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1.1 OVERVIEW 

Acquired Immunodeficiency Syndrome (AIDS) and its etiologic agent Human 

Immunodeficiency Virus (HIV) are two viral infections that have been most studied world 

wide since their first discovery in 1981 and 1983 respectively with 60 million people 

infected, 20 million deaths from AIDS and 14,000 daily new infections of which 95% is in 

developing world countries (WHO HIV statistics 2007). Statistics showed that around 33.2 

million people were living with HIV at the end of 2007 of which 2.5 million were children, 

and a greater proportion of the population infected coming from Africa and Asia continents. 

Compared to approximately 47,000 cases of AIDS in the United States with 58% of the 

patients already dead since the first cases were reported in summer 1981 until 1 December, 

1987 (Barker et al. 1998, Fauci 1988, Feinberg 1996). This shows that HIV appears to be 

progressive and irreversible with a high mortality rate that may approach 100 percent over 

several years if not put in check.  

 

Presently only two types of HIV are known to infect humans, namely the HIV-1 and HIV-2. 

These two viruses evolved independently and may have crossed the monkey-human species 

barrier at several independent occasions (Groot, 2006). HIV-1 is believed to have originated 

from wild chimpanzees (Pan troglodytes) virus (SIVcpz) of the southern Cameroon of West 

Africa, while HIV-2 originated from sooty mangabey monkey (cercocebus atys) virus (SIV 

variant) of Guinea-Bissau, Gabon and Cameroon of Africa (Groot, 2006, HIV Wikipedia 

2008).  

 

Studies have reported cases of infection with HIV-2 such as the Portuguese man infected in 

Guinea-Bissau who had a clinical latency duration of 19 years (Ancelle et al. 1987), a 

Portuguese woman infected through blood transfusion and she had a clinical latency of 27 
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years (Mota-Miranda et al., 1995) and a Japanese man (first report of HIV-2 infected 

Japanese individual) with clinical latency of 35 years (Utsumi et al. 2007). One can 

effectively induce that HIV-2 has a longer clinical latency period than that of HIV-1. HIV-2 

also has a lower transmission rate (this was pointed out by Utsumi et al. (2007), when they 

noted that the man had sexual acts with his 77 years old wife and both she and their 37 years 

old son were HIV negative). Also HIV-2 has less immune activation (see Levy 2009). Hence 

these have posed as very good advantages for the research into vaccine and cure of HIV-2 

unlike its counterpart which has a shorter clinical latency period (10 years on average) and it 

is the more common viral infection in the world (http://en.wikipedia.org/wiki/HIV). Thus 

concentration has been placed on the HIV-1 strains among human and not the HIV-2 strains 

in this thesis solely because HIV-1 is more virulent, easily transmitted, has a lesser clinical 

latency duration (of say 10 years) and according to WHO reports, it is the cause of the 

majority of HIV infections globally. Unlike HIV-2 which is quite mild in nature, not easily 

transmitted, has a clinical latency duration of 20 – 40 years and it is less common among 

humans.  

 

Our aim in this thesis is to use stochastic modelling to determine number of uninfected T4 

cells, infected T4 cells and free HIV in an infected individual by examining the pathogenesis, 

progression and combined treatment of HIV. This is important because it helps in 

determining the efficacy of methods used in the research of pathogenesis, progression and 

combined treatment of HIV. We also looked at different ways that research has tried to go 

about eliminating the virus (section 2.3) in an infected person. 

 

1.2 ACRONYMS AND TERMINOLOGIES 

AIDS   Acquired Immune Deficiency Syndrome 
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APOBEC3G  Apoliprotein B mRNA editing enzyme catalytic polypeptide-like 3G 

CD4+T cells  CD4 positive T lymphocytes 

CD8+T cells  CD8 positive T lymphocytes 

DNA   Deoxyribonucleic acid 

Env   Envelope; precursor to envelope glycoproteins 

Gag   Group - antigen ; precursor to internal structural proteins 

HIV   Human Immunodeficiency Virus 

IT   Integrase 

LTR   Long terminal repeat 

mRNA   Memory Ribonucleic acid 

PR   Protease 

Pro   PR enzyme 

Pol   Polymerase; precursor to RT and IT enzymes 

Rev   regulates splicing/RNA transport 

RNA   Ribonucleic acid 

RRE   Rev response elements 

RT   Reverse transcriptase 

TAR   Transactivation-response element 

Tat   activates transcription 

Vif   affects infectivity of viral particles 

vpr and/or vpx nef is present in viron; has nuclear localization signal; facilitates infectivity 

in quiescent cells; triggers CD4 endocytosis, alters signal transduction 

in T cells; enhances viron infectivity 

vpu integral membrane protein; triggers CD4 degradation; enhances viron 

release 
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1.3  ROLE OF MATHEMATICAL AND STATISTICAL MODELING IN HIV/AIDS  

EPIDEMIC 

Mathematical and statistical models of HIV/AIDS infection have become extremely 

important not only because medical scientists cannot combat the problems of these viruses 

alone (since not all problems can be replicated or solved experimentally as human lives are 

involved), but also to give better understanding of the HIV/AIDS epidemic and for reasons 

such as: 

i. the models based on underlying transmission mechanism of the HIV/AIDS infection 

can help the medical and/or scientific world to understand and evaluate the 

epidemiology of these viral infections hence giving insight into different strategies of 

prevention and control that can be applied according to the severity of the epidemic 

in the different areas (Tan 2000) 

ii. the mathematical and statistical models can provide qualitative insights even when 

data are lacking or not readily available, and this can help prioritize data collection 

(Hyman and Stanley 1988, Tan 2000) 

iii.  the models can be used to provide in-depth understanding of some basic features and 

principles of the epidemic and its pathogenesis, thus aiding in the study of suitable 

treatments and/or vaccine and maybe a cure in the near future (Tan 2000) 

iv. the models can help reveal important parameters and co-factors of the infection and 

also shed light on their consequences 

v. the impacts of risk factors may be assessed, thereby screening for important risk 

variables for the purpose of prevention and control of the infections (Hyman and 

Stanley 1988, Tan 2000) 

vi. mathematical and statistical models based on the transmission of the infections can 

show how early or late infection, behavioural changes and medical advances such as 
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treatments and vaccines will affect the future course of the HIV/AIDS epidemic 

(Hyman and Stanley, 1988) 

vii.  the knowledge of parameters and co-factors can help develop both mathematical and 

statistical models which can give computer simulations to compare different 

treatment outcomes etc.; these computer simulations can save time, lives and 

resources as compared with using other means such as animals and running trials on 

humans 

viii.  models can be used  to estimate unknown data on the basis of the known facts. For 

example, the past distribution of HIV infection can be estimated from the current 

AIDS caseload and the distribution of times from infection to AIDS (see Back-

calculation method in section 3.4). To determine the consistency of the generated 

data a formal mathematical model similar to the one that was designed is required. 

The available data can also be assessed indirectly to determine their internal 

consistency by leaving some data out, generating estimates of the missing data based 

on one or more models, and then comparing the two data sets (lifted directly from 

Hyman and Stanley, 1988). 

