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SUMMARY 

In this thesis, some issues about the human immunodeficiency virus (HIV) and acquired 

immunodeficiency syndrome (AIDS) have been addressed by concentrating on the stochastic 

modelling of the dynamics of the viruses. The aim of this thesis is to determine parameters 

such as the mean number of free HIV, infectious free HIV and non-infectious free HIV which 

are essential in determining incubation period of the virus, the disease progression of an 

infected individual and the efficacy of the treatment used. This thesis comprises of six 

chapters. 

 

The first two chapters are introductory to the viruses and reasons why HIV-1 is given priority 

over HIV-2 are given. The pathogenesis of the virus is addressed. This is because knowledge 

of the pathogenesis and strains of the virus has become essential in the study of HIV in vivo 

dynamics which is still paving ways into extensive research of the ways to contain the disease 

better. 

 

In chapter three the distribution functions of the HIV incubation period and seroconversion 

time are determined via stochastic models by building on previous work of Lui et al. (1988) 

and Medley et al. (1988). Also AIDS incidence projection was done using the Back-

calculation method. 

 

Chapter four deals with the formulation of stochastic model of the dynamics of HIV in an 

infected individual. Two stochastic models are proposed and analysed for the dynamics of the 

viral load in a HIV infected person and the multiplication process of the virions inside an 

infected T4 cell. Also a numerical illustration of the stochastic models derived is given. 
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In chapter five, the T4 cell count which is considered one of the markers of disease 

progression in HIV infected individual is examined. WHO has recently advocated that 

countries encourage HIV infected individuals to commence antiretroviral treatments once 

their T4 cell count is 350 cells per ml of blood. This is because when the T4 cell count is low, 

the T4 cells are unable to mount an effective immune response against antigens (and any such 

foreign matters in the body) and consequently, the individual becomes susceptible to 

opportunistic infections and lymphomas. We developed a stochastic catastrophe model to 

obtain the mean, variance and covariance of the uninfected, infected and lysed T4 cells; also 

the amount of toxin produced in a HIV infected person from the time of infection to the 

present time is derived. A numerical illustration of the correlation structure between 

uninfected and infected T4 cells, and infected and lysed T4 cells is portrayed. 

 

Antiretrioviral treatments were introduced while we await a cure. Treatment with single drug 

failed due to the fact that HIV evolved rapidly because of its high replication rate.  Thus drug 

resistance to single therapeutic treatment in HIV infected individuals has promoted research 

into combined treatments. In chapter six a stochastic model under combined therapeutic 

treatment is derived. Mean numbers of free HIV, infectious free HIV and non-infectious free 

HIV are obtained. Variance and co-variance structures of our parameters were obtained 

unlike in previous work of Perelson et al. (1996), Tan and Xiang (1999).  
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1.1 OVERVIEW 

Acquired Immunodeficiency Syndrome (AIDS) and its etiologic agent Human 

Immunodeficiency Virus (HIV) are two viral infections that have been most studied world 

wide since their first discovery in 1981 and 1983 respectively with 60 million people 

infected, 20 million deaths from AIDS and 14,000 daily new infections of which 95% is in 

developing world countries (WHO HIV statistics 2007). Statistics showed that around 33.2 

million people were living with HIV at the end of 2007 of which 2.5 million were children, 

and a greater proportion of the population infected coming from Africa and Asia continents. 

Compared to approximately 47,000 cases of AIDS in the United States with 58% of the 

patients already dead since the first cases were reported in summer 1981 until 1 December, 

1987 (Barker et al. 1998, Fauci 1988, Feinberg 1996). This shows that HIV appears to be 

progressive and irreversible with a high mortality rate that may approach 100 percent over 

several years if not put in check.  

 

Presently only two types of HIV are known to infect humans, namely the HIV-1 and HIV-2. 

These two viruses evolved independently and may have crossed the monkey-human species 

barrier at several independent occasions (Groot, 2006). HIV-1 is believed to have originated 

from wild chimpanzees (Pan troglodytes) virus (SIVcpz) of the southern Cameroon of West 

Africa, while HIV-2 originated from sooty mangabey monkey (cercocebus atys) virus (SIV 

variant) of Guinea-Bissau, Gabon and Cameroon of Africa (Groot, 2006, HIV Wikipedia 

2008).  

 

Studies have reported cases of infection with HIV-2 such as the Portuguese man infected in 

Guinea-Bissau who had a clinical latency duration of 19 years (Ancelle et al. 1987), a 

Portuguese woman infected through blood transfusion and she had a clinical latency of 27 
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years (Mota-Miranda et al., 1995) and a Japanese man (first report of HIV-2 infected 

Japanese individual) with clinical latency of 35 years (Utsumi et al. 2007). One can 

effectively induce that HIV-2 has a longer clinical latency period than that of HIV-1. HIV-2 

also has a lower transmission rate (this was pointed out by Utsumi et al. (2007), when they 

noted that the man had sexual acts with his 77 years old wife and both she and their 37 years 

old son were HIV negative). Also HIV-2 has less immune activation (see Levy 2009). Hence 

these have posed as very good advantages for the research into vaccine and cure of HIV-2 

unlike its counterpart which has a shorter clinical latency period (10 years on average) and it 

is the more common viral infection in the world (http://en.wikipedia.org/wiki/HIV). Thus 

concentration has been placed on the HIV-1 strains among human and not the HIV-2 strains 

in this thesis solely because HIV-1 is more virulent, easily transmitted, has a lesser clinical 

latency duration (of say 10 years) and according to WHO reports, it is the cause of the 

majority of HIV infections globally. Unlike HIV-2 which is quite mild in nature, not easily 

transmitted, has a clinical latency duration of 20 – 40 years and it is less common among 

humans.  

 

Our aim in this thesis is to use stochastic modelling to determine number of uninfected T4 

cells, infected T4 cells and free HIV in an infected individual by examining the pathogenesis, 

progression and combined treatment of HIV. This is important because it helps in 

determining the efficacy of methods used in the research of pathogenesis, progression and 

combined treatment of HIV. We also looked at different ways that research has tried to go 

about eliminating the virus (section 2.3) in an infected person. 

 

1.2 ACRONYMS AND TERMINOLOGIES 

AIDS   Acquired Immune Deficiency Syndrome 
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APOBEC3G  Apoliprotein B mRNA editing enzyme catalytic polypeptide-like 3G 

CD4+T cells  CD4 positive T lymphocytes 

CD8+T cells  CD8 positive T lymphocytes 

DNA   Deoxyribonucleic acid 

Env   Envelope; precursor to envelope glycoproteins 

Gag   Group - antigen ; precursor to internal structural proteins 

HIV   Human Immunodeficiency Virus 

IT   Integrase 

LTR   Long terminal repeat 

mRNA   Memory Ribonucleic acid 

PR   Protease 

Pro   PR enzyme 

Pol   Polymerase; precursor to RT and IT enzymes 

Rev   regulates splicing/RNA transport 

RNA   Ribonucleic acid 

RRE   Rev response elements 

RT   Reverse transcriptase 

TAR   Transactivation-response element 

Tat   activates transcription 

Vif   affects infectivity of viral particles 

vpr and/or vpx nef is present in viron; has nuclear localization signal; facilitates infectivity 

in quiescent cells; triggers CD4 endocytosis, alters signal transduction 

in T cells; enhances viron infectivity 

vpu integral membrane protein; triggers CD4 degradation; enhances viron 

release 
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1.3  ROLE OF MATHEMATICAL AND STATISTICAL MODELING IN HIV/AIDS  

EPIDEMIC 

Mathematical and statistical models of HIV/AIDS infection have become extremely 

important not only because medical scientists cannot combat the problems of these viruses 

alone (since not all problems can be replicated or solved experimentally as human lives are 

involved), but also to give better understanding of the HIV/AIDS epidemic and for reasons 

such as: 

i. the models based on underlying transmission mechanism of the HIV/AIDS infection 

can help the medical and/or scientific world to understand and evaluate the 

epidemiology of these viral infections hence giving insight into different strategies of 

prevention and control that can be applied according to the severity of the epidemic 

in the different areas (Tan 2000) 

ii. the mathematical and statistical models can provide qualitative insights even when 

data are lacking or not readily available, and this can help prioritize data collection 

(Hyman and Stanley 1988, Tan 2000) 

iii.  the models can be used to provide in-depth understanding of some basic features and 

principles of the epidemic and its pathogenesis, thus aiding in the study of suitable 

treatments and/or vaccine and maybe a cure in the near future (Tan 2000) 

iv. the models can help reveal important parameters and co-factors of the infection and 

also shed light on their consequences 

v. the impacts of risk factors may be assessed, thereby screening for important risk 

variables for the purpose of prevention and control of the infections (Hyman and 

Stanley 1988, Tan 2000) 

vi. mathematical and statistical models based on the transmission of the infections can 

show how early or late infection, behavioural changes and medical advances such as 
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treatments and vaccines will affect the future course of the HIV/AIDS epidemic 

(Hyman and Stanley, 1988) 

vii.  the knowledge of parameters and co-factors can help develop both mathematical and 

statistical models which can give computer simulations to compare different 

treatment outcomes etc.; these computer simulations can save time, lives and 

resources as compared with using other means such as animals and running trials on 

humans 

viii.  models can be used  to estimate unknown data on the basis of the known facts. For 

example, the past distribution of HIV infection can be estimated from the current 

AIDS caseload and the distribution of times from infection to AIDS (see Back-

calculation method in section 3.4). To determine the consistency of the generated 

data a formal mathematical model similar to the one that was designed is required. 

The available data can also be assessed indirectly to determine their internal 

consistency by leaving some data out, generating estimates of the missing data based 

on one or more models, and then comparing the two data sets (lifted directly from 

Hyman and Stanley, 1988). 

 

1.4   HIV MODELING 

In the bid to combat the two deadliest viral infections in the 20th and 21st century, the onus 

have not been only on the medical scientist to find a cure but also partnership with 

mathematical, statistical, computational and engineering scientist have become inevitable. 

Hence the mathematical and computational modeling of HIV/AIDS have become a novel 

approach with great impact in the different areas of study of the epidemic. Among those who 

pioneered mathematical modelling (quantitation) of HIV is David Ho. His research into 

HIV/AIDS in the last 27 years has helped formed the basis for combined antiretroviral 
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treatments and also in understanding the dynamic nature of HIV replication in vivo. Research 

into the dynamics of HIV in vivo has helped in further understanding of the pathogenesis and 

growth of HIV, the replication and progression of the virus, means of determining HIV 

progression by T4 cell count or HIV-1 RNA viral load count, results of single and combined 

antiretroviral treatments, when to commence such treatment and also mathematical and 

computational modeling of these processes. 

 

To ascertain the progression of HIV in an infected individual, the T4 cell count, the HIV-1 

RNA viral and viral decay approach have not only become common but also reliable means 

used to predict the outcome of a patient in terms of duration to regressing to AIDS and also to 

determine when to commence ARV or HAART. Also methods that have permitted missing 

data analysis have become extremely important in HIV modelling because most patients 

don’t know when they are infected and data on some patients are incomplete due to 

inconsistency in attending ART clinics. De Gruttola et al. (1991) modelled the progression of 

HIV infection using the T4 cells as its measure, more likely because of the availability of data 

on the T4 cell counts. They used the parametric linear growth curve model because it permits 

analysis of incomplete data assuming the data are missing at random. Also autoregressive 

models were fitted to short series of the T4 cell counts because this method allowed the 

estimation of annual decline averaged over all individuals. The setback of these methods was 

that the variability in the rates of decline of the T4 cell cannot be estimated and the modeling 

of the entire process from infection to AIDS cannot be done. 

 

Tan and Wu (1998) developed a stochastic model for the interaction between CD4+T cells 

and the human immunodeficiency virus. Stochastic differential equations were obtained for 

the numbers of uninfected T cells, latently infected T cells, actively infected T cells and free 
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HIV through binomial and multinomial distributions. They modelled the generation of new 

uninfected T cells by a pure birth process (Poisson process) and the growth of uninfected 

CD4+T cells by simulating the antigens using a stochastic logistic pure birth process. The 

results of the Monte Carlo simulations showed that the probability distributions of the 

CD4+T cells and free HIV were skewed in the earlier stage of infection and eventually 

converged to normal distributions in later years. 

 

Sridharah and Jayashree (1993) also used the stochastic point process to model the population 

of infected T4 cells. In the model, they made use of phases with special types of time-

dependencies whose durations were independent and exponentially distributed. The first and 

second moments of the infected T4 cells were generated from explicit differential equations 

obtained. 

 

Wu and Ding (1999) gave a model with a sum of exponentials which gave a good fit to the 

observed clinical data of HIV-1 dynamics i.e. HIV-1 RNA copies after starting antiretroviral 

treatments. The other advantage about this model was that it can also be used as a biological 

compartment model for the interaction between HIV and its host cells.  Thus enjoying both 

worlds of biological interpretability and mathematical simplicity after re-parameterization 

and simplification. Finally the use of hierarchical nonlinear mixed-effect model approach for 

parameter estimation and other statistical inferences was illustrated using real life data. 

 

Wu et al. (1999) revised four model-fitting procedures for biphasic viral decay data in clinical 

studies. This was because the estimates obtained when these methods were applied differed 

significantly. The methods were Single method, Perelson steady state (PSS) method, Wu and 

Ding (WD) method and Perelson and Neumann steady state (PNSS) method. Pros and cons 
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of these methods were discussed. For example, the simple method which fitted a bi-

exponential model to the biphasic viral load was good because it included all data from 

baseline onward. The disadvantage of this method was the biased estimates of viral load 

obtained due to effect of the initial ‘shoulder’ that was ignored. Ding and Wu (1999) 

suggested the fitting of the model only after the effect of the ‘shoulder’ is considered. 

 

Ding and Wu (1999) also worked in detail on the four model-fitting procedure given in Wu et 

al. (1999), evaluating the performance of these procedures through extensive use of Monte 

Carlo simulations. Guidelines on how to select appropriate method for data analysis was 

given and real life data was used to backup the guidelines. 

 

Joshi (2002) derived an optimal control of an HIV immunology model by using a system of 

ordinary differential equation model taken from Kirschner and Webb (1998). This system of 

ODE described the interaction of the T4 cells and HIV in the immune system. He used the 

boundedness of solutions of the ODE system for finite time interval to prove the existence of 

an optimal control pair. Thus the optimal control pair obtained gave an optimal treatment 

strategy for the HIV infected patient under two types of drug treatments, namely, treatment 

that aimed at reducing viral population and treatment that aimed at improving the immune 

response. Joshi (2002) solved the optimality system by using an iterative method with a 

Runge-Kutta fourth order scheme. Joshi (2002) noted that the format of the optimal controls 

he obtained agreed with those of Butler et al. (1995),  Kirschner et al. (1997) and Fister et al. 

(1998) where only one control instead of two was used.  

 

Bortz and Nelson (2006) considered six deterministic models and made comparisons with 

respect to their ability to represent HIV infected patients undergoing antiretroviral treatment, 
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(to be precise reverse transcriptase mono-therapy). Bortz and Nelson (2005) created a 

statistical model using the hierarchical mixed-effects approach to characterize factors such as 

inter-individual and intra-individual variability in the patient population. Their aim was to 

derive mathematical model(s) of in vivo HIV infection dynamics. Bortz and Nelson (2005) 

were able to obtain higher viral clearance rate c as was done in earlier work by Louie et al. 

(2003) by using linear parameter fits as opposed to non-linear parameter fits. 

 

Other method that have been used is the Bayesian modeling. Frost (2001) used this method to 

model the viral dynamics and evolution of HIV, Putter et al. (2002) estimated parameters in 

HIV dynamic models and Han et al. (2002) developed the Bayesian analysis method for the 

population dynamic HIV. Also Huang and Wu (2006) examined the Bayesian approach for 

estimation of antiretroviral efficacy. 

 

1.5   THESIS OUTLINE 

In this thesis, we have combated some of the issues of the two most deadly viruses namely 

human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS), 

that have invaded the human race in the last thirty years by concentrating on the stochastic 

modelling of the dynamics of the viruses. Although  availability of efficient vaccines or cure 

for these infections is still like groping in the dark, medical scientists, pharmacologist, 

epidemiologists and even the mathematical and social scientists are eagerly working hand in 

hand to see a dream come true. The collaboration of medical scientists with scientist and 

theorists have in recent times made a big positive influence in better containing the viruses. 

This thesis has six chapters and they are outlined below. 
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In the first chapter an overview of the HIV is given and HIV modelling done by some 

scientists are reviewed. The second chapter deals with the pathogenesis of the viruses by 

delving into the genetic variation of the HIV. This is because the pathogenesis of the HIV 

infection can be understood only when the genetic variation in HIV and the receptor-specific 

HIV infection are given their due importance. 

 

In chapter three, incubation period and seroconversion time are determined by using data on 

homosexuals given in Lui et al. (1988). Two stochastic models are used to determine the 

distribution function of the gay-life and the incubation period. Also the back-calculation 

method was used to project AIDS incidence. 

 

Chapter four deals with the formulation of stochastic model of the dynamics of HIV in an 

infected individual. In this chapter, two stochastic models are proposed and analysed for the 

dynamics of the viral load in a HIV infected person and the multiplication process of the 

virons inside an infected T4 cell. Also numerical illustration of these stochastic models is 

given. 

 

In chapter five, the T4 cell count which is considered one of the markers of disease 

progression in HIV infected individual is examined. WHO has recently advocated that 

countries encourage HIV infected individuals to commence antiretroviral treatments once 

their T4 cell count is 350 cells per ml of blood (was formerly 200 cells per ml of blood). This 

is because when the T4 cell count is low, the T4 cells are unable to mount an effective 

immune response against antigens and any such foreign matters in the body (Kirschner 1996) 

and consequently, the individual becomes susceptible to opportunistic infections and 

lymphomas. Thus, the T4 cell count can be considered a marker of disease progression in an 
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infected individual and the loss of T4 cells accounts for a major part of the 

immunosuppressive effect of HIV. As such, a stochastic catastrophe model is developed to 

obtain the mean, variance and covariance of the uninfected, infected and lysed T4 cells. Also 

obtained are the amount of toxin produced in a HIV infected person from the time of 

infection to the present time. Numerical illustration of the correlation structure between 

uninfected and infected T4 cells, and infected and lysed T4 cells is portrayed. 

 

To combat the persistent death of humans before any cure can be obtained, antiretrioviral 

drugs were introduced to suppress the havoc done by these viruses in the human body. 

