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Chapter 4

Nonparametric Shewhart-type control charts

with runs-type signaling rules: Case K and Case
U

4.0 Chapter overview

Introduction

The commonly used control charts in the statistical process control (SPC) environment with datz
that can be measured on a continuous numerical scale are generally designed and used with a spec
parametric distribution, such as the normal distribution, in mind. It is well-known that if the underlying
process is not as assumed, the performance of the parametric charts can be significantly degraded.
this context, one key problem is the lack of in-control robustness of some of the well-known
parametric charts; this, for example, implies that there can be too many false alarms than what |
typically expected and obviously this could mean considerable loss of time and resources (see e.
Chakraborti et al., (2004)). Thus it is desirable, from a practical point of view, to develop and apply a
set of control charts that are not designed under the assumption of normality (or any other parametr
distribution). Such charts can expected to be more flexible in that they require no or little assumptior

regarding the underlying process distribution and would be useful in some applications.

To this end, nonparametric control charts are helpful. Nonparametric control charts have receive
considerable attention over the last few years. See, for example, Bakir (2004), Albers and Kallenber
(2004), Chakraborti et al. (2004) and Albers et al. (2006), where various nonparametric alternatives t
the classical Shewhart-type charts are proposed, by adapting (for example) the correspondin
nonparametric test for the process parameter, and have been shown to outperform the Shewhart

chart (and some other well-known charts) in terms of in-control robustness and efficiency, particularly
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for heavy-tailed distributions. A thorough review of the literature on nonparametric charts can be
found in Chakraborti et al. (2001, 2007).

The main advantage of the nonparametric charts is that they have known in-control properties the
remain unchanged for all continuous distributions. Thus, for example, while the false alarm rate
(FAR) of a Shewhart or Cumulative Sum (CUSUM) or Exponentially Weighted Moving Average
(EWMA) chart for the mean will fluctuate depending on the underlying distributionF#i® of a
nonparametric chart can be calculated exactly and will remain the same (for in-control conditions) nc

matter what the distribution; this is a very useful feature for the practitioner.

A formal definition of a nonparametric or distribution-free control chart is given in terms of its run-
length distribution. The number of samples that needs to be collected before the first out-of-contro
signal is given by a chart is a random variable called the run-length; the probability distribution of the
run-length is referred to as the run-length distribution. If the in-control run-length distribution is the
same for every continuous probability distribution the chart is called distribution-free or nonparametric
(see e.g. Chakraborti et al., (2004)).

Note that, the term nonparametric is not intended to imply that there are no parameters involvec
quite to the contrary. While the term distribution-free seems to be a better description of what one
expects these charts to accomplish, nonparametric is perhaps the term more often used. In this chap
both terms (distribution-free and nonparametric) are used to emphasize the fact that they mean tt

same.

Motivation

To construct a nonparametric control chart for the specified (or known or target) median of a
distribution that is continuous and symmetric Bakir (2004) considered a Shewhart-type chart based @
the Wilcoxon signed-rank (SR) test statistic. This chart, referred to dsdh& SR chart, signals
when a single charting statistic falls outside the control limits, was shown to compete well with the
Shewhart X chart in the case of the normal distribution and it performed better in the case of a
heavier-tailed (than the normal) distribution such as the double exponential and the Cauchy. Howeve
the false alarm rates for tleof-1 SR chart were just too high (i.e. the in-control average run-lengths
were too short) for an application in practice, unless the subgroum sizas in the neighborhood of

20, which is not typical in SPC.
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Having realized the potential and yet the practical shortcoming dfdifd SR chart, Chakraborti
and Eryilmaz (2007) extended the idea of Bakir (2004) and considered an alternative class o
nonparametric charts using the same SR statistic as charting statistic but incorporating some signali
rules based on runs; these charts are called runs-rule enhanced signed-rank charts. The new SR ch
were shown to be more appealing from a practitioner’s point of view in that they have much larger

attainable in-control average run-lengthARL,’s), much smaller attainabl€AR’s and have better

out-of-control (OOC) performance than thef-1 SR chart.

Although the SR charts are useful, the requirement that the underlying distribution be symmetric is
an additional assumption to be verified and may in fact not be satisfied in some situations in practice
If not much knowledge is available about the shape of the distribution, an alternative nonparametris
test called the sign test can be used to make inference about any percentile including the media
whereas the SR test applies only to the median. The sign test does not require the assumption
symmetry of the underlying continuous population distribution (see e.g. Gibbons and Chakraborti,
(2003)) and is easy to apply. Another advantage is that one does not require the actual measureme
to be available to apply the sign test; all one needs to know is how many of the observations withit
each sample are larger (or smaller) than the specified value of the parameter (percentile) of intere:
Thus the sign test can be applied with binary data, when the only information available, for each uni
tested, is whether or not the measurement was higher (or lower) than the target value of the percent
of interest. Neither the normal theory chart nor the SR charts can be applied with just the

dichotomized data.

A further requirement for applying the SR charts (and charts based on the sign test) is that the ir
control process median (or percentile) must be specified; a situation commonly referred to as Case |
This may not be the case in some applications and could limit the application of the charts, with o
without signaling rules. For example, when a new product is being developed not much information o
expert knowledge may be initially available to specify the distribution and/or the in-control value of
the percentile of interest. Hence there is a need to also develop control charts when the in-contr
process percentile of interest (or, in general, the location) is unknown. This is the scenario where th
process distribution is continuous and unknown (no symmetry necessary) and the in-control percentil
(or the location parameter) is unknown or unspecified (unlike in Case K); this situation is referred to a
Case U.

Our objective is to overcome the drawbacks of the SR charts by studying and developing a ney

class of nonparametric control charts with runs-type signaling rules for the scenario where the
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percentile (or location parameter) of interest of the process distribution is known and then, seconc
when it is unknown, without having to assume symmetry of the underlying process distribution. In the
former situation (or Case K) the control charts are based on the well-known sign test statistic while ir
the latter scenario (or Case U) the charts are based on the two-sample median test statistic.

It will be seen that the charts we consider provide a new class of flexible, yet powerful,
nonparametric charts to be used in practice.

Although one can consider other types of nonparametric charts such as the CUSUM and th
EWMA (see e.g. the reviews by Chakraborti et al. (2001, 2007)), in this chapter, we keep the
discussion focused on the Shewhart-type charts because of their inherent practical appeal and glol
effectiveness (see e.g. Montgomery, (2005) p. 385). The development of nonparametric CUSUM an

EWMA charts will be a topic for future research.

Methodology

We use a Markov chain approach (see e.g. Fu and Lou, (2003)) to derive the necessary resu
(such as the run-length distributions, average run-lengths etc.) for our runs-rule enhanced char
because this approach provides a more compact and unified view of the derivations, and as stated
Balakrishnan and Koutras (2002), p.14, “The Markov techniques possess a great advantage (over t
classical combinatory methods) as they are easily adjustable to many run-related problems; they ofte
simplify the solutions to specific problems they are applied on and remain valid even for cases
involving non-identical or dependent trials”. In some cases, however, we draw on the results of the
geometric distribution of ordek (see e.g. Balakrishnan and Koutras, (2002), Chapter 2) to obtain
closed form and explicit expressions for the run-length distributions and/or their associated

performance characteristics.

In Case U, like in Chapter 3, we use a two-step approach to derive the run-length distribution:
which involve the method of conditioning (see e.g. Chakraborti, (2000)). First we derive the
conditional run-length distributions i.e. conditioned on two order statistics (control limits), which lets
one focus on specific values of the control limits. Second we derive the unconditional (or marginal)
run-length distributions by averaging over the joint distribution of the two order statistics. The
unconditional run-length distributions reflect the bigger picture and reveal the overall performance of

the charts taking into account that the control limits are estimated.
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Layout of Chapter 4

In Section 4.1 we define and describe in detail (using graphs) the runs-type signaling rules for th
one-sided and two-sided charts. In Section 4.2 we derive the run-length distributions of our new
nonparametric control charts with signaling rules for Case K and then, in Section 4.3, we derive the
run-length distributions of the charts for Case U. Section 4.4 gives a summary and some concludin

remarks.
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4.1 Runs-type signaling rules

Introduction

We consider a class of nonparametric Shewhart-type control charts for monitoring the percentile
(or location parameter) of a process of which the distribution is assumed to be continuous but nc
necessarily symmetric. First we study the scenario whera tl'h|5)ercentile of the process distribution
is known and then, second, when it is unknown. In the former situation (or Case K), studied in Sectiol
4.2, the control charts are based on the well-known sign test statistic while in the latter scenario (c

Case U), which is looked at in Section 4.3, the charts are based on the two-sample median test statist

Signaling rules

The new control charts are “runs-rule enhanced” charts in which a process is declared out-of
control (OOC) when either
(i) A single charting statistic plots outside the control liniteft1 chart), or
(i) k consecutive charting statistics all plot outside the control lirkité-k chart), or

(i) exactly k of the lastw charting statistics plot outside the control limkso{-w chart).

It is clear that rules (i) and (ii) are special cases of rule (iii). Rule (i) is the simplest and most

frequently used whilst rules (ii) and (iii) have been used in the context of the parametric Shewhart-type

charts such as the well-knowx chart (see e.g. Derman and Ross, (1997) and Klein, (2000)).

One-sided and two-sided charts

We consider one-sided and two-sided control charts. Amongst the one-sided charts two situation
can arise: (i) when just upward shifts are of interest so that an upper control limit is adequate, and (i
when only detecting downward shifts are of interest so that a lower control limit is sufficient. The
former is called the positive-sided (or upper one-sided) chart whereas the latter is labeled the negativ

sided (or lower one-sided) chart. We study both the upper and the lower one-sided charts.

When a shift in any direction (up or down) is of concern a two-sided chart is used which has ar

upper and a lower control limit.

259



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
=

W UNIVERSITEIT VAN PRETORIA

Qe

Charting statistic and control limits

We denote the charting statistic for iflesubgroup, in general, b®. for i = 123... and the upper

and the lower control limits by CL and LCL , respectively; this allows us to simultaneously deal
with Case K and Case U when we define and describe the runs-type signaling rules. Later, when w

individually discuss the control charts of Case K and Case U we define and r€plad€L and

LCL by their appropriate and representative counterparts.

Signaling indicators

Let

el § 338

and

1 if Q<LCL

« =1Q=Lcb)= {o it Q >LCL *2)

for i = 1,23... denote the indicator functions for the one-sided charts corresponding to the events
{Q, =UCL} and {Q <LCL}, respectively. In other word<," (&) denotes the signaling indicator
for the event wherQ, plots on or above (below) the upper (lower) control limit of the positive-sided

(negative-sided) chart. Likewise, we let

1 if Q =UCL
& =40 if LCL<Q <UCL (4-3)
2 if Q <LCL
denote the signaling indicator for the two-sided chart so §haindicates whetheQ, plots on or

above theUCL (in which caseé, =1), between the,CL and theUCL (so thaté, = 0, or on or

below theLCL (¢, =2).
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Not only do the signaling indicators in (4-1), (4-2) and (4-3) allow us to clearly define and

describe signaling rules (i), (ii) and (iii), but their statistical properties (e.g. whether they

are independent, their “success” probabilities such asf Br(, BJ¢ =1 and
Pr* =1) etc.) are also important since they play a key role in deriving the run-length

distributions of the new class of proposed runs-rule enhanced charts.
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4.1.1 Thel-of-1 charts

The 1-of-1 charts are the least complicated and most frequently used charts. The signaling rules fol

thel-of-1 charts, as defined by the signaling indicators in (4-1), (4-2) and (4-3), are given by:

The1-of-1 upper one-sidedchart signals when eve§ occurs where:
A{Q=2ucCh -{& =1},
The1-of-1 lower one-sidedchart signals when evert, occurs where:
A{Q<LCY ={& =1}, and
The 1-of-1 two-sided chart signals when evet occurs where:
A:{Q =UCL or Q <sLCL} ={Aor A} = {& =1lor & =1} = {& =1or ¢ =2}.

*The symbol “= " in an expression such & < Q is read asP is true if and only ifQ is true’.

For illustration, panels (a) and (b) of Figure 4.1 show examples Gfaf& upper and lower one-

sided charts whilst Figure 4.2 displays examples olibiel two-sided chart.

The 1-of-1 upper (lower) one-sided charts signals, for illustration only, at fim& when Q,

plots above (below) th&JCL (LCL). The process is therefore declared OOC with the conclusion of
an upward (downward) shift in the process location. Similarly, both of-bfel two-sided charts

signal at timei = 7 the first chart signals whe®@, plots above the upper control limit (indicative of
an upward shift) whereas the second chart signals vipemplots below thé&CL (indicative of a

downward shift).

8 8
2 2
2 ucL| @ LCL
2 g \
=] =
9 9
5 N\\/ S

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sample number / Timei Sample number / Time)i
A{$ =1} A {& =1}
(a) Thel-of-1 rule for the upper one-sided chart (b) The1l-of-1 rule for the lower one-sided chart
(upward shift detected) (downward shift detected)

Figure 4.1: The 1-of-1 rule for the upper and the lower one-sided charts
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5 LCL 5 LCL
o e \A
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Sample number / Timeé) Sample number / Time)
(upward shift detected) (downward shift detected)

A{Aor A} » (& =1or & =1} = {§ =1or § =2}

Figure 4.2: The 1-of-1 rule for the two-sided chart

Because thé-of-1 charts are based on signaling rule (i) which uses only the information from the
most recent (last) sample to make a decision whether or not the process is in-control (IC), one fee

these charts can be improved upon by using rules (ii) and (iii); this idea is discussed in the next sectio
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4.1.2 The k-of-k and k-of-w charts

The runs-rule Shewhart-type charts we consider adopt a sequential approach and use tl
information from multiple samples including the most recent one to signal. Unlike the CUSUM and
EWMA charts, the sequential approach we study is carried out by considering runs of the charting
statistic outside the control limit(s) which includes the charting statistic from the current sample anc
one or more charting statistics from past samples. The resulting charts are easy to use and it will
seen that they offer the user greater practical flexibility in designing a chart so that more (practically’
attractive, attainable, false alarm rates are available. Moreover, it will be shown that the new chart

have higher efficiency (i.e. smaller OO&RL 's) compared to thi&-of-1 charts.

According to thek-of-k (k= 2) chart the control chart signals at any point in time wihen
consecutive charting statistics (froknconsecutive samples), of which the last one is the most recent
one, all plot outside the control limit(s). A generalization ofktué-k chart is thek-of-w chart which
signals when exactlk of the lastw charting statistics all plot outside the limit(s), of which the last

one plots outside the control limits.

It is clear that we can consider charts for any pair of positive intdgensd w where 1<k <w
andw= 2 Although various values dé andw can be considered in theory, from a practical point of
view, it is important that the resulting charts are easy to apply; so we focus ZoftBdk = w = 2)

and the2-of-3 (k = 2w =23) charts. A user is therefore required to keep track of only the last two or

three of the most recent charting statistics.
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41.2.1 One-sided k-of-k and k-of-wcharts

As noted earlier, the upper (lower) one-sided chart has only an upper (lower) control limit and is
typically used when only an upward (downward) shift is of concern. We first descriBettieupper
(lower) one-sided chart and then ®ef-3 upper (lower) one-sided chart.

One-sided 2-of-2 charts

The 2-of-2 chart requires the user to keep track of only the last two charting sta@sticand Q,

at any given point in time,> 2ZI'he upper one-sidezlof-2 chart signals (declares the process OOC)

if both Q._, and Q, plot on or outside the upper control limit; otherwise no signal is given and we
declare the process IC. Likewise, the lower one-sitdefi2 chart signals if botfQ,_, and Q, plot on

or outside the lower control limit. Thus tBeof-2 one-sided charts are:

The2-of-2 upper one-sidedchart signals when the eveBf occurs

whereB,: {&", =& =1}, and

The2-of-2 lower one-sidedchart signals when the eveBf occurs

whereB,: {_, =& =1}.

For illustration, panels (a) and (b) of Figure 4.3 show examples @& oh@ upper and th@-of-2
lower one-sided charts. Both of the charts signal, again for illustration only, at #imei.e. oh the
first occurrence of a run of length two of the charting statistic above (below)Ghe(LCL) at time
or sample number 7. Hence, the process is declared OOC with the conclusion of an upwar

(downward) shift in the process location.
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2 2
% UCL ‘g) \/‘ LCL
£ £
o o
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Sample number / Time X Sample number / Time)
B:{&L =& =1} B, {¢n=¢ =1}
(a) The2-of-2 rule for the upper one-sided chart (b) The2-of-2 rule for the lower one-sided chart
(upward shift detected) (downward shift detected)
Figure 4.3: The 2-of-2 rule for the upper and the lower one-sided charts
Remark 2

The 2-0of-2 one-sided charts can be alternatively defined in terms of the minimum and/or

the maximum of the statistid®_, and Q.. For example, th2-of-2 upper one-sided chart
signals if min(Q,_,,Q.) plots on or above theCL. Similarly the2-of-2 lower one-sided
chart signals if max@Q_,Q) plots on or below theLCL. We next consider a

generalization of th&-of-2 chart.

One-sided 2-of-3 charts

The 2-of-2 charts utilize moving (over time) blocks of only two charting statistics. It is therefore
natural to investigate if there can be any sizeable gain in efficiency when moving blocks of three
charting statistics are utilized. Thus we consi@glef-3 charts for which at any time point 3 we

need to keep track o®_,, Q_, and Q,; the upper (lower) one-sidetiof-3 chart signals if two of

these three statistics plot on or above (below) the upper (lower) control limit.

A similar chart was considered by Klein (2000) for the Shewkarthart. However, note that
although there are three ways for exactly two of the last three charting statistics to plot on or abov
(below) the upper (lower) control limit, we take only two of the three ways, namely where the last

charting statistic plots on or above (below) the upper (lower) control limit to define a signal.
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This is unlike the chart of Klein (2000) which can signal in any of the three ways; our charts
eliminate the possibility that the process is declared OOC when both the first and the second chartir
statistics plot outside the control limits but the third (last) one plots between the control limits (see e.g

Figure 4.5), which we feel is somewhat undesirable in practice. Thsat8 one-sided charts are:

The2-of-3 upper one-sidedchart signals when the eve@f+) ={C, or C,} occurs

whereC,: {Q_, <UCL andQ_, =2UCL and Q, =2UCL} = {&%, =0,&%, =1, & =1}
C,:{Q_,2UCL andQ_ <UCL and Q =UCL} = {&7, =1¢% =0,&" =1}.

The2-of-3 lower one-sidedchart signals when the eve@f-) ={C, or C,} occurs

whereC,: {Q_, >LCL andQ_ <LCLand Q <LCL = {{_,=0,¢&,, =1¢ =1}

C,:{Q_, <LCL andQ_, >LCLand Q <LCL = {{_,=1¢&,,=0,¢& =1}.

Panels (a) and (b) of Figure 4.4 show examples of what the signaling €erts, C, and C,

might look like in case of th2-of-3 upper and lower one-sided charts. For example, both & ¢if3
upper one-sided charts, shown in panel (a), signal atitime and/the signals are interpreted to be

indicative of an upward shift since both the charting statistics fall above the upper control limit.
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‘g, UCL ‘% UCL
g .A/‘\/ g .A/ \/
o o
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Sample number / Timé) Sample number / Timé)
C i {&, =085 =1& =1} C,:{&, =165, =0,§" =1}
(a) The2-of-3 rule for the upper one-sided chart (upward shift detected)
.é ,/\/‘_\ .é ,/\/\ A
g ICL & LCL
£ N £ VAR
S S
o o
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Sample number / Timeé) Sample number / Timeé)
Cy{d. =04, =14 =1} C,i{é2.=26,=0¢ =1}
(b) The2-of-3 rule for the lower one-sided chart (downward shift detected)
Figure 4.4: The 2-of-3 rule for the upper and the lower one-sided charts
(g, UCL Ué LCL
e 0/\/ \. s \\/
o [a
1 2 3 4 5 6 7 1‘2‘3‘4‘5‘6‘7
Sample number / Timé) Sample number / Timeé)
@ Cs:{&7, =165 =1 & =0} () Co:{&, =16, =1 & =0}
Figure 4.5: The 2-of-3 events excluded as signaling events for the upper and the lower one-sided
charts
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4.1.2.2 Two-sided k-of-k and k-of-wcharts

Two-sided charts are typically used to detect either an upward or a downward shift and thus hav

both an upper and a lower control limit.

Two-sided 2-of-2 charts

Like the 2-of-2 one-sided charts, we also need to keep track of Qpthand Q, at any time point
i =2, but for the two-sided chart there are two control limits and so there are four wa@_faand
Q. to plot outside the limits. Any one (or more) of the four scenarios may be used to define a signal

We consider tw@®-of-2 two-sided charts; both capable of detecting an upward or a downward shift in

the location parameter.

The first2-of-2 two-sided chart signals when any two successive charting statistics both plot on or

outside the control limits. In other words, a signal is given when:

0] both charting statistics plot on or above WeL , or

(i) both charting statistics plot on or below th€L , or

(i) the first charting statistic plots on or above th€L and the second charting statistic plots
on or below theL.CL , or

(iv)  the first charting statistic plots on or below th€L and the second charting statistic plots

on or above th&CL.

This signaling rule was proposed by Derman and Ross (1997) in the context of the Shéwhart

chart; we refer to this chart as th@®f-2 DR two-sided chart.
The secon@-of-2 two-sided chart signals when two successive charting statistics:

(1) both plot on or above thdCL , or
(i) both plot on or below thé&CL .

This signaling rule was considered by Klein (2000) in the context of the SheWhahart; we
refer to this chart as tieof-2 KL two-sided chart.
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More specifically, th&-of-2 two-sided charts are:

The 2-0f-2 DR two-sided chart signals when the evebt(DR): {D, orD, or D,or D,}

occurs, and

The2-of-2 KL two-sided chart signals when the eveb KL) ={D,or D,} occurs

where D,:{Q_=UCLand Q =2UCL - {¢&_ =1¢ =1},
D,:{Q,<LCLand Q <LCQ = {&,=2¢ =2},
D,:{Q_,=2UCLand Q <LCLQ - {&,=1¢ =2}, and
D,:{Q <LCLand Q 2UCL} = {¢_, =2¢ =1}.

Figure 4.6 shows some examples of the evéntsi = 1234. It is clear that th@-of-2 DR chart

signals on the seventh sample in each of the four panels of Figure 4.6 wheras-2hKL chart
signals only in panels (a) and (b). Thus, whenevefibie2 KL chart signals so does tl2eof-2 DR

chart, but the converse may not always happen. Furthermore, it seems tkaf-thé®R and KL

charts are both suitable for detecting an upward or a downward shift, [Riotf#2DR chart can also
detect a possible swing; this is when an upward shift is immediately followed by a downward shift or

vice versa (Chakraborti and Eryilmaz, (2007)).
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Sample number / Time)

D;:{¢4=1¢ =2}

(c) (signal above followed by a signal below /

possible swing detected)

g Caall 1P} 2 ucL
2 2
5 LCL 5 LCL
T o \‘/A
1 | 2 | 3 | 4 | 5 | 6 | 7 1 2 3 4 5 6 7
Sample number / Timé) Sample number / Time)
D, {¢, =14 =1} D,:{¢4=2¢ =2}

(a) (signal above / upward shift detected) (b) (signal below / downward shift detected)
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Figure 4.6: The 2-of-2 rule for the two-sided charts
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Two-sided 2-of-3 chart
Analogous to th@-of-3 one-sided charts tiH&of-3 two-sided chart signals when:

0] exactly two of the last three charting statistics both plot on or abougGhe or

(i) exactly two of the last three charting statistics both plot on or below@he

Hence, the-of-3 two-sided chart defined in terms of the signaling indicdtois given by:

The 2-of-3 two-sided chart signals when eveiig= {E, orE, or E;or E,} occurs

where

E,:{LCL<Q_, <UCL andQ_, =UCL and Q =UCL} = {&_, =0,&_ =1¢ =1},
E,:{Q_, =UCL andLCL<Q_ <UCLand Q =UCL} = {{_,=1¢&_,=0¢ =1},
E,:{LCL<Q_, <UCL andQ_ <LCLand Q <LCL} = {&_,=0¢_,=2¢ =2}, and

E,:{Q_,<LCL andLCL<Q_ <UCLand Q <LCL} = {§_,=2¢&_,=0,¢ =2}.

Figure 4.7 displays examples of evefsfor i = 1,234 and shows that when there is a signal, the
proposed2-of-3 two-sided chart offers a practical interpretation for the signal. For example, when

either eventE, or E, occurs (shown in panels (a) and (b)) the signal is interpreted as an upward shift.

Similarly, if either eventE, or E, occurs (displayed in panels (c) and (d)) a downward shift is

inferred.

Remark 3

Apart from eventsE,, E,, E; andE, there are a further eight scenarios in case o2the

of-3 two-sided chart where exactly two of the last three charting statistics can plot outside
the control limits. We, however, exclude these events as signaling events when we
calculate the statistical characteristics or properties o2-#fe3 two-sided control charts;

even though four of the events may possibly be linked to genuine or tangible changes in
the process.
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Figure 4.8 shows the eight events together with the practical interpretations (if any). For

example, panels (a) and (b) show eveBisand E, that could be considered a swing in

the process, whereas panels (c) and (d) show e¥enésd E,; that could be interpreted as

trends (up or down) in the process. The events in panels (e), (f), (g) and (h) are excluded a

signaling events because, as mentioned earlier, the last point plots between the contrc

limits.

Most importantly, by excluding events,, E;,

..., Ej, we are left with event&,, E,

1E3

and E,, which makes the signaling events of fhef-3 one-sided charts and that of the

of-3 two-sided chart more alike (compare, for example, the signaling events shown in

Figure 4.4 with that of Figure 4.7).

1 2 3 4 5 6 7
Sample number / Time)

E;:{$.=04,=2¢ =2}

(signal below / downward shift detected)

(c)

z Yl ucL| 2 AN A ucL
2 2
g LCL = LCL
o o

1 | 2 | 3 | 4 | 5 | 6 | 7 1 | 2 | 3 | 4 | 5 | 6 | 7

Sample number / Time X Sample number / Time )Y
E:{{.=04,=1¢ =1} E, {$,=1¢,=0¢ =1}

(@) (signal above / upward shift detected) (b) (signal above / upward shift detected)
2 ucL| £ ucL
& /‘\/./\ & /\/\
2 2
= LCL| = /.\ LCL
ﬁ e | Va

1 2 3 4 5 6 7
Sample number / Timé)

E,: {{,=2¢,=0¢ =2}

(d)

(signal below / downward shift detected)

Figure 4.7: The 2-of-3 rule for the two-sided chart
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Figure 4.8: The 2-of-3 events excluded as signaling events for the two-sided charts
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Section 4.1 outlined, in general, the operation of the runs-rule enhanced charts. However, we at

yet to define (choose) the charting statispicand the control limitslCL and LCL ). In Sections 4.2

and 4.3 we do just this and show, in particular, how to obtain the run-length distributions and how tc
design and implement the runs-rule enhanced charts in case thpercentile of the process
distribution is known (Case K) and unknown (Case U). The performance of the charts is then furthe
examined via properties of their run-length distributions such as the average run-largth the

false alarm rateKAR), the standard deviation of the run-leng8DRL ) and some of the percentiles

of the run-length distributions.
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4.2 Sign charts for the knownn ™ quantile (Case K)

Introduction

Case K refers to the situation when th& quantile (or percentile) of the process distribution is
known or specified. The new control charts we design for Case K are based on the well-known sig

(test) statistic.

Assumptions

Let (X,;,X,,,....X;,) denote a random sample of size> tdken at sampling stage (time)
i = 123.... Assume that the samples are independent and the observations come from a continuot
distribution with cumulative distribution function (c.d.f, (x) with the uniquelOOnth percentile

denoted byd = F,* £ ) O<n<1.

In many cases the percentile of interest is the median because it is a robust measure of cent
tendency so that = 0&nd &8 =F," (05), however this is not necessary for our developments as the

new sign charts can be applied for any percentile of interest.

Charting statistics

Amin et al. (1995) consideredlaof-1 Shewhart-type sign chart for monitoring the median of a

distribution based on the charting statistic

N, =Y sgn(X, -6,) for i=12.. (4-4)

j=1
wheresign(x) =1 if x>0, 0 ifx=0 and -1 ik < 0 andg, denotes the specified value of the median.

We consider any percentil@=F.* 77( for 0< 7 <1 and the charting statistic for our sign charts

is the classical sign statistic

n

T =Y 1(X;>86,) for i=12.. (4-5)

=
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I (X; >6,) denotes the indicator function for the eveit,{>6, . ThusT, denotes the number of
observations larger tha#, in thei™ sample and it is easily seen tAatfollows a binomial distribution
with parametersr and probability of succegs= Pr(X; >§6,). Whené = g, the percentile of interest

is equal to its specified value, the process is said to be in-control (IC) ang tieedenoted byp,

and equals
p, = PrX; >6, [IC)=1-1. (4-6)

Thus, for example, when the percentile of interest is the median ( ), tlh&process is IC when

0=46, (the specified value of the median) and thps p, = 05; similarly when & is the first
quartile (7= 029, the process is IC whef =6, (the specified value of the first quartile) and

p=p, =075 and so on.

Control limits
The upper and lower control limits of our sign charts are
UCL=n-b and LCL=a (4-7)

where the charting constants and b are integers between (and including) zero andthat is,
a,b0{012...,n}, and selected so that thiCL is greater than theCL ; determination o& andb will

be discussed later. Note that, the new sign charts do not have a centerline.

277



o

W UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

4.2.1 Run-length distributions of the sign charts

-

The run-length distribution and its associated characteristics (such as the mean, the standa
deviation, the median etc.) reveal important information regarding the performance of a control char

(see e.g. Human and Graham, (2007)).

