
Chapter 1

Introduction

There are certain basic attributes which define a human being. Focusing on the world’s human

population, two traits which are shared among humans might be that all humans are living or-

ganisms and live on planet earth. The human population can easily be divided into two separate

sub-populations (groups) based on the gender attribute. Both of the male and female populations

can be further divided on the age attribute into multiple sub-populations. The end result might

be a group of humans which share common traits such as teenage males between the age of 12

and 20. Another group might represent female humans above the age of 50. Therefore, humans

forming part of the same group share some common trait compared to humans which form part

of other groups. Thus, natural clustering exists in our daily lives. Whether the attribute is based

on choice of music genre, political interest and/or religion, there is a spontaneous and natural

clustering in society which is determined by the similarity or dissimilarity of different attributes.

Since teenage males will age with time they will eventually form part of a different group. This

implies that the population is non-stationary. On a smaller scale, spontaneous clustering also ex-

ists in the natural immune system where lymphocytes co-operate by co-stimulating each other in

response to an invading antigen. The end result is the formation of lymphocyte networks (groups)

with a similar structure to react to the invading antigen. Since the body is also frequently exposed

to unseen and unfamiliar antigens, the natural immune system needs to adapt to changes in the

antigen structure. Thus, the antigen population is also non-stationary. This thesis proposes an

artificial immune model which is based on the network theory of co-stimulating lymphocytes

and is applied to the problem of data clustering in stationary and non-stationary environments.

1

1.1 Motivation

Clustering of observations or features into different partitions in order to discover hidden traits

in the data is of considerable value. The discovered traits could influence the strategic decisions

of a business, the effect of medicine on certain diseases or highlight emigration/immigration

patterns of citizens in a country. It is clear that clustering is a fundamental cornerstone in decision

making within various disciplines. Many of the existing network theory based artificial immune

systems have been applied to data clustering. The formation of artificial lymphocyte (ALC)

networks represents potential clusters in the data. Although these models do not require any

user specified parameter of the number of required clusters to cluster the data, these models

do have a drawback in the techniques used to determine the number of ALC networks. Another

drawback is that these models have a large number of user parameters which control the outcome

of the clustering performance. Specifying the optimal set of values for these control parameters

is a time-consuming and challenging task, since there could be an optimal set for each data set

that needs to be clustered and the optimal set of values has a high probability to change in a

non-stationary environment. Furthermore, the techniques utilised by these models to determine

the number of ALC networks are either based on a network affinity threshold with a proximity

matrix of network affinities between the ALCs in the population or a hybrid approach is taken

by clustering the ALC population using a clustering algorithm. Specifying the correct network

affinity threshold to obtain the correct or required number of clusters can be a formidable task,

especially in a non-stationary environment. A potential drawback to a hybrid approach is that

the formed sub-nets might not always contain ALCs with a good or generic representation of the

data. Furthermore, both of these techniques are computationally expensive. This thesis proposes

a network based artificial immune model which is applied to data clustering in stationary and

non-stationary environments. The proposed model is independent of a network affinity threshold

and do not need to follow a hybrid approach to determine the number of clusters. Furthermore,

the proposed model has considerable less control parameters in comparison to existing network

based AIS models. Also, the proposed model is enhanced to dynamically determine the number

of clusters in a data set.

1.2 Objectives

The primary objectives of this thesis can be summarised as follows:

• To develop an alternative artificial lymphocyte network topology which is independent of

2

a network affinity threshold and do not need to follow a hybrid approach to determine the

number of clusters.

• To develop a theoretical network based artificial immune model which utilises the alterna-

tive network topology for data clustering.

• To develop two techniques which can be used with the proposed artificial immune model

to dynamically determine the number of clusters in a data set.

• To develop a method for the generation of synthetic non-stationary data which is based on

different data migration types.

• To show that the proposed model can be applied to data clustering of non-stationary envi-

ronments.

1.3 Methodology

The algorithms developed in this thesis are first presented and discussed. Empirical results were

obtained using a selection of data clustering problems with known characteristics and which

covers a good distribution of problems in stationary environments. The results of two classi-

cal clustering algorithms and three network based artificial immune models were also reported

for the same selection of stationary data clustering problems. These results showed the rela-

tive clustering performance of the proposed model when compared to other existing clustering

and network based artificial immune models. The same selection of stationary data clustering

problems was used for the purpose of evaluating the capability of the enhanced version of the

proposed model to dynamically determine the number of clusters in a data set. Results of the

enhanced models were also compared to the results obtained from a classical clustering model

to show the relative clustering performance of the enhanced models. Furthermore, the time

complexity of these models was also discussed. Various synthetic non-stationary data clustering

problems with known characteristics were also used to evaluate the clustering performance of the

proposed model in a non-stationary environment. The results of two network based artificial im-

mune models were also reported for the same synthetic non-stationary data clustering problems.

These results showed the relative clustering performance of the proposed model when compared

to other existing network based artificial immune models. All the reported results are averages

and standard deviations taken over 50 runs, since the proposed model is population based and

3

has a stochastic nature. All parameter values for the respective algorithms were found empir-

ically to deliver the best performance for clustering the applicable data set. A non-parametric

Mann-Whitney U hypothesis test between the clustering quality of the proposed model and the

clustering quality of each of the other models was used to investigate whether there is a statistical

significant difference between the clustering quality of two models for a specific data set or not.

1.4 Contributions

The main contributions of this thesis are:

• The development of a novel network based artificial immune model which utilises an index

based artificial neighbourhood network topology for data clustering of stationary environ-

ments. The developed model has less control parameters than existing network based

artificial immune models, is independent of a network affinity threshold and does not need

to follow a hybrid approach to determine the number of clusters.

• The development of two techniques which enhances the proposed network based artificial

immune model to dynamically determine the number of clusters in a data set.

• The development of a simple method to generate synthetic non-stationary data which fol-

lows different data migration types.

• The application of the proposed network based artificial immune model to the clustering

of non-stationary environments.

• Empirical analysis of the behaviour of all versions of the proposed network based artificial

immune model under different parameter settings.

The following list of published or currently reviewed articles support the main contributions of

this thesis:

A.J. Graaff and A.P. Engelbrecht. Chapter 18: Natural Immune System. Computational Intelli-

gence: An Introduction, 2nd Edition, A.P. Engelbrecht (Author), John Wiley & Sons, October

2007.

A.J. Graaff and A.P. Engelbrecht. Chapter 19: Artificial Immune Models. Computational Intelli-

gence: An Introduction, 2nd Edition, A.P. Engelbrecht (Author), John Wiley & Sons, October

2007.

4

A.J. Graaff and A.P. Engelbrecht. A local network neighbourhood artificial immune system for

data clustering. In IEEE Congress on Evolutionary Computation, CEC 2007., pp. 260–267,

2007.

A.J. Graaff and A.P. Engelbrecht. Towards a self regulating local network neighbourhood arti-

ficial immune system for data clustering. In IEEE Congress on Evolutionary Computation,

CEC 2008.(IEEE World Congress on Computational Intelligence), pp. 633–640, 2008.

A.J. Graaff and A.P. Engelbrecht. Optimised Coverage of Non-self with Evolved Lymphocytes in

an Artificial Immune System. International Journal of Computational Intelligence Research,

vol. 2, no. 2, pp. 127–150, 2006.

A.J. Graaff and A.P. Engelbrecht. Clustering Data in an Uncertain Environment using an Ar-

tificial Immune System. Pattern Recognition Letters, vol. 32, no. 2, pp. 342–351, January

2011.

A.J. Graaff and A.P. Engelbrecht. Using sequential deviation to dynamically determine the num-

ber of clusters found by a local network neighbourhood artificial immune system. Applied Soft

Computing, vol. 11, pp. 2698–2713, March 2011.

A.J. Graaff and A.P. Engelbrecht. Clustering Data in Stationary Environments with a Local Net-

work Neighborhood Artificial Immune System. International Journal of Machine Learning

and Cybernetics, submitted May 2011.

1.5 Thesis Outline

The thesis is organised as follows:

• Chapter 2 discusses the problem of data clustering. A formal definition of data clustering

is given with an elaboration on different similarity measures and existing clustering ap-

proaches. This is followed by an overview of different clustering performance measures

to evaluate the partitioning quality of a clustering algorithm applied to stationary data.

The different performance measures applied to optimisation algorithms for problems in

non-stationary environments are then discussed. These performance measures are used

to quantify and define performance measures that can be used to evaluate the partitioning

quality of clustering algorithms in non-stationary environments. Furthermore, a brief intro-

duction to outliers and outlier detection is given as well as a discussion of two alternative

computational models which can be applied to the problem of data clustering.

5

• Chapter 3 reviews the functional process of the natural immune system. The different

theories in immunology regarding the functioning and organisational behavior between

lymphocytes are discussed. These theories include the classical view, clonal selection

theory, network theory, and danger theory. The classical view is first discussed in detail,

since the other theories are based on concepts and elements within the classical view. The

classical view forms a base onto which the other theories are explained. A brief review of

the dendritic cell system is also given.

• Chapter 4 discusses some of the most familiar artificial immune system (AIS) models

which are inspired by the different theories in the science of immunology. The chapter

highlights the basic components of an AIS model and introduces the shape space model.

Furthermore, an overview of different measures of affinity between an artificial lympho-

cyte and an antigen pattern within a specific shape space is given which is followed by an

overview on the different matching rules to determine whether an ALC binds to an antigen

pattern. The remainder of the chapter briefly discusses some of the AIS models which are

respectively inspired by the negative selection, clonal selection and danger theories. Since

the proposed AIS model in this thesis is inspired by and mostly based on the network the-

ory, a more detailed overview is given on existing network based AIS models within the

context of data clustering. Also, different theoretical approaches to determine the possible

interactions in an ALC network are discussed.

• Chapter 5 presents a novel network theory inspired artificial immune system. Specifically,

the network topology of co-stimulated lymphocytes inspired the modelling of the local

network neighbourhood artificial immune system (LNNAIS). The chapter introduces the

concept of an index based neighbourhood topology which is utilised by LNNAIS to deter-

mine the network connectivity between ALCs. Each of the formed local ALC neighbour-

hood structures represents a cluster in a data set. The differences and similarities between

existing network based AIS models and the proposed LNNAIS model are also discussed.

The proposed LNNAIS model is compared to classical clustering algorithms and existing

network based AIS models which are applied to data clustering problems. Furthermore, a

sensitivity analysis is also done on the proposed model to investigate the influence of the

model’s parameters on the quality of the clusters.

