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Chapter 4
Artificial Immune Systems

The different theories in the science of immunology inspired the development (design) of im-
mune inspired algorithms, collectively known as artificial immune systems (AIS), which are
either based on or inspired by a specific theory on immunology or a combination of the different
theories. The application areas of AIS cover a broad spectrum. AISs have been applied to differ-
ent problem domains which among others include classification [30, 53, 63, 93, 179], anomaly
and fraud detection [53, 60, 89, 90, 111, 121], optimisation [27, 35, 37, 55, 129], scheduling
[57, 79, 130], data analysis and clustering [24, 32, 36, 133, 139, 165, 169, 187], and robotics
[23, 104, 177]. This chapter discusses some of the most familiar AIS models and their appli-
cations. Since the proposed AIS model in this thesis is inspired by and mostly based on the
network theory, a more detailed overview is given on existing network based AIS models within
the context of data clustering.

The rest of the chapter is organised as follows:

e Section 4.1 defines a general AIS framework to highlight the basic components of an AIS

model.

e Section 4.2 gives an introduction to the shape space model and how an artificial lympho-

cyte (ALC) and antigen pattern are presented in a shape space.

e Section 4.3 discusses the different measures of affinity between an ALC and antigen pattern
within a specific shape space. The section also gives an overview of the different matching

rules to determine whether an ALC binds to an antigen pattern.

e Section 4.4 gives an overview of AIS models which are inspired by the self-tolerant T-Cells

in the natural immune system (classical view).
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e Section 4.5 discusses some of the AIS models which are inspired by the clonal selection

theory.

e Section 4.6 gives an introduction to some of the theoretical network based models and a

detailed discussion on different network theory inspired AIS models.

e Section 4.7 discusses the different theoretical approaches to determine the possible inter-

actions in an idiotypic network.

e Section 4.8 briefly highlights the difference between danger theory inspired AIS models
and those AIS models which are inspired by the classical view of the natural immune

system. The section briefly discusses some of the applications of the danger AIS models.

e Section 4.9 concludes the chapter by giving an overall summary of the chapter and com-

paring existing network based AIS models to the network AIS proposed in this thesis.

4.1 A Basic AIS Framework

This section defines a general AIS framework which is based upon the functional and organisa-
tional behaviour of the natural immune system (NIS) as discussed in chapter 3. In this section,
the terms "cell" and "molecule" are used interchangeably. The capabilities of the NIS within

each theory are summarised below:

e In some cases the NIS knows the structure of self/normal cells and non-self/foreign cells.

In other cases the NIS only knows the structure of self/normal cells.

e In cases where the NIS knows the structure of self and non-self cells, the NIS is capable

of recognising non-self associated cell structures (innate immune system).

e In cases where the NIS only knows the structure of self cells, the NIS needs to learn the

structure of the non-self cells (adaptive immune system).
e A foreign cell is capable of causing damage.

e Lymphocytes are cloned and mutated to learn and adapt to the structure of the encountered

foreign cells.

e The build-up of a memory on the learned structures of the foreign cells.
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e A faster secondary response to frequently encountered foreign cells, due to the built-up

memory.

e The co-operation and co-stimulation among lymphocytes to learn and react to encountered

foreign cells can result into the formation of lymphocyte networks.
e The NIS consists of layers of defense against foreign cells.

e The entities within the different layers communicate in response to encountered foreign

cells by means of signaling.

The above capabilities imply that it is the co-operation between different lymphocytes in differ-
ent layers of the natural immune system which results in an active immune response to detected
pathogenic material. To recapitulate the discussion on the different theories and layers of the
NIS in chapter 3: Foreign cells are detected by macrophages in the first layer of defense, known
as the innate immune system. If a foreign cell is not detected in the innate immune layer, mature
T-Cells and B-Cells react to the encountered foreign cell in the adaptive immune system, i.e. sec-

ond layer of defense. The response within the adaptive layer can be either primary or secondary.

In the primary response, B-Cells and T-Cells co-operate and co-stimulate each other in an at-
tempt for the B-Cell to secrete antibodies with a higher affinity to the detected foreign cell. If
foreign cells with a similar structure are frequently detected in the primary response, a memory
of the structure is built-up in the NIS by the B-Cells that proliferate. In the secondary response,
these memory cells can then have a faster reaction to the foreign cell with a similar structure,

thus there is no need for a primary response to adapt to the structure of the foreign cell.

Within the primary response, B-Cells adapt to the structure of the foreign cell through the process
of affinity maturation. This can result in B-Cells detecting each others structure to form an id-
iotypic network, co-stimulating or suppressing each other in response to an encountered foreign
cell. Before a B-Cell can proliferate or undergo the affinity maturation process, the helper T-Cell
needs to secrete lymphokines which either promote or suppress B-Cell growth. When a helper
T-Cell receives a danger signal from the innate immune layer, indicating necrotic cell death, the
T-Cell secretes lymphokines which promote B-Cell growth. This in turn proliferate the B-Cell.
If a T-Cell is presented with a peptide pattern by a B-Cell without receiving a danger signal from
the innate immune system, it implies that although the detected cell is foreign, it is harmless to

the body and the T-Cell can secrete lymphokines to suppress the proliferation of the B-Cell.
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The interaction of T-Cells, B-Cells and signaling of danger, occurs within the lymph nodes which
are connected with lymph vessels. T-Cells and B-Cells meet each other in the lymph nodes to
exchange antigenic information. Thus, to model an AIS, there are a few basic concepts that must

be considered:

e There are trained detectors (artificial lymphocytes) that detect non-self patterns with a

certain affinity.

e The artificial immune system may need a good repository of self patterns or self and non-

self patterns to train the artificial lymphocytes (ALCs) to be self-tolerant.

e The affinity between an ALC and a pattern needs to be measured. The measured affinity

indicates to what degree an ALC detects a pattern.

e To be able to measure affinity, the representation of the patterns and the ALCs need to have

the same structure.

e The affinity between two ALCs needs to be measured. The measured affinity indicates to

what degree an ALC links with another ALC to form a network.

e The artificial immune system has memory that is built-up by the artificial lymphocytes that

frequently detect non-self patterns.

e When an ALC detects non-self patterns, it can be cloned and the clones can be mutated to

have more diversity in the search space.

Using the above concepts as a guideline, the pseudo code in algorithm 4.1 is a template for the

AIS algorithms considered in this thesis. Each of the algorithm’s parts is briefly explained next.

1. Inmitialising B and determining -2 The population B can be populated either with ran-
domly generated ALCs or with ALCs that are initialised with a cross section of the data
set to be learned. If a cross section of the data set is used to initialise the ALCs, the com-
plement of the data set will determine the training set 4 These and other initialisation

methods are discussed for each of the AIS models in the sections to follow.

2. Stopping condition for the while-loop: In most of the discussed AIS models, the stopping
condition is based on convergence of the ALC population or a preset number of iterations.
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Algorithm 4.1: AIS Algorithm Template

Initialise a set of ALCs as population B;
Determine the antigen patterns as training set A4;
while some stopping condition(s) not true do
for each antigen pattern a; € 4 do
Select a subset of ALCs for exposure to a;, as population § C ‘B;
for each ALC, b; € S do
Calculate the antigen affinity between a; and b;;
end
Select a subset of ALCs with the highest calculated antigen affinity as population
HCS;
Adapt the ALCs in # with some selection method, based on the calculated
antigen affinity and/or the network affinity among ALCs in H;
Update the stimulation level of each ALC in #;
end
Adapt the ALCs in H with a network selection method, based on the calculated
network affinity among ALCs in # (optional);
end

3. Selecting a subset, S, of ALCs: The selected subset § can be the entire set B or a number

of randomly selected ALCs from ‘B Selection of S can also be based on the stimulation

level (as discussed below).

4. Calculating the antigen affinity: The antigen affinity is the measurement of similarity or

dissimilarity between an ALC and an antigen pattern. The most commonly used measures

of affinity in existing AIS models are the Euclidean distance, r-contiguous matching rule,

hamming distance and cosine similarity.

5. Selecting a subset, 7/, of ALCs: In some of the AIS models, the selection of highest
affinity ALCs is based on a preset affinity threshold. Thus, the selected subset A can be

the entire set .S, depending on the preset affinity threshold.

6. Calculating the network affinity: This is the measurement of affinity between two ALCs.

The different measures of network affinity are the same as those for antigen affinity. A

preset network affinity threshold determines whether two or more ALCs are linked to form

a network.

7. Adapting the ALCs in subset #: Adaptation of ALCs can be seen as the maturation pro-

cess of the ALC, supervised or unsupervised. Some of the selection methods that can be
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used are negative selection (or positive selection), clonal selection and/or some evolution-
ary technique with mutation operators. ALCs that form a network can influence each other
to adapt to an antigen. These selection methods are discussed for each of the AIS models

considered in this chapter.

8. Updating the stimulation level of an ALC: The stimulation level is calculated in different
ways in existing AIS models. In some AIS models, the stimulation level is seen as the
summation of antigen affinities. The stimulation level determines the resource level of
an ALC. The stimulation level can also be used to determine a selection of ALCs as the
memory set. The memory set contains the ALCs that most frequently match an antigen
pattern, thus memory status is given to these ALCs. The stimulation level is discussed for
the different AIS models in the chapter.

The above listed concepts to model a basic AIS can be grouped into the different layers of an AIS
framework as proposed by De Castro and Timmis [34]. The proposed layered AIS framework
consists of three main parts [34]:

1. Representation: Defining the structure to represent an antigen or receptor (ALC) in the
problem domain (search space).

2. Interaction: Selecting an affinity function to quantify the quality of a structure as defined
in the representation layer. Typically this function measures the degree of similarity or
dissimilarity between an ALC’s (receptor) structure and a structure representing another

ALC or antigen.

3. Adaptation: Selecting a strategy (immune process or theory) to guide the behaviour of the

model.

In the above definition of a layered AIS framework, the structures within the representation
layer forms part of the input to the interaction layer for affinity calculations (quality). In turn,
the calculated quality within the interaction layer forms part of the input to the adaptation layer.
Therefore the selected strategy within the adaptation layer guides the behaviour of the model
based on the calculated affinities. The sections to follow discuss the different existing AIS models

within the context of the above layered AIS framework.
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4.2 Representation of Antigens and Antibodies

An antigen or receptor can be represented as a string of attributes in the search space. Perelson
and Oster defined the notion of a shape space which is similar to a search space [147, 149]. As-
sume the shape space @ is a bounded region of K" with volume V. Each receptor’s binding site
can be characterised by measuring a number of features. The grouping of these features is known
as the receptor’s generalised shape [147]. If the generalised shape of a receptor is described by
a feature vector with N features, the generalised shape of the receptor can be represented as a
point in N-dimensional space, and therefore an N-dimensional ALC can be represented in shape

space .

Epitopes on the surface of an antigen also have a generalised shape and can be represented
in the shape space ®. Assume receptor b has an exact complementary match to epitope a, then
the binding affinity between the receptor and epitope is at its highest level. A less exact match
results in a lower binding affinity. Thus, the generalised shape of a receptor can match more than
one epitope with different binding affinity levels [147]. The epitope in @ with an exact comple-
ment of the receptor’s generalised shape represents a region of epitopes with different levels of
binding affinities with the receptor (ALC). The region is known as a recognition region and all
epitopes within this region’s radius have an affinity higher than a certain threshold. The radius
of the recognition region is determined by the affinity threshold. A lower threshold results in a
higher radius, which implies a larger region with a less specific binding between an epitope and
receptor (ALC).

Figure 4.1 illustrates the shape space @ with an ALC b and a recognition region for a com-
plementary match with antigen a. The average volume of the region covered by a recognition
region in shape space @ is defined as vy (,) where ¢ is the radius function of the affinity threshold
r [149]. From the above definition of a shape space with different recognition regions for each
of the receptors, Perelson and Oster concluded that an infinite number of epitopes (antigen) are
recognised by a finite collection or repertoire of receptors (ALCs) [147]. Thus, the initialisation
of a repertoire with p random receptors covers a total volume of p X vy (,). With p X vy(,) >V, the
volume V of shape space ® is completely covered by the repertoire of ALCs with some overlap

between the different recognition regions [147, 149].

Measuring the affinity between an ALC and an antigen pattern as a complementary match in-
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Figure 4.1 Shape space ® as bounded region & > with volume V

dicates the dissimilarity between an ALC and an antigen pattern. The similarity between an
ALC and antigen pattern can also be measured as the affinity. Thus, measuring the affinity as
similarity, each ALC in shape space can be presented as a recognition region with a certain ra-
dius, i.e. affinity threshold. All antigen patterns within the area of an ALC’s recognition region

have a certain measured degree of similarity which adheres to the affinity threshold of the ALC.

There are different definitions and approaches to measure the interaction between an ALC and
antigen pattern or between ALCs, i.e. affinity measurement. Different (dis)similarity measures
for calculating the degree of affinity between an ALC and an antigen/ALC pattern have been

proposed. The most commonly used measures of affinity are discussed in the next section.