 

1.4   HIV MODELING 

In the bid to combat the two deadliest viral infections in the 20th and 21st century, the onus 

have not been only on the medical scientist to find a cure but also partnership with 

mathematical, statistical, computational and engineering scientist have become inevitable. 

Hence the mathematical and computational modeling of HIV/AIDS have become a novel 

approach with great impact in the different areas of study of the epidemic. Among those who 

pioneered mathematical modelling (quantitation) of HIV is David Ho. His research into 

HIV/AIDS in the last 27 years has helped formed the basis for combined antiretroviral 
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treatments and also in understanding the dynamic nature of HIV replication in vivo. Research 

into the dynamics of HIV in vivo has helped in further understanding of the pathogenesis and 

growth of HIV, the replication and progression of the virus, means of determining HIV 

progression by T4 cell count or HIV-1 RNA viral load count, results of single and combined 

antiretroviral treatments, when to commence such treatment and also mathematical and 

computational modeling of these processes. 

 

To ascertain the progression of HIV in an infected individual, the T4 cell count, the HIV-1 

RNA viral and viral decay approach have not only become common but also reliable means 

used to predict the outcome of a patient in terms of duration to regressing to AIDS and also to 

determine when to commence ARV or HAART. Also methods that have permitted missing 

data analysis have become extremely important in HIV modelling because most patients 

don’t know when they are infected and data on some patients are incomplete due to 

inconsistency in attending ART clinics. De Gruttola et al. (1991) modelled the progression of 

HIV infection using the T4 cells as its measure, more likely because of the availability of data 

on the T4 cell counts. They used the parametric linear growth curve model because it permits 

analysis of incomplete data assuming the data are missing at random. Also autoregressive 

models were fitted to short series of the T4 cell counts because this method allowed the 

estimation of annual decline averaged over all individuals. The setback of these methods was 

that the variability in the rates of decline of the T4 cell cannot be estimated and the modeling 

of the entire process from infection to AIDS cannot be done. 

 

Tan and Wu (1998) developed a stochastic model for the interaction between CD4+T cells 

and the human immunodeficiency virus. Stochastic differential equations were obtained for 

the numbers of uninfected T cells, latently infected T cells, actively infected T cells and free 
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HIV through binomial and multinomial distributions. They modelled the generation of new 

uninfected T cells by a pure birth process (Poisson process) and the growth of uninfected 

CD4+T cells by simulating the antigens using a stochastic logistic pure birth process. The 

results of the Monte Carlo simulations showed that the probability distributions of the 

CD4+T cells and free HIV were skewed in the earlier stage of infection and eventually 

converged to normal distributions in later years. 

 

Sridharah and Jayashree (1993) also used the stochastic point process to model the population 

of infected T4 cells. In the model, they made use of phases with special types of time-

dependencies whose durations were independent and exponentially distributed. The first and 

second moments of the infected T4 cells were generated from explicit differential equations 

obtained. 

 

Wu and Ding (1999) gave a model with a sum of exponentials which gave a good fit to the 

observed clinical data of HIV-1 dynamics i.e. HIV-1 RNA copies after starting antiretroviral 

treatments. The other advantage about this model was that it can also be used as a biological 

compartment model for the interaction between HIV and its host cells.  Thus enjoying both 

worlds of biological interpretability and mathematical simplicity after re-parameterization 

and simplification. Finally the use of hierarchical nonlinear mixed-effect model approach for 

parameter estimation and other statistical inferences was illustrated using real life data. 

 

Wu et al. (1999) revised four model-fitting procedures for biphasic viral decay data in clinical 

studies. This was because the estimates obtained when these methods were applied differed 

significantly. The methods were Single method, Perelson steady state (PSS) method, Wu and 

Ding (WD) method and Perelson and Neumann steady state (PNSS) method. Pros and cons 
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of these methods were discussed. For example, the simple method which fitted a bi-

exponential model to the biphasic viral load was good because it included all data from 

baseline onward. The disadvantage of this method was the biased estimates of viral load 

obtained due to effect of the initial ‘shoulder’ that was ignored. Ding and Wu (1999) 

suggested the fitting of the model only after the effect of the ‘shoulder’ is considered. 

 

Ding and Wu (1999) also worked in detail on the four model-fitting procedure given in Wu et 

al. (1999), evaluating the performance of these procedures through extensive use of Monte 

Carlo simulations. Guidelines on how to select appropriate method for data analysis was 

given and real life data was used to backup the guidelines. 

 

Joshi (2002) derived an optimal control of an HIV immunology model by using a system of 

ordinary differential equation model taken from Kirschner and Webb (1998). This system of 

ODE described the interaction of the T4 cells and HIV in the immune system. He used the 

boundedness of solutions of the ODE system for finite time interval to prove the existence of 

an optimal control pair. Thus the optimal control pair obtained gave an optimal treatment 

strategy for the HIV infected patient under two types of drug treatments, namely, treatment 

that aimed at reducing viral population and treatment that aimed at improving the immune 

response. Joshi (2002) solved the optimality system by using an iterative method with a 

Runge-Kutta fourth order scheme. Joshi (2002) noted that the format of the optimal controls 

he obtained agreed with those of Butler et al. (1995),  Kirschner et al. (1997) and Fister et al. 

(1998) where only one control instead of two was used.  

 

Bortz and Nelson (2006) considered six deterministic models and made comparisons with 

respect to their ability to represent HIV infected patients undergoing antiretroviral treatment, 
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(to be precise reverse transcriptase mono-therapy). Bortz and Nelson (2005) created a 

statistical model using the hierarchical mixed-effects approach to characterize factors such as 

inter-individual and intra-individual variability in the patient population. Their aim was to 

derive mathematical model(s) of in vivo HIV infection dynamics. Bortz and Nelson (2005) 

were able to obtain higher viral clearance rate c as was done in earlier work by Louie et al. 

(2003) by using linear parameter fits as opposed to non-linear parameter fits. 

 

Other method that have been used is the Bayesian modeling. Frost (2001) used this method to 

model the viral dynamics and evolution of HIV, Putter et al. (2002) estimated parameters in 

HIV dynamic models and Han et al. (2002) developed the Bayesian analysis method for the 

population dynamic HIV. Also Huang and Wu (2006) examined the Bayesian approach for 

estimation of antiretroviral efficacy. 

 

1.5   THESIS OUTLINE 

In this thesis, we have combated some of the issues of the two most deadly viruses namely 

human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS), 

that have invaded the human race in the last thirty years by concentrating on the stochastic 

modelling of the dynamics of the viruses. Although  availability of efficient vaccines or cure 

for these infections is still like groping in the dark, medical scientists, pharmacologist, 

epidemiologists and even the mathematical and social scientists are eagerly working hand in 

hand to see a dream come true. The collaboration of medical scientists with scientist and 

theorists have in recent times made a big positive influence in better containing the viruses. 

This thesis has six chapters and they are outlined below. 