• Chapter 6 proposes two techniques which can be used with the proposed local network

neighbourhood artificial immune model to dynamically determine the number of clusters in

a data set. The first technique utilises cluster validity indices and is similar to the multiple

6

execution approach, though computationally less expensive. The second technique is based

on sequential deviation outlier detection. The results of a multiple execution approach of

K-means clustering is compared to the results obtained from both the proposed LNNAIS

techniques to dynamically determine the number of clusters in a data set. The influence of

the parameters of LNNAIS on the number of dynamically determined clusters in a data set

is also investigated.

• Chapter 7 defines and discusses different non-stationary environments. A technique to

generate synthetic data sets for each of the defined non-stationary environments is pro-

posed. Different synthetic data sets are then generated based on the defined non-stationary

environments. The proposed local network neighbourhood artificial immune model and the

enhanced version of the model to dynamically determine the number of clusters are applied

to the clustering of the generated synthetic non-stationary data. The results are compared

to the results obtained from two existing network based artificial immune models to cluster

the non-stationary data. The influence of the different non-stationary environments on the

parameters of the proposed model is also investigated.

• Chapter 8 highlights the conclusions of this thesis and presents ideas relating to possible

future work.

• Appendix A lists and defines the symbols used throughout this thesis.

• Appendix B lists the publications derived from this thesis.

7

Chapter 2

Clustering and Quality Measures

This chapter gives a formal definition of data clustering. A brief overview of different clustering

techniques is given. Different similarity measures are discussed as well as different cluster qual-

ity measures. These quality measures are then discussed in the context of dynamic and uncertain

environments, i.e. clustering non-stationary data.

The chapter is organised as follows:

• Section 2.1 gives a formal definition of data clustering and the notation used by the rest of

the chapter.

• Section 2.2 discusses the different distance-based similarity measures.

• Section 2.3 discusses the most familiar clustering algorithms which are categorised into

hierarchical clustering or partitional clustering methods.

• Section 2.4 introduces the different categories of cluster validity measures to evaluate the

partitioning quality of a clustering algorithm. The section discusses the cluster validity

indices which form part of the relative criteria.

• Section 2.5 introduces different measures to evaluate the performance of an optimisation

algorithm which is applied to problems in non-stationary environments. These perfor-

mance measures are used to quantify and define measures that can be used to evaluate the

partitioning quality of clustering algorithms in non-stationary environments.

• Section 2.6 defines outliers and explains three different approaches for outlier detection.

• Section 2.7 discusses two alternative computational algorithms which can be applied to the

problem of data clustering.

8

• Section 2.8 concludes the chapter by giving an overall summary of the chapter and dis-

cussing the relevance of each section to the work in this thesis.

2.1 Data Clustering

Patterns in a data set can be structured into different groups in such a way that patterns within the

same group are more similar compared to patterns across different groups. Each of the formed

clusters is represented by a centroid [122]. Data clustering can formally be defined as follows

[15, 96]:

Let P be the data set of patterns in N-dimensional space that needs to be clustered. Thus, P =

{p1,p2, . . . ,pi, . . . ,pI−1,pI} where pi is an N-dimensional feature vector (pattern) and I is the

number of feature vectors. The partitioning of P into K clusters, {C1,C2, . . . ,CK}, satisfies the

following conditions:

1. |Ck| 6= 0,k = 1,2, . . . ,K, meaning that clusters are not allowed to be empty;

2. P = ∪K
k=1Ck, meaning that each feature vector is assigned to a cluster;

3.
∣

∣Ck ∩C j

∣

∣ = 0,k 6= j, meaning that each feature vector is assigned to only one cluster (in

the case of crisp or hard clustering, i.e. exclusive clustering); or

4.
∣

∣Ck ∩C j

∣

∣ > 0,k 6= j, meaning that each feature vector can be assigned to more than one

cluster with a certain degree. Fuzzy clustering is an example of overlapping clustering for

which this condition holds.

The most general measure of similarity or dissimilarity between feature vectors is based on the

distance between these vectors (e.g. Euclidean distance). A cluster’s centroid can describe a spe-

cific concept. Feature vectors with a similar or common concept are grouped together. Cluster-

ing algorithms are applied to data clustering and compression [26, 64, 174], image segmentation

[95, 145, 151], and vector and color image quantization [9, 145, 185]. The following section

discusses some of the distance-based similarity measures between feature vectors.

9

2.2 Similarity Measures

This section discusses the different distance-based similarity measures. One of these distance

measures is the Minkowski distance between multidimensional feature vectors, defined as [96]

σε

(

pi,p j

)

=

[

N

∑
n=1

(

pi,n −p j,n

)ε

]
1
ε

(2.1)

=
∥

∥pi −p j

∥

∥

ε
(2.2)

where N is the dimensions of feature vectors pi and p j. The Euclidean distance is derived from

the Minkowski measure by setting ε = 2 [15, 96]. The Euclidean distance is the most commonly

used similarity measure, which is defined as

σ2

(

pi,p j

)

=

[

N

∑
n=1

(

pi,n −p j,n

)2

]
1
2

(2.3)

=

√

N

∑
n=1

(

pi,n −p j,n

)2
(2.4)

=
∥

∥pi −p j

∥

∥

2
(2.5)

The Manhattan distance between two feature vectors is the sum of the absolute differences of

their features (attributes) and can be derived from the Minkowski measure by setting ε = 1 [15].

The Manhattan distance is defined as

σ
(

pi,p j

)

=
N

∑
n=1

∣

∣pi,n −p j,n

∣

∣ (2.6)

The distance between two feature vectors can also be calculated as the maximum absolute differ-

ence between the values of each dimension. This distance measure is known as the Chebychev

distance, defined as [132]

σ
(

pi,p j

)

= max
n=1,...,N

∣

∣pi,n −p j,n

∣

∣ (2.7)

The Chebychev distance is more appropriate in cases where the (dis)similarity between two fea-

ture vectors is reflected in individual dimensions. The Chebychev distance is also sensitive to

outliers.

A drawback of the Minkowski distance measure (including all the derivatives like Euclidean

10

distance) is what is known as the ‘curse of dimensionality’ [14]. The general understanding of

the ‘curse of dimensionality’ is that with an increase in dimensionality of space the distribution

of distances between the feature vectors in space becomes uniform [1]. In the context of data

clustering this means that the larger the dimensionality of the search space, the larger the total

space that needs to be explored in order to capture a part of the data. The Manhatten distance

measure is however more preferable than the Euclidean distance measure for high dimensional

data [1].

Another measure of similarity between two feature vectors is the cosine similarity measure [15].

Different to the previously discussed distance measures, the cosine similarity measures the angle

between two feature vectors. The cosine similarity, Γ, between two feature vectors pi and p j is

defined as

Γ
(

pi,p j

)

= arccos

(

pi •p j

‖pi‖
∥

∥p j

∥

∥

)

(2.8)

where pi •p j is the dot product between vectors pi and p j and Γ ∈ [0,π]. The value of Γ indi-

cates the degree of similarity or dissimilarity between two vectors. Γ values closer to 0 imply

a higher similarity between two vectors, and Γ values closer to π imply a higher dissimilarity

between two vectors. Thus, if Γ = π, then the two vectors are exact opposites from one another.

Γ = π
2

means that the two vectors are independent, and when Γ = 0 the two vectors are exactly

the same. An advantage of the cosine similarity measure compared to the Minkowski measure

is that the dissimilarity (distance) does not increase with an increase in the number of dimen-

sions. The cosine similarity measure is therefore not influenced by the ‘curse of dimensionality’,

making the cosine similarity measure more appropriate for clustering data of high dimensionality.

The Mahalanobis distance calculates the probability that a feature vector belongs to a set of

given feature vectors [15, 96]. The distance between the feature vector and the average of the

set gives an indication of the probability that a feature vector belongs to the set. Thus, a closer

distance to the average has a higher probability of membership. The Mahalanobis distance can

also measure the dissimilarity between two feature vectors, and is defined as

σ
(

pi,p j

)

=

√

(

pi −p j

)T
Z−1

(

pi −p j

)

(2.9)

where Z is the covariance matrix of the given set of feature vectors and
(

pi −p j

)T
is the trans-

pose of vector
(

pi −p j

)

. Thus, from the above definition, each feature vector is given a weight

11

which is based on the vector’s variance. The Mahalanobis distance is only appropriate to a set of

feature vectors with a multivariate Gaussian distribution.

For all of the previously discussed distance measures, it is assumed that a feature vector con-

sists of continuous features (attributes), i.e. pi,n ∈ ℜ,∀n where n is the n-th attribute of feature

vector pi. In cases where attributes are nominal-valued, the Hamming distance is used to mea-

sure similarity or rather dissimilarity [73]. The Hamming distance between two feature vectors

of equal length is the number of positions which are different between the two vectors, defined

as

σ
(

pi,p j

)

=
N

∑
n=1

1 ∀pi,n 6= p j,n (2.10)

Thus for feature vectors in binary space, i.e. pi ∈ {0,1}N
,∀i, the above function can be re-defined

as

σ
(

pi,p j

)

=
N

∑
n=1

⊕
(

pi,n,p j,n

)

(2.11)

where ⊕ is the exclusive-or between the bits of pi and p j, n is the bit-index and N is the size of

the binary string (dimensions).

Another familiar similarity measure not covered in this section is Pearson’s correlation coef-

ficient. The interested reader is referred to [75, 83] for more information.

2.3 Clustering Algorithms

Data clustering algorithms can be categorised into hierarchical clustering or partitional cluster-

ing methods. This section highlights the differences between the aforementioned categories and

discusses the most familiar clustering algorithms found in each category.

2.3.1 Hierarchical Clustering

Hierarchical clustering methods iteratively partition a data set into a hierarchy of clusters. This

means that each level of the hierarchy consists of a number of clusters, which are obtained by

further partitioning of the clusters in the preceding level. A hierarchical clustering algorithm

is either agglomerative or divisive [56, 96]. In both cases, a similarity measurement is used to

either merge clusters or divide clusters, generating a tree-like structure.

