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4.1 INTRODUCTION 

In the discussion about the progression of the human immunodeficiency virus (HIV) 

infection, it is often seen that there is a variation in the viral genome. Studies (Kaye et al. 

1992 and Loveday 1996) have shown that HIV may make 1 to 40 base errors per replication 

cycle with no genetic mechanisms for correction resulting in the production of genetically 

diverse viral species or quasi species with 20 – 25% variability. Feinberg (1996) also 

observed that HIV has an inherent tendency to evolve at a rate (about 1 million times faster 

than the human DNA) which is believed to be responsible for the development of resistance 

to antiviral treatments within a matter of months thereby undermining the attempts to produce 

effective vaccines. Holmes (1998) observed that even in the course of a single infection, a 

multitude of different genomes are produced through mutation, recombination and natural 

selection, which allow the virus to continually evade immune responses and infect a variety 

of cell types. Further, Musey et al. (1997), Phillips et al. (1997) and Barker et al. (1998) 

observed that there is a correlation between the antigen receptors of T-cells and HIV 

replication. Consequently, the pathogenesis of the infection can be understood only when the 

genetic variation in HIV and the receptor-specific HIV infection are given their due 

importance in the formulation of any model of the dynamics of HIV in an infected individual.  

 

Stilianakis et al. (1997) analysed a model for the pathogenesis of AIDS in which the effect of 

the ongoing generation and selection of HIV mutants are considered. However, the nature of 

evolution of the resistant forms in a virus that is continually mutating in response to 

environmental pressures, and the impact of the location of the antigen receptor through which 

the virus has entered the cell body on the variable nature of viral replication through mutation 

have not been analysed so far in the literature. Accordingly, in this chapter, we propose and 

analyse two stochastic models: 
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(i) Model I which describes the dynamics of the viral load in a HIV infected person 

taking into consideration the fact that genetically diverse viral species are 

produced even in the course of a single infection and that the infection is receptor-

specific. 

(ii)  Model II which describes the multiplication process of the virons inside an 

infected T4 cell under the assumption that genetically diverse viral species are 

produced at every lysis that occurs in a T4 cell population. 

The organization of this chapter is as follows. Section 4.2 describes model I as a multi-type 

branching process. In Section 4.2.1, an infinite system of inter-connected integral equations 

for the probability generating functions of the various viral type populations is obtained. 

Explicit expressions for the means and co-variances of the viral populations are derived in 

Section 4.2.2 for a particular case where the virus exist in two forms only. In Section 4.3, 

model II which describes the dynamics of the growth of HIV inside an infected cell is 

analysed by a binary splitting process. Also provided in this section is a numerical illustration 

that brings out the impact of the genetic diversity in viral production. 

 

4.2 MODEL I: THE MUTATION MODEL 

We assume that at time t = 0, one HIV of type 0 is introduced into the blood stream (medium 

of T4 cells). Since each of the T4 cells has an infinite number of CD4+ receptors on its cell 

wall, we assume that the virus bonds with probability π(j|0), j = 1, 2, … to the j-th CD4+ 

receptor on the cell membrane of one of the T4 helper cells and injects its RNA into the cell 

medium. The virus arrests the growth of the infected cell but utilises the cell medium to 

multiply itself into random numbers z0 and zj of virons of type 0 and type j respectively after 

which the cell undergoes a lysis releasing the virons whose numbers are governed by the 

probability generating function  
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These virons in turn go to infect other T4 cells and the process continues indefinitely. We 

assume that a virus of type i, i ≠ 0 anchors to the j-th CD4+ receptor on the cell membrane of 

a T4 cell with probability π(j|i), j = 1, 2, … but generates virons of type i only according to 

the probability generating function defined by 
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We also assume that, for each of the virons of type ..., 2, 1, 0,   , =ll   the time from its release 

to the time of lysis it generates is a random variable T
l
 whose distribution function is given 

by  

   0.  t  t}, Pr{T  )( ≥≤=
ll
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Let )(tX
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 denote the number of virons of type l l,   =  0,  1,  2,  ... at time t and  
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Then the process X(t) is identified as a multi-type branching process with state-space ∞
+Z , 

where Z+ is the set of all non-negative integers. To study the process X(t), we investigate its 

probability generating function in the next section. 

 

4.2.1 The Probability Generating Functions 

Denoting ...) ,s ,(s  10=s , we define the following probability generating functions: 
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Using probabilistic arguments, it is easily seen that 

 
 
 



 51 

)()),(),,(()0|(  )](F - [1  ),(
1

00

)()0()0(
00

)0( udFsutGsutGfststG
t

∑ ∫
∞

=

−−+=
l

ll
lπ    (4.2.1.1) 

 ... 2, 1,  i ),()),((  )](F - [1  ),(
0

)()(
i

)( =−+= ∫ udFsutGfststG
t

i
ii

i
i      (4.2.1.2) 

The moments of Xj(t), j = 0, 1, 2, … can be derived from the equations (4.2.1.1) and (4.2.1.2). 

We define 
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Differentiating (4.2.1.1) partially with respect to sj and setting sk =1, k = 0, 1, 2, …, we obtain 
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where j = 0, 1, 2, … and  
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Differentiating (4.2.1.2) partially with respect to sj and setting sk =1, k = 0, 1, 2, …, we obtain 
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where i = 1, 2, …, j =  0, 1, 2, … and  
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If we assume  ,e - 1  )( 1- u
j uF λ=  then taking Laplace transform on both sides of (4.2.1.3) and 

(4.2.1.4), we obtain 
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where i = 1, 2, …, and j = 0, 1,2 , …. Solving the equation (4.2.1.6), we get 
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Substituting (4.2.1.7) in (4.2.1.5) and simplifying, we get 
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Inverting the equations (4.2.1.7) and (4.2.1.8), we obtain 
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To obtain the covariance structure of Xj(t) and Xk(t) where j, k = 0, 1, 2, …, we define 
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Differentiating (4.2.1.1) with respect to sj and sk and setting s0 = 1, s1 = 1, s2 = 1, …, we 
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Differentiating (4.2.1.2) with respect to sj and sk and setting s0 = 1, s1 = 1, s2 = 1, …, we 

obtain 
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Taking Laplace transform on both sides of (3.2.1.13), we get  

 M ijk
i

i
ij ik* ( | )θ λ

θ λ
θ

δ δ
θ α

 =  
 +   

m M ( |i) +  
m

 +  2
i

i
1
( )

jk
* 11

( )

i

R
S|
T|

U
V|
W|

. 

Which on simplification gives 

  M ijk

i
ij ik* ( | )

(
.θ

λ δ δ
θ α θ α

 =  
m

 +  )(  +  2 ) 
i 11

( )

i i

    (4.2.1.14) 

Inverting (4.2.1.14), we get 
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Now, taking Laplace transform on both sides of (4.2.1.12), we get  
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Substituting (4.2.1.7), (4.2.1.8) and (4.2.1.14) in (4.2.1.16) and simplifying, we get 

 
 
 



 54 

M jk j k jk

j
* ( | ) ( )( )

( (
θ λ δ δ δ π

θ α θ α θ α
0 1 10

2
0 0 =   -   -  

(j|0)m m

 +  )  +  )(  +  2 ) 
2
(0j)

11
( )

0 j j

 

 +
R
S|
T|

 m  +   -  
m (j|0)

 -   
 +   -  

m (k|0)

 -   0 11
( ) 0 2

( )

j 0

0 2
( )

k 0

λ δ δ δ δ λ π
α α

δ δ λ π
α α

0
0 0 0 0

0

0 0

0

1 1j k j k j k( ) ( )  

  +
U
V|
W|

  -   -  
(m (j|0) (k|0)

 -  )  -  )  +  )(  +  2 ) 
2
( )

j 0 k 0 0 0

( )( )
)

( ( (
1 1

1
0 0

0
2 0

δ δ λ π π
α α α α θ α θ αj k  

  − m   -  
m (k|0)

 -   0 11
( ) 0 2

( )

k 0

λ δ δ λ π
α α

0
0 0

0

1{ ( )j k  

+ (1 -   -  
(m (j|0) (k|0)

 -   -  )  +  )(  +   +  ) 
2
( )

j 0 k 0 0 0 k

δ δ λ π π
α α α α θ α θ α α0 0
0
2 0 2

1
1

j k)( )
)

( )(
}

(
 

+ m (1 -   -  
(m (j|0) (k|0)

 -   -  )  +  )(  +   +  ) 0 11
( ) 2

( )

j 0 k 0 0 j k

λ δ δ λ π π
α α α α θ α θ α α

0
0 0

0
2 0 2

1
1

j k)( )
)

( )( (
 

  +
=

∞

∑ ( |0)m
 +  )(  +  2 ) 0 22

( )

0

λ π δ δ
θ α θ α

l

l

l

l l

l1

0 1
j k (

 

  +
=

∞

∑ ( |0)m
 -  

 +  )(  +   +  ) 0 12
( )

0 0

λ π
δ δ δ δ

θ α θ α α
l

l

l l l

l1

0 0 0( )