There are various approaches to finding the run-length distribution. We use (for the most part) :
Markov chain approach (see e.g. Fu and Lou, (2003)) to derive the necessary results for our runs-ru
enhanced charts because this approach provides a more compact and unified view of the derivatior
and as stated by Balakrishnan and Koutras (2002), p.14, “The Markov techniques possess a gre
advantage (over the classical combinatory methods) as they are easily adjustable to many run-relat
problems; they often simplify the solutions to specific problems they are applied on and remain valic

even for cases involving non-identical or dependent trials”.
The Markov chain approach entails that we:

(@) classify each charting statistic (based on its value) into one of two categories (for a one-
sided chart) or into one of three categories (for a two-sided chart) depending on Whether

plots on or above th€CL , on or below theLCL and/or between theCL andUCL ,

(b) define a new sequence of random variab¥gsy, Y, , (say) that keeps track of the
classification of theT;'s, and then

(c) construct a Markov Chaing, 1= Olo find the run-length distribution.

For example, consider the upper one-sided sign chart. Eawn be either on or above th€L
or below. LetY, = 1(a success) in the former case ang (aOfailure) in the latter case. Thus,
corresponding to a sequence Dfs we get a sequence of's that are all binary; for example, if

LT, T:T, F 4387 andUCL =5 weget,Y,Y;Y, F (0,0,1,1).

Thus, the run-length of th-of-1 upper one-sided chart i.e. the time when for the first tinfe a

plots on or above theCL , is “3” for our example and can be equivalently expressed as the time when

for the first time we obtain a “1” (a success) among the ¥
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Similarly, the run-length of th2-of-2 upper one-sided chart i.e. the time when for the first time

two consecutivel,'s plot out-of-control, which equals “4” in our example, can be equivalently viewed

as the time when for the first time we obtain two successive “1's” (or successes) among ¥hes four
Hence the run-length for th&'scan be equivalently defined as the waiting time for the first

success (or, more generally, the first particular run or pattern of successes) amyng;theis this

correspondence that makes the study of the statistical properties of the run-length random variab
more amenable using results about the waiting time distributions in a sequence of Bernoulli (binary o

two-state) and other types (three or more states) of random variables.

There is a rather vast literature on waiting time distributions. A detailed discussion about genera
results on the distribution theory of runs and patterns with various applications can be found ir
Balakrishnan and Koutras (2002) and Fu and Lou (2003). Some of these results pertain to the exa
probability distribution of the waiting time for the first occurrence of a simple or a compound pattern
in a sequence of i.i.d. (or homogeneous Markov dependent) 2-state (binary) or 3 or more-state tria
(see e.g. Fu and Lou, (2003); Chapters 3, 4 and 5). The approach is to “properly imbed” (see e.g. |
and Lou (2003), page 64; Definition 2.6) the random variable of interest (the run-length in our case
into a finite Markov chain which means constructing a “proper” Markov chain so that the probability
that the run-length random variabl takes on some specific value is expressed in terms of the

probability that the imbedded Markov chaid.{ i = r@}kides in a specific subs8tof the state space
Q.

The latter probability can be more easily computed using results about the transition probability
matrix of the Markov chain. For example, given the m transition probability matrix of the Markov

chain

(written in a partitioned form), the probability mass function (p.m.f), the expected vARIe) (and
the variance VARL ) of the run-length random variabl can be directly obtained, using Theorems
5.2 and 7.4 of Fu and Lou (2003), as

PN =j|nab8=¢Q'*(1-Q1 for j=123.. (4-8)

EN [n,ab8) =E(1-Q™ (4-9)
and

varN [n,a,b,8) =&(I +Q)(I - Q) 1~ (E(N))? (4-10)
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where the sub-matrix matriQ =Q,,, is called the essential transition probability sub-matrix,

| =1, (used in (4-8) and (4-10)) ant, _«m-n (used in the definition oM . ) are identity

mxm

matrices,&,, = (1,0,0...,0) is the initial distribution,1,, = L1...1)7 is the unit vectorm denotes

the number of states in the state sp&eand m—h is the number of unique simple patterns that

defines a signal; the (non-essential) ma@iy ., will be illustrated later.

The point is that we only need to construct the state sgacand the essential transition

probability sub-matrixQ,,, of the Markov chain in order to be capable to calculate the entire run-

length distribution.

Signaling probabilities

Whilst the key to construct the state sp&cedepends on the particular signaling rule and whether
a one-sided or two-sided chart is looked at, the building blocks of the transition probability matrix are

the one-step transition probabilities (i.e. the elements of the transition probability matrix).

The one-step transition probabilities are denoted by
P = PriZ, =jl1Z_ =Kk)
and interpreted as the conditional probability given that at any specifici timghe &ystem was in

state k, the system will be in stat¢ at timei for i =1 and j,kOQ. The transition probabilities
p.; are all functions of and depend on the signaling probabilities i.e. the probability for a single

charting statistic to plot outside the control limit(s), and therefore play a key role in the derivation of
the run-length distributions of the runs-rules enhanced charts. In case of the upper and lower one-sid:
charts the signaling probabilities are

p* (,b,8)=Pr(, 2UCL)=Pr(T, 2n-b)=Pr§&" = =1 ,(N—b,b+1) (4-11)
and

p-,ad)=Prl, <LCL F Pi(;<a)= Pr§; =D)=1-1,(@a+Lln-a), (4-12)

respectively; for the two-sided chart the probability for any of the charting statistics to plot outside
either theUCL or theLCL is

p* 0abd)=1-Pr(LCL<T <UCL)=1-1 @+1Ln-a)+1 (n-b,b+1) (4-13)
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Beta(u, V) distribution, also known as the incomplete beta function, which helps us write various

expressions in a more compact form.

Note that, for notational simplicity and brevity we denote the probabifitiesb 4 , p~)n,a,8),

and p* 6 ab g)simply by p*, p~ and p* , respectively.

Remark 4

0] If =46, the signaling probabilities (and hence the distributiof. cdind the in-control run-

length distributions and their associated characteristics) depend only on
a. the sample size,

b. the charting constanis and/orb, and

c. the percentile of interes, = F.* 71( Where 7 is specified.

Any decision rule (signaling rule) based on thés will therefore be distribution-free as

long as the underlying distributions (at each point in time) are continuous and identical. It
follows that the in-control run-length distributions of the runs-rules enhanced sign charts

are distribution-free and therefore charts based off,tBewill be distribution-free.

(i) To obtain the in-control run-length distribution and its mean and variance one substitutes
6=6, in expressions (4-8), (4-9) and (4-10); by substitutthg &, one obtains the

corresponding results for the out-of-control situation which depends on the underlying
process distribution.
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4.2.2 Transition probability matrices of the sign charts

Oyt

To illustrate the derivation of the transition probability matrices and the run-length distributions,

we begin with the one-sided upper (lower) control charts and then proceed to study the two-side

charts.

In case of the one-sided and the two-sided charts, we first look at the run-length distribution of the
1-of-1 chart (which uses the least complicated signaling rule) before we study the run-length
distributions of the run rules enhanced charts, that ik-tfi& (k > 2) and thek-of-w (1< k <w and

w= 2) sign charts.

For each chart the key is to imbed the run-length into a proper homogenous Markov chain ant

obtain the essential transition probability sub-ma@ix, associated with the particular Markov chain.

Note that, we discuss the derivation of the transition probability matrices of the one-sided and the

two-sided sign charts in detail so that later, in Case U, we can merely make use of these results.

4.2.2.1 One-sided sign charts

For the upper one-sided sign chart we view the series of signaling indicgtoés &;, , ...
associated with the charting statistitsT, T, , and theUCL as a series of independent binary
random variables, each being either “a success of, 13I0tting on or above th&CL ) or “a failure or

0" (T, plotting below theJCL ) with probabilitiesp™ and1- p*, respectively (see e.g. Figure 4.9).

Br(f =1y =p"
UCL

FPlotting Statistic

Pr(&=0)=1-p"

Sample namber £ Time (9)

Figure 4.9: The two regions on the upper one-sided control chart (‘0’ and ‘1’) and their
associated probabilities used to classify the charting statistic
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Upper one-sidedl-of-1 sign chart

The run-lengthN,,, of the 1-of-1 upper one-sided chart is the waiting time until evépt(see

panel (a) of Figure 4.1) occurs, which can be viewed as the waiting time for the first occurrence of «

“1” (success) in the series gf 's (i.e. of 0's and 1's).

The imbedded Markov chain associated witf,, is a homogeneous Markov chain defined on the

finite state spac® = {¢ ,0,1} with m= 3 states, where
(a) the state {1} is called the “absorbing” state (when the process is declared out-of-control),

(b) the state {0} is called the “transient” state (i.e. the process can remain in state {0}, which

means that the process is IC and the charting procedure continues, or the process can mo
from state {0} into state {1}, which implies that the process goes OOC and the charting

procedure stops), and

(c) the stateg is the “"dummy” state introduced for convenience. The dummy gtatein fact

added to the state spa€k so that with probability one the process is assumed to begin in-

control with the intention that the corresponding initial probability distribution is taken as
g]_xz = (110) "

The 3x 3transition probability matrix ofZ, i:> Olassociated withN,, is given by

. Popr Pool Ppa| [0 1-P" 1P

M. = Q21 Coa | _ | _ o+
20519 1 |T| Poe__Poo Poa| =10 1P P (4-14)

x2 | 1x1 pw p1’0 : p1’1 0 0 : 1

where, for examplep,, (the entry in the ™ row and the 8 column of M »3) 1S the probability that
the system goes from state {0} (that is wh@&yg plots IC) at timel — 1to state {1} (that is wher@,
plot OOC) at timei ; this probability is simply the probability that plots at or above th&JCL at

time i, which is Pr" =1) = p* = p* (n,b,8). The rest of the elements & ., in (4-14) can be

calculated in a similar way.
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Upper one-sided 2-of-2 sign chart

The run-lengthN;, of the2-of-2 upper one-sided chart is the waiting time until evBpt(see

panel (a) of Figure 4.3) occurs, which can be viewed as the waiting time for the first occurrence of twc

consecutive 1's (i.e. successes) in the serigs tf (i.e. 0's and 1's).

The imbedded Markov chain associated Wl , is a homogeneous Markov chain defined on

the finite state spac@ = { ,0,1,11} with m= 4 states, where
(a) the last state {11}s the absorbing state,
(b) the two states {0} and {1} are the transient (nors@ibent) states,

(c) and ¢ is the dummy state, which is again addedQoso that (with probability one) the
process is assumed to begin in-control and with the intention that the corresponding initial
probability distribution is taken &s,, = (1,0,0).

+

The transition probability matrix off, i== Ohssociated witiN,, is given by

Poo  Ppo Py i Pyas 0 1-p" p’ i 0

M {9_3:'{:_93:1_} Pop Poo Poii Pou|_|0 1- p: P | 0+ (4-15)
Oxe i loa] | Py Pao PujPum| |0 1-p" O p"
Pip Paiw P Pun 0 0 01

where, for example, the probability that the system goes from state {1} (Whemots OOC) at time
i —1, to state {11} (where botfi;, andT, plot OOC) at timel , denoted byp,,,, is the entry in the
3 row and the @ column of M a4, this is simply the probability thal plots at or above thgCL at

time i, which is, as earlierPr§" =) = p" = p*(n,b,0).
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Remark 5

Because

(1) the signaling indicator"’'s are a sequence of i.i.d. Bernoulli random variables

each with probability of succegs’, and

(i) the run-length random varial;, (N,,) is the waiting time for the first success

(the first occurrence of two consecutive successes),

one can equivalently obtain the distribution (i.e. the p.m.f, the mean, the variance &t¢,) of

(N ,) from the distribution of the variablg wherek = Xor 2).

The stopping time variabl&, (k =1) is, in general, the waiting time to observe a sequence of

k consecutive successes for the first time in a sequence of i.i.d. Bernoulli random variables

with success probability and should not be confused with the plotting statigtidefined in

(4-5).

The distribution ofT, is known to be the geometric distribution of orde(see e.g. Chapter 2

of Balakrishnan and Koutras, (2002)) with p.m.f, expected value and variance given by

0 if 0<j<k
Pr(Tk :j): ak if J=k
(4-16)
[ < L . if j2k+1
el at j—ik-1 _ [1-ik-1
2 O {( 2 el j}
_ 1-a* _ - Xx+)-a)a* —a*" ]
E(T,) = —(1_ mat and var(T, ) 1-0)a® (4-17)

respectively.
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The equivalence between the distributionTpf(i.e. the geometric distribution of ord&r) and
the distribution of N, (i.e. the waiting until for the first tim& consecutiveT. 's plot on or

above theUCL ) can be verified by substituting the essential transition probability sub-matrix
Q.., of {Z :i=0} associated withN,, in expressions (4-8), (4-9) and (4-10), and then

simplifying symbolically (using, for example, computer software with matrix manipulations
capabilities such as Scientific Workpl&¥eupon doing so one obtains explicit and closed form

expressions, via the Markov chain approach, for the p.m.fARe and theVARL of the run-

length random variabl&,, .
For the upper one-sidédof-1 sign chart, for example, we substitute
_|0 1-p*
QZXZ - |:O 1_ p+j|
in expressions (4-8), (4-9) and (4-10) so that upon simplifying we obtain

Pr(N;;, = jInb,8)=@-p") " p" for j= 123.. (4-18)

EN,, [nb,8)=1/p" and varf\,,, [n,b,8)=(@1-p")/(p*)>. (4-19)

Expressions (4-18) and (4-19) are identical to expressions (4-16) and (4-1K)witland 1

a=p", respectively.
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Upper one-sided 2-of-3 sign chart

Like the upper one-sidettof-1 and2-of-2 charts we can find the run-length distribution of Zhe

of-3 upper one-sided chart using a Markov chain.

The run-lengthN; , of the2-of-3 upper one-sided chart is the waiting time until evéntor C,

(see panel (a) of Figure 4.4) occurs, which can be viewed as the waiting time for the first occurrence c

the patternA = {011or101} in the series of"'s (i.e. of 0’'s and 1's). The patterh is called a
“compound pattern” and written agi =A; OA, where A, =011 and A, =101 are two so-called

distinct “simple patterns”.

The imbedded Markov chain associated whtf), , is a homogeneous Markov chain defined on the

state spac€ = ¢ ,0,101,10 a,, a, } with m=7 states, where

(a) the two statesr; ={011} and a, ={101} are the absorbing states (when the process is

declared OOC),

(b) the four states{0,1,01, @ }are the transient states (i.e. the process can move from one of

these states to another, which means that the charting procedure continues), and

(c) ¢ is the dummy state introduced for convenience.

The transient states are the sequential sub-patteris 90011 and A, =101, respectively. For
example, the state {0} is the sub-pattern of the state {01}, whereas the two states {0} and {01} are the

sub-patterns of\; =011, and the states {1} and {10} are the sub-patternd of=101.

As earlier, the dummy state is again added t@ so that (with probability one) the process is
assumed to begin in-control, and the corresponding initial probability distribution is taken as

&5 = (10,00,0).
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The transition probability matrix of" i 2 Ohssociated withN,,, is given by

0 -pt p' 0 0 i 0 0
0 1-p* 0 p* 0 i 0 0
0 0 * 0 1-p"! o0 0
_ Q5<5 : C5><2 _ p p+ : +
Mo, =| —=24+-—>=|=| 0 0 0 0 1-p"! p 0 (4-20)
02x5 I |2x2 ¥ I .
0 Ip 0 0 0o ! 0 p
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1

where, for example, the probability that the system goes from state {01} (that is Whemots IC
andT,_, plots OOC) at time — J]to statea, ={011} (that is whereTl,_, plots IC and botf,_, andT,

plot OOC) at timei is the entry in the"#row and the % column ofM ..
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Remark 6

A few comments concerning the application and the implementation of the upper on2-gickd

sign chart are in order:

0] To declare a process out-of-control (OOC) we neddadt three charting statistic ¢, T._,
and T, say) of which exactly one should plot in-control (IC) i.e. eitfiey plots below the
UCL with T, andT, plotting on or above th&JCL or, T_ plots below theUCL with T._,
and T, plotting on or above th&)CL (see e.g. event€, and C, in panel (a) of Figure 4.4).

Thus, we can only declare the process OOC beginning fromitime and3we need at least
one charting statistic to plot below the upper control limit before we can declare the process
OocC.

(i) Because of these two build-in conditions of the ugpee-sided-of-3 sign chart, the chart has

a hitch at start-up: I, 2UCL for i = 123...,r, that is, if all the charting statistics plot on or

above the upper control limit from the time that the chart is implemented until tithe chart

would not immediately signal that the process is OOC even though the pattern of the points ol
the chart suggests otherwise. The chart would most likely give a “delayed” or a “late” OOC
signal instead.

While this glitch is possible, we need to stress an important assumption:

The design and the implementation of all the charts that are proposed in this chapter are
based on an IC process at start-up as well as the trade-off between minimizing the
probability that a charting statistic plots on or outside the control limit(s) when the process

is actually IC and quickly detecting an OOC process.
This assumption means two things:

a. The process is IC at start-up; hence, we must erfsutbe extent that it is possible) that
the process is IGefore we start monitoring it.

b. We typically choose th&JCL such that the probability thatTa plots on or above theCL
when the process is IC i.g; = Pr(T. 2UCL | IC), is small, which automatically implies
that the probability that al, plots below theUCL when the process is IC i.e.

1- p; =Pr(T. <UCL|IC), is large.
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The latter implies that the probability that all the charting statistics up to and including the
r ™ one plot on or above thdCL when the process is IC i.€p;)", would decrease

rapidly asr increases. But, most importantly, it also implies that as we continue to monitor
the process, the probability that thd' charting statistic plots below theCL when the

process is IC stays constant and equalltop, ; this is so because we assume that

successive samples (or charting statistics) are independent.

Hence, what is of importance to the practitioner is to know what the risk is that this hitch

occurs. This risk can be measured by calculating and studyingdtisethat aT. plots

below theUCL when the processis IC i.- p;)/(p;), at any time = 123...

To investigate the effect op, on the abovedds, Table 4.1 shows values @&- p;)/(p,) for

values of p; = 000300000005 and 001(001)020. The values ofp, that we use to construct

Table 4.1 are representative of the typical values that one would consider when designing the propos

upper one-sided-of-3 chart (see e.g. Tables 4.6. and 4.7).

From Table 4.1 we observe that:

(i)

(ii)

(i)

The ratio (L- p;)/(py) is larger than or equal to 4.0 for all valuesgjf that we consider. This

implies that, for a process that is IC at start-up (which is a fundamental assumption of our

earlier theoretical developments and the reason for adding the dummygstate,the state
spaces off all the proposed charts) itiseast four times more likely for any new incominigy

to plot below theJCL than for any new incomingj, to plot on or above theCL .

For p, = 001, which is a very reasonable choice considering all the valugs dh Tables

4.6 and 4.7, the rati@l— p;)/(p,) is equal to 99.0; this is relatively large.

The largest value fofl- p;)/(p;) is 999.0 (whenp; = 0001and will increase even further

as p, decreases; this is good because smaller valugs odire typically preferred and also

recommended in practice.
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The above-mentioned observations are all relevant for the practitioner because, for a process that

IC at start-up, (which is a key assumption when implementing any of the charts that are proposed i
this chapter) they show that the risk associated with the pro@esk8 sign chart at start-up is: (a)
almost negligible, and (b) decreases rapidly as we continue to monitor the process because tl

probability that all the charting statistics up to and includingrthleone plot on or above theCL
when the process is IC i.ép;)", would decrease towards zero quicklyragcreases. This should be

reassuring for the practitioner.

Table 4.1: The ratio (1- p;)/(p;) as a function of p;

P | @=p)/(ps) | Py | A=p)(py)
0.001 999.0 0.09 10.1
0.002 499.0 0.10 9.0
0.003 332.3 0.11 8.1
0.004 249.0 0.12 7.3
0.005 199.0 0.13 6.7
0.01 99.0 0.14 6.1
0.02 49.0 0.15 5.7
0.03 32.3 0.16 53
0.04 24.0 0.17 4.9
0.05 19.0 0.18 4.6
0.06 15.7 0.19 4.3
0.07 13.3 0.20 4.0
0.08 11.5

To overcome the imperfection of the upper one-silefi3 sign chart at start-up, we could use the
eventC, ={T, 2UCL, T, 2UCL = {& =1,¢&, =1}, in addition to the event€, and C, shown in
panel (a) of Figure 4.4, as a third signaling event. The e®ens$ special in two ways: (a) it prevents

the hitch at start-up by enabling the chart to signal at time, an@ (b) it occurs if and only if the first
two charting statistics], andT,, both plot on or above the upper control limit; hence, e@ntan

not occur from timda = 3

The resultant chart is an augmented upper one-&aé@ sign chart. Adding the extra event leads
to an augmented state space 2= ¢{ ,0,1,01,10,11,011,101}, where the three states {11}, {011}

and {L01} are the absorbent states and implies that the transition probability matrix in (4-20) be alteret

slightly to become
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01-p* p* 0 O i 0 0 O

01-p° 0 p* O i 0 0 O

0O 0 0 0 1-p"'p" 0 O
Moy {9_5:5:9_5:3}_ c 0 00 1'p+§ 0 p 0O
0,5 | lag 0O Fp° 0 O 0O 10 0 p

0 0 0 0 011 0 O

0O 0O 0O O o© i 0 1 0

/0 0 0O O 0 ;0 0 1]

To investigate the impact (i.e. gain or loss) of augmenting the transition probability matrix on the
in-control performance of the chart, we calculated the in-control average run-lengths and the fals
alarm rates of the proposed upper one-si2l@ft3 sign chart and that of the augmented upper one-
sided 2-of-3 sign chart (when it is of interest to monitor the median of the process) for different
combinations of the sample size, and the upper control limit)CL .

The values of the in-control average run-lengths (denotedRly, ., and ARLS ., respectively)

were calculated according to expression (4-9) using the transition probability matrix in (4-20) and the
augmented transition probability matrix given above, respectively.

The false alarm rate of the proposed upper one-gd#eB sign chart (denotedAR; ) and that

of the augmented upper one-sidedf-3 sign chart (denote@ARy; ) can be easily obtained from the

definitions of the signaling events that are used by each chart and are given by

0 if i=1or2 0 o=l
FAR;‘“:{ e and  FARG,={ (p)?  if i=2
2(1-po)(py)” if 123 20-p)(p)? i 23

0 0 =

respectively.

There is only a slight modification of the expression F&R,,, to obtain FARS;.; this leads to
the following similarities and/or differences in the false alarm rates of the charts:
(i) Attimei=1. FAR, ,=FAR. =0,

(i) Attimei=2: FAR,,, =0 but FARS;,=(p;)?, and

(i) Attimei=3: FAR},, =FARA . =2(1- p;)(ps)’.

of 3
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These similarities and/or differences are a direct consequence of the signaling events used by ea

chart i.e.

0] Neither one of the charts can signal at time betause, the proposed upper one-sitied
of-3 sign chart needs at least three charting statistics to signal whereas the augmented upp

one-sided-of-3 sign chart needs at least two charting statistics to signal.

(i) It is only the augmented upper one-sidedf-3 sign chart that can give a false alarm at

time i = 2 and, it can do so if and only if eve@t occurs.

(i)  From timei = 3 both the charts can signal if and only if evéqtor eventC, occurs. The
event C,, as mentioned earlier, can only occur at time ar@d therefore does not

influence the false alarm rate of the augmented upper one-&idked sign chart at or

beyond timei = 3
Based on our calculations, we found that:

0] The in-control average run-lengths of the two chaetgse almost identical;ARL},, , is only

slightly larger thanARL,, .

(i) Depending on the combination of and UCL , the FAR.;, =(p;)* at timei = Zan be

reasonably large, which might be a concern for the practitioner.

To further compare the impact of augmenting the proposed upper one2safldsign chart,
Table 4.2 shows values of the in-control probability mass functions (p.m.f's) and the in-control

cumulative distribution functions (c.d.f's) of the run-length random variabis,, and N2,
associated with the proposed and the augmented charts; these values are dePigte. byi | IC),
Pr(N.:, =i|IC), Pr(N;,, <i|IC) and Pr(N.;, <i|IC), respectively and are calculated for values

20f 3

of i = 12...15.
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The calculations in Table 4.2 assume that we monitor the process median using samples of si:

n=5 (which is a very popular choice in practice) and that the upper control lilis= . For3his

particular combination ofn and UCL, it is calculated thatp, = P = 5]C = 003125 where

T

~Bin (5,05), and it was found thatARL}, = 55265 ; FAR,,, = 000189 for i =3) while

(ARLA: . = 55213 ; FARY . = 000098ati = 2 and FARZ, = 000189for i > 3).

From Table 4.2 we see that there are two key differences with respect to the in-control

characteristics and the in-control performance of the charts:

(i)

(ii)

The augmented upper one-sid2ebf-3 sign chart can signal incorrectly (with probability
0.00098) after having observed only two charting statistics whereas the proposed upper one

sided2-of-3 sign chart cannot.

The ratioPr(N4:, <i |IC)/Pr(N;., <i|IC), decreases to 1 asincreases; this observation is

supported by the fact tha&RL%",, is only slightly less thamARL},,, i.e. ARy, ./ ARL},, =1.

These observations imply that, from start-up (when the process is IC) the augmented uppe
one-sided?-of-3 sign chart always has a higher cumulative probability for a shorter run-length

than the proposed upper one-si@eaf-3 sign chart..
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Table 4.2: The in-control probability mass functions (p.m.f’s) and the in-control cumulative
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distribution functions (c.d.f’s) of the proposedz-of-3 and the augmented-of-3 sign charts when
n=5andUCL =5

2-of-3 sign chart Augmented 2-of-3 sign chart
i | Pr(NJ,,=i|IC) | Pr(N,;,<i|IC) Pr(NQO‘f”3=i|IC) Pr(N.ﬁ;ssiHC)
1 0 0 0 0
2 0 0 0.00098 0.00098
3 0.00189 0.00189 0.00189 0.00287
4 0.00186 0.00375 0.00183 0.00470
5 0.00181 0.00556 0.00180 0.00651
6 0.00180 0.00736 0.00180 0.00831
7 0.00180 0.00917 0.00180 0.01011
8 0.00180 0.01097 0.00180 0.01191
9 0.00180 0.01276 0.00179 0.01370
10 0.00179 0.01455 0.00179 0.01549
11 0.00179 0.01634 0.00179 0.01728
12 0.00179 0.01813 0.00178 0.01906
13 0.00178 0.01991 0.00178 0.02085
14 0.00178 0.02169 0.00178 0.02262
15 0.00178 0.02347 0.00177 0.02440

To summarize the above discussion and our findings based on the analysis, we can state that:

0] The proposed upper one-sid2aef-3 sign chart has a hitch at start-up but, the odds that this

problem occurs are typically small; this should be reassuring for the practitioner.

(i) It is possible to fix the imperfection of the propdsupper one-side@-of-3 sign chart by
adding a third signaling event but, even this modification has a drawback: the performance o
the augmented chart is degraded at start-up i.e. its false alarm rate is nonzeroiat time .
(unlike the proposed chart) and the cumulative probability for a shorter run-length is higher
than that of the proposed chart.

(i)  Neither the proposed nor the augmented upper ome-2idf-3 sign chart can be implemented
without taking a risk i.e. there is a trade-off between having a hitch at start-up and the

possibility of a false alarm at time= . 2
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(iv)  The inherent risk of each chart cannot be complegdiipjinated but, these risks can be

minimized (or at least reduced) by ensuring that the process is IC at start-up and/or by choosin

p, to be small.

(v) The in-control performance of the charts are alnatesttical: there is only a bit of a difference

in their in-control ARL’s and, at timei= 2we have thatFAR, .=(p;)? whereas

FAR,,, =0.

(vi)  If a shift/change in the process occafter start-up i.e. from time > 3both the charts can
signal only on the occurrence of everis or C,. So, the OOC performance of these two

charts would be the same.

We recommend that practitioners use either the proposed or the augmented upper dhefs3ded
sign chart but, we suggest that they familiarize themselves with the inherent risk associated with th
selected chart. If the practitioner is not willing to accept the risk(s) associated witoft3echarts,
he/she should use another chart e.g. the new proposed upper orzefi@esign chart or the original
upper one-sided-of-1 sign chart.

Based on the above analysis and the fact that the augmented chart can signal after having obsen
only two charting statistics instead of the proposed three charting statistics (which implies that the
augmented chart is not a “tru”of-3 chart), it was decided to focus on the proposed upper one-sided
2-0f-3 sign chart and not to investigate the statistical properties of the augmented upper oBefsided
3 sign chart any further in this thesis.

Furthermore, although the above discussion focussed specifically appéreone-sided2-of-3
sign chart, these comments also apply toltleer one-sided?-of-3 chart and thetwo-sided 2-0f-3
chart. In fact, these comments are relevant for any one-sided or twoksiofied chart whenever
k <w. This is so, because we need at laastharting statistics before we can declare the process
OOC and we need at least— k charting statistics to plot IC (i.e. below thkCL or, above thd CL
or, between the.CL andUCL , depending on the chart that is used).
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If the upper one-side®-of-3 sign chart were to signal upon any one of the three events in
which two of the last three charting statistics can plot on or aboveJ@ie i.e. the

occurrence of either evel@, or C, or C, (see e.g. panel (a) of Figure 4.4 and panel (a) of
Figure 4.5), the p.m.f as well as the meaR() and the varianceVARL) of N,

would be obtainable from the distribution and the associated characteristics of the randon

variable T, .

The random variableT," is the waiting time for the first occurrence of a scan or run of

type k/w, where the term scan or generalized run of tkpev refers to sub sequences

& &iarenéinja Of length j <w such that the number of successes contained therein is at
i+j-1

least k, that is, 253* >k (see e.g. Chapter 9 of Balakrishnan and Koutras, (2002)); the

S=l
probability distribution of T is known as the geometric distribution of ordefw and

derived via combinatorial methods.

Because we exclude eve@f as a signaling event in case of the upper one-SetsfeB

chart (because the possibility of declaring a process out-of-control when the first and
second charting statistic plot OOC but the third one plots IC is undesirable in practice), we

cannot make use of the p.m.f or the associated properties of the geometric distribution o
orderk/w , that is,T" ; this supports the statement in the beginning of section 4.2.1 that

the Markov chain technique has a great advantage over the classical combinatory

techniques for finding the distribution(s) of run-related problems.
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Example 1

Consider the upper one-sid@ebf-3 sign chart for monitoring the mediah= F,* (7= 05) and
suppose that the subgroup size , ti%e charting constari= (50 thatUCL = 5)and §, denotes

the target (IC) value for the median.