 

 
 
 



 11 

In the first chapter an overview of the HIV is given and HIV modelling done by some 

scientists are reviewed. The second chapter deals with the pathogenesis of the viruses by 

delving into the genetic variation of the HIV. This is because the pathogenesis of the HIV 

infection can be understood only when the genetic variation in HIV and the receptor-specific 

HIV infection are given their due importance. 

 

In chapter three, incubation period and seroconversion time are determined by using data on 

homosexuals given in Lui et al. (1988). Two stochastic models are used to determine the 

distribution function of the gay-life and the incubation period. Also the back-calculation 

method was used to project AIDS incidence. 

 

Chapter four deals with the formulation of stochastic model of the dynamics of HIV in an 

infected individual. In this chapter, two stochastic models are proposed and analysed for the 

dynamics of the viral load in a HIV infected person and the multiplication process of the 

virons inside an infected T4 cell. Also numerical illustration of these stochastic models is 

given. 

 

In chapter five, the T4 cell count which is considered one of the markers of disease 

progression in HIV infected individual is examined. WHO has recently advocated that 

countries encourage HIV infected individuals to commence antiretroviral treatments once 

their T4 cell count is 350 cells per ml of blood (was formerly 200 cells per ml of blood). This 

is because when the T4 cell count is low, the T4 cells are unable to mount an effective 

immune response against antigens and any such foreign matters in the body (Kirschner 1996) 

and consequently, the individual becomes susceptible to opportunistic infections and 

lymphomas. Thus, the T4 cell count can be considered a marker of disease progression in an 
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infected individual and the loss of T4 cells accounts for a major part of the 

immunosuppressive effect of HIV. As such, a stochastic catastrophe model is developed to 

obtain the mean, variance and covariance of the uninfected, infected and lysed T4 cells. Also 

obtained are the amount of toxin produced in a HIV infected person from the time of 

infection to the present time. Numerical illustration of the correlation structure between 

uninfected and infected T4 cells, and infected and lysed T4 cells is portrayed. 

 

To combat the persistent death of humans before any cure can be obtained, antiretrioviral 

drugs were introduced to suppress the havoc done by these viruses in the human body. 

Treatment with single drug failed due to the fact that HIV evolved rapidly because of its high 

replication rate of an average of 1010 viral particles per day.  Thus drug resistance to single 

therapeutic treatment in HIV infected individuals has promoted the research into combined 

treatments. Hence, in the sixth chapter a stochastic model under combined therapeutic 

treatment by extending the model of HIV pathogenesis under treatment by anti-viral drugs 

given by Perelson et al. (1996) is derived. Mean numbers of free HIV, infectious free HIV 

and non-infectious free HIV are obtained. Variance and co-variance structures of our 

parameters were obtained unlike in previous work of Perelson et al. (1996) and Tan and 

Xiang (1999). Comparison of simulated data for before and after treatment indicates the 

efficacy of our model in combined treatment.  
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2.1   INTRODUCTION 

The human immunodeficiency virus (HIV) is the early stage of the acquired 

immunodeficiency syndrome (AIDS) in which within 24 hours of contact, the virus replicates 

its RNA into the victim’s DNA and as such the protein (gp120) on the virus binds to the 

protein on the CD4+T cell thus affecting the immune response of the victim (Kirschner 1996). 

New virus particles then bud from the host cell after the duplication process. Thus the HIV 

virus replicates, mutate, recombine and bud off the host cell and it is the budding and 

maturity that determines both the duration (of transition from HIV to AIDS) and stage of 

infection either as the human immunodeficiency virus (HIV) or the acquired 

immunodeficiency syndrome (AIDS). This is because the HIV infection could be 

asymptomatic for years and only develops to AIDS when the CD4+T cells fall so low due to 

increase in the viral load of the host cell. Holmes (1998) stated that mutation, recombination 

and natural selection produced a multitude of different genomes which allow the virus to 

continually evade immune response and to infect a variety of cell types, and the potential of 

HIV to evolve at a rate of about 1 million times faster than human nuclear DNA have 

undermined attempts to produce effective vaccines and allowed the development of 

resistance to some antiviral treatments within a matter of months. Thus, medicine, science 

and engineering have continually researched the pathogenesis of the human 

immunodeficiency virus (HIV) infection and mechanisms of genetic variations of HIV. 

 

To understand HIV pathogenesis, the unique nature of the causative microbe was studied and 

compared with lentivirus infections of animals (because it shared features with other 

members of the non-transforming and cytopathic lentivirus family of retroviruses) to raise 

further questions regarding human disease such as (Weiss, 1993): Why do some horses 

permanently recover from equine infectious anemia when the virus evolves immune escape 
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variants as readily as HIV? Can the wasting syndrome and brain disease of sheep infected 

with visna-maedi virus be equated to human AIDS without CD4 depletion? And hypotheses 

such as AIDS being the end-stage disease of HIV, HIV mutating to produce different types of 

HIV, have been postulated to explain the relationship between HIV and AIDS. However, 

research is still done on why AIDS finally develop, if it is the HIV alone that brings about 

AIDS or maybe there are other viruses, why it takes a variable long time for HIV to develop 

to AIDS, and also the cofactors that influence the rate at which AIDS develop and so on.  

 

Recent research by scientists such as Smith (2006), Sodora and Silvestri (2008), Levy (2009) 

showed that new data especially from non-human primate studies have raised doubts about 

the 1990’s hypothesized theory that HIV-1 causes CD4+T cell depletion by direct cytopathic 

effect. Rather it has been shown that the immune activation of the virus causes the cell 

depletion. Thus shedding light on the research to see if HIV alone brings about AIDS or 

maybe there are other viruses. Hence they have strongly advocated a full understanding of 

HIV/AIDS pathogenesis which may lead to novel therapies (partially quoting Smith 2008).  

Also according to Hoffmann et al. (2007), an understanding of the immunopathogenesis of 

HIV-1 infection is a major prerequisite for rationally improving therapeutic strategies, 

developing immuno-therapeutics and prophylatic vaccines. Hence the delving into 

pathogenesis of the human immunodeficiency virus in this chapter. 

 

2.2 HIV PATHOGENESIS 

The pathogenic mechanisms of HIV disease are extremely complex and multifactorial (Fauci 

1993, 2003). And in cases of the acquired immune deficiency syndrome (AIDS), marked 

depletion of CD4+ T cells was recognized as a hallmark of disease early on (Gottlieb et al. 

1981, Maseur et al. 1981, Fauci 2003), even before the classic demonstration in 1984 that the 
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CD4 molecule was the primary receptor for the virus on a subset of T cells and monocytes 

(Dalgleish et al. 1984, Klatzmann et al. 1984, Fauci 2003). Also much evidence has suggested 

that other factors were necessary for HIV fusion and entry, but these factors such as the co-

receptors and chemokines remained elusive for several years (D’Souza and Harden 1996). 