(
j k j k  

  + −
−=

∞

∑ ( |0)m  
m ( |0)

   0 12
( ) 0 2

( )

j 0

λ π δ δ λ π
α α

l

l

l

l

1

0
0

0

1{( )j k

j
 

 + −
−

U
V
W

  
m ( |0)

    +  )(  +   +  ) 
0 2

( )

k 0 0 0

( )
(

1
1

0

0

δ δ λ π
α α θ α θ α αk j

k
l

l

 

− −
−=

∞

∑ ( |0)m  
m ( |0)

    +  )(  +   +  ) 0 12
( ) 0 2

( )

j 0 0 j

λ π δ δ λ π
α α θ α θ α α

l

l

l

l

l1

0
0

0

1
1

( )
(j k

j
 

− −
−=

∞

∑ ( |0)m  
m ( |0)

    +  )(  +   +  ) 0 12
( ) 0 2

( )

k 0 0 k

λ π δ δ λ π
α α θ α θ α α

l

l

l

l

l1

0
0

0

1
1

( )
(

.k j

k
 (4.2.1.17) 

Inverting (4.2.1.17), we get explicitly the covariance structure of the viral population. 
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4.2.2 A Particular Case 

For simplicity, we assume that there are two genetically different virons only, called type 0 

and type 1. Precisely, on bonding to a T4 cell, a type 0 HIV produces type 0 virons and type 1 

virons, while type 1 HIV produces type 1 virons only. Following the same notation as in 

4.2.1, we obtain the mean population sizes of the two types of virons as given below: 
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The co-variances of the population sizes of the virons are obtained in the following form: 
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4.3 MODEL II: THE MULTIPLICATION PROCESS INSIDE A T4 CELL 

Before describing model II, we briefly outline the life-cycle of HIV and the events that occur 

between the time of an infection of HIV with a T4 cell and the lysis of the host cell (for a 

more detailed account, see Fauci (1988), Shaw et al. (1988), Haseltine (1990) and Greene 

(1991)). 

 

4.3.1 The Life Cycle of HIV 

The HIV is a retrovirus and its RNA carries the genetic information. The HIV has a dense 

cylindrical core encasing two molecules of the viral genome. Virus-encoded enzymes 

required for efficient multiplication, such as reverse transcriptase and integrase, are also 

incorporated into the virus particle. After attaching itself to the cell wall of the host T4 cell, 

the virus injects its RNA together with the enzymes reverse transcriptase and integrase into 

the cytoplasm of the host cell. The viral reverse transcriptase enzyme first synthesises a 

single complementary, negative-sense DNA copy to the HIV RNA; next the RNA is 

denatured; and then a complementary positive-sense DNA copy is synthesised to create 

double-stranded proviral DNA.  
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The proviral DNA may either reside in episomal form or enter the cell nucleus and become 

integrated into host DNA under the action of the viral integrase enzyme. Within the cell, the 

proviral DNA (also called provirus) can remain latent, giving no sign of its presence for 

several months or years. In this stage, every time the infected cell divides, the provirus is 

duplicated with the cell’s DNA. On the other hand, once the cell activation occurs due to 

antigen or mitogen, the proviral DNA transcribes viral genomic RNA and messenger RNA 

(mRNA). The messenger RNA translates the regulatory proteins tat and rev. Tat protein 

promotes transcription of more messenger RNA. Rev protein causes multiple spliced 

segments of messenger RNA to form singly spliced segments that are translated into 

structural proteins, envelope proteins and viral enzymes. The assembly of proteins and 

enzymes, together with the viral genomic RNA are assembled to form mature HIV virus 

which buds on the cell wall. The ongoing process of budding of mature virons on the cell 

wall takes place until the infected cell is unable to withstand the burden of the viral 

production when the cell undergoes the lysis releasing the mature virons ready to attack other 

T4 cells. 

 

Loveday et al. (1995) observed that the replication process has limited efficiency as 

incomplete, RNA-deficient and damaged virons may be released from the host cell and viral 

proteins may be produced in excess during the life-cycle and can be detected while the host 

cell undergoes lysis. The population of defective virons may inhibit the production of fully 

mature virons. Accordingly, we proceed to formulate a stochastic model of viral production 

in a host cell by taking into consideration the fact that along with fully mature HIV virons, 

damaged virons are also produced at the time of lysis. 

 

 

 
 
 



 58 

 
 
 
 
 
 

 
 
Figure 4.1 The immature and the mature HIV-1 viron 

(Excerpt from http://msl.cs.uiuc.edu/~yershova/bcb495/bcbProjects-3.htm) 
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4.3.2 The Model Formulation 

We assume that at time t = 0, a HIV attaches to the cell wall of a T4 cell and injects its RNA 

instantaneously into the cytoplasm of the host cell. Let T be the time at which the viral DNA 

gets integrated with the host DNA. Let the probability distribution function of T be given by 

  Pr{ ,T  } =  1 -  e   >  0,   >  0.-≤ τ α τατ  

We assume that viral RNAs are replicated according to a Poisson process with rate λ, λ > 0. 

Let N(t) be the number of viral RNAs that are present inside the cell at time t. We assume 

that at any time t, the budding of HIV takes place with a rate proportional to N(t). Let X(t) be 

the number of HIV buds that are present on the cell wall at time t. Then the vector process 

(X(t), N(t)) is Markov and its structure is analysed in the following section. For brevity, we 

denote Z(t) =   (X(t), N(t)). 

 

4.3.3 The Probability Generating Function for (X(t), N(t)) 

The probability generating function of the vector process (X(t), N(t)) defined by 

G u( ,  v;  t) =  E[u u ]X(t) N(t)  . We proceed to obtain a differential equation for G u( ,  v;  t) . First, 

we define the probability function 

  p n( ,  m; t) =  Pr{Z(t) =  (n, m)}.     (4.3.3.1) 

Then, we see that 
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The infinitesimal transition probabilities are given by 
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Pr{ (Z t +  ) =  (n,  m +1)|Z(t)  =  (n,  m)} =  ,  n  0,  m  1;∆ ∆λ ≥ ≥  

Pr{ (Z t +  ) =  (n +  1,  m -1)|Z(t)  =  (n,  m)} =  m ,  n  0,  m  1;∆ ∆µ ≥ ≥  

Then, by using probabilistic laws, we obtain 

 
∂

∂
≥ ≥

p n( ,  m;  t)

t
 =  - (  +  m )p(n,  m;  t) +  p(n,  m -  1;  t)

+ (m +  1)p(n -  1,  m +  1;  t),  n  1,  m  1,

λ µ λ

µ
  (4.3.3.4) 

∂
∂

≥p( ,0  m;  t)

t
 =  - (  +  m )p(0,  m;  t) +  p(0,  m -  1;  t),  m  2,λ µ λ   (4.3.3.5) 

 
∂

∂
≥p n( ,  0;  t)

t
 =  - p(n,  0;  t) +  p(n -  1,  1;  t),  n  1.λ µ   (4.3.3.6) 

Equations (4.3.3.4) to (4.3.3.6) can be recursively solved starting with (4.3.3.2) and (4.3.3.3) 

to give the state probabilities p(n, m; t), n ≥ 0, m ≥ 0. However, the expressions are quite 

unwieldy and hence, we proceed to obtain the differential equation satisfied by probability 

generating functionG u( ,  v;  t) . 

We note that 

  G u( ,  v;  t) =  p(n,  m;  t)u vn m

m=0n=0

∞∞

∑∑  

and hence, by using the equations (4.3.3.2) to (4.3.3.6), we obtain the following partial 

differential equation: 

  
∂
∂

∂
∂

G

t

G

v
 +  (v -  u)  =  (v -  1)(G -  e- tµ λ α ),    (4.3.3.7) 

with the initial condition G u( ,  v;  0) =  1. Whenα  → ∞ , equation (4.3.3.7) becomes 

  
∂
∂

∂
∂

G

t

G

v
 +  (v -  u)  =  (v -  1)Gµ λ .    (4.3.3.8) 

Equation (4.3.3.8) is readily solved to yield 

  G u
v

( ,
{( )

 v;  t) =  e
 - u)(1 - e  + (  - 1) t}- tλ

µ
µ µµ
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from which all the moments of X(t) and N(t) can be easily obtained. However, for the 

nontrivial case α  < ∞ , equation (4.3.3.7) appears to be intractable and as such, we content 

ourselves in obtaining the moments of X(t) and N(t) in the next section. 