12

(a) Single link (b) Complete link

(c) Average link (d) Centroid link

Figure 2.1 Linking Techniques in Hierarchical Clustering

In agglomerative hierarchical clustering, each feature vector in the data set initially represents a

cluster [96]. In each iteration, similar clusters are merged. The process continues until only one

cluster is left [96]. Thus, agglomerative algorithms follow a bottom-up approach generating a

tree-like structure known as a dendogram. A dendogram shows which clusters were merged in

each layer of the tree, i.e. each layer in the dendogram is equivalent to an iteration representing

a partitioning of the data set. The root node of the tree consists of one cluster and each leaf node

of the tree represents a feature vector.

In the case of divisive hierarchical clustering, a top-down approach is followed where all fea-

ture vectors are initially assigned to a single cluster as the root node. In each iteration, clusters

containing the most dissimilar feature vectors are split. The process continues until each feature

vector represents a cluster as a leaf node in the dendogram.

There are different linking techniques to determine the two most similar clusters. Each of these

techniques makes use of a proximity matrix containing the pairwise similarities between clusters

[96]. Since the different types of linking techniques are applicable to both divisive and agglomer-

ative hierarchical clustering, the remainder of this section focuses on agglomerative hierarchical

clustering. The most popular and familiar linking techniques are [56, 96]:

• Single link: Also known as the nearest-neighbour method [56], the similarity between

13

two clusters is measured as the minimum distance between two feature vectors, one from

each cluster, i.e.

ℓsingle

(

Ci,C j

)

= min
∀p∈Ci,∀q∈C j

{σ(p,q)} (2.12)

where σ is a similarity measure, Ci and C j are the ith and jth clusters respectively. A draw-

back of the single link technique is that the formed clusters are stretched out, i.e. a chaining

effect [56, 96]. Chaining occurs when two clusters with highly dissimilar elements in each

cluster are merged due to single elements being similar. Figure 2.1(a) illustrates the single

link technique.

• Complete link: Also known as the furthest-neighbour method [56], the similarity between

two clusters is measured as the maximum distance between two feature vectors, one from

each cluster, i.e.

ℓcomplete

(

Ci,C j

)

= max
∀p∈Ci,∀q∈C j

{σ(p,q)} (2.13)

The complete link technique generates compact clusters [56, 96]. Figure 2.1(b) illustrates

the complete link technique.

• Average link: The similarity between two clusters is measured as the average distance

between all feature vectors from within the two clusters, i.e.

ℓaverage

(

Ci,C j

)

=
1

|Ci|
∣

∣C j

∣

∣

∑
∀p∈Ci,∀q∈C j

σ(p,q) (2.14)

The two clusters with the lowest ℓaverage value are merged into one cluster [56]. Fig-

ure 2.1(c) illustrates the average link technique.

• Centroid link: The distance between two centroids of different clusters can also measure

the similarity between two clusters, i.e.

ℓcentroid

(

Ci,C j

)

= σ
(

ci,c j

)

(2.15)

where ci and c j are the centroids of clusters Ci and C j, respectively. The centroid of a

cluster is defined in equation (2.18). The two clusters with the lowest ℓcentroid value are

merged into one cluster. Figure 2.1(d) illustrates the centroid link technique.

Hierarchical clustering algorithms do not have a pre-specified number of clusters. The number of

clusters can be determined at any level of the dendogram or can be based on a similarity thresh-

old [96]. Hierarchical clustering algorithms also make no assumption of the distribution of the

14

data set, i.e. the algorithms are independent of the initial conditions [56].

There are, however, a few drawbacks to the hierarchical approach to clustering data. Hierar-

chical clustering algorithms are not suitable to cluster data with overlapping clusters, or data

that consists of clusters with varying shapes, sizes and/or densities [56]. Hierarchical clustering

algorithms are also not suitable for very large data sets, since the proximity matrix of pairwise

similarities does not scale well with large data sets. Once two clusters are merged, feature vectors

assigned to a cluster cannot be re-assigned to a different cluster. Therefore hierarchical clustering

algorithms are static and merged clusters cannot be separated [56].

2.3.2 Partitional Clustering

Partitional clustering algorithms partition feature vectors in a data set into a number of non-

hierarchical clusters. Partitioning of these feature vectors optimises a specific objective function

[96]. The objective function is optimised such that the inter-cluster distance is maximised and

the intra-cluster distance minimised. The inter-cluster distance measures the average separation

between the centroids of all possible pairs of clusters and is calculated as

Jinter =
2

K× (K −1)

K−1

∑
k=1

K

∑
j=k+1

σ
(

ck,c j

)

(2.16)

A larger Jinter value indicates a higher average separation between cluster centroids, whereas a

smaller value indicates a lower separation between cluster centroids. The intra-cluster distance

measures the compactness of the clusters and is calculated as

Jintra =
∑K

k=1 ∑∀p∈Ck
σ(p,ck)

|P| (2.17)

Jintra calculates the average of all the distances between each feature vector and the cluster cen-

troid with which the feature vector is associated. Thus larger distances between the feature

vectors and the associated cluster centroids will indicate less compact clusters and vice versa.

Partitional clustering algorithms can be exclusive, overlapping or probabilistic. Each of these

categories is explained next.

Exclusive Clustering: Also known as crisp or hard clustering, a feature vector is only grouped

with a single cluster. The most familiar algorithm in this category is the iterative K-means clus-

15

tering algorithm [52]. K-means initialises K centroids, where K is the number of clusters into

which a data set is partitioned. Based on a similarity measure, each feature vector in the data set

is then assigned to only one of these centroids. A feature vector, p, is assigned to a centroid, c, if

p is most similar to c. Thus the subset of feature vectors assigned to a centroid forms a cluster.

After each feature vector in the data set is assigned to a centroid, the centroid of each cluster

is recalculated according to the feature vectors assigned to the cluster. Algorithm 2.1 lists the

pseudo code of a basic K-means algorithm [96].

Algorithm 2.1: Basic K-means

Randomly initialise K centroids;

while some stopping condition(s) not true do

for each feature vector pi ∈ P do

Calculate the similarity between pi and ck,k = 1, . . . ,K;

Assign pi to centroid ck with which pi has the highest similarity;

end

Recalculate the centroid of each cluster;

end

The similarity between a feature vector, pi, and a centroid, ck, is calculated using the Euclidean

distance measure as defined in equation (2.3). Thus a lower value of σ implies a higher similarity.

The centroid (mean), ck, of cluster, Ck is calculated as

ck =
1

|Ck| ∑
∀p∈Ck

p (2.18)

The K-means algorithm optimises the sum of squared distances [70] as objective function by

minimising the intra-cluster distance. The sum of squared distances is defined as [96]

JSSE =
K

∑
k=1

∑
∀p∈Ck

σ(p,ck)
2

(2.19)

The JSSE determines the clustering quality of the clustered data set.

The stopping criteria for K-means can be one of the following [26, 96]:

• when there is no change in the centroids,

• there is minimal reassignment of feature vectors to different centroids,

16

• the JSSE is small enough or there is a minimal decrease in JSSE , or

• a specified number of iterations have been reached.

Although K-means is a very simple clustering algorithm, it has a few drawbacks. Since K-means

minimises the sum of squared errors, the algorithm is susceptible to outliers in a data set which

inflate the JSSE [81]. Outliers can be removed, but in cases where the data is dynamic, outliers

might indicate a change in the data. Outlier analysis is discussed in section 2.6. Since the cen-

troids are randomly initialised, each run of the K-means algorithm delivers different clustering

results. Thus, the random initialisation of K cluster centroids also determines the clustering qual-

ity [17].

An enhancement to K-means is the bisecting K-means which is less susceptible to the initial-

isation of K centroids, since all feature vectors are initially grouped into one cluster [156]. Pre-

dicting the correct number of K clusters also influences the clustering quality [71]. The centroids

can be initialised by randomly selecting K feature vectors from the data set. This is known as the

K-medoids algorithm [107]. The most centrally located feature vector in a cluster is that cluster’s

medoid. Thus the objective of K-medoids is to find the optimal medoids in a data set.

Overlapping Clustering (also known as fuzzy clustering): A feature vector is grouped with

all clusters to a certain degree of membership [188]. The most familiar algorithm in this category

is the Fuzzy C-means clustering algorithm, which is explained next [16]. The Fuzzy C-means

algorithm initialises a membership matrix, MI×K, where I is the number of feature vectors in

data set P, and K is the number of clusters (centroids) [56]. Thus, an element mik of matrix M, is

the degree of membership of a feature vector pi to the centroid ck of cluster Ck. mik satisfies the

following constraints:

• mik ∈ [0,1], i = 1, . . . , I and k = 1, . . . ,K;

• 0 < ∑I
i=1 mik < I, k = 1, . . . ,K, i.e. no empty clusters are allowed and no cluster may

contain all feature vectors; and

• ∑K
k=1 mik = 1, i = 1, . . . , I.

The degree of membership, mik, is defined as [56, 70]

mik =

[

1

σ(pi,ck)
2

]
1

φ−1

∑K
k=1

[

1

σ(pi,ck)
2

]
1

φ−1

(2.20)

17

where φ is the weighting exponent (φ ≥ 1) which controls the degree of fuzziness of the resulting

clusters [56]. Thus, a higher value of φ increases the fuzziness of the algorithm. The centroid, ck,

of cluster Ck is calculated as [56, 70]

ck =
∑I

i=1 (mik)
φ

pi

∑I
i=1 (mik)

φ
(2.21)

Algorithm 2.2 provides pseudo code for the Fuzzy C-means algorithm [56].

Algorithm 2.2: Fuzzy C-means

Randomly initialise K centroids;

Initialise matrix M by calculating mik as defined in equation (2.20);

repeat

Recalculate the centroid of each cluster using equation (2.21);

Update the degree of memberships mik with m
′
ik, which is calculated using

equation (2.20);

until max
ik

{
∥

∥

∥
mik −m

′
ik

∥

∥

∥

}

< ε;

The objective function optimised by the Fuzzy C-means algorithm, is defined as [56, 70]

JFCM (M,C) =
I

∑
i=1

K

∑
k=1

m
φ
ikσ(pi,ck)

2 (2.22)

where C is the set of K centroids and M is the matrix of membership degrees. Since Fuzzy C-

means assigns a feature vector to a centroid with a certain degree of membership, the application

of Fuzzy C-means is more realistic than K-means, because feature vectors tend to overlap. Sim-

ilar to the K-means algorithm, the number of clusters needs to be specified. Fuzzy C-means may

also converge to local optima [96].