4.3 Affinity as Quality Measure

Referring to section 3.2, an antibody/receptor binds to an antigen with a certain binding strength
known as the affinity. The process of affinity maturation (refer to section 3.5), which consists
of somatic hyper mutation and clonal selection, improves the affinity of an antibody with the
detected antigen. Thus, measuring the affinity between an ALC and an antigen pattern or an-
other ALC gives an indication of the quality (or fitness) of the ALC to match an antigen pattern.
The adaptation of ALCs to learn the structure of the antigen patterns is guided by measuring the
quality of the ALCs.

Affinity in AISs is measured as the spatial distance between an ALC and an antigen pattern
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or another ALC. The affinity between an ALC and an antigen pattern could be measured against
an affinity threshold to determine whether the ALC matches the antigen pattern, i.e. whether the
antigen pattern is within the radius of the ALC’s recognition region (as defined in the shape space
theory, discussed in section 4.2). Therefore, there are different matching rules based on affin-
ity measurement and thresholding for different shape spaces (problem domains). This section
discusses some of the most common matching rules proposed for nominal shape spaces. The
generalised shape of an ALC or antigen pattern in a nominal shape space consists of features
(attributes) which are nominal categories. The different categories for a nominal shape space are

known as the alphabet of the shape space.

The different distance-based (dis)similarity measures between feature vectors in continuous shape
space were discussed in section 2.2. The distance between two feature vectors in continuous
shape space is also measured against an affinity threshold to determine whether the two feature
vectors match. The most commonly used (dis)similarity measure in AlISs, applied to continuous

shape space problems, is the Euclidean distance (as defined in equation (2.3)).

4.3.1 A Complementary Matching Rule

The Hamming distance measures the dissimilarity between two feature vectors in nominal shape
space. The Hamming distance between two feature vectors, a and b, counts the number of po-
sitions (features) which are different, as defined in equation (2.10). Therefore, a shape space
alphabet of {0, 1}, has feature vectors in binary space and the Hamming distance between these
binary vectors counts the number of exclusive-or bits between the corresponding positions (de-
fined as 6 (a,b) in equation (2.11)). The binary immune system was introduced by Farmer er
al. [49]. A pattern has a complementary match with another pattern if the calculated Hamming

distance is greater or equal to an affinity threshold, r, i.e.
c(a,b)>r (4.1)

Thus, the affinity threshold, r, indicates the least number of differing positions for a pattern to
match another pattern under the Hamming distance based matching rule. The reader is referred

to [93] for an overview of Hamming distance based matching rules.

72



4"’_
o

W UNIVERSITEIT VAN PRETORIA
Q. UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

-

ALC HDYKRFAORFARASETO
Antigen RYADRTAORFARAIFFDEE

7/ contiguous matches

Figure 4.2 r-contiguous matching rule

4.3.2 The r-contiguous Matching Rule

The r-contiguous matching rule was proposed by Percus ef al. [146]. Figure 4.2 illustrates the
r-contiguous matching rule between two patterns, a and b. The r-contiguous matching rule is a
partial matching rule. This means that a pattern matches another pattern if there are r-contiguous
or more matches in the corresponding positions. r is the degree of affinity for a pattern to match
another pattern. In figure 4.2 there are seven contiguous matches between the two patterns. Thus,
if r = 4, the two patterns match each other in figure 4.2, since 7 > r. If r > 7, there is no match
between the patterns in the figure. A higher value of r indicates a stronger affinity between two
patterns. As illustrated in figure 4.2, the r-contiguous matching rule can be seen as a window of
width r, sliding from the left to the right over two patterns, searching for an exact match in the

window. The r-contiguous matching rule is applied in [53, 183].

4.3.3 The r-chunks Matching Rule

The r-chunks matching rule is a variation of the above discussed r-contiguous matching rule, in-
troduced by Balthrop et al. [11]. This matching rule is also known as the r-contiguous templates
matching rule. The difference between r-chunks and the r-contiguous matching rule is that r-
chunks generates template windows of size r from pattern a. Each template window consists of
r-contiguous positions in a. A pattern, b, is matched by a if one of the template windows has an
exact match by r-contiguous positions in b. The number of template windows of size r, gener-
ated from a pattern of size N is equal to (N —r+ 1) [11]. For example, a pattern, a = (100011),
in binary space of length 6, can be partitioned into 4 template windows of size 3. The template
windows of a are (100), (000), (001) and (011) (r = 3).

Compared to the r-contiguous matching rule, instead of sliding a window of size r over two
patterns to find an exact match within the window, r-chunks slides pattern b as a window over

pattern a to align/match r-contiguous positions between the patterns. Thus, the r-chunks match-
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ing rule generates detectors of length N, consisting of a template window of size r, starting at
position 7 in the detector. An r-chunk detector, x, generated from template window (001) in the
above example with i = 3 gives x = (##001#) where # is a ‘no care’ symbol. The detector x

matches pattern a. If i = 1, then x = (001###) and does not match pattern a.

All of the above matching rules have mostly been used by negative selection based AIS models.
ALCs trained with negative selection (discussed in section 4.4) are self-tolerant. When the set
of self patterns, Y, does not contain all patterns of self during the censoring process, the set of
self-tolerant ALCs, B, represents a generalised structure which results in some patterns being
unmatched by the self-tolerant ALCs [11]. These unmatched patterns are known as holes and
occur when the above matching rules are applied [42]. Balthrop et al. identified and defined two

types of holes, namely length-limited holes and crossover holes [11].

Length-limited holes: Length-limited holes occur when applying the r-contiguous matching
rule [11]. A length-limited hole, x*, is a pattern with at least one window of size r that does
not exist among the distinct template windows in a set of patterns, Y, and for which a detector
cannot be generated [11]. Let Y = {(0010),(1000),(0100),(1100)}, N =4, r =3 and h =
(0101). There are two template windows for x*. These template windows are (010) and (101).
Therefore a detector starts with template window (010) and/or ends with template window (101).
A detector that starts with template window (010) matches patterns in Y and can therefore not be
generated. A detector that ends with template window (101) can either represent pattern (0101)

or pattern (1101), which both match patterns in Y. Therefore detector x* cannot be generated.

Crossover holes: Crossover holes occur when applying the r-chunks matching rule [11]. Two
template windows are adjacent if the last position of the first template window is the first position
of the second template window. A crossover hole, x*, is a pattern which is not part of a set, Y,
but the template windows of x* are adjacent to the distinct template windows of the patterns in Y
[11]. Let WX = (x,Xi41,...,Xi+r—1) be the template window of pattern X starting at position i in
x. A crossover hole occurs between template window Wi"* of pattern x* and a template window
W7, of pattern a eYiij =a;,Vj:i+1<j<i+r—1[11]
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4.4 Negative Selection Models

One of the main features in the classical view of the natural immune system is the mature T-Cells,
which are self-tolerant, i.e. mature T-Cells have the ability to distinguish between self cells and
foreign/non-self cells. The original negative selection algorithm proposed by Forrest et al. [53]

is inspired by the maturation process of immature T-Cells in the thymus.

In the original model of Forrest et al. [53], all patterns and ALCs are represented as strings
with a fixed length, N. The attributes of each string can have any value which is selected from
a pre-defined alphabet with size k. For example, each attribute of a binary string can only have
a value of 0 or 1 since the valid values in the binary alphabet is defined as {0,1}, therefore
K = 2. A string generated from an alphabet defined as { G,A,T,C} can only have combinations of
{G,A,T,C} attribute-values. The number of strings with length N that can be generated from an
alphabet with size K is N¥.

A set of trained ALCs in the model represents the mature T-Cells in the natural immune sys-
tem. A training set of self patterns is used to train the set of ALCs with the negative selection

technique. Algorithm 4.2 lists the pseudo code for negative selection, explained in detail below.

For each randomly generated candidate ALC of length N, the affinity between the ALC and
each self pattern (also of length N) in the training set is calculated. The affinity between an ALC
and a pattern is measured with the r-contiguous matching rule. If the affinity between any self
pattern and an ALC is higher than the affinity threshold, r, the candidate ALC is discarded and a
new candidate ALC is randomly generated. The new ALC also needs to be measured against the
training set of self patterns. If the affinity between all the self patterns and a candidate ALC is
lower than the affinity threshold, r, the ALC is added to the self-tolerant set of ALCs. Thus, the
set of ALCs is negatively selected, which means that only those ALCs with a calculated affinity
less than the affinity threshold, r, will be included in the set of self-tolerant ALCs. This phase is

known as censoring.
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Algorithm 4.2: Training ALCs with negative selection

Set counter b as the number of self-tolerant ALCs to train;
Create empty set of self-tolerant ALCs as B;
Determine the training set of self patterns as Y;
while size of B not equal to b do
Randomly generate a candidate ALC, x;
matched=false;
for each self patterns € Y do
if affinity between x and s is higher than affinity threshold r then
matched=true;
break;
end
end
if not matched then
Add x to set B;
end

end

The trained, self-tolerant set of ALCs is then presented with a test set of self and non-self pat-
terns for classification. This phase is known as monitoring. The affinity between each training
pattern and the set of self-tolerant ALCs is calculated. If the calculated affinity is below the
affinity threshold, r, the pattern is classified as a self pattern; otherwise the pattern is classified
as a non-self pattern. The training set is monitored by continually testing the ALC set against the
training set for changes. A number of drawbacks of the proposed negative selection model are
that,

the training set needs to have a good representation of self patterns,

an increase in the number of self patterns exponentially increases the number of randomly
generated candidate ALCs [111],

there is an exhaustive replacement of an ALC during the censoring of the training set until

the randomly generated ALC is self-tolerant, and

there is no validation/removal of redundant ALCs.
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The above listed drawbacks were also highlighted by Ayara et al. [7]. Alternative censoring
approaches to generate self-tolerant ALCs have been proposed to address some of the above

drawbacks of the original model. These alternative models are briefly discussed next.

Linear model: The first of these alternative censoring models is the linear model proposed by
D’haeseleer et al. [42]. The linear model runs in linear time with respect to the size of the self
set, given that the string length, N, and the matching affinity threshold, r, are fixed. Binary strings
are generated from a binary alphabet {0,1}. The model generates different matching templates
to determine the number of unmatched strings in the self set. A template is a string of length N,
where r contiguous positions of the template are set to a value. The remaining N — r positions
are set to ‘no care’ symbols. A set of self-tolerant ALCs are then randomly selected from the

unmatched templates.

Greedy model: D’haeseleer et al. also proposed the greedy model [42]. The difference be-
tween the greedy model and the previously discussed linear model is that ALCs in the self-
tolerant set, B are not randomly selected from the set of unmatched template strings. The se-
lected set of self-tolerant ALCs have minimal overlap among each other and maximum coverage

of the non-self space.

Binary tree template and the discriminative power: The templates which are used in the
greedy model to generate self-tolerant ALCs can be assembled to form different binary trees.
This results in the formation of general subtrees (templates) which reduces the number of self-
tolerant ALCs to cover most of the patterns in non-self space. The formation of binary trees by
these templates was observed and proposed by Wierchon, i.e. binary tree templates [182]. As
discussed in section 4.3, compared to the hamming distance, the r-contiguous matching rule is
symmetric and reflexive. Thus, Wierchon investigated the discriminative power of a candidate
ALC containing a template which is matched by the r-contiguous matching rule [183]. The
discriminative power of a candidate ALC is defined as the number of unique strings matched by

the ALC using the r-contiguous matching rule [183].

NSMutation: This model differs in the censoring process of candidate ALCs by not imme-
diately discarding a candidate ALC when matched with a certain affinity to a self pattern. In-
stead, guided mutation is performed on the self-matching candidate ALC pattern, away from the

matched self pattern. This model was proposed by De Castro and Timmis [34] and is inspired by
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the process of affinity maturation in the natural immune system. Since the r-contiguous match-
ing rule is applied, the candidate ALC pattern is only mutated in the r matching positions. The
probability of mutation is proportional to the affinity with the self pattern. Thus a higher affinity
between the self-matching ALC and the self pattern results in a higher rate of mutation and vice

versa.

Mutation is performed on a self-matching candidate ALC pattern for only a number of times,
the lifetime of a candidate ALC. The mutated candidate ALC is discarded if the specified life-
time is reached with no improvement. If a mutated candidate ALC does not match any self
pattern, the mutated ALC is then added to the set of self-tolerant ALCs.

Evolutionary approaches: A different approach is proposed by Kim and Bentley [110] where
candidate ALCs are not randomly generated and tested with negative selection, but an evolution-
ary process is used to evolve ALCs towards non-self and to maintain diversity and generality
among the ALCs. The model by Potter and De Jong [150] applies a co-evolutionary genetic
algorithm to evolve ALCs towards the selected class of non-self patterns in the training set and
further away from the selected class of self patterns. Once the fitness of the ALC set evolves
to a point where all the non-self patterns and none of the self patterns are detected, the ALCs
represent a description of the concept. If the training set of self and non-self patterns is noisy, the
ALC set will be evolved until most of the non-self patterns are detected and as few as possible
self patterns are detected. The evolved ALCs can discriminate between examples and counter-
examples of a given concept. Each class of patterns in the training set is selected in turn as self

and all other classes as non-self to evolve the different concepts in the training set.