Treatment with single drug failed due to the fact that HIV evolved rapidly because of its high 

replication rate of an average of 1010 viral particles per day.  Thus drug resistance to single 

therapeutic treatment in HIV infected individuals has promoted the research into combined 

treatments. Hence, in the sixth chapter a stochastic model under combined therapeutic 

treatment by extending the model of HIV pathogenesis under treatment by anti-viral drugs 

given by Perelson et al. (1996) is derived. Mean numbers of free HIV, infectious free HIV 

and non-infectious free HIV are obtained. Variance and co-variance structures of our 

parameters were obtained unlike in previous work of Perelson et al. (1996) and Tan and 

Xiang (1999). Comparison of simulated data for before and after treatment indicates the 

efficacy of our model in combined treatment.  
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2.1   INTRODUCTION 

The human immunodeficiency virus (HIV) is the early stage of the acquired 

immunodeficiency syndrome (AIDS) in which within 24 hours of contact, the virus replicates 

its RNA into the victim’s DNA and as such the protein (gp120) on the virus binds to the 

protein on the CD4+T cell thus affecting the immune response of the victim (Kirschner 1996). 

New virus particles then bud from the host cell after the duplication process. Thus the HIV 

virus replicates, mutate, recombine and bud off the host cell and it is the budding and 

maturity that determines both the duration (of transition from HIV to AIDS) and stage of 

infection either as the human immunodeficiency virus (HIV) or the acquired 

immunodeficiency syndrome (AIDS). This is because the HIV infection could be 

asymptomatic for years and only develops to AIDS when the CD4+T cells fall so low due to 

increase in the viral load of the host cell. Holmes (1998) stated that mutation, recombination 

and natural selection produced a multitude of different genomes which allow the virus to 

continually evade immune response and to infect a variety of cell types, and the potential of 

HIV to evolve at a rate of about 1 million times faster than human nuclear DNA have 

undermined attempts to produce effective vaccines and allowed the development of 

resistance to some antiviral treatments within a matter of months. Thus, medicine, science 

and engineering have continually researched the pathogenesis of the human 

immunodeficiency virus (HIV) infection and mechanisms of genetic variations of HIV. 

 

To understand HIV pathogenesis, the unique nature of the causative microbe was studied and 

compared with lentivirus infections of animals (because it shared features with other 

members of the non-transforming and cytopathic lentivirus family of retroviruses) to raise 

further questions regarding human disease such as (Weiss, 1993): Why do some horses 

permanently recover from equine infectious anemia when the virus evolves immune escape 
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variants as readily as HIV? Can the wasting syndrome and brain disease of sheep infected 

with visna-maedi virus be equated to human AIDS without CD4 depletion? And hypotheses 

such as AIDS being the end-stage disease of HIV, HIV mutating to produce different types of 

HIV, have been postulated to explain the relationship between HIV and AIDS. However, 

research is still done on why AIDS finally develop, if it is the HIV alone that brings about 

AIDS or maybe there are other viruses, why it takes a variable long time for HIV to develop 

to AIDS, and also the cofactors that influence the rate at which AIDS develop and so on.  

 

Recent research by scientists such as Smith (2006), Sodora and Silvestri (2008), Levy (2009) 

showed that new data especially from non-human primate studies have raised doubts about 

the 1990’s hypothesized theory that HIV-1 causes CD4+T cell depletion by direct cytopathic 

effect. Rather it has been shown that the immune activation of the virus causes the cell 

depletion. Thus shedding light on the research to see if HIV alone brings about AIDS or 

maybe there are other viruses. Hence they have strongly advocated a full understanding of 

HIV/AIDS pathogenesis which may lead to novel therapies (partially quoting Smith 2008).  

Also according to Hoffmann et al. (2007), an understanding of the immunopathogenesis of 

HIV-1 infection is a major prerequisite for rationally improving therapeutic strategies, 

developing immuno-therapeutics and prophylatic vaccines. Hence the delving into 

pathogenesis of the human immunodeficiency virus in this chapter. 

 

2.2 HIV PATHOGENESIS 

The pathogenic mechanisms of HIV disease are extremely complex and multifactorial (Fauci 

1993, 2003). And in cases of the acquired immune deficiency syndrome (AIDS), marked 

depletion of CD4+ T cells was recognized as a hallmark of disease early on (Gottlieb et al. 

1981, Maseur et al. 1981, Fauci 2003), even before the classic demonstration in 1984 that the 
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CD4 molecule was the primary receptor for the virus on a subset of T cells and monocytes 

(Dalgleish et al. 1984, Klatzmann et al. 1984, Fauci 2003). Also much evidence has suggested 

that other factors were necessary for HIV fusion and entry, but these factors such as the co-

receptors and chemokines remained elusive for several years (D’Souza and Harden 1996). 

According to Fauci (1996), D’Souza and Harden (1996) in the mid-1990s, a number of 

diverse areas of investigation elucidated the roles of the chemokine receptors CXCR4 and 

CCR5 in the efficient binding and entry of two different strains of HIV-1 called X4 and R5, 

respectively. The discovery that HIV could use different co-receptors also helped to explain 

the occurrence of syncytial (CXCR4-using) and nonsyncytial (CCR5-using) variants of HIV 

(Fauci 1996). The importance of the CCR5 co-receptor in the pathogenesis of HIV infection 

was proven by the finding that cells from individuals homozygous for a deletion of 32 base 

pairs in the CCR5 gene could not be infected in vivo with R5 viruses and that such 

individuals (who comprise about 5% of white populations) were thought to be extremely 

resistant to HIV infection even when repetitively exposed to virus until recent research 

proved otherwise and hence they can be termed as long-time progressors (O’Brien and Moore 

2000, Fauci 2003, Hoffmann et al. 2007, Levy 2009).  

 

The ability to measure plasma viremia precisely led to the classic viral dynamics studies of 

HIV. HIV research by mathematical scientists have tremendously helped in understanding the 

relationship between virus production and T cell dynamics (Ho et al. 1995, Wei et al. 1995, 

Fauci 2003). These studies led to a better insight of the HIV pathogenesis, hence making 

therapeutic treatments better and less toxic. Studies have shown that even in individuals in 

whom plasma viremia is driven by antiretroviral therapy to levels of less than 50 copies of 

RNA per ml ('undetectable') for up to 3 years, the viral reservoir persists and the virus 

rebounds from this reservoir within weeks of discontinuing therapy (Blackson et al. 2002, 
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Fauci 2003). Hence one may paradoxically say that studies of the immune response to HIV 

have been both productive and frustrating. Although individuals in whom HIV infection has 

been established cannot eliminate the virus from their bodies, continual research into better 

prophylaxic vaccines through the better understanding of the pathogenesis of these viruses 

still continues (Chun and Fauci 1999, Blackson et al. 2002, Fauci 2003). (Excerpts from 

Fauci 1993, 2003) 

 

2.2.1 HIV Structure 

HIV has a dense cylindrical core. It is around 120nm in diameter (120 billionths of a meter; 

around 60 times smaller than a red blood cell) and 10kb in length and roughly spherical. It is 

composed of two copies of single-stranded RNA enclosed by a conical capsid comprising the 

viral protein p24 (figure 2.1). This conical capsid can be described in layman’s language as 

being bullet shaped. The RNA component is 9749 nucleotides long and it is surrounded by a 

plasma membrane of host-cell origin. The RNA is part of a protein-nucleic acid complex 

which is composed of the nucleo-protein p7 and the reverse transcriptase (RT) p66. The 

single-strand RNA is tightly bound to the nucleocapsid proteins p7 and enzymes such as 

reverse transcriptase (RT) i.e. p66, protease (PR) i.e. p11 and integrase (IT) i.e. p32 that are 

indispensable for the replication, proliferation and development of the viron. The 

nucleocapsid (p7 and p6) associates with the genomic RNA (one molecule per hexamer) and 

protects the RNA from digestion by nucleases. The ends of each strand of HIV RNA has an 

RNA sequence called the long terminal repeat (LRT). The LRT has regions which act as 

switches to control production of new viruses. 

 

Surrounding this capsid is the matrix layer which is made up of the protein p17 and this 

ensures the integrity of the viron particle. Also enclosed within the viron particle are genes 
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such as Vpr, Nef, Vif, p7 and viral protease. These are genes that code the proteins used in 

controling the ability of the virus to infect a cell and produce new copies of virus and/or 

cause disease. The outer viral envelope which is formed when the capsid buds from the host 

cell, taking some of the host-cell membrane with it is a coat of lipoprotein membrane fat. 

Projecting from this viral envelop/membrane are 72 little spikes formed from the 

glycoproteins gp120 and gp 41 (HIV Wikipedia 2008, Hoffmann et al. 2007 and Smith 

2008). 

 

 

 

   

 

Figure 2.1 HIV genome showing the proteins involved in RNA coding and replication 

(Excerpt from HIV Wikipedia 2008) 
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2.2.2 Genes and Enzymes in HIV Entry and Replication 

In HIV-1 there are 9 primary genes that encode within the RNA genome, namely: gag, env, 

pol, tat, rev, nef, vpr, vpu and vif. These genes and certain enzymes play different crucial 

roles in the entry and replication of the virus in the host cell. According to Fauci (2003), the 

identification of their relationship to the complex mechanism of HIV replication have been 

crucial in understanding HIV replication and its relationship to the pathogenic mechanism of 

the disease. Recent developments in controlling the destroying effects of the virus in the 

human body via development of effective antiretroviral drugs have also concentrated on some 

of these genes and enzymes (see section 2.3). These genes and enzymes and their functions 

are listed below. 

i. Gag:  

This encodes for the nucleocapsid and the glycoproteins gp 120 and gp 41 of the viral 

membrane. 

 

ii.  Env: 

 This codes for the glycoprotein gp 160 that is then broken down by a viral enzyme to form 

gp 120 and gp 41. 

 

iii.  Pol:  

This codes for the reverse transcriptase (RT) and other enzymes. 

 

iv. Tat: 

 This is a regulatory protein that accumulates within the nucleus and binds to the TAR found 

in the LRT of the viral RNA. It is a potent transcriptional activator of the LRT and its 

importance is in the in vivo culture system viral replication. 
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v. Cyclin TI: 

 It is a necessary cellular cofactor for tat. 

 

vi. Rev: 

 This gene regulates splicing. It is also nuclear export factor which is important for switching 

from the early expression of regulatory protein to the structural proteins that are synthesized 

later. Both tat and rev stimulate the transcription of proviral HIV-1 DNA into RNA, promote 

RNA elongation, enhance the transportation of HIV RNA from the nucleus to the cytoplasm.  

 

vii.  Nef:  

This codes for virus efficient replication. It may induce down-regulation of CD4 and HLA 

class I molecules from the surface of the infected cells. Thus the virus avoid recognition by 

CD4+T cells and hence evades any attack mediated by cytotoxic CD8+T cells. It is also 

essential for the high rate of virus production and progression of disease.  It sometimes 

interfere with T cell activation by binding to various proteins that are involved in intracellular 

signal transduction pathways, thus helping in the disease progression. 

 

viii.  Vpr: 

 It is used in viral replication in non-dividing cells. it also stimulates the HIV LTR, promotes 

cellular and viral responses and its important for the transport of the viral pre-integration 

complex to the nucleus. 

 

ix. Vpu: 

 This encoded protein influences the formation of new virons by allowing the recycling of gp 

160. It also influences the release of new virus particles from infected cells by getting 
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involved in the degradation of CD4-gp 160 complexes within the endoplasmic reticulum. 

Thus it is important for the virus budding process. 

 

x. Vif:  

It supports viral replication. 

 

xi. APOBEC3G:  

Is an enzyme of the intracellular enzymes family. Its function is to deaminate cytosine to 

uracil in mRNA or DNA. APOBEC3G is expressed in lymphocytes and macrophages which 

are the primary target cells of HIV infection. In the presence of vif gene, it is complexed, 

degraded and not incorporated in newly formed virons. 

 

xii.  HLA class I: 

 

xiii.  HLA class II: 

 

xiv. Others:  

These are cellular binding proteins which have been found in the last 10 years (Levy 2009) to 

be associated with the HIV infection. They include  C type lectings – DC-SIGN, Leukocyte 

function-associated antigens (LFA), Intercellular dhension molecules (ICAMs), α4β7 

integrin which acts as an HIV binding site particularly on CD4+ memory T cells. 

 

 

2.2.3  HIV-1 Strains 
HIV-1 strains are classified by the cells they infect. Some of the HIV-1 strains are listed 

below. 
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i. Macrophage (M- tropic) strains  

They are also known as the Non-syncitia-inducing strains (NSI). They gain entry through the 

β-chemokine receptor CCR5. Replication of this strain occur in the macrophages and the 

CD4+T cells. 

ii. T-tropic isolates strains 

They are also known as the syncitia-inducing strains (SI). They gain entry through the α-

chemokine receptor and CXCR5. Replication of this strain occur mainly in the CD4+T cells  

and some in the macrophages. 

iii Dual-tropic strains 

They are also known as the transitional strains of the HIV-1. They use both the CCR5 and 

CXCR5 for co-receptors. Replication of this strain occur mainly in the CD4+T cells  and 

some in the macrophages. 

 

2.2.4  HIV Co-receptors 
 
According to Hoffmann et al. (2007), experiments using non-human cell lines transfected 

with human CD4 showed that expression of human CD4 on the cell surface of a non-human 

cell line was not sufficient to allow entry of HIV. Hence the existence of human co-receptors 

necessary for viral entry was postulated. Co-receptors are chemokines of the cytokine super-

family. The chemokines are group of small proteins that mediate leukocyte traffic through 

specific receptors. They are involved in several human reproductive events such as sperm 

chemotaxis (i.e. carrying around of sperms), ovulation, implantation of embryo during 

conception, menstruation e.t.c. Also HIV-1 uses the chemokines as entry into the individual 

cell(s). There two types of chemokines namely the α-chemokines (these use the α- receptors) 

and the β-chemokines (these use the β- receptors). In layman’s language, co-receptors are 
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elements that receive the virus or help the virus to gain entry into the targeted cells. Table 2.1 

shows the strains of HIV-1 and their chemokines and co-receptors. 

 

Table 2.1 HIV-1 Strains and their Chemokines and Co-receptors. 

 

Strain of HIV-1 

Type of chemokine 

receptor 

Type of Co-receptor for 

entry 

 

Cells tropism 

Macrophage β CCR5 Macrophages, CD4+T cells 

T-tropic α CXCR4 CD4+T cells, Macrophages 

Dual-tropic  CCR5, CXCR4  

Others  CCR3, CCR2, CCR8, 

CCR9, STRL33 (Bonzo), 

Gpr 15 (Bob), Gpr 1 

 

 

 

2.2.5 HIV-1 Subgroup, Recombination and Epidemiological Structure 

Although once an individual becomes infected, eradication of the virus still remains 

impossible despite all the therapeutic advantages achieved during the last decade, knowledge 

of the epidemiological prevalence can still help to contain the disease to a certain degree 

(Hoffmann et al. 2007). There are three subtypes of HIV-1 namely: M group or the “major” 

group, O group or the “outlier” group and N group or the “new” group. Each group is divided 

into subtypes and their recombined subtype known as the circulating recombinant forms 

(CRFs). Given below are the HIV-1 subgroups and their epidemiological prevalence. 
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Figure 2.2 HIV-1 Group and Subtypes  
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Table 2.2  HIV-1 Subtypes and Regional Prevalence 

HIV-1 Subtype Region 

A West Africa, Central Africa, Russia 

Crf A/G West Africa, East Africa, Central Europe 

Crf A/E South-East Asia but originated from Central Africa 

B Europe, America, Japan, Australia 

C Southern Africa, East Africa, India, Nepal 

D East Africa, Central Africa 

F Central Africa, South America, Eastern Europe 

G West Africa, East Africa, Central Europe 

H Central Africa 

J Central Africa 

K Democratic Republic of Congo (DRC), Cameroon 

 

 

2.3 RECENT DEVELOPMENTS AND PROBLEMS 
 
In recent times scientists have come up with a new way of combating both the human 

immunodeficiency syndrome (HIV) and acquired immunodeficiency syndrome (AIDS) 

despite the absence of a cure for them. This recent discovery is still in the pipeline, but it 

involves the attack of reservoirs of dormant HIV. There are two reservoirs namely 

macrophages and memory T cells. The macrophages which are antigen scavengers usually 

engulf antigens in the body and afterwards the macrophages die while the memory T cells 

retain the whole process of attacking and building forces against antigens in the body so that 

a reoccurrence of such attack does not come into play (Kirschner 1996).  
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In the presence of HIV the macrophages still live long past their survival time and hence 

become a hideout for the virus. The inability of macrophages to die after being infected by 

the virus is caused by enzyme called Akt which is a protein produced by a cell-survival 

pathway of the virus. To combat the infected macrophages which is one of the habouring 

stations of the virus, drugs such as miltefosine and perifosine were used and these two rapidly 

killed the infected macrophages. Although perifosine is currently being studied as a possible 

cancer drug, miltefosine on the other hand is known to be safe in leishmaniasis patients, 

hence further research on the possible effects of using these two drugs to destroy infected 

macrophages.  

 

Although recombinant viruses forming between HIV clades and groups have occurred due to 

co-infection and super-infection of cells by two or more virus strains/types usually prior to 

the establishment of a chronic infection. Recombination between HIV-1 and HIV-2 is 

impossible because of the differences in the location of the RNA dimmer hairpin sites (Dirac 

et al. 2002, Levy 2009). Hence recombinant viruses have posed a big problem in controlling 

the infection by administering antiretroviral drugs for too long because most times resistance 

to the drugs and poor immune response usually occur (Fultz 2004, Levy 2009). 

 

Eradication of the virus in an infected human body has become impossible because the virus 

infects not only cells in the body, but also cells in the cellular and immune system. Also the 

virus is evident not only in the blood, but also in cells and different compartments of the body 

(Levy 2009). 

 

With the emergence of new antiviral therapies especially the combined treatment, great hope 

to those at risk of advancing to AIDS have been brought. However long-term therapy 
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treatments may not be feasible because of toxic drug side effects such as liver damage and 

drug resistance due to fast mutation of the virus and/or recombination of different types of the 

virus (Khalili and Armaou 2008, Levy 2009, Hoffmann et al. 2007). 