According to Fauci (1996), D’Souza and Harden (1996) in the mid-1990s, a number of 

diverse areas of investigation elucidated the roles of the chemokine receptors CXCR4 and 

CCR5 in the efficient binding and entry of two different strains of HIV-1 called X4 and R5, 

respectively. The discovery that HIV could use different co-receptors also helped to explain 

the occurrence of syncytial (CXCR4-using) and nonsyncytial (CCR5-using) variants of HIV 

(Fauci 1996). The importance of the CCR5 co-receptor in the pathogenesis of HIV infection 

was proven by the finding that cells from individuals homozygous for a deletion of 32 base 

pairs in the CCR5 gene could not be infected in vivo with R5 viruses and that such 

individuals (who comprise about 5% of white populations) were thought to be extremely 

resistant to HIV infection even when repetitively exposed to virus until recent research 

proved otherwise and hence they can be termed as long-time progressors (O’Brien and Moore 

2000, Fauci 2003, Hoffmann et al. 2007, Levy 2009).  

 

The ability to measure plasma viremia precisely led to the classic viral dynamics studies of 

HIV. HIV research by mathematical scientists have tremendously helped in understanding the 

relationship between virus production and T cell dynamics (Ho et al. 1995, Wei et al. 1995, 

Fauci 2003). These studies led to a better insight of the HIV pathogenesis, hence making 

therapeutic treatments better and less toxic. Studies have shown that even in individuals in 

whom plasma viremia is driven by antiretroviral therapy to levels of less than 50 copies of 

RNA per ml ('undetectable') for up to 3 years, the viral reservoir persists and the virus 

rebounds from this reservoir within weeks of discontinuing therapy (Blackson et al. 2002, 
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Fauci 2003). Hence one may paradoxically say that studies of the immune response to HIV 

have been both productive and frustrating. Although individuals in whom HIV infection has 

been established cannot eliminate the virus from their bodies, continual research into better 

prophylaxic vaccines through the better understanding of the pathogenesis of these viruses 

still continues (Chun and Fauci 1999, Blackson et al. 2002, Fauci 2003). (Excerpts from 

Fauci 1993, 2003) 

 

2.2.1 HIV Structure 

HIV has a dense cylindrical core. It is around 120nm in diameter (120 billionths of a meter; 

around 60 times smaller than a red blood cell) and 10kb in length and roughly spherical. It is 

composed of two copies of single-stranded RNA enclosed by a conical capsid comprising the 

viral protein p24 (figure 2.1). This conical capsid can be described in layman’s language as 

being bullet shaped. The RNA component is 9749 nucleotides long and it is surrounded by a 

plasma membrane of host-cell origin. The RNA is part of a protein-nucleic acid complex 

which is composed of the nucleo-protein p7 and the reverse transcriptase (RT) p66. The 

single-strand RNA is tightly bound to the nucleocapsid proteins p7 and enzymes such as 

reverse transcriptase (RT) i.e. p66, protease (PR) i.e. p11 and integrase (IT) i.e. p32 that are 

indispensable for the replication, proliferation and development of the viron. The 

nucleocapsid (p7 and p6) associates with the genomic RNA (one molecule per hexamer) and 

protects the RNA from digestion by nucleases. The ends of each strand of HIV RNA has an 

RNA sequence called the long terminal repeat (LRT). The LRT has regions which act as 

switches to control production of new viruses. 

 

Surrounding this capsid is the matrix layer which is made up of the protein p17 and this 

ensures the integrity of the viron particle. Also enclosed within the viron particle are genes 
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such as Vpr, Nef, Vif, p7 and viral protease. These are genes that code the proteins used in 

controling the ability of the virus to infect a cell and produce new copies of virus and/or 

cause disease. The outer viral envelope which is formed when the capsid buds from the host 

cell, taking some of the host-cell membrane with it is a coat of lipoprotein membrane fat. 

Projecting from this viral envelop/membrane are 72 little spikes formed from the 

glycoproteins gp120 and gp 41 (HIV Wikipedia 2008, Hoffmann et al. 2007 and Smith 

2008). 

 

 

 

   

 

Figure 2.1 HIV genome showing the proteins involved in RNA coding and replication 

(Excerpt from HIV Wikipedia 2008) 
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2.2.2 Genes and Enzymes in HIV Entry and Replication 

In HIV-1 there are 9 primary genes that encode within the RNA genome, namely: gag, env, 

pol, tat, rev, nef, vpr, vpu and vif. These genes and certain enzymes play different crucial 

roles in the entry and replication of the virus in the host cell. According to Fauci (2003), the 

identification of their relationship to the complex mechanism of HIV replication have been 

crucial in understanding HIV replication and its relationship to the pathogenic mechanism of 

the disease. Recent developments in controlling the destroying effects of the virus in the 

human body via development of effective antiretroviral drugs have also concentrated on some 

of these genes and enzymes (see section 2.3). These genes and enzymes and their functions 

are listed below. 

i. Gag:  

This encodes for the nucleocapsid and the glycoproteins gp 120 and gp 41 of the viral 

membrane. 

 

ii.  Env: 

 This codes for the glycoprotein gp 160 that is then broken down by a viral enzyme to form 

gp 120 and gp 41. 

 

iii.  Pol:  

This codes for the reverse transcriptase (RT) and other enzymes. 

 

iv. Tat: 

 This is a regulatory protein that accumulates within the nucleus and binds to the TAR found 

in the LRT of the viral RNA. It is a potent transcriptional activator of the LRT and its 

importance is in the in vivo culture system viral replication. 
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v. Cyclin TI: 

 It is a necessary cellular cofactor for tat. 

 

vi. Rev: 

 This gene regulates splicing. It is also nuclear export factor which is important for switching 

from the early expression of regulatory protein to the structural proteins that are synthesized 

later. Both tat and rev stimulate the transcription of proviral HIV-1 DNA into RNA, promote 

RNA elongation, enhance the transportation of HIV RNA from the nucleus to the cytoplasm.  

 

vii.  Nef:  

This codes for virus efficient replication. It may induce down-regulation of CD4 and HLA 

class I molecules from the surface of the infected cells. Thus the virus avoid recognition by 

CD4+T cells and hence evades any attack mediated by cytotoxic CD8+T cells. It is also 

essential for the high rate of virus production and progression of disease.  It sometimes 

interfere with T cell activation by binding to various proteins that are involved in intracellular 

signal transduction pathways, thus helping in the disease progression. 

 

viii.  Vpr: 

 It is used in viral replication in non-dividing cells. it also stimulates the HIV LTR, promotes 

cellular and viral responses and its important for the transport of the viral pre-integration 

complex to the nucleus. 

 

ix. Vpu: 

 This encoded protein influences the formation of new virons by allowing the recycling of gp 

160. It also influences the release of new virus particles from infected cells by getting 
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involved in the degradation of CD4-gp 160 complexes within the endoplasmic reticulum. 

Thus it is important for the virus budding process. 

 

x. Vif:  

It supports viral replication. 

 

xi. APOBEC3G:  

Is an enzyme of the intracellular enzymes family. Its function is to deaminate cytosine to 

uracil in mRNA or DNA. APOBEC3G is expressed in lymphocytes and macrophages which 

are the primary target cells of HIV infection. In the presence of vif gene, it is complexed, 

degraded and not incorporated in newly formed virons. 