As noted earlier, when the process is in-conpipk PrX; >, |[IC)= 05 and therefore
pr=p; M= B= B=6, Fl, . (5)= 003125
Substitutingp, = 003125or p* in (4-20) and using (4-9) we get
ARL, =E K}, h= S= 09 =6, )= 55265.

Similarly, using (4-10), thesDRL, = 550218.

The in-control c.d.f ofN,,, can be obtained using the p.m.fin (4-8) and is given by

Pr(N 4z—of 30 = )= Z%Qi;s,o(l - sts,o)l

where N, ,, denotes the in-control run-length random variable @nd, is found from (4-20) by

substitutingp, for p*. For illustration, we calculate and show the in-control p.m.f and the in-control

c.d.f values forj = 1,23456 in Table 4.3.

Table 4.3: The in-control probability mass function (p.m.f) and the in-control cumulative
distribution function (c.d.f) for the upper one-sided2-of-3 sign chart

j 1 2 3 4 5 6
Pr(N2y50 = J) 0 0 0.00189| 0.00186 0.00181 0.001B0
Pr(N%y 50 < J) 0 0 0.00189| 0.00375 0.00556 0.007B6

Given the c.d.f we can find th#00n™ percentile of the run-length distribution, which is the

smallest integerj so thatPr(N,,,, < j)=7. For example, the second quartile (the median run-

length, denotedMDRL) is found to beQ, =384. The percentiles provide useful information
regarding the efficacy of the control chart in addition to the moments such asRtheand the

SDRL,.
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Lower one-sided1-of-1, 2-of-2 and 2-of-3 sign charts

(02%—

By substitutingp™ = p~(n,a,6) , which is defined in (4-12), fop® = p* n(b,d, , Which is defined
in (4-11), in the transition probability matrices of (4-14), (4-15) and (4-20), the distributions of the run-

length random variablebl_,,, N,,, and N,,, of the lower (negative) one-sidéebf-1, 2-of-2 and2-

of-3 charts, respectively can be straightforwardly obtained. This is so because each lower one-side

chart is a mirror image of the corresponding upper one-sided chart.

Also, note that, when we monitor the median, the in-control distribution of the plotting statistic is

symmetric i.e.T, ~Bin{,05). In this case, it makes practical sense to use symmetrically placed

control limits and seb=a so thatUCL =n-a and LCL = a; this implies that the control limits are

d
equidistant from both ends. For this specific choice of the control limits we havé'thdl i.e. the

signaling indicators used to define the upper one-sided charts have the same distribution as tt
signaling indicators used to define the lower one-sided charts, and implies that the in-contro
performance of the lower and the upper one-sided sign charts, for monitoring the median, are identice
The performance of the upper and the lower one-sided sign charts will be further discussed in sectic

4.2.4 when we study their design.

Lastly, note that, the distributions ™, and N, can also be obtained from thoseTQf (see

Remark 5) by settingr = p~ and substitutink = Dbr k= 2 in (4-16) and (4-17), respectively.
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Two-sided sign charts

The derivation of the transition probability matrices and the run-length distributions of the two-

sided charts (via the Markov chain approach) parallel those of the one-sided charts.

For the two-sided charts, the signaling indicatgrs are defined by a series of values 0, 1 or 2,
depending on whether the corresponding charting stafisfitots between the two control limits, on
or above thaJCL, or on or below thé.CL, respectively; the probabilities for these three events are

1- p*=1-p*-p7, p" and p~, respectively (see e.g. Figure 4.10 below).

B¢ =D =7° ot

Pr(f, =0)=1-p* —p

Plottin g Statistic

LCL
Pr(§ =2)=p~

Satmple number f Time (1)

Figure 4.10: The three regions on the two-sided control chart (‘0’, ‘1’ and ‘2’) and their
associated probabilities used to classify the charting statistic
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For thel-of-1 two-sided chart the run-lengtN,, is the waiting time for the first occurrence of

the eventA= A A, (see e.g. Figure 4.2), which is the first occurrence of the compound pattern

A=A, OA, inthe series of,'s (i.e. among the 0's, 1's and 2’'s) whefg =1 and A, =2 are two

distinct simple patterns in this situation.

The state space for the imbedded Markov chain associated with the vahgble is

Q={¢,012}, which hasm= 4states. The absorbing states are {1} and {2} whereas {0} is the

transient state andy{ is the dummy state.

The transition probability matrixM ,, is given by

where, for example, the entry

Pooi Pos Pp2| |0 1-p"-p ip" p
Pooi Por_Poz|_|0 1=p"=p" 1P’ P (4-21)
Poi Pu Po 0 0 i1 0
| |
P20l P21 Pop 0 0 1o 1

in th&” 2ow and 2 column of M ,,, denoted byp,,, is the

probability that the system remains in state {0}, that is, wiiereplots IC at timei — 1and T, plots

IC at timei .
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Two-sided 2-of-2 DR sign chart

The run-lengthN_®, of the2-of-2 DR two-sided chart is the waiting time for the first occurrence

of the eventD, or D, or D, or D, (see e.g. Figure 4.6), which is the first occurrence of the

4
compound patterm\ :U/\i in the series of;'s, where A\, =11, A\, =22, A, =12 and A\, =21

i=1

are the four distinct simple patterns.

The imbedded Markov chain, in this case, is defined on the state space
Q= ¢{ ,0,1,211,22,12,21} , whereg¢ is the dummy state, the three states {0}, {1} and {2} are the
transient states and the four states{11},{22}, {12} and {21} are the absorbing states.

The transition probability matrixM 4, is given by

0 1-p'-p p" p i 0 0 O

0 1-p"-p p° p‘i 0O 0 0 O

0O 1-p"-p~ O O/p" O p O

v {%g}zfﬂ [0 1=p-p 0 0j0 p 0 p| 422

Oua i 1o 0 0 0O 0/1 0 0 O

0 0 0 010 1 0 O

0 0 0 oi 0O 0 1 O

|0 0 O 0/0 O 0 1]
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If we let

o1 oeLva<[L 1 T2eLuo)

where | (T, O (LCL,UCL)) denotes the indicator function for the evémt(LCL UCL)}
then

{&F =1} ifand only if & A} O{¢ =2} (4-23)
so that

P{* = D)= Pr§, = D+Pr¢ =2) (4-24)

where thef*’s is a sequence of i.i.d. Bernoulli random variables each with probability of
successPr¢* =) =Pr(T, O(LCL,UCL)) = p* = p" + p~ and theé, 's is a sequence of
iid tri-variate random variables with probabilities Pr¢ =1) =p",

Pr¢ =0)=1-p* =1-p' - p andPr( =2) = p~, respectively.

Expressions (4-23) and (4-24) permit us to define the signaling events and obtain the run:

length distributions of the two-sidddof-1 and the two-side@-of-2 DR sign charts using

the &*’s instead of using th€, 's. This means that, instead of using the Markov chain
approach, we can find the distributions®f,, and N2, using the results (or properties)

of the geometric distribution of ordér.

In particular, it follows from (4-23) and (4-24) that the run-lenbt}}, of the two-sided-

of-1 chart, which is the waiting time for the first occurrence of the event

A=A OA H{ & A} O{é =2}, is equivalent to the waiting time for the first success
(i.e. 1) among thef" s, that is, A= {&* = 1}. Likewise, the run-lengtiN.>, of the two-
sided 20f-2 chart, which is the waiting time for the first occurrence of the ex&nor D,

or D, or D, (see e.g. Figure 4.6), is the same as the waiting time for the first occurrence
of two consecutive successes (two successive 1's) among éfte, that s,
D(DR ={¢&%, =& =1} so that

Pr@© (DR))= Pr(D,0 D, 0D, 0 D,) = Pr{&:, = & =1}) = (p*)2.
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The distributions ofN, ., and N,<, are therefore both geometric distributions of orkler
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so that closed form expressions for the p.m.f&Ngf, and N2F, can be conveniently
obtained from (4-16) by setting
k=1 with a=Pr(A=p*
and
k=2 with a=Pr(D(DR))=(p*)?

instead of symbolically simplifying expression (4-8).

For example, upon substituting the essential transition probability sub-matrix of the two-

0 _|0 1-p"-p |_|0 1-p
210 1-p*-p | |0 1-p

into (4-8) and simplifying symbolically, we get an explicit formula for the p.m.Ngf,

sided1-of-1 sign chart

I+

I+

(via the Markov chain approach) that corresponds to the already available p.m.f one

obtains after substituting® andk = linto (4-16) i.e.

PrN,,=j hab@)=Prl,,=j|nab@) =@1-p*)"p* for j= 123.. (4-25)
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Two-sided 2-of-2 KL sign chart

The run-lengthN .-, of the2-of-2 KL two-sided chart is the waiting time for the first occurrence

of the eventD, or D, (see e.g. panels (a) and (b) of Figure 4.6), which is the first occurrence of the
compound patter\ = A, A, in the series of,'s, where/A, =11 and A, = 22 are the two distinct

simple patterns in this case.

The imbedded Markov chain associated with the run-length varidiie is defined on the state

spaceQ = ¢ ,0,1,211,22}, which hasm= 6states, where {11} and {22}are the two absorbing

states.

The transition probability matrixM , of the Markov chain is given by

01-p'-p p" p 10 O
0 1-p"-p” p" p {0 O
M g —F—‘f‘li-c-“-*%} S L L (4-26)
Opsa i loe] |0 1-p"-p" p° 0,0 p
0o o0 0 011 0
|0 0 0 010 1|
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Two-sided 2-of-3 sign chart

The run-lengthN,,,, of the 2-of-3 two-sided chart is the waiting time for the first occurrence of

the eventE, or E, or E; or E, (see e.g. Figure 4.7), which is the first occurrence of the compound

4
pattern A =U/\i in the series of,'s (i.e. among the 0’s, 1's and 2’s), whefig¢ =011, A, =101,

i=1

N\; =022 and A\, = 202 are the four distinct simple patterns.

The imbedded Markov chain, in this case, is defined on the finite state space
Q= ¢{ ,0,1,20110,02,20,0, 0., 0, a,} with m=12 states, where the four states

a, ={011},a, ={101}, a, ={022} and a, ={202} are the absorbing stateg,is the dummy state,
and the eight transient states are all the sequential sub-pattekns@f11, A, =101, A, =022 and
N, =202, respectively. In this case, the essential transition probability sub-m@tix of the

transition probability matrix

O4<8 |4><4
is given by
0 1-p'-p p* p 0 0 0 |
0 1-p"-p 0 p’ 0 P 0
0 0 p* po 0 1-p'-p O 0
0 0 " p 0 0 0 1-p'-
Qe = p IO_ o P —-p (4-27)
0 0 0O p 0O 1-p -p 0 0
0 1-p"-p 0O 0 O 0 p- 0
0 0 p* 0 O 0 0 1-p'-p
|10 1-p"-p° O 0 p’ 0 0 0 |

whilst the non-essential transition probability sub-ma@iy, is given by

+

@

£

[ee)

[
O O o o
O O o o
o o o o
O o o o
o o “
© o o
C o o o
o S o o
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In general, if F,F,,...,F,, r=1 are the set ofll possible events in which (a) k

consecutive charting statistics, or (b) exadtlyof the lastw charting statistics) can plot

r
OOC, one can design a chart that signals on the first occurrence of theFewénlr, .
i=1

The run-length of such a chart would be (a) geometric of deder (b) geometric of order
kK/w.

However, we prefer, due to practical consideratitm&xclude some of thg,’s ; in doing

so the distribution of the run-length is not necessarily geometric of &raergeometric of

order k/w and we then use the Markov chain approach to find the run-length distribution.

For example, as mentioned earlier, because the itkeo-2-of-2 KL chart signals only if

event D, or D, occurs for the first time and does not signal (unlike the two-2elefel?
DR chart) in case ever, or eventD, occurs (see Figure 4.6), the distributionf:, ,

in general, is not a geometric distribution of orédler . 2

Likewise, because the two-sid@ebf-3 sign chart signals only on the first occurrence of
eventE, or E, or E; or E, (see e.g. Figure 4.7) and excludes the remaining eight events
in which exactly two of the last three charting statistics can plot on or outside the control

limits i.e. eventsE;, E;, E,, E;, E;, E,, E;; and E;, (see e.g. Figure 4.8), as signaling

events the distribution o, ;, in general, is not a geometric distribution of order 2/3.

If, however, we were to design a two-sid2ebf-3 sign chart that signals on the first

occurrence of either one of the eveBisfor i = 12...12 the distribution of the run-length
random variable associated with such a chart would be a geometric distribution of order

2/3 with probability of succesBr(T; 0 (LCL,UCL)) = p* = p* + p~ (also see Remark 7).
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4.2.3 The in-control run-length characteristics of the one-sided and two-sided sign
charts

The characteristics of the in-control (IC) run-lémglistributions are essential in the design of a
control chart.  Furthermore, for out-of-control (OOC) performance comparisons their in-control

average run-lengthARL,) and/or false alarm rate=AR) should be equal or, at least, approximately

SO.

Tables 4.4 and 4.5 summarize the expressions foARLe and theFAR of the various sign charts.
The ARL expressions, in general, follow from having written the corresponding essential transition

probability sub-matrixQ ., , substituting it in (4-9) and simplifying symbolically.
For example, for th&-of-1 two-sided chart with state spa€e= {¢,0,1,2}, it was shown that

_|0 1-p"-p
QZXZ {0 1_ p+_ p—j|

so that upon substitution in (4-9) and simplifying we get an explicit formula foARkegiven by

10 —pt-p 11
e, =emn=l [ 110 1P e

Alternatively, in some cases (such as the upper and the lower oneésitiéchnd2-of-2 charts as

well as the two-sided-of-1 and2-of-2 DR charts) one can obtain closed form expressions by using

available results of the geometric distribution of orélerFor example, for the two-sidéiof-2 DR

chart, one obtains th&RL upon substitutingp™ = p* + p~ for a in (4-17); this gives

1-(p" +p)° pr+p +1
ARLSR = E(ND®) = E(T,) = = .
20f 2 ( 20f2) ( 2) (1_ p+ _ p_)(p+ + p_)2 (p+ + p_)2

Note that, for the in-control average run-length
Py =P, (M,0,0=6,)=1, (n-bb+1)
and
Po =P hab=6,)=1-1, (@+Ln-a)
where p, is defined in (4-6), are to be substituted fpi and p~, respectively, in theARL

expressions of Tables 4.4 and 4.5.
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manner. For example, for the 2-ofaPper one-sided chart, the false alarm rate is
FAR,,, = Pr@, |IC)=Pr(T,_, 2UCL |IC)xPr(T, 2UCL | IC) = (p;)?
where B, is defined in panel (a) of Figure 4.3, whereas the false alarm rate for thekd-afkart is

FAR;;, = Prp, |IC)+Pr(D, | IC)
=Pr(T_, 2UCL T, 2UCL [IC)+Pr(T,, < LCL,T, <LCL|IC)
=(pg)* +(po)”

where D, and D, are defined in panels (a) and (b) of Figure 4.6.

Table 4.4: Average run-lengths ARL’s) and false alarm rates FAR’s) of the upper one-sided

sign charts
1-of-1 upper 2-of-2 upper 2-of-3 upper
AR, = — AR, = 152 Ry = 2, )j - 2+(Ff)2 “p A
P (p") (p")[(p")" —3p" +2)]
FARy; = Po FAR» = (P;)” FAR, s = 21— pg)(Ps)°

Table 4.5: Average run-lengths ARL’s) and false alarm rates FAR’s) of the two-sided sign

charts
1-of-1 2-of-2 DR 2-0f-2 KL
ARL,, =+ ARLE, =P+ P+ ARLE = (P (P o
p +p (p"+p) (p"+1) (p +1)
FARy 1 = Po + Po | FARGE, =(pg)* +(Po)* +2(Pg)(Py) FARG:, = (pg)” +(pg)°
2-0f-3

ARL, =[P ()7 = ptp — 2y + () +2f o ()7 - ptp - 2Ap') + () +1f
’ ~2p" (P P -2Ap Y p +3p (P ) +3p ) p - pt(p)* )|

- (" ) p +8(p ) (P ) -6(p7)*(p ) -6(p")°(p7)?

+(PT (P ) +2pT) (P + () (P —2(p*)* +(p*)’

-2(p7)*+(p)°

(p"+p -1

_ X’ -3°+q+l
2° (2° -59+2)

p* =p =q (say)i.e. symmetrically placed control limits

(equidistant from both ends)
FARy 5 = 2(Pg )* (L= Py = P )+ 2(pg )" - pg — Pg)
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Remark 10

As mentioned earlier, th&AR and the ARL, of all the sign charts depend only on the

probabilitiesp, and/orp,, which in turn depend only on the sample sizeand the

charting constanta and/orb and not on the underlying process distribution. The in-
control run-length distributions therefore remain the same for all continuous process

distributions, and hence the proposed sign charts are nonparametric or distribution-free.
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4.2.4 Design of the upper (lower) one-sidedof-1, 2-of-2 and 2-of-3 sign charts

In order to design the proposed charts and assess their in-control performance the desic
parameters need to be chosen. The design parameters include

(1) the sample siza,

(i) the charting constanis andb, and

(i) the target valugd, .
Because rational subgroups in SPC are small, we focason , 20)d 25.

To monitor the center of a process, one typically choésesbe the process median and this is the
case we study here; hence= 0 that =F,'(05) and p=p, = PrX; > 6, |IC)=05.
However, other choices @ might be desirable in some situations. For example, to monitor the 25
percentile of a processes’ distribution we would get Q26 that 8 =F;* (025 and then

P, = PrX; > 6, |IC)= 075. The sign charts are flexible enough to allow one to do that.

The charting constants andb can be any integer between and including O andHowever,a

and/orb are typically chosen so that ti#&RL, is reasonably large.

Tables 4.6 and 4.7 display the in-control characteristics ofi4bfel sign chart of Amin et al.

(1995) and the new proposed runs-rule enhaBagfel and 2-of-3one-sided sign charts.

Note that, Tables 4.6 and 4.7 apply to both the lower and the upper one-sided sign charts becau
in case of the median we have that p, = @Ben the process is in-control, which implies that the
charting statisticl, has a binomialr| 0.5) distribution which is symmetric. Hence, whHer a (as in

Tables 4.6 and 4.7), the in-control performance of the lower and the upper one-sided sign charts a

identical.

For example, ifn= 6and theLCL of the lower one-sided chart &= , the UCL for the upper
one-sided chart is simplp—b = 6-1=5, and both of these charts have an in-con&B. of 9.14
and aFAR of 0.10938.
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An examination of theARL and FAR values in Tables 4.6 and 4.7 reveal the advantages of the

new sign charts

(i)

(ii)

They offer more practically attractivéARL,’s and FAR’s in that, for any particular
combination of n anda, the attainedARL, values of the-of-2 and the2-of-3 charts are

much higher than those of the 1-otfart with a corresponding decrease in 4.

For example, fom= %and a= Othe ARL, of the 1-of-1 chart is 32.00 with a fairly large
FAR of 0.03125, but for th&-of-3 chart the ARL, increases to a more reasonable 552.65

and theFAR decreases to 0.00189, whereas for2ioé-2 chart, the ARL, equals 1056.00
with a FAR of 0.00098.

Most importantly, when using the 1-ofehart the industry standa®RL, value of 370 and
FAR of 0.0027 is far from being attainable, but with the propod@fi2 chart, for

example, whemn = 1@Gnd a= 2 we can be almost on target e.g. ttA&RL, and FAR

values are 352.65 and 0.00299, respectively.

Thus, by carefully choosing the sample sizethe charting constants and/orb, and the

values ofk and w, we can attain more familiar and recommended values forARg,

and theFAR for the proposed nonparametric sign charts. Even for a sample size as small
asn= 4, an ARL, of 272.00 with aFAR of 0.00391 is possible when tBeof-2 chart is

used witha= Q

Amin et al. (1995) noted that the largest possibiRL, of their1-of-1 one-sided sign chart

for the median i2". However, our runs-rules based sign charts provide a wider range of

attainable ARL, values and false alarm rates. For instancenfor th&5sign charts can
attain anARL, (FAR) as low (high) as 6.00 (0.25) and &L, (FAR) as high (low) as
3293.23 (0.00031) with the 2-of¢hart.
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Table 4.6: The in-control characteristics ARL and FAR) of the one-sidedl—ot-l, 2-of-2 and
2-of-3 sign charts for the median (for samples of siza = 4(1)11)

Sample size LCL UCL 1-of-1 2-of-2 2-of-3
n a n-b=n-a | ARL, FAR ARL, FAR ARL, FAR
4 0 4 16.00 | 0.06250 272.00; 0.00391 148.68 0.00[32
1 3 13.44 0.09766 10.13| 0.134%8
0 5 32.00 | 0.03125 1056.00 0.00098 552.65 0.001189
5 1 4 5.33 0.18750 33.78 0.03516 21.74 0.05713
2 3 6.00 0.2500(0
0 6 64.00 | 0.01563 4160.00 0.00024 2128|64 0.00048
6 1 5 9.14 0.10938 92.73 0.01196 53.95 0.02131
2 4 11.37 0.11816 8.94 0.15509
0 7 128.00 | 0.00781 8352.63 0.000(2
7 1 6 16.00 | 0.06250 272.00; 0.00391 148.68 0.00[32
2 5 23.90 0.05133 16.13] 0.07940
3 4 6.00 0.2500(0
0 8 256.00 | 0.00391
8 1 7 28.44 | 0.03514 837.53] 0.00124 440.y5 0.00p39
2 6 6.92 0.14453 54.79 0.02089 33.35 0.03%74
3 5 10.33 0.13197 8.34 0.16806
0 9 512.00 | 0.00195
1 8 51.20 | 0.01953 2672.64 0.00088 1375/36 0.00075
9 2 7 11.13 | 0.08984 135.02] 0.00807 76.56 0.01469
3 6 19.45 0.06447 13.59| 0.096%0
4 5 6.00 0.2500(0
0 10 1024.00| 0.00098
1 9 93.09 | 0.01074 8759.01 0.00012 4449|96 0.00023
10 2 8 18.29 | 0.05469 352.65| 0.00299 190.Y1 0.00k65
3 7 5.82 0.17188 39.67 0.02954 25.00 0.04893
4 6 9.69 0.14209 7.98 0.177(6
0 11 2048.00| 0.00049
1 10 170.67 | 0.00586
11 2 9 30.57 | 0.03271 964.92 0.00107 506.04 0.00R07
3 8 8.83 0.11328 86.75 0.01283 50.78 0.02276
4 7 16.92 0.07530 12.14] 0.109%8
5 6 6.00 0.2500(0

"Note: Only ARL, values greater than 5 and less than 10 000 are shown
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Table 4.7: The in-control characteristics ARL and FAR) of the one-sidedl-of-1, 2-of-2 and
2-of-3 sign charts for the median (for samples of siza =12(1)15(5)25)

Sample size LCL UCL 1-of-1 2-of-2 2-of-3
n a n-b=n-a | ARL, FAR ARL, FAR ARLq FAR
0 12 4096.00| 0.00024
1 11 315.08 | 0.00317
12 2 10 51.85 | 0.01929 2740.07 0.00087 1409/56 0.00073
3 9 13.70 | 0.0730Q0 201.36| 0.00533 111.64 0.00p88
4 8 5.16 0.19385 31.77 0.03758 20.58 0.06(59
5 7 9.25 0.14993 7.73 0.18375
0 13 8192.00| 0.00012
1 12 585.14 | 0.00171
2 11 89.04 | 0.01123 8017.78 0.00013 4076/31 0.00025
13 3 10 21.67 | 0.04614 491.35] 0.00213 262.59 0.004§06
4 9 7.49 0.13342 63.67 0.01780 38.21 0.03(85
5 8 15.29 0.08441 11.20[ 0.119}7
6 7 6.00 0.2500(0
1 13 1092.27| 0.00092
2 12 154.57 | 0.006471
14 3 11 34.86 | 0.02869 1250.0% 0.00082 651.82 0.00160
4 10 11.14 | 0.08978 135.19] 0.00806 76.66 0.01467
5 9 26.97 0.04493 17.87| 0.07082
6 8 8.93 0.15623 7.55 0.18896
1 14 2048.00| 0.00049
2 13 270.81 | 0.00369
3 12 56.89 | 0.01758 3293.23 0.00081 1689|92 0.00061
15 4 11 16.88 | 0.05923 301.88] 0.003%1 164.28 0.00b60
5 10 6.63 0.15088 50.56 0.02276 31.02 0.03866
6 9 14.14 0.09218 10.53] 0.1283%9
7 8 6.00 0.2500(0
2 18 4969.55| 0.0002(
3 17 776.15 | 0.00129
4 16 169.23 | 0.00591
20 5 15 48.32 | 0.02069 2383.29 0.00043 1228(53 0.00084
6 14 17.34 | 0.05764 318.13] 0.00332 172.Y5 0.00pb27
7 13 7.60 0.13159 65.35 0.01732  39.13  0.03¢07
8 12 19.75 0.06336 13.76| 0.09483
9 11 8.32 0.16964 7.21 0.19946
4 21 2196.55| 0.00046
5 20 490.52 | 0.00204
6 19 136.67 | 0.00732 9511.45 0.00011
7 18 46.21 | 0.02164 2181.12 0.00047 1125(86 0.00092
25 8 17 18.56 | 0.05384 363.08] 0.00290 196.13 0.00H49
9 16 8.71 0.11476 84.64 0.01317 4959 0.02332
10 15 26.93 0.04502 17.85| 0.07094
11 14 11.30 0.11904 8.90 0.15594
12 13 6.00 0.2500(0

"Note: Only ARL,values greater than 5 and less than 10 000 are shown.

314



-

=

.“'f,_
N UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

4.2.5 Performance comparison of the one-sided sign charts

We compare the performance of thef-1, the 2-of-2 and the2-of-3 sign charts to that of the
competingl-of-1 SR chart of Bakir (2004) and thof-2 SR charts of Chakraborti and Eryilmaz
(2007) under the normal, the double exponential (or Laplace) and the Cauchy distributions; fol

completeness, we also include the well-known ShewKadhart.

The double exponential and the Cauchy distributions are normal like with different tail behavior

(see e.g. Figure 4.11). For the double exponential distribution the scale parameter was set equal

1/4/2 for a standard deviation of 1; for the Cauchy distribution the scale parameter was set eque

to 02605 in order to achieve a tail probability of 0.05 ab8ye 16¢te same as for & 6,( J)

distribution.

Without loss of generality, we take the in-control median t@pe . A0 three distributions are

symmetric and a shift refers to a shift in the mean (median). The amount of shift in the median wa
taken over therangé =  0(0.2)1.2

Cauchy (8= 0,4 = 0.2605)

1

Laplace(8=10,1=1/+2)

Figure 4.11: Probability distributions used for the performance comparison of the sign control
charts
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For comparison purposes the control charts are designed so thRIthevalues are high and are

(@

approximately equal. However, because the nonparametric charts are based on charting statistics t
have discrete distributions, it is not possible to straightforwardly design the charts such that thei

ARL, values are all equal, and equal to some desired value such as 370 for a given sampleegize

e.g. Tables 4.6 and 4.7) .

Randomization was therefore used to ensure that the charts all have thARlgmfer a selected

sample size. The technique is mainly used in the testing literature to compare the power of tests bas
on discrete test statistics so that they have identical nominal Type | error probability such as 0.05 (se
e.g. Gibbons and Chakraborti, (2003)). We provide an example for illustration withofkE sign

chart; randomization for the other nonparametric charts can be handled in a similar way.

Example 2

Consider constructing Bof-1 upper one-sided sign chart withRL, of 370 when samples of size

n=10 are used. From Table 4.6 we see that for this chart, exact in-cétolalues of 1024 (when
UCL =10) and 93.09 (whetUCL = Pare attainable that trap the target value 370.

The following randomized decision rule has an exaleL, of 370:

“Declare the process OOC if. =UCL =10 (with probability 1) and with probabilityq if

T, =UCL -1=9, where xg< lis chosen such thatPf{ = 10|C }q .Pr(, = 9|IC )= 1/370".

Assuming that the median is the parameter of interest and the procesd is~En (005) and

therefore

q= [L/370 PE(= 10IC )]/PR{ = 9|C k= 01768< 018.

Hence, if we declare the process OOC every time the charting statistic is greater than or equal to ]
and declare the process OOC in 17.68% of the cases the charting statistic equals 9, we would have &

of-1 upper one-sided sign chart with an in-contf&L of 370.

In practice, we could use a random number generator to make a decision; for example, if th
charting statistic equals 9, we could draw a random number between 1 and 100; if the drawn number

between 1 and 18, the process is declared OOC, otherwise it is not.
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Note that, randomization is used to ensure that the in-coARbl values of the competing charts
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are equal so that their OOC performance can be fairly compared. The implementation and applicatic

of the charts remain as defined earlier and require no randomization.

The in-control (whend = 0&nd the out-of-control (whe® # ©haracteristics of the various
charts for samples of size=  Hie shown in Tables 4.8, 4.9 and 4.10 under the normal, the double
exponential and the Cauchy distribution, respectively. The characteristics includBlth¢éhe SDRL
as well as the'® the 2%’ (the first quartileQ, ), the 50" (the median run-lengthyIDRL ), the 7%' (the

third quartile,Q,) and the 9% percentiles of the run-length distribution.

Note that, since randomization was used and the out-of-control distribution for the SR statistic is
unavailable for most distributions, we used simulations (100 000 samples each of to esfimate

these characteristics in SA&1; these programs can be found in Appendix 4A.