Gonzalez et al. [60] present a negative selection method which is able to train ALCs with
continuously-valued self patterns. The ALCs are evolved away from the training set of self
patterns and are well separated from one another to maximise the coverage of non-self. This
results in the least possible overlap among the evolved set of ALCs. A similar approach is pre-
sented in the GAIS model of Graaff and Engelbrecht [63]. All patterns are represented as binary
strings and the Hamming distance is used as affinity measure. A genetic algorithm is used to
evolve ALCs away from the training set of self patterns towards a maximum non-self space cov-
erage and a minimum overlap among existing ALCs in the set. The difference to the model of
Gonzalez et al. [60] and the original negative selection model of Forrest et al. [53] is that each
ALC in the set has a local affinity threshold. The ALCs are trained with an adapted negative
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selection method as illustrated in figure 4.3.

known
-

self

false
positives

unknown negatives
self

Figure 4.3 Adapted Negative Selection

With the adapted negative selection method the affinity threshold, r, of an ALC is determined
by the distance to the closest self pattern from the ALC. The affinity threshold, r, is used to
determine a match with a non-self pattern. Thus, if the measured affinity between a pattern and
an ALC is less than the ALC’s affinity threshold, r, the pattern is classified as a non-self pattern.
The adaptive negative selection method is inspired by the definition of epitope-volumes in shape
space (as discussed in section 4.2). Figure 4.3 also illustrates the drawback of false positives and
false negatives when the ALCs are trained with the adapted negative selection method. These
drawbacks are due to an incomplete static self set. The known self is the incomplete static self
set that is used to train the ALCs and the unknown self is the self patterns that are not known
during training. The unknown self can also represent self patterns which are outliers to the set of

known self patterns.

Surely all evolved ALCs will cover non-self space, but not all ALCs will detect non-self pat-
terns. Therefore, Graaff and Engelbrecht [62, 63] proposed a transition function, the life counter
function, to determine an ALC’s status. ALCs with annihilated status are removed in an attempt

to have only mature and memory ALCs with optimum classification of non-self patterns.

The V-detector model proposed by Ji and Dasgupta [99] as an alternative to the model of Gon-

zalez et al. [60] for continuously valued patterns in Euclidean space is similar to the model of
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Graaff and Engelbrecht [61, 63], in that each generated ALC has a local affinity threshold which
is determined by calculating the distance between the generated ALC and the closest self pattern.
The V-detector model generates ALCs of variable length in continuous space compared to the

fixed length ALCs in Hamming space of the proposed model by Graaff and Engelbrecht [63].

Smith et al. derived analogies between the memory capabilities of the immune system and the
method of sparse distributed memory (SDM) [161]. SDM was proposed by Kanerva as a method
to store a large number of large binary patterns using a small number of physical data addresses
[105]. These physical addresses are known as physical or hard locations and binary patterns are
stored in these locations in such a manner that any data can be accurately recalled. An SDM is
composed of a set of these hard locations. Each location has a recognition radius. A location

recognises data if the distance to the data is within the recognition radius of the location.

In addition, each location also has a set of counters, each representing a bit in the location.
The counters are used to determine whether a recalled bit from the memory should be set to ‘1’
or ‘0’. A data pattern is distributed to all locations which recognise it. If a location recognises a
data pattern, the counter of each bit is incremented by ‘1’ if the data pattern’s corresponding bit
is ‘1’ and decremented by ‘1’ if the data pattern’s corresponding bit is ‘0’. When a pattern needs
to be recalled from the memory, the counters of locations recognising the pattern are summed.
The corresponding bit of the recalled pattern is set to ‘1’ if the summed counters of that bit is

greater than or equal to zero; otherwise the bit is set to ‘0’.

Inspired by the analogies between SDM and the immune system, Hart et al. proposed a co-
evolutionary SDM (COSDM) model to cluster non-stationary data [77]. In COSDM an antigen
represents the data pattern that needs to be stored and an ALC represents a hard location. The
recognition radius of an ALC determines the size of a cluster. COSDM consists of a number of
ALC populations. A co-evolutionary genetic algorithm was used to find the set of ALCs as well
as the size of their individual recognition radii, which best clustered the current available data.
Some of the drawbacks of COSDM were that the algorithm was relatively slow and had difficulty

to set the correct recognition radius for each ALC [78].
Hart et al. proposed the self-organising SDM (SOSDM) to address the drawbacks of COSDM

[76, 78]. Hart et al. highlighted the unsuitability of Kanerva’s SDM to cluster data in [77] and
based the SOSDM on an alternative SDM model as proposed by Hely ez al. [82]. In SOSDM, an
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ALC binds to an antigen pattern if the binding strength between the ALC and the antigen pattern
is greater than a specified threshold. The binding strength is proportional to the calculated affin-
ity between an ALC and an antigen pattern. The affinity is measured as the Hamming distance
between an ALC and an antigen pattern. The binding strength of each ALC is calculated as the
ratio of the calculated affinity to the maximum affinity in the set of ALCs. Therefore, the bind-
ing strength of an ALC with maximum affinity to an antigen pattern is one. Each ALC’s set of
counters is updated with the binding strength to an antigen pattern, where the binding strength is

proportional to the calculated affinity.

In addition, each ALC also measures an accumulated error between an ALC (hard location)
and all antigens presented to the ALC. The accumulated error of an ALC is updated with each
antigen pattern that binds to the ALC. After all antigen patterns have been presented to the set
of ALCs, the average error of each ALC is used to self organise the set of ALCs. This is done
in such a manner that ALCs move towards positions in the search space, such that the average
error is minimised. An ALC’s associated set of counters decays over time. The results obtained
by SOSDM on clustering stationary data are scalable with the size of the data set and with the
length of the antigen pattern [78]. Clustering of non-stationary data delivered promising results,
but highlighted a decrease in performance with more dynamic data [78]. SOSDM is an adaptive,
scalable and self-organising model.

4.5 Clonal Selection Models

The natural immune system is able to adapt to unseen antigens and capable of keeping a memory
of frequently encountered antigens. This is achieved by a process of affinity maturation which
consists of clonal selection with somatic hyper mutation (as discussed in section 3.5). The former
is the process of selecting the most stimulated (highest affinity) lymphocytes for clonal prolifer-
ation, and the latter the mutation process on these clones. The increase in size of some clones
results in a decrease in size of other previously cloned lymphocytes, since the natural immune
system regulates the total number of lymphocytes in the body. Clones are mutated in an attempt

to have a higher affinity with the encountered antigen.
Frequently selected lymphocytes (through clonal selection) transition into a state of memory

and these memory lymphocytes are used in a faster secondary response to frequently encoun-

tered antigens (as discussed in section 3.5). Those lymphocytes which are seldom selected (or

81



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

"IV_

&

“ UNIVERSITEIT VAN PRETORIA
Qe

never stimulated) transition into a state of annihilation and is eventually replaced by the natural
immune system with newly generated lymphocytes. Through the process of affinity maturation
the natural immune system is able to learn new antigens, keep a memory of frequently encoun-
tered antigens, and integrate newly generated lymphocytes. The learning capability of the natural

immune system inspired the modelling of clonal selection with somatic hyper mutation in AISs.

Clonal selection in AISs is the selection of a set of ALCs with the highest calculated affinity
with an antigen pattern. The selected ALCs are then cloned and mutated in an attempt to have a
higher binding affinity with the presented antigen pattern. The mutated clones compete with the
existing set of ALCs, based on the calculated affinity between the mutated clones and the antigen
pattern, for survival to be exposed to the next antigen pattern. This section discusses some of the

AIS models inspired by the clonal selection theory.

CLONALG: The CLONALG model is a general implementation of the clonal selection the-
ory and was introduced by De Castro and Von Zuben as an algorithm that can perform machine-
learning and pattern recognition tasks [35, 38]. ALCs and antigen patterns are presented as
binary strings and therefore the affinity between an ALC and an antigen pattern is measured with

the Hamming distance. A lower Hamming distance implies a higher affinity.

CLONALG evolves a population of randomly initialised ALCs over a number of generations
to have a higher affinity with the presented antigen patterns. The population of ALCs is parti-
tioned into a subset of memory ALCs and a remaining subset of ALCs (non-memory ALCs).
CLONALG assumes that there is an ALC in the memory subset for each antigen pattern that

needs to be recognised.

In a generation, each of the antigen patterns is presented to the population of ALCs. A num-
ber of highly stimulated ALCs (those with highest affinity with the presented antigen) are then
selected for cloning. The number of clones generated for an ALC is directly proportional to the

calculated affinity and is calculated as [38]

N (b;) = round <® X.|$|) (4.2)

l

where O is a multiplying factor, round is a function that rounds a floating-point value to the clos-
est integer, and i is the position of the ALC in the sorted set of highly stimulated ALCs (sorted
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in ascending order of affinity). Each of the clones is then mutated at a rate which is inversely
proportional to the affinity. This means that clones from highly stimulated ALCs are mutated
less than clones from less stimulated ALCs. The mutated clone with the highest affinity with the
presented antigen replaces the ALC in the memory subset of the population if its corresponding
memory ALC has a lower measured affinity. A percentage of the ALC population with the lowest
affinities is replaced by randomly generated ALCs.

A modified version of CLONALG has been applied to multi-modal function optimisation [35].
In the optimisation model the entire population of ALCs is seen as the memory set (no subset of

memory ALCs). All the ALCs are cloned with equal size, changing equation (4.2) to [38]
N (b;) = round (® x |B|) (4.3)

The affinity of an ALC is calculated as the objective function that needs to be optimised, since
there are no antigen patterns to present to the population. The ALCs with the highest affin-
ity is selected as the population for the next generation. The population of ALCs for the next
generation is selected from the population of the previous generation and the mutated clones of
ALCs.

DynamiCS: In some cases the problem that needs to be optimised consists of self patterns that
change through time. To address these types of problems, the dynamic clonal selection algo-
rithm (DCS) was introduced by Kim and Bentley [114]. The dynamic clonal selection algorithm
is based on the AIS proposed by Hofmeyr [85]. The basic concept in [85] is to have three differ-
ent populations of ALCs, categorised into immature, mature and memory ALC populations.

Kim and Bentley explored the effect of three parameters on the adaptability of the model to
changing self [114]. These parameters were the tolerisation period, the activation threshold and
the life span. The tolerisation period is a threshold on the number of generations during which
ALCs can become self-tolerant. The activation threshold is used as a measure to determine if
a mature ALC met the minimum number of antigen matches to be able to become a memory
ALC. The life span parameter indicates the maximum number of generations that a mature ALC

is allowed to be in the system.

If the mature ALC’s life span meets the pre-determined life span parameter value, the mature

ALC is deleted from the system. Experimental results with different parameter settings indicated
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that an increase in the life span with a decrease in the activation threshold resulted in the model
to have an increase in detecting true non-self patterns. An increase in the tolerisation period
resulted in less self patterns being detected falsely as non-self patterns, only if the self patterns

were stable.

With a changing self the increase in tolerisation period had no remarkable influence in the false
detection of self patterns as non-self patterns. Although the DCS could incrementally learn the
structure of self and non-self patterns, it lacked the ability to learn any changes in unseen self pat-
terns. The memory ALCs in the DCS algorithm had infinite lifespan. This feature was omitted in
the extended DCS by removing memory ALCs which were not self-tolerant to newly introduced
self patterns [112].

DCS was further extended by introducing hyper mutation on the deleted memory ALCs [113].
The deleted memory ALCs were mutated to seed the immature detector population, i.e. deleted
memory ALCs form part of a gene library. Since these deleted memory ALCs contain informa-
tion (which was responsible for giving them memory status), applying mutation on these ALCs

will retain and fine tune the system, i.e. reinforcing the algorithm with previously trained ALCs.

MARIA: A different model, though similar to the above DCS model with regards to the three
populations used, is the MARIA model proposed by Knight and Timmis [116]. The model con-
sists of multiple layers and addresses some of the shortfalls of the AINE model [169] (discussed
in section 4.6). The defined layers interact to adapt and learn the structure of the presented anti-
gen patterns. The model consists of three layers which fulfills different roles in the adaptation

process.

All patterns in the training set are seen as antigens. The affinity between an antigen pattern,
a;, and a cell within a layer is measured using the Euclidean distance, 6. The different lay-
ers in sequential order are: the free antibody layer (), the B-Cell layer (B) and the memory
layer (). Each layer has an affinity threshold and a death threshold. The affinity threshold
determines whether an antigen binds to a cell within a specific layer. The death threshold is the
maximum elapsed time for a cell not to be stimulated. This means that if the length of time since
a cell was last stimulated exceeds the death threshold of the specific layer, the cell dies and is
removed from the population in the specific layer. The B-Cell layer has an additional stimulation

threshold which determines whether a cell in the specific layer is cloned.
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Each antigen pattern is first presented to a random selection of cells in F. The number of free
antibodies that bind to the antigen pattern is calculated as free_binding. The antigen, aj, is then
randomly presented to the B-Cells in B until one of the B-Cells, b;, binds to the antigen pattern.
b; is cloned as b; if the calculated free_binding in F exceeds the stimulation threshold. The
clone b; is then mutated as b;- and added to B Mutated clones of b; are then added to F. The
number of mutated clones (or rather free antibodies) produced by a stimulated B-Cell is given in
[116] as

N (aj,b;) = (Gmax — 0 (aj,b;)) x k (4.4)

where 1 is the number of antibodies that are added to the free-antibody layer, 6, 1s the maxi-
mum possible Euclidean distance between a B-Cell and an antigen pattern in the data space (i.e.
lowest possible affinity), and & is some constant.