 

xii.  HLA class I: 

 

xiii.  HLA class II: 

 

xiv. Others:  

These are cellular binding proteins which have been found in the last 10 years (Levy 2009) to 

be associated with the HIV infection. They include  C type lectings – DC-SIGN, Leukocyte 

function-associated antigens (LFA), Intercellular dhension molecules (ICAMs), α4β7 

integrin which acts as an HIV binding site particularly on CD4+ memory T cells. 

 

 

2.2.3  HIV-1 Strains 
HIV-1 strains are classified by the cells they infect. Some of the HIV-1 strains are listed 

below. 
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i. Macrophage (M- tropic) strains  

They are also known as the Non-syncitia-inducing strains (NSI). They gain entry through the 

β-chemokine receptor CCR5. Replication of this strain occur in the macrophages and the 

CD4+T cells. 

ii. T-tropic isolates strains 

They are also known as the syncitia-inducing strains (SI). They gain entry through the α-

chemokine receptor and CXCR5. Replication of this strain occur mainly in the CD4+T cells  

and some in the macrophages. 

iii Dual-tropic strains 

They are also known as the transitional strains of the HIV-1. They use both the CCR5 and 

CXCR5 for co-receptors. Replication of this strain occur mainly in the CD4+T cells  and 

some in the macrophages. 

 

2.2.4  HIV Co-receptors 
 
According to Hoffmann et al. (2007), experiments using non-human cell lines transfected 

with human CD4 showed that expression of human CD4 on the cell surface of a non-human 

cell line was not sufficient to allow entry of HIV. Hence the existence of human co-receptors 

necessary for viral entry was postulated. Co-receptors are chemokines of the cytokine super-

family. The chemokines are group of small proteins that mediate leukocyte traffic through 

specific receptors. They are involved in several human reproductive events such as sperm 

chemotaxis (i.e. carrying around of sperms), ovulation, implantation of embryo during 

conception, menstruation e.t.c. Also HIV-1 uses the chemokines as entry into the individual 

cell(s). There two types of chemokines namely the α-chemokines (these use the α- receptors) 

and the β-chemokines (these use the β- receptors). In layman’s language, co-receptors are 
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elements that receive the virus or help the virus to gain entry into the targeted cells. Table 2.1 

shows the strains of HIV-1 and their chemokines and co-receptors. 

 

Table 2.1 HIV-1 Strains and their Chemokines and Co-receptors. 

 

Strain of HIV-1 

Type of chemokine 

receptor 

Type of Co-receptor for 

entry 

 

Cells tropism 

Macrophage β CCR5 Macrophages, CD4+T cells 

T-tropic α CXCR4 CD4+T cells, Macrophages 

Dual-tropic  CCR5, CXCR4  

Others  CCR3, CCR2, CCR8, 

CCR9, STRL33 (Bonzo), 

Gpr 15 (Bob), Gpr 1 

 

 

 

2.2.5 HIV-1 Subgroup, Recombination and Epidemiological Structure 

Although once an individual becomes infected, eradication of the virus still remains 

impossible despite all the therapeutic advantages achieved during the last decade, knowledge 

of the epidemiological prevalence can still help to contain the disease to a certain degree 

(Hoffmann et al. 2007). There are three subtypes of HIV-1 namely: M group or the “major” 

group, O group or the “outlier” group and N group or the “new” group. Each group is divided 

into subtypes and their recombined subtype known as the circulating recombinant forms 

(CRFs). Given below are the HIV-1 subgroups and their epidemiological prevalence. 
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Figure 2.2 HIV-1 Group and Subtypes  
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Table 2.2  HIV-1 Subtypes and Regional Prevalence 

HIV-1 Subtype Region 

A West Africa, Central Africa, Russia 

Crf A/G West Africa, East Africa, Central Europe 

Crf A/E South-East Asia but originated from Central Africa 

B Europe, America, Japan, Australia 

C Southern Africa, East Africa, India, Nepal 

D East Africa, Central Africa 

F Central Africa, South America, Eastern Europe 

G West Africa, East Africa, Central Europe 

H Central Africa 

J Central Africa 

K Democratic Republic of Congo (DRC), Cameroon 

 

 

2.3 RECENT DEVELOPMENTS AND PROBLEMS 
 
In recent times scientists have come up with a new way of combating both the human 

immunodeficiency syndrome (HIV) and acquired immunodeficiency syndrome (AIDS) 

despite the absence of a cure for them. This recent discovery is still in the pipeline, but it 

involves the attack of reservoirs of dormant HIV. There are two reservoirs namely 

macrophages and memory T cells. The macrophages which are antigen scavengers usually 

engulf antigens in the body and afterwards the macrophages die while the memory T cells 

retain the whole process of attacking and building forces against antigens in the body so that 

a reoccurrence of such attack does not come into play (Kirschner 1996).  
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In the presence of HIV the macrophages still live long past their survival time and hence 

become a hideout for the virus. The inability of macrophages to die after being infected by 

the virus is caused by enzyme called Akt which is a protein produced by a cell-survival 

pathway of the virus. To combat the infected macrophages which is one of the habouring 

stations of the virus, drugs such as miltefosine and perifosine were used and these two rapidly 

killed the infected macrophages. Although perifosine is currently being studied as a possible 

cancer drug, miltefosine on the other hand is known to be safe in leishmaniasis patients, 

hence further research on the possible effects of using these two drugs to destroy infected 

macrophages.  

 

Although recombinant viruses forming between HIV clades and groups have occurred due to 

co-infection and super-infection of cells by two or more virus strains/types usually prior to 

the establishment of a chronic infection. Recombination between HIV-1 and HIV-2 is 

impossible because of the differences in the location of the RNA dimmer hairpin sites (Dirac 

et al. 2002, Levy 2009). Hence recombinant viruses have posed a big problem in controlling 

the infection by administering antiretroviral drugs for too long because most times resistance 

to the drugs and poor immune response usually occur (Fultz 2004, Levy 2009). 

 

Eradication of the virus in an infected human body has become impossible because the virus 

infects not only cells in the body, but also cells in the cellular and immune system. Also the 

virus is evident not only in the blood, but also in cells and different compartments of the body 

(Levy 2009). 

 

With the emergence of new antiviral therapies especially the combined treatment, great hope 

to those at risk of advancing to AIDS have been brought. However long-term therapy 
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treatments may not be feasible because of toxic drug side effects such as liver damage and 

drug resistance due to fast mutation of the virus and/or recombination of different types of the 

virus (Khalili and Armaou 2008, Levy 2009, Hoffmann et al. 2007). 

 

Other avenues explored in eradicating the virus or slowing down cell activation include: 

Using antibodies that attach to virus-infected cells via gp 120 or gp 41 to directly kill infected 

cells through antibody-directed cellular cytotocity  (ADCC). Targeting intracellular protein 

needed for HIV replication by using anti-HIV therapy; for example Vpu was shown to reduce 

the activities of the human cellular membrane protein called tetherin with the help of a 

calcium-modulating cyclophilin ligand, thus blocking the budding of the virus from the cell 

surface. Also deficiency of Vif has shown in studies in Australia to help in delaying onset of 

AIDS whence such individuals have been able to stay as long-term AIDS progressors. 