Table 4.8: In-control and out-of-control characteristics of the run-length distributions of the one-
sided1-of-1 sign, the2-of-2 sign, the2-of-3 sign, thel-of-1 SR and the2-of-2 SR chart for the
median under the normal distribution

1-of-1 sign UCL=10) 1-of-1 SR UCL=53)
Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q; | MDRL | Q; | 95"
00 | 370 | 370.4| 19| 107 259| b514 1197370 | 369.7| 19| 106 255| 509 1099
02 | 104 | 1037 6| 30 72 144 31p 88}7 882 |5 Pp6 6P 123 P65
04 | 36| 32| 2| 11 25 49 106 273 268 2 |8 19 38 g1
06 | 147] 142| 1| 5 10 20 43 106 108 [ B 7 14  B1
08| 7.3 6.8 1| 2 5 100 21 5 4.5 1 p 4 v m
1.0 | 4.2 3.7 1| 2 3 6 12] 29 2.3 1 ] 2 h ]
1.2 | 2.8 2.2 1| 1 2 4 7 1.9 1.3 1 1 1 D g
2-of-2 sign UCL=9) 2-of-2 SR (UCL=33)

shift | ARL | SDRL | 5" | Q, | MDRL | Qs | 95" | ARL [ SDRL | 5" | @, [ MDRL | Q; | 95"
0.0 | 370 | 368.9 108 258 509 117370 | 371.9| 21| 108 256| 514 11p2

20
0.2 64 62.6 5| 19 45 88 189 509 494 4 16 36 70 150
04| 175| 16.2 2 6 13 24 500 12y 114 2 5 9 n7 B5
06 | 7.2 5.9 2 3 5 10 19 5.2 3.9 2 y 4 v 13
0.8 4 2.7 2 2 3 5 9 3.1 1.7 2 2 2 4 1
10 ] 29 15 2 2 2 3 6 2.4 0.9 p. p. 2 ? 4
12| 24 0.8 2 2 2 2 4 21 0.4 p. p. 2 ? K
2-of-3 sign UCL=9) X-bar (UCL =0.8797)

shift [ ARL | SDRL | 5" | Q, | MDRL | Qs | 95" | ARL | SDRL | 5" | @ | MDRL | Q; | 95"
00 | 370 | 362.8] 21| 108 255| 510 1094370 | 370.3| 20| 107 257| 513 11p9

0.2 | 62.2| 60.3 5 19 44 8§ 183 634 625 4 19 44 88 187
04 ] 17.2| 155 3 6 12 23 48] 15p 140 1 5 11 21 15
06 | 7.2 5.6 2 3 5 9 18 53 4.8 1 2 4 v 16
08 | 4.1 2.6 2 2 3 5 9 2.5 1.9 1 1 2 B i
1.0 3 1.4 2 2 3 3 6 15 0.9 1 1 1 2 3
12| 25 0.8 2 2 2 3 4 1.2 0.5 1 1 1 L 2
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Table 4.9: In-control and out-of-control characteristics of the run-length distributions of the one-
sided1-of-1 sign, the2-of-2 sign, the2-of-3 sign, thel-of-1 SR and the2-of-2 SR chart for the
median under the double exponential distribution

1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53)
Shift | ARL | SDRL | 5" | Q, | MDRL | Qs | 95" | ARL | SDRL | 5" | Q; | MDRL | Qs | 95"

0.0 | 370 | 371.2| 19| 107 257 514 1110370 | 370.4| 19| 106 256 511 11]1
0.2 | 546 | 53.8 3| 16 38 78 16 48{7 482 3 14 34 68 145
04 | 166 | 16.1 1 5 12 23 491 138 128 1 4 9 n8 B9
06| 7.5 7 1 3 5 10 21 5.7 5.1 1 2 4 3 16
08 | 4.3 3.8 1 2 3 6 12 3.2 2.6 ] 1 2 il 8
1.0 3 2.4 1 1 2 4 8 2.2 1.6 1 1 2 3 5
1.2 ] 22 1.7 1 1 2 3 6 1.7 1 1 1 1 2 4
2-of-2 sign UCL=9) 2-of-2 SR (UCL=33)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q; | MDRL | Q; | 95"
00| 370 | 368.5| 21| 107 256| 512 1099370 | 369 | 21 255| 511 1102

-
S

0.2 29 27.5 3 9 20 40 84| 318 304 3 10 22 A4 D2

0.4 8 6.7 2 3 6 11 21 8.1 6.8 . 3 6 11 2@

06 | 41 2.8 2 2 3 5 10 4 2.7 2 2 3 5 g

08| 2.9 15 2 2 2 4 6 2.8 1.4 . p. 2 B 4

10| 24 0.9 2 2 2 2 4 2.3 0.8 . p. 2 ? 4

12 ] 22 0.6 2 2 2 2 4 21 0.5 2 Z 2 ? K
2-of-3 sign UCL=9) X-bar (UCL=0.9267)

Shift | ARL | SDRL | 5" | Q, | MDRL | Qs | 95" | ARL | SDRL | 5" | Q; | MDRL | Qs | 95"
00| 370 | 361 | 20| 108 251| 505 1049370 | 368.1| 20| 107 257| 510 1103

02 ] 282| 264 3 9 20 38 81 80/l 799 5 23 56 111 240
0.4 8 6.4 2 3 6 10 211 209 20.9 2 6 15 29 @1
06 | 4.2 2.6 2 2 3 5 10 6.9 6.4 1 2 5 D 20
0.8 3 1.4 2 2 3 3 6 3 2.4 1 1 2 4 8
1.0 ] 25 0.9 2 2 2 3 4 1.7 1.1 1 1 1 ? 4
12| 23 0.6 2 2 2 2 3 1.2 0.5 1 1 1 L 2
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Table 4.10: In-control and out-of-control characteristics of the run-length distributions of the
one-sidedl-of-1 sign, the2-of-2 sign, the2-of-3 sign, thel-of-1 SR and the2-of-2 SR chart for
the median under the Cauchy distribution

1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53)
Shift | ARL | SDRL | 5" | Q, | MDRL | Qs | 95" | ARL | SDRL | 5" | Q; | MDRL | Qs | 95"
0.0 | 370 | 370.9] 19| 106 259| 516 11}3370 | 367.7| 19| 105 255| 511 111

0.2 | 18.2| 17.7 1 6 13 25 53 15p 1541 1 5 11 21 16

04 | 54 4.9 1 2 4 7 15 4.5 4 1 2 3 6 1p

06 | 3.2 2.6 1 1 2 4 8 2.7 2.1 1 1 2 4 1

08| 24 1.8 1 1 2 3 6 2.1 15 1 1 2 B K

1.0 2 1.4 1 1 2 3 5 1.7 1.1 1 1 1 2 4

1.2 ] 1.8 1.2 1 1 1 2 4 1.6 1 1 1 1 2 3
2-of-2 sign UCL=9) 2-of-2 SR (UCL=33)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q; | MDRL | Q; | 95"
00 | 370 | 368.4| 21| 107 257| 511 1193370 | 370.4| 20| 108 258| 512 11]1

02| 8.8 7.4 2 3 6 12 24 114 101 P il 8 15 31

04| 3.3 1.9 2 2 2 4 7 4.1 2.8 2 Y. 3 b 1p

06 | 25 1 2 2 2 3 5 2.9 15 2 2 2 4 6

08 | 2.2 0.7 2 2 2 2 4 2.5 1 2 2 2 3 5

10 ] 21 0.5 2 2 2 2 3 2.3 0.8 . p. 2 ? 4

12 ] 21 0.4 2 2 2 2 3 2.2 0.6 2 Z 2 ? 4
2-of-3 sign UCL=9) X-bar (UCL = 30.6802)

Shift | ARL | SDRL | 5" | Q, | MDRL | Qs | 95" | ARL | SDRL | 5" | Q; | MDRL | Qs | 95"

0.0 | 370 | 360.5| 21| 10¢ 252 503 1085370 368 19| 107 258 513 11(¢1

0.2 | 8.7 7.1 2 4 7 11 23 367 36655 19 106 256 507 1096
04 ] 34 1.8 2 2 3 4 7 367 367.2 19 106 254 507 1p97
06 | 2.6 1 2 2 2 3 5 364 3655 1P 105 251 304 1p90
08| 23 0.7 2 2 2 3 4 361 361.) 19 1p4 248 500 184
1.0 ] 2.2 0.5 2 2 2 2 3 360 360 10 104 249 499 1p77
12| 22 0.4 2 2 2 2 3 355 3538 19 1p3 24y 492 1P66
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Table 4.11 summarizes our findings from Tables 4.8, 4.9 and 4.10 and ranks the charts (from the
most to the least favorable) under each of the three distributions. The ranking was based primarily on
their ARL (the current norm in the SPC literature), but since the run-length distributions are right
(positive) skewed, we also looked at the median run-lengRL ), the first and third quartiles (i.e.

Q, andQ,), as well as the'sand the 98 percentiles.

Table 4.11: Ranking (from most to least favorable) of the one-sided nonparametric charts for
the median under the normal, the double exponential and the Cauchy distributions based on out-
of-control ARL and run-length percentiles. TheARLy = 370

Normal Double Exponential Cauchy
2-of-2 SR 2-of-2 sign /2-o0f-3 sign | 2-of-2 sign /2-0f-3 sign
2-of-2 sign /2-of-3 sign 2-0f-2 SR 2-of-2 SR
1-of-1 X 1-of-1 SR 1-of-1 SR
1-of-1 SR 1-of-1 sign 1-of-1 sign
1-of-1 sign 1-0f-1 X 1-of-1 X

Overall, it is concluded that the proposed sign charts

0] have substantially better out-of-control performance (i.e. sh@®ir values) than thé-
of-1 sign chart of Amin et al. (1995),

(i) compete well with the SR charts of Bakir (2004) and Chakraborti and Eryilmaz (2007), and

(i) outperform the ShewhaX chart in case of the heavier tailed distributions.
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4.2.6 Design of the two-sided-of-2 DR, the 2-of-2 KL and the 2-of-3 sign charts

The characteristics of the in-control run-length distribution are typically used in the design and/or

the implementation of a chart. As noted before, Ak, should be high so that the time and/or effort

spent on searching for nonexistent out-of-control conditions is not wasted.

Tables 4.12 and 4.13 display tAé&L, and theFAR values of the two-sided 1-of-12-0f-2 DR,

2-of-2 KL and 2-of-3 sign charts, respectively. For simplicity we only consider symmetrically placed
control limits for the median i.e. LCL=a and UCL=n-a, so that

ps =Pr(T, =UCL |IC)=Pr(T, < LCL |IC) = p,. Asymmetric control limits may of course be used

when necessary, say for monitoring percentiles other than the median.

To attain the desiredARL, and/or FAR (for any one of the four charting procedures) the

practitioner may use Tables 4.12 and 4.13 to select the suitable charting can@tante the control

limits) for the sample sizen at hand. Note that, as pointed out by Amin et al. (1995), the largest
possible in-controlARL for the two-sided 1-of-kign chart is2"™" when p = 05 and thus unless is
sufficiently large, it is not possible to get close (even approximately) tBRiy such as 370; this

makes the 1-of-tharts somewhat unattractive from a practical point of view.

However, for any combination af and a values theARL, (or FAR) values of th&-of-2 DR,

the 2-of-2KL and the 2-of-3sign charts are higher (or smaller) than that of the 101 chart.

For example, iln= 5anda= Othe LCL = Oand theUCL = 5thel-of-1 sign chart has aRL,

of 16.00 (with aFAR of 0.06250), whereas both tBeof-2 DR and the2-of-2 KL charts have much
higher ARL, values, 272.00 and 528.00, respectively (and much snmahé&r values, 0.00391 and

0.00195, respectively). Therefore, the new two-sided sign charts with signaling rules are more usefl

to the practitioner.
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Table 4.12: The in-control characteristics ARL and FAR) of the two-sided1-of-1, the 2-of-2
DR, the 2-of-2 KL and the 2-of-3 sign charts for the median (for samples of siza = 4(1)14)

Sample size | LCL | UCL 1-of-1 2-of-2 DR 2-of-2 KL 2-of-3
n a n-a | ARLg FAR ARL, FAR ARL, FAR ARLq FAR
4 0 4 8.00 | 0.12500 72.00{ 0.01563 136.00 0.00y81 79.87 0.01367
1 3 6.72 0.19531 8.74 0.14648
5 0 5 16.00 | 0.0625Q 272.00 0.00391 528.00 0.00195 285|27 0.00366
1 4 9.78 | 0.14063 16.89| 0.07031 13.74 0.08789
0 6 32.00 | 0.03125 1056.00 0.00098 2080(00 0.00049 1081.23 0.0p095
6 1 5 2547 | 0.04785 46.37] 0.02393 30.4% 0.03738
2 4 5.69 | 0.23633 8.75 0.14771L
0 7 64.00 | 0.01563 4160.00 0.00024 8256(00 0.00012 4209.21 0.0p024
7 1 6 8.00 | 0.12500 72.00{ 0.01563 136.00 0.00781 79.87 0.01367
2 5 7.08 | 0.20532 11.95| 0.10266 11.01 0.112p9
0 8 128.00 | 0.00781
8 1 7 14.22 | 0.07031 216.49 0.00494 418.Y7 0.00p47 228,45 0.00460
2 6 15.43 | 0.08356 27.40f 0.04178 19.74 0.05940
3 5 5.16 | 0.26394 9.00 0.1443b
0 9 256.00 | 0.00391
9 1 8 25.60 | 0.03906 680.96 0.001%3 1336{32 0.00076 701.4 0.00147
2 7 5,57 | 0.17969 36.54| 0.03229 67.501 0.01614 42.18 0.02649
3 6 5.85 | 0.25787 9.72| 0.12894 9.87 0.12692
0 10 | 512.00 | 0.00194
1 9 46.55 | 0.02148 2213.0p 0.00046 4379|50 0.00023 2249.15  0.0p045
10 2 8 9.14 | 0.10938 92.73| 0.01196 176.33 0.00598 100/94 0.01065
3 7 11.37 | 0.11816 19.83| 0.05908 15.43 0.07755
4 6 9.32 0.13987
0 11 | 1024.00| 0.0009¢
1 10 85.33 | 0.01172 7367.11 0.00014 7432.81  0.00014
11 2 9 15.28 | 0.06543 248.87 0.00428 482.46 0.00p14 261|61 0.00400
3 8 441 | 0.22656 23.90| 0.05133 43.38 0.02%67 28.78 0.03970
4 7 5.14 | 0.30121 8.46 | 0.15061 9.29 0.135p0
0 12 | 2048.00| 0.00049
1 11 | 157.54 | 0.00634
12 2 10 25.92 | 0.038597 697.98 0.00149 1370/04 0.00074 718,66 0.00143
3 9 6.85 | 0.14600 53.77| 0.02131 100.68 0.01066 60.31 0.01820
4 8 9.23 | 0.15031 15.89| 0.07515 13.14 0.09203
9.66 0.13529
0 13 | 4096.00| 0.00024
1 12 | 292.57 | 0.0034%
13 2 11 4452 | 0.02244 2026.71 0.00050 4008}89 0.00025 2061.32  0.0p049
3 10 10.84 | 0.09229 128.25 0.008%2 245.67 0.00426 137.7 0.00773
4 9 17.79 | 0.07121 31.83| 0.03560 22.26 0.05221
5 8 7.64 | 0.1688] 8.99 0.1414b
0 14 | 8192.00/ 0.00012
1 13 | 546.13 | 0.00183
2 12 77.28 | 0.01294 6049.95 0.00017 6109.11  0.00017
14 3 11 17.43 | 0.05737 321.23 0.00329 625.02 0.00L65 335|57 0.00310
4 10 5,57 | 0.17957 36.58| 0.03224 67.60 0.01612 42.23 0.02645
5 9 7.92 | 0.17973 13.49| 0.08987 11.84 0.10354
6 8 10.00 0.13091]

"Note: Only ARL, values greater than 5 and less than 10 000 are shown.
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Table 4.13: The in-control characteristics ARL and FAR) of the two-sided1-of-1, the 2-of-2 DR,
the 2-of-2 KL and the 2-0f-3 sign charts for the median (for samples of siza = 15(5)25)

Sample size | LCL | UCL 1-of-1 2-of-2 DR 2-of-2 KL 2-of-3
n a n-a | ARLg FAR ARL, FAR ARL, FAR ARL, FAR
1 14 | 1024.00| 0.0009¢
2 13 | 135.40 | 0.00739
15 3 12 28.44 | 0.03514 837.53 0.00124 1646(62 0.00062 860.1 0.00119
4 11 8.44 | 0.11847 79.69| 0.01403 150.94 0.00y02 87.38 0.03237
5 10 14.30 | 0.09104 25.28/ 0.045%3 18.53 0.06358
6 9 7.07 0.18437 8.82 0.1448B
2 18 | 2484.78| 0.0004(
3 17 | 388.07 | 0.0025§
4 16 84.62 | 0.01182 7244.68 0.00014 7309.35 0.00014
20 5 15 24.16 | 0.04139 607.90 0.00171 1191/64 0.00086 627,27 0.00164
6 14 8.67 | 0.11532 83.87| 0.01330 159.07 0.00665 91.73 0.01176
7 13 18.24 | 0.06924 32.68 0.03463 22.74 0.05103
8 12 5.93 | 0.25346 9.88| 0.12673 9.94 0.125B86
3 22 | 6388.89| 0.00014
4 21 | 1098.27| 0.00091
5 20 | 245.26 | 0.00409
6 19 68.34 | 0.01463 4738.3 0.00021 9408(31 0.00011 4790.78 0.0p021
25 7 18 23.10 | 0.04329 556.83 0.00187 109056 0.00094 57%.4 0.00179
8 17 9.28 | 0.1077§ 95.41| 0.01161 181.%4 0.00581  103|71 0.01036
9 16 23.34 | 0.05268 42.32] 0.02634 28.13 0.04059
10 15 7.91 | 0.18008 13.46| 0.09004 11.83 0.10366
11 14 5.65 | 0.23808 8.76 0.14759

"Note: Only ARL,values greater than 5 and less than 10 000 are shown.
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4.2.7 Performance comparison of the two-sided sign charts
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The out-of-control performance of the two-sided sign control charts were compared amongst on

another and with that of the two-sided SR charts under the normal, the double exponential and tr

Cauchy distributions; again we included the Shewhdrt chart for completeness. The design
parameters of the charts were chosen (coupled with randomization) so that the in&Rhtrehlues
were all equal to 370. As for the one-sided charts various characteristics of the run-length distribution
were obtained using simulations and shown in Tables 4.14, 4.15 and 4.16, respectively with :
summary of our findings given in Table 4.17.

Table 4.14: In-control and out-of-control properties of the run-length distributions of the two-sided

1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR SR, 2-of-2
KL SR and the 1-of-1 X-bar charts under the Normal distribution

1-of-1 sign LCL=0,UCL = 10) 1-of-1 SR (LCL = -UCL = -55)
Shift | ARL | SDRL | 5" | @, | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"
00 | 370 | 369.78 19 106 255| 507 11p6370 | 377.3| 20| 110 264| 528 1188

0.2 [175.00( 17394 1d 51 122| 242 533 17000 169.03 | 9 |49 118 |237 | 506

0.4 | 56.42 | 55.87| 3| 17| 39| 74 16f 5181 5181 |3 15 3 |72 |54

06 | 2157 | 21.14] 2| 7 15| 3d 64 1915 1855 |1 |6 i 26 |6

08 | 982 | 933 1| 3 7 13| 29 869 814 [ 3B 6 12 25

10| 523 | a71| 1| 2 4 7| 15| 461 4090 1 2 3 6 13

12| 324 | 270 1] 1 2 a4l o 289 229 1L 1 2 n 7
2-0f-2 sign DR (LCL=1 , UCL=9) 2-0f-2 SR DR (LCL = -UCL = -39)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"
00| 370 | 363.53] 20| 106 253| 501 106370 | 367.32] 21 108 257| 508 113
0.2 | 166.30| 164.54 14 49 116/ 230 496 129[10 12736 | 8 |38 00 179 | 385

04 | 4375 | 423 4| 14] 31| 60 12§ 2742 2604 [3 |9 1 [38 |80
0.6 | 1468 1325] 2| 5 11| 2d a4 877 742 [2 B 6 12 pa
08| 683 | 547 | 2| 3 5 o 18] 428 2902 p 2 3 5 10
10 | 408 | 271 2| 2 3 5] 10] 287 140 p 2 2 3 5
12 | 297 | 154 ] 2| 2 2 4] 6| 229 o074 b 2 2 D 1
2-0f-2 sign KL (LCL=1, UCL = 9) 2-0f-2 SR KL (LCL = -UCL = -37)
h

Shift | ARL | SDRL | 5" | Q, | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0.0 | 370 | 364.24] 21| 104 256| 51p 10p9 37p 36873 |21 M08 256 |514 |1102

0.2 | 113.10] 11156 7| 34 79 | 156 337 86.09 8513 |6 |26 60  [119 |257

04 | 2828 | 2681 3| 9 20 | 39 8] 186b 1748 [2 |6 18 25 53

06 | 1042 909 | 2| 4 8 14 2o 664 534 P B 5 9 {7

08 | 529 | 392 2| 2 4 7] 13 360 228 p 2 3 A 3

10 | 344 | 206 | 2| 2 3 4| 8| 257 111 p 2 2 3 5

12 | 265 | 117 | 2| 2 2 3 5| 218 o058 2 2 2 > 1
2-0f-3 sign (LCL=1 ,UCL=9) 1-0f-1 X-bar (LCL = -UCL = -0.94858)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0.0 370 363.37| 20| 106 252 504 1088 370 36845 (19 [106 256 510 |1105
0.2 | 108.,50| 106.69 7 33 76 150 318 110,50 109.73 | 6 32 17 153 |329
0.4 | 26.72 25.04 3 9 19 36 77 24.04  23.46 2 7 1y 33 71
0.6 9.94 8.33 2 4 7 13 27 7.39 6.87 il ? 5 10 21
0.8 5.18 3.58 2 3 4 7 12 3.12 2.58 il 1 2 4 3

1.0 3.43 1.84 2 2 3 4 7 1.77 1.17 I3 1 1 P 1

1.2 2.68 1.07 2 2 2 3 5 1.27 0.59 1 1 1 L 4
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Table 4.15: In-control and out-of-control properties of the run-length distributions of the two-
sided1-of-1 sign, the2-of-2 DR sign, the2-of-2 KL sign, the 2-of-3 sign, thel-of-1 SR, 2-0f-2 DR
SR, 2-0of-2 KL SR and the 1-of-1 X-bar charts under the double exponential distribution

1-of-1 sign LCL=0,UCL = 10) 1-of-1 SR (LCL = -UCL = -55)

Shift | ARL | SDRL | 5" | Q, | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0.0 | 370 | 369.58 20| 107 255| 515 11p6370 | 377.57] 21| 113 263| 528 11B2
0.2 [91.20| 90.31] 5| 27 63 126 27p 88535 88p9 |5 [25 61 123 [263
0.4 | 24.44| 2392| 2 7 17 34 77 229 2220 |2 |7 16 32 7.5
0.6 |10.04] 949 | 1 3 7 14| 29 9.19 878 11 B 6 13 D7
08 | 541 | 48| 1 2 4 7 15| 4589 426 1 D 3 7 13
1.0 | 347 ] 292 1 1 3 5 9 3080 248 1 1 2 1 3
1.2 | 252 ] 195| 1 1 2 3 6 229 173 1 1 2 3 5

2-of-2 sign DR (LCL=1,UCL=9) 2-0of-2 SR DR (LCL =-UCL =-39)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0.0 | 370 | 361.71) 20| 108 253| 508 106370 | 370.37] 20, 107 257| 511 11p6
02 |77.17| 7593] 5| 23 54 106 22p 7894 77h1 |5 |24 55 109 [233
0.4 | 16.89| 1557| 2 6 12 23 49 1576 1452 |2 |5 il 21 |45
06 | 6.93| 556 | 2 3 5 9 18] 6.17 48% P 3 5 8 16
08 | 417 | 279 | 2 2 3 5 10f 365 230 P D 3 4 8
1.0 [ 3.09| 167 | 2 2 2 4 6 276 133 2 2 2 3 5
1.2 | 259 | 111 2 2 2 3 5 236 08% 2 2 2 3 i

2-0f-2 sign KL (LCL=1, UCL = 9) 2-0f-2 SR KL (LCL = -UCL = -37)

Shift | ARL | SDRL | 5" | Q, | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0.0 | 370 | 372.820 20| 104 260| 51p 11j4370 | 368.05| 21| 107 257| 518 113
0.2 | 48.75| 4751] 4| 15 34 660 14B 5143 49P6 |4 |16 36 71 51
0.4 |11.73| 10.26] 2 4 9 16/ 321 1118 982 [2 W4 8 15 B1
06 | 545 | 401| 2 2 4 7| 13%  4.89 356 PR P 4 6 2
08 | 355| 216 | 2 2 3 4 8 313 176 2 2 2 1 7
10| 276 | 128 | 2 2 2 3 5 249 102 2 2 2 3 5
1.2 | 240 | 086 | 2 2 2 2 4 222 063 2 2 2 D i

2-of-3 sign LCL=1,UCL=9) 1-of-1 X-bar (LCL =-UCL =-1.011335)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0o | 370 | 363.27] 20| 106 253| 504 10B9370 | 342.30 23 141 258/ 504 1058
0.2 | 46.66| 44.73] 4| 15 33 64 13p 159.80 180,02 [5.5 |46 107 [210 |416
04 |11.21] 955| 2 4 8 15| 30| 4208 36.77 25 13 29 645 [115
06 | 526 | 368 | 2 3 4 7 13| 1044 888 1L 3 8 16 245
08 | 349 | 1.9 2 2 3 4 7 4.02]  3.65 1 2 3 5 95
1.0 | 277 | 116 | 2 2 2 3 5 2001 159 1 1 1 > 55
1.2 | 242 | 077 | 2 2 2 3 4 144 074 1 1 1 3 3
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Table 4.16: In-control and out-of-control properties of the run-length distributions of the two-

sided 1-of-1 sign, the-of-2 DR sign, the2-of-2 KL sign, the 2-of-3 sign, thel-of-1 SR, 2-0f-2 DR
SR, 2-0f-2 KL SR and the 1-of-1 X-bar charts under the Cauchy distribution
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1-of-1 sign LCL=0,UCL = 10) 1-of-1 SR (LCL = -UCL = -55)

Shift | ARL | SDRL | 5" | Q, | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"
0.0 | 370 | 369.19 19| 107 255| 513 11j1370 | 381.92] 20, 113 268| 525 1143
0.2 | 27.06| 26.62] 2 8 19 377 8d 2538 2472 |2 8 18 35 |75
04 | 700| 643 ] 1 2 5 10/ 20| 6.55 6.06 Q1 D 5 0 18
06 | 383 331 1 1 3 5 10] 361 3.08 1 | 3 5 10
08| 276| 221] 1 1 2 4 7 259 199 1L 1 2 3 7
1.0 | 225] 168 1 1 2 3 6 213 154 1 1 2 3 5
1.2 [ 197 | 138 1 1 1 2 5 1.88  1.3( 11 1 ) 5

2-of-2 sign DR (LCL=1,UCL=9) 2-of-2 SR DR (LCL =-UCL =-39)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Qs | 95"
0.0 | 370 | 361.28 20| 108 252| 504 109370 | 368.000 20, 107 257| 512 1099
0.2 | 18.92| 1759 2 6 14 260 54 2499 2354 [3 |8 18 34 |72
04 | 5.08| 370 | 2 2 4 7 12| 724 598 P 3 5 10 19
06 | 329 | 187 | 2 2 2 4 7 466 334 D 2 4 5 11
08 | 271| 125] 2 2 2 3 5 377 242 p 2 3 5 »
1.0 | 246 | 095 | 2 2 2 3 4 333 197 p 2 2 4 7
1.2 | 232| 076 | 2 2 2 2 4 3077 169 p 2 2 4 5

2-0f-2 sign KL (LCL=1, UCL = 9) 2-0f-2 SR KL (LCL = -UCL = -37)

Shift | ARL | SDRL | 5" | Q, | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Q; | 95"

0.0 | 370 | 363.78 21| 104 257| 500 105370 | 369.31] 20, 107 257| 511 1099
0.2 | 13.04] 1165 2 5 9 18 3 1661 1522 [2 |6 1P 22 a7
04 | 414| 279 ] 2 2 3 5 100 534 400 P 2 4 7 13
06 | 288 | 145| 2 2 2 3 6 355 220 p 2 3 4 3
08 | 246 | 094 | 2 2 2 3 4 296 154 p 2 2 n 5
1.0 | 230] 072] 2 2 2 2 4 269 124 p 2 2 3 5
1.2 | 221| 058 2 2 2 2 4 253 104 p 2 2 3 5

2-of-3 sign LCL=1,UCL=9) 1-of-1 X-bar (LCL = -UCL =-61.36038)

Shift | ARL | SDRL | 5" | Q; | MDRL | Q; | 95" | ARL | SDRL | 5" | Q, | MDRL | Qs | 95"

0.0 | 370 | 361.35 20| 108 253| 50F 104370 | 368.97] 19 1068 257 510 113
0.2 | 12.34| 1065 2 5 9 16| 34 371.00 371/53 [20 107 257 |515 (1109
04 | 409 | 251 ] 2 2 3 5 o 369.2 36889 20 107 257 510 1103
06 | 290 | 130| 2 2 2 3 6| 3731 37222 19 107 289 b17 1116
08| 250| 086| 2 2 2 3 4| 3698 36844 20 107 258 513 1103
1.0 | 233 | 066 | 2 2 2 3 4| 37083 37186 19 106 25 514 1110
1.2 | 223| 053] 2 2 2 2 3| 3727 37180 20 107 258 517 1114

Table 4.17: Ranking (from most to least favorable) of the two-sided nonparametric charts under
the normal, the double exponential and the Cauchy distributions based on out-of-contrABRL
and run-length percentiles. TheARL = 370

Normal Double Exponential Cauchy
2-of-2 KL SR 2-of-2 KL sign /2-0f-3 sign 2-of-2 KL sign /2-0f-3 sign
2-of-2 KL sign /2-0f-3 sign 2-of-2 KL SR 2-of-2 KL SR

1-0f-1 X 2-of-2 DR sign 2-of-2 DR sign
2-0f-2 DR SR 2-0f-2 DR SR 2-0f-2 DR SR
2-o0f-2 DR sign 1-of-1 SR 1-of-1 SR

1-of-1 SR 1-of-1 sign 1-of-1 sign

1-0f-1 sign 1-0f-1 X 1-0f-1 X
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In general, we observe that:

(i)

(ii)

the 2-of-2 DR sign, the2-of-2 KL sign and the-of-3 sign charts all outperform the original

1-of-1 sign chart under all three the distributions, and

the 2-of-2KL sign chart and the 2-of-8ign chart are best overall; only outperformed by the
2-of-2 KL SR chart in case of the normal distribution. (Note:2faé-2 KL charts generally
outperform the 2-of-DR charts; whether the chart is based on the sign test or the SR test).

