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Chapter 3 
 

Attributes control charts: Case K and Case U 
 

 

3.0 Chapter overview 
 

 

Introduction 
 

When studying categorical quality characteristics the items or the units of product are inspected 

and classified simply as conforming (they meet certain specifications) or nonconforming (they do not 

meet the specifications). The classification is typically carried out with respect to one or more of the 

specifications on some desired characteristics.  We label such characteristics “attributes” and call the 

data collected “attributes data” (see e.g. Chapter 6, p.265 of Montgomery, (2005)). 

 

The p-chart and the c-chart are well known and commonly used attributes control charts. The p-

chart is based on the binomial distribution and works with the fraction of nonconforming items in a 

sample. The c-chart is based on the Poisson distribution and deals with the number of nonconformities 

in an inspection unit. Several statistical process control (SPC) textbooks including the ones by Farnum 

(1994), Ryan (2000) and Montgomery (2005) describe these charts.  

 

 

Motivation 
 

The p-chart and c-chart are particularly useful in the service industries and in non-manufacturing 

quality improvements efforts since many of the quality characteristics found in these environments are 

in actual fact attributes. SPC with attributes data therefore constitutes an important area of research and 

applications (see e.g. Woodall (1997) for a review). 

 

The classical application of the p-chart and the c-chart requires that the parameters of the 

distributions are known. In many situations the true fraction nonconforming, p , and the true average 

number of nonconformities in an inspection unit, c , are unknown or unspecified and need to be 
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estimated from a reference sample or historical (past) data. While there are empirical rules and 

guidelines for setting up the charts, little is known about their run-length distributions when the fact 

that the parameters are estimated is taken into account. Understanding the effect of estimating the 

parameters on the in-control (IC) and the out-of-control (OOC) performance of the charts are therefore 

of interest from a practical and a theoretical point of view. 

 

In this chapter we derive and evaluate expressions for the run-length distributions of the Shewhart-

type p-chart and the Shewhart-type c-chart when the parameters are estimated. An exact approach 

based on the binomial and the Poisson distributions is used since in many applications the values of  p 

and c are such that the normal approximation to the binomial and the Poisson distributions is quite 

poor, especially in the tails. The results are used to discuss the appropriateness of the widely followed 

empirical rules for choosing the size of the Phase I sample used to estimate the unknown parameters; 

this includes both the number of reference samples (or inspection units) m  and the sample size n . 

Note that, in our developments, we assume that the size of each subgroup or the size of each inspection 

unit stays constant over time. 

 

 

Methodology 
 

We examine the effect of estimating p  and c  on the performance of the p-chart and the c-chart via 

their run-length distributions and associated characteristics such as the average run-length (ARL ), the 

false alarm rate (FAR ) and the probability of a “no-signal”. Exact expressions are derived for the 

Phase II run-length distributions and the related Phase II characteristics using expectation by 

conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the run-length 

distributions conditioned on point estimates from Phase I and then find the unconditional 

characteristics by averaging over the distributions of the point estimators. This two-step analysis 

provides valuable insight into the specific as well as the overall effects of parameter estimation on the 

performance of the charts in Phase II. 

 

The conditional characteristics let us focus on specific values of the estimators and look at the 

performance of the charts in more detail for the particular value(s) at hand. The unconditional 

characteristics characterize the overall performance of the charts i.e. averaged over all possible values 

of the estimators. 

 

In practice we will obviously have only a single realization for each of the point estimators and the 

characteristics of the conditional run-length distribution therefore provide important information 
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specific only to our particular situation; but, since each user will have his own values for each of the 

point estimators the conditional run-length performance will be different from user to user.  The 

unconditional run-length, on the other hand, lets us look at the bigger picture, averaged over all 

possible values of the point estimators, and is therefore the same for all users. 

 

 

Layout of Chapter 3 
 

This chapter consists of two main sections and an appendix. The first section is labeled “The p-

chart and the c-chart for standards known (Case K)” and the second section is called “The p-chart and 

the c-chart for standards unknown (Case U)”. In the first section we study the charts when the 

parameters are known. The second section focuses on the situation when the parameters are unknown 

and forms the heart of Chapter 3. In both sections we study the p-chart and the c-chart in unison; this 

points out the similarity and the differences between the charts and helps one to understand the theory 

and/or methodology better. 

 

Appendix 3A gives an example of each chart and contains a discussion on the characteristics of the 

p-chart and the c-chart in Case K. To the author’s knowledge none of the standard textbooks and/or 

articles currently available in the literature give a detailed discussion of the Case K p-chart’s and the 

Case K c-chart’s characteristics. 
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3.1 The p-chart and the c-chart for standards known (Case K) 
 

 

Introduction 
 

Case K is the scenario where known values for the parameters are available. This will happen in 

high volume manufacturing processes where ample reliable information is available so that it is 

possible to specify values for the parameters. 

 

Studying Case K not only sets the stage for the situation when the parameters are unknown (Case 

U), but the characteristics and the performance of the charts in Case K are also important. In particular, 

it helps us understand the operation and the performance of the charts in the simplest of cases (when 

the parameters are known) and provides us with benchmark values which we can use to determine the 

effect of estimating the parameters on the operation and the performance of the charts in Case U (when 

the parameters are unknown). 

  

The p-chart is used when we monitor the fraction of nonconforming items in a sample of size 1≥n  

and is based on the binomial distribution. The c-chart is based on the Poisson distribution and used 

when we focus on monitoring the number of nonconformities in an inspection unit, where the 

inspection unit may consist of one or more than one physical unit.  

 

 

Assumptions 
 

We derive and study the characteristics of the charts in Case K assuming that: (i) the sample size 

and the size of an inspection unit (whichever is applicable) stay constant over time, (ii) the 

nonconforming items occur independently i.e. the occurrence of a nonconforming item at a particular 

point in time does not affect the probability of a nonconforming item in the time periods that 

immediately follow, and (iii) the probability of observing a nonconformity in an inspection unit is 

small, yet the number of possible nonconformities in an inspection unit is infinite. 

 

To this end, let ),(~ pniidBinX i  for ,...2,1=i  denote the number of nonconforming items in a 

sample of size 1≥n  with true fraction nonconforming 10 << p ; the sample fraction nonconforming 

is then defined as nXp ii /= . Similarly, let )(~ ciidPoiYi , 0>c  for ,...2,1=i  denote the number of 

nonconformities in an inspection unit where c  denotes the true average number of nonconformities in 

an inspection unit. 
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Charting statistics 
 

The charting statistics of the p-chart is the sample fraction nonconforming nXp ii /=  for 

,...2,1=i ; the charting statistics of the c-chart is the number of nonconformities iY  for ,...2,1=i , in an 

inspection unit. 

 

 

Control limits 
 

For known values of the true fraction nonconforming and the true average number of 

nonconformities in an inspection unit, denoted by 0p  and 0c  respectively, the upper control limits 

(UCL ’s), the centerlines (CL ’s), and the lower control limits (LCL ’s) of the traditional p-chart and 

the traditional c-chart are  

npppLCLpCLnpppUCL ppp /)1(3              /)1(3 0000000 −−==−+=               (3-1) 

and 

 

00000 3                    3 ccLCLcCLccUCL ccc −==+=                    (3-2) 

 

respectively (see e.g. Montgomery, (2005) p. 268 and p. 289). 

 

 

The control limits in (3-1) and (3-2) are k -sigma limits (where 3=k ) and based on the tacit 

assumption that both the binomial distribution and the Poisson distribution are well approximated by 

the normal distribution. 

 

The subscripts “p” and “c” in (3-1) and (3-2) are used to distinguish the control limits of the two 

charts; where no confusion is possible the subscripts are dropped.  
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Implementation 
 

The actual operation of the charts consist of: (i) taking independent samples and independent 

inspection units at equally spaced successive time intervals, (ii) computing the charting statistics, and 

then (iii) plotting the charting statistics (one at a time) reflected on the vertical axis of the control 

charts versus the sample number and the inspection unit number ,...2,1=i  reflected on the horizontal 

axis. 