 

Other avenues explored in eradicating the virus or slowing down cell activation include: 

Using antibodies that attach to virus-infected cells via gp 120 or gp 41 to directly kill infected 

cells through antibody-directed cellular cytotocity  (ADCC). Targeting intracellular protein 

needed for HIV replication by using anti-HIV therapy; for example Vpu was shown to reduce 

the activities of the human cellular membrane protein called tetherin with the help of a 

calcium-modulating cyclophilin ligand, thus blocking the budding of the virus from the cell 

surface. Also deficiency of Vif has shown in studies in Australia to help in delaying onset of 

AIDS whence such individuals have been able to stay as long-term AIDS progressors. 

 

While these researches are in pipeline, work still continue in the detailed understanding of 

these two deadly viruses that have sacrilegiously and despicably invaded and destroyed the 

peace of the human race in the last thirty years.  
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CHAPTER THREE 

A STOCHASTIC POINT PROCESS MODEL OF THE INCUBATION PERIOD OF A 

HIV INFECTED INDIVIDUAL 
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3.1 INTRODUCTION 

Acquired Immune Deficiency Syndrome (AIDS) is a sure fatal but containable disease caused 

by the retrovirus HIV. It is found that there is a risk of contracting HIV infection from 

exposure to infected persons. The exposure can be through sharing of intravenous 

hypodermic needle with infected persons, transfusion of HIV infected blood, mother-to-child 

transmission at birth or performing a sexual act with HIV infected persons. As sex plays a 

major important role in human life, the virus has the vulnerability of being quickly 

transmitted from one infected individual to either an infected or non-infected individual by 

the pattern of their intimate behaviour. Since the behaviour is highly stochastic, the time for a 

susceptible to become an infective is unpredictable. Whence, the dynamics of the spread of 

HIV presents several perplexing difficulties in its comprehension even in the case of a 

specific community such as a population of transfusion related cases of AIDS (Medley et al. 

1988). The foremost difficulty that is baffling the model builders is the incubation period of 

HIV. The incubation period (IT ) of HIV in an infected individual is the period from the time 

of infection to the time of the first diagnosis of an opportunistic disease associated with 

AIDS. And according to Medley et al. (1988), one of the striking features of acquired 

immunodeficiency syndrome (AIDS) is that the incubation period appears to be both long 

and very variable. Usually, the time of infection is not known in several cases. However, the 

seroconversion time (ST) (i.e., the time at which an infected individual becomes HIV 

positive) may be known in many cases. The latent period, namely, the interval between the 

time of infection and the time of seroconversion is small (in weeks) compared to the 

incubation period (in years) of HIV. Hence, the time of infection is taken to be the time of 

seroconversion.  
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Studies on HIV incubation period have been carried out. For instance, Medley et al. (1988) in 

their study observed that the data on the time of infection was incomplete and estimated mean 

incubation period to be  4.5 years to 15 years.  

 

Chevret et al. 1992 developed a new approach for estimating the incubation period of 

acquired immunodeficiency syndrome (AIDS) based on age distributions. They expressed the 

Incubation period as the difference between age at time of diagnosis and age at time of 

contamination. By assuming independence between age at time of infection and incubation 

period, the age distribution of newly diagnosed AIDS cases was given as the convolution 

product between the distributions of the age of freshly infected patients and of the incubation 

times. Hence, AIDS incubation time could therefore be estimated from the age distribution of 

newly HIV infected subjects and newly diagnosed AIDS cases.  

 

Lee (1999) estimated the maturity of the HIV infection and the incubation period of AIDS by 

using data from 363 seroprevalent (i.e. those who were AIDS free at entry) Korean AIDS 

patients (including 59 seroincident cases). He proposed two methods for imputing the 

unknown times since seroconversion which were, firstly fitting Weibull regression with the 

marker of matured CD4+T cell count for seroincident cohorts, and secondly, using a random 

effects model with CD4+T cell count as a response for repeated measures from which the 

times since seroconversion can inversely be extracted.  
 

Rao and Kakehashi (2005) estimated HIV incidence density from prevalence data and also 

the incubation time distribution by using the deconvolution technique and maximum 

likelihood method to estimate parameters. The difference was that their data was not based on 

homosexual men/women. 
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Several mathematical and statistical analyses have been proposed in the recent past to 

assimilate the data and provide information about the dynamics of the epidemic (Anderson 

and May 1991). In the statistical analyses of the data, the gamma, Gompertz, Lognormal, 

Normal and Weibull distributrions were used to model the distribution function F(t) of the 

incubation period (Brookmeyer and Gail 1994, Anbupalam et al. 2002). The advantages and 

disadvantages of using each of these models are outlined in Brookmeyer and Gail (1994). In 

particular, the Weibull model is used in situations where it is hypothesized that the hazard 

function λ(t) increases indefinitely and is proportional to a power of time from infection 

(Brookmeyer and Gail 1994). The hazard function quantifies how the risk of AIDS evolves 

with time from infection and is given by 

   
S(t)

f(t)
  )( =tλ  

where (t)F  )( ′=tf and S(t) = 1 – F(t) are the probability density function (p.d.f) and the 

survival function (s.f) of the incubation period respectively. However, as Brookmeyer and 

Gail (1994) have pointed out, the hazard function λ(t) should be consistent with 

epidemiological data and with theoretical considerations of  the pathogenesis of HIV 

infection. Not much attention has been paid to the formulation of the distribution functions 

(hence the hazard functions) of the latent and the incubation periods by considering the 

stochastic behavioural aspects of the members of the population under study. 

 

In this chapter, two stochastic models are presented namely: 

i. Model I which is devoted to the determination of the distribution function of the 

gay-life (i.e. the time period from the entry of a susceptible in the specified 

community till he/she tested HIV positive) of a susceptible. 
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ii.  Model II which determines the distribution function for the incubation period (i.e., 

the period from the time of seroconversion till the onset of overt symptom of 

AIDS). 

 

Essentially, a two-parameter family distribution function for the gay-life and a one-parameter 

family of distribution for the incubation period are obtained. It is observed that the 

distribution function of the incubation period serves as a good fit for the data provided by Lui 

et al. (1988). Further, the distribution function is used to project AIDS incidence by back-

calculation (Brookmeyer and Gail 1994). 

 

The lay-out of this chapter is as follows: In section 3.2, a stochastic model for the 

determination of the p.d.f q(t) of the time interval ST between the time of entry of an 

individual into a population of homosexuals and the time of his/her seroconversion  

(becoming HIV positive) is proposed. In section 3.2.1 a two-parameter family of the 

probability distribution function of ST is obtained. The moments of ST are obtained in 

section 3.2.3 and the problem of estimation of the parameters of q(t) is considered in section 

3.2.4. In section 3.3, a stochastic model for the determination of the probability function pn of 

the incubation period (IT) is proposed. A one-parameter family of the probability function pn 

of IT is obtained in section 3.3.1 while the moments of IT are obtained in section 3.3.2. The 

problem of estimation of the parameter of pn is considered in section 3.3.3 and illustrated by a 

numerical example in section 3.3.4. The method of back-calculation is used in section 3.4 to 

obtain AIDS projection for a sample data. 
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3.2 A STOCHASTIC MODEL OF THE PERIOD OF THE GAY-LIFE 

Consider a population of homosexuals consisting of susceptibles and infectives. Assume that 

at time t = 0, a new member who is tested HIV negative enters into the population and makes 

sexual contacts with members of the population. Assume further that his/her contacts occur at 

random time points which follow a Poisson process with parameter λ, λ > 0. Let the 

probability that the individual who has already had n contacts up to time t when he/she tested 

HIV positive for the first time in the interval (t, t+∆) be given by 

   nµ∆ + ο(∆), µ > 0. 

Let the gay life period of the individual be represented by the random variable ST. in the next 

section, we obtain the probability density function (p.d.f) of ST. 

 

3.2.1 The Probability Distribution Function of the Gay-life 

We define the p.d.f of ST by 

   
∆

∆+<<
→∆

= }  t  ST  Pr{

0

lim
  )(

t
tq  

Then q(t)∆ represents the probability that the individual tests HIV positive for the first time in 

the interval (t, t+∆). At least one contact is needed to get infected with HIV, and also using 

probabilistic rules, we obtain 
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Taking Laplace transform on both sides of 3.2.1.1 we get 
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Splitting into partial fractions, equation 3.2.1.1 yields 
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Inverting 3.2.1.3, we obtain explicitly the p.d.f of ST given by 

  
µ
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The frequency curve for ST for various values of λ and µ can be obtained by using  
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The distribution function Q(t) is given by 
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If λ = µ = λ, then 

  
 t-e - 1 t- ee - 1  )(

λλ=tQ      

In this case, the hazard function λ(t) is given by 

  )e - (1  )(  t-λλλ =t  

It can be observed that the hazard rate is increasing monotonically, which agrees with  

Brookmeyer and Gail (1994). In the next section, the moments of ST are obtained using 

equation 3.2.1.3. 

 

3.2.2 The Moments of ST 

The k-th moment of ST is given by 

  
0

k )}(*{(-1)  ][
=









=

s

k

k
k sq

ds

d
STE  

Consequently, from 3.2.1.3, we obtain 
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For the particular case λ = µ = λ, the mean and variance of ST obtained from equation 3.2.2.1 

are given by 

    
λ

1 - e
  ][ =STE       (3.2.2.2) 

  
2

0
2

1 - 
 - 

1)!  1)(j  (

)1(2e
  ][ 









++
−= ∑

∞

= λλ
e

j
STVar

n

j

    (3.2.2.3) 

The parameters of q(t) are obtained in the next section by using the method of maximum 

likelihood. 

 

3.2.3 Estimation of the Parameters of q(t) 

The likelihood function L(λ,µ) for a sample of size n is given by 
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The logarithm of L is given by 
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When logeL reaches its maximum value, the values of λ and µ satisfy the following 

simultaneous equations: 
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From equation 3.2.3.2, we obtain 
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Substituting 3.2.3.4 into 3.2.3.3, we obtain the following transcendental equations for µ: 
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Equation 3.2.3.5 can be solved using Newton-Raphson algorithm (Sastry 1994). Accordingly, 

we put 
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Then if µ(0) is an initial approximate value of µ, then the (l + 1)th iterate of µ is given by the 

equation 
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The iterative scheme given by equation 3.2.3.7 is the Newton-Raphson algorithm. 

 

 

3.3 A STOCHASTIC MODEL OF THE HIV INCUBATION PERIOD 

Assume that an individual has tested HIV positive for the first time at time t = 0. Let the 

conditional probability that he/she shows the first identifiable symptoms of AIDS during the 

n-th year given that he/she has not shown any symptoms of AIDS in the previous years be 

given by 

   0   ..., 2, 1, n  ,e - 1 -n >= µµ   

Let IT be the random variable representing the incubation period. In the next section, a one-

parameter family of distribution functions of IT is obtained. 

 

3.3.1 The Probability Distribution of the Incubation Period 

Let the probability function of IT be defined by 

   pn  = Pr{IT = n} 
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Then pn represents the probability that the individual shows the first symptom of AIDS in the 

n-th year. By using probabilistic rules, we obtain 
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Simplifying equation 3.3.1.1 yields 
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The mode l of the distribution is given by 
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The median θ of the distribution is given by 
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From equation 3.3.1.4, we have  
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Solving equation 3.3.1.5, the median is given by 
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3.3.2 The Moments of Incubation Period 

The mean of IT is given by 
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The second moment of IT is given by 
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3.3.3 Estimation of the Parameter of pn 

Equation 3.3.1.2 represents a one-parameter family of probability distributions and for 

estimation of the parameter, either the method of moments or the method of maximum 

likelihood can be used. 

 

3.3.3.1 The Method of Moments 

Let t1, t2, …, tm be a random sample of size n drawn from a population of incubation times of 

HIV infected individuals. Then the sample mean is given by 
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Replacing E[T] by t in 3.3.1.7, we have 
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As the incubation time of an HIV-infected individual can never be greater than 100 years, 

equation 3.3.3.1.1 can be truncated in the following manner: 
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An approximate value µ of µ can be obtained from equation 3.3.3.1.1 by using the Newton-

Raphson algorithm. 
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3.3.3.2 The Method of Maximum Likelihood 

The likelihood function L(µ) for a sample {n1, n2, …, nm} of size m is given by 
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The logarithm of L(µ) is given by 
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When loge L(µ) reaches its maximum value, the value of µ satisfies the following equation: 
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From equation 3.3.3.2.1, we obtain 
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By applying the Newton-Raphson algorithm to equation 3.3.3.2.2, an approximate value µ  

for µ can be obtained. 

 

 

3.3.3.3 The Method of Median 

The value of µ can be estimated from equation 3.3.1.5. for a sample of incubation times, we 

obtain the sample median θ* and then replacing θ in equation 3.3.1.5 by θ*, we have the 

following equation for a crude estimation µ* of µ: 
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2log2
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+
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θθ
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A numerical example to compare the three methods is provided in the next section. 
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3.3.4 A Numerical Example 

The data of 84 homosexuals and bisexual men analysed in Lui et al. (1988) is used to obtain 

the incubation periods of twenty one individuals who developed AIDS prior to the year 1988 

(Table 3.1). Estimates for the value of µ by the three methods are obtained and corresponding 

expected values and standard deviations are determined. The estimates are then used to test 

the goodness of fit of the distribution obtained. 

 

Table 3.1 HIV Incidence data of 84 homosexuals 

                 

Year of diagnosis 

Year of 

HIV 

Infection 1979 1980 1981 1982 1983 1984 1985 1986 Censored Total 

1978 0 0 0 1 0 1 1 0 3 6 

1979  0 0 0 0 0 0 1 7 8 

1980   0 0 0 1 1 1 9 12 

1981    0 2 2 1 5 19 29 

1982     1 0 3 0 19 23 

1983      0 0 0 2 2 

1984       0 0 4 4 

 

 

From this table, the following incubation times (in years) of 21 persons were obtained as: 

 4, 6, 7, 7,4, 5, 6, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 1, 3, 3, 3. 

The sample mean is 4.19 years and the sample median is 4 years. By using Newton-Raphson 

algorithm in equation 3.3.3.1.2, with table 3.2, we have the optimal value 0.09  ˆ =µ  so that the 

expected value of IT is 4.19 years with a standard deviation of 2.15 years. On the other hand, 
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for the same data of 21 persons, by adopting Newton-Raphson algorithm in equation 

3.3.3.2.2, we get 1.01  ~ =µ  so that the expected value of IT is 1.41 years with a standard 

deviation of 0.59 year. Also, using equation 3.3.3.3.1, we get µ* = 0.07 so that the expected 

value of IT is 4.80 years with a standard deviation of 2.48 years. The three values of the 

parameter µ are listed in table 3.2. 

 

Table 3.2 Values of the Parameters of µ 

Method µ Mean Standard Deviation 

Moments 0.09  ˆ =µ  4.19 2.15 

Maximum Likelihood 1.01  ~ =µ  1.41 0.59 

Median µ* = 0.07 4.80 2.48 

 

Further, by applying χ2 test, it was observed that the value of µ obtained by the method of 

moments fits closely to the observed data. Hence in what follows, we assume µ = 0.09 and 

proceed to project AIDS incidence by the Back-Calculation Method with a sample data 

(Bacchetti 1990) 

 

3.4 THE BACK-CALCULATION AND THE INFECTION RATE 

One of the methods used in estimating and projecting the infection rate from AIDS incidence 

data is the back-calculation method (Brookmeyer and Gail 1994). It is an important method 

of constructing rates of HIV infection and estimating current prevalence of HIV infection and 

future incidence of AIDS (Bacchetti et al. 1993). This method has been used by many 

mathematical scientists to obtain and predict the AIDS incidence of different populations. 

Amongst the work done are those of Verdecchia and Mariotto (1995) who modelled past HIV 

infections in Italy considering the interaction between age and calendar time. Anbupalam et 
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al. (2002) also used the Back calculation method to project future AIDS cases in Tamil Nadu 

by assuming that the incubation distribution was Weibul and Log-logistic. Ong and Soo 

(2006) estimated the HIV infection rates and projection in Malaysia while Lopman and 

Gregson (2008) used the Back-calculation method to reconstruct the historical trends in HIV 

incidence in Harare, Zimbabwe by using mortality data. They also attempted to determine the 

amount of peakness of HIV incidence and when the peakness occurred in Harare, Zimbabwe. 

 

The method in continuous time is based on the convolution equation 

   ∫=
t

0
s)ds -g(s)F(t   )(tA      (3.4.1) 

where  A(t) represents the expected cumulative number of AIDS cases diagnosed by calendar 

time t, g(s) is the infection-rate at calendar time s and F(t) is the distribution of the incubation 

period. Equation 3.4.1 is a Volterra integral equation for g(s) and has been obtained by noting 

that an individual can be diagnosed to have AIDS before calendar time t, provided he/she has 

been infected at some time s < t and has an incubation period less than t-s. For a given AIDS 

incidence data, A(t) can be fitted and a model used for F(t) in 3.4.1 so that the rate g(s) can be 

computed by de-convolving equation 3.4.1. Taking Laplace transform on both sides of 3.4.1, 

we have 

   
u

(u)*(u)f*g
  )(* =uA  

so that 

   
(u)*f

(u)*uA
  )(* =ug       (3.4.2) 

By inverting 3.4.2, we obtain the infection rate g(s). 

 

On the other hand, the back-calculation in discrete time is based on the equation  
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where Yj is the number of AIDS cases diagnosed in the j-th year [j-1,j], gj is the number 

infected in the beginning of the j-th year and pj is the probability that a person who is infected 

at the beginning of the 1st year is diagnosed with AIDS in the j-th year. If An denotes the 

expected cumulative number of AIDS cases diagnosed up to the end of the n-th year, then 

using equation 3.4.3, we have 
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Equation 3.4.4 is analogous to equation 3.4.1. 

We proceed to illustrate the back-calculation in discrete time with the data used in Bacchetti 

(1990) where the monthly infection rate and monthly AIDS incidence among gay men in San 

Fransisco in the cohort born from October 1929 through September 1959 were estimated. 

Taking t = 0 to correspond to January 1978 and the time unit as year, the data is given in table 

3.3 below. 

 

Table 3.3 Data on AIDS incidence among gay men in San Fransisco 
 

j 1 2 3 4 5 6 7 8 9 10 11 

Y j 0 0 1 26 93 278 560 840 1264 1464 1455 

 
 

Table 3.4 Probability distribution of the Incubation Time 

n 1 2 3 4 5 6 7 8 9 10 

pn 0.09 0.15 0.18 0.18 0.15 0.11 0.07 0.04 0.02 0.01 
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For µ = 0.09, the probability distribution of the incubation time is given in table 3.4. 