 

4.3.4 The Moment of (X(t), N(t)) 

Differentiating (4.3.3.7) with respect to u at u = 1, v = 1, we get the differential equation 

  
∂

∂
E X t

t

[ ( )]
 -  E[N(t)] =  0µ .     (4.3.4.1) 

Differentiating (4.3.3.7) with respect to v at u = 1, v = 1, we get the differential equation 

  
∂

∂
E N t

t

[ ( )]
 +  E[N(t)] =  (1 -  e )- tµ λ α .   (4.3.4.2) 

Differentiating (4.3.3.7) twice with respect to u at u = 1, v = 1, we get  

  
∂

∂
E X t X t

t

[ ( ){ ( ) ] -  1}
 =  2 E[X(t)N(t)].µ    (4.3.4.3) 

Differentiating (4.3.3.7) twice with respect to v at u = 1, v = 1, we get  

∂
∂

E N t N t

t
N t

[ ( ){ ( ) ]
{ ( )

 -  1}
 +  2 E[N(t)  -  1}] =  E[N(t)].µ λ   (4.3.4.4) 

Differentiating (4.3.3.7) with respect to u and v at u = 1, v = 1, we get  

∂
∂

E X t N t

t

[ ( ) ( )]
 +  E[X(t)N(t)] =  E[N(t){N(t) -  1}] +  E[X(t)].µ µ λ  (4.3.4.5) 

Using Laplace transform method, the system of equations (4.3.4.1) to (4.3.4.5) yields the 

Laplace transforms: 

  L E N t{ [ ( )]} ; =  
(  +  )(  +  )

λα
θ θ α θ µ

    (4.3.4.6) 

  L E X t{ [ ( )]} ; =  
(  +  )(  +  )

λµα
θ θ α θ µ2

   (4.3.4.7) 

 L E X t N t{ [ ( ) ( )]} =  
(  +  )(  +  )(  +  2 )

2 2

2

λ µα
θ θ α θ µ θ µ

;   (4.3.4.8) 
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 L E N t N t{ [ ( ){ ( ) ]} -1}  =  
(  +  )(  +  )(  +  2 )

λ α
θ θ α θ µ θ µ

2

;  (4.3.4.9) 

L E X t X t{ [ ( ){ ( ) ]} -1}  =  
(  +  )(  +  )(  +  2 )

4 2 2

3

λ µ α
θ θ α θ µ θ µ

.  (4.3.4.10) 

Inverting equations (4.3.4.6) to (4.3.4.10), we get 

  E N t[ ( )] =   -  
e  -  e  

 -  

- t - tλ
µ

µ α
µ α

α µ

1
RS
T

UV
W

;    (4.3.4.11) 

 E X t[ ( )] ( ) ( )=  t -  
 -  

 -  e  -   -  e- t - tλ λ
µ α

µ
α

α
µ

α µ1 1
RST

UVW
;  (4.3.4.12) 

  E X t N t t[ ( ) ( )] 
(

( )=   -  
 -  )(2  -  )

 -  e- tλ
µ

λ µ
α µ α µ α

α
2 22

1  

  + 
 -  )

 -  e  -  
(2  -  )

 -  e- t -2 t2
1

2
1

2

2

2

2

λ α
µ µ α

λ α
µ µ α

µ µ

(
( ) ( ) ;  (4.3.4.13) 

E N t N t e e et t t[ ( ){ ( ) ] 
(

 -  1} =   -  
 -  )(2  -  )

 +  
 -  

 -  
 -  

 
λ
µ

µ
µ α µ α

α
µ α

α
µ α

α µ µ
2

2

2
2

2
1

2 2

2
− −RS

T
UV
W

 

          (4.3.4.14) 

E X t X t t t t t[ ( ){ ( ) ] 
( )( ) ( ) ( )

 -  1} =   -  
4

 -  
 +  

4

 
 -  

 
2

2 2 2

λ λ µ
α µ α µ α

λ α
µ µ α

λ α
µ µ α

2
2

2 2− − −
 

+ − − − 
 -  )(2  -  )

 -   -  
 -  )

 -   +  
 (2  -  )

 -  
4

1
4

1
2

1
2 2

2

2

2

2
2λ µ

α µ α µ α
λ α

µ µ α
λ α

µ µ α
α µ µ

(
( )

(
( ) ( )e e et t t  

          (4.3.4.15) 

Using the expressions (4.3.4.11) to (4.3.4.15), we can obtain explicitly the correlation 

coefficient ρ between X(t) and N(t). However, we present in the following section a 

numerical illustration to highlight the impact of the parameters α, λ and µ on ρ. 
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4.3.5 A Numerical Illustration 

For the purpose of illustration we assume α = 100.0, λ = 200.0, µ = 300.0 and obtain the first 

two moments of X(t) and N(t), the ratio between their means and the correlation coefficient 

(ρ) between them. The results are highlighted in Tables 4.1 to 4.3. 

 

Since α = 100, the mean time for the viral RNA to get integrated and start releasing the HIV 

buds is 0.01. Hence for increasing values of t > 0.01 both E[X(t)] and E[N(t)] can be expected 

to increase. Table 4.1 shows this trend. We also observe that the released viral RNAs rapidly 

become buds since the ratio E[X(t)]/E[N(t)] is increasing (Table 4.1). As the viral RNAs 

become buds, the number of buds will increase and the number of viral RNAs will increase 

which is indicated as negative correlation between X(t) and N(t) in Table 4.1. 

 

As µ increases E[X(t)] increases but E[N(t)] decreases and hence the ratio between E[X(t)] 

and E[N(t)] increases (Table 4.2) and the correlation between X(t) and N(t) remains negative 

(Table 4.2). As the rate of releasing viral RNAs increases, both the mean number of buds and 

the viral RNAs should increase. However, since the rate of buds is a constant, we find that the 

ratio remains a constant even though the value of λ increases (Table 4.3). In this case also the 

correlation between X(t) and N(t) remains negative (Table 4.3). 

 

4.4 CONCLUSION 

In this chapter, the mean of X(t) i.e. the number of HIV buds that are present on the cell wall 

at time t and N(t) i.e. the number of viral RNAs that are present inside the cell at time t have 

been obtained. Contribution of the stochastic models to statistical work is the ability to obtain 

the covariance structure of which is very difficult to obtain. 
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Table 4.1 E[X(t)], E(N(t)], E[X(t)]/ E(N(t)], ρ versus t 

for α = 100.0, λ = 200.0, µ = 300.0 

 

t E[X(t)] E(N(t)] E[X(t)]/ E(N(t)] ρ 

0.0500 7.3535 0.6599 11.1429 -0.5067 

0.0600 9.3408 0.6642 14.0634 -0.5406 

0.0700 11.3361 0.6658 17.0274 -0.5366 

0.0800 13.3343 0.6663 20.0116 -0.5184 

0.0900 15.3337 0.6665 23.0048 -0.4963 

0.1000 17.3335 0.6666 26.0020 -0.4746 

0.1100 19.3334 0.6666 29.0008 -0.4545 

0.1200 21.3334 0.6667 32.0003 -0.4364 

0.1300 23.3333 0.6667 35.0001 -0.4202 

0.1400 25.3333 0.6667 38.0000 -0.4055 

0.1500 27.3333 0.6667 41.0000 -0.3923 
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Table 4.2 E[X(t)], E(N(t)], E[X(t)]/ E(N(t)], ρ versus µ 

for α = 100.0, λ = 200.0, t = 0.05 

 

µ E[X(t)] E(N(t)] E[X(t)]/ E(N(t)] ρ 

300.00 7.3535 0.6599 11.1429 -0.5067 

310.00 7.3747 0.6387 11.5457 -0.4631 

320.00 7.3946 0.6189 11.9485 -0.4241 

330.00 7.4133 0.6002 12.3513 -0.3890 

340.00 7.4309 0.5826 12.7542 -0.3575 

350.00 7.4474 0.5660 13.1571 -0.3291 

360.00 7.4631 0.5504 13.5601 -0.3034 

370.00 7.4779 0.5355 13.9631 -0.2802 

380.00 7.4920 0.5215 14.3661 -0.2592 

390.00 7.5053 0.5082 14.7692 -0.2400 

400.00 7.5180 0.4955 15.1722 -0.2260 

410.00 7.5300 0.4835 15.5753 -0.2067 

420.00 7.5415 0.4720 15.9784 -0.1922 

430.00 7.5524 0.4610 16.3816 -0.1790 

440.00 7.5629 0.4506 16.7847 -0.1668 

450.00 7.5729 0.4406 17.1879 -0.1557 

460.00 7.5824 0.4310 17.5911 -0.1454 

470.00 7.5916 0.4219 17.9942 -0.1360 

480.00 7.6004 0.4131 18.3974 -0.1273 

490.00 7.6088 0.4047 18.8006 -0.1193 

500.00 7.6168 0.3966 19.2039 -0.1119 
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Table 4.3 E[X(t)], E(N(t)], E[X(t)]/ E(N(t)], ρ versus λ 

for α = 100.0, µ = 300.0, t = 0.05 

 

λ E[X(t)] E(N(t)] E[X(t)]/ E(N(t)] ρ 

200.00 7.3535 0.6599 11.1429 -0.5067 

210.00 7.7212 0.6929 11.1429 -0.5027 

220.00 8.0889 0.7259 11.1429 -0.4995 

230.00 8.4566 0.7589 11.1429 -0.4967 

240.00 8.8243 0.7919 11.1429 -0.4944 

250.00 9.1919 0.8249 11.1429 -0.4924 

260.00 9.5596 0.8579 11.1429 -0.4907 

270.00 9.9273 0.8909 11.1429 -0.4892 

280.00 10.2950 0.9239 11.1429 -0.4879 

290.00 10.6626 0.9569 11.1429 -0.4868 

300.00 11.0303 0.9899 11.1429 -0.4858 

310.00 11.3980 1.0229 11.1429 -0.4849 

320.00 11.7657 1.0559 11.1429 -0.4841 

330.00 12.1334 1.0889 11.1429 -0.4834 

340.00 12.5010 1.1219 11.1429 -0.4828 

350.00 12.8687 1.1549 11.1429 -0.4823 

360.00 13.2364 1.1879 11.1429 -0.4818 

370.00 13.6041 1.2209 11.1429 -0.4813 

380.00 13.9717 1.2539 11.1429 -0.4810 

390.00 14.3394 1.2869 11.1429 -0.4806 

400.00 14.7071 1.3299 11.1429 -0.4803 
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CHAPTER FIVE 

THE T4 CELL COUNT AS A MARKER OF HIV PROGRESSION IN THE 

ABSENCE OF ANY DEFENSE MECHANISM 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 68 

5.1  INTRODUCTION 

T4 cells which originate in the bone marrow and mature in the thymus gland play a dominant 

role in the immune system of the human body. Infact, these cells amplify immune responses 

through the release of various cytokine mediators. It has been observed in HIV infected 

individuals that as a consequence of HIV infection, selective depletion of T4 cells occurs. 