 

While these researches are in pipeline, work still continue in the detailed understanding of 

these two deadly viruses that have sacrilegiously and despicably invaded and destroyed the 

peace of the human race in the last thirty years.  
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CHAPTER THREE 

A STOCHASTIC POINT PROCESS MODEL OF THE INCUBATION PERIOD OF A 

HIV INFECTED INDIVIDUAL 
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3.1 INTRODUCTION 

Acquired Immune Deficiency Syndrome (AIDS) is a sure fatal but containable disease caused 

by the retrovirus HIV. It is found that there is a risk of contracting HIV infection from 

exposure to infected persons. The exposure can be through sharing of intravenous 

hypodermic needle with infected persons, transfusion of HIV infected blood, mother-to-child 

transmission at birth or performing a sexual act with HIV infected persons. As sex plays a 

major important role in human life, the virus has the vulnerability of being quickly 

transmitted from one infected individual to either an infected or non-infected individual by 

the pattern of their intimate behaviour. Since the behaviour is highly stochastic, the time for a 

susceptible to become an infective is unpredictable. Whence, the dynamics of the spread of 

HIV presents several perplexing difficulties in its comprehension even in the case of a 

specific community such as a population of transfusion related cases of AIDS (Medley et al. 

1988). The foremost difficulty that is baffling the model builders is the incubation period of 

HIV. The incubation period (IT ) of HIV in an infected individual is the period from the time 

of infection to the time of the first diagnosis of an opportunistic disease associated with 

AIDS. And according to Medley et al. (1988), one of the striking features of acquired 

immunodeficiency syndrome (AIDS) is that the incubation period appears to be both long 

and very variable. Usually, the time of infection is not known in several cases. However, the 

seroconversion time (ST) (i.e., the time at which an infected individual becomes HIV 

positive) may be known in many cases. The latent period, namely, the interval between the 

time of infection and the time of seroconversion is small (in weeks) compared to the 

incubation period (in years) of HIV. Hence, the time of infection is taken to be the time of 

seroconversion.  
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Studies on HIV incubation period have been carried out. For instance, Medley et al. (1988) in 

their study observed that the data on the time of infection was incomplete and estimated mean 

incubation period to be  4.5 years to 15 years.  

 

Chevret et al. 1992 developed a new approach for estimating the incubation period of 

acquired immunodeficiency syndrome (AIDS) based on age distributions. They expressed the 

Incubation period as the difference between age at time of diagnosis and age at time of 

contamination. By assuming independence between age at time of infection and incubation 

period, the age distribution of newly diagnosed AIDS cases was given as the convolution 

product between the distributions of the age of freshly infected patients and of the incubation 

times. Hence, AIDS incubation time could therefore be estimated from the age distribution of 

newly HIV infected subjects and newly diagnosed AIDS cases.  

 

Lee (1999) estimated the maturity of the HIV infection and the incubation period of AIDS by 

using data from 363 seroprevalent (i.e. those who were AIDS free at entry) Korean AIDS 

patients (including 59 seroincident cases). He proposed two methods for imputing the 

unknown times since seroconversion which were, firstly fitting Weibull regression with the 

marker of matured CD4+T cell count for seroincident cohorts, and secondly, using a random 

effects model with CD4+T cell count as a response for repeated measures from which the 

times since seroconversion can inversely be extracted.  
 

Rao and Kakehashi (2005) estimated HIV incidence density from prevalence data and also 

the incubation time distribution by using the deconvolution technique and maximum 

likelihood method to estimate parameters. The difference was that their data was not based on 

homosexual men/women. 
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Several mathematical and statistical analyses have been proposed in the recent past to 

assimilate the data and provide information about the dynamics of the epidemic (Anderson 

and May 1991). In the statistical analyses of the data, the gamma, Gompertz, Lognormal, 

Normal and Weibull distributrions were used to model the distribution function F(t) of the 

incubation period (Brookmeyer and Gail 1994, Anbupalam et al. 2002). The advantages and 

disadvantages of using each of these models are outlined in Brookmeyer and Gail (1994). In 

particular, the Weibull model is used in situations where it is hypothesized that the hazard 

function λ(t) increases indefinitely and is proportional to a power of time from infection 

(Brookmeyer and Gail 1994). The hazard function quantifies how the risk of AIDS evolves 

with time from infection and is given by 

   
S(t)

f(t)
  )( =tλ  

where (t)F  )( ′=tf and S(t) = 1 – F(t) are the probability density function (p.d.f) and the 

survival function (s.f) of the incubation period respectively. However, as Brookmeyer and 

Gail (1994) have pointed out, the hazard function λ(t) should be consistent with 

epidemiological data and with theoretical considerations of  the pathogenesis of HIV 

infection. Not much attention has been paid to the formulation of the distribution functions 

(hence the hazard functions) of the latent and the incubation periods by considering the 

stochastic behavioural aspects of the members of the population under study. 

 

In this chapter, two stochastic models are presented namely: 

i. Model I which is devoted to the determination of the distribution function of the 

gay-life (i.e. the time period from the entry of a susceptible in the specified 

community till he/she tested HIV positive) of a susceptible. 
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ii.  Model II which determines the distribution function for the incubation period (i.e., 

the period from the time of seroconversion till the onset of overt symptom of 

AIDS). 

 

Essentially, a two-parameter family distribution function for the gay-life and a one-parameter 

family of distribution for the incubation period are obtained. It is observed that the 

distribution function of the incubation period serves as a good fit for the data provided by Lui 

et al. (1988). Further, the distribution function is used to project AIDS incidence by back-

calculation (Brookmeyer and Gail 1994). 

 

The lay-out of this chapter is as follows: In section 3.2, a stochastic model for the 

determination of the p.d.f q(t) of the time interval ST between the time of entry of an 

individual into a population of homosexuals and the time of his/her seroconversion  

(becoming HIV positive) is proposed. In section 3.2.1 a two-parameter family of the 

probability distribution function of ST is obtained. The moments of ST are obtained in 

section 3.2.3 and the problem of estimation of the parameters of q(t) is considered in section 

3.2.4. In section 3.3, a stochastic model for the determination of the probability function pn of 

the incubation period (IT) is proposed. A one-parameter family of the probability function pn 

of IT is obtained in section 3.3.1 while the moments of IT are obtained in section 3.3.2. The 

problem of estimation of the parameter of pn is considered in section 3.3.3 and illustrated by a 

numerical example in section 3.3.4. The method of back-calculation is used in section 3.4 to 

obtain AIDS projection for a sample data. 
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3.2 A STOCHASTIC MODEL OF THE PERIOD OF THE GAY-LIFE 

Consider a population of homosexuals consisting of susceptibles and infectives. Assume that 

at time t = 0, a new member who is tested HIV negative enters into the population and makes 

sexual contacts with members of the population. Assume further that his/her contacts occur at 

random time points which follow a Poisson process with parameter λ, λ > 0. Let the 

probability that the individual who has already had n contacts up to time t when he/she tested 

HIV positive for the first time in the interval (t, t+∆) be given by 

   nµ∆ + ο(∆), µ > 0. 