Following Brookmeyer and Gail (1994), we proceed to obtain the discrete time infection 

curve. We assume for simplicity that infections occurring in a calendar year are accounted at 

a single time point, for example, January 1 of the year and  

   ... 2, 1, n  ,  g(2n)  1) - 2( n === βng     (3.4.5) 

Equation 3.4.5 provides a simple smoothness assumption on the annual infection rate. 

Consequently, equation 3.4.3 leads to the following matrix equation: 
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Using the Poisson Regression Analysis (PRA) (Koch et al. 1986, McCillagh and Nelder 

1989), the values of βj for j = 1, 2, …, 6 are estimated. The method is based on the 

assumption that the random variable Yj has a Poisson distribution. Setting µj = E(Yj), the 

likelihood function corresponding to the sample {n1, n2, …, n11} of { Y 1, Y2, …, Y11} is 

given by 
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But from equation 3.4.6, we have 
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and hence on substitution of these equations in 3.4.7, φ becomes a function of β1, β2, …, β6. 

Differentiating loge φ with respect to βj and equating the results to 0, the following system of 

equations is obtained: 

  6. 5, 4, 3, 2, 1,  j 0,  
11

1i i

in - i ==
∂

∂
∑
= 














j

i
β
µ

µ
µ

    (3.4.8) 

Equations 3.4.8 do not yield an explicit solution and so an iterative method is used to obtain 

an approximate solution for (β1, β2, …, β6) as given below: 
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The above values can be used to forecast AIDS incidence on short term. For example, the 

predicted AIDS incidence in the 12th year is obtained as 6523 by using the following 

extended equation 
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3.5 CONCLUSION 

In this chapter a two-parameter family distribution function for the gay-life and a one-

parameter family of distribution for the incubation period have been modelled. For the model, 

it was observed that the distribution function of the incubation period using the method of 

moments serves as a good fit for the data provided by Lui et al. (1988). The only setback of 

the Back-calculation method in projecting AIDS incidence is the inability to project for a 

very long time. 
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CHAPTER FOUR 

STOCHASTIC MODEL OF THE GROWTH OF HIV 

IN AN INFECTED INDIVIDUAL 
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4.1 INTRODUCTION 

In the discussion about the progression of the human immunodeficiency virus (HIV) 

infection, it is often seen that there is a variation in the viral genome. Studies (Kaye et al. 

1992 and Loveday 1996) have shown that HIV may make 1 to 40 base errors per replication 

cycle with no genetic mechanisms for correction resulting in the production of genetically 

diverse viral species or quasi species with 20 – 25% variability. Feinberg (1996) also 

observed that HIV has an inherent tendency to evolve at a rate (about 1 million times faster 

than the human DNA) which is believed to be responsible for the development of resistance 

to antiviral treatments within a matter of months thereby undermining the attempts to produce 

effective vaccines. Holmes (1998) observed that even in the course of a single infection, a 

multitude of different genomes are produced through mutation, recombination and natural 

selection, which allow the virus to continually evade immune responses and infect a variety 

of cell types. Further, Musey et al. (1997), Phillips et al. (1997) and Barker et al. (1998) 

observed that there is a correlation between the antigen receptors of T-cells and HIV 

replication. Consequently, the pathogenesis of the infection can be understood only when the 

genetic variation in HIV and the receptor-specific HIV infection are given their due 

importance in the formulation of any model of the dynamics of HIV in an infected individual.  

 

Stilianakis et al. (1997) analysed a model for the pathogenesis of AIDS in which the effect of 

the ongoing generation and selection of HIV mutants are considered. However, the nature of 

evolution of the resistant forms in a virus that is continually mutating in response to 

environmental pressures, and the impact of the location of the antigen receptor through which 

the virus has entered the cell body on the variable nature of viral replication through mutation 

have not been analysed so far in the literature. Accordingly, in this chapter, we propose and 

analyse two stochastic models: 
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(i) Model I which describes the dynamics of the viral load in a HIV infected person 

taking into consideration the fact that genetically diverse viral species are 

produced even in the course of a single infection and that the infection is receptor-

specific. 

(ii)  Model II which describes the multiplication process of the virons inside an 

infected T4 cell under the assumption that genetically diverse viral species are 

produced at every lysis that occurs in a T4 cell population. 

The organization of this chapter is as follows. Section 4.2 describes model I as a multi-type 

branching process. In Section 4.2.1, an infinite system of inter-connected integral equations 

for the probability generating functions of the various viral type populations is obtained. 

Explicit expressions for the means and co-variances of the viral populations are derived in 

Section 4.2.2 for a particular case where the virus exist in two forms only. In Section 4.3, 

model II which describes the dynamics of the growth of HIV inside an infected cell is 

analysed by a binary splitting process. Also provided in this section is a numerical illustration 

that brings out the impact of the genetic diversity in viral production. 

 

4.2 MODEL I: THE MUTATION MODEL 

We assume that at time t = 0, one HIV of type 0 is introduced into the blood stream (medium 

of T4 cells). Since each of the T4 cells has an infinite number of CD4+ receptors on its cell 

wall, we assume that the virus bonds with probability π(j|0), j = 1, 2, … to the j-th CD4+ 

receptor on the cell membrane of one of the T4 helper cells and injects its RNA into the cell 

medium. The virus arrests the growth of the infected cell but utilises the cell medium to 

multiply itself into random numbers z0 and zj of virons of type 0 and type j respectively after 

which the cell undergoes a lysis releasing the virons whose numbers are governed by the 

probability generating function  
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These virons in turn go to infect other T4 cells and the process continues indefinitely. We 

assume that a virus of type i, i ≠ 0 anchors to the j-th CD4+ receptor on the cell membrane of 

a T4 cell with probability π(j|i), j = 1, 2, … but generates virons of type i only according to 

the probability generating function defined by 
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j=ijπ  

We also assume that, for each of the virons of type ..., 2, 1, 0,   , =ll   the time from its release 

to the time of lysis it generates is a random variable T
l
 whose distribution function is given 

by  

   0.  t  t}, Pr{T  )( ≥≤=
ll

tf        

Let )(tX
l

 denote the number of virons of type l l,   =  0,  1,  2,  ... at time t and  
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Then the process X(t) is identified as a multi-type branching process with state-space ∞
+Z , 

where Z+ is the set of all non-negative integers. To study the process X(t), we investigate its 

probability generating function in the next section. 

 

4.2.1 The Probability Generating Functions 

Denoting ...) ,s ,(s  10=s , we define the following probability generating functions: 
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Using probabilistic arguments, it is easily seen that 
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The moments of Xj(t), j = 0, 1, 2, … can be derived from the equations (4.2.1.1) and (4.2.1.2). 

We define 
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Differentiating (4.2.1.1) partially with respect to sj and setting sk =1, k = 0, 1, 2, …, we obtain 
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where j = 0, 1, 2, … and  
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Differentiating (4.2.1.2) partially with respect to sj and setting sk =1, k = 0, 1, 2, …, we obtain 
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where i = 1, 2, …, j =  0, 1, 2, … and  
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If we assume  ,e - 1  )( 1- u
j uF λ=  then taking Laplace transform on both sides of (4.2.1.3) and 

(4.2.1.4), we obtain 
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where i = 1, 2, …, and j = 0, 1,2 , …. Solving the equation (4.2.1.6), we get 
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Substituting (4.2.1.7) in (4.2.1.5) and simplifying, we get 
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Inverting the equations (4.2.1.7) and (4.2.1.8), we obtain 
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where α λ0 1 =   -  m0 1
(0)( ) ; α λi  =   -  mi 1

(i)( )1 ;  i = 1, 2, …; j =  0, 1,2 , …. 

 

To obtain the covariance structure of Xj(t) and Xk(t) where j, k = 0, 1, 2, …, we define 

M t ijk i i i( | ) , , ,...)], =  E[X (t)X (t)|X(0) =  (   i =  0,  1,  2,  ...j k δ δ δ0 1 2 . (4.2.1.11) 

Differentiating (4.2.1.1) with respect to sj and sk and setting s0 = 1, s1 = 1, s2 = 1, …, we 

obtain 
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Differentiating (4.2.1.2) with respect to sj and sk and setting s0 = 1, s1 = 1, s2 = 1, …, we 

obtain 
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Taking Laplace transform on both sides of (3.2.1.13), we get  
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Inverting (4.2.1.14), we get 
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Now, taking Laplace transform on both sides of (4.2.1.12), we get  
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Substituting (4.2.1.7), (4.2.1.8) and (4.2.1.14) in (4.2.1.16) and simplifying, we get 
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Inverting (4.2.1.17), we get explicitly the covariance structure of the viral population. 
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4.2.2 A Particular Case 

For simplicity, we assume that there are two genetically different virons only, called type 0 

and type 1. Precisely, on bonding to a T4 cell, a type 0 HIV produces type 0 virons and type 1 

virons, while type 1 HIV produces type 1 virons only. Following the same notation as in 

4.2.1, we obtain the mean population sizes of the two types of virons as given below: 
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The co-variances of the population sizes of the virons are obtained in the following form: 
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4.3 MODEL II: THE MULTIPLICATION PROCESS INSIDE A T4 CELL 

Before describing model II, we briefly outline the life-cycle of HIV and the events that occur 

between the time of an infection of HIV with a T4 cell and the lysis of the host cell (for a 

more detailed account, see Fauci (1988), Shaw et al. (1988), Haseltine (1990) and Greene 

(1991)). 

 

4.3.1 The Life Cycle of HIV 

The HIV is a retrovirus and its RNA carries the genetic information. The HIV has a dense 

cylindrical core encasing two molecules of the viral genome. Virus-encoded enzymes 

required for efficient multiplication, such as reverse transcriptase and integrase, are also 

incorporated into the virus particle. After attaching itself to the cell wall of the host T4 cell, 

the virus injects its RNA together with the enzymes reverse transcriptase and integrase into 

the cytoplasm of the host cell. The viral reverse transcriptase enzyme first synthesises a 

single complementary, negative-sense DNA copy to the HIV RNA; next the RNA is 

denatured; and then a complementary positive-sense DNA copy is synthesised to create 

double-stranded proviral DNA.  

 
 
 



 57 

The proviral DNA may either reside in episomal form or enter the cell nucleus and become 

integrated into host DNA under the action of the viral integrase enzyme. Within the cell, the 

proviral DNA (also called provirus) can remain latent, giving no sign of its presence for 

several months or years. In this stage, every time the infected cell divides, the provirus is 

duplicated with the cell’s DNA. On the other hand, once the cell activation occurs due to 

antigen or mitogen, the proviral DNA transcribes viral genomic RNA and messenger RNA 

(mRNA). The messenger RNA translates the regulatory proteins tat and rev. Tat protein 

promotes transcription of more messenger RNA. Rev protein causes multiple spliced 

segments of messenger RNA to form singly spliced segments that are translated into 

structural proteins, envelope proteins and viral enzymes. The assembly of proteins and 

enzymes, together with the viral genomic RNA are assembled to form mature HIV virus 

which buds on the cell wall. The ongoing process of budding of mature virons on the cell 

wall takes place until the infected cell is unable to withstand the burden of the viral 

production when the cell undergoes the lysis releasing the mature virons ready to attack other 

T4 cells. 

 

Loveday et al. (1995) observed that the replication process has limited efficiency as 

incomplete, RNA-deficient and damaged virons may be released from the host cell and viral 

proteins may be produced in excess during the life-cycle and can be detected while the host 

cell undergoes lysis. The population of defective virons may inhibit the production of fully 

mature virons. Accordingly, we proceed to formulate a stochastic model of viral production 

in a host cell by taking into consideration the fact that along with fully mature HIV virons, 

damaged virons are also produced at the time of lysis. 
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Figure 4.1 The immature and the mature HIV-1 viron 

(Excerpt from http://msl.cs.uiuc.edu/~yershova/bcb495/bcbProjects-3.htm) 
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4.3.2 The Model Formulation 

We assume that at time t = 0, a HIV attaches to the cell wall of a T4 cell and injects its RNA 

instantaneously into the cytoplasm of the host cell. Let T be the time at which the viral DNA 

gets integrated with the host DNA. Let the probability distribution function of T be given by 

  Pr{ ,T  } =  1 -  e   >  0,   >  0.-≤ τ α τατ  

We assume that viral RNAs are replicated according to a Poisson process with rate λ, λ > 0. 

Let N(t) be the number of viral RNAs that are present inside the cell at time t. We assume 

that at any time t, the budding of HIV takes place with a rate proportional to N(t). Let X(t) be 

the number of HIV buds that are present on the cell wall at time t. Then the vector process 

(X(t), N(t)) is Markov and its structure is analysed in the following section. For brevity, we 

denote Z(t) =   (X(t), N(t)). 

 

4.3.3 The Probability Generating Function for (X(t), N(t)) 

The probability generating function of the vector process (X(t), N(t)) defined by 

G u( ,  v;  t) =  E[u u ]X(t) N(t)  . We proceed to obtain a differential equation for G u( ,  v;  t) . First, 

we define the probability function 

  p n( ,  m; t) =  Pr{Z(t) =  (n, m)}.     (4.3.3.1) 

Then, we see that 

   p(0,  0;  t) =  e  +  e e- t - t - tα α λα ⊗  
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e  -  e
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- t - tλ α
λ α

α λ

;    (4.3.3.2) 

   p( )0,  1;  t) =  e e e- t - t -( tα λα λ λ µ⊗ ⊗ +  

= − − − + 
(  -  )(  +   - )

 -  (  +   -  )  +  (  -  )
λα

µ λ α λ µ α
µ λ µ α λ αα λ λ µ{ }( )e e et t t . (4.3.3.3) 

The infinitesimal transition probabilities are given by 
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Pr{ (Z t +  ) =  (n,  m +1)|Z(t)  =  (n,  m)} =  ,  n  0,  m  1;∆ ∆λ ≥ ≥  

Pr{ (Z t +  ) =  (n +  1,  m -1)|Z(t)  =  (n,  m)} =  m ,  n  0,  m  1;∆ ∆µ ≥ ≥  

Then, by using probabilistic laws, we obtain 
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∂
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t
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≥p n( ,  0;  t)

t
 =  - p(n,  0;  t) +  p(n -  1,  1;  t),  n  1.λ µ   (4.3.3.6) 

Equations (4.3.3.4) to (4.3.3.6) can be recursively solved starting with (4.3.3.2) and (4.3.3.3) 

to give the state probabilities p(n, m; t), n ≥ 0, m ≥ 0. However, the expressions are quite 

unwieldy and hence, we proceed to obtain the differential equation satisfied by probability 

generating functionG u( ,  v;  t) . 

We note that 

  G u( ,  v;  t) =  p(n,  m;  t)u vn m

m=0n=0

∞∞

∑∑  

and hence, by using the equations (4.3.3.2) to (4.3.3.6), we obtain the following partial 

differential equation: 
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v
 +  (v -  u)  =  (v -  1)(G -  e- tµ λ α ),    (4.3.3.7) 

with the initial condition G u( ,  v;  0) =  1. Whenα  → ∞ , equation (4.3.3.7) becomes 
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Equation (4.3.3.8) is readily solved to yield 
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from which all the moments of X(t) and N(t) can be easily obtained. However, for the 

nontrivial case α  < ∞ , equation (4.3.3.7) appears to be intractable and as such, we content 

ourselves in obtaining the moments of X(t) and N(t) in the next section. 

 

4.3.4 The Moment of (X(t), N(t)) 

Differentiating (4.3.3.7) with respect to u at u = 1, v = 1, we get the differential equation 

  
∂

∂
E X t

t

[ ( )]
 -  E[N(t)] =  0µ .     (4.3.4.1) 

Differentiating (4.3.3.7) with respect to v at u = 1, v = 1, we get the differential equation 
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Differentiating (4.3.3.7) twice with respect to u at u = 1, v = 1, we get  
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Differentiating (4.3.3.7) with respect to u and v at u = 1, v = 1, we get  
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Using Laplace transform method, the system of equations (4.3.4.1) to (4.3.4.5) yields the 

Laplace transforms: 
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(  +  )(  +  )(  +  2 )

λ α
θ θ α θ µ θ µ

2

;  (4.3.4.9) 

L E X t X t{ [ ( ){ ( ) ]} -1}  =  
(  +  )(  +  )(  +  2 )

4 2 2

3

λ µ α
θ θ α θ µ θ µ

.  (4.3.4.10) 

Inverting equations (4.3.4.6) to (4.3.4.10), we get 

  E N t[ ( )] =   -  
e  -  e  

 -  

- t - tλ
µ

µ α
µ α

α µ

1
RS
T

UV
W

;    (4.3.4.11) 

 E X t[ ( )] ( ) ( )=  t -  
 -  

 -  e  -   -  e- t - tλ λ
µ α

µ
α

α
µ

α µ1 1
RST

UVW
;  (4.3.4.12) 

  E X t N t t[ ( ) ( )] 
(

( )=   -  
 -  )(2  -  )

 -  e- tλ
µ

λ µ
α µ α µ α

α
2 22

1  

  + 
 -  )

 -  e  -  
(2  -  )

 -  e- t -2 t2
1

2
1

2

2

2

2

λ α
µ µ α

λ α
µ µ α

µ µ

(
( ) ( ) ;  (4.3.4.13) 

E N t N t e e et t t[ ( ){ ( ) ] 
(

 -  1} =   -  
 -  )(2  -  )

 +  
 -  

 -  
 -  

 
λ
µ

µ
µ α µ α

α
µ α

α
µ α

α µ µ
2

2

2
2

2
1

2 2

2
− −RS

T
UV
W

 

          (4.3.4.14) 

E X t X t t t t t[ ( ){ ( ) ] 
( )( ) ( ) ( )

 -  1} =   -  
4

 -  
 +  

4

 
 -  

 
2

2 2 2

λ λ µ
α µ α µ α

λ α
µ µ α

λ α
µ µ α

2
2

2 2− − −
 

+ − − − 
 -  )(2  -  )

 -   -  
 -  )

 -   +  
 (2  -  )

 -  
4

1
4

1
2

1
2 2

2

2

2

2
2λ µ

α µ α µ α
λ α

µ µ α
λ α

µ µ α
α µ µ

(
( )

(
( ) ( )e e et t t  

          (4.3.4.15) 

Using the expressions (4.3.4.11) to (4.3.4.15), we can obtain explicitly the correlation 

coefficient ρ between X(t) and N(t). However, we present in the following section a 

numerical illustration to highlight the impact of the parameters α, λ and µ on ρ. 
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4.3.5 A Numerical Illustration 

For the purpose of illustration we assume α = 100.0, λ = 200.0, µ = 300.0 and obtain the first 

two moments of X(t) and N(t), the ratio between their means and the correlation coefficient 

(ρ) between them. The results are highlighted in Tables 4.1 to 4.3. 

