.85 0.395 Accept H0

SMAIN 6.32 < 0.001 Reject H0

Opt-aiNet 5.759 < 0.001 Reject H0

K-means 6.513 < 0.001 Reject H0

CPSO 4.517 < 0.001 Reject H0

Target DWB 2.964 0.003 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 4.657 < 0.001 Reject H0

Table 5.11 Statistical Hypothesis Testing between LNNAIS and Other Models based on Qratio:

Data Group 3 (α = 0.05; with continuity correction; unpaired; non-directional)

Data set Algorithm z p Outcome

K-means 2.24 0.025 Reject H0

CPSO 1.833 0.067 Accept H0

Ionosphere DWB 1.582 0.114 Accept H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 3.837 < 0.001 Reject H0

K-means 4.664 < 0.001 Reject H0

CPSO 6.513 < 0.001 Reject H0

Glass DWB 6.291 < 0.001 Reject H0

SMAIN 4.916 < 0.001 Reject H0

Opt-aiNet 6.646 < 0.001 Reject H0
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Table 5.12 Descriptive Statistics: Data Group 3

Data set Algorithm Jintra Jinter Qratio

K-means 2.302 3.192 0.728

(± 0.125) (± 0.486) (± 0.045)

CPSO 2.806 4.197 0.778

(± 0.221) (± 1.306) (± 0.387)

Ionosphere SMAIN 2.767 6.047 0.458

(± 0.000) (± 0.000) (± 0.000)

DWB 2.632 3.488 0.799

(± 0.168) (± 0.888) (± 0.195)

Opt-aiNet 2.781 4.623 0.662

(± 0.068) (± 1.086) (± 0.275)

LNNAIS 2.807 3.962 0.725

(± 0.207) (± 0.576) (± 0.127)

K-means 1.035 4.557 0.901

(± 0.038) (± 0.464) (± 0.309)

CPSO 1.581 3.017 1.685

(± 0.120) (± 1.121) (± 0.674)

Glass SMAIN 1.709 7.663 0.381

(± 0.003) (± 0.038) (± 0.007)

DWB 1.198 3.716 1.458

(± 0.089) (± 0.899) (± 0.471)

Opt-aiNet 1.446 3.256 2.188

(± 0.170) (± 1.179) (± 0.701)

LNNAIS 1.358 5.367 0.541

(± 0.149) (± 0.423) (± 0.113)
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Table 5.13 Descriptive Statistics: Data Group 4

Data set Algorithm Jintra Jinter Qratio

K-means 65.274 356.964 0.694

(± 0.523) (± 32.396) (± 0.033)

CPSO 77.522 177.950 1.493

(± 7.161) (± 24.600) (± 0.598)

Image Segmentation SMAIN 126.990 787.028 0.400

(± 0.283) (± 1.906) (± 0.001)

DWB 71.657 245.495 1.060

(± 3.074) (± 133.903) (± 0.301)

Opt-aiNet 74.457 174.931 1.621

(± 6.321) (± 28.219) (± 0.990)

LNNAIS 87.984 597.456 0.989

(± 9.635) (± 116.260) (± 1.015)

K-means 216.058 2003.263 0.108

(± 0.000) (± 0.000) (± 0.000)

CPSO 301.660 136.613 2.301

(± 19.617) (± 30.941) (± 0.452)

Spambase SMAIN 239.369 1599.789 0.194

(± 27.139) (± 831.832) (± 0.096)

DWB 185.926 1216.169 0.236

(± 22.246) (± 1509.055) (± 0.120)

Opt-aiNet 247.833 71.578 5.586

(± 18.812) (± 37.181) (± 6.421)

LNNAIS 432.734 6720.659 0.074

(± 221.003) (± 2691.210) (± 0.046)

K-means 5.383 11.121 1.090

(± 0.012) (± 0.157) (± 0.043)

CPSO 6.571 11.028 1.480

(± 0.121) (± 0.764) (± 0.225)

Letter Recognition SMAIN 7.297 17.299 0.751

(± 0.238) (± 0.455) (± 0.029)

DWB 6.562 12.268 1.758

(± 0.108) (± 0.704) (± 0.662)

Opt-aiNet 6.419 11.778 1.367

(± 0.108) (± 0.630) (± 0.179)

LNNAIS 6.072 12.601 1.351

(± 0.080) (± 0.331) (± 0.202)
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Table 5.14 Statistical Hypothesis Testing between LNNAIS and Other Models based on Qratio:

Data Group 4 (α = 0.05; with continuity correction; unpaired; non-directional)

Data set Algorithm z p Outcome

K-means 1.922 0.055 Accept H0

CPSO 5.093 < 0.001 Reject H0

Image Segmentation DWB 3.6 < 0.001 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 5.064 < 0.001 Reject H0

K-means 3.984 < 0.001 Reject H0

CPSO 6.646 < 0.001 Reject H0

Spambase DWB 5.603 < 0.001 Reject H0

SMAIN 5.5 < 0.001 Reject H0

Opt-aiNet 6.646 < 0.001 Reject H0

K-means 5.404 < 0.001 Reject H0

CPSO 2.144 0.032 Reject H0

Letter Recognition DWB 3.053 0.002 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 0.288 0.773 Accept H0

Also, K-means tends to deliver clusters of a higher quality for data set letter recognition.