If none of the B-Cells in B bind to the antigen pattern, a new B-Cell is created with the same
presentation as the unbinded antigen. The new B-Cell is added to B resulting in a more diverse
coverage of antigen data. The new B-Cell also produces mutated clones as free antibodies, which

are added to the free-antibody layer.

The final layer, M, only consists of memory cells and only responds to new memory cells. The
generated clone, b}, in B is presented as a new memory cell to M. The memory cell with the
lowest affinity to b is selected as my;,,. m,,;, is replaced by b; if the affinity between b; and
m,,;;, is lower than the affinity threshold of the specific layer, and the affinity of b} is less than the
affinity of m,,;, with the antigen that was responsible for the creation of the new memory cell. If
the affinity between b} and my,;, is higher than the affinity threshold, b} is added to the memory
layer. The multi-layered model, compared to the SSAIS model [140] (discussed in section 4.6),

obtained better compression on data while forming stable clusters.

AIRS: A supervised learning AIS algorithm, the Artificial Immune Recognition System (AIRS)
[178, 179] borrowed the concept of an artificial recognition ball (ARB) population within a re-
source limited environment as proposed by the network based resource limited AIS (AINE)
[169]. Contrary to AINE and other unsupervised network based AIS algorithms (as discussed in
section 4.6), AIRS does not model any network interactions between ARBs. Furthermore, most
unsupervised network based AIS models are applied to the problem of data clustering whereas
AIRS is an AIS classifier.
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The ARBs in AIRS also compete for resources to survive. The ARBs undergo a clonal ex-
pansion and maturation process to evolve a set of memory ARBs which represents the different
classes of the training patterns (antigens). The evolved set of memory ARBs is used to classify
unseen patterns into multiple classes. The definition of an ARB and the concept of a resource

limited environment are discussed in more detail in the AINE paragraph in the next section.

4.6 Idiotypic Network Models

A number of different theoretical network based models have been proposed by immunologists
to formulate and capture the characteristics and interactions of the natural immune network sys-
tem. One of these theoretical network based models was proposed by Farmer et al. [49]. Farmer
et al. exploited the fundamental concepts of the network theory as proposed by Jerne [97] and
proposed a simple model to simulate the dynamics of the natural immune network system and
its memory capability [49]. Perelson also proposed a model to simulate the dynamics and pro-
duction of a network based immune network system [148]. The theoretical model proposed by
Farmer et al. is discussed next, since the earliest work in artificial immune systems are based on

this model. The rest of the section discusses different network theory inspired AIS models.

The theory of clonal selection as part of the process of affinity maturation assumes that all im-
mune responses are activated by encountered antigens. As explained in section 3.5, antigens
select those lymphocytes with which the antigens have the highest binding affinity, resulting in
clonal proliferation and somatic hyper mutation of the selected lymphocytes. As a result of so-
matic hyper mutation on the clones, the variable regions of the clones can become antigenic and
invoke an immune response from neighbouring lymphocytes (as discussed in section 3.6). The
recognition of idiotopes results in interconnected neighbouring lymphocytes, forming an idio-

typic network.

Thus, lymphocytes in a network co-stimulate and/or co-suppress each other in reaction to an
antigen. Therefore a lymphocyte is not only stimulated by an antigen, but also by neighbouring
lymphocytes (as discussed in section 3.6). This results in the annihilation of some lymphocytes
and the introduction of mutated lymphocyte clones into the population of lymphocytes. Highly
stimulated lymphocytes remain part of the population whereas less stimulated lymphocytes are

replaced/removed from the population. The population of lymphocytes is dynamic in such a way
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that the concentration of antibodies/lymphocytes at different points in time differ. In order to
formulate the change in concentration of the population, based on the stimulation of the lympho-
cytes, Farmer et al. [49] identified three factors which influence the stimulation of a lymphocyte.

These are:
e the binding affinity with the encountered antigen,
e the stimulation received from neighbouring lymphocytes, and
e the suppression received from neighbouring lymphocytes.

The model of Farmer et al. defines a lymphocyte, b, as two binary strings which represent the
lymphocyte’s epitope, e, and paratope, p. The change in concentration, v, of a lymphocyte, b;,

relative to time, ¢, is simulated with the following differential equation as proposed in [49]:

by [ 3] El
yr A c Zlmj’i\/ (b[)V (bj) — ki .lemi,j\/ (bi)V (bj) + .lemN'V (bi)V (aj)] — kv (b[)
j= j= j=
(4.5)

where |B| is the number of lymphocytes and | 4| the number of antigens. m; ; denotes the inter-

action strength between epitope e; of lymphocyte b; and paratope p; of lymphocyte b;. The in-
teraction strength (affinity) between two lymphocytes is calculated as the complementary match
between the respective paratope and epitope strings. Two lymphocytes interact (bind) if their

calculated interaction strength, m; ;, is above a certain threshold.

In the above differential equation, the first term signifies the stimulation of paratope p; by epitope
e;; the second term represents the suppression of lymphocyte b; whose epitope e; is recognised
by paratope p;; and the third term signifies the recognition of antigen a;. k is a constant which
regulates the inequality between stimulation and suppression and k; is the rate of annihilation.
The constant rate ¢ depends on the rate of lymphocyte/antibody production which is stimulated
by an interaction. Therefore, ¢ also depends on the number of interactions per time unit. Cloning
and mutation of lymphocytes are proportional to the stimulation level. A higher stimulated lym-

phocyte produces more clones. This results in a diverse set of lymphocytes.

Hunt and Cooke developed a network based AIS model for classification of DNA strings into
promoter or non-promoter classes [30, 93]. Each ALC in the model consists of a binary string
which represents the ALC’s paratope, a library of genes from which antibodies are generated, the

DNA sequence and the level of stimulation. The antibodies are used for classification of unseen
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DNA sequences. The affinity between two ALCs (or between an ALC and antigen) is calculated
as the complementary match between the respective paratope and epitope strings. The model
makes use of an affinity threshold to determine whether ALCs are linked to form a network or
whether an ALC binds to an antigen. If the calculated affinity is greater than the affinity thresh-
old, binding/linking occurs.

The population of ALCs is initialised by a cross-section of randomly selected DNA sequences
from the training set. The remainder of the training set is used as antigen patterns. Antigen
patterns are randomly selected and presented to a randomly selected ALC. The antigen is then
presented to a percentage of the ALC’s linked neighbours to determine whether any of the linked
ALCs can bind to the antigen. If an ALC binds to the antigen, the ALC’s stimulation level is
calculated. The stimulation level of an ALC determines whether the ALC becomes active. If
none of the linked ALCs are activated, an ALC is generated by using the presented antigen as
template and added to the population of ALCs. Activated ALCs are cloned and mutated. Cloned
ALC:s are integrated into the network at the ALCs with which the clones have the highest affinity.

The stimulation level of an ALC, b, is based on the differential equation as proposed by Farmer
et al. [49] (as defined in equation (4.5)). Cooke and Hunt adapted equation (4.5) such that

13| |3 14
O(b)=c|Y m(be;)—ki Y m(b,p;)+ky Y m(b,a;)|—ks (4.6)
j=1 j=1 j=1

where |B| is the number of lymphocytes, | 4| is the number of antigens, and m denotes the affinity
between ALC b and the paratope p (or epitope e) of linked ALC b;.

The DNA classification model of Hunt and Cooke [30, 93] was improved and applied to case
base reasoning [91, 92]. Each ALC in the model represents a case. ALCs are linked as a net-
work if they represent similar cases, which could result in generalised cases. These generalised
cases represented trends in data. The model was also applied to data mining [89], but there were

however a few drawbacks which are discussed next.

The increasing size of the network made the model less scalable and a randomly initialised
network of ALCs increased the time to built generalised cases. These drawbacks were addressed
in [89] and the improved model was applied to fraud detection [89, 90, 141]. The proposed fraud
detection system in [90] was called JISYS and implemented different matching techniques com-
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pared to the original model in [89]. Although JISYS delivered promising results, the model was

limited to a specific domain of mortgage fraud detection.

Timmis developed a basic network based AIS model which was domain-independent [165]. The
basic AIS model was based on the work of Hunt and Cooke [93]. The model performed cloning
and mutation operations on a set of linked ALCs. The affinity between an ALC and an antigen
pattern (or another ALC) is measured using the Euclidean distance. Two ALCs are linked if the
calculated affinity between them is below the network affinity threshold (NAT). The model was
able to produce three distinct clusters when applied to Fisher’s Iris data set [51]. Timmis also

developed a tool named aiVis to visualise the formed clusters [166].

A few drawbacks to the basic AIS model were highlighted in [169]. A drawback is that there is
an exponential growth in the size of the network due to the incapability of the proposed mech-
anism to control the size of the ALC population. The exponential growth of the network also
resulted in an unscalable model, increasing the computational complexity with each iteration.
Furthermore, the formed networks are difficult to interpret. The model is also very sensitive to
the NAT value. The authors proposed the Resource Limited AIS as an improvement to the basic
AIS model, discussed below [169].

Another approach to enhance the model of Timmis was proposed by Wierchon and Kuzelewska
[184]. The model of Timmis [165] was adapted in such a way that the set of ALCs is randomly
initialised. Furthermore, the network affinity threshold in [184] is calculated as the average dis-
tance between the | 4| x k lowest distances in the antigen set, where | 4| is the size of the antigen
set and k some constant. The adapted model in [184] also improves on the model in [165] in that
the maximum network size is limited to the number of training patterns in the training set and

stable clusters are formed with a minimal number of control parameters.

Resource Limited AIS (AINE): AINE presented a new concept of artificial recognition balls
(ARBs), bounded by a resource limited environment. A resource limited environment is defined
as the maximum number of available B-Cells that is shared among ARBs in a population. Thus,
each ARB allocates a number of resources based on the ARB’s overall stimulation level. In sum-
mary, AINE consists of a population of ARBs, links between the ARBs, a set of antigen training
patterns (of which a cross section is used to initialise the ARBs) and some clonal operations for

learning. An ARB represents a region of antigen space that is covered by a certain type of B-Cell.
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ARBs which are close to each other (similar) in antigen space are connected with weighted edges
to form a number of individual network structures. The similarity (affinity) between ARBs and
between the ARBs and an antigen is measured using Euclidean distance. Two ARBs are con-
nected if the affinity between them is below the network affinity threshold (NAT). The NAT is

the average distance between all the antigen patterns in the training set, calculated as [168]

AV Y ol
NAT = c(a;,a; 4.7)
Al x(al-1) & &, 7

where ¢ is the Euclidean distance and k is a constant value such that 0 < k < 1. The value of
the NAT determines the linking between ARBs and therefore influences the number of formed
networks. Algorithm 4.3 lists the pseudo code for AINE.

For each iteration, all training patterns in set A4 are presented to the set of ARBs, B After
each iteration, each ARB, b, calculates its stimulation level, ¥, and allocates resources (B-Cells)
based on its stimulation level as defined in equation (4.12). The stimulation level, U, of an ARB,
b, is calculated as the summation of the antigen stimulation, ps, the network stimulation, ns, and

the network suppression, nn. The stimulation level of an ARB is defined as follows [169]

B%(b) = ps(b)+ns(b)+nn(b) (4.8)
|0t |

ps(b) = Zl—oci (4.9)
i=1
|An|

ns(b) = Y 1-1; (4.10)
j=1
|Ab|

nn(b) = —Y A; 4.11)
j=1

where |ap| is the normalised set of affinities between an ARB, b, and all antigen a € 4 for which
G (a;,b) < NAT. The antigen stimulation, ps, is thus the sum of all antigen affinities below the
NAT threshold and 0 < o; < 1; o; € 0. The network stimulation, ns, and the network suppres-
sion, nn, are the sum of affinities between an ARB and all the ARB’s connected neighbours,
as defined in equation (4.10) and equation (4.11) respectively. In equations (4.10) and (4.11),
|Ap| is the normalised set of affinities between an ARB, b, and all other ARBs in set B The ns

and nn terms are based on the summation of the distances to the |Ap| linked neighbours of an
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Algorithm 4.3: Artificial Inmune Network (AINE)

Normalise the training data;
Initialise the ARB population, B, using a randomly selected cross section of the
normalised training data;
Initialise the antigen set, 4, with the remaining normalised training data;
Set the maximum number of available resources, R;;qy;
for each ARB, b; € ‘B, at index position i in ‘B do
for each ARB, b; € B, at index position j in B do
Calculate the ARB affinity, 6 (b, b;);
if 5 (b;,b;) < NAT and i # j then
Add 6 (b;,b;) to the set of network stimulation levels, Ap,;
end
end
end
while not stopping condition do
for each antigen, a; € 4, at index position i in 4 do
for each ARB, b; € B, at index position j in B do
Calculate the antigen affinity, 6 (a;,b;);
if 6 (a;,b;) < NAT then
Add o (a;,b;) to the set of antigen stimulation levels, ot ;
end
end
end
Allocate resources (see algorithm 4.4) to the set of ARBs, ‘B;
Clone and mutate the remaining ARBs in B;
Integrate mutated clones into B;
end
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ARB, b. The network suppression, nn, is the dissimilarity between an ARB and neighbouring

ARBs in the network. Network suppression keeps the size of the ARB population under control.