 

The control limits are also displayed on the charts so that every time a new charting statistic is 

plotted it is in actual fact compared to the control limits. The aim is to detect when (or if) the true 

process parameters p  and c  change (moves away) from their known or specified or target values 0p  

and 0c , respectively. 

 

 

Signaling and non-signaling events 
 

The event when a charting statistic (point) plots outside the control limits, which is called a  

signaling event and denoted by iA  for ,...2,1=i , is interpreted as evidence that the parameter is no 

longer equal to its specified value. The charting procedure therefore stops, a signal (alarm) is given, 

and we declare the process out-of-control (OOC) i.e. we say that 0pp ≠  or state that 0cc ≠ . 

Investigation and corrective action is typically required to find and eliminate the possible assignable 

cause(s) and/or source(s) of variability responsible for the behavior. 

 

The complimentary event is when a plotted point lies between (within) the control limits and 

labeled a non-signaling event or a “no-signal”. In case of a no-signal the charting procedure continues, 

no user intervention is necessary, and we consider the process to be in-control (IC) i.e. we say that 

0pp =  or declare that 0cc = .  We denote the non-signaling event by  

}{: UCLQLCLA i
C
i <<  

where ii pQ =  or iY  for ,...2,1=i  and LCL  and UCL  denote the control limits in either (3-1) or (3-2). 

 

Note that, in a hypothesis-testing framework, concluding that the process is out-of-control when 

the process is actually in-control is called a type I error; similarly, concluding that the process is in-

control when it is really out-of-control is a called a type II error. 
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3.1.1 Probability of a no-signal 
 

 

Introduction 
 

The probability of a no-signal refers to the probability of a non-signaling event and is denoted by 

)Pr( C
iA=β    for   ,...2,1=i . 

The probability of a no-signal is important because: (i) it is the key for the derivation of the run-

length distribution, and (ii) plays a central role when we assess the performance of a control chart. 

Once we have the probability of a no-signal, the run-length distribution is completely known. 

 

 

Probability of a no-signal: p-chart 
 

The probability of a no-signal on the p-chart is the probability of the event 

}{ pip UCLpLCL <<    for   ,...2,1=i .  (3-3) 

Since p  is known and equal to 0p  the control limits pLCL  and pUCL  are known values (constants) 

which makes nXp ii /=  the only random quantity in (3-3). 

 

The cumulative distribution function of the sample fraction nonconforming ip  is known and given 

by 

jnj
na

j

na

j
iiii ppj

njXnaXanXap −

==

−




===≤=≤=≤ ∑∑ )1()Pr()Pr()/Pr()Pr(

][

0

][

0

 

 

for 10 ≤≤ a , 10 << p  and where ][na  denotes the largest integer not exceeding na . Because the 

distribution of ip  is defined in terms of that of ),(~ pnBinX i  we re-express the non-signaling event 

in (3-3) as 

}{ pip nUCLXnLCL <<  

and use the properties of the distribution of iX  to derive the probability of a no-signal. 
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Thus, at the i th observation the non-signaling probability for the p-chart is a function of and 

depends on p , 0p  and n , and is derived as follows 
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(3-4) 

 

for 1,0 0 << pp , where pUCL  and pLCL  are defined in (3-1) and both are functions of n  and 0p , 
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denotes the cumulative distribution function (c.d.f) of the ),(pnBin  distribution, 

),;()),((),( 1 vutBvuvuI t
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t
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and ][x  denotes the largest integer not exceeding x .  
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Remark 1 
 

(i) Making use of the c.d.f of the beta distribution and the indicator function )(1}0:{ xxx ≥  helps us 

write the probability of a no-signal in a more compact way (see e.g. the last line of (3-4)). 

 

(ii) The relationship between the c.d.f of the binomial distribution and the c.d.f of the type I or 

standard beta distribution is evident from (3-4) and given by 

)1,(),1(1),;( 1 +−=−+−= − bbnIbnbIpnbH pp . 

 

(iii) The charting constants a  and b  in (3-5) are suitably modified to take account of the fact 

that the ),( pnBin distribution assigns nonzero probabilities only to integers from 0  to n . 

 

(iv) To cover both the in-control and the out-of-control scenarios we do not assume that the 

specified value for the fraction nonconforming 0p  in (3-4) is necessarily equal to the true 

fraction nonconforming p . 
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Probability of a no-signal: c-chart 
 

The probability of a no-signal on the c-chart is the probability that the event  

}{ cic UCLYLCL <<    for   ,...2,1=i           (3-6) 

occurs. Since c  is specified and equal to 0c  the control limits cLCL  and cUCL   are constants.  As a 

result iY  is the only random variable in (3-6). Because the distribution of iY  is known (assumed) to be 

Poisson with parameter (in general) c , we derive the probability of a no-signal on the c-chart (directly) 

in terms of the distribution of iY  . 

 

The probability of a no-signal on the c-chart is a function of and depends on c  and 0c , and is 

derived as follows 
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for 0, 0 >cc , where cUCL  and cLCL  are defined in (3-2) and both are functions of 0c , 
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Remark 2 
 

(i) The relationship between the c.d.f of the Poisson distribution and the lower incomplete 

gamma function is evident from (3-7) and given by )();( 1 ccfG f +Γ= . 

 

(ii) The constants d  and f  in (3-8) incorporate the fact that the )(cPoi  distribution only 

assigns nonzero probabilities to non-negative integers. 

 

(iii) We do not assume that c  in (3-7) is necessarily equal to 0c ; this enables us to study both 

the in-control and the out-of-control properties of the c-chart. 

 

 

3.1.2 Operating characteristic and the OC-curve 
 

The Operating Characteristic (OC) or the β -risk is the probability that a chart does not signal on 

the first sample or the first inspection unit following a sustained (permanent) step shift in the parameter 

and thus failing to detect the shift. For the p-chart the OC is the probability of a no-signal ),,(0 nppβ  

with 0pp ≠  and for the c-chart the OC is the probability 0,( ccβ ) with 0cc ≠ . 

 

A graphical display (plot) of the OC as a function of 10 << p  (in case of the p-chart), or as a 

function of 0>c  (in case of the c-chart), is called the operating characteristic curve or simply the OC-

curve. The OC-curve lets us see a chart’s ability to detect a shift in the process parameter and therefore 

describes the performance of the chart. 

 

 

3.1.3 False alarm rate 
 

As an alternative to the OC-curve we can graph the probability of a signal as a function of p  for 

values of 10 << p  or as a function of c  for values of 0>c . The probability of a signal is β−1  i.e. 

one minus the probability of a no-signal, and is in some situations intuitively easier understood than 

the OC. 

 

For the p-chart the probability of a signal is ),,(1 0 nppβ−  where ),,( 0 nppβ  is defined in (3-4) 

and for the c-chart the probability of a signal is ),(1 0ccβ−  where ),( 0ccβ  is given in (3-7). 
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When we substitute p  with 0p  in ),,(1 0 nppβ−  and replace c  with 0c  in ),(1 0ccβ−  we obtain 

the false alarm rate (FAR ) of the charts, that is, 

),,(1),,( 0000 nppnppFAR β−=          and         ),(1),( 0000 ccccFAR β−= . 

The false alarm rate is the probability of a signal when the process is in-control (i.e. no shift 

occurred) and often used a measure of a control chart’s in-control performance. 

 

The OC-curve and the probability of a signal as functions of p  or c  i.e. given a shift in the 

process, focus on the probability of a single event and involves only one charting statistic. A more 

popular and perhaps more useful method to evaluate and examine the performance of a control chart is 

its run-length distribution. 

 

 

3.1.4 Run-length distribution 
 

The number of rational subgroups to be collected or the number of charting statistics to be plotted 

on a control chart before the first or next signal, is called the run-length of a chart. The discrete random 

variable defining the run-length is called the run-length random variable and denoted by N . The 

distribution of N  is called the run-length distribution. 

 

Characteristics of the run-length distribution give us more insight into the performance of a chart. 

The characteristics of the run-length distribution most often looked at are, for example, its moments 

(such as the expected value and the standard deviation) as well as the percentiles or the quartiles (see 

e.g. Shmueli and Cohen, (2003)). 