Probabilistic Clustering: Probabilistic models assume that feature vectors are generated from

different distributions, i.e. K clusters in a data set implies K different and unknown distributions

in the data set [15, 56]. Thus, the data set consists of a mixture of density functions, one for each

cluster [15, 21]. The probability density of the data is the sum of all the individual densities and

is defined as [171]

G(p;Ξ) =
K

∑
k=1

χkg(p;ξk) (2.23)

18

where g is a probability density function with parameters ξk. Ξ is the set of distribution param-

eters for each cluster, i.e. Ξ = {ξ1, . . . ,ξk, . . . ,ξK}. Let g be the Gaussian density function, then

ξk = (χk,Ωk,Zk) where Ωk is the mean vector and Zk the covariance matrix for the distribution

of cluster k [15, 171]. The parameter χ in equation (2.23) is known as the mixing probability

parameter [21, 171], and is the probability that feature vector p is generated from distribution k.

Thus G is a mixture of Gaussian distributions with an unknown set of parameters, Ξ [21, 171].

The maximum likelihood method is a statistical technique to find Ξ [21]. Thus, the objective

function that is optimised is defined as [21]

JEM (Ξ) =
I

∑
i=1

log

[

K

∑
k=1

χkg(pi;ξk)

]

(2.24)

The above equation is optimised by the expectation maximisation (EM) algorithm [41]. The EM

algorithm consists of an expectation step followed by a maximisation step in each iteration [21].

Algorithm 2.3 gives basic pseudo code for optimising equation (2.24) using EM. The algorithm

stops when there is a small change in equation (2.24), which indicates that EM converged. There

are a few drawbacks to the Gaussian Mixture model which are [56, 71]:

• the number of clusters needs to be specified,

• it is assumed that all clusters have a Gaussian distribution, and

• EM depends on the initial estimate of ξ.

2.3.3 Other Clustering Methods

Another clustering method is spectral clustering which is based on spectral graph theory [8, 143].

The patterns in a data set which need to be partitioned are represented as vertices and linked with

weighted edges to form a connected graph. The connected graph can also be presented as a matrix

of the distances between the patterns in the data set. The spectral clustering algorithm searches

through the graph for edges which need to be pruned (or cut). The pruning of edges in the graph

delivers a number of disjointed sub-graphs. Pruning is done in such a way that the similarities

between vertices of the same sub-graph are higher than the pruned edge between two sub-graphs.

The minimum-, ratio- or normalised-cut measures can be used to determine which edges need

to be pruned [65, 100, 143]. Although spectral clustering can generate arbitrary-shaped clusters,

there are two drawbacks to spectral clustering which are:

19

Algorithm 2.3: Basic Gaussian Mixture using EM

Set the number of iterations t = 0;

Estimate the initial values for ξ
(t)
k =

(

χ
(t)
k ,Ω

(t)
k ,Z

(t)
k

)

;

repeat
Calculate the expected values of the unknown data (expectation step) using

χ(t) (k|pi) =
χ

(t)
k g
(

pi;ξ
(t)
k

)

∑K
k=1 χ

(t)
k g
(

pi;ξ
(t)
k

) (2.25)

Calculate a new estimate for ξ
(t+1)
k (maximisation step) using

Ω
(t+1)
k =

∑I
i=1 χ(t) (k|pi)pi

∑I
i=1 χ(t) (k|pi)

(2.26)

Z
(t+1)
k =

∑I
i=1 χ(t) (k|pi)

(

pi −Ω
(t+1)
k

)T (

pi −Ω
(t+1)
k

)

∑I
i=1 χ(t) (k|pi)

(2.27)

χ
(t+1)
k =

1

I

I

∑
i=1

χ(t) (k|pi) (2.28)

t = t +1;

until
(

Jt+1 − Jt
)

< ε;

• the method is computationally expensive, and

• the clustering performance is influenced by a user-specified kernel width parameter.

A common drawback of the discussed clustering methods in the previous section is that these

methods have difficulty in identifying non-convex clusters. A solution to partitioning data with

non-convex clusters is to change the set of feature vectors used to represent the data using a kernel

method. A kernel function projects the feature vectors in a data set to a higher dimension where

the feature vectors are linearly separable for partitioning. A well-known kernel-based cluster-

ing method is the Support Vector Machine (SVM). SVM is a binary classifier that constructs

a linearly separating hyperplane between feature vectors of two classes. The hyperplane sepa-

rates the feature vectors in such a way that the distance between the hyperplane and the feature

vectors nearest to the hyperplane are maximised. SVM is repetitively executed for multi-class

data sets. In the context of clustering data with non-convex clusters, the feature vectors in the

20

data set are transformed with a non-linear kernel function into a higher dimensional space which

is linearly separable. SVM is then used to construct the hyperplanes (boundaries) between the

transformed feature vectors. The initial feature vectors in the data set are then labelled according

to the identified boundaries of the clusters in the data set.

2.4 Cluster Quality Validation

Since the identified number of groups (clusters) and the partitioning of data patterns between

these groups may differ among different clustering algorithms, the quality of the partitioning

needs to be evaluated, i.e. cluster validation quantitatively evaluates the clustering result of a

clustering algorithm [170]. The different cluster validity measures are categorised into three

criteria [67]:

• internal criteria - an example of this criteria is when a proximity matrix is used to evaluate

the clustering results,

• external criteria - when an expected clustering result is pre-specified and the clustering

results are evaluated against the expected clustering result, and

• relative criteria - clustering results are compared to other clustering schemes which are

obtained by different input parameter values to the same algorithm.

A challenge in data clustering is to determine the optimal number of clusters in the data set. A

drawback of the first two criteria to determine the optimal number of clusters is the statistical

testing with high computational cost and the pre-specified clustering expectation. An approach

to validate the number of clusters formed is to visually present the clustering results. In multi-

dimensional problems where the number of dimensions is greater than three, visualisation of the

formed clusters becomes difficult [67, 119].

Another approach to determine the optimal number of clusters is to execute the clustering al-

gorithm multiple times, each time with a different number of clusters and validating the clus-

tered data set with a cluster validity index, i.e. relative criteria. The cluster validity index is

then plotted as a function of the number of clusters obtained for each execution of the algorithm.

The number of clusters generated from the input parameters with the highest (or lowest) cluster

validity index is then selected as the optimal number of clusters [151, 170]. This section dis-

cusses some of the most familiar cluster validity indices, which form part of the relative criteria

to evaluate the partitioning quality of a clustering algorithm.

21

Dunn’s index: The cluster validity index of Dunn [44] identifies clusters which are well sepa-

rated and compact. Large values of the index imply well separated and compact clusters. Dunn’s

index is calculated as [66]

QD (K) = min
k=1,...,K







min
j=k+1,...,K







σ
′ (

Ck,C j

)

max
k=1,...,K

{υ(Ck)}













(2.29)

where σ
′ (

Ck,C j

)

is the dissimilarity between two clusters defined as

σ
′ (

Ck,C j

)

= ℓsingle

(

Ck,C j

)

(2.30)

and υ(Ck) is the diameter of cluster Ck defined as

υ(Ck) = max
∀p,q∈Ck

{σ(p,q)} (2.31)

where σ is the Euclidean distance as defined in equation (2.3) and ℓsingle is defined in equa-

tion (2.12). A data set with well-separated clusters has large inter-cluster distances as well as

small intra-cluster distances for compact clusters. Thus, from the above Dunn-index definition,

inter-cluster distances, σ
′
, are maximised and intra-cluster distances, υ, minimised to maximise

the value of QD. The maximum QD index value for a specific value of K indicates the optimal

clustering of the data set. Problems with the QD index listed in [66] are that it is

• computationally complex, and

• sensitive to noise in the data set (noise increases the value of υ).

Net Information Gain index (NIG): An enhancement to the Dunn-index is the net informa-

tion gain (NIG) validity index [103]. NIG measures the information change between clusters

when a new cluster is introduced. NIG is applicable to clustering algorithms which are executed

multiple times to determine the optimal number of clusters [103]. Initially all feature vectors in

the first execution of the algorithm form a single cluster, i.e. execution E1 has one cluster, C1.

With each execution of the algorithm, Ei, the data set, P, is re-clustered into i clusters using a

clustering algorithm like K-means, i.e. P = ∪i
k=1Ci

k. The migration of feature vectors between

clusters from execution Ei to Ei+1 forms the base for cluster quality measurement using NIG.

Three different feature vector migration types are defined in [103] and discussed next. Let Ci
k be

the kth cluster in execution Ei, i.e. 1 ≤ k ≤ i. Then, migration types are defined as:

22

1. stagflation - feature vectors forming a single cluster Ci
k in execution Ei continue to be part

of that cluster in execution Ei+1, i.e. Ci+1
j = Ci

k where 1 ≤ j ≤ (i+1).

2. leakage - a few feature vectors forming part of cluster Ci
k in execution Ei can be grouped

with other feature vectors to form a different cluster Ci+1
j in execution Ei+1 where 1 ≤ j ≤

(i+1).

3. disassociation - feature vectors forming part of a cluster Ci
k in execution Ei, divide into two

or more smaller clusters in execution Ei+1, i.e. ∪J
j=1Ci+1

j ⊆ Ci
k, where J is the number of

clusters evolved from cluster Ci
k and 2 ≤ J ≤ (i+1).

When a cluster Ci
k divides into more than two clusters, the two most dominant clusters in execu-

tion Ei+1 are selected to calculate the information change on cluster Ci
k. The two most dominant

clusters are those clusters containing the most and second most number of migrated feature vec-

tors from cluster Ci
k, respectively. The information gain/loss on cluster Ci

k from execution Ei to

execution Ei+1 is calculated as

in f
(

Ci
k

)

= d
(

Ci
k

)

×M
(

Ci
k

)

(2.32)

where d
(

Ci
k

)

is the direction of the magnitude of change in information. The magnitude of

change, M
(

Ci
k

)

, measures the migration of feature vectors from cluster Ci
k, defined as [103]

M
(

Ci
k

)

= −
J

∑
j=1

p j ln p j (2.33)

where J is the number of clusters to where feature vectors of cluster Ci
k migrate to and p j is

the fraction of feature vectors migrating from cluster Ci
k to cluster Ci+1

j . If migrated feature

vectors in cluster Ci+1
j overlap with feature vectors in cluster Ci

k then the direction of change

d
(

Ci
k

)

= −1, i.e. information loss. If migrated feature vectors in cluster Ci+1
j are well separated

from patterns in cluster Ci
k then the direction of change d

(

Ci
k

)

= 1, i.e. information gain. The

centroid diameter and centroid linkage are used to measure the overlap between clusters [103].