Algorithm 4.4: Resource allocation in AINE

Set the number of allocated resources, Ry = 0;
for each ARB, b; € ‘B, at index position i in ‘B do
Allocate resources, R (b;);
Rt =Rr +R(b;);
end
Sort the set of ARBs, ‘B, in ascending order of R;
if R > R, then
2= Rr — Rpax;
for each ARB, b; € B, at index position i in B do

q=R(b;);
if g = 0 then
Remove b; from set B;
end
else
4q=49—z
if g <0 then
Remove b; from set B;
= —q;
end
else
R(b;) =g
break;
end
end
end

end

Algorithm 4.4 lists the pseudo code for resource allocation to the set of ARBs. The number

of resources allocated to an ARB is calculated as
R(b) = Ry x (ﬁ’(b)z) (4.12)

where ¥ is the normalised stimulation level and R;. some constant. Since the stimulation level of
the ARBs in B are normalised, some of the ARBs will have no resources allocated. Thus, after

the resource allocation, the weakest ARBs (zero resources) are removed from the population of
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ARBs. Each of the remaining ARBs in the population, 3B, is then cloned and mutated if the cal-
culated ¥ of the ARB is above a certain threshold. These mutated clones are then integrated into

the population by re-calculating the network links between the ARBs in B

The stopping condition can be based on whether the maximum size of B has been reached.
Since ARBs compete for resources (based on their stimulation level), an upper limit is set to the
number of resources (B-Cells) available in the model. The specified upper limit of resources has
an influence on the performance of AINE. If the number of available resources is too large, the
network will become too large and difficult to interpret (as in the case of the basic network based
AIS [165]). A too small value will result in small networks, which are a premature representa-
tion of the antigen patterns. The Self Stabilising AIS model was proposed by Neal [140, 142] to
address the drawback of setting the upper limit of available resources in AINE. The population
of ARBs is also overtaken by a few ARBs with high stimulation levels that match a small number
of antigen, resulting in the premature convergence of the population of ARBs [115]. The fuzzy
AINE proposed by Nasraoui et al. [139, 137] improves AINE on this drawback.

Self Stabilising AIS: AINE was improved and simplified by a model proposed by Neal, namely
the self stabilising AIS [140]. The main difference between these two models is that the SSAIS
has no shared/distributed pool with a fixed number of resources that ARBs must compete for. The
resource level of an ARB is increased if the ARB has the highest stimulation for an incoming
pattern. Each ARB calculates its resource level locally. After a data pattern has been presented
to all of the ARBs, the resource level of the most stimulated ARB is increased by addition of the
ARB’s stimulation level. Algorithm 4.5 lists the pseudo code for the self stabilising AIS. The
differences between algorithm 4.3 (AINE) and algorithm 4.5 (SSAIS) are discussed next.

SSAIS defines the stimulation level, ¥, of an ARB as [140]

O(b,a) = ps(b,a)+sns(b) (4.13)
ps(b,a) = 1—o(b,a) (4.14)
ns(b)
sns(b) = (4.15)
[Ap]

where ns is defined in equation (4.10) and 6 (b, a) is the Euclidean distance between an ARB, b,
and a training pattern, a, in normalised data space, i.e. 0 < o (b,a) < 1. The sns term is based

on the average of the summation of the distances to the |Ap| linked neighbours of an ARB, b.
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Algorithm 4.5: Self Stabilising AIS

Normalise the training data;
Initialise the ARB population, B, using a cross section of the normalised training data;
Initialise the antigen set, A4, with the remaining normalised training data;
for each antigen, a € 4 do
Present a to each b € B;
Calculate stimulation level, 8, for each ARB, b;
Select the ARB with the highest calculated stimulation level, 9, as h;
Increase the resource level of h;
for each ARB, b € B,b # h do
Deplete resources of b;
end
Remove ARBs with the number of allocated resources less than the mortality
threshold, Rx;
Generate 1 clones of h and mutate;
Integrate clones (mutated or not) into B;
end

The nn term defined in equation (4.11) is discarded to prevent premature convergence of ARBs

to dominating training patterns.

For each training pattern, a € A4, presented to the network of ARBs, ‘B, the resource level of
each ARB, b, that does not have the highest calculated ¥ is geometrically decayed by the follow-
ing function [140]

R(b,a,-) :RYXR(b,al;l) (4.16)

where R (b,a;) is the number of resources for an ARB, b, after being presented to i training
patterns. Ry is the decaying rate of resources for an ARB. All ARBs with a resource level less
than the fixed predefined mortality threshold, Ra, are culled from the network. Resources are
only allocated by the ARB, h, with the highest calculated stimulation level, 0. The number of
resources allocated to ARB h with the highest ¥ is calculated as [140]

R (h,ai) = RY X (R (h, a,-,l) + ﬂ(h,ai)) 4.17)

where O (h, a;) is the stimulation level of ARB h after being presented to i training patterns.
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The highest stimulated ARB, h, generates 1 clones. The number of clones generated is given as
[140]
n= R (h,a;)
RA x 10
where R is the mortality threshold. Thus, the number of clones generated by an ARB is propor-
tional to the resource level of the ARB. The generated clones are mutated with a fixed mutation
rate. If a clone is mutated, the clone is assigned R x 10 resources from the ARB’s resource

level. Clones (mutated or not) are integrated with the network of ARBs, B

The SSAIS resulted in a model that can adapt to continuously changing data sets and a gen-
uinely stable AIS. A drawback to SSAIS is that the final networks that are formed have poor data
compression and the SSAIS model has a time lag to adapt to the introduction of a new region of
data due to the lack of diversity of the network of ARBs. The stable memory artificial immune
network (SMAIN) was proposed by Neal as a simplification of the SSAIS model [142] and is
explained next.

Stable Memory Artificial Immune Network (SMAIN): The main difference between SSAIS
and SMAIN is the elimination of the mutation operator [142]. The ARB population, ‘B, is ini-
tialised with a cross section, By,;;, of the training data. Each ARB is initialised with R;,;; re-
sources. Furthermore, cloning in SMAIN is only performed on the ARB, h, with the closest
distance to an antigen pattern, a, if the measured distance is greater than the NAT threshold.
Whenever an antigen triggers the cloning of an ARB, the antigen is initialised as a cloned ARB.
Half of the parent ARB’s resources is then assigned to the cloned ARB and the clone is inte-
grated with the ARB population. There is no mutation operator on the clone. Algorithm 4.6
lists the pseudo code for SMAIN. The differences between algorithm 4.5 (SSAIS) and algorithm
4.6 (SMAIN) are further discussed. The stimulation level, ¥, in equation (4.13) is redefined in
SMAIN as [142]

%(b,a) = ps(b,a) + sns(b) (4.18)
where |
and
A
sns(b) =) A, (4.20)
j=1
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Algorithm 4.6: Stable Memory Artificial Immune Network

Initialise the ARB population, B, using a cross section of the training data;
Initialise the antigen set, 4, with the remaining training data;
for each antigen, a € 4 do
Present a to each b € B;
Calculate stimulation level, 9, for each ARB, b € B;
Increase the resource level of each b € B;
Select the ARB with the lowest measured distance as h;
if 6 (h,a) > NAT then
Initialise a as a clone of ALC h;
Add clone to B;
end
for each ARB, b € B do
Deplete resources of b;
Remove b from B if the number of allocated resources are less than the mortality
threshold, Rx;
end
end

where sns is still based on the neighbours of an ARB but simplified by removing the need to
normalise the distances to the neighbours as in equation (4.15). The resource level of an ARB is
calculated as [142]

R(baai> = R(baai—l) + (Rk X (Rmax _Rdecay)) X ﬁ(b,a» (421)

where Ry € (0,1) is a constant, R, is the maximum number of resources an ARB can allocate
and Rgecqy 18 the decayed resource level of an ARB as defined in equation (4.16). Similar to
SSAIS, all ARBs with a resource level less than the mortality threshold, Ry, are culled from
the network. SMAIN generates stable memory networks which represents structures inherent in

complex data sets.

Fuzzy Artificial Immune Network (Fuzzy AINE): Another enhancement to the AINE model
is the fuzzy AINE proposed by Nasraoui et al. [136, 139]. The fuzzy AINE was applied to the
clustering (profiling) of session patterns for a specific web site. ARBs in the fuzzy AINE are
referred to as fuzzy ARBs, since each training pattern is grouped with all fuzzy ARBs to a
certain degree of membership (similar to the Fuzzy C-means algorithm which was explained
in section 2.3.2). Compared to an ARB in AINE, a fuzzy ARB represents a single pattern as

96



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

"IV_

&

“ UNIVERSITEIT VAN PRETORIA
Qe

center to a set of member antigen patterns which is within the fuzzy ARB’s influence radius. The

membership function (or degree of membership) between fuzzy ARB b; and antigen pattern a;

is calculated as [136, 139]
B () (b,‘, a j)2 4.9

m;j = exp (—T)lz> (4.22)
where © is the distance between b; and a;. The radius of influence, ¢, is similar to the NAT
threshold in [168], but local to each fuzzy ARB. Thus, each fuzzy ARB has a different radius of
influence. The membership function decreases with an increase in distance between the fuzzy
ARB and the antigen pattern. This results in the gradual exclusion of distant antigen patterns
from the fuzzy ARB, resulting in a robust weight function which decreases the influence of
outliers. The radius of influence, ¢§, of each fuzzy ARB b; is updated after each iteration using
[139]
Zle m;jo (bi,aj)z —B(f)fﬁl mi (bi, by

Yy mij— B(1) L mix

where J = | 4|. The second term in both the numerator and denominator denote the suppression

q),.% ;= (4.23)

of similar fuzzy ARBs with overlapping radii of influence. Therefore the stimulation level of a
fuzzy ARB consists of the density of the antigen patterns surrounding the fuzzy ARB (as antigen
stimulation) and the density of neighbouring fuzzy ARBs (as penalty for suppression). The

stimulation level, 1, of b; is calculated as [139]

B (bi) = i (A, |A]) = B () 5 (B,]B]) (4.24)
where ;
si(X.J) = ﬂ (4.25)
i,J

s; (X,|X]) calculates the density of patterns within set X surrounding b;; s; calculates the antigen
stimulation for X = A4 and the suppression for X = B Algorithm 4.7 provides the pseudo code
for fuzzy AINE.
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Algorithm 4.7: Fuzzy Artificial Immune Network (Fuzzy AINE)

Normalise the training data;
Initialise the fuzzy ARB population, B, using a randomly selected cross section of the
normalised training data;
Initialise ¢ for each fuzzy ARB;
Initialise the antigen set, 4, with the remaining normalised training data;
Set the maximum number of available resources, Rj;qy;
while not stopping condition do
for each antigen, a; € 4, at index position jin A do
for each ARB, b; € ‘B, at index position i in ‘B do
Update membership function m;; of fuzzy ARB by;
end
end
for each ARB, b; € ‘B, at index position i in B do
Calculate the simulation level 9 (b;);
Update the radius influence ¢7 of fuzzy ARB by;
end
Allocate resources (see algorithm 4.4) to the set of fuzzy ARBs, B;
Clone and mutate remaining fuzzy ARBs in B;
Integrate mutated clones into B;

end

To avoid the premature convergence of the population of fuzzy ARBs, the number of resources
allocated to a fuzzy ARB is calculated as [136, 137]

R(b;) = Ry % (log [ﬂ’ (bi)D (4.26)

where ¥ is the normalised stimulation level of a fuzzy ARB and R; some constant. This mod-
ification to the number of resources allocated to a fuzzy ARB will limit the influence of those

fuzzy ARBs with high stimulation to slowly overtake the population.

A cloned fuzzy ARB also inherits the radius of influence ¢> value of the parent fuzzy ARB.

After the integration of the mutated clones, the fuzzy ARBs with the same B-Cell representation
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are merged into one fuzzy ARB. The merging of identical fuzzy ARBs limit the high rate of pop-
ulation growth. The merging of two fuzzy ARBs, b; and b}, is done through a crossover operator
on the fuzzy ARBs’ attributes, defined as [137, 139]

bk,n =avg (bi,nabj,n)

where by, is the value for attribute n of merged ARB, by, and avg is the average value between

the n-th attributes in b; and b; respectively.

In the context of data clustering, fuzzy AINE maintains a diverse set of fuzzy ARBs to represent
the different clusters within a data set, compared to a few good ARBs in AINE which dominates
the population of ARBs, and therefore the population prematurely converges. The fuzzy AINE
proved to be scalable and diverse in profiling web usage session patterns. The Euclidean distance
in AINE (affinity measurement) was replaced by the calculation of the cosine similarity between
two session patterns in fuzzy AINE [137, 139]. The cosine similarity between two vectors is

defined in equation (2.8).

A drawback to fuzzy AINE in the context of web usage profiling is the assumption that all web
usage sessions are available beforehand. This is a disadvantage in environments with limited
resources (like system memory), making the fuzzy AINE model less scalable. Another draw-
back, which is common to most clustering algorithms, is that any change in web usage sessions
results in the re-application of the model to cluster the data. Nasraoui et al. highlighted these
drawbacks in [134, 138] and improved the fuzzy AINE with the Dynamic Weighted B-Cell AIS

model which is able to cluster streaming non-stationary web usage sessions [134].