 

If no shift occurred (i.e. 0pp =  or 0cc = ) the distribution of N  is called the in-control run-length 

distribution. In contrast, if the process did encounter a shift (i.e. 0pp ≠  or 0cc ≠ ) the distribution of 

N  is labeled the out-of-control run-length distribution. To distinguish between the in-control and the 

out-of-control situations the notations 0N  and 1N  are used; this notation is also used for the 

characteristics of the run-length distribution. 

 

Assuming that the rational subgroups are independent and that the probability of a signal is the 

same for all samples (inspection units) the run-length distribution is given by 

1,2,...          )1()Pr( 1 =−== − jjN j ββ    (3-9) 

where β  denotes the probability of a no-signal defined in (3-4) or (3-7).  

 
 
 



 136 

The distribution in (3-9) is recognized as the geometric distribution (of order 1) with probability of 

“success” β−1  so that we write, symbolically, )1(~ β−GeoN . The success probability is the 

probability of a signal and, as mentioned before, completely characterizes the geometric (run-length) 

distribution.  

 

Various statistical characteristics of the run-length distribution provide insight into how a control 

chart functions and performs.  Typically we want the chart to signal quickly once a change takes place 

and not signal too often when the process is actually in-control, which is when no shift or no change 

has occurred.  We are interested in the typical value as well as the spread or the variation in the run-

length distribution. 

 

 

3.1.5 Average run-length 
 

A popular measure of the central tendency of a distribution is the expected value (mean) or the 

average.  Accordingly, the average has been the most popular index or measure of a control chart’s 

performance and is called the average run-length (ARL). The ARL is defined as the expected number of 

rational subgroups that must be collected before the chart signals. 

 

When the process is in-control the expected number of charting statistics that must be plotted 

before the control chart signals erroneously is called the in-control average run-length and denoted by 

0ARL . The out-of-control average run-length is denoted by 1ARL  and is the expected number of 

charting statistics to be plotted before a chart signals after the process has gone out-of-control.  

Obviously, for an efficient control chart the in-control average run-length should be large and the out-

of-control average run-length should be small. 

 

From the properties of the geometric distribution the ARL is the expected value of N  so that 

)1/(1)( β−== NEARL .              (3-10) 

Therefore, when the signaling events are independent and have the same probability the ARL of the 

chart is simply the reciprocal of the probability of a signal β−1 . If the process is in-control, the in-

control ARL is equal to the reciprocal of the FAR, that is, FARARL /10 = .  It is this simple relationship 

between the average run-length and the probability of a signal, or the in-control average run-length and 

the false alarm rate, that accounts for the popularity of the (in-control) average run-length and the 

probability of a signal (false alarm rate) as measures of a control chart’s performance. 
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3.1.6 Standard deviation and percentiles of the run-length 
 

Other characteristics of the run-length distribution are also of interest.  For example, in addition to 

the mean we should also look at the standard deviation of the run-length distribution to get an idea 

about the variation or spread. 

 

Using results for the geometric distribution, the standard deviation of the run-length, denoted by 

SDRL, is given by 

   )1/()(stdev ββ −== NSDRL .   (3-11) 

 

Since the geometric distribution is skewed to the right the mean and the standard deviation become 

questionable measures of central tendency and spread so that additional descriptive measures are 

useful.  For example, the percentiles, such as the median and the quartiles (which are more robust or 

outlier resistant), can provide valuable information about the location as well as the variation in the 

run-length distribution. 

 

Because the run-length distribution is discrete, the th100q  percentile ( 10 << q ) is defined as the 

smallest integer j such that the cumulative probability is at least q , that is, qjN ≥≤ )Pr( .  The median 

run-length (denoted by MDRL) is the 50th percentile so that 5.0=q , whereas the first quartile (1Q ) is 

the 25th percentile so that .25.0=q  
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3.1.7 In-control and out-of-control run-length distributions 
 

The characteristics of the in-control run-length distributions are essential in the design and 

implementation of a control chart. Furthermore, for out-of-control performance comparisons we need 

the out-of-control run-length distributions and/or characteristics. For example, the in-control average 

run-lengths of the charts are typically fixed at an acceptably high level so that the number of false 

alarms or the false alarm rate is reasonably small. The chart with the smallest or the lowest out-of-

control average run-length for a certain change (or shift of a specified size) in the process parameter is 

then selected to be the winner (i.e. the best performing chart). Alternatively, we can fix the false alarm 

rate of the charts at an acceptably small value and then select that chart with the highest probability of 

a signal (given a specified shift in the parameter) as the winner. 

 

Note that, the average run-length and the probability of a signal are two equivalent performance 

measures in that they both lead to the same decision and follows from the relationship between the 

average run-length and the probability of a signal given in (3-10).  

The run-length distributions and some related characteristics of the run-length distributions of the  

p-chart and the c-chart, which all conveniently follow from the properties of the geometric distribution 

of order 1, are summarized in Table 3.1 and Table 3.2, respectively.  

 

The characteristics of the p-chart and the c-chart are seen to be all functions of and depend entirely 

on the probability of a no-signal, that is, ),,( 0 nppβ  or ),( 0ccβ ; once we have expressions and/or 

numerical values for the two probabilities ),,( 0 nppβ  and ),( 0ccβ  the run-length distributions are 

completely known. 

 

The in-control run-length distributions and the in-control characteristics of the run-length 

distributions are obtained when 0pp =  and 0cc = . The out-of-control run-length distributions and the 

out-of-control characteristics are found by setting 0pp ≠  and 0cc ≠ , respectively.  

 

An in-depth analysis and discussion of the in-control run-length distributions of the p-chart and the 

c-chart in Case K (and their related in-control properties) are given in Appendix 3A. From time to time 

we will refer to the results therein; especially when we study and look at the effects of parameter 

estimation on the performance of the charts in Case U. 
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Table 3.1: The probability mass function (p.m.f), the cumulative distribution function (c.d.f), the 
false alarm rate (FAR), the average run-length (ARL), the standard deviation of the run-length 

(SDRL) and the quantile function (qf) of the run-length distribution of the p-chart in Case K 
 

p.m.f 
, . . .

21         )),,(1(),,(),,;Pr( 0
1

00 ,jnppnppnppjN j
p =−== − ββ  (3-12) 

c.d.f 
, . . .

21          )),,((1),,;Pr( 00 ,jnppnppjN j
p =−=≤ β  (3-13) 

FAR ),,(1),( 000 nppnpFAR β−=  (3-14) 

ARL )),,(1/(1)(),,( 00 nppNEnppARL p β−==  (3-15) 

SDRL )),,(1/(),,()(stdev),,( 000 nppnppNnppSDRL p ββ −==  (3-16) 

qf }),,;Pr(:inf{int),,;( 00 qnppxNxnppqQ pN p
≥≤=   10 << q  (3-17) 

 

 

 

Table 3.2: The probability mass function (p.m.f), the cumulative distribution function (c.d.f), the 
false alarm rate (FAR), the average run-length (ARL), the standard deviation of the run-length 

(SDRL) and the quantile function (qf) of the run-length distribution of the c-chart in Case K 
 

p.m.f 
, . . .

21)),(1(),(),;Pr( 0
1

00 ,j          ccβccβccjN j
c =−== −  (3-18) 

c.d.f 
, . . .

21)),((1),;Pr( 00 ,        jccβccjN j
c =−=≤  (3-19) 

FAR ),(1)( 000 ccβcFAR −=  (3-20) 

ARL )),(1/(1)(),( 00 ccβNEccARL c −==  (3-21) 

SDRL )),(1/(),()(stdev),( 000 ccβccβNccSDRL c −==  (3-22) 

qf }),;Pr(:inf{int),;( 00 qccxNxccqQ cNc
≥≤=     10 << q  (3-23) 
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3.2 The p-chart and the c-chart for standards unknown (Case U) 
 

 

Introduction 
 

Case U is the scenario when the parameters p  and c  are unknown. Case U occurs more often in 

practice than Case K particularly when not much historical knowledge or expert opinion is available. 