When the T4 cell count in such an individual drops, these cells are unable to mount an 

effective immune response and consequently, the individual becomes susceptible to 

opportunistic infections and lymphomas. Accordingly, the T4 cell count can be considered a 

marker of disease progression in an infected individual and the loss of T4 cells accounts for a 

major part of the immunosuppressive effect of HIV (Stein et al. 1992, Phillips et al. 1992, 

Feinberg 1996 and Sabin et al.1998). 

 

In the recent past, several researchers have developed various stochastic and deterministic 

models to describe the temporal progression of the T4 cell count in a HIV infected individual 

and its relationship to the survival time of the individual (Longini et al. 1991, Perelson et 

al.1993, De Gruttola and Tu 1994, Philips et al. 1994, Cozzi-Lepri et al. 1997 and Wick 

1999). Longini et al. (1991) modelled the decline of T4 cells in HIV infected individuals with 

a continuous-time Markov process in which the state space consists of seven states. These 

states are the end points of six progression T4 cell count intervals and the beginning of the 

first interval corresponds to the time of HIV infection and the end of the last interval 

synchronizes with the time of AIDS diagnosis. Perelson et al. (1993) developed a model for 

the interaction of HIV with T4 cells by considering four populations namely, uninfected T4 

cells, latently infected T4 cells, actively infected T4 cells, and free HIV; and using the model, 

they examined several features of HIV infection and in particular the process of T4 cell 

depletion.  
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De Gruttola and Tu (1994) proposed a model to study the progression of the T4 cell count 

and the relationship between different features of this progression and survival time. In their 

model, they observed the T4 cell count only at certain fixed time points and using random 

effects estimated the T4 trajectory.  

 

Philips et al. (1994) developed an extrapolation model based upon T4 cell counts measured at 

discrete points, and using the model estimated the probability of remaining free of AIDS for 

up to 25 years after infection with HIV. Cozzi Lepri et al. (1997) used multilevel modelling 

techniques to asses the rate of T4 cell decline in HIV infected individuals and predicted that 

the rate of T4 cell decline is actually slower at the later stage of the disease.  

 

In the work of Wick (1999), the T4 cell loss in a HIV infected individual has been analysed 

by proposing a model in which the rates of proliferation and programmed cell death 

(apoptosis) control the rise and fall of the T4 cell count. In all these works, the stochastic 

mechanism of HIV production has not been given its due importance in understanding the 

decline of the T4 cell count and the status of HIV progression in infected individuals. Further, 

no work appears to be available in literature incorporating the correlation structure between 

uninfected and infected T4 cell populations. 

 

Also, in HIV related models, there appears to be no work which quantifies the amount of 

toxins produced during the progression of HIV in infected individuals and its correlation with 

the loss of T4 cells. In this chapter, an attempt is made to fill the gap by building a more 

realistic stochastic model of HIV production/progression leading to the decline of the T4 cell 

count in an infected individual. 
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The organization of this chapter is as follows: In Section 5.2, we develop a catastrophe model 

of HIV production. The probability generating function for X(t), the number of uninfected 

cells, Y(t), the number of infected cells at any time t and Z(t), the number of lysed cells up to 

time t is obtained in Section 5.3. The means and variances of X(t), Y(t), and Z(t) are 

explicitly found in Section 5.4. We also obtain explicit expressions for the co-variances 

between X(t) and Y(t), Y(t) and Z(t), and Z(t) and X(t) in section 5.4. The total amount of 

toxins produced up to time t since the time of HIV infection is quantified and analysed in 

Section 5.5. In Section 5.6, a numerical illustration is provided to drive home a satisfactory 

picture of what happens during the progression of HIV in an infected individual up to the 

onset of AIDS. 

 

5.2 THE CATASTROPHE MODEL 

At time t = 0, one HIV infects a cell population of size N of uninfected T4 cells. The infected 

cell either splits into two infected cells or undergoes a lysis releasing a random number K of 

HIV’s which instantaneously infect an equal number of uninfected T4 cells; and the process 

continues. Further, there is an independent Poisson arrival of uninfected T4 cells with rate α 

into the population of T4 cells. The process of splitting of an infected cell into two infected 

cells can be viewed as a birth of an infected cell with the parent survival; and the event of a 

lysis of an infected cell can be considered as the death of an infected cell. The death of an 

infected cell is a disaster to the population of uninfected cells. This observation enables us to 

make the assumption that the population of infected cells undergoes a linear birth and death 

process, with λ and µ as the birth and death rates respectively; and the population of 

uninfected cells is subject to disasters occurring at the event of the death of an infected cell. 

Let X(t) and Y(t) denote respectively the number of uninfected and infected cells at time t. 
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Then, by the initial condition, we have X(0) = N – 1 and Y(0) = 1, where N is sufficiently 

large and fixed. Let Z(t) represents the number of cells that have undergone lysis  up to time 

t. Then, it is easy to note that 

   X(t) + Y(t) + Z(t) ≥ N. 

We assume that K has a discrete distribution defined by 

   Pr( ,K =  r) =    r =  0,  1,  2,  ...rπ  

The vector process (X(t), Y(t), Z(t)) is clearly Markov and we proceed to obtain its 

probability generating function in the next section. 

 

5.3  THE PROBABILITY GENERATING FUNCTION 

We define the probability generating function of (X(t), Y(t), Z(t)). 

  G u( , ] v,  w;  t) =  E[u v wX(t) Y(t) Z(t) . 

Then it is easy to note thatG u v( ,  v,  w;  0) =  uN-1 . To derive an expression for 

G u( ,  v, w;  t) , we first define the probability function 

  p i( ,  j,  k;  t) =  Pr{X(t) =  i,  Y(t) =  j,  Z(t) =  k} 

Then, using probabilistic laws, we obtain 

∂
∂

p(i,  j,  k:  t)
 =  - {j(  +  ) +  }p(i,  j,  k;  t) +  p(i -  1,  j,  k;  t)

t
λ µ α α  

+ (j -  1) p(i,  j -  1,  k;  t) +  (j +  1 -  r) p(i +  r,  j +  1 -  r,  k -  1;  t)r
r=0

j+1

λ µ π∑  

           (5.3.1) 

From (5.3.1), following the lines of Bailey (1975), it can be shown that the probability 

generating function G u( ,  v, w;  t)satisfies the partial differential equation 

∂
∂

= − ∂
∂

∂
∂

∂
∂

−

=

∞

∑
G

t

G

v

G

v
u v

G

v
r r

r

( ,λ µ α λ µ π +  )v  -  (1 -  u)G + v  +  w2
r

0

   

           (5.3.2) 
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with the initial condition G u v( ,  v,  w;  0) =  uN-1 . 

On simplification, the equation (5.3.2) becomes 

∂
∂

= − + ∂
∂

G

t
wh

v

u

G

v
α λ µ λ µ( ( ( )}1 -  u)G +  {-  +  )v +  v ,  2      

           (5.3.3) 

with the initial condition G u v( ,  v,  w;  0) =  uN-1 . 

 

The equation (5.3.3) is not easily solvable even for any simple form of the generating 

function h(.). However, we can obtain from the equation (5.3.3) the various moments of X(t), 

Y(t) and Z(t). Accordingly, in the next section, we study the moment structure of the process 

(X(t), Y(t), Z(t)). We also study the covariance structure of X(t), Y(t) and Z(t).  