Dynamic Weighted B-Cell AIS: Nasraoui et al. proposed a scalable AIS model which can be
applied to the clustering of non-stationary data [134, 135, 138]. The model is similar to fuzzy
AINE in that each training pattern is grouped with all ARBs to a certain degree of membership.
An ARB in this model is known as a dynamic weighted B-Cell (DWB-cell). The membership
function of fuzzy AINE (as defined in equation (4.22)) is adapted in [135] to be more applicable
for non-stationary environments. The adapted membership function includes the time when an

antigen pattern was presented to the network of DWBs. The membership function for DWB, b;,
is calculated as [135]
o (bia;)’ L 427)
s eX —_— —_ .
mi;j p ) q)lz T
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where G is the distance between b; and the j-rh antigen pattern, a;. Thus the antigen index j
increases monotonically with time. T controls the rate at which previously presented antigens
contribute to the degree of membership as well as the relevance of the network. The above
membership function not only decreases with an increase in distance between a DWB-cell and
an antigen pattern as in fuzzy AINE, but also with the time since an antigen pattern has been
presented to the network of DWBs. Therefore the most recent antigen patterns presented to a

DWB-cell have a higher degree of membership compared to less current antigen patterns.

The DWB population, B, has a maximum of B,,,, DWB-cells and is initialised with the first
Bnax of incoming antigen training patterns. The radius of influence, ¢2, of each DWB-cell is ini-
tialised with ¢;,;;. The antigen stimulation level of a DWB-cell after J antigen patterns is given
as [135]

SiJ = Si (ﬂ,]) (4.28)

where s; (A4,J) is defined in equation (4.25) and the radius of influence, ¢?, is given as

2
Yi_1mijo (b;,a;)
2Y T mij

07 = (4.29)
In order to calculate a DWB-cell’s stimulation level and radius of influence after each antigen
pattern has been presented to the DWB-cell, the following derivatives from the above equations
are given in [135] as approximate incremental updates for the stimulation level and radius of

influence of b; respectively:
exp (—1) Mij—1 +mj

Sig = - (4.30)
iJ
where 2
02, = exp (_%)(l)iz,J—lMi,J*l+mi]6(bi’af) 4.31)
J = )
. 2 [exp (=) Miy—1 +myy)
and
J—1
j=1

Algorithm 4.8 lists the pseudo code for the dynamic weighted B-Cell model. The model also
proposed the incorporation of a dynamic stimulation/suppression factor into the stimulation level
of a DWB-cell to control the proliferation and redundancy of DWB-cells in the network. Thus,

old sub-nets die if not re-stimulated by current incoming antigen patterns. The total stimulation
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Algorithm 4.8: Dynamic Weighted B-Cell

Set the maximum size of the DWB population as B,,,y;

Initialise the DWB population, B, using the first B,,,, of incoming antigen training
patterns in set 4;

Initialise ¢? = ¢);;; for each DWB;

Compress the population of DWBS into K¢ompress Sub-nets using K-means clustering;

for each antigen, a; € 4, at index position jin A do
Present a; to the centroid ¢; of each sub-net C; and calculate the weight my; and

update qﬁ using equations (4.27) and (4.31) respectively;
Select the sub-net with the maximum my ; as the most activated subnet C,,;;
if Vb; € C,, the weight m;; < my,;, then
Create new DWB-cell x = a; and set the new cell’s (1)2 = Qinit;
Add new DWB-cell to the population;
end
else
for each DWB, b; € C,, do
if mj;j > Mypin then
Reset age; = 0 of DWB b;;
end
else
Increment age; = age; + 1 of DWB b;;
end
Calculate the stimulation level of b; using equation (4.34);
Update the radius of influence, ([)1.2, using equation (4.35);
end
end
Clone and mutate DWB-cells;
if | B| > Byx then
Sort population of DWBs in ascending order of their stimulation levels;
Remove top |B| — Byax DWB-cells from the sorted population;
end
Compress the population of DWBs every A antigens into Kcoppress Sub-nets using
K-means clustering with the previous centroids as initial centroids;
end
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of a DWB-cell consists of the antigen stimulation as well as the co-stimulation and suppression

from other DWB-cells in the network. The total stimulation of b; is given as [135]

Z|nqi|] Min Lﬂ] Min
O (b;) = s;s + o (age;) = 5— — B (age;)) = —5— (4.33)
iJ iJ
At N -1
where o (age;) = (1 + %f’) is the co-stimulation coefficient, B (age;) = <1 + %) is the

network suppression coefficient and age; records the age of b;.

Another drawback of existing immune network based learning models is that the number of
interactions between the B-Cells in the network and a specific antigen are immense. The model
of [135] clusters the DWB-cells into k¢ppmpress Sub-nets using K-means clustering (as discussed in
section 2.3.2) to decrease the number of interactions between an antigen pattern and the DWB-
cells in the network. The centroids of each of these formed clusters (or sub-nets) are used to
represent the sub-nets and interact with the presented antigen pattern. Therefore the network
of DWB-cells is compressed in different sub-nets and the total stimulation level and radius of
influence for each DWB-cell in a specific sub-net Cy, is calculated as [135]

Vbnze'ck i Vb,,%ck i

O (b;) = siy+0o(age;)) —=— —PBlage) —=— (4.34)
i i

where b; € Cj, and

D?,+a(age;) ¥ MinG (b;,b,)* —PB(age)) ¥ miuc (bi,b,)?

9

Vb, Vb,
02, = bnEC PG (4.35)

2 \M;j+a(age;)) Y. min—PB(age)) Y miy

Vb, eCy Vb,eC,
where
2 _ (AP , o2

Dij = exp(—_ |0, Miy-1+miyG (bi,ay) (4.36)
1

M;; = exp I M;j_1+mjy (4.37)

A DWB-cell is only cloned if it reached maturity and is activated by an antigen pattern. A
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DWB-cell is activated when m;; > m,;,, where my,;, is the minimum degree to become acti-
vated. Maturity of a DWB-cell is reached when the cell’s age age; is within a specified range,
Amin < age; < amqay. Cloning of a DWB-cell is proportional to the cell’s stimulation level. If
a DWB-cell’s age exceeds the maximum time threshold (age; > da;4x), cloning of the cell is
prevented, thus increasing the probability to clone newer DWB-cells. The number of clones

generated for an activated and mature DWB-cell, b;, is given as [135]

0 (b;)

W it amin < age; < amax (4.38)
n=1 n

n (bz> — kclone X

Whenever the maximum size, B,,, of the network of DWB-cells has been reached, the DWB-
cells are sorted in ascending order of their stimulation levels and starting from the top, the DWB-
cells with the lowest stimulation levels are removed until the size of the network is equal to the

maximum Ssize, Bux

The mechanism of somatic hyper mutation is computationally expensive and replaced in the
DWB-model by a different concept, namely dendritic injection. When the immune network
encounters an antigen that the network cannot react to, the specific antigen is initialised as a
DWB-cell. Thus, new information is injected into the immune network, i.e. dendritic injection.
The dendritic cell system was discussed in section 3.8. The DWB-model has proven to be robust

to noise, adaptive, and scalable in learning antigen structures in a non-stationary environment.

aiNet: De Castro and Von Zuben proposed a novel network based AIS model which evolves
a population of linked memory ALCs through clonal selection [32, 36]. The model is applied
to the problem of data clustering. A typical ALC network consists of ALC nodes (the B-Cells
or antibodies) which are connected by edges to form node pairs. A weight value (connection
strength) is assigned to each edge to indicate the similarity between two nodes. Thus, the ALC
network that is formed during training is presented by an edge-weighted graph. Edges in the
ALC network are pruned by measuring the weight of each edge against a similarity threshold.
Pruning the ALC network results in the formation of a number of sub-networks. Each of the
formed sub-networks represents a cluster within the data set. Thus, the evolved population of
linked memory ALCs contains a number of ALC networks, each representing a cluster in the

data set.

The data patterns in the training set, A4, are seen as antigens. Training of the memory ALC
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population, B, follows an iterative two phase approach. The first phase implements the process
of clonal selection as proposed by the CLONALG model of De Castro and Von Zuben [35].
The second phase is the network formation with network suppression between the evolved mem-
ory ALCs. During training, each pattern is presented to the population of memory ALCs. The
affinity between an antigen pattern and an ALC is inversely proportional to the measured Eu-
clidean distance between the antigen pattern and the ALC. Thus, a higher measured Euclidean
distance results in a lower affinity measurement and vice-versa. Euclidean distance was defined

in equation (2.3). The affinity between an ALC, b, and an antigen pattern, a, is calculated as [36]

f(b,a) = s(b.a) (4.39)

where © is the Euclidean distance. After the affinity to each ALC is calculated, a subset of the
n highest affinity ALCs is selected for cloning. The number of clones to generate for an ALC is
proportional to the ALC’s affinity to the antigen pattern, a. Therefore, a higher affinity results in

more clones. The number of clones for the n-t/4 selected ALC is defined as [36]
n(b,) = round(|B|—c(b,,a)x|B|) (4.40)

where |‘B| is the cardinality of the ALC set B and o is the Euclidean distance between antigen a
and the n-th selected ALC, b,,. Each of the generated clones are then mutated. An ALC clone,
b*, is mutated as [32, 36]

!

b = b*—¢(b*—a) (4.41)

where ¢ is the mutation rate on ALC clone b*. The mutation rate of a clone is inversely propor-
tional to the affinity of the clone’s parent ALC. Thus, a higher affinity level results in a smaller
mutation rate. The affinity between the antigen pattern and each of the mutated clones is then

calculated.

A clonal memory set is then selected from the mutated clones. The clonal memory set contains
£% of the mutated clones with the highest affinity. The Euclidean distance between the antigen
pattern and each memory clone in the clonal memory set is measured against a death threshold,
€dearh- Memory clones with a measured Euclidean distance above €4, are removed from the
clonal memory set. The Euclidean distance between each of the remaining memory clones is then

calculated as the network distance. Clones with a network distance below the network suppres-
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sion threshold, €,.:,0rk, are also removed from the clonal memory set, i.e. clonal suppression.

The remaining clonal memory set is then concatenated with the set of memory ALC networks, B

After all the antigen patterns have been presented to the memory set of ALC networks, the
Euclidean distance between ALCs in the memory set is measured against €,.s,,0rk. ALCs with
a measured Euclidean distance below the €.« threshold are removed from the memory set,
i.e. network suppression. A percentage (¢%) of the lowest affinity (dissimilar) ALCs in B is
replaced with randomly generated ALCs. The remaining memory set is then used in the next

iteration. Algorithm 4.9 provides the pseudo code of the aiNet model.

The stopping condition of the while-loop can be one of the following [32, 36]:
1. Setting a loop counter: A counter can be set to determine the number of loops.

2. Setting the maximum size of the network: The while-loop can be stopped when the size

of the network reaches a maximum.

3. Testing for convergence: The loop terminates when the average error between the training

patterns in A4 and ALCs in ‘B rises after a number of consecutive loops.

The final network of memory ALCs, ‘B, is partitioned with an agglomerative hierarchical cluster-

ing technique with single linkage (as discussed in section 2.3.1) to determine [36]
e the number of clusters presented by the network of memory ALCs B,
o the spatial distribution of these clusters, and
e which ALCs belong to the same cluster.

De Castro and Von Zuben also proposed the minimal spanning tree as an alternative technique
to determine the above goals [36]. Since the network of memory ALCs can be presented as a
graph with weighted edges, a minimal spanning tree is generated as a sub-graph of the network

of memory ALCs, such that the summed weights of the tree is minimised.

As discussed in chapter 2, each cluster can be represented by a centroid. De Castro and Von
Zuben proposed the application of a fuzzy membership function to determine the degree of
membership between the centroids and each of the memory ALCs (similar to the fuzzy C-means

clustering algorithm as explained in section 2.3.2).
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Algorithm 4.9: aiNet Learning Algorithm

Determine the antigen patterns as training set A4 and initialise the set of memory ALCs, B;
while stopping condition not true do
for each antigen pattern, a; € 4 do
for each ALC, b; € B do
Calculate the antigen affinity f (b,-, a j);
end
Select n of the highest affinity ALCs as set #{;
for each b, € H do
Create 1 (b,) mutated clones of b, and add to set # ;
end
for each b:l e H do
Calculate the antigen affinity, f (bln, a j) ;

end
Select {% of the highest affinity antibodies as set M ;
for each y,, € M do
if £, (2j,¥m) > €dearn then
Remove y,, from M ;
end
end
for each y,,, € M do
for each y,,, € M do
if the network affinity fo (Ym,,Ym,) < €network then
Remove y,,, and y,,, from M;
end
end
end
B=BUM,
end
for each b;, € B do
for each b;, € B do
if the network affinity fo (bi,,bi,) < €nerwork then
Remove b;, and b;, from B;
end
end
end
Replace @% of the lowest affinity ALCs in ‘B with randomly generated ALCs;
end
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Drawbacks of the aiNet model include the number of parameters that need to be specified and
that the cost of computation increases as the dimension of the training patterns increases. The
minimum spanning tree will also have difficulty in determining the network clusters if there are
intersections between the clusters in the training data set. The ailNet is capable of reducing data

redundancy and obtaining a compressed representation of the data.