In the service industries, non-manufacturing environments and job-shop environments, which all 

involve low-volume of “production”, it often happens that there is a scarcity of historical data. 

 

Setting up a control chart in Case U consists of two phases: Phase I and Phase II. The former is the 

so-called retrospective phase whereas the latter is labeled the prospective or the monitoring phase (see 

e.g. Woodall, (2000)). In Phase I the parameters and the control limits are estimated from an in-control 

reference sample or calibration sample. In Phase II, new incoming subgroups are collected 

independently from the Phase I reference sample. The charting statistic for each Phase II subgroup is 

then calculated and individually compared to the estimated Phase II control limits until the first point 

plots outside the limits. The goal is to detect when (or if) the process parameters change. 

 

We study and analyze the performance of the p-chart and c-chart following a Phase I analysis. In 

other words, we focus on the run-length distributions and the associated characteristics of the run-

length distributions of the p-chart and the c-chart in Phase II.  
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3.2.1 Phase I of the Phase II p-chart and c-chart 
 

 

The charting procedures to ensure that the Phase I data is representative of the in-control state of 

the process were discussed in Chapter 2.  Here we consider the matter only in very general terms and 

assume that such in-control Phase I data is available; this implies that each sample and each inspection 

unit in the reference sample has identical (unknown) parameters. 

 

 

Phase I data and assumptions 
 

The Phase I data is the in-control reference sample or the historical (past) data that is used to 

estimate the unknown parameters. In case of the p-chart the Phase I data consists of m  mutually 

independent samples each of size 1≥n . The Phase I data for the c-chart consists of m  mutually 

independent inspection units. 

 

To this end, let ),(~ pniidBinX i  for mi ,...,2,1=  denote the number of nonconforming items in 

the ith reference sample of size 1≥n  with unknown true fraction nonconforming 10 << p . The 

sample fraction nonconforming of each preliminary sample is nXp ii /=  for mi ,...,2,1= . Similarly, 

let )(~ ciidPoiYi , 0>c  for mi ,...,2,1=  denote the number of nonconformities in the ith reference 

inspection unit where c  denotes the unknown true average number of nonconformities in an inspection 

unit. 

 

 

Phase I point estimators for p and c 
 

The average of the m  Phase I sample fractions nonconforming mppp ,...,, 21  and the average of the 

numbers of nonconformities in each Phase I inspection unit mYYY ,...,, 21 , are used to estimate p  and c , 

respectively. In other words, we estimate p  by 

mn

U
X

mn
p

m
p

m

i
i

m

i
i === ∑∑

== 11

11
   (3-24) 

and c  by  

m

V
Y

m
c

m

i
i == ∑

=1

1
    (3-25) 

where the random variable 
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),(~
1

pmnBinXU
m

i
i∑

=

=  

denotes the total number of nonconforming items in the entire set of mn  reference observations and 

the random variable 

)(~
1

mcPoiYV
m

i
i∑

=

=  

denotes the total number of nonconformities in the entire set of m  reference inspection units. 

 

 

 

Remark 3 
 

 

(i) It can be verified that the point estimators p  and c  in (3-24) and (3-25) are: (a) the 

maximum likelihood estimators (MLE’s), and (b) the minimum variance unbiased 

estimators (MVUE’s), of p  and c , respectively (see e.g. Johnson, Kemp and Kotz, (2005) 

p. 126 and p. 174). 

 

In particular, note that, the expected value and the variance of p  are 

p
mn

mnp

mn

UE
pE === )(
)( , 

and 

mn

pp

mn

pmnp

mn

U
p

)1(

)(

)1(

)(

)var(
)var(

22

−=−== , 

 

respectively, whereas the expected value and the variance of c  are 

c
m

mc

m

VE
cE === )(
)( , 

and 

m

c

m

mc

m

V
c ===

22

)var(
)var( , 

 respectively. 
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(ii)  It is essential to note that the distribution of U  depends on the unknown parameter p  and 

the distribution of V  depends on the unknown parameter c  so that it  is technically correct 

to write 

 

),(~| pmnBinpU  and   )(~| mcPoicV . 

 

This observation will become vital when we study the unconditional run-length 

distributions and the characteristics of the unconditional run-length distribution in later 

sections. 
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3.2.2 Phase II p-chart and c-chart 
 

 

A Phase II chart refers to the operation and implementation of a chart following a Phase I analysis 

in which any unknown parameters were estimated from the Phase I reference sample.  

 

 

Phase II estimated control limits 
 

It is standard practice to replace 0p  with p   in (3-1) and substitute c  for 0c  in (3-2) when the 

parameters p  and/or c  are unknown (see e.g. Ryan, (2000) p. 155 and p. 169 and, Montgomery, 

(2005) p. 269 and p. 290). The estimated upper control limits (LCU ˆ ’s), the estimated centerlines 

LĈ( ’s), and the estimated lower control limits (LCL ˆ ’s) of the p-chart and the c-chart are therefore 

given by  

 

npppLCLpLCnpppLCU ppp /)1(3ˆ        ˆ         /)1(3ˆ −−==−+=               (3-26) 

and 

            ccLCLcLCccLCU ccc 3ˆ         ˆ          3ˆ −==+=                    (3-27) 

respectively. 

 

By the invariance property of MLE’s the estimated control limits in (3-26) and (3-27) are the 

MLE’s of the control limits of (3-1) and (3-2) in Case K (see e.g. Theorem 7.2.10 in Casella and 

Berger, (2002) p. 320). However, unlike in Case K, the Phase II estimated control limits are functions 

of and depend on the point estimators (variables) p  or c  and are random variables. We therefore need 

to account for the variability in the estimated control limits while determining and understanding the 

chart’s properties. 

 
 

Phase II charting statistics 
 

Let nXp ii /=  for ,...2,1 ++= mmi  denote the Phase II charting statistics for the p-chart where 

),(~ 1pniidBinX i  denote the number of nonconforming items in the ith Phase II sample of size 1≥n  

with fraction nonconforming 10 1 << p . Similarly, let )(~ 1ciidPoiYi , 01 >c  for ,...2,1 ++= mmi  

denote the number of nonconformities in the ith Phase II inspection unit where 1c  denotes the average 

number of nonconformities in an inspection unit in Phase II. These iY ’s are the Phase II charting 

statistics of the c-chart. 
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Remark 4 
 

(i)         The p-chart  
 

It is important to note that the application of the p-chart in Case U depends on three 

parameters: the unknown true fraction nonconforming p , the point estimate p  and 1p . 

 

In Phase II we denote p  with 1p  so that 1p  denotes the probability of an item being 

nonconforming in the prospective monitoring phase and p  denotes the probability of an 

item being nonconforming in the retrospective phase. To maintain greater generality and to 

cover both the in-control (IC) and the out-of-control (OOC) cases, we do not assume that 

1p  is necessarily equal to p . We therefore write pp =1  for the IC scenario and  pp ≠1  

for the OOC case. 

 

Also, in Phase I we estimate p  by p , which (due to sampling variability) is not 

necessarily equal to p ; we write this as pp =  and pp ≠ . When pp =  we say that p  is 

estimated without error. 

 

This is a key observation. Because we use p  to calculate the estimated control limits, in 

Phase II we are actually comparing 1p  against p  and not against p ; this leads to the 

following four unique scenarios: 

 

(i)   ppp ==1  : the process is IC in Phase II and p  is estimated without error, 

(ii)  ppp =≠1  : the process is OOC in Phase II and p  is estimated without error, 

(iii) ppp ≠=1 : the process is IC in Phase II and p  is not estimated without error, and 

(iv) ppp ≠≠1 : the process is OOC in Phase II and p  is not estimated without error. 

 

To simplify matters we assume, without loss of generality, that the process operates IC in 

Phase II  and p  is not necessarily equal to p ; this is scenario (iii) listed above. 
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(ii)        The c-chart  
 

For the c-chart in Case U we have a similar situation as that for the p-chart i.e. the 

application of the c-chart in Case U depends on three parameters: the true (but unknown) 

average number of nonconformities in an inspection unit c , the point estimate c  and 1c . 