More specifically, we note that:

(i)

(ii)

under the normal distribution, the two-sid2df-2 KL SR chart performs the best (this was
also the case for the one-sided charts), buptbfe? KL sign and the-of-3 sign charts are

good/close competitors, whereas
under the double exponential distribution and the Cauchy distribution:
(a) the 2-of-2KL sign and the 2-of-3ign charts are the top performers,

(b) the sign charts generally perform better than the SR charts except in cas&-of-the
chart (i.e. the 1-of-BR chart is better than the 1-okign chart),

(c) the 2-0of-2 KL sign and the2-of-3 sign charts are both better than tief-2 KL SR

chart, and

(d) the 2-of-2DR sign chart is better than the 2-oBR SR chart.
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4.3 Precedence charts for the unknowm ™' quantile (Case U)

Introduction

Case U is the scenario when the" percentile of the process distribution is unknown or

unspecified; this is unlike Case K and as a consequence the control limits are unknown.

To estimate the control limits a reference sample is obtained; this reference sample is also calle
the preliminary sample or the calibration sample or the Phase | sample. Once the control limits ar
estimated, Phase Il starts. In Phase Il the estimated control limits are used for future monitoring of th
process using new incoming samples taken sequentially from the process; this is the prospecti
monitoring phase.

The new control charts we consider here, in Case U, are based on the median test, which
essentially a modified sign test for two independent samples and is a member of a more general cla
of nonparametric two-sample tests referred to as precedence tests or precedence statistics (see

Gibbons and Chakraborti, (2003)). We therefore refer to the charts of Case U as precedence charts.

Assumptions

We assume that

0] the reference sampléX, ,X,,...,X,,)is a random sample of size available from an in-

control (IC) distribution with an unknown continuous cumulative distribution function
(c.d.f) F, (X) = F(x—6) whered is the location parameter artl is some continuous c.d.f

with median zero,

(i) each Phase Il test sampl, Y,,,....,Y,,) taken at sampling stage (timey 123is.a
random sample (rational subgroup) of size frdm an unknown continuous distribution

with c.d.f G, (y) = F(y -6 )whereg, is the location parameter of tHetest sample, and

(i)  the Phase Il test samples are drawn sequentially and independently of one another and ¢

the reference sample.
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Charting statistics and control limits

The control limits, as mentioned before, are estimated from the Phase | reference sample and th
used for prospective monitoring of the process. In Phase Il, one charting statistic is calculated fror

each new incoming sample and then compared to the estimated control limits.

The estimated control limits are found by arranging the Phase | observations in ascending orde
that is,
Xy < Xy <0< X

mm

where X, denotes thej ™ order statistic of the reference sample of sizeand selecting two order

statistics X, and X,,,, (for a givenl<a<b<m) so that the estimated control limits for the two-

sided precedence charts are given by
LCL = X,,, and UCL = X, (4-28)

respectively, wherea and b are labeled the charting constants; determination of the charting
constants will be discussed later. Note that, like the sign charts of Case K, the precedence charts do |

have a centerline.

The charting statistic at time=  123is an order statisti()(ji:n for 1< j<n from each of the

Phase Il test samples.

The operation and the signaling rules (i.e. when a process is declared OOC) of the runs-rul

enhanced precedence charts is similar to that of the sign charts; however, instead of cdinéueng

sign statistic) with the known control limitdCL andLCL of (4-7) we now compare/ji:n with the

estimated control limit&/CL and LCL of (4-28) at each sampling stage 123...
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(iv)

W UNIVERSITEIT VAN PRETORIA

. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

The median is a robust and flexible estimator of location in the sense that it is
preferred in situations where large measurement errors are expected and is
applicable in more diverse situations (unlike the mean). Thus, although we develop
and discuss the theory of theof-1 and the runs-rule enhanced precedence charts so

that any order statistic can be used as charting statistic, the median is a popula
choice in practice and we therefore focus mainly on the median chart, that is, the

case where the charting statistic is taken as the test sample median.

Furthermore, to simplify matters we assume that the samplensizes+ 2 odd

so that the median of the test sam}zfj:ﬁ is uniquely defined withj =s+ 1Thus,

for example, when the subgroup sizés equal to 5, as is fairly common in SPC

applications, the charting statistic is tH&nallest value in the test sample.

Only two-sided precedence charts are studied. The required modifications for the

one-sided precedence charts are simple and briefly indicated in section 4.3.3.

The proposed precedence charts do not signal unless the charting ng,tistitess
than or equal to the estimated lower control lixif, or is greater than or equal to

the estimated upper control limK, . Although this is theoretically negligible as

the underling process distributions are assumed to be continuous, in practice, one
needs to apply the charts in a correct manner as ties might occur when it is found
that theY order statistic (i.e. charting statistic) is equal to one of the control limits.

The precedence charts can be applied as soon as the necessary order statistic
available and can be a practical advantage in some applications. We comment more

on this point later.
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4.3.1 Run-length distributions of the two-sided precedence charts

The run-length distributions and the statistical characteristics of the precedence charts (such as t
ARL, VARL etc.) are required to design the charts and reveal important information regarding their

performance.

We again use a Markov chain approach to derive the run-length distributions and in some case

draw on the results of the geometric distribution of oikdéo obtain closed form expressions.

Even though the operation (i.e. the signaling events, when a process is declared OOC etc.) of tt
runs-rule enhanced precedence charts of Case U are similar to that of the runs-rule enhanced si
charts of Case K, there is a fundamental difference in deriving the run-length distributions of the

precedence charts compared to that of the sign charts.

In particular, because the control limits are estimated they are random variables (as indicated &

the ” - notation in (4-28)) and, consequently, the signaling indicators of the (two-sided) precedenct

charts i.e.
1 if Y!, 2UCL
& =10 if LCL<Y! <UCL (4-29)
2 if Y., <LCL
and

if Y, O(LCL,UCL)

A (4-30)
if Y, O(LCL,UCL)

& =1(Y!, O(LCL,UCL)) = {cl)

for i = 1,23... are dependent tri-variate (or binary) random variables.

The design, analysis and performance of the charts must therefore take account of the addition
variability introduced as a result of estimating the control limits; this is the main stumbling block in
calculating the run-length distributions, here, in Case U, particularly for the charts that use signaling
rules (ii) and (iii) defined in the beginning of section 4.1 on page 258. Like in Chapter 3 we use a two-
step approach to derive the run-length distribution which involves the method of conditioning (see e.g
Chakraborti, (2000)).
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First we derive theonditional run-length distributions i.e. conditioned on the two order statistics
(control limits), which lets us focus on specific values of the control limits. The performance of the
charts as measured by theanditional run-length distributions are therefore different for each user as

each user has his/her own control limits based on his/her own Phase | data (sample).

Second we derive thenconditional (or marginal) run-length distributions by averaging over the
joint distribution of the two order statistics. Thaconditional run-length distributions reflect the
bigger picture or the overall performance of the charts and take into account that the control limits ar
estimated. The performance of the charts as measured byribenditional run-length distributions
are therefore the same for each user.
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Signaling probabilities

The key ingredients to the conditionalin-length distributions are

(1) the one-step transition probabilitigs, and

(i) the success probability .

The one-step transition probabilities are the elements of the transition probability matrix and are
required in case one uses the Markov chain approach. The success probability, on the other hand, i
prerequisite if one wishes to use the properties of the geometric distribution ofkomkeit is a

parameter of the distribution (see e.g. expressions (4-16) and (4-17)).

The one-step transition probabilities and the success probability all depend on and are functions
the conditional probability of a signal i.e. the probability for a charting statistic to plot OOC given that

(or conditionally on having observed,., = X,,, and X, = X,.,, which is given by

P& Kam X iF G) = PrET =1 LCL = X, UCL = X,.,)
=1- Pr(xa:m < Yji:n < Xb:m | Xam = Xa;m’ Xb:m = Xb:m) (4'31)
=1- Gj (Xb:m) + Gj (Xazm)
where G, denotes the c.d.f of th8 order statistic in a sample of simefrom a distribution with c.d.f

G and the subscript “C” i (X .,» X,m» F,G) indicates that (4-31) is a conditional probability.

Using the probability integral transformation (PIT) and the fact thaj"therder statistic from a
uniform(02) distribution follows a beta distribution with parameteesd n— j + 1(see e.g. Gibbons

and Chakraborti, (2003)) it follows, for example, that

Gj (xa.'m): I:)r(in:n < Xa:m | Xa:m = Xa.'m)
= Pr(G(in:n) < G(Xa:m)l Xa\:m = Xa:m)
= PrU }:n = G(Xa:m )) = IG(Xa:m) (J N—= J +1)
whereU ij:n is the |" order statistic from amniform (0Wistribution and

(V) =[Buv)]™ jo”w“‘l(l—w)V‘ldw for uy> 0

is the c.d.f of theBeta U v dlistribution, also known as the incomplete beta function.
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Thus, the conditional probability of a signal in (4-31) can be expressed as

Pe Kam Xom £ G)=1- l6(x,.0) gn-j+Dh+ lo(x,..) (J,n=j+1). (4-32)

With the conditional probability of a signal in (4-32) we can without difficulty finddbrelitional
run-length distributions of the two-sidettof-1, the 2-of-2 DR, the 2-of-2 KL and the 2-of-3
precedence charts. Theconditional run-length distributions, in general, follow straightforwardly

from the conditionalrun-length distributions.
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Remark 12

0] We denote, without loss of generality, the two order statiséics, (X,,,, by ¥ = (XY)

and their observed value,f X, By z= (X,y). Thus when writingZ =z it means

(Xazm’xb:m) = (Xa;m’xb:m) or (X 1Y) = (X’ y) .

In particular, this notation permits us to write (4-32) as

p(i: XY FG)= 1_IG(Y) (j.n=] +1)+|G(X)(j’n_ j+D). (4-33)

(i) It is instructive to compare the signaling probability of the two-sided sign chart of Case K

with that of the two-sided precedence chart of Case U.

Specifically, we note that by substitutirg X ( apd G ¥ ) for p, replacinga with j -1
and swappind for n— | in (4-13) we obtain (4-33).

(i) Because{geii =1} if and only if {fi =1} D{?i =2} we can re-express the conditional
probability of a signal of the two-sided precedence chart in terms of that of the upper and

the lower one-sided charts i.e.

pe X Y ,F.G)= pz (X,F,G)+ p(Y,F,G) (4-34)
where

P (X F.G)=Pr(§ = 2| Xy = %) = Loy (0= j +1) (4-35)
and

P (Y F.G)=Pr( = 1] Xy = Xo )= 1=l gy, (.0 = ] +1) . (4-36)

Expression (4-34) will be particularly useful when deriving the run-length distributions of

the two-sided precedence charts via the Markov chain approach.

(iv)  For notational simplicity and brevity we denotp: (X,Y,F,G), p:(X,F,G) and

pe (Y,F,G) simply by pZ, pc and pZ, respectively.
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4.3.1.1 Distribution of N,, : Run-length distribution for the 1-of-1 precedence chart

The two-sidedl-of-1 precedence chart was studied in detail by Chakraborti et al. (2004); this chart
is called the “basic” precedence chart. The authors derived explicit formulae for both the conditiona
and the unconditional run-length distributions and their associated statistical characteristics (such e
the ARL, VARL, FAR etc.) by applying, amongst numerous other techniques, results of the geometric
distribution of orderk = 1coupled with the method of conditioning (expectation by conditioning);
doing so they have taken proper account of the dependency between the Phase Il signaling events.
the paragraphs that follow, we simply review the most important statistical characteristicg-of-the
precedence chart; for complete details on the derivations of the results, see the original article b
Chakraborti et al. (2004).

Conditional run-length distribution

In particular, Chakraborti et al. (2004) showed that giZenz theconditional distribution of the
run-length N, is geometric with parameter (success probabilitgf = pZ (X,Y,F,G).

Accordingly, all properties and characteristics of the conditional run-length distribution follow

conveniently from the properties of the geometric distribution of dkder. 1

For example, the conditional p.m.f of , is

PriNy, =t|Z=2)=(@1- pé)t_l pé for t= 123...

whereas the conditional average run-leng@ARL ) and the conditional variance of the run-length
(CVARL) are given by

CARL,, =E(Nyy, |Z=2)=1/p; and CVARL, = varNy, |Z=2)= 1~ pc)/(pc)’

respectively.

The conditional false alarm rate also follows straightforwardly as it is found by substikutr@

in pz, that is,

CFAR.I.0f1: pci: XY FF)= 1_IF(Y) (.n-j +1)+IF(X)(j!n_ j+1).
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Unconditional run-length distribution

Most importantly Chakraborti et al. (2004) showed that by averaging over the joint distribution of

Z one obtains the unconditionadr marginal run-length distribution and its associated characteristics.

The unconditional p.m.f oN,,, in particular, is given by

PNy, =1)= E, (PN, =t 2))= E,(@¢)™ @-0¢))=D"(t-1)- D)) (4-37)

for t=123... andD" (0= 1where

( ) | : R ( ) |
DY) =E,{(q2)")= E ( )GF’l o GE ()|, (%, y)dxd
t) =E;\(ac) U(ﬂ(l n-j+1) & j+h (y) x) ap (X, y)dxdy
with gz =1- pz and wheref,, Xy )enotes the joint p.d.f of tred" and theb™ order statistics in a

reference sample of size from theuniform (0L)distribution, given by

— ml a-1 _ -a-1 _ -b
fa'b(x'y)_(a—l)!(b—a—l)!(m—b)!x f-xy°r &y O<x<y<l.

Likewise, by writing the conditionaRARL as

CARL,, = Zpr(Nlofl >t|Z2=2)= Z(qé)t

t=0 t=0

the unconditional average run-lengthARL,,, foJlows by averaging over the joint distribution &f

and then simplifying i.e.

UARL,, = E, (CARL,,) = ZE ((@))= ZD (t)
(4-38)

-

:”(1 A(in- J+1)Z ( Jj(GF‘l(y)‘*“ GF‘l(x)““)j Fap O Y)OCly.
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The unconditional probability of a signal follows in the same manner and is given by

p* (F,G)=Pr(§ =1)=E,(Pr¢* =1/Z))= E, (p: (x,y,F,G))
(4-39)

gy, Gn=j+ D+, (0= j+ D) f, (X y)dxdy.

O ey
ot

For complete details on the derivation of expressions (4-37), (4-38) and (4-39) see Chakraborti et a
(2004).
Remark 13

Chakraborti et al. (2004) noted that, from equations (4-37), (4-38) and (4-39), “... it is

evident that in general the run length distribution depends on the distribution funi€tions
and G through the composite functign = GF . For example, wherfr =G, the process

is in control, say(u) =u, and the in-control run length distribution follows ...".

In particular, the in-control unconditional p.m.f is given by

Pr(Ny o =t)=Pr_g(Ny, =t)=D({t-1)-D(t) for t= 123..and D(0)=1

where N, , denotes the in-control run-length random variable and

0T (1) o en))
D(t)‘ﬂ[mn-ﬁnzﬁh( Ny -x )] fou (% y) by

whereas the unconditional in-control average run-lend&RL ., ,) and the unconditional

false alarm rateYFAR,;,) follows from (4-38) and (4-39) and given by

(f 1 L (1) o _iomy|
UARL ;1 = .([.([( A, n_J+1)z J +h( j y X )j fap (X, y)dxdy

and

UFAR;,= p* € F):j ( (Jn_J+1)+| (J n_l+1)) f,p (X, y)dxdy,

O t—<

respectively.
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As pointed out in section 4.3.1.1, in Chakraborti et al. (2004) the idea of conditioning on the
reference sample order statistiés was effectively used to derive the distribution of the run-length

N, of the two-sidedl-of-1 precedence chart and to study various properties of their chart in a

convenient way. Using the same conditioning idea we deriveadt#tional and theunconditional
run-length distributions of the two-sided 2-oBR chatrt.

Conditional run-length distribution

Given thatZ =z the sequence of signaling indicatcﬁﬁ,q%;f;,... in (4-30) are i.i.d. Bernoulli
random variables with success probabilityp: = Pr(l (in:n D(LéL,UéL)): 1|Z=2z). Thus,
conditionally on the order statisti& the run-length N2, of the two-side®-of-2 DR chart follows

a geometric distribution of order two.

The conditional p.m.f olN_¥, is therefore given by (4-16) withr = pZ andk = 2i.e.

0 if 0<t<2

DR _ _ —_
Pr(NZsz_tlz_z)_{(pé)Z if t=2 (4-40a)
and fort >3
t+1
bR & (PP ((t-2-1 (t=2 -1
PriNz, =t1Z=2)= 3 (-] m{( i—2 )’L(l— De)( i )} (4-40D)
i=1 C

whereas the conditional average run-length (expected value or mean) and the conditional variance of

the run-length can be found from (4-17) and given by

+ +
CARLDY, =E(NXF, [2=27)=—+ Pc (4-41)
(pc)
and
1_ 5 1_ + +\2 _ +\5
CVARLEE, = var(ND®, |2 = 7) = 2294~ Pe)(Pe)” = (Pc)” (4-42)

- pc)*(pe)*
respectively (see e.g. Remark 5).

339



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

(o

Unconditional run-length distribution

The complexity of theconditional distribution in (4-40), particularly fdr= 3, makes a direct

application of conditioning to derive a closed form expression forutivenditional distribution

of N2F, unattractive. Instead, we find tbeconditional distribution of N2¥, by first conditioning on
n ~ ~ ~ ~

the total number of successgs= Y & in the sequence af random variables; ,¢; ,....&; . (Note
i=1

that, heren is the number of random variables and not the sample size.)

To this end, note that, althougf?f,q%;,...,q%i is a sequence of dependent binary random variables

n
they are exchangeable or symmetrically dependent; this means that any permutation of any subset

these random variables has the same distribution; this can be written as
Pr(, = 1.2 = D=Pr = 1.8 =1) (4-43)

for any permutatiormm  (),.77 | pf 12...,u<n . Using (4-43) we can derive an exact closed form

expression for the unconditiongd.m.f of N2¥, .

George and Bowman (1995) derived the distribution of the total number of suc&;ssesa

sequence oh exchangeable binary trials. According to their result

PrS, = SF(Z]S(&Y(”;S)@H for s=12..,n (4-44)
i=0
where
A, =PrE=1..,6=1 for u=12..n. (4-45)

Using (4-44) the unconditional distribution dE", is given by

0 if Ost<2
PrNz, =t) = { i reo (4-46a)
, =
and fort> 3
o min(y,[%lj y (- 2(k +1) _1
PriNzs, =0)=2 o e T R (4-46b)
y=1 k=0 i=0 k i y-1
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The proof of (4-46) is straightforward fox 12
Pr(N2R, = 2)=Pr(¢F =1,&F =1) = A,
where A, is defined in (4-45).

Fort > 3, we write the unconditional distribution &%, as

PINZ?, =t)= 5 PHNDS, =t |S, =t - y)Pr(S =t-y) (4-47)

y=1

and then first consider the conditional probabifgN>~, =t|S =t-vy).

By de Finetti’'s theorem a sequence of exchangeable random variables is conditionally i.i.d.. Hence

the conditional distribution oNJ*, given the number of successes in exchangeable binary random

variables is the same as that for a sequence of i.i.d. binary variables; this latter distribution has bee

worked out in the literature (see e.g. Balakrishnan and Koutras (2002), p 56; note a typo) and is give

by

t-y-2

R ([t 1l 5] (VY- 2k+1)-1
I S | o

Now, using (4-44) we have

PIS =t-Y)= (tyj > 6y mA ,

so that (4-46) follows by substitutir@r(S =t—y) and (4-48) in (4-47).
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Remark 14

(i) Conditionally on the reference sample order statistics that define the Phase Il control limits we
have that

X =Pr =1..8 = 1Z=2)= I'J Pré =112 =2)=(pg)"

so that the unconditional probabiliy in (4-45) equals

h-
o
1
Y
)

(& =188 =) = E,(AS) = E, ((p%)")

!

(4-49)

—_

Flgpay, Gn=j+ D+l (Gn-j+ 1))u f.p (X, y)dxdy.

I
O t—y

(i) The run-length distribution of the two-sid&dof-2 DR chart depends on the distribution

functions F and G through the composite functiap = GF ™ present inA, (see expression
(4-49)). Thus, the in-control run-length distribution is obtained by substitutigdn (4-46a)
and (4-46b) where

Ao = ﬁ(l— I, Gn=j+D+1 (j.n—] +1))u f,p (X, y)dxdy (4-50)

and is found from (4-49) by substitutiig = G. It is evident from (4-50) that the in-control
run-length distribution of the two-sidétiof-2 DR (like that of thel-of-1 chart) is free from
either F or Gand that the 2-of-DR chart is thus distribution-free.

(i) The unconditional false alarm rate, the unconditional average run-length etc of the two-sidec

2-of-2 DR chart is calculated later in section 4.3.2.
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4.3.1.3 Distribution ofN -, and N, ,: Run-length distribution for the two-sided 2-of-2 KL and

(02%—

2-of-3 precedence charts

In sections 4.3.1.1 and 4.3.1.2 we illustrated how to find adv&litional and unconditional

distributions of N, and N2¥, via the geometric distribution of ordér( = 1 or 2). Here, in section
4.3.1.3, we illustrate how to find tleenditional andunconditional distributions of N-, and N,

via the Markov chain approach. The conditional and unconditional distributiohs gfand N2¥,,

via the Markov chain approach, can be found in a similar manner and is not shown here.

The Markov chain approach for finding thenditional run-length distributions of the (two-sided)
precedence charts in Case U is similar to those of the sign charts in Case K. In particular, the sta

spaces are identical so that we merely substitute:

(i) p(Y,F,G) (defined in (4-36)) forp™ n(h € )and
(i) pc(X,F,G) (defined in (4-35)) forp™ (g § )

in any one of the essential transition probability matrices of the two-sided sign charts (g, tlse
given in (4-21), (4-22), (4-26) etc.) to obtain twenditional essential transition probability matrices
Qr., (say) of the precedence charts. Note that, here, in Case U, the superscripQf.” indicates

that we work with aconditional essential transition probability matrix i.e. conditioned on the order
statisticsZ .

Upon substitutingQ+,,, into (4-8), (4-9) and (4-10) we obtain the conditiopaim.f, the conditional
ARL (CARL) and theconditional VARL (CVARL ), respectively. The unconditionalun-length

distributions and the associated uncondition&laracteristics of the precedence chart is then found by

averaging over the distribution & .
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Conditional on Z the sequence of signaling indicatafgfz,fs,...in (4-29) are i.i.d. tri-variate

random variables with:
() Pr& =2|Z=2)=pg,
(i) Pré =1/Z=2)=p. and

(iii) Pr¢, = 0|2 =2)=1-p; - pg

respectively.

Thus, conditionalon Z the run-length distribution of the two-sided 2-oKR precedence chart is
PriNs, =t1Z2=2)=§Q%,) "(1-Q%,)1  for t= 123.. (4-51)

with the conditional average run-length and the conditiomatiance of the run-length given by

CARL:, =E(Njy, 1 Z2=2) =§(1-Qg,) "1 (4-52)
and
CVARLS:, = var(Ngy, | Z =2) =&(1 +Q%.)(I - Q%) “1- (CARLY;,)” (4-53)
respectively, where
0 1-pc—pc P Pc
c |0 1-pc—pc pPc Pc (
z ; - 4-54)
o 1- Pc—Pc 0 PRc
O 1-pc-pc pc O

denotes theonditional essential transition probability matrix of tBeof-2 KL chart and follows from

(4-26) having substituted the conditional probabilipgsand p. (defined in (4-35) and (4-36)) for

p~ and p*, respectively.
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Likewise, theconditional p.m.f, theconditional average run-length and thenditional variance of the

two-sided 2-of-3precedence chart are

Pr(N,y s =t]1Z2=2) =8Qgq) (1 - Qze)l  for t= 123., (4-55)
CARL 5 = E(Nyy5 [ Z2=2) =&(l - ngs)_ll’ (4-56)

and
CVARLzofs = Var(N 20f 3 | Z= Z) = ﬁ(l +Q§xs)(| - ngs)_zl_ (CARL20f3)2 (4'57)

respectively, where the conditional essential transition probability matrix of the Zb&8& is given

by

O 1-pc—-pc Pc Pc O 0 0 0
0 1-pc-pc O 0O pg 0 Pc 0
0 0 pc pc 0 1-pc-p¢ O 0
c [0 0 pe P O 0 0 1-p-p (4-58)
0 0 O pc O 1-pc-p: O 0
0 1-p.-pc O 0 O 0 Pe 0
0 0 pc 0 O 0 0 1-p:-pe
|10 1-pc—-pc 0 0O p¢ 0 0 0 |

and follows from (4-27). In particular, expressions (4-55), (4-56) and (4-57) follow from having

substitutedQg,, in (4-8), (4-9) and (4-10), respectively.

Remark 15

The conditional ARL expressions in (4-52) and (4-56) have been symbolically simplified
and closed form expressions are given in Table 4.5; however, here, in Case U, we

substitutep. for p* and p. for p~, respectively. Closed form expressions of the

conditional VARL'’s in (4-53) and (4-57) can be obtained in a similar manner (i.e.

simplifying the expressions symbolically).
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Unconditional distributions of N 5, and N, ,

The unconditional distributions ol %:, and N,,, are obtained by averaging the conditional

distributions given in (4-51) and (4-55) over the distributiorZ of.e.

Pr(N gol?z =1) Pr(N gol?z =t|2) fa,b (X, y)dxdy

(4-59)

Ot—— Ot
Ot—< Ot

§Q %) (1 - QG)Lf,, (X, y)dxdy
and

Pr(N,ys =t)=| | Pr(N,,; =t |Z)fa,b (X, y)dxdy

[
°0 (4-60)
gl

8Qse) ™ (I = Qpe)1f,, (x, y)dxdly

fort= 123....
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Remark 16

The unconditional or marginal distributions ofN4:, and N,,, in (4-59) and (4-60)

depend on the distribution functiods and G through the composite functiapi = GF ™
present in both

Pe =l gy, (in=J+D and pl=1-1., (j.n-j+D),
which form part of theconditional essential transition probability matrices in (4-54) and
(4-58).

The in-control unconditional run-length distributions follow by substitutihg G in p.

and p; so thatGF *(u) =u.

For example, the in-control marginal (or unconditional) run-length distribution of the two-
sided2-of-2 KL chart is

1y
Pr(N’y 20 =t)= PEg N37, =)= [ [ PE_g (N7, =t]2)f, (% y)dxdy
00

1y
= [ [8Q%40) ™ (1 = Q%)L T (x, Yy

fort= 123.... with

Ol (n=j+D-I Gn-j+D -1, (Gn-j+D 1,(0.n=-j+1)
Ol (n=j+D-I Gn-j+D -1, (Gn-j+D 1(0.n=-j+1)
O Iy (.n=j+D=1,(j,n-j+] 0 L (jn=j+1) |
Ol Gn-j+D-I(n-j+D -1, (n-j+] 0

c —
Q x40 T

Once again, the in-control run-length distribution is seen to be free from bathd G,
and thus th&-of-2 KL chart is distribution-free; the same being trueZanf-3 precedence

chart.
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In order to design and study the performance of a Phase Il control chart one typically examines th
average and the variance of timeonditional run-length distribution JARL & UVARL ) along with

theunconditional false alarm ratel{FAR).

For the proposed nonparametric runs-rule enhanced precedence charts, expressions for the aver
and the variance of thanconditional run-length distribution can be obtained exactly and most
conveniently derived by using the characteristics ofcth@litional run-length distributions coupled

with conditional expectation.
To this end, note that,
E(N)=E, (E(N|2)) and varl )=E, (var(N |Z2))+ var, (E(N | 2)) (4-61)

where E (\ )and var{\ ) denote theinconditional characteristics whilsE N 4 and varlN [Z)

denote theonditional characteristics (i.e. conditioned @). Theunconditional false alarm rate

(UFAR) can be obtained in a similar manner and is shown below.
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4.3.2.1 UnconditionalARL, VARL and FAR of the 2-of-2 DR chart

Unconditional ARL

The unconditional ARL for the2-of-2 DR chart is computed by averaging expression (4-41) over

the joint distribution of the order statistics.

Thus

UARL[z)gz =E, (E(N20f2 |Z))=E (CARLZsz

- H(“—pj o (% y)cbcy (4-62)
20\ (PS)?

:j")f[ Glzl()(J n_J+1)+|GF1(X)(j n_j+1)
2ol 0= geagy, GN=i+D+1 0, (0= j+D)°

J f, (X, y)dxdy.

The in-control unconditional average run- IengIJARLZOfZO) is obtained by substituting =G in

(4-62) and given by

2=, (jn=j+)+1 (j,n-j+1
AR, = [[| 2N IEDTLUNZIED e oy, (4-63)
ool @1, (Gn=j+D+1,(j.n-j+1)

Unconditional VARL

Theunconditional variance of th&-of-2 DR chart is obtained by noting that, in general, the

unconditional variance in (4-61) can be re-written as

varll )= E, (varlN |2))+ var, (E(N |Z))

, (4-64)
=Efvar(N| ) H{ EJ(E(N| 2) 7 -[E,(E(N]| 2))]°}.

For the2-of-2 DR chart, in particular, we have thB{N2", | Z) and var(N>7, |Z) are given by

(4-41) and (4-42), respectively so that the unconditional variance of the run-length2edftBeDR

chart is given by
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AR, =vartigh,) =, S5 PEXREN S(07, [ B -[Ez(“f’é D (@65
@=pc)"(pc) (Pc) (pc)

The in-control variance of the unconditional run-length distribution oftbe2 DR chart is found by
substituting -1, (j,n—=j+ 1)+, (j,n-j+1) for p: in expression (4-65), wherg? is defined in

(4-33).

Unconditional FAR

The conditional false alarm rate of th2-of-2 DR chart follows from Table 4.5 by substituting

pe = pe(Y,F,G) (with F =G) for p, and p; = pz (X,F,G) (with F =G) for p, and is given by

CFARLS, = (bc ¥ F F)Y + (ot X F F )Y +2pS (Y,F,F)ps (X,F,F)
= El (n=j+Df+ ( Gn-j+Df+20-1, Gn=-j+D)( (j.n—j+D).