There exists many different document clustering techniques, but these techniques have the main
drawback that they directly apply the clustering techniques to the raw data (collection of docu-
ments). Larger collections contain more noise in the data which result in the formation of clusters
with inferior quality. Tang and Vemuri [164] used the aiNet as a data preprocessing algorithm
since aiNet is capable of reducing data redundancy and obtaining a compressed representation

of the data. Each document is treated as an antigen in aiNet.

Principle component analysis (PCA) is also introduced in the proposed framework of Tang and
Vemuri [164] to reduce the dimension of the vectors in the data after which the aiNet algorithm
is applied to the compressed vectors. PCA resulted in a speedup of the compression of the data
and further reduced the noise in the data. The result of the aiNet (compressed representation of
the data) is then either clustered with K-means clustering or Hierarchical Agglomerative Clus-
tering (HAC). Experimental results in [164] have shown that aiNet as a data preprocessing and
compression algorithm obtained better clustering results (more compact clusters) than directly

clustering the raw data with K-means clustering or HAC.

Another model which is based on the multipopulation aspect of aiNet is the proposed multi-
objective multipopulation artificial immune network (MOM-aiNet) model by Coelho et al. [28].
Further investigation into MOM-aiNet led to an improved model, MOM-aiNet+ [29]. Contrary
to aiNet, MOM-aiNet+ not only keeps the best individual of each subpopulation but several
within each subpopulation. MOM-aiNet+ was applied to the biclustering problem which is a
multi-objective optimisation problem. The biclustering technique is capable of finding several
subsets (biclusters) in a data set in such a way that each subset contains patterns with a certain
shared similarity [25, 80]. The quality of each bicluster can be measured by the volume of the
bicluster (number of patterns x number of features) and the degree of similarity among the pat-
terns within the bicluster. Both of these measurements need to be maximised. Furthermore, the

number of patterns in a data set which is covered by the different biclusters and the degree of
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overlap between the biclusters also need to be measured.

Minor refinements to the aiNet model led to versions of the model which were respectively
applied to the initialisation of centers of a radial basis function neural network [37] and the op-
timisation of multi-modal functions [33, 55]. The refined aiNet model is known as opt-aiNet.
The dynamic opt-aiNet (dopt-aiNet) was recently proposed as an improvement to opt-aiNet for

non-stationary environments [39, 40]. Both of these models are discussed next.

opt-aiNet: The aiNet model was adapted to solve multi-modal function optimisation problems
and is known as opt-aiNet [33]. A few observations on the originally proposed opt-aiNet model
in [33] were summarised in [167]. Some of the features of opt-aiNet listed are among others
a dynamic population size, the capability to explore and exploit the search space and the capa-
bility to maintain multiple optima solutions [167]. Algorithm 4.10 lists the pseudo code of the
opt-aiNet model with minor modifications as proposed in [167] (assuming minimisation of the

objective) and is discussed next. The differences to the original model are also highlighted.

Algorithm 4.10: opt-aiNet Learning Algorithm

Randomly initialise a population of ALCs, ‘B, with size Bj;
while stopping condition not true do
Determine the fitness, f, of each ALC, b, in B;
Normalise the fitnesses of population B;
repeat
Generate 1 ALC clones for each b;
Mutate each ALC clone proportionally to the normalised fitness of its parent ALC;

Determine the fitness of each mutated clone, b/, and select the mutated clone with
the lowest fitness as b*;
if b* has a lower fitness than b then
Replace b with b*;
end
Determine the fitness, f, of each ALC, b, in B;
Normalise the fitnesses of population B;
until the difference in average fitness of ‘B is less than a pre-defined threshold € fiiness;
Determine the network affinity between each pair of ALCs in B;
If the calculated network affinity is below the network suppression threshold €;¢41p0r%»
remove the ALC with the lowest fitness from ‘B;
Add ©% (of the size of B) of randomly generated ALCs to B;
end
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The network affinity between two ALCs is calculated as the Euclidean distance, as defined in
equation (2.3). The fitness of an ALC, b, is calculated using the fitness function, f, which is the
objective that needs to be optimised. An ALC clone is mutated proportionally to the normalised
fitness, f*, of its parent b as [33]

b =b+ <é) exp[— (1= f*(b))] N(0,1) . (4.42)

where N (0, 1) is a Gaussian random variable with zero mean and standard deviation of one. ¢
controls the decay of the inverse exponential function. The above mutation results in that highly
fit ALCs are mutated less than less fit ALCs. Therefore poor ALCs are mutated more to explore
the search space and good ALCs are mutated less to exploit the search space. The stopping con-

dition of the while-loop is set to a maximum number of iterations, #,,,.

The differences between the original opt-aiNet model and algorithm 4.10 are [167]:

e the assumption in the original model that the average fitness always decreases (assuming
minimisation of the objective). The degree of similarity between the current average fitness
and the previous average fitness is measured against a threshold value. A disadvantage of
this assumption is that the degree of similarity will always be less than the threshold if
the previous average fitness is greater than the current average fitness. This holds true
even if there is a large difference between the previous and current average fitness. This
drawback is addressed in algorithm 4.10 by calculating the difference between the previous

and current average fitness and measuring the result against a similarity threshold value.

o the suppression of ALCs in the original model always results in the first ALC to be re-
moved whenever the calculated network affinity (Euclidean distance) between two ALCs
are below the network suppression threshold. A drawback of this approach is that the re-
moval of an ALC is not based on its fitness, which can result in the removal of a potential
optimum solution. Therefore the fitness of ALCs in algorithm 4.10 are first evaluated and

the ALC with the worst fitness is removed.

In the context of data clustering as an optimisation problem, each ALC in the population rep-
resents a possible partitioning of the data set (similar to Clustering PSO as discussed in sec-
tion 2.7.1). Thus, an ALC represents K centroids, one for each cluster. An ALC is defined as

b; = (€;1,¢i2,...,¢; k) Where ¢; x is the cluster centroid of the k-th cluster, C; x, represented by the
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i-th ALC in the population. The objective function that needs to be optimised is the quantization

error as defined in equation (2.75) and is thus the fitness function of the ALCs, i.e. f = Jpso.

Dynamic opt-aiNet: The dynamic opt-aiNet (dopt-aiNet) model was proposed by de Franca
et al. [39, 40] and improved the opt-aiNet model to be more suitable for non-stationary environ-
ments. Two drawbacks of the opt-aiNet model are the large number of function evaluations to
find good solutions and the possibility of an excessive increase in the size of the population over
time. The recommended modifications in [40] to address these drawbacks and enhance opt-aiNet

are discussed next.

In dopt-aiNet the population size is preset to a maximum. Whenever the size of the popula-
tion reaches this maximum a percentage of the ALCs with the worst fitness are removed from
the population. Another recommendation is to keep a separate memory population. The memory
population contains ALCs which have not been replaced by their mutated clones for a certain
peroid of time. Each ALC therefore needs to be initialised with a rank value. The rank value
is incremented each time a mutated ALC clone replaces its parent ALC and decremented if not.
An ALC is replaced by its mutated ALC clone if the mutated ALC clone improves the parent
ALC’s fitness. An ALC is moved to the memory population when the rank value reaches zero.
The memory ALC then receives a new rank value which follows the same process. When the

rank of a memory ALC reaches zero, it does not undergo any mutation.

The ¢ parameter for the Gaussian mutation in opt-aiNet sometimes require pre-analysis of the
function landscape to be set properly. Small ¢-values may lead to slower convergence whereas
too large c-values may lead to a mutated ALC clone which diverges even further from an opti-
mum solution. The golden section technique in [13] is recommended to find the optimal value
for ¢. The golden section technique divides a search space into two and selects the interval with
the best fitness. The selected interval is then again divided and the sub-interval with the best
fitness is selected for division. The process of division is recursive and applied to the selected
interval until the interval reaches a given length. Each interval is divided with the golden ratio
which is found on many nature structures. The golden section is only guaranteed for continu-
ous, convex and unimodal objective functions. Since the model has no prior knowledge of the
objective function, the initial search interval is divided into four segments. The golden section
technique is then applied to each of these segments. Algorithm 4.11 lists the pseudo code of

the dopt-aiNet model with the recommended modifications and additional mutation operators as
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proposed in [40] (assuming minimisation of the objective) and is discussed next.

Two new mutation operators are proposed and applied to ALCs with a rank value that is greater
than zero in the current ALC population and the memory population. These mutation operators

are:

e One-dimensional mutation where each dimension of an ALC is individually mutated. This
means that an N-dimensional ALC will generate N mutated clones, each clone mutated
in exactly one dimension. Two additional ALC clones are also mutated in the direction
of the unitary vectors 1 and —1, respectively. Algorithm 4.12 lists the pseudo code for

one dimensional mutation. Matrix DWV+2)xV

contains the identity matrix of size N and
two rows with the unitary vectors 1 and —1, respectively. ¢ is calculated with the golden

section technique.

e Gene duplication is inspired by the duplication of genes in nature whenever a chromosome
is read [86, 144]. A dimension of an ALC is randomly selected and its value is copied into
another randomly selected dimension if the fitness of the ALC is improved. Algorithm 4.13

lists the pseudo code for gene duplication mutation.

Another drawback of opt-aiNet is the network suppression threshold, €,.10rk- Since the Eu-
clidean distance between ALCs determine the network affinity, some knowledge of the fitness
landscape or pre-analysis should be done to adjust €40, t0 an optimal and appropriate value.
The cell line supression technique is recommended as an enhancement to the Euclidean distance
measure. Algorithm 4.14 lists the pseudo code for cell line suppression between two ALCs.
The middle point, p,,, of the line segment from p; to p; is calculated. The middle point is then
projected onto the line segment to calculate the nearest point, Py jecrion, t0 the line segment. If
Pprojection 1s inside the line segment then the network affinity is calculated as & (p, p»), which
means that the nearest point is at the point p,, where p,,p, LP;P;. If Pprojecrion 1s outside the line
segment then the network affinity is calculated between p,, and p; (in the case where d,, @ d; < 0)

or p; (in the case where ’dj} <d,®d)).

Other Network Based Models: Gaspar and Collard proposed the Simple Artificial Immune
System (SAIS) which is inspired by the network formation and adaptability of the immune sys-
tem to foreign antigens [58], specifically the primary and secondary responses to foreign antigens
(as discussed in section 3.3.3). SAIS is applied to problems within a binary space and therefore

measures the affinity between an ALC and an antigen pattern using the Hamming distance (as
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Algorithm 4.11: dopt-aiNet Learning Algorithm

Randomly initialise a population of ALCs, B, with size B4y;
while stopping condition not true do
Determine the fitness, f, of each ALC, b, in B;
Normalise the fitnesses of population B;
repeat

Generate 1 ALC clones for each b;
Gaussian mutate each ALC clone proportionally to the normalised fitness of its
parent ALC;

Determine the fitness of each mutated clone, b/, and select the mutated clone with
the lowest fitness as b*;
if b* has a lower fitness than b then

Replace b with b*;

Increment the rank value of b* by one;
end
else

Decrement the rank value of b by one;
end
if the rank value of b equals zero then

Remove b from B and add to the memory population, M ;
end
Apply one-dimensional mutation on each ALC in B (Algorithm 4.12);
Apply gene duplication on each ALC in B (Algorithm 4.13);
Apply one-dimensional mutation on each memory ALC in M (Algorithm 4.12);
Apply gene duplication on each memory ALC in M (Algorithm 4.13);
for each memory ALC do

if the memory ALC has improved after mutation then

Increment the rank value of the memory ALC by one;
end
else
Decrement the rank value of the memory ALC by one;

end
end
Determine the fitness, f, of each ALC, b, in B;
Normalise the fitnesses of population B;

until the difference in average fitness of ‘B is less than a pre-defined threshold € fiiness;
Determine the network affinity between each pair of ALCs in B and suppress the ALC
network using the cell line suppression as listed in algorithm 4.14;

Add ©% (of B,,,x) of randomly generated ALCs to B;

if | B| > Byx then

Remove (B — | B|) ALCs with the worst fitness from population B;

end

end
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Algorithm 4.12: One-dimensional Mutation Algorithm

Generate n+ 2 ALC clones for ALC b;
for each ALC clone b* do
for each row d in matrix D do
Generate a mutated clone b’ from b* using b =b*+d x G
end
end
Determine the fitness of each mutated clone, bl, and select the mutated clone with the
lowest fitness as b*;
if b* has a lower fitness than b then
Replace b with b*;
end

Algorithm 4.13: Gene Duplication Mutation Algorithm

Initialise gene to the value of a randomly selected dimension of ALC b;
for each dimension n of ALC b do

oldval =by;

b, = gene;

if the fitness of ALC b does not improve then

b,, = oldval,

end

end
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Algorithm 4.14: Cell Line Suppression Algorithm

Select two ALCs b; and b;

pi = [bi, £ (b)];

pj = [bj, f(b))];
Pn=[bi+0.5(bj—b;),f(b;+0.5(b;—b;))];

di=p;—ps;
dyn =Pm —Pis
Pprojection = % (where ® is the dot product);

ifd, ®d; <0 then
netaff = o (pm, pi):
end
else if ‘dj‘ <d,, ®d; then
netaff = o (Pm,p;);
end
else
Pn=Pi+ Pprojection & dj;
netaff = 6 (Pm,Pn) (since PP,LP;Pi);
end
if netaf f < €,e1work then
Remove the ALC with the worst fitness;
end
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discussed in section 4.3.1). The algorithm initially has a randomly generated population of ALCs
which at each generation goes through three different phases to adapt to the training patterns

(antigens). These phases are evaluation, cloning and recruitment, discussed next.