 

Since α = 100, the mean time for the viral RNA to get integrated and start releasing the HIV 

buds is 0.01. Hence for increasing values of t > 0.01 both E[X(t)] and E[N(t)] can be expected 

to increase. Table 4.1 shows this trend. We also observe that the released viral RNAs rapidly 

become buds since the ratio E[X(t)]/E[N(t)] is increasing (Table 4.1). As the viral RNAs 

become buds, the number of buds will increase and the number of viral RNAs will increase 

which is indicated as negative correlation between X(t) and N(t) in Table 4.1. 

 

As µ increases E[X(t)] increases but E[N(t)] decreases and hence the ratio between E[X(t)] 

and E[N(t)] increases (Table 4.2) and the correlation between X(t) and N(t) remains negative 

(Table 4.2). As the rate of releasing viral RNAs increases, both the mean number of buds and 

the viral RNAs should increase. However, since the rate of buds is a constant, we find that the 

ratio remains a constant even though the value of λ increases (Table 4.3). In this case also the 

correlation between X(t) and N(t) remains negative (Table 4.3). 

 

4.4 CONCLUSION 

In this chapter, the mean of X(t) i.e. the number of HIV buds that are present on the cell wall 

at time t and N(t) i.e. the number of viral RNAs that are present inside the cell at time t have 

been obtained. Contribution of the stochastic models to statistical work is the ability to obtain 

the covariance structure of which is very difficult to obtain. 
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Table 4.1 E[X(t)], E(N(t)], E[X(t)]/ E(N(t)], ρ versus t 

for α = 100.0, λ = 200.0, µ = 300.0 

 

t E[X(t)] E(N(t)] E[X(t)]/ E(N(t)] ρ 

0.0500 7.3535 0.6599 11.1429 -0.5067 

0.0600 9.3408 0.6642 14.0634 -0.5406 

0.0700 11.3361 0.6658 17.0274 -0.5366 

0.0800 13.3343 0.6663 20.0116 -0.5184 

0.0900 15.3337 0.6665 23.0048 -0.4963 

0.1000 17.3335 0.6666 26.0020 -0.4746 

0.1100 19.3334 0.6666 29.0008 -0.4545 

0.1200 21.3334 0.6667 32.0003 -0.4364 

0.1300 23.3333 0.6667 35.0001 -0.4202 

0.1400 25.3333 0.6667 38.0000 -0.4055 

0.1500 27.3333 0.6667 41.0000 -0.3923 
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Table 4.2 E[X(t)], E(N(t)], E[X(t)]/ E(N(t)], ρ versus µ 

for α = 100.0, λ = 200.0, t = 0.05 

 

µ E[X(t)] E(N(t)] E[X(t)]/ E(N(t)] ρ 

300.00 7.3535 0.6599 11.1429 -0.5067 

310.00 7.3747 0.6387 11.5457 -0.4631 

320.00 7.3946 0.6189 11.9485 -0.4241 

330.00 7.4133 0.6002 12.3513 -0.3890 

340.00 7.4309 0.5826 12.7542 -0.3575 

350.00 7.4474 0.5660 13.1571 -0.3291 

360.00 7.4631 0.5504 13.5601 -0.3034 

370.00 7.4779 0.5355 13.9631 -0.2802 

380.00 7.4920 0.5215 14.3661 -0.2592 

390.00 7.5053 0.5082 14.7692 -0.2400 

400.00 7.5180 0.4955 15.1722 -0.2260 

410.00 7.5300 0.4835 15.5753 -0.2067 

420.00 7.5415 0.4720 15.9784 -0.1922 

430.00 7.5524 0.4610 16.3816 -0.1790 

440.00 7.5629 0.4506 16.7847 -0.1668 

450.00 7.5729 0.4406 17.1879 -0.1557 

460.00 7.5824 0.4310 17.5911 -0.1454 

470.00 7.5916 0.4219 17.9942 -0.1360 

480.00 7.6004 0.4131 18.3974 -0.1273 

490.00 7.6088 0.4047 18.8006 -0.1193 

500.00 7.6168 0.3966 19.2039 -0.1119 
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Table 4.3 E[X(t)], E(N(t)], E[X(t)]/ E(N(t)], ρ versus λ 

for α = 100.0, µ = 300.0, t = 0.05 

 

λ E[X(t)] E(N(t)] E[X(t)]/ E(N(t)] ρ 

200.00 7.3535 0.6599 11.1429 -0.5067 

210.00 7.7212 0.6929 11.1429 -0.5027 

220.00 8.0889 0.7259 11.1429 -0.4995 

230.00 8.4566 0.7589 11.1429 -0.4967 

240.00 8.8243 0.7919 11.1429 -0.4944 

250.00 9.1919 0.8249 11.1429 -0.4924 

260.00 9.5596 0.8579 11.1429 -0.4907 

270.00 9.9273 0.8909 11.1429 -0.4892 

280.00 10.2950 0.9239 11.1429 -0.4879 

290.00 10.6626 0.9569 11.1429 -0.4868 

300.00 11.0303 0.9899 11.1429 -0.4858 

310.00 11.3980 1.0229 11.1429 -0.4849 

320.00 11.7657 1.0559 11.1429 -0.4841 

330.00 12.1334 1.0889 11.1429 -0.4834 

340.00 12.5010 1.1219 11.1429 -0.4828 

350.00 12.8687 1.1549 11.1429 -0.4823 

360.00 13.2364 1.1879 11.1429 -0.4818 

370.00 13.6041 1.2209 11.1429 -0.4813 

380.00 13.9717 1.2539 11.1429 -0.4810 

390.00 14.3394 1.2869 11.1429 -0.4806 

400.00 14.7071 1.3299 11.1429 -0.4803 

 

 

 

 
 
 



 67 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 

THE T4 CELL COUNT AS A MARKER OF HIV PROGRESSION IN THE 

ABSENCE OF ANY DEFENSE MECHANISM 
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5.1  INTRODUCTION 

T4 cells which originate in the bone marrow and mature in the thymus gland play a dominant 

role in the immune system of the human body. Infact, these cells amplify immune responses 

through the release of various cytokine mediators. It has been observed in HIV infected 

individuals that as a consequence of HIV infection, selective depletion of T4 cells occurs. 

When the T4 cell count in such an individual drops, these cells are unable to mount an 

effective immune response and consequently, the individual becomes susceptible to 

opportunistic infections and lymphomas. Accordingly, the T4 cell count can be considered a 

marker of disease progression in an infected individual and the loss of T4 cells accounts for a 

major part of the immunosuppressive effect of HIV (Stein et al. 1992, Phillips et al. 1992, 

Feinberg 1996 and Sabin et al.1998). 

 

In the recent past, several researchers have developed various stochastic and deterministic 

models to describe the temporal progression of the T4 cell count in a HIV infected individual 

and its relationship to the survival time of the individual (Longini et al. 1991, Perelson et 

al.1993, De Gruttola and Tu 1994, Philips et al. 1994, Cozzi-Lepri et al. 1997 and Wick 

1999). Longini et al. (1991) modelled the decline of T4 cells in HIV infected individuals with 

a continuous-time Markov process in which the state space consists of seven states. These 

states are the end points of six progression T4 cell count intervals and the beginning of the 

first interval corresponds to the time of HIV infection and the end of the last interval 

synchronizes with the time of AIDS diagnosis. Perelson et al. (1993) developed a model for 

the interaction of HIV with T4 cells by considering four populations namely, uninfected T4 

cells, latently infected T4 cells, actively infected T4 cells, and free HIV; and using the model, 

they examined several features of HIV infection and in particular the process of T4 cell 

depletion.  
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De Gruttola and Tu (1994) proposed a model to study the progression of the T4 cell count 

and the relationship between different features of this progression and survival time. In their 

model, they observed the T4 cell count only at certain fixed time points and using random 

effects estimated the T4 trajectory.  

 

Philips et al. (1994) developed an extrapolation model based upon T4 cell counts measured at 

discrete points, and using the model estimated the probability of remaining free of AIDS for 

up to 25 years after infection with HIV. Cozzi Lepri et al. (1997) used multilevel modelling 

techniques to asses the rate of T4 cell decline in HIV infected individuals and predicted that 

the rate of T4 cell decline is actually slower at the later stage of the disease.  

 

In the work of Wick (1999), the T4 cell loss in a HIV infected individual has been analysed 

by proposing a model in which the rates of proliferation and programmed cell death 

(apoptosis) control the rise and fall of the T4 cell count. In all these works, the stochastic 

mechanism of HIV production has not been given its due importance in understanding the 

decline of the T4 cell count and the status of HIV progression in infected individuals. Further, 

no work appears to be available in literature incorporating the correlation structure between 

uninfected and infected T4 cell populations. 

 

Also, in HIV related models, there appears to be no work which quantifies the amount of 

toxins produced during the progression of HIV in infected individuals and its correlation with 

the loss of T4 cells. In this chapter, an attempt is made to fill the gap by building a more 

realistic stochastic model of HIV production/progression leading to the decline of the T4 cell 

count in an infected individual. 
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The organization of this chapter is as follows: In Section 5.2, we develop a catastrophe model 

of HIV production. The probability generating function for X(t), the number of uninfected 

cells, Y(t), the number of infected cells at any time t and Z(t), the number of lysed cells up to 

time t is obtained in Section 5.3. The means and variances of X(t), Y(t), and Z(t) are 

explicitly found in Section 5.4. We also obtain explicit expressions for the co-variances 

between X(t) and Y(t), Y(t) and Z(t), and Z(t) and X(t) in section 5.4. The total amount of 

toxins produced up to time t since the time of HIV infection is quantified and analysed in 

Section 5.5. In Section 5.6, a numerical illustration is provided to drive home a satisfactory 

picture of what happens during the progression of HIV in an infected individual up to the 

onset of AIDS. 

 

5.2 THE CATASTROPHE MODEL 

At time t = 0, one HIV infects a cell population of size N of uninfected T4 cells. The infected 

cell either splits into two infected cells or undergoes a lysis releasing a random number K of 

HIV’s which instantaneously infect an equal number of uninfected T4 cells; and the process 

continues. Further, there is an independent Poisson arrival of uninfected T4 cells with rate α 

into the population of T4 cells. The process of splitting of an infected cell into two infected 

cells can be viewed as a birth of an infected cell with the parent survival; and the event of a 

lysis of an infected cell can be considered as the death of an infected cell. The death of an 

infected cell is a disaster to the population of uninfected cells. This observation enables us to 

make the assumption that the population of infected cells undergoes a linear birth and death 

process, with λ and µ as the birth and death rates respectively; and the population of 

uninfected cells is subject to disasters occurring at the event of the death of an infected cell. 

Let X(t) and Y(t) denote respectively the number of uninfected and infected cells at time t. 
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Then, by the initial condition, we have X(0) = N – 1 and Y(0) = 1, where N is sufficiently 

large and fixed. Let Z(t) represents the number of cells that have undergone lysis  up to time 

t. Then, it is easy to note that 

   X(t) + Y(t) + Z(t) ≥ N. 

We assume that K has a discrete distribution defined by 

   Pr( ,K =  r) =    r =  0,  1,  2,  ...rπ  

The vector process (X(t), Y(t), Z(t)) is clearly Markov and we proceed to obtain its 

probability generating function in the next section. 

 

5.3  THE PROBABILITY GENERATING FUNCTION 

We define the probability generating function of (X(t), Y(t), Z(t)). 

  G u( , ] v,  w;  t) =  E[u v wX(t) Y(t) Z(t) . 

Then it is easy to note thatG u v( ,  v,  w;  0) =  uN-1 . To derive an expression for 

G u( ,  v, w;  t) , we first define the probability function 

  p i( ,  j,  k;  t) =  Pr{X(t) =  i,  Y(t) =  j,  Z(t) =  k} 

Then, using probabilistic laws, we obtain 

∂
∂

p(i,  j,  k:  t)
 =  - {j(  +  ) +  }p(i,  j,  k;  t) +  p(i -  1,  j,  k;  t)

t
λ µ α α  

+ (j -  1) p(i,  j -  1,  k;  t) +  (j +  1 -  r) p(i +  r,  j +  1 -  r,  k -  1;  t)r
r=0

j+1

λ µ π∑  

           (5.3.1) 

From (5.3.1), following the lines of Bailey (1975), it can be shown that the probability 

generating function G u( ,  v, w;  t)satisfies the partial differential equation 

∂
∂

= − ∂
∂

∂
∂

∂
∂

−

=

∞

∑
G

t

G

v

G

v
u v

G

v
r r

r

( ,λ µ α λ µ π +  )v  -  (1 -  u)G + v  +  w2
r

0

   

           (5.3.2) 
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with the initial condition G u v( ,  v,  w;  0) =  uN-1 . 

On simplification, the equation (5.3.2) becomes 

∂
∂

= − + ∂
∂

G

t
wh

v

u

G

v
α λ µ λ µ( ( ( )}1 -  u)G +  {-  +  )v +  v ,  2      

           (5.3.3) 

with the initial condition G u v( ,  v,  w;  0) =  uN-1 . 

 

The equation (5.3.3) is not easily solvable even for any simple form of the generating 

function h(.). However, we can obtain from the equation (5.3.3) the various moments of X(t), 

Y(t) and Z(t). Accordingly, in the next section, we study the moment structure of the process 

(X(t), Y(t), Z(t)). We also study the covariance structure of X(t), Y(t) and Z(t).  

 

5.4  THE MOMENT STRUCTURE  (X(t), Y(t), Z(t)) 

We have the following notations: 

M t M t M t

t t t

M t M t M t

X Y Z

XY YZ ZX

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

 =  E[X(t)],   =  E[Y(t)],   =  E[Z(t)],

M  =  E[X(t){X(t) -  1}],  M  =  E[Y(t){Y(t) -  1}],  M  =  E[Z(t){Z(t) -  1}],  

 =  E[X(t)Y(t)],   =  E[Y(t)Z(t)],   =  E[Z(t)X(t)].
X
(2)

Y
(2)

Z
(2)  

Then, from the equation (5.3.3), we obtain the following system of equations: 

   
∂

∂
M t

M tX
Y

( )
( )

t
 =   -  h (1)'α µ     (5.4.1) 

   
∂

∂
M t

a M tY
Y

( )
( )

t
 =         (5.4.2) 

   
∂

∂
M t

M tz
Y

( )
( )

t
 =  µ       (5.4.3) 

∂
∂

M t
M t M t M tX

XY X Y

( ) ( )
( ) ( ) ( )

2

t
 =  -  2 h (1)  +  2  +  d'µ α    (5.4.4) 

∂
∂

M t
aM t M tY

Y Y

( )
( )( )

( ) ( )
2

2

t
 =  2  +  c       (5.4.5) 
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∂
∂

M t
M tZ

YZ

( ) ( )
( )

2

t
 =  2µ        (5.4.6) 

∂
∂

M t
aM t M t M tXY

XY Y Y

( )
( ) ( ) ( )( )

t
 =   +  b -  h (1)'µ 2     (5.4.7) 

∂
∂

M t
aM t M t M tYZ

YZ Y Y

( )
( ) ( ) ( ) ( )( )

t
 =   +   +  h  'µ µ2 1     (5.4.8) 

∂
∂

M t
M t M t M t M tZX

Z XY Y YZ

( )
( ) ( ) ( ) ( ) ( ) ( )

t
 =   +    -  h  -  h   ' 'α µ µ µ1 1  (5.4.9) 

where 

a =    +  h  b =    h  h  c =  2  +  h  d =  2 h  +  h' ' '' '' ' ''λ µ µ α µ µ λ µ µ µ− − −( ), ( ) ( ), ( ), ( ) ( ).1 1 1 1 1 1  

Noting the fact that  

 

M M M

M M M

M M M

X Y Z

X Y Z

XY YZ ZX

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

0 0 0

2 2 2

 =  N -  1,   =  1,   =  0,

 =  (N -  1)(N -  2),   =  0,   =  0,

 =  N -  1,   =  0,   =  0

 

And using Laplace transformation, the equations (5.4.1) to (5.4.9) yield 

  M  =  
N -  1

s
 +  

s
 -  

h

s(s -  a)X 2

'
* ( )

( )
s

α µ 1
     (5.4.10) 

  M  =  
1

s -  aY
* ( )s        (5.4.11) 

  M  =  
s(s -  a)Z

* ( )s
µ

       (5.4.12) 
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(N -  1)(N -  2)

s
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d

s(s -  a)
 -  2 h

N -  1

s(s -  a)
 +  
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'

2
( )* ( ) ( )2 1s µ µRS

T
UV
W

 

    + 2
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s
 +  

s
 -  

h

s (s -  a)2 3

'

2
α α µ ( )1RS
T

UV
W

   (5.4.13) 

   M sY
( )* ( )2  =  

c

(s -  a)(s -  2a)
     (5.4.14) 

  M sZ
( ) ( )2  =  2

c +  h (1)(s -  2a)

s(s -  a) (s -  2a)
2

'

2
µ RS
T

UV
W

     (5.4.15) 
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  M sXY
* ( ) =  

N -  1

s -  a
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b(s -  2a) -  h (1)c
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2
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           (5.4.18) 

Inverting the equations (5.4.10) and (5.4.11), we obtain 

  M t
t

a
eX

at( )
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α µ
    (5.4.19) 
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  M t
c

a
e eY

at at( ) ( ) (2 2 =   -  )      (5.4.23) 

M t
a

c

a
e e e eZ

at at at at( ) ( ) ( ( )(2
2

2
2 1 2 1 =   -  2at  -  ) -  h  -  at  -  1)'µ RST

UVW
   (5.4.24) 

 M t e
c

a
e e eXY

at at at at( )
( )
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 -  at  -  )
'µ 1

2
2    (5.4.25) 

M t
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a
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at at at at( ) ( ( ) =   -  at  -  ) +  h  'µ 2
2 1RST

UVW
    (5.4.26) 
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at at at( )
( ){ ( )} )

( =  (N -  1 -  h (1))(  -  1) -  
h

 -  at  -  )'
'µ µ−RS

T
1

1
2

 

 
 
 



 75 

  +
UV
W

  -  at -  ) -  
h

 -  2at  -  )
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( )
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1
12

2    (5.4.27) 

 

5.5  THE AMOUNT OF TOXIN PRODUCED 

Whenever an infected cell appears, a quantity of toxic substance is produced in the blood. 