Let the gay life period of the individual be represented by the random variable ST. in the next 

section, we obtain the probability density function (p.d.f) of ST. 

 

3.2.1 The Probability Distribution Function of the Gay-life 

We define the p.d.f of ST by 

   
∆

∆+<<
→∆

= }  t  ST  Pr{

0

lim
  )(

t
tq  

Then q(t)∆ represents the probability that the individual tests HIV positive for the first time in 

the interval (t, t+∆). At least one contact is needed to get infected with HIV, and also using 

probabilistic rules, we obtain 
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Taking Laplace transform on both sides of 3.2.1.1 we get 
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Splitting into partial fractions, equation 3.2.1.1 yields 
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Inverting 3.2.1.3, we obtain explicitly the p.d.f of ST given by 

  
µ

λ
µ

λµλ )e - (1
)ee - (1e  )(

 t
 t- t-=tq      (3.2.1.4) 

The frequency curve for ST for various values of λ and µ can be obtained by using  
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The distribution function Q(t) is given by 
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If λ = µ = λ, then 

  
 t-e - 1 t- ee - 1  )(

λλ=tQ      

In this case, the hazard function λ(t) is given by 

  )e - (1  )(  t-λλλ =t  

It can be observed that the hazard rate is increasing monotonically, which agrees with  

Brookmeyer and Gail (1994). In the next section, the moments of ST are obtained using 

equation 3.2.1.3. 

 

3.2.2 The Moments of ST 

The k-th moment of ST is given by 
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Consequently, from 3.2.1.3, we obtain 
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For the particular case λ = µ = λ, the mean and variance of ST obtained from equation 3.2.2.1 

are given by 

    
λ
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The parameters of q(t) are obtained in the next section by using the method of maximum 

likelihood. 

 

3.2.3 Estimation of the Parameters of q(t) 

The likelihood function L(λ,µ) for a sample of size n is given by 
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The logarithm of L is given by 
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When logeL reaches its maximum value, the values of λ and µ satisfy the following 

simultaneous equations: 

   0  e - t - )  (
n

1k

 t-
n

1
i

k =+ ∑∑
==

µλλµµλ
i

n     (3.2.3.2) 

   0  e   n  - et  
e - 1

n

1k

 t-
n

1

 t-
k

n

1j
 t-

 t

2 kk

j

j

=++ ∑∑∑
===

−
µµ

µ

µ

λλλµµ
k

j et
   (3.2.3.3) 

From equation 3.2.3.2, we obtain 

   
n - e   t

n
  

n

1k

 t-
n

1
j

k∑∑
==

+
=

µµ

µλ

j

     (3.2.3.4) 

Substituting 3.2.3.4 into 3.2.3.3, we obtain the following transcendental equations for µ: 
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Equation 3.2.3.5 can be solved using Newton-Raphson algorithm (Sastry 1994). Accordingly, 

we put 
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Then if µ(0) is an initial approximate value of µ, then the (l + 1)th iterate of µ is given by the 

equation 
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The iterative scheme given by equation 3.2.3.7 is the Newton-Raphson algorithm. 

 

 

3.3 A STOCHASTIC MODEL OF THE HIV INCUBATION PERIOD 

Assume that an individual has tested HIV positive for the first time at time t = 0. Let the 

conditional probability that he/she shows the first identifiable symptoms of AIDS during the 

n-th year given that he/she has not shown any symptoms of AIDS in the previous years be 

given by 

   0   ..., 2, 1, n  ,e - 1 -n >= µµ   

Let IT be the random variable representing the incubation period. In the next section, a one-

parameter family of distribution functions of IT is obtained. 

 

3.3.1 The Probability Distribution of the Incubation Period 

Let the probability function of IT be defined by 

   pn  = Pr{IT = n} 
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Then pn represents the probability that the individual shows the first symptom of AIDS in the 

n-th year. By using probabilistic rules, we obtain 
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Simplifying equation 3.3.1.1 yields 
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The mode l of the distribution is given by 
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The median θ of the distribution is given by 
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From equation 3.3.1.4, we have  
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Solving equation 3.3.1.5, the median is given by 
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3.3.2 The Moments of Incubation Period 

The mean of IT is given by 
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The second moment of IT is given by 
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3.3.3 Estimation of the Parameter of pn 

Equation 3.3.1.2 represents a one-parameter family of probability distributions and for 

estimation of the parameter, either the method of moments or the method of maximum 

likelihood can be used. 

 

3.3.3.1 The Method of Moments 

Let t1, t2, …, tm be a random sample of size n drawn from a population of incubation times of 

HIV infected individuals. Then the sample mean is given by 
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Replacing E[T] by t in 3.3.1.7, we have 
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As the incubation time of an HIV-infected individual can never be greater than 100 years, 

equation 3.3.3.1.1 can be truncated in the following manner: 
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An approximate value µ of µ can be obtained from equation 3.3.3.1.1 by using the Newton-

Raphson algorithm. 
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3.3.3.2 The Method of Maximum Likelihood 

The likelihood function L(µ) for a sample {n1, n2, …, nm} of size m is given by 
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When loge L(µ) reaches its maximum value, the value of µ satisfies the following equation: 
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By applying the Newton-Raphson algorithm to equation 3.3.3.2.2, an approximate value µ  

for µ can be obtained. 

 

 

3.3.3.3 The Method of Median 

The value of µ can be estimated from equation 3.3.1.5. for a sample of incubation times, we 

obtain the sample median θ* and then replacing θ in equation 3.3.1.5 by θ*, we have the 

following equation for a crude estimation µ* of µ: 
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A numerical example to compare the three methods is provided in the next section. 
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3.3.4 A Numerical Example 

The data of 84 homosexuals and bisexual men analysed in Lui et al. (1988) is used to obtain 

the incubation periods of twenty one individuals who developed AIDS prior to the year 1988 

(Table 3.1). Estimates for the value of µ by the three methods are obtained and corresponding 

expected values and standard deviations are determined. The estimates are then used to test 

the goodness of fit of the distribution obtained. 

 

Table 3.1 HIV Incidence data of 84 homosexuals 

                 

Year of diagnosis 

Year of 

HIV 

Infection 1979 1980 1981 1982 1983 1984 1985 1986 Censored Total 

1978 0 0 0 1 0 1 1 0 3 6 

1979  0 0 0 0 0 0 1 7 8 

1980   0 0 0 1 1 1 9 12 

1981    0 2 2 1 5 19 29 

1982     1 0 3 0 19 23 

1983      0 0 0 2 2 

1984       0 0 4 4 

 

 

From this table, the following incubation times (in years) of 21 persons were obtained as: 

 4, 6, 7, 7,4, 5, 6, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 1, 3, 3, 3. 