 

In Phase II we denote c  with 1c  so that 1c  denotes the average number of nonconformities 

in an inspection unit in the prospective monitoring phase and c  denotes the average 

number of nonconformities in an inspection unit in the retrospective phase. To maintain 

greater generality and to cover both the in-control (IC) and the out-of-control (OOC) cases, 

we do not assume that 1c  is necessarily equal to c , which we write as cc =1  for the IC 

scenario and  cc ≠1  for the OOC case. 

 

In Phase I however we estimate c  by c , which (due to sampling variability) is not 

necessarily equal to c  and we write this as cc =  and cc ≠ . When cc =  we say that c  is 

estimated without error. 

 

Now, because we use c  to calculate the estimated control limits, in Phase II we are 

actually comparing 1c  against c  and not c ; this leads to the following four unique 

scenarios for the Phase II c-chart: 

 

(i)   ccc ==1  : the process is IC in Phase II and c  is estimated without error, 

(ii)  ccc =≠1 : the process is OOC in Phase II and c  is estimated without error, 

(iii) ccc ≠=1 : the process is IC in Phase II and c  is not estimated without error, and 

(iv)  ccc ≠≠1  : the process is OOC in Phase II and c  is not estimated without error. 

 

To simplify matters we assume, without loss of generality, that the process operates IC in 

Phase II  and we assume that c  is not necessarily equal to c ; this is scenario (iii) listed 

above. 
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Phase II implementation and operation 
 

The actual operation of the p-chart and the c-chart in Phase II consists of: (i) taking independent 

samples and independent inspection units (independent from the Phase I data), (ii) calculating the 

Phase II sample fractions nonconforming nXp ii /=  and the numbers of nonconformities in each 

Phase II inspection unit iY  for  ,...2,1 ++= mmi , and then (iii) comparing these charting statistics 

(one at a time) to the estimated control limits in (3-26) and (3-27), respectively. 

 

The moment that the first charting statistic plots on or outside the estimated limits a signal is given 

and the charting procedure stops. The process is then declared out-of-control and we say (in practice) 

that pp ≠1  (in case of the p-chart) or state that cc ≠1  (in case of the c-chart). 

 

By comparing the Phase II charting statistics with the estimated control limits, the Phase II 

characteristics of the charts are (unlike in case K) affected by the variation in the point estimates 

mnUp /=  and mVc /=  where ),(~| pmnBinpU  and )(~| mcPoicV  are random variables but 

the values of m  and n  can be controlled or decided upon by the user. 

 

The variation in the estimated control limits has significant implications on the properties of the 

charts. Most importantly the Phase II run-length distributions are no longer geometric since the Phase 

II signaling events are no longer independent. Intuitively, since estimating the limits introduces extra 

uncertainty it is expected that the run-length distributions in Case U will be more skewed to the right 

than the geometric. The additional variation must therefore be accounted for while determining and 

understanding the chart’s properties. We give a systematic examination and detailed derivations of the 

Phase II run-length distributions of the p-chart and c-chart in what follows. 
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Phase II signaling event and Phase II non-signaling event 
 

The event that occurs when a Phase II charting statistic plots outside the estimated control limits is 

called a Phase II signaling event and denoted by iB  for ,...2,1 ++= mmi . In case of a Phase II 

signaling event, an alarm or signal is given and we declare the process out-of-control, that is, we say 

that pp ≠1  or state that cc ≠1 . This means, for instance, that in practice we conclude that the 

probability 1p  of an item being nonconforming in Phase II is not equal to the estimated value p . 

 

The Phase II non-signaling event is the complementary event of the Phase II signaling event and 

occurs when a Phase II charting statistic plots within or between the estimated control limits. We 

denote the Phase II non-signaling event by 

}ˆˆ{: LCUQLCLB i
C
i <<  

where ii pQ =  or iY  for ,...2,1 ++= mmi  and LCL ˆ  and LCU ˆ  are the control limits in either (3-26) or 

(3-27), respectively. 

 

In case of a Phase II non-signaling event no signal is given and we consider the process in-control, 

that is, we say that pp =1  or state that cc =1 . 

 

 

Dependency of the Phase II non-signaling events 
 

If the Phase II signaling events were independent, the sequence of trials comparing each Phase II 

charting statistic iQ  with the estimated limits LCU ˆ  and LCL ˆ , would be a sequence of independent 

Bernoulli trials. The run-length between occurrences of the signaling event would therefore be a 

geometric random variable with probability of success equal to )Pr(iB . Moreover, the average run-

length would be )Pr(/1 iBARL = . 

 

However, the signaling events iB  and jB  (or, equivalently, the non-signaling events  C
iB  and 

C
jB ) are not mutually independent for ,...2,1 ++=≠ mmji  and the distribution of the run-length 

between the occurrences of the event iB  is as a result not geometric. In particular, because each Phase 

II ip  (or iY )  for ,...2,1 ++= mmi  is compared to the same set of estimated control limits, which are 

random variables, the signaling events are dependent. 
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To derive exact closed form expressions for the Phase II run-length distributions we use a two-step 

approach called the “method of conditioning” (see e.g. Chakraborti, (2000)). First we condition on the 

observed values of the random variables U  and V  to obtain the conditional Phase II run-length 

distribution and then use the conditional Phase II run-length distributions to obtain the marginal or 

unconditional Phase II run-length distributions. 

 

To this end, note that, given (or conditional on or having observed) particular estimates of p  and 

c  (say obsp  and obsc ), the Phase II non-signaling events are mutually independent each with the same 

probability so that the conditional Phase II run-length distributions are geometric.  For instance, for a 

given or observed value of p  (say obsp ), the estimated Phase II control limits of the p-chart are 

constant i.e. they are not random variables, so that the conditional Phase II non-signaling events of the 

p-chart 

 

}|/)1(3/)1(3{ obsppnppppnppp i =−+<<−−     for    ,...2,1 ++= mmi  

 

are mutually independent each with the same probability given by 

 

)|/)1(3/)1(3Pr(1ˆ1 obsppnppppnppp ip =−+<<−−−=− β .  (3-28) 

 

The same is true for the c-chart. That is, for an observed value of c  (say obsc ) the events  

 

}|33{ obsccccYcc i =+<<−     for    ,...2,1 ++= mmi  

 

are mutually independent each with the same probability given by  

 

)|33Pr(1ˆ1 obsccccYcc ic =+<<−−=− β .  (3-29) 
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The parameters of the conditional Phase II (geometric) run-length distributions are the conditional 

probabilities pβ̂1−  and cβ̂1−  so that, symbolically, we write 

 

)ˆ1(~)|( obs pGeoppN β−=         and        )ˆ1(~)|( obs cGeoccN β−= . 

 

Thus, once the Phase I reference samples are gathered and the control limits are estimated, the 

Phase II run-length of a particular chart will follow some conditional distribution which will depend 

on the realization of the random variable  uU =  or vV = , or, alternatively, on the observed values 

obspp =  or obscc = . 

 

 

Note that the distributions of ),(~| pmnBinpU  and )(~| mcPoicV , or, equivalently, the 

distributions of p  and c , depend on the values of the unknown parameters p  or c  (see e.g. Remark 

3(ii) as well as expressions (3-24) and (3-25), respectively). It is therefore better to write the 

conditional run-length distributions as  

)ˆ1(~),|( obs pGeopppN β−=         and        )ˆ1(~),|( obs cGeocccN β−= . 

 

Moreover the conditional Phase II run-length distribution therefore provides only hypothetical 

information about the performance of a control chart with an estimated parameter. We can, for 

example, only assume some hypothetical value for p  or c  and then suppose that this estimate of p  or 

c  is the 25th or the 75th percentile of the sampling distributions of p  or c  so that the run-length 

distribution, conditioned on such a value, gives some insight into how a chart with this estimate 

performs in practice. This gives the user an idea of just how poorly or how well a chart will perform in 

a hypothetical case with an estimated parameter. 