By averaging over the joint distribution of the order statistics we obtaiantdomditional false alarm

rate of the2-of-2 DR chart i.e.

1 1

UFARZS, = E, CFARDS, )= [ (=1, (.= | + D) £, (y)dy+ [ (1, (.n - ] +1)* f,(x)dx
0 0

(4-66)

1y
@1, G-+ D)0, G0 +D)F,, (x y)dxdy
00
where f, & )and f, & )denotes the marginal p.d.f's of th8 and theb™ order statistics in a random

sample (the reference or Phase | sample) ofsiZeom a uniform (0,1)distribution, which are known

to be aBeta(a,m—-a+1) distribution and aBeta(b,m—b +1) distribution, respectively.
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4.3.2.2 UnconditionalARL, VARL and FAR of the 2-of-2 KL chart

G

Unconditional ARL

The conditional ARL (or the conditional expected value) of thef-2 KL chart follows from (4-

52), with a symbolically simplified version given in Table 4.5, i.e.

(p0)* , (po)°
(pc + ) (pc +1)

CARLS, =E(Njs, 1Z) =&(1 - Q%) "1=( )™

so that by averaging ovét, theunconditional ARL of the2-of-2 KL chart is found to be

UARL;. = E; (E(NZ;, 12)) = E, (CARLY;) = j ] [ (ch+1) fopfl)} faw (. y)xdy

(4-67)

f j[ ATy GN=T+D)"  (geagy (0= i +D)°
= +

-1
- - - - f,p (X, y)dxdy.
(2- IGF_l(y) (j,n=j+2) ( 6F1(0) (j,n—j +1)+1)J b

The in-control unconditional average run-length is again obtained by substikutirg in (4-67)

UARL';;ZO:j'Jy'((l_ly(j’n_j"'l))z o 0,0 +D)°

@-1,(G,n-j+1) (@, @G.n-]j+D) +1)J Fap (%, y)dxdy (4-68)

which is distribution-free.

Unconditional VARL
Substituting var(N-, | Z) (given in (4-53)) andE(NJ-, | Z) (given in (4-52)) in (4-64) we find

that the unconditionalvariance ofNJ:, is given by

UVARLY,, = var(NX:,) = E, [0 +Q%.,)(1 - Q%) 21~ (CARLY,)?)

» ) (4-69)
+E, ((&-’(I - ngz;)_ll) )'(Ez (&(l - Qix;l)_ll)) .
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Unconditional FAR

The conditional false alarm rate of th&-of-2 KL chart follows from Table 4.5 by substituting

pe = pe(Y,F,G) (with F =G) for p;and pz = pz X F G) (with F =G) for p, and is given by

CFAR;, = (e (Y .F . F))* + (P2 (X, F,F))*

(4-70)
=@ Gn-j+Dr+ 0 (n-j+D)%

By averaging over the joint distribution of the order statistics the unconditional false alarm rate is

obtain as

1 1
UFARS, = E, CFARK, )= [ @1, G.n—j+D) £, (V)dy+ [ (, (.- +D)* f,(dx  (4-71)
0 0

which is again distribution-free.

352



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4.3.2.3 UnconditionalARL, VARL and FAR of the 2-of-3 chart

(o

Unconditional ARL and VARL

The unconditional ARL and unconditionaMARL of the 2-of-3 chart are obtained in the same
manner as that of th2-of-2 KL chart; that is, we use theonditional counterparts derived via the

Markov chain approach and find that
1y
UARL, 5 =E, (CARL ;) = jj&(l - ngs)lfa,b (X, y)dxdy
00

and

UVARL, 5 = E{var(Nyyd 2) H EJ(E Nyl 2) 1 1 Ex(E( Nyyiol 2)1%)
=, (50 +QS)(1 - Q%) 1~ (CARL,, )+ E, (£ - 051 )- (B, (01 - 0%) 1),

respectively.

Unconditional FAR

The conditional FAR of the 2-of-3chart is found (like that of the 2-of-2 DR chart and the 2-of-2
KL chart) from Table 4.5 by substituting the conditional probabiliesand p. (defined in (4-35)

and (4-36) witH- =G) for p~ and p*, respectively and is given by

UFAR o= 21, ( n-j+Df A1y (= j+D+1,(j.n—j+1)
+ 2 (n-j+Df @1y Gn-j+D+1, (jn-j+D).

The unconditional FAR is thus given by

UFARy; = ﬂ @1, =i+ DF @1, Gn-j+D+1,G.n-j+D)f,,(xy)dxdy
3G =i+ DF @1, Gn-j+D+1, G- +D)f,, (xy)dxdy.
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4.3.3 Run-length distributions of the one-sided precedence charts

If detecting higher (lower) values is of interest, that is, whether the parameter or percentile of

interest has shifted to the right (left), we can use a one-sided upper (lower) control chart with ar

estimated upper (lower) control limitCL = X, (LCL = X_) only.

The operation of the one-sided upper and lower runs-rules enhanced precedence charts of Case
is similar to that of the one-sided upper and lower runs-rules enhanced sign charts of Case K. F

example, the2-of-2 one-sided upper (lower) precedence chart signals on the first occurrence of a run

of length two of the charting statistrq.ﬂn on or above (below) the estimated upper (lower) control

limit.

The derivation of the run-length distributions of the one-sided runs-rules enhanced precedenc

charts parallels that of the two-sided precedence charts. In particular, we let

. . A 1 if Y. =UCL
E =1y, 2uéy =L " Tn=-%
' 0 if Y, <UCL
and
. . A 1 if Y <LCL
E=iv,<téy={ o Jm=-v
' 0 if Y, >LCL

for i = 1,23...denote the indicator functions for the one-sided precedence charts corresponding to th

events{Yji >UCL }and {in < LCL }, respectively. Then, we can again use a two-step approach to

n - n -
derive the run-length distribution. In other words, we first derive ¢beditional run-length
distribution i.e. conditioned on the particular order statistic (control limit) and then, second, we derive
the unconditional or marginal run-length distribution by “averaging over” the distribution of the order

statistic that constitutes the Phase Il control limit.

In particular, given X,,, = x,,, the sequence of signaling indicatox%*,f;,f;,... are i.i.d.

Bernoulli random variables with success probability

pg = Préi = 1| Xb:m = Xb:m ): Pr@?iJr = 1| Xb:m = Xb:m) = pé (Y’ F’G)

354



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

so that theconditional distribution of the run-length variabl®l;,, of the 2-of-2 upper one-sided
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precedence chart, for example, is geometric of okder witB parameter (success probability)
pe = p'(y,F,G). Consequently, all the properties and the characteristics ofotiétional run-
length distribution follow conveniently from the properties of the geometric distribution of krder 2

by substitutinga = p. andk = 2in expressions (4-16) and (4-17).
Alternatively, we can use a Markov chain approach; doing so we find that
Pr(Nzo o =t] Xom = Xom) =8Q30) 7(1-Q3e)1  for t= 123...
with the conditional average run-length and the conditional variance of the run-length given by

CARLJ;on = E(N;sz | Xb:m = Xb:m) :§(| - Qgs)_ll

and
CVARL;on = Var(Ngon | Xb:m = Xb:m) = %(l +Q§<3)(I - Q;S)_zl_ (CARLZOfZ)Z

respectively, where

0 1-p¢ pé
Q5:=|0 1-p¢ p¢
0 1-p: O

denotes theonditional essential transition probability matrix of tBef-2 upper one-sided precedence

chart and follows from (4-15) having substitutpd for p*.

Theunconditional p.m.f of N, , for example, is obtained by averaging ¢tbaditional run-length

distribution over the distribution oK, i.e.
1 1
Pr(N3, =)= [Pr(N;y, =t[Y = Y) f,(y)dy = [£Q%4) (1 = QS)11, (Y)dly.
0 0

To obtain a closed form expression of tinreonditional p.m.f ofN;,, requires the same steps as

carried out in case of tHeof-2 DR precedence chart of section 4.3.1.2 and therefore not shown here.
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4.3.4 Design and implementation of the two-sided precedence charts

In order to implement the proposed precedence charts in practice we need the upper and the lowe
control limits. This means that we need to find the indices (charting constaatg) b that specify
the reference sample order statistics, which constitute the lower and the upper control limit,

respectively.

Determination of charting constants

In Phase Il applications one typically determines the charting constaantslb so that a specified
in-control unconditional average run-length (S&ARL, equal to 370 or 500) is obtained. This means

that we have to solve

* _ly 1 (1) j*h _ i+h h _
UARLM,O—Ml ﬁ(ln_1+1)21+h( )( X )j fas (X Y)dedly (4-72)

for the 1-of-1 chart,

ot 221, (Gn=jD+I (jon- 4D
UARLY S, = [ [ U= DTLANZIHD (4-73)
ool @1, (G.n=j+D+1,(j,n-j+1)

for the 2-of-2 DR chart,

= y(l n=1+) G- ] +1)+1)J fap (X y)ixdy (4-74)

for the 2-of-2 KL chart and

UARL 50 = | [ (01 = QS0) 1), (x, y)cicly (4-75)

O <

for the 2-of-3 chart WhereQ‘;&O follows from (4-58) by substitutind—-1, (j,n—j+2) for p: and

I, (j.n- j+1) for p;.
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4.3.4.1 Charting constants of thd-of-1 chart

(@

Chakraborti et al. (2004) provided values for the charting consta@isd b for the two-sidedl-
of-1 precedence chart for a number of different choices (combinations) of thensofethe Phase |

reference sample, the sizreof Phase Il samples angd (the selected order statistic) so that the in-

control unconditional average run-length (LRARL ;) is close to 370, 500 and 1000, respectively.

4.3.4.2 Charting constants of th@-of-2 DR, 2-of-2 KL and 2-of-3 charts

Tables 4.18, 4.19 and 4.20 display various choices (combinations) of the charting canstadts
b for the two-side®-of-2 DR, the two-side@-of-2 KL and the two-side@-of-3 charts, for a given or
specified in-control unconditionalhRL in the neighborhood of 300 and 500, when reference samples
of size m=50, 100, 200 and 500 are used to estimate the control limits in Phase | and these limits ar
used to monitor the location (center) of a process using the medians of Phase Il (test) samples of si

n=5, 7, or 9, respectively. Thug, equals 3, 4, and 5, respectively in the tables.

Note that for each combination of valuesnpj andm the tables display (in each cell) thARL,,

the UFAR and & b )values, where thBJARL, values are in the neighborhood of 300 to 500.

Since the Phase Il (test) sample median is used as the charting statistic and the Phase Il sample <
n is odd, it seems reasonable to use symmetric control limits, and thus wezake a+ , so that
only a needs to be determined. However, this needs not be the case when the chart constants are tc

determined for a charting statistic other than the median that might be of interest.

In addition, note that, in general, it is rare to achiev&JARL, (or anUFAR) exactly as specified

(i.e. 300 or 500) with the nonparametric charts because the in-control distribution of the run-lengtt
distribution is discrete. However, as can be seen, one can get reasonably close to the values typica
used in practice.

For example, from Table 4.18 fon= 500n =5 andj = 3 one set of constants for tReof-2
DR chart are given byp= 72ndb= 500- 72+ 1= 429 so that LCL = X 1500 @Nd UCL = X 426500 -

In this case the achieved (or attain@d)\RL, and the attained uncondition&®AR of the chart are
496.90 and 0.0025, respectively. Moreover, these are the exact values and remain the same for

continuous distributions. If instead we toake  @Adb= 500 7% E 43Q so thatLCL = X .,
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and UCL = X ,,40,, the achievedJARL, increases to 536.72 and the attainedR decreases to
0.0023. For a more moderate reference sample size, suthras, Talllé 4.18 shows that it is
possible to obtaitARL, values such as 275.30 or 605.44; the latter which may be deemed reasonably
large in practice. Obviously ams and/orn increase, the available choices for thaRL, values also

increase.

Similar behavior is observed in the case of the two-siHefd2 KL and the2-of-3 charts shown in

Tables 4.19 and 4.20, respectively. For instance, in case @fdh2 KL chart, whenm= 500and
one uses = 8@ndb= 506- 80+ 1= 421, so thatLCL = Xz andUCL = X .0, the ARL, of the
2-of-2 KL chart (whenn= 5and j = 3 is 524.39, whereas theAR is 0.0023. However, if instead

one chooses to use= &hd b= 506- 8%+ 1= 420, so thatLCL = X g1500 @Nd UCL = X o000 the
UARL, decreases to 490.21, whereasWeAR slightly increases to 0.0024. Although for= 500
n=>5 and j = 3a specifiedUARL, such as 500 cannot be obtained exactly, by increasing the size of

the reference sampl@ and/or the test sample siggethe range of possibldARL, andUFAR values

that can be attained increases.

All equations (i.e. (4-73), (4-74) and (4-75)) are solved using the software package Mathead

358



&
=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo

YUNIBESITHI YA PRETORIA

Table 4.18: Unconditional in-control average run-length JARL o), unconditional false alarm rate
(UFAR) and chart constants(a,b) * for the 2-of-2 DR nonparametric chart for

m = 50,100,200,500 andn, j) = (5, 3),(7,4),(9,5)

n=5,j=3 n=7,j=4 n=9 ,j=5
m=50 100 200 500 | m=50 100 200 500 | m=50 100 200 500
605.44| 548.99] 537.62 536.7p 597.80 50954 597.72 526.08 9¥6.53 139.47 %58.51 528.95
0.0072| 0.0040, 0.0029 0.0028 0.00p0 0.0048 0.0027 0.J024 0/0084 Q.0040 0.0031 .0024
(8,43) | (15,86)| (29,172) (71,43¢) (10,41) (19,82) (36,165) (90,411) (11,40) (21,80) (4R,159) (1%4,397)
275.30| 373.31 443.56 496.9D 264.p1 345(93 49044 48.01 383.92 481.18 456.18 88.41
0.0121| 0.0055/ 0.0034 0.002p 0.0150 0.0065 0.0033 0.J026  0/0144 Q.0056 (.0037 EOOZG
(9,42) | (16,85)| (30,171) (72,42%9) (11,40) (20,81) (37,164) (91,410) (12,39) (22,79) (4B,158) (105,396)
261.69| 368.80 460.60 241.21  405.20 45133 172.47 322.26 3715.04 4%1.43
0.0074| 0.0040 0.0024 0.0088 0.0039 0.0028 0.0236 0.p077 0.p044 0,0028
(17,84)| (31,170) (73,428 (21,80) (38,163) (92,4p9) (13{38) (23,78) (44,157) (10,395)
308.82 427.48 336.97 418.7p 22157 310428 41768
0.0047 0.0028 0.004¢6 0.003p 0.0104 0.0053 0.0Q30
(32,169)| (74,427 (39,162) (93,40B) (24,77) (45,156) (107,B94)
260.37 397.20 281.98 388.8B 258.24 386.83
0.0056 0.0031 0.0054 0.003p 0.0062 0.00B3
(33,168)| (75,426 (40,161) (94,4017 (46,155) (108,393)
369.50 361.45 358.6(Q
0.0033 0.0034 0.0035
(76,425) (95,406 (109,392)
344.12 336.33 332.75
0.0035 0.0037 0.0038
(77,424) (96,405 (110,391)
320.83 313.25 309.06
0.0037 0.0039 0.0041
(78,423) (97,404 (111,390)
299.44 292.03 287.31
0.0040 0.0042 0.0044
(79,422) (98,403) (112,389)

The three rows of each cell shows the achieved (attai&B)., the UFAR and the charting constants, (b), respectively
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Table 4.19: Unconditional in-control average run-length ARL ), unconditional false alarm
rate (UFAR) and chart constants(a,b) * for the 2-of-2 KL nonparametric chart for

m = 50,100,200,500 angn, j) = (5, 3), (7, 4), (9, 5)

n=5,j=3 n=7,j=4 n=9,j=5
m=50 100 200 500 m=50 100 200 500 m=50 100 200 500
1010.37| 650.75 559.01 524.3p 985.39 59456 504.01 504.61 1591.68 $47.12 548.41 530.19
0.0048 | 0.0033 0.0026 0.002B 0.0063 0.0041 0.0031 0.0p24 0.p062 0.0049  0.0031 0.0023
(8,43) | (16,85)| (32,169) (80,42]) (10.41) (20,81) (40,161) (99,402) (11,40) (23,78) (45,156) (112,389)
460.89 | 456.52| 471.18 490.2]L. 437.32 414(67 424(10 474.95 626.67 376.11 456.29 103.12
0.0079 | 0.0044| 0.0031 0.0024 0.01p2 0.0054 0.0036 0.0p26 0.p103 (0.0066  0.0036 (0.0025
(9,42) | (17,84)| (33,168) (81,42¢) (11,4D) (21,80) (41,160) (100,p01) (12,39) (24,77) (4p,155) (113,388)
237.00 | 328.69  399.60 458.7p 217.83 296/08 35881 441.90 281.29 264.69 381.78 159.05
0.0123 | 0.0057| 0.0036 0.002p 0.0160 0.0070 0.0042 0.0p27 0.p0165 0.0086 0.0042 0.0027
(10,41) | (18,83) (34,167) (82,419) (12,39) (22,79) (42,159) (101j400) (13,38) (25,76) (47,154) (1]4,387)
242.15| 340.87 429.62 305.16 413.4 321J15 42769
0.0074| 0.0041 0.00271 0.0048 0.0020 0.0049 0.0029
(19,82)| (35,166) (83,418 (43,158)  (102,3$9) (48,153) (115,386)
292.37 402.76 260.82 386.71 271.54 398.81
0.0047 0.0029 0.0056 0.003 0.0057 0.00B1
(36,165)| (84,417 (44,157) (103,398) (49,152) (116,385)
377.91 362.28 372.18
0.0031 0.0033 0.0033
(85,416) (104,397 (117,384)
354.91 339.62 347.61
0.0033 0.0035 0.0035
(86,415) (105,399 (118,38B)
333.60 318.62 324.92
0.0035 0.0037 0.0038§
(87,414) (106,395 (119,38p)
313.83 299.16 303.95
0.0037 0.0040 0.004Q
(88,413) (107,394) (120,381L)
295.48 284.55
0.0039 0.0043
(89,412) (121,384

The three rows of each cell shows the achieved (attaiB)., the UFAR and the charting constants,(b), respectively
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Table 4.20: Unconditional in-control average run-length ARL ), unconditional false alarm
rate (UFAR) and chart constants(a,b) * for the 2-of-3 nonparametric chart for

m = 50,100,200,500 andn, j) = (5, 3),(7,4),(9,5)

n=5,j=3 n=7,j=4 n=9,j=5

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500

1336.27| 755.74 623.35 672.7p 131399 690.80 68953  653.58 242324 1p25.16 [/86.51  [712.63
0.0049 | 0.0033 0.0025 0.001p 0.0065 0.0040 0.0025  0.0p19  0.p062 00035 0.0024  .0018
(7.44) | (14,87) (28,73) (68,433) (9,42) (18,83) (35,1p6) (87,414) (10,41) (20,81) (40,161) (140,401)

527.33 | 502.46f 513.03 621.5p 51355 46068 56153 60419 819.75 653.26 636.94  §56.49
0.0084 | 0.0045 0.0030 0.002p 0.0107 0.0055 0.0030  0.0p21  0.0105 0.0049  0.0029 .0020
(843) | (15,86) (29,172) (69,43}) (1041) (19.82) (36,165) (88,413) (11,40) (21,80) (41,160) (101,400)

N T Oy

24651 | 346.18 42578 5750p 233.72 316182 46341 5519 32094 43022 519.65  605.46
0.0134 | 0.0060f 0.0035 0.002] 0.0169 0.0073 0.0035 0.0p22 0169 00066  0.0034 .0021
(9,42) | (16,85) (30,171) (70,43]) (11,40) (20,81) (37,164) (89,412) (12,39) (2R,79) (4R,159) (102,399)

e~ O

130.77 | 246.05 356.16 532.7 120.09 224{02 38516 514.13 152.81 201.98  426.99 $59.02
0.0201 | 0.0078  0.0042 0.0028  0.02%2 0.0095 0.0041 0.0p24 0.0257 0.0087  (.0041 K.OOZS
(1

(1041) | (17,84) (31,170) (71,43)) (12,39) (21,80) (38,163) (90411) (13,38) (28,78) (4B,158) 3,398)
179.74| 300.11| 494.14 162.45 32229  480.p2  79/60 208.71 353.24  516.70
0.0101| 0.0048| 0.0024 0.0122 0.0048  0.00p6  0.0874 0.0114 00048  0J0025
(18,83)| (32,169) (72,429) (22,79) (39,162) (91,410) (1437) (24.77) (44,157) (10#,397)

254.64 | 459.00 27143  446.3p 145181  294[15 47410
0.0056 | 0.0026 0.0056  0.002§ 0.0147 0.0056  0.0027
(33,168)| (73,428 (40,161)  (92,40P) (25,76)  (45,156) (105/396)
217.47 | 426.85 230.00  414.9} 24649  442/85
0.0065 | 0.0028 0.0065  0.003f 0.0065  0.0029
(34,167)| (74,427 (41,160)  (93,409) (46,155)  (106,395)
397.43 386.11 207.81  410.63
0.0030 0.0032 0.0076  0.0031
(75,426) (94,407 (47,150) (107,394)
370.48 359.69 381.14
0.0031 0.0034 0.003
(76,425) (95,406 (108,393)
345.75 335.41 354.1%
0.0034 0.0030 0.003
(77,424) (96,405 (109,392)
323.04 313.09 329.3
0.0037 0.0039 0.003%
(78,423) (97,404 (110,391)
302.15 292.53 306.6]
0.0039 0.0042 0.004]
(79,422) (98,403 (111,390)
282.91 273.59 285.71
0.0042 0.0044 0.0044
(80,421) (99,402 (112,349)
265.18 256.12 266.5(
0.0045 0.0047 0.004]
(81,420) (100,401) (113,348)

The three rows of each cell shows the achieved (attahdR)., the UFAR and the charting constants,(b), respectively
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Example 3

In order to illustrate the runs-rule enhanced nonparametric precedence charts we use the data giv

in Table 5.1 on p. 213 and Table 5.2 on p. 219 of Montgomery (2001).

The goal of this study was to establish statistical control of the inside diameter of the piston rings
for an automotive engine manufactured in a forging process. Twenty-five retrospective or Phase
samples, each of size five, were collected when the process was thought to be in-control. As shown
Example 5.1 on p. 213 of Montgomery (2001), the traditional ShewXand R charts provide no
indication of an out-of-control condition, so these data are considered to be Phase | reference data a

these “trial” limits were adopted for use in on-line process control.

In order to implement the nonparametric control charts the charting constants are needed. Possik

symmetric control limits I = m—-a+ ) for the four charts are shown in Table 4.21, foe 125

n=>5 and j = 3 along with the correspondingARL, andUFAR values.

Table 4.21: Unconditional in-control average run-length JARL (), unconditional false alarm
rate (UFAR) and chart constants(a,b) for the two-sided1-of-1, 2-of-2 DR, 2-0f-2 KL and 2-of-3

precedence charts wherm =125, n=5 and j =3

1-of-1 2-of-2 DR 2-of-2 KL 2-of-3
b UARL, | UFAR | a b UARL, | UFAR | a b UARL, | UFAR | a b UARL, | UFAR
121 | 1315.98 0.001 109 898.74 0.0q)23 18 |108 1125.44 Q0018 17| 109 [B22.40 | 0.0026
120| 695.09| 0.002 108 638.60 0.0¢3l 19 (107 819.47 0]0024 18| 108 590.03 [0.0034
119| 413.80| 0.004 107 464.38 0.0¢4O 20 [106 608.81 0J003Q 19| 107 433.39 |0.0043
118 | 267.40| 0.006 106 344.73 0.0¢52 21 (105 460.54 0Jj0038 20| 106 B25.09 |[0.0055
5 0
0

olo|~N|lo|lo]|w
S apa e
NIN|[RP R e
FPTO OO

117| 183.47| 0.008 10 260.69 0.0§66 |22 [104 354.09 0048 21| 105 248.51 |0.0069
22| 104 200.46 0.008¢ 23 103 276.28 0.0p59 |22 |104 193.27 (0086

Using Table 4.21, for aJARL, of 500, one can taka= 3o thatb= 119 and therefore the
control limits for thel-of-1 precedence chart are th® @nd the 119 ordered values of the reference
sample. ThusLCL = X105 = 73984 and UCL = X105 = 74017, which yield an in-control

unconditional ARL of 413.80 and an unconditionBAR of 0.0044.

A plot of the medians for th&-of-1 chart is shown in Figure 4.12 for all forty samples, the first
twenty five of which are from Phase I. It is seen that tier8&dian is outside the control limits and

so the 1-of-1precedence chart signals on th& {2e. 37" — 25" sample in the prospective phase.
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Figure 4.12: Thel-of-1 Phase Il Precedence chart for the Montgomery (2001) piston-ring data

For the2-of-2 DR chart, we takea= 1%o0 thatb= 125 19 % 107and the resulting limits,

LCL = X005 = 73990 and UCL = Xiomos = 74012, yield an UARL, and UFAR of 464.38 and

0.0040, respectively. Note, however, that if one choases s®thatb = 106 the control limits

becomeLCL = X o125 and UCL = X 0azs @nd the correspondindARL, decreases to 344.73, whereas

the UFAR slightly increases to 0.0052. The 2-oBR chart is shown in Figure 4.13.

74.03
74.03 -
74.02 -
74.02 -

Phase | Phase Il

o UCL

Median

LCL

73.99

73.98 T T T T T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Sample number / Time

Figure 4.13: The2-of-2 Phase Il DR chart for the Montgomery (2001) piston-ring data
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For the 2-of-2 KL chart we take a= 21 so that b= 125 2¢ £ 105 and thus
LCL = X405 = 73992 and UCL = X og0s = 74011; this yields anUARL, of 460.54 and atUFAR

of 0.0038, respectively. The 2-of-2 KL chart is shown in Figure 4.14.

74.03
74.03 -
74.02 -
74.02 -

Phase | Phase I

UCL

Medianr

LCL

73.99 )
73.99- :

73'98 T T T T T T T T T T T \:\ T T T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Sample number / Time

Figure 4.14: The2-of-2 Phase Il KL chart for the Montgomery (2001) piston ring data

Finally, for the 2-of-3 chart we take a= 19so that b= 125 19 1=107 and thus
LCL = X005 = 73990 and UCL = Xomos = 74012 which yields anUARL,of 433.39 and atJFAR
of 0.0043, respectively. ThHzof-3 chart is identical to th2-of-2 DR chart shown in Figure 4.14 and

is thus omitted; this is so because the control limits (in this example) &faih@ chart are exactly the

same as that of the 2-of 2R chart.

The 2-of-2 DR charts signals on thé’3ample whereas both tfeof-2 KL and the2-of-3 charts
signal on the 1®sample in the prospective phase. Note, however, that the achie¥él values for
the four charts are much larger (63%, 48%, 41% and 59%, respectively) than the rioNRNGd
0.0027.
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4.3.5 Performance comparison of the two-sided precedence charts

(@

The performance of Phase Il control charts is typically compared by first designing each control

chart to (roughly) have the same in-contupiconditional average run-lengthUARL,) and then

examining their out-of-controlinconditional average run-lengthUARL,) values at some out-of-
control value(s) of the parameter of interest. The control chart with the shorter (or smaller) out-of-
control average run-length is usually preferred. Since the proposed run rules enhanced Phase Il cha
are nonparametric Shewhart-type charts applicable in Case U, their main competitor is thetbasic
precedence control chart of Chakraborti et al. (2004).

To study robustness, three different underlying process distributions i.e. the normal distribution,
thet-distribution and the gamma distribution, were used in a simulation study with 100 000 repetitions
for each distribution investigated. Because the shape o¢fdiséribution is very similar to that of the
normal distribution (it is symmetric, but with more probability in the tails) it was used to study the
effect of heavier tails. The gamma distribution was used to study the effect of skewness (see e.
Figure 4.15). In order for the results of the three distributions to be comparablke atice gamma

distributions were scaled so that they also had a mean of zero and a variance of one. Thus, the (0;

the %t(4) and theGamma (1,1) -1 distributions were used

The parametric ShewhaX chart was included in the comparison for the normal distribution but

not for thet and the gamma distribution since techart is well-known to be non-robust under non-
normality (see e.g. Chakraborti et al. (2004)).

Norrmal (0.1)

L

Figure 4.15: Probability distributions used for the performance comparison of the two-sided
precedence control charts
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Tables 4.22, 4.23 and 4.24 display the performance comparison results when a reference sample
size m= 500is used to estimate the control limits to monitor location in Phase Il (future or test)

samples of sizen = &nd usingY,;, the median, as the charting statistic. The charts were designed so

that anUARL, value close to 500 was achieved.

Instead of using randomization to get dARL, exactly equal to 500, two combinations of chart
constants are used for each nonparametric chart for whicdARe, was the nearest below and the
nearest above the targ&tARL, of 500. The tables show thenconditional average run-length
(UARL,) along with theunconditional standard deviation of the run-lengtBRL,). The shift refers

to a shift in the mean of the distribution.

From Table 4.22 it is seen that even under the normal distribution, the nonparametric charts can k
quite efficient i.e. good at detecting shifts. Thef-2 KL and the2-of-3 charts are both almost as
efficient as theX chart, with shorterARL’s but a slightly higherSDRL ’s when the process is OOC,
especially for small shifts.

When the distribution i$ (4)that is symmetric yet with heavier tails than the normal, Table 4.23
shows that the2-of-2 DR, the 2-of-2 KL and the 2-of-3 schemes perform better than the basic
precedencé-of-1 chart in detecting small shifts, with tBeof-2 KL chart being the best and is closely
followed by the2-of-3 chart. Thus, the three new nonparametric Shewhart-type charts with signaling
rules provide better alternatives than the basic precedeoic® chart and theX chart, especially for
smaller shifts. The same observation applies in the case of a right-skewed distribution such as tt
Gamma (1) as shown in Table 4.24 but with tBeof-2 KL chart doing the best. So the runs-type
signaling rules enhance the nonparametric chart’s sensitivity to a location shift.