The centroid diameter of a cluster Ck is defined as [103]

υ(Ck) = 2







∑
∀p∈Ck

σ(p,ck)

|Ck|






(2.34)

23

where |Ck| is the number of feature vectors in cluster Ck, ck is the centroid of cluster Ck, and

σ is a distance measure. The centroid linkage between two clusters Ck and C j is defined in

equation (2.15) [103]. The direction of change for cluster Ci
k from execution Ei to execution Ei+1

is defined as

d
(

Ci
k

)

=

{

1 if ℓcentroid

(

Ci
k,C

i+1
j

)

≥ 1
2

[

υ
(

Ci
k

)

+υ
(

Ci+1
j

)]

−1 otherwise
(2.35)

The net information gain between two executions Ei and Ei+1 is calculated as

NIGi+1 =
i

∑
k=1

in f
(

Ci
k

)

(2.36)

The total information content of the ith execution is calculated as the cumulative sum of NIG’s

over all executions prior to and including execution i, defined as

QNIG =
i

∑
g=0

NIGg (2.37)

The execution of the algorithm with the largest QNIG index value is considered as the execution

with optimal clustering.

C-index: Let E be the ascending ordered set of distances between all possible pairs of feature

vectors in data set P, i.e. |E | = |P|×(|P|−1)
2

. Let S be the sum of m feature vector pair distances,

where each feature vector pair is of the same cluster, i.e. p,q ∈ Ck where p and q are a pair in

cluster Ck such that p 6= q. Then the C-index [88] is calculated as [19]

QC =
S −Smin

Smax −Smin

(2.38)

In the above definition of QC, Smax and Smin are defined as

Smin =
m

∑
i=1

ei (2.39)

Smax =
|E |
∑

i=|E |−m+1

ei (2.40)

24

where ei ∈ E and m ≥ 1. Thus, Smin and Smax are the sum of the m smallest and m largest

distances between feature vector pairs in P, respectively. The denominator in the definition of

QC normalises the index value such that QC ∈ [0,1]. Smaller values of QC imply clusters of

better quality. The optimal number of clusters minimises the QC index. The C-index is a suitable

validity index for clusters of similar sizes.

Davies-Bouldin index: Davies and Bouldin (DB) proposed an index that measures the average

similarity between each cluster and the cluster most similar to it [31]. The DB-index is calculated

as [68]

QDB =
1

K

K

∑
k=1

max
j=1,...,K

j 6=k

{

1
2
υ(Ck)+ 1

2
υ
(

C j

)

σ
(

ck,c j

)

}

(2.41)

where K is the number of clusters, σ is the Euclidean distance as defined in equation (2.3), υ

is the cluster centroid diameter as defined in equation (2.34), and QDB ∈ [0,∞). In the above

definition, QDB has a small value when the distance between centroids ck and c j is large and the

corresponding clusters Ck and C j of these centroids are compact. Thus, an optimal number of K

clusters minimises the value of QDB.

Halkidi-Vazirgiannis index: The S_Dbw index proposed by Halkidi and Vazirgiannis is cal-

culated as [69]

QS_Dbw (K) = Scat (K)+Dens_bw(K) (2.42)

The S_Dbw-index is defined as the summation of the average scattering (compactness, i.e. intra-

cluster variance) of the clusters and the density among the clusters (separation, i.e. inter-cluster

density). Scat (K) is the average scattering of K clusters and Dens_bw(K) is the density among

the K clusters. Scat (K) is defined as [69]

Scat (K) =
1

K

K

∑
k=1

ψ(Ck,ck)

ψ(P,p)
(2.43)

where p is the centroid of data set P and ψ is the variance of a set of feature vectors, defined as

[69]

ψ
(

V,v j

)

=

√

√

√

√

N

∑
n=1

[

1

|V |
|V |
∑
i=1

(

xi,n−v j,n

)2

]2

(2.44)

25

where N is the dimensionality of feature vectors, x∈V . Therefore, the average standard deviation

of all clusters is defined as [69]

ι =
1

K

√

√

√

√

K

∑
k=1

ψ(Ck,ck) (2.45)

Dens_bw(K) is defined as [69]

Dens_bw(K) =
1

K × (K −1)

K

∑
k=1

K

∑
j=1
k 6= j

density
(

uk j

)

max{density(ck) ,density
(

c j

)

} (2.46)

where uk j is the middle point of cluster centroids ck and c j, and is calculated as uk j =
ck+c j

2
. The

density
(

uk j

)

of a feature vector uk j calculates the number of feature vectors in the neighbour-

hood of vector uk j. In order to determine whether a feature vector is within the neighbourhood

of another vector, the following neighbourhood function is defined [69]

n(pi,u) =

{

0 if σ(pi,u) > ι

1 otherwise
(2.47)

Thus, a feature vector pi is within the neighbourhood of u if the distance from u is less than ι

which is the average standard deviation of all clusters as defined in equation (2.45); ι is the radius

of the neighbourhood. The density
(

uk j

)

is then calculated as [69]

density
(

uk j

)

= ∑
∀pi∈{Ck∪C j}

n
(

pi,uk j

)

(2.48)

A small value of Scat (K) indicates compact clusters and a small value of Dens_bw(K) indicates

well separated clusters [69]. Thus the number of clusters, K, that minimises the QS_Dbw index

value is considered as the optimal number of clusters in the data set.

Ray-Turi index: Ray and Turi proposed a validity index which is based on the ratio of intra-

clustering distance to inter-clustering distance [151]. The proposed index is calculated as [151]

Qratio =
Jintra

intermin
(2.49)

26

where Jintra is defined in equation (2.17), intermin is calculated as

intermin = min
k=1,...,K−1
j=k+1,...,K

{

σ
(

ck,c j

)}

(2.50)

and σ is the Euclidean distance as defined in equation (2.3). In the above definition of intra,

the average compactness of the clusters is calculated by averaging over all the distances between

each cluster’s centroid and the feature vectors within that cluster. The definition of intermin sim-

ply calculates the smallest distance between the centroids of the clusters to determine the smallest

separation between clusters. Jintra needs to be minimised and intermin needs to be maximised for

more compact and more separated clusters. Thus, the defined ratio validity index, Qratio, needs to

be minimised to have optimal clustering. Therefore the optimal number of clusters, K, minimises

the value of Qratio.

Turi proposed a modification to the above ratio of intra-clustering distance to inter-clustering

distance by multiplying the ratio with a Gaussian function of the number of clusters [173]. The

modified index is calculated as [173]

QRT = Qratio × [c×g(µ,σ)+1] (2.51)

where g is a Gaussian function with mean, µ, and standard deviation, σ and c is some constant.

Function g is defined as

g(µ,σ) =
1√

2πσ2
e

[

− (K−µ)2

2σ2

]

(2.52)

where K is the number of clusters. The Gaussian function penalises the ratio for small values of

K in favour of larger values of K.

Other familiar cluster validity indices not covered in this section are among others Entropy,

Purity and Silhouette. The interested reader is referred to [189] for more information.

2.5 Cluster Quality in Dynamic and Uncertain Environments

Section 2.4 gave an overview of different cluster quality measurements to quantitatively evaluate

the clustering results of a clustering algorithm applied to stationary data sets, i.e. static environ-

ments. A static environment is defined as feature vectors in space which do not move to different

27

spatial positions over time, i.e. the feature vectors are static and will remain at the same positions

at any given point in time. The cluster validity indices form part of the relative criteria.

This section discusses different types of non-stationary environments and introduces the dif-

ferent performance measures applied to optimisation algorithms for problems in non-stationary

environments, i.e. dynamic environments. These performance measures are used to quantify

the quality of partitioning by clustering algorithms in dynamic environments (discussed in sec-

tion 7.1). A dynamic environment in the context of this thesis is defined as feature vectors in

space which move or adapt to different spatial positions over time [64].

The goal of optimisation algorithms (such as particle swarm optimisation (PSO) which is dis-

cussed in section 2.7.1) is to locate an optimum to an optimisation problem. There are different

classes of optimisation algorithms [162]. For the purpose of this section, stochastic population

based optimisation algorithms are considered where a population of candidate solutions, A(t), is

maintained at each time step, t. The fitness of each candidate solution, a ∈ A(t), is calculated

using the objective function, f , that needs to be minimised or maximised. The candidate solution

with the best fitness, best (t), is selected as the solution that best optimises the objective function,

f , at a specific time step, t. An objective function can also change over time. These changes result

in a dynamic search space with different optima at each point in time. Optimisation algorithms

for dynamic environments need to track optima over time by detecting and tracking changes in

the search space. The remainder of this section assumes maximisation of the objective function.

Changes in a dynamic environment can occur at any point in time with different effects to the op-

tima of the objective function. Figure 2.2 illustrates the different types of dynamic environments

for the following dynamic function:

f (x,ω(t))=















































ω1(t)
8

×π× exp
[

−1
2
×
(

(x1 +ω2 (t))2 +(x2 +ω2 (t))2
)]

if (x1 < 0) and (x2 < 0)

ω1(t)
4

×π× exp
[

−1
2
×
(

(x1 −ω2 (t))2 +(x2 +ω2 (t))2
)]

if (x1 > 0) and (x2 < 0)

ω3(t)
4

×π× exp
[

−1
2
×
(

x2
1 +(x2 −5)2

)]

if (x2 > 0)

0 otherwise

(2.53)

28

where ω(t) is the control parameters which determine the magnitude of change in the dynamic

environment at a specific time t. The different types of dynamic environments in [101, 180] are

grouped into three main types [46]:

1. The locations of the optima change but the values of the optima remain the same (as illus-

trated in figure 2.2(b)).

2. The locations of the optima remain the same (no change) but the values of the optima

change (as illustrated in figure 2.2(d)).

3. Both the locations and values of the optima change (as illustrated in figures 2.2(c) and 2.2(e)).

For each of these dynamic environment types the number of optima may change, in that new

optima may appear and existing optima may disappear.

The cluster validity indices discussed in section 2.4 are based on two functions, namely inter-

and intra-error (as defined in equations (2.16) and (2.17), respectively). The inter-error function

needs to be maximised to obtain well separated clusters and the intra-error function needs to be

minimised to obtain more compact clusters. Since the different cluster validity indices discussed

in section 2.4 are either maximised or minimised to obtain the best partitioning of a data set, these

indices can be used as fitness functions to achieve optimal clustering in dynamic environments.