The sample mean is 4.19 years and the sample median is 4 years. By using Newton-Raphson 

algorithm in equation 3.3.3.1.2, with table 3.2, we have the optimal value 0.09  ˆ =µ  so that the 

expected value of IT is 4.19 years with a standard deviation of 2.15 years. On the other hand, 
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for the same data of 21 persons, by adopting Newton-Raphson algorithm in equation 

3.3.3.2.2, we get 1.01  ~ =µ  so that the expected value of IT is 1.41 years with a standard 

deviation of 0.59 year. Also, using equation 3.3.3.3.1, we get µ* = 0.07 so that the expected 

value of IT is 4.80 years with a standard deviation of 2.48 years. The three values of the 

parameter µ are listed in table 3.2. 

 

Table 3.2 Values of the Parameters of µ 

Method µ Mean Standard Deviation 

Moments 0.09  ˆ =µ  4.19 2.15 

Maximum Likelihood 1.01  ~ =µ  1.41 0.59 

Median µ* = 0.07 4.80 2.48 

 

Further, by applying χ2 test, it was observed that the value of µ obtained by the method of 

moments fits closely to the observed data. Hence in what follows, we assume µ = 0.09 and 

proceed to project AIDS incidence by the Back-Calculation Method with a sample data 

(Bacchetti 1990) 

 

3.4 THE BACK-CALCULATION AND THE INFECTION RATE 

One of the methods used in estimating and projecting the infection rate from AIDS incidence 

data is the back-calculation method (Brookmeyer and Gail 1994). It is an important method 

of constructing rates of HIV infection and estimating current prevalence of HIV infection and 

future incidence of AIDS (Bacchetti et al. 1993). This method has been used by many 

mathematical scientists to obtain and predict the AIDS incidence of different populations. 

Amongst the work done are those of Verdecchia and Mariotto (1995) who modelled past HIV 

infections in Italy considering the interaction between age and calendar time. Anbupalam et 
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al. (2002) also used the Back calculation method to project future AIDS cases in Tamil Nadu 

by assuming that the incubation distribution was Weibul and Log-logistic. Ong and Soo 

(2006) estimated the HIV infection rates and projection in Malaysia while Lopman and 

Gregson (2008) used the Back-calculation method to reconstruct the historical trends in HIV 

incidence in Harare, Zimbabwe by using mortality data. They also attempted to determine the 

amount of peakness of HIV incidence and when the peakness occurred in Harare, Zimbabwe. 

 

The method in continuous time is based on the convolution equation 

   ∫=
t

0
s)ds -g(s)F(t   )(tA      (3.4.1) 

where  A(t) represents the expected cumulative number of AIDS cases diagnosed by calendar 

time t, g(s) is the infection-rate at calendar time s and F(t) is the distribution of the incubation 

period. Equation 3.4.1 is a Volterra integral equation for g(s) and has been obtained by noting 

that an individual can be diagnosed to have AIDS before calendar time t, provided he/she has 

been infected at some time s < t and has an incubation period less than t-s. For a given AIDS 

incidence data, A(t) can be fitted and a model used for F(t) in 3.4.1 so that the rate g(s) can be 

computed by de-convolving equation 3.4.1. Taking Laplace transform on both sides of 3.4.1, 

we have 

   
u

(u)*(u)f*g
  )(* =uA  

so that 

   
(u)*f

(u)*uA
  )(* =ug       (3.4.2) 

By inverting 3.4.2, we obtain the infection rate g(s). 

 

On the other hand, the back-calculation in discrete time is based on the equation  
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   ∑
=

+=
j

1i
1  i - ig  )( jj pYE       (3.4.3) 

where Yj is the number of AIDS cases diagnosed in the j-th year [j-1,j], gj is the number 

infected in the beginning of the j-th year and pj is the probability that a person who is infected 

at the beginning of the 1st year is diagnosed with AIDS in the j-th year. If An denotes the 

expected cumulative number of AIDS cases diagnosed up to the end of the n-th year, then 

using equation 3.4.3, we have 

   1  i - 

n

1j

j

1i
i

1
j g  )E(Y  +

= ==
∑∑∑ == j

n

j
n pA     (3.4.4) 

Equation 3.4.4 is analogous to equation 3.4.1. 

We proceed to illustrate the back-calculation in discrete time with the data used in Bacchetti 

(1990) where the monthly infection rate and monthly AIDS incidence among gay men in San 

Fransisco in the cohort born from October 1929 through September 1959 were estimated. 

Taking t = 0 to correspond to January 1978 and the time unit as year, the data is given in table 

3.3 below. 

 

Table 3.3 Data on AIDS incidence among gay men in San Fransisco 
 

j 1 2 3 4 5 6 7 8 9 10 11 

Y j 0 0 1 26 93 278 560 840 1264 1464 1455 

 
 

Table 3.4 Probability distribution of the Incubation Time 

n 1 2 3 4 5 6 7 8 9 10 

pn 0.09 0.15 0.18 0.18 0.15 0.11 0.07 0.04 0.02 0.01 
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For µ = 0.09, the probability distribution of the incubation time is given in table 3.4. 

Following Brookmeyer and Gail (1994), we proceed to obtain the discrete time infection 

curve. We assume for simplicity that infections occurring in a calendar year are accounted at 

a single time point, for example, January 1 of the year and  

   ... 2, 1, n  ,  g(2n)  1) - 2( n === βng     (3.4.5) 

Equation 3.4.5 provides a simple smoothness assumption on the annual infection rate. 

Consequently, equation 3.4.3 leads to the following matrix equation: 
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   (3.4.6) 

Using the Poisson Regression Analysis (PRA) (Koch et al. 1986, McCillagh and Nelder 

1989), the values of βj for j = 1, 2, …, 6 are estimated. The method is based on the 

assumption that the random variable Yj has a Poisson distribution. Setting µj = E(Yj), the 

likelihood function corresponding to the sample {n1, n2, …, n11} of { Y 1, Y2, …, Y11} is 

given by 

  ∏
=

=
11

1i

i
1121 !

e  ),... ,( i

i

N

n

iµµµµϕ µ       (3.4.7) 

But from equation 3.4.6, we have 
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and hence on substitution of these equations in 3.4.7, φ becomes a function of β1, β2, …, β6. 

Differentiating loge φ with respect to βj and equating the results to 0, the following system of 

equations is obtained: 
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    (3.4.8) 

Equations 3.4.8 do not yield an explicit solution and so an iterative method is used to obtain 

an approximate solution for (β1, β2, …, β6) as given below: 

 5172.  
6

ˆ 3416,  
5

ˆ 2583,  
4

ˆ 1041,  
3

ˆ 33,  
2

ˆ 6,  
1
ˆ ====== ββββββ  

The above values can be used to forecast AIDS incidence on short term. For example, the 

predicted AIDS incidence in the 12th year is obtained as 6523 by using the following 

extended equation 
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3.5 CONCLUSION 

In this chapter a two-parameter family distribution function for the gay-life and a one-

parameter family of distribution for the incubation period have been modelled. For the model, 

it was observed that the distribution function of the incubation period using the method of 

moments serves as a good fit for the data provided by Lui et al. (1988). The only setback of 

the Back-calculation method in projecting AIDS incidence is the inability to project for a 

very long time. 
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