 

5.4  THE MOMENT STRUCTURE  (X(t), Y(t), Z(t)) 

We have the following notations: 

M t M t M t

t t t

M t M t M t

X Y Z

XY YZ ZX

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

 =  E[X(t)],   =  E[Y(t)],   =  E[Z(t)],

M  =  E[X(t){X(t) -  1}],  M  =  E[Y(t){Y(t) -  1}],  M  =  E[Z(t){Z(t) -  1}],  

 =  E[X(t)Y(t)],   =  E[Y(t)Z(t)],   =  E[Z(t)X(t)].
X
(2)

Y
(2)

Z
(2)  

Then, from the equation (5.3.3), we obtain the following system of equations: 

   
∂

∂
M t

M tX
Y

( )
( )

t
 =   -  h (1)'α µ     (5.4.1) 

   
∂

∂
M t

a M tY
Y

( )
( )

t
 =         (5.4.2) 

   
∂

∂
M t

M tz
Y

( )
( )

t
 =  µ       (5.4.3) 

∂
∂

M t
M t M t M tX

XY X Y

( ) ( )
( ) ( ) ( )

2

t
 =  -  2 h (1)  +  2  +  d'µ α    (5.4.4) 

∂
∂

M t
aM t M tY

Y Y

( )
( )( )

( ) ( )
2

2

t
 =  2  +  c       (5.4.5) 
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∂
∂

M t
M tZ

YZ

( ) ( )
( )

2

t
 =  2µ        (5.4.6) 

∂
∂

M t
aM t M t M tXY

XY Y Y

( )
( ) ( ) ( )( )

t
 =   +  b -  h (1)'µ 2     (5.4.7) 

∂
∂

M t
aM t M t M tYZ

YZ Y Y

( )
( ) ( ) ( ) ( )( )

t
 =   +   +  h  'µ µ2 1     (5.4.8) 

∂
∂

M t
M t M t M t M tZX

Z XY Y YZ

( )
( ) ( ) ( ) ( ) ( ) ( )

t
 =   +    -  h  -  h   ' 'α µ µ µ1 1  (5.4.9) 

where 

a =    +  h  b =    h  h  c =  2  +  h  d =  2 h  +  h' ' '' '' ' ''λ µ µ α µ µ λ µ µ µ− − −( ), ( ) ( ), ( ), ( ) ( ).1 1 1 1 1 1  

Noting the fact that  

 

M M M

M M M

M M M

X Y Z

X Y Z

XY YZ ZX

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

0 0 0

2 2 2

 =  N -  1,   =  1,   =  0,

 =  (N -  1)(N -  2),   =  0,   =  0,

 =  N -  1,   =  0,   =  0

 

And using Laplace transformation, the equations (5.4.1) to (5.4.9) yield 

  M  =  
N -  1

s
 +  

s
 -  

h

s(s -  a)X 2

'
* ( )

( )
s

α µ 1
     (5.4.10) 
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Inverting the equations (5.4.10) and (5.4.11), we obtain 
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5.5  THE AMOUNT OF TOXIN PRODUCED 

Whenever an infected cell appears, a quantity of toxic substance is produced in the blood. 

The estimation of the total amount of toxins produced by the infected cells since the 

beginning of the HIV infection up to any time is useful in knowing the level of HIV infection. 

In this section, we quantify the total amount of the toxins and obtain its mean and variance. 

Since the amount of toxins produced at time t is proportional to the number of infected cells 

present at time t, it is evident that the total amount of toxins produced up to time t since the 

beginning of the HIV infection is given by the stochastic integral 

    W t( ) =  Y(u)du
0

tz      (5.5.1) 

 

The stochastic integral in (5.5.1) exists almost surely and has been studied very extensively in 

several biological applications by several researchers (Puri 1966, Jagers 1967, Pakes 1975 

and Udayabaskaran and Sudalaiyandi 1986). 

 

We proceed to obtain the joint moment generating function of Y(t) and W(t) defined by 

  H u( ,  v;  t) =  E[u e |Y(0) =  1]Y(t) -vW(t)     (5.5.2) 

Fixing the occurrence of the first event since time t = 0 and using probabilistic arguments, we 

obtain the following integral equation: 
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where h s( ) =  Pr
s

0

r
∞

∑ is the generating function of the number of HIV’s produced at the time 

of a lysis. From the equation (5.5.3), we can obtain the mean and variance of W(t) and the 

correlation structure of W(t) with Y(t). 

Differentiating (5.5.3) with respect to v at (u = 1, v = 0), we get 
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Differentiating (5.5.3) twice with respect to v at (u = 1, v = 0), we get 
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Differentiating (5.5.3) with respect to u and v at (u = 1, v = 0), we get 
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On applying Laplace transform to equations (5.5.4), (5.5.5) and (5.5.6) we get  

    M sW
* ( ) =  

1

s(s -  a)
     (5.5.7) 

 M s
a sWW

* ( )
( )

 =  
2

s(s -  a)(s +   +  )
 +  

2  +  h

 -  2a
 -  

2a

(s -  a)
 -  

1

s

''

2λ µ
λ µ 1 1

2

RST
UVW

 

 
 
 



 77 

  + RST
UVW

 
2[2  +  h

 -  a)
 -  

1

s -  a
 +  

1

s

'

2

λ µ ( )]

(

1
2a

a

s
   (5.5.8) 

M s
a sYW

* ( )
( )

(
 =  

1

(s -  a)
 +  

2  +  h

 -  2a)
 -  

a

(s -  a)
 +  

1

s -  a2

''

2

λ µ 1 1
2

  (5.5.9) 

On inversion, the equations (5.5.7), (5.5.8) and (5.5.9) yield 

    M t eW
at( ) ( =  

1

a
 -  1)     (5.5.10) 

M t e eWW
at t( )

)
( ) =  2

1

a(  +  +  a)
 +  

1

(  + (  +  +  a)
 -  

1

a(  +  )λ µ λ µ λ µ λ µ
λ µ− +RST

UVW
 

+ 
 +  h

 -  2ate  -  1} -  
 +  h

 -  ate  -  1)  
''

at
'

at2 1 2 2 1
3

2
2

λ µ λ µ( )
{

[ ( )]
(

a
e

a
eat at  (5.5.11) 

 M t
a

eYW
at( )

( )
( =  te  +  

 +  h
 -  ate  -  e ) at

''
at at2 1

2
2λ µ

   (5.5.12) 

 

 

5.6 NUMERICAL ILLUSTRATION 

The behaviour of the means of X(t), Y(t) and Z(t) and the correlation coefficient (ρ ) between  

X(t) and Y(t) (RXY) and that between  Y(t) and Z(t) (RYZ) with respect to time is studied. For 

this, we assume α  = 100.0, λ  = 0.20, µ  = 0.10, and vary t from 0.5 to 0.8 in steps of 0.5. 

The results are highlighted in Tables 5.1 to 5.4. 

 

The number of uninfected T4 cells present at any instant of time decreases (Table 5.1) and 

that of the infected cells (Table 5.2) increases with time as can be expected. This implies that 

the mean of the cumulative quantity of toxin produced should also increase with time and 

Table 5.1 confirms this result. Also we observe that the correlation between X(t) and Y(t) 

remains negative (Table 5.2) whereas correlation between Y(t) and Z(t) is positive throughout 

the period under consideration (Table 5.2). 

 
 
 



 78 

 

As the rate of arrival of uninfected T4 cells increases (α  = 100), the mean number of 

uninfected T4 cells present at the time of instant 0.5 increases. However, the means of the 

number of infected cells and that of the cumulative quantity of toxin produced remain the 

same irrespective of the values of α  (Table 5.3). Also, there is a negative correlation 

between X(t) and Y(t) (Table 5.4). Correlation between Y(t) and Z(t) exists but nothing can 

be said about the nature of its variation (Table 5.4) with respect to α . 

 

5.6 CONCLUSION 

In this chapter, we have obtained the mean number of uninfected, infected and lysed T cells 

in a HIV infected individual. Unlike other models proposed by some mathematical scientist 

(see Longini et al. 1991, Perelson et al.1993, De Gruttola and Tu 1994, Philips et al. 1994, 

Cozzi-Lepri et al. 1997 and Wick 1999), our model not only gave moment structure of our 

variables, but also the co-variance relationship between them. Hence we have been able to 

build on previous models establish in the line of the T4 cell count as marker of the disease 

progression. Also we were able to model the quantity of toxin produced at time t in a HIV 

infected individual. 
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Table 5.1 E[X(t)], E[Y(t)], E[Z(t)] versus t 

for α  = 100.0, λ  = 0.20, µ  = 0.10 

t E[X(t)] E[Y(t)] E[Z(t)] 