The experimental results show that, in general, LNNAIS delivers clusters of similar or higher

quality than classical data clustering models like K-means and CPSO, and network based AIS

models like DWB and Opt-aiNet. Overall, SMAIN tends to deliver clusters of a higher quality

for all data sets, followed by LNNAIS. Although SMAIN tends to deliver clusters of a higher

quality than LNNAIS, a cursory assessment indicates that SMAIN tends to utilise a larger ALC

population than LNNAIS. This might indicate an overfit of the data which results in superior

clustering quality of SMAIN. A disadvantage of SMAIN when compared to LNNAIS is that

SMAIN follows a hybrid approach to determine the number of ALC networks (clusters) and is

therefore computationally more expensive than LNNAIS. Furthermore, LNNAIS has less user

specified parameters. The next section compares and discusses the ALC population sizes of

SMAIN, DWB and LNNAIS to elaborate on the cursory assessment of overfitting the data. This

is then followed by a sensitivity analysis of the LNNAIS parameters on the clustering quality of

the model.
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Figure 5.4 ALC Population Size Ratios of SMAIN, DWB and LNNAIS

5.7.7 ALC Population Size - Overfitting the Data

This section investigates the ALC population sizes between SMAIN, DWB and LNNAIS to indi-

cate potential overfit of the data. Overfitting of the data could result in superior clustering quality

of a specific model when compared to other models which utilise a smaller ALC population size.

Figure 5.4 illustrates a histogram of the ALC population size of SMAIN, DWB and LNNAIS to

cluster the data sets. The size of the ALC population is expressed as a ratio of the applicable data

set size. Therefore, an ALC population size ratio closer to 1.0 indicates a higher level of overfit

of the applicable data set. The figure illustrates that LNNAIS has a population size ratio of less

than 0.2 for all of the data sets. On the contrary, SMAIN has a population size ratio of more than

0.4 for six of the data sets (two-spiral, hepta, chainlink, target, ionosphere and glass). For data

sets glass and ionosphere, the ALC population size of SMAIN is almost equal to the size of the

data sets (ratio close to 1.0). In general, SMAIN utilises a larger ALC population to cluster the

data than DWB and LNNAIS. This not only explains the superior clustering quality of SMAIN

in the previous section but also a drawback of SMAIN that tends to overfit the data. Compared to

SMAIN in view of these findings, LNNAIS delivers clusters of high quality without overfitting

the data.
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5.7.8 Influence of LNNAIS parameters

This section investigates the influence of the LNNAIS parameters on the clustering quality of

the model with reference to Qratio, Jintra, Jinter and the number of obtained clusters K. These

parameters are the maximum population size, Bmax, the neighbourhood size, ρ, and the clonal

level threshold, εclone. Compared to the network based AIS models which are used in this chapter,

LNNAIS has significantly less parameters. The clustering results of a representative data set

were selected from each of the defined data groups for the discussion. All of the other clustering

results of the remaining data sets within the same data group, followed similar trends unless

stated otherwise. The identified data sets include two-spiral from group 1, chainlink from group

2, glass from group 3 and image segmentation from group 4. The LNNAIS model has been

executed with population sizes of 10 to 50 ALCs, clonal level threshold values of 6 to 27 and

neighbourhood sizes which are calculated as a ratio of the population size. Neighbourhood size

ratios from 0.05 to 0.9 were used to calculate the neighbourhood size ρ using ρ = ρr ×Bmax (ρr

is the neighbourhood size ratio). In cases where a parameter was kept constant, the parameter

was set to the value as listed in table 5.6 for each of the applicable data sets.

Population Size: Figures 5.5 to 5.8 show the effect of different ALC population sizes, Bmax,

at different neighbourhood size ratios, ρr, and a constant clonal level threshold, εclone. These fig-

ures show that for small neighbourhood sizes an increase in the ALC population size has a less

significant influence on the clustering quality, Qratio, when compared to larger neighbourhood

sizes. The cluster compactness and separation do however tend to decrease at low neighbour-

hood sizes with an increase in the ALC population size (increasing Jintra and decreasing Jinter).

Furthermore, figures 5.5 to 5.8 also show that no significant improvement is achieved for all the

different neighbourhood sizes in the number of obtained clusters for ALC population sizes larger

than a specific optimal value (which is problem dependant). This can also be observed in fig-

ures 5.13 to 5.16. Figures 5.13 to 5.16 show that an increase in the ALC population size increases

the cluster compactness and separation (decreasing Jintra and increasing Jinter) for different clonal

level threshold values with a low constant neighbourhood size. Therefore, an increase in the ALC

population size increases diversity which obtains the required number of clusters and improves

the clustering quality.