Thus, from a clustering perspective in a dynamic environment, the initial formed clusters of

a data set can adapt over time, which means that at each time step the feature vectors in different

clusters can follow different migration types to and from other clusters. These migration types

were defined in section 2.4 as part of the discussion on the net information gain index (QNIG)

[103]. The migration of feature vectors from one cluster to another implies that the centroids of

the different clusters also move in space to different positions. Therefore centroids may move,

disappear and/or new centroids may appear.

From the above list of dynamic environment types, the definition of clustering in section 2.1 and

the different migration types discussed in section 2.4, the dynamic environments investigated in

this thesis are defined as adapting feature vectors such that:

• the number of clusters remains static with the same centroids but the compactness of each

cluster changes, i.e. movement of feature vectors within a static number of clusters (as

illustrated in figure 2.3(b)).

29

-10

-5

 0

 5

 10

x1

-10
-5

 0
 5

 10

x2

 0

 0.5

 1

 1.5

 2

f(x1,x2)

(a) Static function ω1 = 1,ω2 = 5,ω3 = 2

-10

-5

 0

 5

 10

x1

-10
-5

 0
 5

 10

x2

 0

 0.5

 1

 1.5

 2

f(x1,x2)

(b) Dynamic function ω1 = 1,ω2 = 3,ω3 = 2

-10

-5

 0

 5

 10

x1

-10
-5

 0
 5

 10

x2

 0

 0.5

 1

 1.5

 2

f(x1,x2)

(c) Dynamic function ω1 = 1.2,ω2 = 3,ω3 = 2

-10

-5

 0

 5

 10

x1

-10
-5

 0
 5

 10

x2

 0

 0.5

 1

 1.5

 2

f(x1,x2)

(d) Dynamic function ω1 = 2,ω2 = 5,ω3 = 0

-10

-5

 0

 5

 10

x1

-10
-5

 0
 5

 10

x2

 0

 0.5

 1

 1.5

 2

f(x1,x2)

(e) Dynamic function ω1 = 2,ω2 = 3,ω3 = 0

Figure 2.2 Dynamic Objective Function (equation (2.53))

30

(a) Static environment - no change (b) Dynamic environment - feature vectors

move within a static number of clusters

(c) Dynamic environment - a static number of

centroids move with migration of feature vec-

tors between clusters

(d) Dynamic environment - moving centroids

with merging/dividing clusters and migrating

feature vectors

Figure 2.3 Clustering in Dynamic Environments

• the number of clusters remains static with changing centroids and the compactness of each

cluster changes, i.e. movement of a static number of clusters as well as migration of feature

vectors (as illustrated in figure 2.3(c)).

• the number of clusters changes, resulting in different centroids and a change in the com-

pactness of each cluster, i.e. clusters merge/divide as a result of feature vectors migrating

between clusters and/or moving centroids (as illustrated in figure 2.3(d)).

The remainder of this section discusses the different performance measures of an optimisation

algorithm which inspired the definition of a performance measure for clustering algorithms in

dynamic environments (discussed in section 7.1). Performance measures that can be used to

31

quantify different aspects of the performance of optimisation algorithms at specific time intervals

include (assuming maximisation of the objective function):

• Accuracy: This performance measure calculates the instantaneous accuracy of the best so-

lution found by an optimisation algorithm at a certain time step, t. Feng [50] introduced an

accuracy measure in static environments which can be calculated in dynamic environments

as [180]

accuracy(t) =
f (best (t))− fmin (t)

fmax (t)− fmin (t)
(2.54)

where f is the fitness function, best (t) is the best candidate solution in the population at

time step t and fmax (t) and fmin (t) are the maximum and minimum values of f in the

search space at time step t, respectively, defined as:

fmax (t) = max
∀x(t)∈ℜN

{ f (x(t))} (2.55)

fmin (t) = min
∀x(t)∈ℜN

{ f (x(t))} (2.56)

Note that accuracy(t) ∈ [0,1], where an accuracy of one is the best possible value.

• Stability: An optimisation algorithm is defined to be stable if changes in the environment

have a minor or no affect on the measured accuracy [180]. The stability of an optimisation

algorithm at a certain time step, t, is calculated as [180]

stab(t) = max{0,accuracy(t −1)−accuracy(t)} (2.57)

where stab(t)∈ [0,1]. A stab(t) value close to zero implies a high stability. If stab(t) > 0,

then there is a difference in the accuracy between consecutive time steps. In the above cal-

culation of stability (assuming maximisation), whenever accuracy(t) > accuracy(t −1),

the result is stab(t) = 0 which indicates that the optimisation algorithm is stable. This,

however, is not true since there was an effect on the accuracy. The only time a stab(t)

value will have a deviation from zero is when the measured accuracy decreases (in the

case of maximising the objective function). Whenever the measured accuracy improves

due to a change in the environment, the stab(t) value will remain zero and therefore give

no indication of any change in the environment or the ability of the optimisation algorithm

to track a moving optimum. Instead of measuring the stability of an optimisation algo-

rithm, this thesis proposes that the sensitivity of the optimisation algorithm to a change in

32

the environment can be measured using

sens(t) = |accuracy(t −1)−accuracy(t)| (2.58)

where sens(t) ∈ [0,1]. A sens(t) value close to zero indicates a less sensitive change in

the environment whereas a sens(t) value closer to one indicates a more sensitive change.

For both stab(t) and sens(t), the calculated values give an indication of the ability of the

optimisation algorithm to track a moving optimum.

• Recovery: An optimisation algorithm also needs to react to a changing environment [180].

The reaction of an optimisation algorithm to a change in the environment at time t is

measured as the time taken to locate the moved optimum at time t
′
. An optimisation

algorithm succeeds in the location of the moved optimum when the ratio of the accuracy

at time t
′

to the accuracy at time t is greater or equal to the specified accuracy threshold.

The accuracy threshold is calculated as 1−ε where ε is the minimum ratio of accuracy for

an optimisation algorithm to succeed in locating the moved optimum. The ε-reactivity of

an optimisation algorithm at time t is calculated as [180]

reactε (t) =







t
′ − t|t < t

′ ≤ T, t
′ ∈ N if

accuracy
(

t
′)

accuracy(t)
≥ (1− ε)

T − t otherwise

(2.59)

where T is the total number of time steps and ε ∈ [0,1]. A smaller reactε value implies a

higher reactivity.

A drawback to the above performance measures is that the maximum and minimum values of f

at each time step t in the dynamic search space need to be known to determine accuracy, stability

and reactivity [180]. The maximum and minimum fitness values might also change over time,

due to the dynamic behaviour of the search space. This implies that the best fitness value at time

t, might be the worst fitness value at time t + 1 [131]. Thus, prior knowledge of the dynamic

search space at each time step needs to be known to calculate the accuracy of the best solution

found by an optimisation algorithm.

In cases where there is no knowledge of the dynamic search space, the above accuracy mea-

sure is inappropriate. In absence of information about the search space, the following accuracy

measures can be used (assuming maximisation) [180]:

33

Current best fitness: The current best fitness is the most familiar accuracy measure for opti-

misation algorithms applied to dynamic environments, calculated as [180]

currentBest (t) = max
∀a∈A(t)

{ f (a)} (2.60)

where f (a) is the fitness of solution a in the population of candidate solutions A at time t. The

currentBest performance measure calculates the fitness of the solution that best optimises the

objective function at each time step.

Current best offline fitness: The current best offline fitness accuracy measure calculates the

maximum current best accuracy up to a certain point in time [131, 180]. Thus, it measures the

solution that best optimises the objective function over all time steps. The current best offline

fitness accuracy measure is calculated as [180]

currentBestO f f (t) = max
1≤t

′≤t

{

currentBest
(

t
′)}

(2.61)

where currentBest is defined in equation (2.60). The currentBestO f f is less suitable in dynamic

environments since it irrationally compares currentBest measures at different steps in time at

which a change in the environment could occur. Thus, measuring the accuracy of an optimisation

algorithm over a period of time as the solution that best optimises the objective function at a

certain time within that period, has no meaning in a dynamic environment.

Current average fitness: The current average fitness calculates the average accuracy of popu-

lation A at time t, defined as [102, 180]

currentAvg(t) =
1

|A(t)| ∑
∀a∈A(t)

f (a) (2.62)

A drawback to the current average fitness accuracy measure is that if some of the solutions in

population A diverge from the optimal solution due to a change in the environment, the average

accuracy of population A will decrease even though other solutions in population A converge to

the new optimum. In such a case, the current average fitness accuracy measure gives a deceptive

view of the optimisation algorithm’s ability (or inability) to track moving optima.

Window accuracy: The window accuracy assumes that the best fitness does not change within

a certain time-span, thus the accuracy is only measured within a certain window size, W [131,

34

180]. The window accuracy measure is calculated as [180]

windowAcc(t) = max
∀a∈A(t)

{

f (a)−windowWorst

windowBest −windowWorst

}

(2.63)

where

windowBest = max
t−W≤t

′≤t

{

max
∀a∈A(t

′)
{ f (a)}

}

(2.64)

windowWorst = min
t−W≤t

′≤t

{

min
∀a∈A(t

′)
{ f (a)}

}

(2.65)

The assumption of no change of the best fitness is a risk and a disadvantage of the windowAcc

measure [131, 180].

The measured performance of different optimisation algorithms can be compared by averag-

ing each algorithm’s performance measure at each step in time over the total running time T

[102]. This will give each algorithm a mean value of measured performance which is used for

comparison. An accuracy measure related to the above currentBest measure is proposed in [131],

namely the collective mean fitness (cmf). The collective mean fitness takes the fitness trajectory

across the entire dynamic landscape into account by averaging the mean value of measured per-

formance over the number of independent runs, E, of the algorithm on the same problem. The

collective mean fitness is defined as [131]

cm f =
∑E

r=1

(

∑T
t=1 f (best(t))

T

)

E
(2.66)

where T is the total number of time steps, and f (best (t)) is the best fitness value at time t. The

cm f is thus the sum of all average best fitness values, averaged over a number of runs. The

number of time steps T needed by an optimisation algorithm is important in optimisation of a

dynamic environment. A too small value of T , will result in an unstable value of cm f . A large

value of T is necessary for the optimisation algorithm to be exposed to extreme changes in the

dynamic environment [131].

Section 7.1 proposes a clustering performance measure to quantify the quality of partitioning

by clustering algorithms in dynamic environments. The proposed clustering performance mea-

sure is derived from the above collective mean fitness measure and uses cluster validity indices.