Moreover, the gain in efficiency (relative to theof-1 chart) can be substantial; for example, for
thet(4) distribution for a shift of 0.5, the OOBRL values of thel-of-1, 2-of-2 DR, 2-0f-3 and the2-
of-2 KL charts are 117.63, 40.98, 26.64 and 26.28, respectively when the correspaRdjngalues
are very comparable, 520.27, 536.72, 532.74 and 524.39, respectively. Note that in Table 4.24 for tt
Gamma (1) distribution the basic precedence chart display somewhat of a strange behavior in tha

both the ARL and SDRL values first increase from their corresponding values for the in-control case
for a shift of 0.25; thereafter thARL and SDRL values decrease for increasing shifts as it might be
expected. We have not been able to explain this phenomenon. A repeat of the simulations product

similar results.
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2 d
Table 4.22: UnconditionalARL and SDRL values for thenormal distribution for the 2-of-2 DR,
2-of-2 KL, 2-of-3, Basic (L-of-1) Precedence chart and the Shewhart X-bar chart when
m=500,n=5,j =3

2-0f-2 DR 2-0f-2 KL 2-0f-3
shift | ARL [ SDRL | ARL [ SDRL | ARL [ SDRL | ARL [ SDRL | ARL | SDRL | ARL | SDRL
0.00 | 496.90| 573.09 536.7p 621.40490.21| 554.14 524.30 594.45494.18| 569.01 532.74 615.81
0.25 | 233.82| 278.54 250.28 299.4a170.07| 203.00 180.06 215.4861.67| 196.04 171.95 209.89
050 58.22| 66.10] 61.33 69.99 39.37 43317 4111 4928 36.62 39.34 38.26 |1.33
075| 1755 17.85| 1823 1864 1299 12.60 1339 1306 1275 11.06 13.15 [11.58
100 736 | 641] 756| 663 59 490 61 544 654 4p3 664 436
125| 412 | 290| 419| 297 364 234 367 249 443 1lo8 447 203
150| 2.88 | 152| 291| 155 267 126 260 149 360 104 362 1.06
175| 236 | 086| 237| o087 2271 o072 228 o044 3p4a o058 325 (58
200| 213 | 049 224] o050 21d 041 21p o042 309 o032 309 033
225| 204 | 028 205] o028 204 028 208 043 303 o@18 303 (.18
250| 201 | 014 201] o015] 2010 012 200 o042 361 o9 3o1 Q.09
275| 200 | 007 200] 007] 20d 006 200 o0d6 300 o0los 3oo 905
3.00] 200 | 003]| 200] 003 20d 002 200 o0d2 300 o0lo2 300 .02
(a=72p=429) | @=71p=430) | @=81p=420) | @=80p=421) | @=72p=429) | @=71p=430)

1-of-1 X-bar

Shift | ARL | SDRL | ARL | SDRL | ARL | SDRL

0.00 | 460.22| 538.61 520.2f 613.¢/500.00| 571.14

0.25 ] 233.27| 290.26 261.60 329.17184.12| 216.64

0.50] 70.42 | 85.43| 77.73 9538 43.38 48.51

0.75| 23.74 | 27.01| 25.79 29.64 1312 13.41

1.00| 9.58 10.11| 10.26) 10.93 5.14 4.98

1.25] 4.63 4.43 4.88 4.72 2.63 2.1%

1.50| 2.66 2.21 2.76 2.34 1.67 1.08

1.75] 1.78 1.22 1.83 1.28 1.26 0.58

2.00] 1.36 0.72 1.39 0.75 1.09 0.32

2.25] 1.16 0.44 1.17 0.45 1.03 0.17

2,50 ] 1.06 0.26 1.07 0.27 1.01 0.0%

2.75] 1.02 0.15 1.02 0.16 1.00 0.01

3.00] 1.01 0.08 1.01 0.09 1.00 0.01

(a=25p=476) | @=24p=477) | 3.084500892
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2-of-2 DR 2-of-2 KL

Shift | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
0.00 | 496.90| 573.04 536.72 621.30190.21| 554.1§ 524.3D 594 .5%5
0.25] 200.92| 248.00 215.9p 268.18138.19| 170.25 146.90 182.(03
0.50| 38.68 | 45.31| 40.98 48.4]1 25.09 27.66 2628 2919
0.75] 10.01 9.77 10.41] 10.24 7.43 6.66 7.65 6.92
1.00| 4.26 3.11 4.35 3.22 3.61 2.36 3.6/7 243
1.25| 2.72 1.33 2.75 1.37 2.52 1.08 2.54 1.10
1.50| 2.23 0.67 2.24 0.68 2.17 0.5% 217 0.96
1.75| 2.07 0.36 2.08 0.36 2.05 0.3( 2.06 0.30
2.00]| 2.02 0.19 2.02 0.20 2.02 0.16 2.0p 0.16
225 2.01 0.11 2.01 0.11 2.00 0.09 2.00 0.99
250 2.00 0.06 2.00 0.06 2.00 0.0% 2.00 0.95
2.75] 2.00 0.03 2.00 0.03 2.00 0.03 2.00 0.93
3.00] 2.00 0.02 2.00 0.02 2.00 0.02 2.00 0.92

(a=72p=429) @=71b=430) @=81b=420) @=80b=421)

2-0f-3 1-of-1

Shift | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
0.00 | 494.18| 569.01 532.74 615.41460.22| 538.61 520.2f 613.67
0.25] 138.65| 175.14 147.99p 189.33288.43| 370.47 328.1B 426.13
0.50| 25.36 | 27.21| 26.64 28.9% 102.82 143|88 117.63 16|7.75
0.75] 8.19 6.28 8.43 6.57 32.84 4571 37.43 5344
1.00| 4.53 2.14 4,59 2.20 11.19 1451 1258 16)84
1.25| 3.49 0.92 3.51 0.94 4.47 5.01 4.91 5.71
1.50| 3.16 0.53 3.16 0.46 2.25 1.97 2.40 2.20
1.75]| 3.05 0.35 3.05 0.38 1.46 0.90 1.50 0.98
2.00| 3.02 0.18 3.01 0.13 1.16 0.46¢ 1.18 0.49
2.25] 3.01 0.60 3.00 0.07 1.05 0.24 1.06 0.46
250 3.00 0.04 3.00 0.05 1.02 0.13 1.0p 0.14
2.75] 3.00 0.02 3.00 0.02 1.01 0.07 1.0 0.8
3.00| 3.00 0.01 3.00 0.01 1.00 0.04 1.00 0.94

(a=72h=429) @=715p=430) @=25ph=476) @=24p=477)
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Table 4.24: UnconditionalARL and SDRL values for the2-of-2 DR, 2-of-2 KL 2-of-3and the
Basic (-of-1) Precedence chart for thegamma(1,1) distribution whenm =500,n=5,j=3

(O 5

2-of-2 DR 2-of-2 KL

Shift | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
0.00 | 496.90| 573.04 536.72 621.30190.21| 554.1§ 524.3D 594 .5%5
0.25] 233.82| 815.92 250.283 887.98310.12| 405.49 331.64 436.(2
0.50| 58.22 | 216.59 61.33 234.4488.52 | 111.41] 94.24 119.33
0.75] 1755 | 61.43| 18.23 66.2] 28.03 33.05 29|65 3523
1.00| 7.36 18.96 7.56 20.39 10.26 10.74 1075 11|39

1.25] 4.12 6.42 4.19 6.84 4.55 3.79 4.7p 4.0
1.50]| 2.88 2.30 291 2.45 2.6] 1.34 2.6p 1.42
1.75] 2.36 0.74 2.37 0.80 2.05 0.34 2.0p 0.37
2.00]| 2.13 0.13 2.14 0.15 2.00 0.03 2.00 0.q4
225 2.04 0.00 2.05 0.00 2.00 0.0( 2.00 0.¢go
250 2.01 0.00 2.01 0.00 2.00 0.00 2.00 0.qo
2.75] 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.qo
3.00] 2.00 0.00 2.00 0.00 2.00 0.0( 2.00 0.¢qo

(a=72p=429) @=71b=430) @=81b=420) @=80b=421)
2-0f-3 1-of-1
Shift | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL
0.00 | 494.18| 569.01 532.74 615.81460.22| 538.61 520.2F 613.67
0.25] 314.31| 425.1Q 336.9F 459.901527.27| 730.48 600.16 844.%9

0

6

0.50 | 90.55 | 115.92 98.04 126.41255.49| 351.9¢ 290.4p 406.4

0.75] 30.22 | 35.15| 31.84 37.14 12476 170{53 141.61 196.68
1.00| 11.98 | 11.68] 1257 12.3§ 61.56 83.20 69[/2 9580
1.25] 6.01 4.18 6.23 4.48 30.80 40.94 34.y8 47|05
1.50]| 3.88 1.58 3.96 1.67 15,70 20.35 17.67 23|33
1.75] 3.15 0.51 3.17 0.54 8.22 10.23 9.20 1169
2.00] 3.01 0.08 3.01 0.09 4.47 5.19 4.96 5.92
2.25| 3.00 0.01 3.00 0.01 2.58 2.64 2.88 3.2
2501 3.00 0.00 3.00 0.00 1.63 1.32 1.76 1.2
2751 3.00 0.00 3.00 0.00 1.19 0.61 1.24 0.12
3.00| 3.00 0.00 3.00 0.00 1.03 0.23 1.06 0.29

(a=72b=429) | @=71p=430) | @=25p=476) | @=24p=477)
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Because the run-length distribution is highly right-skewed, exclusive use oARh€and the

(@

SDRL) to characterize chart performance has been criticized in the literature and some researche
have strongly suggested an examination of the percentiles too (see e.g. Radson and Boyd, (2005) &
Chakraborti, (2007)).

To this end, the three quartile®,(, Q, and Q,) along with the B and the 9% percentiles are
shown in Tables 4.25, 4.26, 4.27 and 4.28, for2loé-2 DR, the2-of-2 KL, the 2-of-3 and thel-of-1

precedence chart, for the normal, (dhd Gamma (11) distributions, respectively fon= %nd
] =3. Note that (i) these values are aticonditional i.e. being averaged over the joint distribution of
the order statisticsX,,, and X, and (ii) these values were obtained via simulations (200 000

repetitions) using SA®.1 since exact calculations, via enumeration of the c.d.f, took too long for the

upper percentiles. The SR®rograms used in the simulations are provided in Appendix 4A.

A comparison of the quartiles lead to the same general observation that the newly propose
nonparametric charts are more efficient than the basic precedence chart, &iti-thEL and the2-

of-3 charts having a slight edge.

For example, in the in-control case and with thdistribution, for the2-of-2 DR chart (with
a=72 & b=429) the three quartiles are 127, 313 and 658, respectively, which are very close to
those for the-of-2 KL chart (with a= 81& b =420) and the2-of-3 chart (witha= 72& b=429):
126, 312 & 650 and 127, 312 & 653, respectively. By contrast, fal-thiel precedence chart (with
a=25 & b=476) the three quartiles are 116, 287 and 603, respectively, which are all smaller. Since
we want the in-control percentiles to be larger, the new charts are better. On the other hand, in the ot
of-control case, for a shift of 0.50 in the mean, the quartiles foR-thfe2 KL chart (with a= 81&
b =420) and 2-of-3 chart (witha= 72& b=429) are all shorter: 7, 16 & 33 and 8, 17 & 32,
respectively, compared to both t&®f-2 DR chart (witha= 72& b=429): 11, 24 and 50 and tHe
of-1 precedence chart (with= 28 b=476): 23, 57 and 127. This shows that fhef-2 KL and

the 2-of-3charts are superior.
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Table 4.25: The three quartiles Q., Q. and Qs) and the 8" & 95" percentiles of the run-length
distribution of the 2-of-2 DR chart; charting constants @=72 ,b=429)

normal t(4) gamma(1,1)
Shift | 5" | Q1 | Q | Qs [ 95" | 5" | Q1| Q | Q95" [5" | Q| Q| Q| 95
0.00 | 23 | 128| 314 657 158 23 | 127| 313 658 158B 23 | 127| 313 653 158p
025]| 11| 58| 144/ 306 754 10 49 121 260 662 [23 129 [329 |734 [002
050 4 | 16 | 37| 76| 183] 3| 11 24 50 1 B 37 93 205 5§47
075 2 | 6 | 12| 23| 52| 2| 4| 7 3 29 3 12 29 61 1b8
1.00{ 2 | 3| 5| 10| 20| 2| 2| 3/ 5 100 2 §5 1p 21 51
125 2| 2| 3| 5| 10| 2| 2| 2| 3 5 2 2| 4 g 18
150 2 | 2| 2| 3 6 21 2| 2| 2 4 2l 2 2 4 8
1751 2 | 2| 2| 2 4 21 2| 2| 2 2 2 2 2 2 4
2001 2 | 2| 2| 2 3 21 2| 2| 2 2 2 2 2 2 2
2251 2 | 2| 2| 2 2 21 2| 2| 2 2 2l 2 2 2 2
2501 2 | 2| 2| 2 2 21 2| 2| 2 2 2l 2 2 2 2
2751 2 | 2| 2| 2 2 21 2| 2| 2 2 2l 2 2 2 2
300l 2| 2| 2| 2 2 21 2| 2| 2 2 2l 2 2 2 2

Table 4.26: The three quartiles Q;, Q. and Qs) and the gh & 95™ percentiles of the run-length
distribution of the 2-of-2 KL chart; charting constants (a=81 ,b=420)

normal t(4) gamma(1,1)
Shift [ 5" | Qi | Q | Qs 95" |5" | Q1 | Q[ Q [95"]5" | Q| Q| Q|95
0.00 | 23 | 128| 313 652 155% 24 | 126| 312 650 154p 24 | 128| 314/ 655 155p
025]| 9 | 43| 105 223 549 7| 34 84 179 449 14 |2 181 (394 1037
050 3 | 11| 26| 52| 122 2| 7| 16 33 7] 5 42 53 114 292
0751 2 | 4| 9| 17| 38| 2| 3| 5/ 10 29 2 g 17 36 88
100 2 | 2| 4| 8| 16| 2| 2| 3| 4 8 20 4 7 18 30
1251 2 | 2| 3| 4 8 21 2| 2| 3 5 2l 2 3 6 11
150 2 | 2| 2| 3 5 21 2| 2| 2 4 2l 2 2 3 5
1751 2 | 2| 2| 2 4 21 2| 2| 2 2 2l 2 2 2 2
2001 2| 2| 2| 2 3 21 2| 2| 2 2 2l 2 2 2 2
2251 2| 2| 2| 2 2 21 2| 2| 2 2 2l 2 2 2 2
2501 2 | 2| 2| 2 2 21 2| 2| 2 2 2 2 2 2 2
2751 2 | 2| 2| 2 2 21 2| 2| 2 2 2 2 2 2 2
300l 2| 2| 2| 2 2 21 2| 2| 2 2 2l 2 2 2 2
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Table 4.27: The three quartiles Q;, Q. and Qs) and the gh & 95™ percentiles of the run-length
distribution of the 2-of-3 chart; charting constants @=72 ,b=429)
normal t(4) gamma(1,1)
Shift [5" | Q1 | @ | Qs | 95" | 5" | @ | Q | Q| 95" [5" | Q| Q| Q| 95
0.00 | 25| 127| 312/ 653 157p 24 | 127| 312 653 158p 25 | 128| 313 655 158p
025]|10| 41| 99| 208 524 8 34 82 176 447 15 2 179 B92 1051
050| 4 | 11| 24| 48| 111 4| 8| 171 32 76 6 23 54 114 295
075! 3| 5| 9| 16| 34| 3| 4| 6| 1 2 4 9 19 38 W
100 3| 4| 5| 8| 15| 3| 3| 4| 5 9 3 5 8§ 15 3B
1251 3| 3| 4| 5 8 3| 3| 3| 4 5 3 3 4 7 14
1501 3| 3| 3| 4 6 3| 3| 3| 3 4 3 3 3 4 7
1751 3| 3 | 3| 3 4 3| 3| 3| 3 3 3] 3 3 3 4
200 3| 3| 3| 3 4 3| 3| 3| 3 3 3] 3 3 3 3
225 3| 3| 3| 3 3 3| 3| 3| 3 3 3] 3 3 3 3
250 3| 3| 3| 3 3 3| 3| 3| 3 3 3 3 3 3 3
2750 3| 3| 3| 3 3 3| 3| 3| 3 3 3 3 3 3 3
3003 3| 3| 3 3 3| 3| 3| 3 3 3] 3 3 3 3

Table 4.28: The three quartiles Q;, Q. and Qs) and the 8" & 95" of the run-length distribution
of the Basic (-of-1) precedence chart; charting constantsaE25 ,b=476)

normal t(4) gamma(1,1)

Shift | 5" | Q1 | @ | Q| 95" [5" | O | @ | Q]| 95" | 5" | Q| Q | Q| 95
0.00| 21 | 116| 288 608 148p21 | 116| 287 603 147p21 | 115| 287 606 147f
025| 10| 56| 140 300 764 12 66 168 368 9H6 [0 115 [294 [655 [L786
050 3 | 18| 43| 92| 228 4| 23 57 127 390 10 57 144 B19 864
075 2 | 6 | 15| 31| 75| 2| 8| 19 41 11p 5 28 71 157 420
100 1 | 3 6 | 13| 29| 1| 3 71 14 3¢ 3 14 35 77 206
125 1 | 2 3 6 13| 1| 1 3 6 13 2 71 18 39 103
150 1 1 2 3 7 1 1 2 3 6 1 4 9 20 51
175 1 1 1 2 4 1 1 1 2 3 1 2 5 10 26
200 1 1 1 2 3 1 1 1 1 2 1 1 3 g 14
225 1 1 1 1 2 1 1 1 1 2 1 1 2 3 7
250 1 1 1 1 2 1 1 1 1 1 1 1 1 p. 4
275 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
3.00| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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4.4 Concluding remarks: Summary and recommendations

The new class of runs-rule enhanced nonparametric sign charts of Case K and the distribution-fre

precedence charts of Case U can be useful for the quality practitioner in that they

0] enhance the in-control and the out-of-control performance af-tifiel sign chart of Amin

et al. (1995) and the basic precedence chart of Chakraborti et al. (2004), respectively, and

(i) outperform the classical and well-known Shewh¥rtchart (especially for heavy-tailed or
skewed distributions).

In particular, the charts based on thef-k and thek-of-w signaling rules facilitate largeARL,

and smallerFAR values which allow practitioners greater flexibility while designing charts to best suit

their needs.
The key advantage and main benefits of the nonparametric charts are:

(1) their in-control run-length distributions (and all associated performance characteristics such

as theARL, and FAR, for example) are the same for all continuous distributions, and

(i) one does not have to assume symmetry of the underlying distribution (unlike the SR
charts). Thus, practitioners need not worry about what the underlying distribution is (and
the serious consequences/ramifications/costs if it is not normal, for example) as far as

implementing and understanding the charts’ properties are concerned.

The sign charts have an added advantage as they can be applied in situations where the data are
dichotomous.

A further practical advantage of the precedence charts is their potential to save time and resourct
in situations where the data are naturally collected in an ordered fashion, as is common in “life-testing
type situations, where one observes the “time to failure” of some item and it is costly and time
consuming to wait for all units to fail. Because the control limits and the charting statistic of the

precedence charts are based on order statistics, they can be applied as soon as the required o

statistics are observed, whereas the Shewhart or CUSUM or EVWWMgharts can not be applied

since one needs the full dataset to calculate the average.
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Also, the precedence charts can be adapted to and applied in the case of ordinal data. The charti

G

statistic can be chosen to be any order statistic of the Phase Il sample suitable in a specific applicatic

The median, used in this chapter, of course enjoys the robustness property and is therefore less affec

by the presence of outliers (very small or large observations) thax ttieart, for example.

Finally, the implementation and application of the sign and precedence charts are easy using tr

tables with the charting constants (and attaid®d.,, and FAR values) and it is recommend that they

be used more frequently in practice.
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4.5 Appendix 4A: SAS programs

4.5.1 SAS programs to simulate the run-length distributions of the upper one-sided
X-bar, sign and SR charts in Case K

4.5.1.1 The 1-of-1 X-bar, sign and SR charts

*1-of -1 upper one-sided X-bar chart;

proc imn;

ARL = 370;

sim= 100000;

n= 10;

UCL = probit( 1- 1/ARL)/sqrt(n);
simrl = j(sim, 13,.);

dod= 1to 2.2by 0.2;
doj= 1tosim;

ct= 0;

dok= 1to 10000000 while (~((ct>=UCL)) );
x=jn, 1,.)

call randgen(x, 'NORMAL',d- 1, 1);

ct = sum(x)/n;

rl =k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

create RL1ofl_Xbar from simrl[colname={delta000
delta020 delta040 delta060 delta080 deltal00 deltal20}];
append from simrl;

qui t;

proc univariate data =RL1ofl_Xbar;

var delta000 delta020 delta040 delta060 delta080 deltal 00 deltal20;
run;
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*1-of -1 upper one-sided sign chart;

proc imn;

ARL = 370;

sim= 100000;

a= 0

n= 10;

UCL = n-a;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

g=( 1/ARL- 1+ probbnmi( 0.5,n,n-a- 1))/ (probbnmi( 0. 5,n,n-a- 1) - probbnmi( 0. 5,n,n-
a- 2));

dod= 1to 2.2by 0.2;

doj= 1tosim;

ct= 0

random = 0O;

dok= 1to 10000000 while (~((ct>=UCL)|((ct=UCL- 1)&(random<=q))) );
x=jn, 1,.)

call randgen(x, 'NORMAL',d- 1, 1);

vec = X > med,;

ct = sum(vec);

random = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

*print simrl;

create RL1ofl_sign from simrl[colname={delta000
delta020 delta040 delta060 delta080 deltal00 deltal20}];
append from simrl;

qui t;

proc univariate data =RL1ofl_sign;

var delta000 delta020 delta040 delta060 delta080 deltal 00 delta120;
run;
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*1-of -1 upper one-sided SR chart;

proc imn;
ARL = 370;
sim= 100000;
n= 10;
UCL = 53;
UCL1 = 51,

cdfUCL= 0.002;

pmfUCL1 = 0. 0009;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

g=( 1/ARL -cdfuCL)/(pmfUCL1);

dod= 1to 2.2by 0.2;

doj= 1tosim;

random = 0O;

ct= 0;

dok= 1to 10000000 while (*( (ct>=UCL) | ((ct=UCL1)&(random<=q)) ) )
x=jn, 1,.)

call randgen(x, 'NORMAL',d- 1, 1);

vec =X>med,;

wplus = (vec’)*rank(abs(x));

ct= 2*wplus - n*(n+ 1/ 2;

random = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1])=rl;

end;

end;

create RL1ofl_SR from simrl[colname={delta000
delta020 delta040 delta060 deltaO80 deltal00 deltal20}];
append from simrl;

qui t;

proc univariate data =RL1ofl_SR;

var delta000 delta020 delta040 delta060 delta080 deltal 00 delta120;
run;
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4.5.1.2 The 2-of-2 sign and SR charts

*2-0of -2 upper one-sided sign chart;

proc im;

ARL = 370;

sim= 100000;

a= 1;

n= 10;

UCL = n-g;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

a=((sqrt( 4*ARL+1)+ 1)/( 2*ARL) - 1 + probbnml(
(probbnmi( 0. 5,n,n-a- 1) - probbnml( 0. 5,n,n-a-

dod= 1to 2.2by 0.2

doj= 1tosim;

x=jn, 1,.)

ctl= O,

ct= 0;

randoml = O;

random = O;

dok= 1to 10000000 while (

A( (ctl>=UCL)&(ct>=UCL) ) |
( ((ct1=UCL- 1)&(randoml<=q))&(ct>=ucl) ) |
( (ct1>=UCL)&((ct=UCL- 1)&(random<=q)) )

1))/

|
( ((ctl=UCL- 1)&(random1<=q))&((ct=UCL- 1)&(random<=q))) ) );

ctl =ct;

call randgen(x, 'NORMAL',d- 1, 1);

vec = X > med;

ct = sum(vec);

random = ranuni( 0);

random1 = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1])=rl;

end;

end;

create RL20f2_sign from simrl[colname={delta000
delta020 delta040 delta060 deltaO80 deltal00 deltal20}];
append from simrl;

qui t;

proc univari ate data =RL20f2_sign;

var delta000 delta020 delta040 delta060 delta080 deltal
run;

00 deltal20;
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*2-0f -2 upper one-sided SR chart;

proc imn;
ARL = 370;
sim= 100000;
n= 10;

UCL = 33;

UCL1=UCL- 2;
cdfUCL = 0.0527;
pmfUCL1 = 0.0127;
med =j(n, 1, 0);

simrl = j(sim, 13,.);

g=( (sqrt( 4*ARL+1)+ 1)/( 2*ARL) - cdfUCL )/ ( pmfUCL1);
dod= 1to 2.2by 0.2;

doj= 1tosim;

x =j(n, 1,.);

ctl= O

ct= 0;

randoml = O;

random = 0;

dok= 1to 10000000 while (

A ( (et1>=UCL)&(ct>=UCL) ) [

( ((ctl=UCL1)&(randoml<=q))&(ct>=ucl) ) |

( (ct1>=UCL)&((ct=UCL1)&(random<=q)) ) |

( ((ct1l=UCL1)&(random1<=q))&((ct=UCL1)&(random<=q))) ) );
ctl =ct;

call randgen(x, 'NORMAL',d- 1, 1);

vec =X >med,;

wplus = (vec’)*rank(abs(x));

ct= 2*wplus - n*(n+ 1/ 2;

random = ranuni( 0);

random1 = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

create RL20f2_SR from simrl[colname={delta000
delta020 delta040 delta060 delta080 deltal00 deltal20}];
append from simrl;

qui t;

proc univariate data =RL20f2_SR;

var delta000 delta020 delta040 delta060 delta080 deltal 00 deltal20;

run;
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4.5.1.3 The 2-of-3 sign chart

*2-0f -3 upper

proc im;
ARL = 370;
sim= 100000;
a= 1;

n= 10;

UCL = n-a;

-sided sign chart;

med =j(n, 1, 0);

simrl = j(sim,

13,.);

g= 0.632202808;
dod= 1to 2.2by 0.2

doj= 1tosim;
x=jn, 1,.)
ct2= 0,

ctl= O,

ct= 0;

random2 = O;
randoml = O;
random = O;

dok= 1to 10000000 while (

AN

((ct2>=UCL)

( ((ct2=UCL-

( (ct2>=UCL)

( ((ct2=UCL-
((ct1>=UCL)

( ((ct2=UCL-
((ctl>=UCL)

( ((ct2=UCL-
ct2 = ctl,

ctl =ct;

call randgen(x,
vec = x > med,;
ct = sum(vec);
random = ranuni(

& (ctl<UCL) & (ct>=UCL) )
1)&(random2<=q)) & (ct1l<UCL) & (ct>=UCL)
& (ctl<UCL) & ((ct=UCL-
1)&(random2<=q)) & (ct1l<UCL) & ((ct=UCL-
& (ct2<UCL) & (ct>=UCL) )
1)&(randoml<=q)) & (ct2<UCL) & (ct>=UCL)
& (ct2<UCL) & ((ct=UCL-
1)&(randoml1<=q)) & (ct2<UCL) & ((ct=UCL-

'NORMAL',d- 1, 1);

0);

random1 = ranuni( 0);
random2 = ranuni( 0);

rl =k;
end;

simrl[j,d* 5+1]=rl;

end;
end;

ARL = sum(simrl)/sim;

create RL20f3_sign from simrl[colname={delta000
delta020 delta040 delta060 delta080 deltal00 deltal20}];
append from simrl;

qui t;

proc univari ate data =RL20f3_sign;
var delta000 delta020 delta040 delta060 delta080 deltal

run;

1)&(random<=q)) )
1)&(random<=q)) )

1)&(random<=q)) )
1)&(random<=q)) )

00 deltal20;

)

)

I
) )
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4.5.2 SAS programs to simulate the run-length distributions of the two-
sided precedence charts in Case U

4.5.2.1 The 1-of-1 precedence chart

proc imn;

m = 500;

n= 5;

j=n+ 1) 2;

sim= 100000;

a= 25;

b= 476;

rlvec = j(sim, 13,.);

do delta = 1to 3by O0.25

shift = 4*delta-  3;

do k= 1tosim;

xref = j(m, 1, 0);

call randgen(xref, 'NORMAL"); yref = xref;
call  sort(yref, { 1});

Icl = yref[a, 1];

ucl = yref[b, 1];

count= 1;

signal = 0;

above =j( 2,1, 0);

below=j( 2,1, 1);

do while (signal = 0);

xfut = j(n, 1, 0);

call randgen(xfut, 'NORMAL',delta- 1, 1); yfut = xfut;
call  sort(yfut, { 1});

plotstat = yfut[j, 1];

cl=j( 2,1, 0);

cl[ 1, 1]=ucl;

c[ 2, 1]=lcl;

plotstatvec=j( 2, 1,plotstat);

check = plotstatvec <= cl;

if check = above then signal = 1;
else if check = below then signal = 1;
else count = count + 1;

countl = count;

rlvec[k,shift] = countl;

end;

end;

end;

create RL1ofl_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050

delta075 deltal00 deltal25 deltal50 deltal75 delta200 delta225 delta250 delta275

delta300}];

append from rlvec;

qui t;

proc univariate data =RL1ofl_Precedence_normal;

var delta000 delta025 delta050 delta075 deltal00 deltal 25 deltal50 deltal75
delta200 delta225 delta250 delta275 delta300;

run;

381



&
UMNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

4.5.2.2 The 2-of-2 DR and the 2-of-2 KL precedence charts

proc im;

m= 500;n= 5;j=(n+ 1/ 2;
sim= 100000;

a= 81;b=  420;

rlvec = j(sim, 13,.);

do delta = 1to 3by O0.25
shift = 4*delta-  3;

do k= 1 tosim;

xref = j(m, 1, 0);

call randgen(xref, ‘NORMAL"); yref = xref;
call  sort(yref, { 1});