Neighbourhood Size: Figures 5.9 to 5.12 show the effect of different neighbourhood size ra-

tios, ρr, at different clonal level threshold values, εclone, and a constant ALC population size,

Bmax. An increase in the neighbourhood size decreases the cluster compactness and separation
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Figure 5.5 Two-spiral data set (εclone = 6): Effect of the ALC population size with a constant clonal level threshold
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Figure 5.6 Chainlink data set (εclone = 8): Effect of the ALC population size with a constant clonal level threshold
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Figure 5.7 Glass data set (εclone = 8): Effect of the ALC population size with a constant clonal level threshold
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Figure 5.8 Image Segmentation data set (εclone = 27): Effect of the ALC population size with a constant clonal level threshold
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for all of the different clonal level threshold values, resulting in clusters of a lower quality (in-

creasing Qratio and Jintra with a decreasing Jinter). This effect is also shown in figures 5.5 to 5.8

where an increase in the neighbourhood size ratio decreases the cluster compactness (increases

Jintra) and decreases the cluster separation (decreases Jinter) for all values of Bmax. From these

observations it can be concluded that small values of ρr deliver more compact and more sepa-

rated clusters (lower Jintra, higher Jinter) and therefore clusters of higher quality (lower Qratio)

when compared to higher values of ρr. From the above mentioned figures, lower neighbourhood

sizes also tend to obtain the required number of clusters.

Clonal Level Threshold: Figures 5.13 to 5.16 show the effect of different clonal level thresh-

old values, εclone, at different ALC population sizes, Bmax, and a constant neighbourhood size,

ρ. An increase in the clonal level threshold has no significant improvement in the number of

obtained clusters at different ALC population sizes (as illustrated in figures 5.13 to 5.16) and

also not at different neighbourhood sizes (as illustrated in figures 5.9 to 5.12). Furthermore, the

different clonal level threshold values follow similar trends with reference to the quality, com-

pactness and separation of the clusters when the neighbourhood size increases (as illustrated in

figures 5.9 to 5.12 and explained in the previous paragraph). In the case of the chainlink and

image segmentation data sets, increasing the clonal level threshold also results in less compact

clusters at different ALC population sizes (as illustrated in figures 5.14 and 5.16), whereas there

is no significant change in the compactness of the clusters for the two-spiral and glass data sets

(as illustrated in figures 5.13 and 5.15). Therefore, the clonal level threshold influences the clus-

ter compactness and is problem specific.

In summary, the clustering performance of LNNAIS is sensitive to the values of the ALC popu-

lation size and neighbourhood size. The ALC population size is problem specific and in general

low neighbourhood size values deliver clusters of higher quality. The clustering performance of

LNNAIS is generally insensitive to the value of the clonal level threshold.

5.8 Conclusion

A new network based AIS model (LNNAIS) was proposed for data clustering. LNNAIS utilises a

different network topology, which is an index based ALC neighbourhood topology to determine

the network connectivity between ALCs. The clustering performance of the LNNAIS model was

compared against classical clustering algorithms (K-means clustering and CPSO) and existing
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Figure 5.9 Two-spiral data set (Bmax = 39): Effect of the neighbourhood size with a constant ALC population size
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Figure 5.10 Chainlink data set (Bmax = 24): Effect of the neighbourhood size with a constant ALC population size
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Figure 5.11 Glass data set (Bmax = 24): Effect of the neighbourhood size with a constant ALC population size
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Figure 5.12 Image Segmentation data set (Bmax = 20): Effect of the neighbourhood size with a constant ALC population size
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Figure 5.13 Two-spiral data set (ρ = 3): Effect of the clonal level threshold with a constant neighbourhood size
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Figure 5.14 Chainlink data set (ρ = 3): Effect of the clonal level threshold with a constant neighbourhood size
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Figure 5.15 Glass data set (ρ = 3): Effect of the clonal level threshold with a constant neighbourhood size
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Figure 5.16 Image Segmentation data set (ρ = 2): Effect of the clonal level threshold with a constant neighbourhood size

1
6

4

 
 
 



network based AIS models (SMAIN, DWB and Opt-aiNet). In most cases, LNNAIS produced

better or similar results with reference to the quality, compactness and separation of the clusters.

Although SMAIN tends to deliver clusters of a higher quality than LNNAIS, further investigation

showed that SMAIN tend to utilise a larger ALC population than LNNAIS.

A sensitivity analysis was done on the LNNAIS parameters to investigate the effect of the pa-

rameters on the clustering quality. An increase in the ALC population size increases diver-

sity which obtains the required number of clusters and improves the clustering quality. Smaller

neighbourhood sizes deliver more compact and more separated clusters when compared to larger

neighbourhood sizes, and tend to obtain the required number of clusters. Therefore small neigh-

bourhood sizes deliver clusters of a higher quality. The clonal level threshold influences the

compactness of the clusters and is problem specific.

Although existing network based AIS models and LNNAIS do not require any user specified

parameter of the number of required clusters to cluster the data, the techniques used by these

models to determine the number of ALC networks do, however. Therefore, the following chapter

investigates and proposes two alternative techniques that can be used with LNNAIS to dynami-

cally determine the number of clusters in a data set.
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