 

 

To overcome this abovementioned dilemma, the marginal or the unconditional run-length 

distribution can give a practitioner insight into a chart’s general performance. The marginal 

distribution incorporates the additional variability which is introduced to the run-length through 

estimation of p  or c  by averaging over all possible values of the random variable U  or V  (while, of 

course, assuming a particular value for p  or c ). With the unconditional run-length distribution the 

practitioner therefore sees the overall effect of estimation on the run-length distribution before any data 

is collected. 
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3.2.3 Conditional Phase II run-length distributions and characteristics 
 

 

The conditional run-length distributions and the associated conditional characteristics focus on the 

performance of the charts given obspp =  and obscc = . 

 

 

Conditional probability of a no-signal 
 

The probability of a no-signal in Phase II conditional on the point estimate obspp =  or obscc =  is 

called the conditional probability of a no-signal.  This probability, which we previously denoted by pβ̂  

or cβ̂ , is in general denoted by 

 

)ˆ|Pr(ˆ θβ C
iB=    for    ,...2,1 ++= mmi  

 

where ),(ˆ pp=θ  in case of the p-chart  and ),(ˆ cc=θ  in case of the c-chart. 

 

 

The conditional probability of a no-signal, like in Case K (see e.g. Tables 3.1 and 3.2), completely 

characterizes the conditional Phase II run-length distribution and is thus the key to derive and examine 

the conditional Phase II run-length distributions of Case U. We derive exact expressions for β̂  for  

both charts in what follows. 
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Conditional probability of a no-signal: p-chart 
 

 

This probability is derived by conditioning on an observed value u  of the random variable U  or, 

equivalently, conditioning on an observed value obsp  of the point estimator mnUp /=  (see e.g.  

(3-28)). 

 

In doing so, the Phase II charting statistic nXp ii /=  for ,...2,1 ++= mmi is the only random 

variable in (3-28). The cumulative distribution function of ip  for ,...2,1 ++= mmi , as mentioned 

earlier, is completely known and given by  
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1p  denotes the true fraction nonconforming in Phase II (see Remark 4). 

 

We therefore derive the conditional probability of a no-signal by first re-expressing the Phase II 

conditional non-signaling event in terms of iX . This is done by making use of the relationship 

ii npX = . We then use the properties of iX  to derive an explicit and exact expression for the 

conditional probability of a no-signal. 
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For the p-chart the conditional probability of a no-signal in Phase II is 
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denotes the c.d.f of the ),( 1pnBin  distribution and 
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Remark 5 
 

 

(i) The conditional probability of a no-signal for the p-chart is a function of and depends on 

 

a. the fraction nonconforming in Phase II 1p ,   

b. the number of reference samples m ,  

c. the sample size n , 

d. the point estimator p  or, equivalently, the random variable U , and 

e. the unknown true fraction nonconforming p ; indirectly via the random variable 

),(~| pmnBinpU . 

 

As noted earlier in Remark 4(i), 1p  is not necessarily equal to p  and because of sampling 

variability p  is typically different from p . 

 

 

(ii)  When none of the Phase I reference sample observations are nonconforming, that is, when 

 0=U or 0=p , it makes sense not to continue to Phase II but examine the situation in 

more detail.  Similar logic applies to the other extreme, that is when all the observations are 

nonconforming so that mnU =  or 1=p .  

 

Based on this intuitive reasoning the conditional probability of a no-signal 

),|,,(ˆ
1 ppnmpβ  is defined to be zero in both of these boundary situations.  It then follows 

that the conditional probability of a signal ),|,,(ˆ1 1 ppnmpβ−  is one. Effectively the 

control chart signals, in these cases, when ip  for ,...2,1 ++= mmi  plots on or beyond 

either of the two estimated control limits or is equal to either 0 or n ; this, in actual fact, 

implies that the p-chart signals on the first Phase II sample. 
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Conditional probability of a no-signal: c-chart 
 

By conditioning on an observed value v  of the random variable V  or, equivalently, conditioning 

on an observed value obsc  of the point estimator mVc /= , the Phase II charting statistic iY  for 

,...2,1 ++= mmi  is the only random quantity (variable) in (3-29). 

Because the distribution of iY  is known (assumed) to be Poisson with parameter 1c , we use the 

properties of this distribution to derive an explicit and exact expression for the conditional probability 

of a no-signal for the c-chart. 

 

The conditional probability of a no-signal in Phase II is 
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denotes the c.d.f of the )( 1cPoi  distribution and 
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Remark 6 
 

 

(i) The probability of a no-signal for the c-chart is a function of and depends on 

 

a. the average number of nonconformities in an inspection unit in Phase II 1c ,  

b. the number of reference inspection units m  from Phase I,  

c. the point estimator c  or, equivalently, the random variable V , and 

d. the unknown true average number of nonconformities in an inspection unit c ; indirectly 

via the random variable )(~| mcPoicV . 

 

Again, note that, 1c  is not necessarily equal to c , and since c  is subject to sampling 

variation it is typically different from c . 

 

 

(ii)  When we observe no nonconformities in the Phase I reference sample i.e. when 0V =  or 

0=c , it is essential to pause and examine the situation in more detail. Thus, for 0V =  the 

conditional probability of a no-signal in Phase II is defined to be zero so that the 

conditional probability of a signal in Phase II is one.  
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Summary of the conditional run-length distributions and the related conditional characteristics 
 

Given observed values u  and v  of the random variables U  and V, the conditional run-length 

distributions of the charts are geometric with the probability of success equal to the conditional 

probability of a signal i.e.  

),|,,(ˆ1 1 puUnmp =− β       and     ),|,(ˆ1 1 cvVmc =− β  

respectively.  

 

This is so, because for given or fixed values of uU =  and vV =  the control limits can be 

calculated exactly and the analyses continue as if the parameters p  and c  are known. This is similar 

to the standards known case (Case K) where the run-length distribution was seen to be geometric. All 

the characteristics of the conditional run-length distributions therefore follow from the well-known 

properties of the geometric distribution. In particular, the conditional run-length distributions and the 

associated conditional characteristics for the p-chart and the c-chart are summarized in Table 3.3 and 

Table 3.4, respectively. 

 

The conditional run-length distribution and the conditional characteristics of the run-length 

distributions all depend on either the observed value of the random variable U  or that of V ; these 

observed values cannot be controlled by the user and is a direct result of estimating p  and c . Thus, as 

the values of U  and V  change (randomly), the conditional run-length distributions and the conditional 

characteristics of the run-length distributions will also change randomly. This implies, for example, 

that the conditional characteristics are random variables which all have their own probability 

distributions so that one can present a quantity such as the expected conditional SDRL i.e. 

),|,,(( 1 pUnmpCSDRLEU  or ),|,(( 1 cVmcCSDRLEV . Although this is technically correct it is not the 

best approach; a better approach would be to calculate the unconditional standard deviation i.e. 

)),|,,((var)),|,,(var( 11 pUnmpEpUnmpEUSDRL UU +=  

or  

)),|,((var)),|,(var( 11 cVmcEcVmcEUSDRL VV +=  

which is computed from the marginal run-length distribution and incorporates both the expected 

conditional SDRL  and the variation in the expected conditional ARL.  We discuss this in more detail 

later when we examine the conditional and unconditional properties of the charts. 
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Table 3.3: The conditional probability mass function (c.p.m.f), the conditional cumulative 
distribution function (c.c.d.f), the conditional false alarm rate (CFAR), the conditional average 
run-length (CARL) and the conditional standard deviation of the run-length (CSDRL) of the      

p-chart in Phase II of Case U 

 

c.p.m.f ,....2,1      )],|,,(ˆ-[1)],|,,(ˆ[),|,,;Pr( 1
1

11 === − jpUnmppUnmppUnmpjN j
p ββ  (3-34) 

 c.c.d.f ,....2,1      )],|,,(ˆ[1),|,,;Pr( 11 =−=≤ jpUnmppUnmpjN j
p β  (3-35) 

 CFAR ),|,,(ˆ1),|,,( 1111 ppUnmpppUnmpCFAR =−== β   (3-36) 

 CARL )],|,,(ˆ1/[1),|,,( 11 pUnmppUnmpCARL β−=  (3-37) 