The estimation of the total amount of toxins produced by the infected cells since the 

beginning of the HIV infection up to any time is useful in knowing the level of HIV infection. 

In this section, we quantify the total amount of the toxins and obtain its mean and variance. 

Since the amount of toxins produced at time t is proportional to the number of infected cells 

present at time t, it is evident that the total amount of toxins produced up to time t since the 

beginning of the HIV infection is given by the stochastic integral 

    W t( ) =  Y(u)du
0

tz      (5.5.1) 

 

The stochastic integral in (5.5.1) exists almost surely and has been studied very extensively in 

several biological applications by several researchers (Puri 1966, Jagers 1967, Pakes 1975 

and Udayabaskaran and Sudalaiyandi 1986). 

 

We proceed to obtain the joint moment generating function of Y(t) and W(t) defined by 

  H u( ,  v;  t) =  E[u e |Y(0) =  1]Y(t) -vW(t)     (5.5.2) 

Fixing the occurrence of the first event since time t = 0 and using probabilistic arguments, we 

obtain the following integral equation: 

H u t
t

( , { v;  t) =  ue  +  e H(u,  v;  t -  )} d-( + + ) -( + + ) 2λ µ ε λ µ ε τλ τ τ
0z  

   + e h(H(u,  v;  t -  ))d-( + + )µ τ τλ µ ε τ

0

tz     (5.5.3) 

 
 
 



 76 

where h s( ) =  Pr
s

0

r
∞

∑ is the generating function of the number of HIV’s produced at the time 

of a lysis. From the equation (5.5.3), we can obtain the mean and variance of W(t) and the 

correlation structure of W(t) with Y(t). 

Differentiating (5.5.3) with respect to v at (u = 1, v = 0), we get 

 M t MW
t

W

t
( ) [ =  te  +  e ( t -  ) +  ]d-( + ) -( + )λ µ λ µ τλ τ τ τ2

0z  

   + z e ( t -  ) +  ]d-( + )µ τ τ τλ µ τ [ ( )'h MW

t
1

0
   (5.5.4) 

Differentiating (5.5.3) twice with respect to v at (u = 1, v = 0), we get 

 M t dWW
t

t
( ) =  t e  +  (  +  ) e2 -( + ) -( + )λ µ λ µ τλ µ τ τ2

0z  

  + z [2  +  e ( t -  )d-( + )λ µ τ τλ µ τh MWW

t
' ( )]1

0
 

  + z [2  +  e ( t -  )} d-( + ) 2λ µ τ τλ µ τh MW

t
''( )] {1

0
 

  + z 2[2  +  e ( t -  )d-( + )λ µ τ τ τλ µ τh MW

t
' ( )]1

0
    (5.5.5) 

Differentiating (5.5.3) with respect to u and v at (u = 1, v = 0), we get 

 M t h MYW
t

YW

t
( ) ( )]' =  te   [2  +  e ( t -  )d-( + ) -( + )λ µ λ µ τλ µ τ τ+ z1

0
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t

W
''( )]1

0z  

  + z [2  +  e ( t -  )d-( + )λ µ τ τ τλ µ τh MY

t
' ( )]1

0
    (5.5.6) 

On applying Laplace transform to equations (5.5.4), (5.5.5) and (5.5.6) we get  

    M sW
* ( ) =  

1

s(s -  a)
     (5.5.7) 
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On inversion, the equations (5.5.7), (5.5.8) and (5.5.9) yield 
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5.6 NUMERICAL ILLUSTRATION 

The behaviour of the means of X(t), Y(t) and Z(t) and the correlation coefficient (ρ ) between  

X(t) and Y(t) (RXY) and that between  Y(t) and Z(t) (RYZ) with respect to time is studied. For 

this, we assume α  = 100.0, λ  = 0.20, µ  = 0.10, and vary t from 0.5 to 0.8 in steps of 0.5. 

The results are highlighted in Tables 5.1 to 5.4. 

 

The number of uninfected T4 cells present at any instant of time decreases (Table 5.1) and 

that of the infected cells (Table 5.2) increases with time as can be expected. This implies that 

the mean of the cumulative quantity of toxin produced should also increase with time and 

Table 5.1 confirms this result. Also we observe that the correlation between X(t) and Y(t) 

remains negative (Table 5.2) whereas correlation between Y(t) and Z(t) is positive throughout 

the period under consideration (Table 5.2). 
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As the rate of arrival of uninfected T4 cells increases (α  = 100), the mean number of 

uninfected T4 cells present at the time of instant 0.5 increases. However, the means of the 

number of infected cells and that of the cumulative quantity of toxin produced remain the 

same irrespective of the values of α  (Table 5.3). Also, there is a negative correlation 

between X(t) and Y(t) (Table 5.4). Correlation between Y(t) and Z(t) exists but nothing can 

be said about the nature of its variation (Table 5.4) with respect to α . 

 

5.6 CONCLUSION 

In this chapter, we have obtained the mean number of uninfected, infected and lysed T cells 

in a HIV infected individual. Unlike other models proposed by some mathematical scientist 

(see Longini et al. 1991, Perelson et al.1993, De Gruttola and Tu 1994, Philips et al. 1994, 

Cozzi-Lepri et al. 1997 and Wick 1999), our model not only gave moment structure of our 

variables, but also the co-variance relationship between them. Hence we have been able to 

build on previous models establish in the line of the T4 cell count as marker of the disease 

progression. Also we were able to model the quantity of toxin produced at time t in a HIV 

infected individual. 
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Table 5.1 E[X(t)], E[Y(t)], E[Z(t)] versus t 

for α  = 100.0, λ  = 0.20, µ  = 0.10 

t E[X(t)] E[Y(t)] E[Z(t)] 

0.50 10.0483 0.0017 0.0007 

1.00 10.0972 0.0030 0.0018 

1.50 10.1452 0.0052 0.0038 

2.00 10.1917 0.0090 0.0073 

2.50 10.2357 0.0156 0.0133 

3.00 10.2753 0.0156 0.0133 

3.50 10.2753 0.0271 0.0237 

4.00 10.3259 0.0815 0.0731 

4.50 10.3216 0.1412 0.1274 

5.00 10.2775 0.2447 0.2215 

5.50 10.1644 0.4241 0.3846 

6.00 9.9316 1.2741 1.1574 

6.50 9.4916 0.7351 0.6674 

7.00 8.6923 2.2083 2.0067 

7.50 7.2702 3.8276 3.4788 

8.00 4.7688 6.6342 6.0302 
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Table 5.2 RXY , RYZ versus t 

for α  = 100.0, λ  = 0.20, µ  = 0.10 

t RXY RYZ 

0.50 -0.8770 0.8406 

1.00 -0.9226 0.9130 

1.50 -0.9616 0.9446 

2.00 -0.9829 0.9641 

2.50 -0.9934 0.9769 

3.00 -0.9970 0.9854 

3.50 -0.9989 0.9909 

4.00 -0.9995 0.9944 

4.50 -0.9998 0.9966 

5.00 -0.9999 0.9980 

5.50 -1.0000 0.9988 

6.00 -1.0000 0.9993 

6.50 -1.0000 0.9996 

7.00 -1.0000 0.9998 

7.50 -1.0000 0.9999 

8.00 -1.0000 0.9999 
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Table 5.3 E[X(t)], E[Y(t)], E[Z(t)] versus α  

for t = 0.50, λ  = 0.20, µ  = 0.01 

α  E[X(t)] E[Y(t)] E[Z(t)] 

100.00 10.0483 0.0017 0.0007 

200.00 10.0983 0.0017 0.0007 

300.00 10.1483 0.0017 0.0007 

400.00 10.1983 0.0017 0.0007 

500.00 10.2483 0.0017 0.0007 

600.00 10.2983 0.0017 0.0007 

700.00 10.3483 0.0017 0.0007 

800.00 10.3983 0.0017 0.0007 

900.00 10.4483 0.0017 0.0007 

1000.00 10.4983 0.0017 0.0007 

 

 

Table 5.4 RXY , RYZ versus α for 

 t = 0.50, λ  = 0.20, µ  = 0.01 

α  RXY RYZ 

100.00 -0.8770 0.8406 

200.00 -0.7595 0.8406 

300.00 -0.6578 0.8406 

400.00 -0.6036 0.8406 

500.00 -0.5674 0.8406 

600.00 -0.5262 0.8406 

700.00 -0.4929 0.8406 

800.00 -0.4688 0.8406 

900.00 -0.4479 0.8406 

1000.00 -0.4297 0.8406 
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CHAPTER SIX 

A STOCHASTIC MODEL OF THE DYNAMICS OF HIV UNDER A COMBINATION 

THERAPEUTIC INTERVENTION 
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6.1  INTRODUCTION 
 
In HIV infected individuals, the infection exhibits a long asymptomatic phase (after the initial 

high infectious phase), on average about 10 years before the onset of AIDS. During this 

incubation period which some call the clinical latency period, the individuals appear to be 

well and may contribute significantly to the spread of the epidemic in a community. Some 

clinical markers such as the CD4 cell count and the RNA viral load (viraemia) provide 

information about the progression of the disease in infected individuals. Also, the clinical 

latency period of the disease may provide a sufficiently long period to try for an effective 

suppressive therapeutic intervention in HIV infections.  

 

The knowledge of principal mechanisms of viral pathogenesis, namely the binding of the 

retrovirus to the gp120 protein on the CD4 cell, the entry of the viral RNA into the target cell, 

the reverse transaction of viral RNA to viral DNA, the integration of the viral DNA with that 

of the host, the viral regulatory processes mediated through regulatory proteins such as tat 

and rev and the action of viral protease in cleaving viral proteins into mature products, led to 

the design of drugs  (chemotherapeutic agents) to control the production of HIV. Two 

principal directions along which drugs (such as AZT and Ritonavir (Shafer et al. 2001) are 

attempted are inhibition of the reverse transcriptase of HIV and inhibition of the protease of 

HIV. The inhibition of the function of either the reverse transcriptase or the protease of HIV 

reduces the production of infectious free HIV thereby the onset of AIDS can be delayed in 

HIV-infected individuals ( Brookmeyer and Gail 1994). 

  

A cure for HIV is yet to be discovered but progress is being made in obtaining effective 

vaccine and/or eradicating the virus from the human body. For example, in recent months 

result from a bone marrow transplant of a then HIV infected individual to be saved from 

leukaemia showed no known virus in his system (neither in the blood nor the reservoirs); is 
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this not a cure at hand? It was stated that this is not a recommended way of tackling HIV 

infection as it is very expensive and it takes time for the individual to have immunity because 

at the stage of transplant the individual has no immunity due to the new stem cells that are yet 

to grow and replicate (http://www.welt.de/english-news/article2715739/HIV-patient-cured-

by-marrow-transplant.html). With the widespread of the epidemic and also in the absence of 

an “effective” vaccine or cure, therapeutic interventions still have to be heavily relied on. 

Several research studies have been made in the recent past both theoretically and 

experimentally to analyse the impact of therapy on the viral load in HIV infected persons to 

test the effectiveness of the treatment (Nelson and Perelson 1995, Wei et al. 1995, Perelson et 

al. 1996, Mellors et al. 1997, Nijhuis et al. 1998, Tan and Xiang 1999 and Bangsberg et al. 

2004).  

 

Nelson and Perelson (1995) proposed a mathematical model of therapeutic intervention to 

delay the onset of AIDS by the stimulated production of genetically engineered defective 

interfering virus (DIVs) that interferes with the HIV replication process. A DIV is a deletion 

mutant and it is incapable of replicating by itself in a host cell (CD4 cell), but may replicate if 

the host cell is co-infected with HIV. Assuming that DIV depends on HIV to multiply, 

Nelson and Perelson (1995) constructed a mathematical model describing the interaction 

among HIV, DIV and uninfected CD4 cells and they analysed the co-evolution of DIV and 

HIV in a single compartment. Their model is essentially given by a system of ordinary 

differential equations involving eight variables and several parameters representing the 

activities of DIV and HIV. By considering a higher level of DIV activity in the production of 

co-infected CD4 cells, they investigated the possibility of blocking the production of HIV so 

that the burden of HIV on the population of CD4 cells is reduced.  
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In the paper of Wei et al. (1995), based upon the results of several experimental studies of the 

dynamics of HIV replication in the presence of antiretroviral agents, it was reported that HIV 

had enormous potential in showing resistance to drugs and undergoing several mutations and 

a rapid and virtually complete replacement of wild-type HIV by drug resistant virus occurred 

when anti-viral drugs were administered. Nijhuis et al. (1998) noticed high drug resistance 

and unique combination of mutation in individuals when they proposed a stochastic model to 

test the resistance to protease inhibitors, although there was reduced effective free HIV 

population (500 – 15000). 

 

Perelson et al. (1996) presented a mathematical model which was used to analyse the kinetic 

picture of HIV pathogenesis subject to the administration of a drug called Ritonavir to inhibit 

potently the protease of HIV. In their paper, they represented the dynamics of cell infection 

and viral production after treatment with ritonavir, by a set of ordinary differential equations 

using deterministic model and, assumed that the viral inhibition of ritonavir was 100% so that 

all newly produced virons after the treatment with ritonavir were non-infectious. Hence by 

using the mathematical model and non-linear least squares fitting of the viral load data of five 

HIV-1 infected patients, they were able to obtain estimates of the rate of viral clearance, the 

infected cell life-span and the average viral generation time.  

 

Tan and Xiang (1999) had a state-space model of HIV pathogenesis in HIV infected 

individuals undergoing a combination-treatment (i.e. a treatment with a combination of anti-

viral drugs such as AZT and Ritonavir which can inhibit either the reverse transcriptase or the 

protease of HIV). Their model gave way for the production of infectious free HIV and non-

infectious free HIV, by extending the model of Perelson et al. (1996) and developing 

procedures for estimating and predicting the number of uninfected CD4 cells, infectious free 
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HIV, non-infectious free HIV and HIV infected CD4 cells. They not only extended Perelson 

et al. (1996) model into a stochastic model, but they also applied their model to data of some 

patients given by Perelson et al. (1996). Their model was discrete in time and was described 

by a system of stochastic difference equations which were derived based on the biological 

specifications of the HIV-replication cycle. However, the nature of the HIV-replication cycle 

indicated that a stochastic model approach of point events that are distributed over continuous 

infinity of states is very much appropriate to analyse the basic underlying process of 

generation of HIV and the interaction of defective HIV on the kinetics of HIV, so that an 

efficient therapeutic intervention may be devised to combat the production of HIV.  

 

Since Perelson et al. (1996) had considered the deterministic model and Tan and Xiang 

(1999) had a state-space model, we considered a stochastic model of the growth of HIV 

population which carries over the principle of the virology of HIV and the life-cycle of HIV 

and allows the production of non-infectious (defective) free HIV to reduce the severity of 

HIV in a HIV-infected individual undergoing a combination-therapeutic treatment. Our aim 

in this paper is to use stochastic model obtained by extending the model of Perelson et al. 

(1996) to determine number of uninfected T4 cells, infected T4 cells and free HIV in an 

infected individual by examining the combined antiviral treatment of HIV. This is important 

because it helps in determining the efficacy of methods used in the research areas of 

pathogenesis, progression and combined treatment of HIV. By obtaining the variance and co-

variance structures of the variables X(t), V(t) and D(t), we have contributed to the work afore 

done by Perelson et al. (1996) and Tan and Xiang (1999). Based upon the model, we obtain 

the expected numbers of HIV infected cells, infectious free HIV and non-infectious free HIV 

at any time t, and derive conclusions for the reduction or elimination of HIV in HIV-infected 

individuals. 
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The organisation of this chapter is as follows: In Section 6.2, we formulate a stochastic model 

to describe the production and the clearance of virus producing cells, infectious free HIV and 

non-infectious free HIV in a therapeutic environment. In Section 6.3, we derive a system of 

differential difference equations for the probability function associated with the process and 

also obtain a partial differential equation for the probability generating function of the 

numbers of HIV-infected CD4 cells, infectious free HIV and non-infectious free HIV at time 

t. The population measures are derived in Section 6.4. In Section 6.5, we provide a numerical 

illustration to show the impact of the usage of combination-therapy in controlling the 

progression of HIV and also obtained variance and co-variance structures of the variables. 

We have also compared equations we obtained with those obtained by Perelson et al. (1996) 

as our model is an extension of their model. 

 

 

6.2  THE FORMULATION OF THE MODEL 

Assume that at time t = 0, a combination-therapy treatment is initiated in an HIV-infected 

individual. We assume that the therapeutic intervention inhibits either the enzyme action of 

reverse transcriptase or that of the protease of an HIV in a HIV-infected cell. A HIV-infected 

cell with the inhibited HIV-transcriptase can be considered as a dead cell as it cannot 

participate in the production of the copies of any type of HIV. On the other, a HIV-infected 

cell in which the reverse transcription has already taken place and the viral DNA is fused 

with the DNA of the host but the enzyme activity of HIV-protease is inhibited, undergoes a 

lysis releasing infectious free HIV and non-infectious free HIV. A non-infectious free HIV 

cannot successfully infect a CD4 cell. Accordingly, at any time t, the blood of the infected 

person contains virus-producing HIV-infected cells, infectious free HIV and non-infectious 

free HIV. 
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A virus producing cell existing at time t in the therapeutic environment undergoes one of the 

following possibly in the interval (t, t+∆): 

 

(i) it splits into two HIV-infected cells with probability λ1∆ + ο(∆); 

(ii)  it undergoes a lysis with probability υ∆ + ο(∆), producing a random number 

K1 of infectious free HIV and a random number K2 of non-infectious free 

HIV; 

(iii)  it dies with probability µ∆ + ο(∆); 

(iv) it remains as it is with probability 1 – (λ1 + υ + µ)∆ + ο(∆); 

 

We assume that K1 and K2 have the joint probability generating function h(s1, s2) defined by 
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where πlm represents the probability that l infections free HIV and m non-infectious free HIV 

are released at the lysis occurring at any time. An infectious free HIV existing at time t in the 

blood of the individual may undergo one of the following possibilities in the interval (t, t+∆): 

(i) it infects a T4 cell with probability λ2∆ + ο(∆) making the cell into a viruses 

producing cell; 

(ii)  it dies with probability c∆ + ο(∆); 

(iii)  it remains as it is with probability 1 – (λ2 + c)∆ + ο(∆); 

The population of non-infectious free HIV does not grow by replication of its members but 

grows by admitting bulk immigrations which occur at the lysis of HIV-infected cells. A non-

infectious HIV existing at time t dies in the interval (t, t+∆) with probability c∆ + ο (∆). 