0.50 10.0483 0.0017 0.0007 

1.00 10.0972 0.0030 0.0018 

1.50 10.1452 0.0052 0.0038 

2.00 10.1917 0.0090 0.0073 

2.50 10.2357 0.0156 0.0133 

3.00 10.2753 0.0156 0.0133 

3.50 10.2753 0.0271 0.0237 

4.00 10.3259 0.0815 0.0731 

4.50 10.3216 0.1412 0.1274 

5.00 10.2775 0.2447 0.2215 

5.50 10.1644 0.4241 0.3846 

6.00 9.9316 1.2741 1.1574 

6.50 9.4916 0.7351 0.6674 

7.00 8.6923 2.2083 2.0067 

7.50 7.2702 3.8276 3.4788 

8.00 4.7688 6.6342 6.0302 
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Table 5.2 RXY , RYZ versus t 

for α  = 100.0, λ  = 0.20, µ  = 0.10 

t RXY RYZ 

0.50 -0.8770 0.8406 

1.00 -0.9226 0.9130 

1.50 -0.9616 0.9446 

2.00 -0.9829 0.9641 

2.50 -0.9934 0.9769 

3.00 -0.9970 0.9854 

3.50 -0.9989 0.9909 

4.00 -0.9995 0.9944 

4.50 -0.9998 0.9966 

5.00 -0.9999 0.9980 

5.50 -1.0000 0.9988 

6.00 -1.0000 0.9993 

6.50 -1.0000 0.9996 

7.00 -1.0000 0.9998 

7.50 -1.0000 0.9999 

8.00 -1.0000 0.9999 
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Table 5.3 E[X(t)], E[Y(t)], E[Z(t)] versus α  

for t = 0.50, λ  = 0.20, µ  = 0.01 

α  E[X(t)] E[Y(t)] E[Z(t)] 

100.00 10.0483 0.0017 0.0007 

200.00 10.0983 0.0017 0.0007 

300.00 10.1483 0.0017 0.0007 

400.00 10.1983 0.0017 0.0007 

500.00 10.2483 0.0017 0.0007 

600.00 10.2983 0.0017 0.0007 

700.00 10.3483 0.0017 0.0007 

800.00 10.3983 0.0017 0.0007 

900.00 10.4483 0.0017 0.0007 

1000.00 10.4983 0.0017 0.0007 

 

 

Table 5.4 RXY , RYZ versus α for 

 t = 0.50, λ  = 0.20, µ  = 0.01 

α  RXY RYZ 

100.00 -0.8770 0.8406 

200.00 -0.7595 0.8406 

300.00 -0.6578 0.8406 

400.00 -0.6036 0.8406 

500.00 -0.5674 0.8406 

600.00 -0.5262 0.8406 

700.00 -0.4929 0.8406 

800.00 -0.4688 0.8406 

900.00 -0.4479 0.8406 

1000.00 -0.4297 0.8406 
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CHAPTER SIX 

A STOCHASTIC MODEL OF THE DYNAMICS OF HIV UNDER A COMBINATION 

THERAPEUTIC INTERVENTION 
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6.1  INTRODUCTION 
 
In HIV infected individuals, the infection exhibits a long asymptomatic phase (after the initial 

high infectious phase), on average about 10 years before the onset of AIDS. During this 

incubation period which some call the clinical latency period, the individuals appear to be 

well and may contribute significantly to the spread of the epidemic in a community. Some 

clinical markers such as the CD4 cell count and the RNA viral load (viraemia) provide 

information about the progression of the disease in infected individuals. Also, the clinical 

latency period of the disease may provide a sufficiently long period to try for an effective 

suppressive therapeutic intervention in HIV infections.  

 

The knowledge of principal mechanisms of viral pathogenesis, namely the binding of the 

retrovirus to the gp120 protein on the CD4 cell, the entry of the viral RNA into the target cell, 

the reverse transaction of viral RNA to viral DNA, the integration of the viral DNA with that 

of the host, the viral regulatory processes mediated through regulatory proteins such as tat 

and rev and the action of viral protease in cleaving viral proteins into mature products, led to 

the design of drugs  (chemotherapeutic agents) to control the production of HIV. Two 

principal directions along which drugs (such as AZT and Ritonavir (Shafer et al. 2001) are 

attempted are inhibition of the reverse transcriptase of HIV and inhibition of the protease of 

HIV. The inhibition of the function of either the reverse transcriptase or the protease of HIV 

reduces the production of infectious free HIV thereby the onset of AIDS can be delayed in 

HIV-infected individuals ( Brookmeyer and Gail 1994). 

  

A cure for HIV is yet to be discovered but progress is being made in obtaining effective 

vaccine and/or eradicating the virus from the human body. For example, in recent months 

result from a bone marrow transplant of a then HIV infected individual to be saved from 

leukaemia showed no known virus in his system (neither in the blood nor the reservoirs); is 
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this not a cure at hand? It was stated that this is not a recommended way of tackling HIV 

infection as it is very expensive and it takes time for the individual to have immunity because 

at the stage of transplant the individual has no immunity due to the new stem cells that are yet 

to grow and replicate (http://www.welt.de/english-news/article2715739/HIV-patient-cured-

by-marrow-transplant.html). With the widespread of the epidemic and also in the absence of 

an “effective” vaccine or cure, therapeutic interventions still have to be heavily relied on. 

Several research studies have been made in the recent past both theoretically and 

experimentally to analyse the impact of therapy on the viral load in HIV infected persons to 

test the effectiveness of the treatment (Nelson and Perelson 1995, Wei et al. 1995, Perelson et 

al. 1996, Mellors et al. 1997, Nijhuis et al. 1998, Tan and Xiang 1999 and Bangsberg et al. 

2004).  

 

Nelson and Perelson (1995) proposed a mathematical model of therapeutic intervention to 

delay the onset of AIDS by the stimulated production of genetically engineered defective 

interfering virus (DIVs) that interferes with the HIV replication process. A DIV is a deletion 

mutant and it is incapable of replicating by itself in a host cell (CD4 cell), but may replicate if 

the host cell is co-infected with HIV. Assuming that DIV depends on HIV to multiply, 

Nelson and Perelson (1995) constructed a mathematical model describing the interaction 

among HIV, DIV and uninfected CD4 cells and they analysed the co-evolution of DIV and 

HIV in a single compartment. Their model is essentially given by a system of ordinary 

differential equations involving eight variables and several parameters representing the 

activities of DIV and HIV. By considering a higher level of DIV activity in the production of 

co-infected CD4 cells, they investigated the possibility of blocking the production of HIV so 

that the burden of HIV on the population of CD4 cells is reduced.  
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In the paper of Wei et al. (1995), based upon the results of several experimental studies of the 

dynamics of HIV replication in the presence of antiretroviral agents, it was reported that HIV 

had enormous potential in showing resistance to drugs and undergoing several mutations and 

a rapid and virtually complete replacement of wild-type HIV by drug resistant virus occurred 

when anti-viral drugs were administered. Nijhuis et al. (1998) noticed high drug resistance 

and unique combination of mutation in individuals when they proposed a stochastic model to 

test the resistance to protease inhibitors, although there was reduced effective free HIV 

population (500 – 15000). 

 

Perelson et al. (1996) presented a mathematical model which was used to analyse the kinetic 

picture of HIV pathogenesis subject to the administration of a drug called Ritonavir to inhibit 

potently the protease of HIV. In their paper, they represented the dynamics of cell infection 

and viral production after treatment with ritonavir, by a set of ordinary differential equations 

using deterministic model and, assumed that the viral inhibition of ritonavir was 100% so that 

all newly produced virons after the treatment with ritonavir were non-infectious. Hence by 

using the mathematical model and non-linear least squares fitting of the viral load data of five 

HIV-1 infected patients, they were able to obtain estimates of the rate of viral clearance, the 

infected cell life-span and the average viral generation time.  

 

Tan and Xiang (1999) had a state-space model of HIV pathogenesis in HIV infected 

individuals undergoing a combination-treatment (i.e. a treatment with a combination of anti-

viral drugs such as AZT and Ritonavir which can inhibit either the reverse transcriptase or the 

protease of HIV). Their model gave way for the production of infectious free HIV and non-

infectious free HIV, by extending the model of Perelson et al. (1996) and developing 

procedures for estimating and predicting the number of uninfected CD4 cells, infectious free 
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HIV, non-infectious free HIV and HIV infected CD4 cells. They not only extended Perelson 

et al. (1996) model into a stochastic model, but they also applied their model to data of some 

patients given by Perelson et al. (1996). Their model was discrete in time and was described 

by a system of stochastic difference equations which were derived based on the biological 

specifications of the HIV-replication cycle. However, the nature of the HIV-replication cycle 

indicated that a stochastic model approach of point events that are distributed over continuous 

infinity of states is very much appropriate to analyse the basic underlying process of 

generation of HIV and the interaction of defective HIV on the kinetics of HIV, so that an 

efficient therapeutic intervention may be devised to combat the production of HIV.  

 

Since Perelson et al. (1996) had considered the deterministic model and Tan and Xiang 

(1999) had a state-space model, we considered a stochastic model of the growth of HIV 

population which carries over the principle of the virology of HIV and the life-cycle of HIV 

and allows the production of non-infectious (defective) free HIV to reduce the severity of 

HIV in a HIV-infected individual undergoing a combination-therapeutic treatment. Our aim 

in this paper is to use stochastic model obtained by extending the model of Perelson et al. 