CSDRL )],|,,(ˆ1/[),|,,(ˆ),|,,( 111 pUnmppUnmppUnmpCSDRL ββ −=  (3-38) 

cqf }),|,,;Pr(:inf{int),|,,;( 11 qpUnmpjNxpUnmpqQ pN p
≥≤=   10 << q  (3-39) 

 

 

 

Table 3.4: The conditional probability mass function (c.p.m.f), the conditional cumulative 
distribution function (c.c.d.f), the conditional false alarm rate (CFAR), the conditional average 
run-length (CARL) and the conditional standard deviation of the run-length (CSDRL) of the      

c-chart in Phase II of Case U 

 

c.p.m.f ,....2,1      ]),|,(ˆ-[1)],|,(ˆ[),|,;Pr( 1
1

11 === − jcVmccVmccVmcjN j
c ββ  (3-40) 

 c.c.d.f ,....2,1      )],|,(ˆ[1),|,;Pr( 11 =−=≤ jcVmccVmcjN j
c β  (3-41) 

 CFAR ),|,(ˆ1),|,( 1111 ccVmcccVmcCFAR =−== β   (3-42) 

 CARL )],|,(ˆ1/[1),|,( 11 cVmccVmcCARL β−=  (3-43) 

CSDRL )],|,(ˆ1/[),|,(ˆ),|,( 111 cVmccVmccVmcCSDRL ββ −=  (3-44) 

cqf }),|,;Pr(:inf{int)|,;( 11 qcVmcjNxVmcqQ cNc
≥≤=   10 << q  (3-45) 
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It is important to note that the conditional run-length distributions and the associated characteristics 

of the conditional run-length distributions do not only depend on the random variables U  and V ; they 

also indirectly depend on the unknown parameters p  and c . 

 

The dependency on U  and V  follows from the fact that we estimate p  using mnUp /=  and we 

estimate c  using mVc /= . The indirect dependency on p  and c  follows from the fact that the 

distribution of U  (which is binomial with parameters mn  and p ) and the distribution of V  (which is 

Poisson with parameter mc ) depend on the unknown parameters p  and c . To evaluate any of the 

conditional characteristics we need the observed values of U  and V  but we also need to assume 

values for p  and c .  

 

The aforementioned point is demonstrated in the following two examples which illustrate the 

operation and the implementation of the Phase II p-chart and the Phase II c-chart when we are given a 

particular Phase I sample. 
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Example 1: A Phase II p-chart 
 

 

Consider Example 6.1 on p. 289 of Montgomery (2001) concerning a frozen orange juice 

concentrate that is packed in 6-oz cardboard cans.  A machine is used to make the cans and the goal is 

to set up a control chart to improve i.e. decrease,  the fraction of nonconforming cans produced by the 

machine.  Since no specific value of the fraction nonconforming p  is given the scenario is an example 

of Case U, that is, when the standard is unknown. The chart is therefore implemented in two stages. 

 

 

Phase I 
 

To establish the control chart 30=m  reference samples were taken each with 50=n  cans, 

selected in half hour intervals over a three-shift period in which the machine was in continuous 

operation. Once the Phase I control chart was established samples 15 and 23 were found to be out-of-

control and eliminated after further investigation.  Revised control limits were calculated using the 

remaining 28=m  samples.  Based on the revised control limits sample 21 was found out-of-control, 

but since further investigations regarding sample 21 did not produce any reasonable or logical 

assignable cause  it was not discarded.  This is the retrospective phase (or Phase I) of the analysis.   

The final 28 samples were used to estimate the control limits and then monitor the process in Phase II. 

 

 

Phase II (conditional) 
 

Although the random variable U  could theoretically take on any integer value from 0 to 

14005028 =×=mn , for the given set of reference data it was found that 301=U ; this was the total 

number of nonconforming cans after discarding samples 15 and 23. It follows from (3-24) that the 

point estimate of p  is 215.01400/301 ==p . 

 

The estimated control limits and centerline corresponding to 301=U  are found from (3-26) to be 

 

3893.050/)785.0(215.03215.0ˆ =+=pLCU  and 0407.050/)785.0(215.03215.0ˆ =−=pLCL . 

 

We find the constants â  and b̂  using (3-31) to be 

19),301|50,28(ˆ ==== pUnmb     and    .2),301|50,28(ˆ ==== pUnma  
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Because U  is unequal to 0 or mn  it follows from (3-30) that the conditional probability of a no-signal 

in Phase II is  

 

)30,19()47,2(                                                         

))1250,2(1()11950,19(1),215.0|50,28,(ˆ

11

111

pp

pp

II

IIppnmp

−=

−−−−−−−====β
 

for 1,0 1 << pp . 

 

Assuming, without loss of generality, that the process is in-control at a fraction nonconforming of 

0.2, that is, 2.01 == pp , the conditional false alarm rate (CFAR) is equal to 

 

002218.0)30,19()47,2(1)2.0,215.0|50,28,2.0(ˆ1 2.02.01 =+−====− IIpppβ . 

 

The in-control conditional average run-length therefore equals 

 

450.89  1/0.0022180 ==CARL  

and is found using (3-37). 

 

Compared to the Case K FAR and ARL of 0.0027 and 369.84 (see e.g. Tables A3.4 and A3.5 of 

Appendix 3A) we see that our p-chart (here, in Case U, with 215.0=p  and assuming that 

2.01 == pp ) would signal less often, if the process is in-control, than what it would if p  had in fact 

been known to be equal to 0.2. 

 

However, note that, since each user has his/her own unique reference sample, the point estimate p  

will differ from one user to the next so that the performance of each user’s chart will also vary. To this 

end, the unconditional characteristics are useful as they do not depend on any specific observed value 

of the point estimate. This, however, is looked at later when we continue Example 1 after having 

derived expressions for the unconditional characteristics of the p-chart’s Phase II run-length 

distribution. ■ 
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Example 2: A Phase II c-chart 
 

 

Consider Example 6.3 on p. 310 in Montgomery (2001) about the quality control of manufactured 

printed circuit boards. Since c  is not specified it had to be estimated. The chart was therefore 

implemented in two phases. 

 

 

Phase I 
 

A total of 26 successive inspection units each consisting of 100 individual items of product were 

obtained to estimate the unknown true average number of nonconformities in an inspection unit c.  It 

was found that units number 6 and 20 were out-of-control and therefore eliminated. The revised 

control limits were calculated using the remaining 24m =  inspection units with the number of 

nonconformities in an inspection unit shown in Table 6.7 on p. 311 of Montgomery (2001). The 

revised control limits were used for monitoring the process in Phase II. 

 

 

Phase II (conditional) 
 

Theoretically the variable V , the total number of nonconformities in the 24 inspection units, could 

take on any positive integer value including zero i.e. ,...}2,1,0{∈V .  For the given Phase I data it is 

found that 472V = . Using (3-25) the average number of nonconformities in an inspection unit c  is 

estimated as 67.1924/472 ==c  so that the estimated 3-sigma control limits are found from (3-27) to 

be 

97.32ˆ =cLCU      and       36.6ˆ =cLCL . 

 

These estimated limits yield 

6),472|24(ˆ === cVmd     and     32),472|24(ˆ === cVmf . 

 

Because V  is unequal to zero it follows from (3-32) that the probability of a no-signal is 

 

)()(),67.19|24,(ˆ
171331 ccccc Γ−Γ==β      for     0, 1 >cc . 
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For the given (observed) value of 472V =  one can investigate the chart’s performance using the 

conditional properties.  Assuming, without loss of generality, that the process operates in-control at an 

average of twenty nonconformities in an inspection unit, that is, 201 == cc  is the true in-control 

average number of nonconformities in an  inspection unit, the conditional false alarm rate i.e. the false 

alarm rate given 472V = , is found to be equal to 

004983.0)20()20(1 733 =Γ−Γ−=CFAR . 