 

Let X(t) be the number of virus producing cells (these are cells that produce more virus to 

infect other cells) at time t. Let V(t) and D(t) be respectively the number of infectious free 

HIV (these are HIV in the body that infect cells in the body) and the number of non-
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infectious free HIV (these are HIV in the body that do not infect cells in the body) at time t. 

For simplicity, we assume that X(0) = N, V(0) = n, D(0) = 0. We proceed to discuss the 

probability generating function of the vector process (X(t), V(t), D(t)) in the next section. 

 

6.3  PROBABILITY GENERATING FUNCTION 
 
The probability generating function of (X(t), V(t), D(t)) is defined by  
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From the initial condition, it is easy to note that: 
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To derive an equation for G(u1,u2,u3;t), we need the probability function which is defined for 

any time t by  

p(i,j,k;t) =  Pr{X(t) = i, V(t) = j, D(t) = k}, 

where i, j, k = 0, 1, 2 … 

 

Now, we proceed to derive a system of differential-difference equations for the function  

p(i, j, k; t). For this, we list below the exhaustive and mutually exclusive events that occur in 

(t, t+∆) given that X (t) = i > 0, V (t) = j > 0 and D (t) = k > 0: 

(i) one HIV infected cell splits into two HIV-infected cells in (t, t+∆). The 

probability for this event to occur is iλ1∆ + ο(∆); 

(ii)  one HIV-infected cell undergoes a lysis in (t, t+∆). The probability for this 

event to occur is iυ∆ + ο(∆); 

(iii)  one HIV-infected cell dies in (t, t+∆). The probability for this event to occur 

is iµ∆ + ο(∆); 

(iv) one infectious free HIV virus infects one CD4 cell making the CD4 cell an 

HIV-infected cell in (t, t+∆). The probability for this event to occur is  
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jλ2∆ + ο(∆); 

(v) one infectious free HIV virus dies in (t, t+∆). The probability for this event 

to occur is jc∆ + ο(∆); 

(vi) one non-infectious free HIV virus dies in (t, t+∆). The probability for this 

event to occur is kc∆ + ο(∆); 

(vii)  none of the above occurs in (t, t+∆). 

 

Using probabilistic arguments, we obtain 
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From equation 6.3.1, we readily obtain the following equations: 
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Now, we have 
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And so, by using equations 6.3.2 and 6.3.3, we obtain 
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Equation 6.3.4 is not solvable even for any simple form of h(u2,u3;t). However, we can obtain 

the moment-structure of (X(t), V(t), D(t)). We do this in the next section. 

 

 

6.4  THE MOMENT STRUCTURE OF (X(t), V(t), D(t)) 

We have the following notation: 
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Differentiating equation 6.3.4 with respect to u1 at A, we obtain 
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Differentiating (6.3.4) with respect to u2 at A, we obtain 
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Differentiating (6.3.4) with respect to u3 at A, we obtain 
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Differentiating (6.3.4) with respect to u1 twice at A, we get 
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Differentiating (6.3.4) with respect to u2 twice at A, we get 
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Differentiating (6.3.4) with respect to u3 twice at A, we get 
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Differentiating (6.3.4) with respect to u1 and u2 at A, we get 
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Differentiating (6.3.4) with respect to u2 and u3 at A, we get 
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Differentiating (6.3.4) with respect to u1 and u3 at A, we get 
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Although the differential equations 6.4.2 and 6.4.3 are similar to the equations in Perelson et 

al. (1996), equation 6.4.1 differs from the corresponding equation in Perelson et al. (1996). 

Equations 6.4.2 and 6.4.3 in Perelson et al. (1996) were given as cV- TN  *δ=
dt

dV
 and 

NI
* cV - TN  δ=

dt

dVNI  respectively and equation 6.4.1 as *
*

T - kVT  δ=
dt

dT
(where T is target 

cells, *T  is productively infected cells, V is the concentration of viral particles in plasma, δ is 

the rate of loss of virus producing cells, N is the number of new virons produced per infected 

cell during its lifetime, c is the rate constant for viron clearance and NIV  is the concentration 

of virons in the non-infectious pool).We proceed to solve the above equations to obtain the 

moments MX(t), MV(t) and MD(t) explicitly. Writing these equations in the matrix form, we 

obtain the following matrix differential equation: 
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Where R is the matrix given by  
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The characteristic equation of the matrix R is given by  

[ ] 0
21

 - ))(()( =+++ λνλβλαλ mc                 (6.4.11) 

Solving equation 6.4.11, we obtain the characteristic values of R which are real and distinct, 

and are given as 
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Accordingly, the general solution of 6.4.10 is 
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where C1, C2 and C3 are constants. In our model, we have assumed that X(0) = N, V(0) = n, 

D(0) = 0 and so we have the following initial conditions: 

MX(0) = N, MV(0) = n, MD(0) = 0. 

Consequently, the constants C1, C2 and C3 satisfy the following system of linear equations: 
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Solving the system (6.4.12), we obtain   
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We have not obtained explict results for ),(M ),(M ),( XV
(2)
D

)2( tttM X ).(M and)(M XDVD tt  

However, we are able to solve completely the equations (6.4.1) to (6.4.9) in a special case 

where no infectious free virus is released at the lysis of every HIV-infected cell treated with 

combination therapy. We have for this special case, m1 = 0, m11 = 0, m12 = 0.  

 

Consequently, equations 6.4.1 to 6.4.9 yield 
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Although the above expressions for )(tM XD and )()2( tM D are quite laborious, we have 

presented them here for the sake of completeness. However, for the purpose of numerical 

illustration considered in the next section, we prefer the following integral expressions which 

are obtained from equations 6.4.18 to 6.4.24. 
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Where the expressions for  ),(tM X  ),(tM V )(tM D  and )()2( tM V  are given by equations 

6.4.16, 6.4.17, 6.4.18 and 6.4.19 respectively. 

 

 

6.5  NUMERICAL ILLUSTRATION OF MODEL 

For the purpose of numerical illustration, we have extrapolated estimates from Perelson et al. 

(1996) and Tan and Xiang (1999) and considered three cases (we adopt Simpson’s one-third 

rule for the computation of integrals (equations) 6.4.25 to 6.4.30). 

Case (i): Both the mean numbers of the infectious free HIV m1 and non-infectious free HIV 

m2 produced by a virus producing cell at the time of its lysis are greater than zero. 
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Case (ii): m1 = 0 and m2 ≠ 0 and obtain values of the means ),(tM X  ),(tM V  and )(tM D  for 

the values of t ranging from 0.0 to 2.5 in steps of 0.5 for all the cases and the results are 

highlighted in Figure 6.1.  

Case (iii): The second moments are evaluated by adopting Simpson’s one-third rule for the 

evaluation of integrals. The assumed values of the parameters are given below in table 6.1 

and the results are highlighted in Table 6.2 to 6.5 and figure 6.1. For simulated results, we 

take 1 hour as 0.5 time unit. 

 

Table 6.1: Assumed values of parameters used in data simulation 

 

 

Case (i): From Figure 6.1 and table 6.2, it was easily noted that as t increases the values of 

)(tM X , )(tM V , )(tM D also increases for λ1 = 5.0. When λ2 = 10.0 (the rate at which HIV 

infected cell splits into two), the values of ),(tM X )(tM V , )(tM D  also increased with 

Parameters 
Notation 

 
Parameters 

Assumed 
values 

C Rate of dying of a free HIV 3/day 
N Number of virus producing cells at time t = 0 412copies/

ml 
n Number of infectious free HIV at time t = 0 98000/mm3 
 

1λ  

 
Rate of splitting of a virus producing cell  

5/day/mm3 
and 

10/day/mm3 

2λ  Rate with which a free HIV infects a CD4 cell  1/day/mm3 

ν  Rate of occurrence of lysis of virus producing cell  0.02/day 
 

µ  
Rate of death of virus producing cell  0.4/day 

 

1m  

Expected number of infectious free HIV produced at the time of 
lysis of an infected cell 

 
200/mm3 

 

2m  

Expected number of non-infectious free HIV produced at the time 
of lysis of an infected cell 

 
100/mm3 

 

22m  

Second factorial moments of the number of non-infectious free 
HIV produced at the time of lysis of an infected cell 

 
9900/mm6 
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increasing value of t (table 6.2). This shows that as the value of λ1 increases, the values of 

),(tM X )(tM V , )(tM D increases significantly with time before treatment. 

 

Case (ii): Assume m1 = 0, m2 = 100.0, m22 = 9900.0. From Figure 6.1 that has the fitted 

curves for  ),(tM X )(tM V , )(tM D  before and after treatment, it is observed that there is a 

remarkable difference in the values obtained before and after treatment especially after t = 

1.5. This shows the effectiveness of the treatment using the stochastic model. As such the 

expected number of virus producing cells and expected number of non-infectious free HIV 

decreased significantly after treatment (effect of reverse transcriptase drugs). And the 

expected numbers of infectious free HIV was reduced to almost nil at t = 2.5 which is the 

effect of protease inhibitor drugs as they reduce the generation of infectious free HIV at the 

death of actively infected T4 cells.  

 

Case (iii): Assume m1 = 0, m2 = 100.0, m22 = 9900.0. The values of the second order 

moments namely: ),()2( tM X ),()2( tM D ),()2( tM V ),(tM XD  ),(tM XV  and  )(tM VD  are provided in 

Table 6.4 and Table 6.5. The variances of virus producing cells and non-infectious free HIV 

are so large in comparison to those of infectious free HIV and their values increased 

significantly with t increasing. Unlike those of infectious free HIV that decreased 

significantly after treatment. The co-variance results shows that there is a positive 

relationship between virus producing cells and infectious free HIV.  
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Table 6.2 : )(tM X , )(tM V , )(tM D versus t (before treatment) with C = 3.0, N = 412.0, 

n = 98000.0, υ = 0.02, µ = 0.49, m1 = 200.0, m2 = 100.0, m22 = 9900.0, λ2 = 1.0 

 λ1 = 5.0 

t )(tM X *10-5 )(tM V *105 )(tM D *10-4 

0.50 1 1 3 

1.00 15 7 38 

1.50 178 80 449 

2.00 2106 943 5307 

2.50 24870 11131 62665 

 

 

 λ1 = 10.0 

t )(tM X *10-5 )(tM V *105 )(tM D *10-5 

0.50 1 2 2 

1.00 130 378 204 

1.50 17324 50286 27111 

2.00 2303609 6686681 3604945 

2.50 306314300 889138100 479355000 
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Table 6.3: )(tM X , )(tM V , )(tM D versus t (after treatment) with C = 3.0, N = 412.0, 

n = 98000.0, υ = 0.02, µ = 0.49, λ2 = 1.0, m2 = 100.0, m22 = 9900.0 

 

 λ1 = 5.0 

t )(tM X *10-5 )(tM V  )(tM D *10-4 

0.50 1 13263 3 

1.00 11 1795 28 

1.50 101 243 269 

2.00 950 33 2535 

2.50 8964 4 23936 

 

 

Table 6.4: )()2( tM X , )()2( tM D , )()2( tM V  versus t with C = 3.0, N = 412.0, n = 98000.0, υ = 0.02, 

µ = 0.49, m2 = 100.0, m22 = 9900.0, λ1 = 2.5, λ2 = 1.0    

 

t )()2( tM X *10-6 )()2( tM D *10-6 )()2( tM V  

0.50 1893 195 175901600 

1.00 15054 2349 3221750 

1.50 105300 18217 59008 

2.00 702573 134013 1081 

2.50 4510266 969590 20 
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Table 6.5: )(tM XV , )(tM XD , )(tM VD  versus t with C = 3.0, N = 412.0, n = 98000.0, 

υ = 0.02, µ = 0.49, m2 = 100.0, m22 = 9900.0, λ1 = 2.5, λ2 = 1.0 

 

t )(tM XV *10-6 )(tM XD *10-6 )(tM VD *10-6 

0.50 598 605 186 

1.00 255 5925 95 

1.50 120 43175 43 

2.00 70 295546 24 

2.50 51 1948272 17 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.1: Graph of simulated mean number of free HIV, infectious free HIV and non-
infectious free HIV before and after combined therapeutic treatment. (Units: on x-axis 0.5 is 
1hour and viral counts on y-axis is copies/ml of blood) 
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6.6 CONCLUSION 
 
In this chapter, we have shown the necessity of our stochastic model under combined 

treatment by obtaining the variance and co-variance structure of the number of virus 

producing cells at time t, the number of infectious free HIV and the number of non-infectious 

free HIV at time t. Compared with the models obtained by Perelson et al. (1996) and Tan and 

Xiang (1999), the variance and co-variance structures were not obtained, rather only the 

expected numbers of the variables and their estimates were obtained. Numerical simulation of 

results obtained in section 6.5 above has shown the efficacy of our model. We have not 

included t = 0 (after treatment) for the data simulation which is the time of pharmacokinetic 

delay which vary from person to person, and this is the time required for drug absorption, 

drug distribution and penetration into target cells (Perelson et al. 1996). 

 

 We have used estimates extrapolated from clinical data in Perelson et al. (1996) and Tan and 

Xiang (1999) to simulate our results. However a real life data for each time point are yet to be 

used because of limited resources to obtain RNA viral load of patients every 30 minutes to 

one hour interval. In a follow-up work, we intend to obtain such data as in Perelson et al. 

(1996) to test the efficacy of our model as we have done with simulated data. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 106 

REFERENCES 

Anbupalam, T., Ravanan, R. and Venkatesan, P. (2002) Backcalculation of HIV nad 

AIDS in Tamil Nadu. Biostatistical aspect of Health and Epidemiology, pp. 232 – 243. 

 

Ancelle, R., Bletry, O., Baglin, A.C., Bru-Vezinet, F., Rey, M.A. and Godeau, P. (1987) 

Long incubation period for HIV-2 infection. Lancet, Vol. 1, pp. 688 – 689. 

 

Avert.org 

 

Bacchetti, P. (1990) Estimating the incubation period of AIDS by comparing population 

infection and diagnosis patterns. Journal of the American Statistical Association, Vol. 85, No. 

412, pp. 1002 – 1008. 

 

Bacchetti, P., Segal, M.R., and Jewell, N.P.  (1993) Back-calculation of HIV infection 

rates. Statistical Sciences, Vol. 8, No. 2, pp. 82 – 119. 

 

Bangsberg, D.R., Porco, T.C., Kagay, C., Charlebois, E.D., Deeks, S.G., Guzman, D., 

Clark, R. and Moss, A. (2004) Modeling the HIV protease inhibitor adherence – resistance 

curve by use of empirically derived estimates. The Journal of Infectious Diseases, Vol. 190, 

pp. 162 – 165. 

 

Barker, E., Mackerwicz, C.E., Reyes-Teran, G., Sato, A., Stranford, S.A., Fujimura, 

S.H., Christopherson, C., Chang, S.Y., and Levy, J.A. (1998) Virological and 

Immunological Features of Long-Term Human Immunodeficiency Virus Infected Individuals 

 
 
 



 107 

Who Have Remained Asymptomatic Compared With Those Who Have Progressed to 

Acquired Immunodeficiency Syndrome. Blood, Vol. 92, No. 9, pp. 3105-3114. 

 

Blankson, J.N., Persaud, D. and Siliciano, R.F. (2002) The challenge of viral reservoirs in 

HIV-1 infection. Annual Review of Medicine, Vol. 53, pp. 557-593. 

 

Bortz, D.M. and Nelson, P.W. (2006) Model selection and Mixed-effects modelling of HIV 

infection dynamics. Bulletin of Mathematical Biology, Vol. 68, No. 8, pp. 2005 – 2025. 

 

Brookmeyer, R and Gail, M.H. (1994) AIDS epidemiology: A quantitative approach. 

Oxford University Press, US. 

 

Butler, S., Kirschner, D. and Lenhart, S. (1995) Optimal control of the chemotherapy 

affecting the infectivity of HIV. Mathematical Biology, Vol. 6, World Scientific. 

 

Carvajal-Rodriguez, A., Crandall, K.A and Podada, D. (2007) Recombination favours the 

evolution of drug resistance in HIV-1 during antiretroviral therapy. Infectious Genetic 

Evolution, Vol. 7, No. 4, pp. 476 – 483. 

 

Chevret, S., Costagliola,  D., Lefrere, J.J. and Valleron, A.J. (1992) A new approach to 

estimating AIDS incubation times: results in homosexual infected men. Journal of 

Epidemiology Community Health, Vol. 46(6), pp. 582 – 586. 

 

Chun, T.W. and Fauci, A.S. (1999) Latent reservoirs of HIV: obstacles to the eradication of 

virus. Proceedings of National Academic Science, USA, Vol. 96, pp. 10958-10961.  

 
 
 



 108 

 

Cozzi-Lepri, A., Sabin, C.A, Pezzoti, P.D., Philips, A.N. and Rezza, G. (1997) Is there a 

general tendency for the CD4 lymphocyte decline to speed up during human 

immunodeficiency virus infection? Evidence from the Italian Seroconversion Study. Journal 

of Infectious Diseases, Vol. 175, pp. 775-780. 

 

Dalgleish, A.G., Beverley, P.C, Clapham, P.R, Crawford, D.H, Greaves, M.F and Weiss 

R.A. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS 

retrovirus. Nature, Vol. 312, pp. 763-767. 

 

De Gruttola, V., Lang, N. and Dafni, U. (1991) Modeling the progression of HIV infection. 

Journal of the American Statistical Association. Vol. 86, pp. 569-577. 

 

De Gruttola, V. and Tu, X.M. (1994) Modeling progression of CD4-lymphocyte count and 

the relationship to survival time. Biometrics, Vol. 50, No. 4, pp. 1003 -1014. 

 

Ding, A.A. and Wu, H. (1999) A comparison study of models and fitting procedures for 

biphasic viral dynamics in HIV-1 infected patients treated with antiviral therapies. 

Biometrics, Vol. 56, No. 1, pp. 293 – 300. 