(1996) to determine number of uninfected T4 cells, infected T4 cells and free HIV in an 

infected individual by examining the combined antiviral treatment of HIV. This is important 

because it helps in determining the efficacy of methods used in the research areas of 

pathogenesis, progression and combined treatment of HIV. By obtaining the variance and co-

variance structures of the variables X(t), V(t) and D(t), we have contributed to the work afore 

done by Perelson et al. (1996) and Tan and Xiang (1999). Based upon the model, we obtain 

the expected numbers of HIV infected cells, infectious free HIV and non-infectious free HIV 

at any time t, and derive conclusions for the reduction or elimination of HIV in HIV-infected 

individuals. 
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The organisation of this chapter is as follows: In Section 6.2, we formulate a stochastic model 

to describe the production and the clearance of virus producing cells, infectious free HIV and 

non-infectious free HIV in a therapeutic environment. In Section 6.3, we derive a system of 

differential difference equations for the probability function associated with the process and 

also obtain a partial differential equation for the probability generating function of the 

numbers of HIV-infected CD4 cells, infectious free HIV and non-infectious free HIV at time 

t. The population measures are derived in Section 6.4. In Section 6.5, we provide a numerical 

illustration to show the impact of the usage of combination-therapy in controlling the 

progression of HIV and also obtained variance and co-variance structures of the variables. 

We have also compared equations we obtained with those obtained by Perelson et al. (1996) 

as our model is an extension of their model. 

 

 

6.2  THE FORMULATION OF THE MODEL 

Assume that at time t = 0, a combination-therapy treatment is initiated in an HIV-infected 

individual. We assume that the therapeutic intervention inhibits either the enzyme action of 

reverse transcriptase or that of the protease of an HIV in a HIV-infected cell. A HIV-infected 

cell with the inhibited HIV-transcriptase can be considered as a dead cell as it cannot 

participate in the production of the copies of any type of HIV. On the other, a HIV-infected 

cell in which the reverse transcription has already taken place and the viral DNA is fused 

with the DNA of the host but the enzyme activity of HIV-protease is inhibited, undergoes a 

lysis releasing infectious free HIV and non-infectious free HIV. A non-infectious free HIV 

cannot successfully infect a CD4 cell. Accordingly, at any time t, the blood of the infected 

person contains virus-producing HIV-infected cells, infectious free HIV and non-infectious 

free HIV. 
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A virus producing cell existing at time t in the therapeutic environment undergoes one of the 

following possibly in the interval (t, t+∆): 

 

(i) it splits into two HIV-infected cells with probability λ1∆ + ο(∆); 

(ii)  it undergoes a lysis with probability υ∆ + ο(∆), producing a random number 

K1 of infectious free HIV and a random number K2 of non-infectious free 

HIV; 

(iii)  it dies with probability µ∆ + ο(∆); 

(iv) it remains as it is with probability 1 – (λ1 + υ + µ)∆ + ο(∆); 

 

We assume that K1 and K2 have the joint probability generating function h(s1, s2) defined by 
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where πlm represents the probability that l infections free HIV and m non-infectious free HIV 

are released at the lysis occurring at any time. An infectious free HIV existing at time t in the 

blood of the individual may undergo one of the following possibilities in the interval (t, t+∆): 

(i) it infects a T4 cell with probability λ2∆ + ο(∆) making the cell into a viruses 

producing cell; 

(ii)  it dies with probability c∆ + ο(∆); 

(iii)  it remains as it is with probability 1 – (λ2 + c)∆ + ο(∆); 

The population of non-infectious free HIV does not grow by replication of its members but 

grows by admitting bulk immigrations which occur at the lysis of HIV-infected cells. A non-

infectious HIV existing at time t dies in the interval (t, t+∆) with probability c∆ + ο (∆). 

 

Let X(t) be the number of virus producing cells (these are cells that produce more virus to 

infect other cells) at time t. Let V(t) and D(t) be respectively the number of infectious free 

HIV (these are HIV in the body that infect cells in the body) and the number of non-
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infectious free HIV (these are HIV in the body that do not infect cells in the body) at time t. 

For simplicity, we assume that X(0) = N, V(0) = n, D(0) = 0. We proceed to discuss the 

probability generating function of the vector process (X(t), V(t), D(t)) in the next section. 

 

6.3  PROBABILITY GENERATING FUNCTION 
 
The probability generating function of (X(t), V(t), D(t)) is defined by  
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]uu E[  ]uuE[u  ;0)u,u,G(u n
2

N
1

0
3

n
2

N
1321 ==  

To derive an equation for G(u1,u2,u3;t), we need the probability function which is defined for 

any time t by  

p(i,j,k;t) =  Pr{X(t) = i, V(t) = j, D(t) = k}, 

where i, j, k = 0, 1, 2 … 

 

Now, we proceed to derive a system of differential-difference equations for the function  

p(i, j, k; t). For this, we list below the exhaustive and mutually exclusive events that occur in 

(t, t+∆) given that X (t) = i > 0, V (t) = j > 0 and D (t) = k > 0: 

(i) one HIV infected cell splits into two HIV-infected cells in (t, t+∆). The 

probability for this event to occur is iλ1∆ + ο(∆); 

(ii)  one HIV-infected cell undergoes a lysis in (t, t+∆). The probability for this 

event to occur is iυ∆ + ο(∆); 

(iii)  one HIV-infected cell dies in (t, t+∆). The probability for this event to occur 

is iµ∆ + ο(∆); 

(iv) one infectious free HIV virus infects one CD4 cell making the CD4 cell an 

HIV-infected cell in (t, t+∆). The probability for this event to occur is  
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jλ2∆ + ο(∆); 

(v) one infectious free HIV virus dies in (t, t+∆). The probability for this event 

to occur is jc∆ + ο(∆); 

(vi) one non-infectious free HIV virus dies in (t, t+∆). The probability for this 

event to occur is kc∆ + ο(∆); 

(vii)  none of the above occurs in (t, t+∆). 

 

Using probabilistic arguments, we obtain 
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From equation 6.3.1, we readily obtain the following equations: 
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Now, we have 
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And so, by using equations 6.3.2 and 6.3.3, we obtain 
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Equation 6.3.4 is not solvable even for any simple form of h(u2,u3;t). However, we can obtain 

the moment-structure of (X(t), V(t), D(t)). We do this in the next section. 

 

 

6.4  THE MOMENT STRUCTURE OF (X(t), V(t), D(t)) 

We have the following notation: 
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Differentiating equation 6.3.4 with respect to u1 at A, we obtain 
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Differentiating (6.3.4) with respect to u2 at A, we obtain 
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Differentiating (6.3.4) with respect to u3 at A, we obtain 
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Differentiating (6.3.4) with respect to u1 twice at A, we get 
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Differentiating (6.3.4) with respect to u2 twice at A, we get 
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Differentiating (6.3.4) with respect to u3 twice at A, we get 
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Differentiating (6.3.4) with respect to u1 and u2 at A, we get 
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Differentiating (6.3.4) with respect to u2 and u3 at A, we get 
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Differentiating (6.3.4) with respect to u1 and u3 at A, we get 
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Although the differential equations 6.4.2 and 6.4.3 are similar to the equations in Perelson et 

al. (1996), equation 6.4.1 differs from the corresponding equation in Perelson et al. (1996). 

Equations 6.4.2 and 6.4.3 in Perelson et al. (1996) were given as cV- TN  *δ=
dt

dV
 and 

NI
* cV - TN  δ=

dt

dVNI  respectively and equation 6.4.1 as *
*

T - kVT  δ=
dt

dT
(where T is target 

cells, *T  is productively infected cells, V is the concentration of viral particles in plasma, δ is 

the rate of loss of virus producing cells, N is the number of new virons produced per infected 

cell during its lifetime, c is the rate constant for viron clearance and NIV  is the concentration 

of virons in the non-infectious pool).We proceed to solve the above equations to obtain the 

moments MX(t), MV(t) and MD(t) explicitly. Writing these equations in the matrix form, we 

obtain the following matrix differential equation: 
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Where R is the matrix given by  
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The characteristic equation of the matrix R is given by  
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Solving equation 6.4.11, we obtain the characteristic values of R which are real and distinct, 

and are given as 
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Accordingly, the general solution of 6.4.10 is 
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where C1, C2 and C3 are constants. In our model, we have assumed that X(0) = N, V(0) = n, 

D(0) = 0 and so we have the following initial conditions: 

MX(0) = N, MV(0) = n, MD(0) = 0. 

Consequently, the constants C1, C2 and C3 satisfy the following system of linear equations: 
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Solving the system (6.4.12), we obtain   
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We have not obtained explict results for ),(M ),(M ),( XV
(2)
D

)2( tttM X ).(M and)(M XDVD tt  

However, we are able to solve completely the equations (6.4.1) to (6.4.9) in a special case 

where no infectious free virus is released at the lysis of every HIV-infected cell treated with 

combination therapy. We have for this special case, m1 = 0, m11 = 0, m12 = 0.  

 

Consequently, equations 6.4.1 to 6.4.9 yield 
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Although the above expressions for )(tM XD and )()2( tM D are quite laborious, we have 

presented them here for the sake of completeness. However, for the purpose of numerical 

illustration considered in the next section, we prefer the following integral expressions which 

are obtained from equations 6.4.18 to 6.4.24. 