35

As mentioned earlier, the cluster validity indices are based on the inter- and intra-errors to de-

termine the cluster separation and cluster compactness, respectively. In the context of clustering

of dynamic environments, these errors can be used, in addition to the proposed clustering per-

formance measure in section 7.1, to quantify the quality of partitioning by clustering algorithms

over time.

As an example, assume a fixed number of clusters, K. The average inter-error plotted against

time, will increase in value if the clusters become more separated in time, i.e. clusters move away

from one another. If there is any migration of feature vectors between clusters, it is expected that

the average intra-error plotted against time will fluctuate from the time of migration until the

feature vectors become stationary again. In clustering problems where K is not fixed, the validity

indices determine the optimal partitioning into K clusters at a specific time, indicating whether a

new cluster emerged or whether clusters merged.

2.6 Outlier Detection and Analysis

Referring to the definition of data clustering in section 2.1, each cluster (or centroid) represents a

concept or trend in the data set. Based on a similarity measure, an outlier feature vector is either

not grouped with any cluster or has a major deviation from the centroid of a cluster with which

the outlier is associated. Therefore an outlier is also known as an exception and is defined as

a vector which is not similar to any of the centroids. Outliers are grossly different from and/or

inconsistent with feature vectors of the same data set [74], which can be a result of inherent data

variability [74].

In the context of a dynamic environment a feature vector can only be classified as an outlier

at a specific point in time. An outlier at time t might disappear at time t +1 or even more outliers

might occur within the same area. The latter could indicate a new trend in the data for a certain

period of time.

Outlier detection and analysis is referred to as outlier mining and is described as follows [186]:

In a data set of I feature vectors, the expected number of outlier vectors, o, are those feature vec-

tors which are the most dissimilar, exceptional and/or inconsistent compared to the remainder

of the data set. Outlier detection can be categorised into three approaches, namely the statisti-

cal approach, distance-based approach and deviation-based approach [74, 186]. Each of these

36

categories is briefly explained next.

Statistical approach: Feature vectors in a data set are identified as outliers with a statistical

discordancy test by examining a null hypothesis and an alternative hypothesis. A null hypothesis

can state that all feature vectors in a data set are from the same distribution. Thus, the statistical

discordancy test verifies whether a feature vector is significantly large in relation to the distri-

bution of the data set [74]. The null hypothesis is kept in case no statistical significant evidence

supports the rejection thereof.

The alternative hypothesis states that a feature vector comes from a different distribution as

the one defined in the null hypothesis [74]. The interested reader is referred to [74] for more

information on the different alternative distributions.

A drawback of the statistical approach is the assumption of a specific distribution (like normal,

Poisson etc.) for the data set and thus requires knowledge of the distribution parameters (like

average, standard deviation etc.) and the expected number of outliers. Another major drawback

is that the hypothesis testing is for outlier detection of single features, i.e. only a single attribute

is tested in a feature vector. There is also no guarantee that all outliers are detected [74].

Distance-based approach: This approach is based on a distance measure between feature vec-

tors in a data set. A global distance-based neighbourhood radius is defined for each feature vector,

pi. If a fraction of the feature vectors is not within the distance radius of pi, then pi is detected

as an outlier in the data set [117]. The different distance-based outlier detection algorithms are

the index-based, nested-loop and cell-based algorithms [74, 117]. A drawback to these distance-

based algorithms is the user specified parameters of neighbourhood radius and the number of

feature vectors in the data set that needs to be within the specified radius.

Deviation-based approach: The most general concepts can be derived from the feature vec-

tors in a data set. Feature vectors which deviate from these general concepts are seen as outliers.

There are two techniques in deviation-based outlier detection [74], namely sequential exception

and the on-line analytical processing (OLAP) data cube technique. The first of these two tech-

niques is discussed next and the interested reader is referred to [74] for more information on the

OLAP technique:

37

• Sequential exception technique: The sequential exception technique is based on a process

followed by humans to detect an outlier after being represented with a series of similar

feature vectors [5]. An outlier is defined as a feature vector that deviates from the series.

A sequence of subsets, {S1,S2, . . . ,So}, is built from a data set, P, consisting of I fea-

ture vectors, i.e. 2 ≤ o ≤ I. Thus, So−1 ⊂ So : So ⊆ S. A function of dissimilarity (not

necessarily distance based) is calculated between each subset. The dissimilarity function

is defined as any function that returns a low value to indicate more similar feature vectors

and a high value to indicate less similar feature vectors [74, 186]. An example of a dis-

similarity function is defined in equation (2.44), which calculates the variance of a set of

feature vectors.

A smoothing factor function is calculated for each subset, So, in the sequence. The subset

with the highest smoothing factor becomes the set of outliers [5, 74]. The cardinality of

each subset is used to scale the smoothing factor. The cardinality of a set is defined as the

number of feature vectors in the set [5, 74]. The smoothing factor is calculated as [5]

s f (So) = |So −So−1|× (D(So)−D(So−1)) (2.67)

where |•| is the cardinality of the set, D is the function of dissimilarity, and the exception

set Se is defined as that set where [5]

s f (Se) ≥ s f (So) ∀So ⊂ S (2.68)

Thus, the smoothing factor (s f), calculates the reduction in dissimilarity when removing a

subset So of feature vectors from set S. If all feature vectors in S are similar, the smoothing

factor is zero [5]. The exception set Se has the highest s f value [5].

2.7 Alternative Computational Models for Clustering

This section discusses two alternative computational algorithms which can be applied to the

problem of data clustering. Both of these algorithms implement neighbourhood topologies to

influence the search behaviour of the algorithm. The model proposed in this thesis also utilises

the concept of a neighbourhood topology. The two algorithms which are briefly discussed are the

Particle Swarm Optimisation (PSO) algorithm, introduced by Kennedy and Eberhart [108, 109]

38

and the Self-organising Feature Map (SOFM or SOM), introduced by Kohonen [118].

2.7.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) algorithms model the formation and social behaviour found

in bird flocks [108, 109]. PSO is a population-based stochastic search algorithm [109]. Thus,

PSO maintains a population or a swarm of particles. Each particle represents a potential solution

to an optimisation problem. In PSO, particles ‘fly’ through a multi-dimensional space in search

of the optimal or best solution. The best solution to an optimisation problem is the particle with

the highest fitness. The fitness of a particle is usually a function of the objective that needs to be

optimised.

The position of each particle is presented by a feature vector in a multi-dimensional space. A par-

ticle moves through the search space by adjusting its position towards its own best experienced

solution and towards the best particle in the neighbourhood. Since a particle needs to be able to

adjust towards its own best experienced solution, a particle needs to maintain its personal best

position. The neighbourhood can either be the entire swarm of particles or a subset thereof. The

former case is known as gbest PSO and the latter as lbest PSO. In addition to the feature vector

and personal best position contained by a particle, a particle also maintains its current velocity.

The rest of this section uses the following notation:

• SN: The swarm or population of particles in N-dimensional search space;

• xi: The current feature vector or position of the i-th particle in SN;

• bi: The i-th particle’s personal best position;

• vi: The current velocity of the i-th particle in SN;

• Vmax: The maximum allowed velocity of any particle in SN;

• gi: The position of the best particle in the neighbourhood of the i-th particle in SN;

• f : The fitness function (objective that needs to be optimised).

The i-th particle’s position is adjusted by using

xi (t +1) = xi (t)+vi (t +1) (2.69)

39

where vi (t +1) is the updated velocity of the particle at time step t +1. The velocity of the i-th

particle is updated by using

vi,n (t +1) = wvi,n (t)+ c1r1,n (t)(bi,n (t)−xi,n (t))+ c2r2,n (t)(gi,n (t)−xi,n (t)) (2.70)

where w is the inertia weight, c1 and c2 are the acceleration constants, r1,n (t), r2,n (t) ∼U (0,1)

and n = 1, . . . ,N. The velocity update in equation (2.70) basically consists of three components.

These are:

• inertia: With the inertia weight, w, a fraction of the particle’s previous velocity contributes

to the update [160]. Large values of w result in better exploration of the search space,

whereas lower w values result in better exploitation of the search space [160].

• social component: This is the (gi,n (t)−xi,n (t)) term, which is the distance in the n-th

dimension to the best particle in a neighbourhood. The best particle gi at time t, in a

neighbourhood with radius d, is determined by using the following equation:

f (gi (t)) = min{ f (bi−d (t)) , f (bi−d+1 (t)) , . . . , f (bi (t)) , . . . , f (bi+d (t))} (2.71)

If d =
|S|
2

, then the neighbourhood is the entire swarm of particles and the best particle at

time t in the neighbourhood will be the same for all particles in the swarm. The resulting

PSO is referred to as the gbest PSO. If d <
|S|
2

, then the neighbourhood is a subset of the

swarm. The resulting PSO is referred to as the lbest PSO [160].

• cognitive component: This is the (bi,n (t)−xi,n (t)) term, which is the distance in the n-th

dimension to the personal best position of the i-th particle. The personal best position of

the i-th particle at time t is updated by

bi (t +1) =

{

bi (t) if f (xi (t +1)) ≥ f (bi (t))

xi (t +1) if f (xi (t +1)) < f (bi (t))
(2.72)

In order to limit the step size with which a particle’s position is adjusted, the velocities can be

clamped [45]. Therefore, if a particle’s velocity exceeds the specified maximum velocity, Vmax,

the particle’s velocity is set to Vmax. The velocity of a particle, prior to the position update, is

adjusted using,

vi,n (t +1) =

{

v∗i,n (t +1) if v∗i,n (t +1) < Vmax,n

Vmax,n if v∗i,n (t +1) ≥ Vmax,n

(2.73)

40

(a) Star Topology (b) Ring Topology

Figure 2.4 Neighbourhood Topologies in PSO

where v∗i,n (t +1) is calculated using equation (2.70) and Vmax,n is the maximum allowed velocity

in dimension n, controlling the granularity of the search. The values of Vmax are selected as a

fraction of the domain of each dimension of the search space, using

Vmax,n = δ(xmax,n −xmin,n) (2.74)

where xmax,n and xmin,n are the maximum and minimum values of the n-th dimension and δ ∈
(0,1]. Figure 2.4 illustrates the two most common neighbourhood topologies used in PSO. These

are the star and ring topologies [47]. The star neighbourhood topology is a fully meshed network

of particles where every particle is connected to every other particle in the network topology.