 

Douek, D. (2005) Making sense of HIV pathogenesis. Reprint from The PRN Notebook. 

 

D'Souza, M.P. and Harden, V.A. (1996) Chemokines and HIV-1 second receptors. 

Confluence of two fields generates optimism in AIDS research. Nature Medicine, Vol., 2, pp. 

1293-1300.  

 
 
 



 109 

Fauci, A.S. (1993) Multifactorial nature of human immunodeficiency virus disease: 

implications for therapy. Science, Vol. 262, pp. 1011-1018.  

 

Fauci, A.S. (1996) Host factors and the pathogenesis of HIV-induced disease. Nature, Vol. 

384, pp. 529-534. 

 

Fauci, A.S. (1988) The Human Immunodeficiency Virus: Infectivity and Mechanisms of 

Pathogenesis. Science, Vol. 239, pp. 617-622.   

 

Fauci, A.S. (2003) HIV and AIDS: 20 years of science. Nature Medicine, Vol.9, No. 7, pp. 

839 – 843. 

 

Feinberg, M.B. (1996) Changing the Natural History of HIV Disease. Lancet, Vol. 348, pp. 

239-246. 

 

Fister, K.R., Lenhart, S and McNally, J.S. (1998) Optimizing chemotherapy in an HIV 

model. Electronic Journal of Differential Equations, Vol. 32, pp. 1 – 12. 

 

Frost, S.D.W. (2001) Bayesian modelling of viral dynamics and evolution. AIDS cyber 

Journal (Online), Vol. 4(2). 

 

Gottlieb, M.S., Schroff , R., Schanker, H.M., Weisman, J.D., Fan, P.T., Wolf, R.A. and 

Saxon, A. (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously 

healthy homosexual men: evidence of a new acquired cellular immunodeficiency. The New 

England Journal of Medicine, Vol. 305, pp. 1425-1431.  

 
 
 



 110 

Greene, W.C. (1991) The Molecular Biology of Human Immunodeficiency Syndrome Type 

1 Infection. The New England Journal of Medicine, Vol. 324, pp. 308 – 317. 

 

Groot, F. (2006) Dendritic cell-mediated HIV-1 transmission. Ph.D Thesis. University of 

Amsterdam, The Netherlands. 

http://www.feddegroot.org/publications/PhD-thesis_Fedde-Groot.pdf 

 

Han, C., Chaloner, K and Perelson, A.S. (2002) Bayesian analysis of a population HIV 

dynamic model. Case studies in Bayesian Statistics, Vol. 6. Springer-Verlag, New York. 

 

Hasentile, W.A. (1990) Molecular Biology of HIV-1 In: AIDS and new viruses. Dalgliesh, 

AG and Weiss RA (eds.) London: Academic Press, pp. 11-22. 

 

HIV Wikipedia 2008 

http://en.wikipedia.org/wiki/HIV 

 

HIV 

http://msl.cs.uiuc.edu/~yershova/bcb495/bcbProjects-3.htm 

 

HIV pathogenesis – New Advances 

http://www.ccspublishing.com/journal2a/hiv_pathogenesis.htm 

 

Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W, Leonard, J.M. and Markowitz, M. 

(1995) Rapid turnover of plasma virons and CD4 lymphocytes in HIV-1 infection. Nature, 

Vol. 373, pp. 123-126.  

 
 
 



 111 

Hoffmann, C., Rockstroh, J.K. and Kamps, B.S. (2007) HIV Medicine. 15th edition. Flying 

Publisher. 

 

Holmes, E.C (1998) Human Immunodeficiency Virus, DNA and Statistics. Journal of Royal 

Statistical Society. A, Vol. 161, Part 2, pp. 199-208. 

 

http://www.welt.de/english-news/article2715739/HIV-patient-cured-by-marrow-

transplant.html 

 

Huang, Y. and Wu, H. (2006) A Bayesian approach for estimating antiviral efficacy in HIV 

dynamic model. Journal of Applied Statistics, Vol. 33, pp. 155 – 174. 

 

Hyman, J.M and Stanley, E.A. (1988) Using mathematical models to understand the AIDS 

epidemic. Mathematical Biosciences, Vol. 90, pp. 415 -474. 

 

Jagers, P. (1967) Integrals of branching processes. Biometrika, Vol. 54, pp. 263 – 271. 

 

Joshi, H.R, (2002) Optimal control of an HIV immunology model. Optimal Control Applied 

Methods, Vol. 23, pp. 199 – 213. 

 

Kaye, S., Loveday, C. and Tedder, R.S. (1992) A Microtitre Format Point Mutation Assay: 

Application to the Detection of Drug Resistance in HIV-1 Infected Patients Treated with 

zidovudine. Journal of Medical Virology, Vol. 37, pp. 241- 246. 

 

 
 
 



 112 

Khalili, S. and Armaou, A. (2008) Modeling intracellular dynamics of HIV infection and 

treatment. AIChE Annual Meeting, 160g, Philadelphia, PA. 

 

Kirschner, D. (1996) Using mathematics to understand HIV immune dynamics. AMS 

Notices, pp. 191 – 202. 

 

Kirschner, D., Lenhart, S. and Serbin, S. (1997) Optimal control of the chemotherapy of 

HIV. Journal of Mathematical Biology, Vol. 35, pp. 775 – 792. 

 

Kirschner, D.E and Webb, G.F. (1998) Immunotherapy of HIV-1 infection. Journal of 

Biological Systems, Vol. 6, No. 1, pp. 71 – 83. 

 

Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., 

Gluckman, J and Montagnier, L. (1984) T-lymphocyte T4 molecule behaves as the 

receptor for human retrovirus LAV. Nature, Vol. 312, pp. 767-768.  

 

Kouyos, R.D, Althaus, C.L. and Bonhoeffer, S. (2006) Stochastic or deterministic: What is 

the effective population size of HIV-1? Trends in Microbiology, Vol. 14, pp. 507 – 511. 

 

Lee, S (1999) Estimation of the maturity of HIV and the Incubation period of AIDS patients. 

http://www.tilastokeskus.fi/isi99/proceedings/arkisto/varasto/lee_0375.pdf 

 

Levy, J.A. (2009) HIV Pathogenesis: 25 years of progress and persistent challenges. AIDS, 

Vol. 23, No. 2, pp. 147 – 160. 

 
 
 



 113 

Longini, L.M. Jr., Clark, W.S., Gardener, L.I. and Brundage, J. (1991) The dynamic of  

CD4+T-lymphocyte decline in HIV-infected individual, A Markov Modelling approach.  

Journal of Acquired Immune Deficiency Syndromes, Vol. 4, pp. 1141-1147. 

 

Lopman, B. and Gregson, S. (2008) When did HIV incidence peak in Harare, Zimbabwe? 

Back-Calculation from mortality statistics. PLos ONE online journal, Vol. 3(3): e1711 

(http://www.plosone.org). 

 

Louie, M., Hogan, C., Hurley, A., Simon, V., Chung, C., Padte, N., Lamy, P., Flaherty, 

J., Coakley, D., Mascio, M.D., Perelson, A.S. and Markowitz, M. (2003) Determining the 

antiviral activity of tenofovir disoproxil fumarate in treatment-naïve chronically HIV-1 

infected individuals. AIDS, Vol.17, pp. 1151 – 1156. 

 

Loveday, C. (1996) Virology of AIDS, AIDS: A Pocket Book of Diagnosis and 

Management. 2nd edition, edited by Adrian Mindel and Robert Miller, Co-published by 

Oxford University Press, Inc., New York, pp. 19 – 41. 

 

Loveday, C., Kaye, S. and Tenant-Flowers, M. (1995) HIV-1, RNA Serum Load and 

Resistant Viral Genotypes During Early Zidovudine Therapy. Lancet, Vol. 345, pp. 820 – 

824. 

 

Lui, K.J, Darrow, W.W and Rutherford, G.W. (1988) A model-based estimate of the 

mean incubation period for AIDS in homosexual men. Science, Vol. 240, No. 4857, pp. 1333 

– 1335. 

  

 
 
 



 114 

Masur, H., Michelis, M.A., Greene, J.B., Onorato, I., Stouwe, R.A., Holzman, R.Z., 

Wormser, G., Brettman, L., Lange, M., Murray, H.W. and Cunningham-Rundle, S. 

(1981) An outbreak of community-acquired pneumocystis carinii pneumonia: initial 

manifestation of cellular immune dysfunction. The New England Journal of Medicine, Vol. 

305, pp. 1431-1438.  

 

Medley, G.F., Billard, L., Cox, D.R. and Anderson, R.M. (1988) The distribution of the 

incubation period for the acquired immunodeficiency syndrome (AIDS). Proceedings of the 

Royal Society of London, Series B, Biological Sciences, Vol. 233, No. 1272, pp. 367 – 377. 

 

Mellors, J.W., Munoz, A., Giorgi, J.V., Margolick, J.B., Tassoni, C.J., Gupta, P., 

Kingsley, L.A., Todd, J.A., Saah, A.J., Detels, R., Phair, J.P. and Rinaldo, C.R. (1997) 

Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Annals 

of Internal Medicine, Vol. 126, pp. 946 – 954. 

 

Mota-Miranda, A., Gomes, H., Marques, R., Serrao, R., Lourenco, H., Santos-Ferreira, 

O. and Lecour, H. (1995) HIV-2 infection with a long asymptomatic period. Journal of 

Infection, Vol. 31, pp. 163 – 164. 

 

 

Musey, L., Hughes, J., Schacker, T., Shea, T., Correy, L. and McElrath,  M.J. (1997) 

Cytotoxic T-cell Responses, Viral load and Disease Progression in Early Human 

Immunodeficiency Virus Type 1 Infection. New England Journal of Medicine, Vol. 337, pp. 

1267 – 1274. 

 

 
 
 



 115 

Nelson, P.W. and Perelson, A.S. (1995) Modeling defective interfering virus therapy for 

AIDS: Conditions for DIV survival. Mathematical Biosciences, Vol. 125, pp. 127 – 153. 

Nelso,n P.W. and Perelson, A.S. (2002) Mathematical analysis of delay differential equation 

models of HIV-1 infection. Mathematical Biosciences, Vol. 179, pp. 73 – 94. 

 

Nijhuis, M., Boucher, C.A.B., Schipper, P., Leitner, T., Schuurman, R. and Albert, J. 

(1998) Stochastic processes strongly influence HIV-1 evolution during suboptimal protease – 

inhibitor therapy. Proceeding of National Academic of Science USA, Vol. 95, pp. 14441 – 

14446. 

 

O'Brien, S.J. and Moore, J.P. (2000) The effect of genetic variation in chemokines and 

their receptors on HIV transmission and progression to AIDS. Immunological Reviews, Vol. 

177, pp. 99-111.  

 

Ong, H.C. and Soo, K.L. (2006) Backcalculation  of HIV infection rates in Malaysia. The 

Medical Journal of Malaysia, Vol. 61(5), pp. 616 – 620. 

 

Pakes, A.G. (1975) On Markov branching processes with immigration. The Indian Journal of 

Statistics, Series A, Vol. 37, No. 1, pp. 129 – 138. 

 

Perelson, A.S, Essunger P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, 

M. and Ho, D.D.  (1997) Decay characteristics of HIV-1-infected compartments during 

combination therapy. Nature, Vol. 387, pp. 188 – 191. 

 

 
 
 



 116 

Perelson, A.S., Kirschner, D.E. and De Boer, R. (1993) The dynamics of HIV infection of 

CD4+T- cells. Mathematical Biosciences, Vol. 114, pp. 81-125. 

 

Perelson, A.S. and Nelson, P.W. (1999) Mathematical analysis of HIV-1 dynamics in vivo. 

Society for Industrial and Applied Mathematics (SIAM review), Vol. 41, pp. 3 – 44. 

 

Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. and Ho, D.D. (1996) 

HIV-1 dynamics in vivo viron clearance rate, infected cell life span, and viral generation 

time. Science New Series, Vol. 271, pp. 1582 – 1586. 

 

Philips, A.N., Lee, C.A. and Elford, J. (1992). The cumulative risk of AIDS as the CD$ 

lymphocyte count declines.  Journal of Acquired Immune Deficiency Syndromes, Vol. 5, pp. 

148-152. 

 

Philips, A.N., Pezzotti, P., Cozzi Lepri, A. and Rezza, G.(1994) CD4 lymphocyte count as 

a determinant of the time from HIV seroconversion to AIDS and death from AIDS: evidence 

from the Italian Seroconversion Study. AIDS, Vol. 8, pp. 1299-1305. 

 

Phipps, D.J., Yousefi, S. and Branch, D.R. (1997) Increased Enzymatic Activity of the T-

cell Antigen Receptor=Associated Fyn Protein Tyrosine Kinase in Asymptomatic Patients 

Infected with the Human Immunodeficiency Virus. Blood, Vol. 90, No. 9, pp. 3603 – 3612. 

 

Puri, P.S. (1966) On the homogeneous birth-and-death process and its integral. Biometrika, 

Vol. 53, pp. 61 – 71. 

 
 
 



 117 

Putter, H., Heisterkamp, S.H., Lange, J.M.A. and Wolf, F. (2002) A Bayesian approach to 

parameter estimation in HIV dynamic models. Statistics in Medicine, Vol. 21, pp. 2199-2214. 

 
 
Rao, A.S.R.S. and Kakehashi, M. (2005) Incubation – Time distribution in Back-calculation 

applied to HIV/AIDS data in India. Mathematical Biosciences in Engineering, Vol 2(2), pp. 

263 – 277. 

 

Sabin, C.A., Mocroft, A. and Lepri, A.C. (1998) Cofactors and markers of disease  

progression in human immunodeficiency virus infection. Journal of Royal Statistical Society, 

Vol. 161, Part 2, pp. 177-189. 

 

Shafer, R.W., Dupnik, K., Winters, M.A. and Eshleman, S.H. (2001) A guide to HIV-1 

reverse transcriptase and protease sequencing for drug resistance studies. 

 

Shaw, G.M., Wong-Staal, F. and Gallo, R.C. (1988) Etiology of AIDS: Virology, 

Molecular Biology, and Evolution of Human Immunodeficiency Virus. In DeVita, V.T., Jr., 

Hellman, S., and Rosenberg, S.A (eds.), AIDS: Etiology, Diagnosis, Treatment and 

Prevention., Philadelphia: Lippincott, pp. 11 – 31. 

 

Smith, S.S. (2006) The Pathogenesis of HIV infection: stupid may not be so dumb after all. 

Retrovirology, Vol. 3:60. 

 

Sodora, D.L. and Silvestri, G. (2008) Immune Activation and AIDS pathogenesis. AIDS, 

Vol. 22, pp. 436 – 446. 

 

 
 
 



 118 

Sridharah, V. and Jayashree, P.R. (1993) A population model of infected T-4 cells in 

AIDS. Korean Journal of Computational and Applied Mathematics, Vol. 6, No. 1, pp. 99 – 

110. 

 

Stein, D.S., Korvick, J.A. and Vermund, S.H. (1992). CD4+ lymphocyte cell enumeration 

for prediction of clinical course of human immunodeficiency virus disease: a review. Journal 

of Infectious Diseases, Vol. 165, pp. 352-363. 

 

Stilianakis, N.I., Dietz, K. and Schenzle, D. (1997) Analysis of a Model for the 

Pathogenesis of AIDS. Mathematical Biosciences, Vol. 145, pp. 27 – 46. 

 

Tan, W. (2000) Stochastic modelling of AIDS epidemiology and HIV pathogenesis. World 

Scientific. 

 

Tan, W. and Wu, H. (1998) Stochastic modelling of the dynamics of CD4+T cell infection 

by HIV and some Monte Carlo studies. Mathematical Biosciences, Vol. 147, pp. 173 – 205. 

 

Tan, W. and Xiang, Z. (1999) Some state space models of HIV pathogenesis under 

treatment by anti-viral drugs in HIV – infected individuals. Mathematical Biosciences, Vol. 

156, pp. 69 – 94. 

 

Udayabaskaran, S. and Sudalaiyandi, G. (1986). On a stochastic integral of a branching 

process. Journal of Mathematical Biology, Vol. 24, pp. 467-472. 

 

 
 
 



 119 

Utsumi, T., Nagakawa, H., Uenishi, R., Kusakawa, S. and Takebe, Y. (2007) An HIV-2-

infected Japanese man who was a long-term nonprogressor for 36 years. AIDS, Vol. 21, No. 

13, pp. 1834 – 1835. 

 

Verdecchia, A. and Mariotto,  A.B. (1995) A Back-calculation method to estimate the age 

and period HIV infection intensity, considering the susceptible population. Statistical 

Medicine, Vol. 14(14), pp. 1513 – 1530. 

 

Wei, X., Ghosh, S.K, Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., 

Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S. and Shaw, G.M. (1995)  Viral 

dynamics in human immunodeficiency virus type 1 infection. Nature, Vol. 373, pp. 117-122. 

 

Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, 

J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S. and Shaw, G.M. (1995) Viral 

dynamics in human immunodeficiency virus type 1 infection. Nature, Vol. 373, pp. 117 – 

122.  

 

Weiss, R. (1986) Co-factors and HIV: What determines the pathogenesis of AIDS. Science, 

Vol. 232, pp. 697 – 698. 

 

Weiss, R.A. (1993) How does HIV cause AIDS? Science, Vol.  260, Issue 5112, pp. 1273 – 

1279. 

 

WHO HIV Statistics 2007 

 

 
 
 



 120 

Wick, D. (1999) On T-cell dynamics and the hyperactivation theory of AIDS pathogenesis. 

Mathematical Biosciences, Vol. 158, pp. 127 - 144. 

 

Wu, H. (2005) Statistical Methods for HIV dynamic studies in AIDS clinical trials. 

Statistical Methods in Medical Research, Vol. 14, pp. 171- 192. 

 

Wu, H. and Ding, A.A. (1999) Population HIV-1 dynamics in vivo: Applicable models and  

inferential tools for virological data from AIDS clinical trials. Biomerics, Vol. 55, No. 2, pp. 

410 – 418. 

 

Wu, H., Ruan, P., Dind, A.A., Sullivan, J.L. and Luzuriaga, K. (1999) Inappropriate 

model-fitting Methods may lead to significant underestimates of viral decay rates in HIV 

dynamic studies. Journal of Acquired Immunodeficiency Syndromes and Human 

Retrovirology, Vol. 2, No. 5, pp. 426 – 427. 

 

 

 

 

 

 

 

 
 
 