∫ −−= t duut
x

Mcuemt
D

M 0 )(
2

)( ν                 (6.4.25) 

 ∫ −+−+= t duutVMueNntXVM 0 )()2()(
2)( βαλ                (6.4.26) 

∫ −+−= t duut
XV

Mucemt
VD

M 0 )()(
2

)( βν                (6.4.27) 

 ∫ −∫
−+−−+−= t duut

X
Mt ueduut

XV
MueNNt

X
M 0 )(0

2
1

2)(2
2

2)1()()2( αλαλ  

                     (6.4.28) 

∫ −∫
+−+−+−= t duut

VD
Mt uceduut

X
Mucemt

XD
M 0 )(0

)(
2

)()2()(
2

)( αλαν      (6.4.29) 

∫ −∫
−+−−= t duut

X
Mt cuemduut

XD
Mcuemt

D
M 0 )(0

2
22

)(2
2

2)()2( νν   (6.4.30) 

Where the expressions for  ),(tM X  ),(tM V )(tM D  and )()2( tM V  are given by equations 

6.4.16, 6.4.17, 6.4.18 and 6.4.19 respectively. 

 

 

6.5  NUMERICAL ILLUSTRATION OF MODEL 

For the purpose of numerical illustration, we have extrapolated estimates from Perelson et al. 

(1996) and Tan and Xiang (1999) and considered three cases (we adopt Simpson’s one-third 

rule for the computation of integrals (equations) 6.4.25 to 6.4.30). 

Case (i): Both the mean numbers of the infectious free HIV m1 and non-infectious free HIV 

m2 produced by a virus producing cell at the time of its lysis are greater than zero. 

 
 
 



 100 

Case (ii): m1 = 0 and m2 ≠ 0 and obtain values of the means ),(tM X  ),(tM V  and )(tM D  for 

the values of t ranging from 0.0 to 2.5 in steps of 0.5 for all the cases and the results are 

highlighted in Figure 6.1.  

Case (iii): The second moments are evaluated by adopting Simpson’s one-third rule for the 

evaluation of integrals. The assumed values of the parameters are given below in table 6.1 

and the results are highlighted in Table 6.2 to 6.5 and figure 6.1. For simulated results, we 

take 1 hour as 0.5 time unit. 

 

Table 6.1: Assumed values of parameters used in data simulation 

 

 

Case (i): From Figure 6.1 and table 6.2, it was easily noted that as t increases the values of 

)(tM X , )(tM V , )(tM D also increases for λ1 = 5.0. When λ2 = 10.0 (the rate at which HIV 

infected cell splits into two), the values of ),(tM X )(tM V , )(tM D  also increased with 

Parameters 
Notation 

 
Parameters 

Assumed 
values 

C Rate of dying of a free HIV 3/day 
N Number of virus producing cells at time t = 0 412copies/

ml 
n Number of infectious free HIV at time t = 0 98000/mm3 
 

1λ  

 
Rate of splitting of a virus producing cell  

5/day/mm3 
and 

10/day/mm3 

2λ  Rate with which a free HIV infects a CD4 cell  1/day/mm3 

ν  Rate of occurrence of lysis of virus producing cell  0.02/day 
 

µ  
Rate of death of virus producing cell  0.4/day 

 

1m  

Expected number of infectious free HIV produced at the time of 
lysis of an infected cell 

 
200/mm3 

 

2m  

Expected number of non-infectious free HIV produced at the time 
of lysis of an infected cell 

 
100/mm3 

 

22m  

Second factorial moments of the number of non-infectious free 
HIV produced at the time of lysis of an infected cell 

 
9900/mm6 
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increasing value of t (table 6.2). This shows that as the value of λ1 increases, the values of 

),(tM X )(tM V , )(tM D increases significantly with time before treatment. 

 

Case (ii): Assume m1 = 0, m2 = 100.0, m22 = 9900.0. From Figure 6.1 that has the fitted 

curves for  ),(tM X )(tM V , )(tM D  before and after treatment, it is observed that there is a 

remarkable difference in the values obtained before and after treatment especially after t = 

1.5. This shows the effectiveness of the treatment using the stochastic model. As such the 

expected number of virus producing cells and expected number of non-infectious free HIV 

decreased significantly after treatment (effect of reverse transcriptase drugs). And the 

expected numbers of infectious free HIV was reduced to almost nil at t = 2.5 which is the 

effect of protease inhibitor drugs as they reduce the generation of infectious free HIV at the 

death of actively infected T4 cells.  

 

Case (iii): Assume m1 = 0, m2 = 100.0, m22 = 9900.0. The values of the second order 

moments namely: ),()2( tM X ),()2( tM D ),()2( tM V ),(tM XD  ),(tM XV  and  )(tM VD  are provided in 

Table 6.4 and Table 6.5. The variances of virus producing cells and non-infectious free HIV 

are so large in comparison to those of infectious free HIV and their values increased 

significantly with t increasing. Unlike those of infectious free HIV that decreased 

significantly after treatment. The co-variance results shows that there is a positive 

relationship between virus producing cells and infectious free HIV.  
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Table 6.2 : )(tM X , )(tM V , )(tM D versus t (before treatment) with C = 3.0, N = 412.0, 

n = 98000.0, υ = 0.02, µ = 0.49, m1 = 200.0, m2 = 100.0, m22 = 9900.0, λ2 = 1.0 

 λ1 = 5.0 

t )(tM X *10-5 )(tM V *105 )(tM D *10-4 

0.50 1 1 3 

1.00 15 7 38 

1.50 178 80 449 

2.00 2106 943 5307 

2.50 24870 11131 62665 

 

 

 λ1 = 10.0 

t )(tM X *10-5 )(tM V *105 )(tM D *10-5 

0.50 1 2 2 

1.00 130 378 204 

1.50 17324 50286 27111 

2.00 2303609 6686681 3604945 

2.50 306314300 889138100 479355000 
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Table 6.3: )(tM X , )(tM V , )(tM D versus t (after treatment) with C = 3.0, N = 412.0, 

n = 98000.0, υ = 0.02, µ = 0.49, λ2 = 1.0, m2 = 100.0, m22 = 9900.0 

 

 λ1 = 5.0 

t )(tM X *10-5 )(tM V  )(tM D *10-4 

0.50 1 13263 3 

1.00 11 1795 28 

1.50 101 243 269 

2.00 950 33 2535 

2.50 8964 4 23936 

 

 

Table 6.4: )()2( tM X , )()2( tM D , )()2( tM V  versus t with C = 3.0, N = 412.0, n = 98000.0, υ = 0.02, 

µ = 0.49, m2 = 100.0, m22 = 9900.0, λ1 = 2.5, λ2 = 1.0    

 

t )()2( tM X *10-6 )()2( tM D *10-6 )()2( tM V  

0.50 1893 195 175901600 

1.00 15054 2349 3221750 

1.50 105300 18217 59008 

2.00 702573 134013 1081 

2.50 4510266 969590 20 
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Table 6.5: )(tM XV , )(tM XD , )(tM VD  versus t with C = 3.0, N = 412.0, n = 98000.0, 

υ = 0.02, µ = 0.49, m2 = 100.0, m22 = 9900.0, λ1 = 2.5, λ2 = 1.0 

 

t )(tM XV *10-6 )(tM XD *10-6 )(tM VD *10-6 

0.50 598 605 186 

1.00 255 5925 95 

1.50 120 43175 43 

2.00 70 295546 24 

2.50 51 1948272 17 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.1: Graph of simulated mean number of free HIV, infectious free HIV and non-
infectious free HIV before and after combined therapeutic treatment. (Units: on x-axis 0.5 is 
1hour and viral counts on y-axis is copies/ml of blood) 
 

GRAPH OF VIRAL COUNTS BEFORE (solid) and AFTER TREATMENT

0

500000000

1000000000

1500000000

2000000000

2500000000

0.5 1 1.5 2 2.5

Time

V
ir

al
 c

o
un

ts

MX(t) MV(t) MD(t)
MV(t) after Mv(t) after MD(t) after

 
 
 



 105 

6.6 CONCLUSION 
 
In this chapter, we have shown the necessity of our stochastic model under combined 

treatment by obtaining the variance and co-variance structure of the number of virus 

producing cells at time t, the number of infectious free HIV and the number of non-infectious 

free HIV at time t. Compared with the models obtained by Perelson et al. (1996) and Tan and 

Xiang (1999), the variance and co-variance structures were not obtained, rather only the 

expected numbers of the variables and their estimates were obtained. Numerical simulation of 

results obtained in section 6.5 above has shown the efficacy of our model. We have not 

included t = 0 (after treatment) for the data simulation which is the time of pharmacokinetic 

delay which vary from person to person, and this is the time required for drug absorption, 

drug distribution and penetration into target cells (Perelson et al. 1996). 

 

 We have used estimates extrapolated from clinical data in Perelson et al. (1996) and Tan and 

Xiang (1999) to simulate our results. However a real life data for each time point are yet to be 

used because of limited resources to obtain RNA viral load of patients every 30 minutes to 

one hour interval. In a follow-up work, we intend to obtain such data as in Perelson et al. 

(1996) to test the efficacy of our model as we have done with simulated data. 
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