The evaluation phase differentiates the ALCs into exogenic activated or endogenic activated
ALCs. Exogenic ALCs are activated by antigens in the current environment (at time ). En-
dogenic ALCs are not activated by the current environment and are equally reinforced by their
individual densities. A number of the best exogenic ALCs are then selected in the cloning phase
for cloning and mutation. The remaining endogenic ALCs are cloned without mutation. Mutated
exogenic ALCs which do not improve the activation level of their corresponding parent exogenic
ALCs are discarded.

In the final recruitment phase, the new population of ALCs consists of all the cloned endo-
genic ALCs and a selection of mutated exogenic ALCs. The latter selection process is based on
a tournament selection where a number of mutated exogenic ALCs challenge each ALC in the

previous generation’s population.

The SAIS model is applied to time dependent optimisation problems to test the adaptability
of the model in non-stationary environments. SAIS is able to track changing optima as well as
memorising previously encountered optima. Scenarios do occur where previously encountered
optima are forgotten. Thus the memory of SAIS is unstable and the authors proposed Yet Another
SALS (YASAIS) as an enhancement [58].

In YASAIS the population of ALCs are partitioned into sub-populations. In YASAIS there are
no endogenic ALCs. Instead, the remaining ALCs (non-exogenic) are preserved within their
respective sub-populations to the next generation. A single exogenic ALC is selected from each
sub-population which goes through the same cloning and recruitment phase as in SAIS. The

YASALIS did not deliver the expected improved results and was further enhanced in [59].

4.7 Idiotypic Network Topologies

The formation of idiotypic networks between lymphocytes (or their corresponding antibodies)
can be defined by different network topologies. In the preceding section on network based ar-

tificial immune systems, the network interaction or network formation between artificial lym-
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phocytes is either determined by a proximity matrix of network affinities or the grouping of
similar artificial lymphocytes in sub-networks. The former is normalised with a network affinity
threshold to determine the network links between the artificial lymphocytes and the latter utilises
a clustering algorithm. There are, however, alternative and less familiar network topologies to
determine the possible interactions in an idiotypic network of lymphocytes. The different the-
oretical approaches to determine the possible interactions in an idiotypic network are discussed
next. Each of these network topologies specifies the interconnections between lymphocytes and

the binding strength of these connections.

The Linear Topology: Lymphocytes in the linear topology are positioned as a sequence of dif-
ferent idiotypic levels of interaction. The linear topology was introduced by Richter and proposed
as a chain-reaction between lymphocytes at different idiotypic levels [152, 153]. Figure 4.4 il-
lustrates the linear topology of an idiotypic network with [ idiotypic levels.

O OO O O OB

Figure 4.4 Linear Network Topology

The antigen, ao, is positioned at idiotypic level 0. Lymphocytes, b;, at idiotypic level i interact
with lymphocytes at idiotypic levels i — 1 and i+ 1 by either stimulating or suppressing neigh-
bouring lymphocytes in the sequence. In figure 4.4, lymphocytes in idiotypic layer i stimulate
the lymphocytes in layer i 4+ 1, which in turn stimulate the lymphocytes in layer i +2 and so
forth. Lymphocytes in an idiotypic layer also suppresses the layer of lymphocytes responsible
for its stimulation. Thus, suppression between idiotypic layers follows a chain-reaction in the
reverse order to that of stimulation between layers. Lymphocytes in idiotypic layer / suppress the

lymphocytes in layer [ — 1, which in turn suppress the lymphocytes in layer / — 2 and so forth.

The Simple Cyclic Topology: Hiernaux discovered that the dynamical behaviour of the linear
topology is dependent on whether / is odd or even [84]. Hiernaux converted the linear topology

into a cyclic topology, as illustrated in figure 4.5.
The Affinity Matrix Topology: Figure 4.6 illustrates an example of an affinity matrix. Each

element in the matrix specifies the interaction between two lymphocytes, while the magnitude of

the element specifies the strength (binding affinity) between two lymphocytes.
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Figure 4.5 Simple Cyclic Network Topology
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Figure 4.6 Affinity Matrix Topology with Normalisation

Thus, for a set of numbered lymphocytes, the element at position (1,2) in the affinity matrix,
specifies the binding affinity between lymphocyte number 1 and lymphocyte number 2 in the set
[18]. Each of the elements in the affinity matrix can be measured against an affinity threshold
value, normalising the affinity value of each element into either O or 1. A value of 1 implies

idiotypic interaction between the lymphocytes and a value of 0 implies no interaction.

The Cayley Tree Topology: A Cayley tree is a loop-less tree. The node which contains
the lymphocyte with the highest affinity with an antigen forms the root node of a Cayley tree
[149, 181]. Only the root node, by, reacts to the antigen, a. The number of idiotypic network
connections, z, is the number of connected neighbours for each node. z determines the complex-
ity of the Cayley tree topology. Figure 4.7 illustrates the Cayley tree topology for an idiotypic
network of lymphocyte nodes with z = 3 [181].
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Figure 4.7 Cayley Tree Network Topology

Connectivity between the root node and the remaining lymphocyte nodes are determined with
the affinity matrix topology (as discussed above). The distance between the root node and each
of the connected lymphocyte nodes determines the idiotypic level for each of the connected lym-
phocyte nodes. Thus, with the root node at idiotypic layer 1 (b;), connected lymphocytes in
idiotypic layer 2 (b;) have a closer distance to b; than lymphocytes in idiotypic layer 3 (bsz). The
lymphocytes in b3 have a closer distance to b than lymphocytes in by, etc. [149]. Therefore, the
nodes are organised in a hierarchical manner, based on the measured distance to the root node.
The total stimulation received by lymphocytes within a node at idiotypic layer i, is defined as
[181]

O =vi=D 4 (z— 1) vi+D (4.43)

where v/ denotes the concentration of lymphocytes in idiotypic layer j.

4.8 Danger Theory Models

The classical view of natural immunity is able to distinguish between self and non-self cells (as
discussed in section 3.1). This ability is realised through the maturation process of T-Cells to be-
come self-tolerant. In contrast to the classical theory, the danger theory further distinguishes the
non-self cells as dangerous or non-dangerous (as discussed in section 3.7). The danger theory
considers a cell to be dangerous if the cell instigates a danger signal of necrotic cell death to ac-
tivate the antigen presenting cells. The activated antigen presenting cells co-stimulate the mature
T-Cells, which in turn stimulate the B-Cells to react to the foreign cell. One of the motivations

for the danger theory is that the natural immune system is able to adapt to a changing self, since
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the natural immune system only reacts to dangerous non-self cells. This inspired the modelling

of the danger theory in AIS.

The main difference of the danger AIS models to those AIS models inspired by the classical
view (as discussed in section 4.4), is the inclusion of a signal to determine whether a non-self
pattern is dangerous or not. Therefore, a danger AIS model needs to define a signal of death or
danger which is problem specific. The remainder of this section briefly discusses some of the

applications of the danger AIS models to highlight the significance of the danger signal.

A familiar application of classical AIS models is in the field of network intrusion detection
[53, 111, 114]. Intrusion detection AIS models create profiles of the normal incoming traffic at
different nodes in the network. These normal profiles are seen as self. Through the application of
the negative selection technique, abnormal traffic detectors (self-tolerant detectors) are generated
from these normal profiles. The incoming traffic at each node is then monitored and the model
signals an alarm of intrusion whenever an abnormal traffic detector is activated. A major draw-
back to this kind of traffic profiling is the assumption that normal traffic patterns never change.
The fact that normal traffic patterns do change over time, results in outdated profiles with obso-

lete detectors. Therefore, an intrusion detection system needs to be adaptable.

An alternative approach to adapt to changes in normal traffic flow is to only signal an alarm
of intrusion when the monitored host senses danger. In this context, danger can be defined as
the sensing of any abnormal CPU load, memory usage, excessive I/O reads and writes, or secu-
rity attacks. Whenever an abnormal traffic detector is activated without a danger signal from the
host, the profile of normal traffic is adapted to accommodate the detected normal traffic pattern,
resulting in an adaptive intrusion detection system. Danger AIS models as adaptive intrusion

detection systems are proposed in [2, 4].

In a network with a dynamic topology, a change in normal traffic can also occur whenever a
node is removed or added to the network, or when a node misbehaves. A mobile ad-hoc network
is an example of such a network. A mobile ad-hoc network consists of terminal nodes, each with
a radio as communication device to transmit information to other terminal nodes in the network,
i.e. no infrastructure between nodes. Thus, nodes not only function as terminals, but also as
relays of the transmitted information in the network. A node can misbehave whenever the node

does not relay information to neighbouring nodes, or the node experiences hardware failures, or
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malicious software (like viruses) on the node try to overthrow the network. Sarafijanovic and Le
Boudec proposed a danger theory inspired AIS to detect misbehaving nodes in a mobile ad-hoc

network [155]. In this context a misbehaving node is dangerous.

Each node monitors the traffic from neighbouring nodes as normal/self and generates self-
tolerant detectors using negative selection. Whenever a detector detects an incoming self pattern
from a neighbouring node, the detector is replaced by a newly generated self-tolerant detector.
Each node keeps a buffer of incoming traffic patterns from neighbouring nodes and self-tolerant
detectors are frequently generated from the buffer. If a source node experiences danger (misbe-
having node due to packet loss), the source node will generate an observation with a danger signal
along the route where the packet loss was experienced. The action taken by the neighbouring
nodes is to discard the observation from the buffered observations through correlation with the

danger signal (also observed). This prevents the generation of detectors on non-self observations.

A similar buffering approach of normal patterns is taken in [158]. The danger theory inspired
AIS by Secker et al. [158] simulates an adaptive mailbox. The proposed AIS classifies inter-
esting from uninteresting emails. Initially, the user’s actions on the incoming mail is monitored.
If an email is deleted by the user, a detector is generated to detect the deleted email and added
to a set of detectors. After adding a new detector to the set, the existing detectors in the set
are cloned and mutated to improve the generalisation of the set. Thus, the set represents non-
self/uninteresting email. The process continues until the size of the detector set reached a certain

maximum.

The detector set adapts to the changing behaviour patterns of the user by buffering deleted emails
as a set of non-self emails. As soon as the buffered set reaches a specific size, it is represented to
the detector set of uninteresting emails. The detector set adapts to the buffered set through clonal

selection.

Danger in this model is defined and measured as the number of unread emails in the inbox.
Danger is signalled when the number of unread emails reaches a limit. When the model receives
a danger signal, the unread emails are presented to the set of detectors for detection of unin-
teresting emails. The uninteresting classified emails are then moved to a temporary folder or
deleted.
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Table 4.1 List of Immunological Terms Mapped to Data Analysis Terms

Immunology Data Analysis

Antigen set Data set of patterns that needs to be clustered
ALC population Clustered data set

Affinity Measure of (dis)similarity between patterns
Network of ALCs Cluster of patterns

Mean vector of ALC network Centroid of a cluster

(or representative ALC in ALC network)

4.9 Conclusion

This chapter highlighted the basic components of an AIS model. These components were cate-
gorised within an AIS framework. These categories are the representation of an ALC and antigen
structure within a search space, the interaction between these structures (affinity measures), and
the adaptation of the ALC structures through a selection strategy. The categories of the frame-

work were then discussed with reference to proposed theoretical AIS models.

The chapter continued with an overview of the shape space model wherein the structure of an
ALC and/or antigen can be defined and represented. In order to determine the affinity between
the structure representing an ALC and the structure representing an antigen in shape space, the
chapter gave a discussion on the different affinity measures within different shape spaces. Three
of the most familiar affinity matching rules in a binary shape space were highlighted with their
drawbacks of holes. After the discussion of affinity measures, the different selection strategies

to adapt the ALCs structures were discussed.

Each selection strategy gave an overview of existing AIS models based on the specific strat-
egy with a more detailed overview of AIS models which are based on the idiotypic network
formation strategy. The discussion of the idiotypic network formation also introduced different
theoretical approaches/network topologies to determine the possible interactions in an idiotypic

network.
Table 4.1 provides a list of immunological terms which are mapped to data analysis terms. In

the context of data clustering, the data set that needs to be clustered by an AIS model is seen as

the set of antigen patterns. The clustered data set is represented by the population of ALCs. The
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measure of (dis)similarity between feature vectors (as discussed in section 2.2) determines the
affinity between an ALC and an antigen pattern or another ALC (in the case of network based
AIS models). In network based AIS models, each ALC network is a potential cluster in the data
set (antigen set). The centroid of the cluster (ALC network) is calculated as the mean vector of
ALC:s or is a representative ALC in the ALC network.

The next chapter proposes and presents a novel network theory inspired artificial immune system.
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