Icl = yref[a, 1];

ucl = yref[b, 1];

count= 1;

signal = 0;

dummy =j( 2,1, 0);

check={ 1, 0}

above =j( 2, 2, 0);

below=j( 2,2, 1);
abovebelow={ 0 1, 0 1}
belowabove={ 1 0, 1 O}
matrix = j( 2,2, 0);

do while (signal = 0);
dummy = check;

xfut = j(n, 1, 0);

call randgen(xfut, ‘NORMAL',delta- 1, 1); yfut = xfut;
call  sort(yfut, { 1});
plotstat = yfut[j, 1];

cl=j( 2,1, 0);

c[ 1, 1]=ucl;

cl[ 2, 1]=lcl,

plotstatvec=j( 2, 1,plotstat);
check = plotstatvec <= cl;

matrix = dummy||check;

if matrix = above then signal = 1; *DR and KL;

else if matrix = below then signal = 1; *DR and KL;
else if matrix = abovebelow then signal = 1; *DR only;
else if matrix = belowabove then signal = 1; *DR only;
else count = count + 1;

countl = count;
rlvec[k,shift] = countl;

end;

end;

end;

create RL20f2_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050

delta075 deltal00 deltal25 deltal50 deltal75 delta200 delta225 delta250 delta275

delta300}];

append from rlvec;

qui t;

proc univariate data = RL20f2_Precedence_normal;

var delta000 delta025 delta050 delta075 deltal00 deltal 25 deltal50 deltal75
delta200 delta225 delta250 delta275 delta300;

run;
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4.5.2.3 The 2-of-3 precedence chart

proc imn;
m= 500;n= 5;j=(n+ 1/ 2;

sim= 100000;

a= 72;b= 429;

rlvec = j(sim, 13,.);

do delta = 1to 3by O0.25;

shift = 4*delta-  3;

do k= 1tosim;

xref = j(m, 1, 0);

call randgen(xref, ‘NORMAL"); yref = xref;
call  sort(yref, { 1});

Icl = yref[a, 1];

ucl = yref[b, 1];

count=  2;

signal = 0;

dummyl ={ 1, 0}; dummy2 = j(
between_above above = {

.1, .); check ={ 1, 0}

10
00
between_below_below = { 11
01
below_between_below = { 11
above_between_above ={

matrix = j( 2,3,.);

do while (signal = 0);

dummy2 = dummy1;

dummy1 = check;

xfut = j(n, 1, 0);

call randgen(xfut, ‘NORMAL',delta- 1, 1); yfut = xfut;

call  sort(yfut, { 1});

plotstat = yfut[j, 1];

cl=j( 2,1, 0);

c[ 1, 1]=ucl;

cl[ 2, 1]=lcl,

plotstatvec=j( 2, 1,plotstat);

check = plotstatvec <= cl;

matrix = dummy?2||dummyl||check;

if matrix = between_above_above then signal = 1;

else if matrix = between_below_below then signal = 1;

else if matrix = below_between_below then signal = 1;

else if matrix = above_between_above then signal = 1;

else count = count + 1;

countl = count;

rlvec[k,shift] = countl;

end;

end;

end;

create RL20f3_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050

delta075 deltal00 deltal25 deltal50 deltal75 delta200 delta225 delta250 delta275

delta300}];

append from rlvec;

qui t;

proc univariate data = RL20f3_Precedence_normal;

var delta000 delta025 delta050 delta075 deltal00 deltal 25 deltal50 deltal75
delta200 delta225 delta250 delta275 delta300;

run;
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4.5 Appendix 4A: SAS programs

4.5.1 SAS programs to simulate the run-length distributionsof the upper one-sided
X-bar, sign and SR charts in Case K

4.5.1.1 Thel-of-1 X-bar, sign and SR charts

*1-o0f -1 upper one-sided X-bar chart;

proc in;

ARL = 370;

sim= 100000;

n= 10;

UCL = probit( 1- 1/ARL)/sqrt(n);
simrl = j(sim, 13,.);

dod= 1to 2.2by 0.2;
doj= 1tosim;

ct= 0;

dok= 1to 10000000 while (~((ct>=UCL)) );
x=jn, 1,.)

call randgen(x, 'NORMAL',d- 1, 1);
ct = sum(x)/n;

rl = k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

create RL1ofl_Xbar from simrl[colname={delta000

delta020 delta040 delta060 delta080 deltal00 deltal 20}];
append from simrl;

qui t;

proc univariate data =RL1ofl_Xbar;

var delta000 delta020 delta040 delta060 delta080 delta 100 deltal20;
run;
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*1-of -1 upper one-sided sign chart;

proc in;

ARL = 370;

sim= 100000;

a= 0

n= 10;

UCL = n-a;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

g=( 1/ARL- 1+ probbnmi( 0.5,n,n-a- 1))/ (probbnml( 0. 5,n,n-a- 1) - probbnml( 0. 5,n,n-
a- 2));

dod= 1to 2.2by O0.2;

doj= 1tosim;

ct= 0

random = 0O;

dok= 1to 10000000 while (~((ct>=UCL)|((ct=UCL- 1)&(random<=q))) );
x=jn, 1,.)

call randgen(x, 'NORMAL',d- 1, 1);

vec = X > med;

ct = sum(vec);

random = ranuni( 0);

rl =k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

*print simrl;

create RL1ofl_sign from simrl[colname={delta000

delta020 delta040 delta060 delta080 deltal00 deltal 20}];
append from simrl;

qui t;

proc univari ate data =RL1ofl_sign;

var delta000 delta020 delta040 delta060 delta080 delta 100 deltal20;
run;
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*1-of -1 upper one-sided SR chart;

proc in;
ARL = 370;
sim= 100000;
n= 10;
UCL = 53;
UCL1 = 51,

cdfuCL = 0.002;

pmfUCL1 = 0.0009;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

g=( 1/ARL -cdfuCL)/(pmfuCLl1);
dod= 1to 2.2by 0. 2;

doj= 1tosim;

random = 0;

ct= 0;

dok= 1to 10000000 while (*( (ct>=UCL) | ((ct=UCL1)&(random<=q)) ) );

x=jn, 1,.)

call randgen(x, 'NORMAL',d- 1, 1);
vec =X>med,;

wplus = (vec’)*rank(abs(x));

ct= 2*wplus - n*(n+ 1/ 2;
random = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1])=rl;

end;

end;

create RL1ofl_SR from simrl[colname={delta000

delta020 delta040 delta060 deltaO80 deltal00 deltal 20}];
append from simrl;

qui t;

proc univariate data =RL1ofl_SR;

var delta000 delta020 delta040 delta060 delta080 delta 100 deltal20;
run;
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4.5.1.2 The2-of-2 sign and SR charts

*2-0f -2 upper one-sided sign chart;

proc im;

ARL = 370;

sim= 100000;

a= 1;

n= 10;

UCL = n-g;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

a=((sqrt( 4*ARL+1)+ 1)/( 2*ARL)- 1 +probbnml( 0.5,nn-a- 1))/
(probbnmi( 0. 5,n,n-a- 1) - probbnml( 0.5,n,n-a- 2));

dod= 1to 2.2by 0.2

doj= 1tosim;
x=jn, 1,.)
ctl= O

ct= 0;

randoml = O;

random = O;

dok= 1to 10000000 while (

N ( (etl>=UCL)&(ct>=UCL) ) |

( ((ct1=UCL- 1)&(randoml<=q))&(ct>=ucl) ) |

( (ct1>=UCL)&((ct=UCL- 1)&(random<=q)) ) |

( ((ct1=UCL- 1)&(random1<=q))&((ct=UCL- 1&(random<=q))) ) );
ctl =ct;

call randgen(x, 'NORMAL',d- 1, 1);
vec = X > med;

ct = sum(vec);

random = ranuni( 0);

random1 = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1])=rl;

end;

end;

create RL20f2_sign from simrl[colname={delta000

delta020 delta040 delta060 deltaO80 deltal00 deltal 20}];
append from simrl;

qui t;

proc univari ate data =RL20f2_sign;

var delta000 delta020 delta040 delta060 delta080 delta 100 deltal20;
run;
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*2-0f -2 upper one-sided SR chart;

proc in;
ARL = 370;
sim= 100000;
n= 10;

UCL = 33;

UCL1=UCL- 2;
cdfUCL= 0.0527;
pmfUCL1 = 0.0127;
med =j(n, 1, 0);

simrl = j(sim, 13,.);

g=( (sqrt( 4*ARL+1)+ 1)/( 2*ARL) - cdfUCL )/ ( pmfUCL1);
dod= 1to 2.2by 0. 2;

doj= 1tosim;

x =j(n, 1,.);

ctl= O

ct= 0;

randoml = O;

random = 0;

dok= 1to 10000000 while (

A ( (et1>=UCL)&(ct>=UCL) ) |

( ((ctl=UCL1)&(randoml<=q))&(ct>=ucl) ) |
( (ct1>=UCL)&((ct=UCL1)&(random<=q)) ) |

( ((ct1=UCL1)&(randoml1<=q))&((ct=UCL1)&(random<=q

ctl =ct;

call randgen(x, 'NORMAL',d- 1, 1);

vec =X >med;

wplus = (vec’)*rank(abs(x));

ct= 2*wplus - n*(n+ 1/ 2;

random = ranuni( 0);

random1 = ranuni( 0);

rl=k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

create RL20f2_SR from simrl[colname={delta000
delta020 delta040 delta060 delta080 deltal00 deltal
append from simrl;

qui t;

proc univariate data =RL20f2_SR;

var delta000 delta020 delta040 delta060 delta080 delta
run;

N )

20}];

100 delta120;
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4.5.1.3 The2-of-3 sign chart

*2-0f -3 upper-sided sign chart;

proc im;

ARL = 370;

sim= 100000;

a= 1;

n= 10;

UCL = n-g;

med =j(n, 1, 0);

simrl = j(sim, 13,.);

g= 0.632202808;

dod= 1to 2.2by 0.2

doj= 1tosim;
x=jn, 1,.)
ct2= 0,

ctl= O,

ct= 0;

random2 = O;

randoml = O;

random = O;

dok= 1to 10000000 while (

AN

((ct2>=UCL) & (ctl<UCL) & (ct>=U

( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) & (ct>=UCL)
( (ct2>=UCL) & (ctl<UCL) & ((ct=UC

( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) & ((ct=UCL-
((ct1>=UCL) & (ct2<UCL) & (ct>=U

( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) & (ct>=UCL)
((ct1>=UCL) & (ct2<UCL) & ((ct=UC

( ((ctl=UCL- 1)&(random1<=q)) & (ct2<UCL) & ((ct=UCL-
ct2 = ctl,;

ctl =ct;

call randgen(x, 'NORMAL',d- 1, 1);

vec = x > med,;

ct = sum(vec);

random = ranuni( 0);

random1 = ranuni( 0);

random2 = ranuni( 0);

rl =k;

end;

simrl[j,d* 5+1]=rl;

end;

end;

ARL = sum(simrl)/sim;

create RL20f3_sign from simrl[colname={delta000
delta020 delta040 delta060 delta080 deltal00 deltal
append from simrl;

qui t;

proc univari ate data =RL20f3_sign;

var delta000 delta020 delta040 delta060 delta080 delta
run;

CL) )

L- 1)&(random<=q)) )
1)&(random<=q)) )

CL) )

L- 1)&(random<=q)) )
1)&(random<=q)) )

20}];

100 delta120;

)

) )
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4.5.2 SAS programs to simulate the run-length distributionsof the two-

sided precedence charts in Case U

4.5.2.1 Thel-of-1 precedence chart

proc in;

m = 500;

n= 5;

j=n+ 1) 2;

sim= 100000;

a= 25;

b= 476;

rlvec = j(sim, 13,.);

do delta = 1to 3by O0.25

shift = 4*delta-  3;

do k= 1tosim;

xref = j(m, 1, 0);

call randgen(xref, 'NORMAL"); yref = xref;

call  sort(yref, { 1});

Icl = yref{a, 1];

ucl = yref[b, 1;

count= 1;

signal = 0;

above =j( 2,1, 0);

below=j( 2,1, 1)

do while (signal = 0);

xfut = j(n, 1, 0);

call randgen(xfut, 'NORMAL',delta- 1, 1); yfut = xfut;

call  sort(yfut, { 1});

plotstat = yfut[j, 1];

cl=j( 2,1, 0);

cl[ 1,1]=ucl;

c[ 2, 1]=lcl;

plotstatvec=j( 2, 1,plotstat);

check = plotstatvec <= cl;

if check = above then signal = 1;

else if check = below then signal = 1;

else count = count + 1;

countl = count;

rlvec[k,shift] = countl;

end;

end;

end;

create RL1ofl_Precedence_normal from rlvec[colname={delta

delta075 deltal00 deltal25 deltal50 deltal75 delta2

delta300}];

append from rlvec;

qui t;

proc univariate data =RL1ofl_Precedence_normal;

var delta000 delta025 delta050 delta075 deltal00 delta
delta200 delta225 delta250 delta275 delta300;

run;

000 delta025 delta050
00 delta225 delta250 delta275

125 deltal50 deltal75
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4.5.2.2 The2-of-2 DR and the2-of-2 KL precedence charts

proc im;

m= 500;n=5;j=(n+ 1/ 2;
sim= 100000;

a= 81;b=  420;

rlvec = j(sim, 13,.);

do delta = 1to 3by O0.25
shift = 4*delta-  3;

do k= 1 tosim;

xref = j(m, 1, 0);

call randgen(xref, ‘NORMAL"); yref = xref;
call  sort(yref, { 1});

Icl = yref[a, 1;

ucl = yref[b, 1;

count= 1;

signal = 0;

dummy =j( 2,1, 0);

check={ 1, 0}

above =j( 2, 2, 0);

below=j( 2,2, 1);
abovebelow={ 0 1, 0 1}
belowabove={ 1 0, 1 O}
matrix = j( 2,2, 0);

do while (signal = 0);
dummy = check;

xfut = j(n, 1, 0);

call randgen(xfut, ‘NORMAL',delta- 1, 1); yfut = xfut;
call  sort(yfut, { 1});
plotstat = yfut[j, 1;

cl=j( 2,1, 0);

c[ 1, 1]=ucl;

cl[ 2, 1]=lcl,

plotstatvec=j( 2, 1,plotstat);
check = plotstatvec <= cl;

matrix = dummy||check;

if matrix = above then signal = 1; *DR and KL;

else if matrix = below then signal = 1; *DR and KL;
else if matrix = abovebelow then signal = 1; *DR only;
else if matrix = belowabove then signal = 1; *DR only;
else count = count + 1;

countl = count;
rlvec[k,shift] = countl;

end;

end;

end;

create RL20f2_Precedence_normal from rlvec[colname={delta

delta075 deltal00 deltal25 deltal50 deltal75 delta2 00 delta225 delta250 delta275
delta300}];

append from rlvec;

qui t;

proc univari ate data = RL20f2_Precedence_normal;

var delta000 delta025 delta050 delta075 deltal00 delta
delta200 delta225 delta250 delta275 delta300;

run;

000 delta025 delta050

125 deltal50 deltal75
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4.5.2.3 Thez-of-3 precedence chart

proc in;

m= 500;n=5;j=(n+ 1/ 2;
sim= 100000;

a= 72;b=  429;

rlvec = j(sim, 13,.);

do delta = 1to 3by O0.25;
shift = 4*delta-  3;

do k= 1tosim;

xref = j(m, 1, 0);

call randgen(xref, ‘NORMAL"); yref = xref;

call  sort(yref, { 1}h);

Icl = yref[a, 1;

ucl = yref[b, 1];

count=  2;

signal = 0;

dummyl ={ 1, 0}; dummy2 = j( 2,1, .); check ={ 1, O}

between_above_above ={ 100,
0 0 0O}

between_below_below = { 111,
01 1}

below_between_below = { 111,
10 1}

above_between_above = { 010,
0 0 0}

matrix = j( 2,3,.);

do while (signal = 0);
dummy2 = dummy1;
dummy1 = check;

xfut = j(n, 1, 0);

call randgen(xfut, ‘NORMAL',delta- 1, 1); yfut = xfut;
call  sort(yfut, { 1});

plotstat = yfut[j, 1;

cl=j( 2,1, 0);

c[ 1, 1]=ucl;

cl[ 2, 1]=lcl,

plotstatvec=j( 2, 1,plotstat);

check = plotstatvec <= cl;

matrix = dummy?2||dummy1l||check;

if matrix = between_above_above then signal = 1;

else if matrix = between_below_below then signal =

else if matrix = below_between_below then signal =

else if matrix = above_between_above then signal =

else count = count + 1;

countl = count;

rlvec[k,shift] = countl;

end;

end;

end;

create RL20f3_Precedence_normal from rlvec[colname={delta

delta075 deltal00 deltal25 deltal50 deltal75 delta2

delta300}];

append from rlvec;

qui t;

proc univari ate data = RL20f3_Precedence_normal;

var delta000 delta025 delta050 delta075 deltal00 delta
delta200 delta225 delta250 delta275 delta300;

run;

000 delta025 delta050
00 delta225 delta250 delta275

125 deltal50 deltal75
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Chapter 5

Concluding remarks; Summary and

recommendations for futureresearch

To finish-off this thesis, we give here a brief summary of the research conducted in the thesis an

offer concluding remarks concerning unanswered questions and/or future research opportunities.

In this thesis, in general, we focused on a variety of aspects related to the basic (yet powerful
statistical tool often used in quality improvement efforts within the realm of statistical quality control,
that is, the Shewhart-type of control chart. First, we looked at Shewhart-type Phase | variables char
for the variance, the standard deviation and the range; this was followed by an overview of the
literature on Shewhart-type Phase | variables charts for the location and the spread of a proces
Second, we studied the Shewhart-type PhapecHart and the Shewhart-type Phasedhart in Case
U (when the parameters are unknown) and assessed the influence when the parameters are estims
from a Phase | sample on the performance of these charts; both these charts are attributes charts -
are widely used in practice. Lastly, we developed a new class of nonparametric Shewhart-type Phas
and Phase Il control charts, for monitoring or controlling a certain quantile of the underlying
probability distribution of a process, based on runs-type signaling rules using the well-known sign tes
and the two-sample median test statistic as plotting statistics. In the next few paragraphs we point o
the highlights of the research carried out in this thesis and state some research ideas to be pursuec
the near future. We also list the research outputs related to this thesis; this includes a list of technic
reports and peer-reviewed articles that were published in international journals, contributions to loca
and international conferences where the author of this thesis presented papers and some draft artic

that were submitted and are currently under review.

Variables control charts

Assuming that the underlying process distribution follows a normal distribution with an unknown

mean and an unknown variance, in Chapter 2 we studied the design of the well-known Shewhart-typ

384



-

N UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

S?, S and R charts for Phase | applications based on the availabilityn ofhdependent rational
subgroups each of size>1. We showed that, because multiple plotting statistics are simultaneously
compared to the same set of estimated control limits, the signaling events (i.e. the event when
plotting statistic plots outside the control limits) are mutually dependent. We further argued (with
reference to the article of Champ and Jones, (2004)) that the correct design criterion of Shewhart-tyy
Phase | charts is the false alarm probabilBAF), which is the probability of at least one false alarm,
and not the false alarm ratEAR), which deals with only one plotting statistic at a time and is defined
as the probability of a signal at any particular sampling stage. Accordingly, we found the appropriate

charting constants for a variety ¢f n)-combinations for each of the three charts (using intensive

computer simulation experiments) so thatRA& of each chart does not exceed 0.01, 0.05 and 0.10,

respectively.

The literature overview, in Chapter 2, regarding univariate parametric Phase | Shewhart-type chart
for the location and the spread of a process not only presented the current state of the art «

constructing these charts, but also brought several important points under our attention:

0] There is a lack of proper guidance to the practitioner on the correct statistical design
and implementation of Phase | charts. In a search of the standard statistical proces
control textbooks on the market, none to very little material was found, including the
standard book of Montgomery (2005), who discusses the topic without the necessary
statistical theory.

(i) Some of the authors that studied the Phase | problem (especially when the proces:
parameters are estimated) ignore the dependency between the Phase | plotting statisti
and incorrectly used th&AR (which only deals with a single plotting statistic at a
time) to design the charts as apposed to f#d® (which takes into account that
multiple charting statistics are simultaneously compared to the estimated control limits).
This would certainly deteriorate the performance of these charts. Our methodology

provides the correct control limits for the applications studied.

(i)  There seems to be no consensus on exactly how one should compare the performance
competing Phase | charts. This boils down to the question of how to formulate and
define an out-of-control situation in Phase I. One current proposal is to adopt the
scenario that one of the Phase | samples is out-of-control and that the renmaining 1

samples are in-control and then (via computer simulation) compare the empirical
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probability that at least one point plots outside the estimated control limits. The chart
with the highest empirical probability of detecting the out-of-control sample is then

declared the winner; this can be investigated further.

There is a genuine need to develop a Phase | control chart for the case whethat 1

is, for individuals data. Admittedly there are some articles available in the literature that
address the problem (see e.g. Nelson (1982), Roes, Does and Schurink (1993), Rigdor
Cruthis and Champ (1994) and Bryce, Gaudard and Joiner (1997)) but the problem has
not yet been solved satisfactorily. The main stumbling block appears to be finding a
suitable point estimator for the variance or the standard deviation and deriving the exact
joint distribution of the standardized plotting statistics. Since individuals data is so
common nowadays in many industries, this problem is important and will be studied

using methods similar to the ones in this thesis.

The design of Phase | control charts for correlated data needs to be looked at. A goo«

starting point is the articles by Boyles (2000) and Maragah and Woodall (1992).

Except for the study by Borror and Champ (2001), there is apparently no other
published work regarding the design of Phase | Shewhart-type attributes charts. This is
an important aspect because the study of the Phasehrt and the Phasedichart is

based on the availability of an in-control reference sample, which is usually obtained at

the end of a successful Phase | study.

It would definitely be helpful and beneficial to the quality practitioner if a unified
approach to the design and implementation of Phase | variables and attributes charts i
available; this is a topic currently under investigation by the author of this thesis and his

supervisors.

Attributes control charts

The Phase Il Shewhart-typechart andc-chart were studied in detail in Chapter 3. The aim was to
determine the effect of estimating the unknown process parameters from a Phase | reference sample
the performance of the charts in their Phase Il application. The methodology that we used was bast
on the two-step procedure which was introduced in the statistical process control arena by Chakrabo

(2000). The procedure entails that we first condition on a particular observed value of the poini
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estimator from Phase | (in order to obtain the conditional Phase Il run-length distribution and the
associated characteristics of the conditional run-length distribution) and then calculate the
unconditional Phase Il run-length distribution and the associated properties of the unconditional run
length distribution by averaging over all the values of the point estimator. We numerically investigatec
the various properties of the conditional and the unconditional run-length distributions, for the in-
control and the out-of-control scenarios, and compared the results to the benchmark values of Case
(i.e. when the parameters are known). It was found that the widely-followed guidelines regarding the
number of Phase | rational subgroups, and the sample sizey, is not adequate to control the
average run-length and/or the false alarm rate at acceptable levels. The cause of the discrepar
between the attainedRL and the attainegdAR values and the industry standards of 370 and 0.0027
(respectively) is twofold. The discrepancy is partly due to the fact that the underlying process
distributions are discrete and to some extent it is caused by the fact that the standard formula, i.e. me
+ 3 x standard deviation, for calculating the control limits, is not 100% correct; this is so because the
normal approximation to the binomial and the Poisson distributions is not very good for all values of

the parameterg andc (especiallyp close to 0 or 1 and close to 0).

The question of how we can correctly design the Phase Il Shewharpisipart andc-chart
remains, in some way, unanswered. As pointed out in an earlier section, the formulae for the
characteristics of the unconditional run-length distribution can be helpful in this regard and there ar

two possible routes to follow:

0] The usual approach is to specify a certain attribute of the unconditional Phase Il run-
length distribution (such as the unconditional average run-length, which is common in
routine applications (see e.g. Chakraborti, (2006))) and then solve for the charting

constant(s).

Even though this approach is viable, it would only be successful insofar it is possible to

accurately specify the unknown paramet@rsand c. The reason for this drawback is

the fact that the unconditional properties of the charts are unconditional only with

respect to the point estimators and not with respect to the unknown parameters.

(i) A second approach one can pursue is to also uncondition on the properties of the chart

with respect to the parametegs and c. This approach, which is closely linked to a
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Bayes approach, entails that we trggatand ¢ as random variables and that we choose

appropriate (prior) distributions to model the uncertainty in the parameters.

As suggested earlier, the standard beta distribution (with support on the interval (0,1))
and the gamma distribution (with the positive real numbers as support) would work.
However, the dilemma in this approach is that we still require expert knowledge and

guidance when choosing the parameters of the beta and the gamma distributions.

Currently, the topic of finding and comparing suitable charting constants for the application of the

Shewhart-type Phaseptchart andc-chart is underway by the author of this thesis and co-workers.

Nonparametric Shewhart-type control chartswith runs-type signaling rules

Lastly, in Chapter 4 we designed new nonparametric control charts based on runs-type signalin
rules using the well-known sign test statistic and the two-sample median test statistic as plotting
statistics. The sign test was used in the design of the charts when the percentile under investigation
the underlying process distribution was known (or specified) whereas the two-sample median test we
used to construct the charts when the percentile was unknown. The main advantages of tf

nonparametric charts are:

0] The fact that the underlying distribution needs not be specified (as we only require

continuity of the distribution);

(i) The precise numerical measurements need not be available (because we only count tr
number of observations greater or smaller than a specified value or simply rank the
observations within each sample). Neither the counting nor the ranking procedure require:

exact measurements;

(i)  The sign charts have the added advantage that they can be applied in scenarios where t
data are just dichotomous (e.g. yes/no); and

(iv)  The precedence charts give us the flexibility to apply the chart in situations where the dats
is naturally collected in an ordered fashion (e.g. time to failure).

We derived the run-length distributions of this new class of distribution-free control charts using a
Markov chain approach and, where possible, we also used the results related to the geometr
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distribution of orderk. Where necessary we again used the two-step conditioning and unconditioning

idea by Chakraborti (2000) to obtain the Phase Il run-length distributions.

Having derived the run-length distributions and the associated characteristics of the new charts

extensive tables were provided with the suitable charting constants for each chart which should hel

the practitioner in the setting up of the charts. A numerical example was also given to illustrate the

implementation and operation of the charts. However, having pointed out the benefits of the new run

rules enhanced charts, there are two important aspects concerning nonparametric control charts |

general) that are worth mentioning:

(i)

(ii)

There is a major shortcoming regarding the application of the nonparametric charts in
industry because there is a lack of a proper understanding (and perhaps an appreciation)
the topic nonparametrics and consequently the important role these charts can play ir
practice.

The main reason for this limitation seems to be that distribution-free (nonparametric)
methods are typically only touched on in undergraduate statistics courses in most program
and are not necessarily taught at a post-graduate level and, in most cases, not even taught
the engineers and/or the operator personnel who have to deal with the monitoring of the
processes. What is more, is the fact that none of the available (standard) textbooks ol
statistical process control covers the topic of nonparametric control charting procedures in
any detail.

It would be a great improvement and definitely to the advantage of the quality practitioner
if software developers were to include the nonparametric control charts that are already
available, as standard options or procedures in their statistical computer packages
Currently, these nonparametric control chart procedures are not available for practitioners

and they simply resort to the standard parametric control chart methodologies.

Resear ch outputs

A number of research outputs related to and based on this thesis have seen the light. Below w

provide a list with the details of the technical reports and the peer-reviewed articles that were

published, the articles that were accepted for publication, the local and the international conference

where papers were presented and the draft articles that were submitted and currently under review.
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Published articles

0] Chakraborti, S., Human, S. W. (2006). “Parameter estimation and performance of
thep-chart for attributes datalEEE Transactions on Reliabilityp5(3):559-566;

(i) Chakraborti, S., Human, S. W. (2008). “Properties and performance ofctiaet
for attributes data’Journal of Applied Statistic85(1):89-100;

(i)  Chakraborti, S., Human, S.W., Graham, M.A. (2008). “Phase | statistical process
control charts: An overview and some resultQuality Engineering21(1):52-62;
and

(iv)  Chakraborti, S., Eryilmaz, S., Human, S. W. (2009). “A Phase Il nonparametric
control chart based on precedence statistics with runs-type signaling rules”.
Computational Statistics and Data Analy$8(1):1054-1065.

Articles accepted for publication

0] Human, S. W., Chakraborti, S., Smit, C. F. “Nonparametric Shewhart-type sign

control charts based on run€ommunications in Statistics — Theory and Methods.
Articlesunder review
(i) Human, S. W., Chakraborti, S., Smit, C. F. “Control charts for variation in Phase |

applications”, Submitted tGomputational Statistics and Data Analysis

Technical reports

0] Human, S. W., Chakraborti, S., Smit, C. F. (2009). “Shewhart-8feS and R
control charts for Phase | applications”. Technical Report 09/01, Department of
Statistics, University of Pretoria, ISBN: 978-1-86854-735-7.
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Human, S. W., Chakraborti, S., Smit, C. F. (2009). “Nonparametric Shewhart-type
control charts with runs-type signaling rules”. Technical Report 09/02, Department
of Statistics, University of Pretoria, ISBN: 978-1-86854-738-8.

I nternational conference

(i)

The 7" World Congress in Probability and Statistics in Singapore jointly sponsored
by the Bernoulli Society and the Institute of Mathematical Statistics (2008) where
the results related to the nonparametric control charts of Chapter 4 was presented.

L ocal conferences

(i)

(ii)

(i)

(iv)

The annual conference of the South African Statistical Association (SASA) hosted
by the Department of Statistics of the Rhodes University in Grahamstown (2005)

where the results related to the Phagedhart of Chapter 3 was presented;

The annual conference of the South African Statistical Association (SASA) hosted
by the Department Statistics and Actuarial Science of the University of Stellenbosch

(2006) where the results related to the Phasehiart of Chapter 3 was presented;

The annual conference of the South African Statistical Association (SASA) hosted
by the Department of Statistics and Actuarial Science of the University of
Witwatersrand (2007) where the results related to the Ph&ée $ and R control

charts of Chapter 2 was presented; and

The annual conference of the South African Statistical Association (SASA) hosted
by the Department of Statistics of the University of Pretoria (2008) where the
results related to the nonparametric control charts of Chapter 4 was presented.

The end.
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