Each particle can therefore communicate with every other particle. The ring topology arranges

particles in a ring structure such that each particle has a number of particles to the right and left

forming the particle’s neighbourhood.

PSO algorithms can be applied to the problem of data clustering [174, 145]. Algorithm 2.4

lists the pseudo code for a basic PSO clustering algorithm where tmax is the maximum number

of iterations. Each particle in the swarm represents a possible partitioning of the data set. Thus,

each particle represents K number of centroids, such that N = K × I where I is the number of

features. Each particle is defined as: xi = (ci,1,ci,2, . . . ,ci,K) where ci,k is the cluster centroid of

the k-th cluster, Ci,k, represented by the i-th particle. In the context of clustering, the objective

function optimised by the PSO, is defined as the quantization error [174]

JPSO =
∑K

k=1
1

|Ci,k| ∑∀p∈Ci,k
σ
(

p,ci,k

)

K
(2.75)

41

Algorithm 2.4: PSO Clustering Algorithm

Initialise each particle to contain K randomly initialised centroids;

for t=1 to tmax do

for each particle i do

for each pattern p do

Calculate the Euclidean distance σ
(

p,ci,k

)

(as defined in equation (2.3)) for all

clusters Ci,k;

Group pattern p with cluster Ci,k such that

σ
(

p,ci,k

)

= mink=1,...,K

{

σ
(

p,ci,k

)}

;

end

Calculate the fitness of particle i;

end

Determine the best particle position, gi, in the swarm using equation (2.71);

Determine the personal best position, bi, using equation (2.72);

Update the cluster centroids of each particle using equations (2.69) and (2.70);

end

where σ is the Euclidean distance as defined in equation (2.3) and |Ci,k| is the number of patterns

grouped with cluster Ci,k. Thus, J is the fitness function of the particles, which is measured as

the quantization error (f = JPSO).

The same PSO algorithm in [174] was applied to image segmentation in [145], but with a dif-

ferent fitness function. An advantage of the PSO clustering algorithm compared to K-means

clustering, is that the algorithm is less sensitive to the initialisation of cluster centroids, since

PSO performs a parallel search for an optimal partitioning of the data set [145, 174]. The inter-

ested reader is referred to [47] for more information on swarm intelligence algorithms.

2.7.2 Self-organising Feature Map

The Self-organising Feature Map (SOM) is a single-layered unsupervised artificial neural net-

work algorithm which consists of a single output layer known as a map, M [118]. The structure

of the map is a two-dimensional grid of artificial neurons with R rows and C columns, MR×C.

The map is usually a square with R = C but can also be any rectangular shape with R 6= C.

Each pattern, p, in a data set, PN (where N is the number of dimensions), is associated with

a single neuron in the map [96]. The number of neurons in the map is less than the number of

patterns in the data set, i.e. R×C < |PN|. Each neuron in the map represents an N-dimensional

42

Figure 2.5 Self-organising Feature Map

weight vector, wrc, known as a codebook vector where r and c are the row and column indices,

respectively. Figure 2.5 illustrates the association of an input pattern to the map of neurons.

Training of the SOM is based on a competitive learning strategy where neurons compete to be

the best matching neuron (BMN) to the input patterns which results in similar patterns being

grouped together and represented by a single neuron [96]. Thus each codebook vector, wrc,

forms the centroid of a cluster [48].

Algorithm 2.5: General SOM Algorithm

Initialise the learning rate γ(0) and neighbourhood Λ
(

w
′
,0
)

;

Initialise the codebook vector of each neuron in the map, i.e. wrc ∀r,c;

repeat

for each input pattern p do

Determine the best matching neuron (BMN), w
′
, using equation (2.3);

Determine the neighbourhood, Λ
(

w
′
, t
)

, of BMN w
′
;

Using competitive learning, update the codebook vector of each neuron in

neighbourhood Λ
(

w
′
, t
)

by using equation (2.76);

end

Monotonically decrease the learning rate γ(t);

Reduce the neighbourhood Λ
(

w
′
, t
)

;

until some stopping criterion is satisfied;

Algorithm 2.5 lists general pseudo code of SOM training algorithms. There are various methods

to initialise the codebook vector of each neuron. The two most common initialisation methods

43

(a) Square (b) Hexagon

Figure 2.6 Neighbourhood Arrangements in SOM

are:

• randomly initialise each codebook vector, or

• randomly select input patterns as initial codebook vectors.

The codebook vector of each neighbouring neuron is updated after each pattern is presented to

the SOM. The neuron most similar to an input pattern is selected as the pattern’s best match-

ing neuron (BMN). Similarity between an input pattern p and a neuron’s codebook vector wrc,

is measured with the Euclidean distance as defined in equation (2.3). Thus the BMN, w
′
, of

an input pattern, p, is the minimum Euclidean distance to the input pattern. The BMN and its

neighbouring neurons are then moved closer to the input pattern by updating the codebook vec-

tors. The neighbourhood of a BMN can be arranged as a square or hexagon lattice (as illustrated

in figure 2.6) or can be determined by using a smooth Gaussian function [48]. The codebook

vector, wrc, of a neighbouring neuron is updated by using

wrc (t +1) =

{

wrc (t)+ γ(t)[p−wrc (t)] if wrc (t) ∈ Λ
(

w
′
, t
)

wrc (t) otherwise
(2.76)

where γ(t) is the learning rate and Λ
(

w
′
, t
)

is the set of neighbourhood neurons of the best

matching neuron, w
′
, for input pattern p at time step t. The neighbourhood radius decreases with

each time step to reduce the influence of distant neighbouring neurons. The iterative learning

process stops when one of the following criteria is met:

• the neighbourhood Λ
(

w
′
, t
)

only includes the BMN w
′
,

44

• the maximum number of time steps (iterations) is exceeded,

• there are no changes in the codebook vectors, or

• the quantization error is sufficiently small. The quantization error is calculated as the sum

of Euclidean distances between all input patterns and the codebook vector of BMN, defined

as [48]

JSOM = ∑
∀p∈P

σ
(

p,w
′
(t)
)

(2.77)

A SOM maps multi-dimensional data onto a two-dimensional map which is a much simpler

representation of the data and is easier to interpret. Thus, a SOM maintains the topology of the

data [48]. There are however a few drawbacks to SOMs [48, 96]:

• The random initialisation of codebook vectors can result in increased training times.

• Initialisation of codebook vectors to randomly selected input patterns may result in prema-

ture convergence.

• SOMs are only applicable to clustering hyper-spherical data.

• The clustering result is dependent on the number of neurons in the map.

In order to determine the clusters within the data set, the boundaries between clusters in the

map need to be identified. Boundaries in the map can be determined by means of the unified

distance matrix (U-matrix) technique or Ward clustering technique [3]. The former is a matrix

which contains a geometrical approximation of the codebook vector distribution in the map. The

latter technique is an agglomerative hierarchical clustering method which partitions the codebook

vectors into a specified number of clusters. The linking of two adjacent clusters is based on the

Ward distance measure which is calculated as

ℓWard

(

Ci,C j

)

=
|Ci|×

∣

∣C j

∣

∣

|Ci|+
∣

∣C j

∣

∣

σ
(

ci,c j

)

(2.78)

where σ is the Euclidean distance measure as defined in equation (2.3). The two clusters with the

smallest ℓWard distance are merged and the centroid of the new cluster, Ck =Ci∪C j, is calculated

as

ck =
1

|Ci|+
∣

∣C j

∣

∣

(

|Ci|ci +
∣

∣C j

∣

∣c j

)

(2.79)

45

2.8 Conclusion

The chapter gave a formal definition of data clustering and discussed different distance-based

similarity measures which can be used to determine the similarity between two feature vectors.

The chapter also discussed the most familiar clustering algorithms which are categorised into

hierarchical or partitional clustering methods. This was followed by an overview of different

cluster validity indices which evaluate the partitioning quality of a clustering algorithm.

Since the cluster quality of a clustering algorithm can be influenced by outliers in a data set,

a brief introduction was also given on outlier mining and different techniques for outlier de-

tection were discussed. Another influence on the cluster quality of a clustering algorithm is a

changing environment. This means that the feature vectors are non-stationary. Thus, the cluster

quality of a clustering algorithm needs to be measured over a period of time. Therefore, the

chapter discussed existing measures to determine the performance of optimisation algorithms

in a non-stationary environment. These performance measures are used to quantify and define

performance measures that can be used to evaluate the cluster quality of a clustering algorithm

in non-stationary environments.

The chapter ended with a discussion of the Particle Swarm Optimisation and Self-organising

Feature Map algorithms and how these algorithms can be applied for clustering data. Both of

these algorithms implement different neighbourhood techniques to adapt solutions to feature vec-

tors in the data.

The proposed model in this thesis is inspired by and based on the network theory in immunology.

The proposed model is a partitional clustering method which also implements a neighbourhood

technique and uses the Euclidean distance as similarity measure between two feature vectors

(discussed in chapter 5). The cluster validity indices of Davies-Bouldin and Ray-Turi, which are

defined in equations (2.41) and (2.51) respectively, are used to evaluate the clustering quality of

a clustering algorithm in this thesis. These cluster validity indices were selected since an optimal

partitioning of a data set minimises all of these indices. An enhancement to the proposed algo-

rithm in this thesis implements the sequential exception technique as discussed in section 2.6 to

determine the boundaries between clusters and thereby dynamically determines the number of

clusters within a data set (discussed in chapter 6). Both the original and enhanced version of

the proposed clustering algorithm are also applied to clustering of non-stationary environments

(discussed in chapter 7). Section 7.1 revisits the clustering performance measures discussed in

46

this chapter and proposes a clustering performance measure for non-stationary data clustering.

Since the proposed model in this thesis is inspired by the network theory in immunology, the

next chapter reviews the functional process of the natural immune system and discusses the dif-

ferent theories in immunology regarding the functioning and organisational behavior between

lymphocytes.

47

	Front
	CHAPTER 1
	1.1 Motivation
	1.2 Objectives
	1.3 Methodology
	1.4 Contributions
	1.5 Thesis Outline

	CHAPTER 2
	2.1 Data Clustering
	2.2 SimilarityMeasures
	2.3 Clustering Algorithms
	2.4 Cluster Quality Validation
	2.5 Cluster Quality in Dynamic and Uncertain Environments
	2.6 Outlier Detection and Analysis
	2.7 Alternative ComputationalModels for Clustering
	2.8 Conclusion

	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapters 7-8
	Back