 

The CFAR is approximately 72% larger than the value of 0.0029 one would have obtained in Case 

K for 200 =c  and is 85% higher than the nominal value 0.0027 (see e.g. Table A3.12 in Appendix 

3A); this is true even though the estimated average number of nonconformities in an inspection unit 

( 67.19=c ) is within 07020)206719( .|/.| =−  standard deviation units of the true average number of 

nonconformities in an inspection unit ( 20=c ). However, note that, like the p-chart of Example 1, 

each user typically has his/her own distinct Phase I data so that the performance of the c-chart in Case 

U will be different for each user. ■ 

 

 

 

To get an overall picture of a p-chart’s or a c-chart’s performance one needs to look at the 

unconditional properties of the chart; this is looked at later. First we look at the conditional run-length 

distribution and the related conditional characteristics of the p-chart and c-chart. 

 

The characteristics of the conditional run-length distribution depend on and are functions of the 

random variables U  or V ; as a result, these characteristics are random variables themselves and vary 

as U  or V  changes. 

 

To understand the effect of U  or V  on the characteristics of the conditional run-length 

distribution, it is instructive to study the conditional characteristics of the charts as functions of U  and 

V  as they show precisely how the conditional characteristics of each chart vary as the point estimates 

p  and c  fluctuate. 

 

First we look at the conditional characteristics of the p-chart and then at those of the c-chart. 
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3.2.3.1 Conditional characteristics of the p-chart 
 

 

Once we observed a value u  of the random variable U  we can calculate the conditional 

probability of a signal. The Phase II conditional run-length distribution is then completely known (see 

e.g. Table 3.3). 

 

Tables 3.5 and 3.6 illustrate the exact steps to calculate the conditional probability of a no-signal, 

the conditional probability of a signal or the conditional false alarm rate (CFAR), the conditional 

average run-length (CARL) and the conditional standard deviation of the run-length (CSDRL) for the p-

chart. These are all conditional Phase II properties as they all depend on an observed value from Phase 

I. 

 

For illustration purposes we assume a total of 20== mnT  individual Phase I observations is used 

to estimate p  using mnUp /=  as point estimate and that 5.01 == pp . The latter assumption implies 

that the process operated at a fraction nonconforming of 5.0=p  during Phase I and that in Phase II 

the process continues to operate at this same level so that 5.01 =p ; this is the same as saying that the 

process is in-control in Phase II. However, note that, because of sampling variation the observed value 

of p  may of course not be equal top  (see e.g. Remark 4(i)). 

 

The calculations of Table 3.5 are based on the assumption that 4=m  independent Phase I 

reference samples each of size 5=n  are used whereas the computations of Table 3.6 are based on 

1=m  with 20=n . 

 

In particular, column 1 lists all the values of U  (the total number of possible nonconforming items 

in the entire Phase I reference sample) that can possibly be attained. This ranges from a minimum of 

zero to a maximum of twenty.  Column 2 converts the observed value u  of U  into a point estimate of 

the unknown true fraction of nonconforming items, that is, we calculate obs20/ pup ==  which 

estimatesp . Because each row entry in each of the succeeding columns (i.e. columns 3 to 12) is 

computed by conditioning on a row entry from column 1 (or, equivalently, from column 2) we start 

calculating the conditional properties in columns 1 and/or 2 and sequentially proceed to the right-hand 

side of the tables. Thus, given a value u  or obsp  the lower and the upper control limits are estimated in 

columns 3 and 4 using (3-26). These estimated limits are then used to compute the two constants â  

and b̂  defined in (3-31), which are shown in columns 5 and 6, respectively.  Finally, columns 7 
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through 10 list the probability of a no-signal, the FAR, the in-control ARL and the in-control SDRL 

given the observed value u  from column 1, respectively. These properties are labeled 

),|Signal NoPr( pU , CFAR, CARL0 and CSDRL0, and calculated using (3-30) and the expressions in 

Table 3.3. Columns 11 and 12 show the values of the probability mass function (p.m.f) and the 

cumulative distribution function (c.d.f) of the random variable )5.0,20(~5.0| BinpU = , that is, 

205.0
20

)5.0|Pr( 







===

u
puU      and     ∑

=








==≤

u

j j
puU

0

205.0
20

)5.0|Pr(     for   20,...,2,1,0=u . 

Both these probability functions are useful when interpreting the characteristics of the conditional 

run-length distribution. The former shows the exact probability of obtaining a particular value u  of U  

whereas the latter can be used to find the percentiles of the distribution of U .  

 

 

T = 20 with m = 4 and n = 5 
 

Consider Table 3.5 which uses a total of 20=T  individual in-control Phase I reference 

observations from 4=m  independent samples each of size 5=n . 

 

There are two unique scenarios. The first takes place when 0=U (the minimum value possible) 

and the second occurs when 2054=×=U  (the maximum value). In both these cases the probability 

of a no-signal is zero by definition and the chart signals once the first Phase II sample is observed. As 

a result the conditional in-control average run-length is 10 =CARL . In the former situation the 

estimated control limits are 0ˆˆ == pp LCULCL  and in the latter the limits are 1ˆˆ == pp LCULCL . In 

both these situations the constants â  and b̂  need not be calculated; this is indicated by NA (read as 

“not applicable”) in columns 5 and 6, respectively (see e.g. (3-30) and Remark 5(ii)). 

 

The probability that none or all of the Phase I reference observations are nonconforming is of 

course rather small. The probabilities of these two events are 205.0)5.0|20()5.0|0( ==== UPUP  

which are zero when rounded to four decimal places (see e.g. column 11). For all other values of 

0≠U  and 20=≠ mnU , that is, when }19,...,2,1{∈U , we proceed with the calculation of the 

conditional characteristics as follows. 
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Table 3.5: Conditional probability of a no-signal, the conditional false alarm rate (CFAR), the 
in-control conditional average run-length (CARL0) and the in-control conditional standard 

deviation of the run-length (CSDRL0) of the p-chart in Case U for 4====m  and 5====n , assuming 
that 5.01 ======== pp  

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

u  obsp  pLCL ˆ  pLCU ˆ  â  b̂  Pr(No Signal | U, p) CFAR CARL0 CSDRL0 Pr(U=u| p) Pr(U<=u| p) 

0 0.00 0.00 0.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 0.0000 
1 0.05 -0.24 0.34 NA 1 0.1875 0.8125 1.23 0.53 0.0000 0.0000 
2 0.10 -0.30 0.50 NA 2 0.5000 0.5000 2.00 1.41 0.0002 0.0002 
3 0.15 -0.33 0.63 NA 3 0.8125 0.1875 5.33 4.81 0.0011 0.0013 
4 0.20 -0.34 0.74 NA 3 0.8125 0.1875 5.33 4.81 0.0046 0.0059 
5 0.25 -0.33 0.83 NA 4 0.9688 0.0313 32.00 31.50 0.0148 0.0207 
6 0.30 -0.31 0.91 NA 4 0.9688 0.0313 32.00 31.50 0.0370 0.0577 
7 0.35 -0.29 0.99 NA 4 0.9688 0.0313 32.00 31.50 0.0739 0.1316 
8 0.40 -0.26 1.06 NA 5 1.0000 0.0000 ∞  ∞  0.1201 0.2517 
9 0.45 -0.22 1.12 NA 5 1.0000 0.0000 ∞  ∞  0.1602 0.4119 
10 0.50 -0.17 1.17 NA 5 1.0000 0.0000 ∞  ∞  0.1762 0.5881 
11 0.55 -0.12 1.22 NA 5 1.0000 0.0000 ∞  ∞  0.1602 0.7483 
12 0.60 -0.06 1.26 NA 5 1.0000 0.0000 ∞  ∞  0.1201 0.8684 
13 0.65 0.01 1.29 0 5 0.9688 0.0313 32.00 31.50 0.0739 0.9423 
14 0.70 0.09 1.31 0 5 0.9688 0.0313 32.00 31.50 0.0370 0.9793 
15 0.75 0.17 1.33 0 5 0.9688 0.0313 32.00 31.50 0.0148 0.9941 
16 0.80 0.26 1.34 1 5 0.8125 0.1875 5.33 4.81 0.0046 0.9987 
17 0.85 0.37 1.33 1 5 0.8125 0.1875 5.33 4.81 0.0011 0.9998 
18 0.90 0.50 1.30 2 5 0.5000 0.5000 2.00 1.41 0.0002 1.0000 
19 0.95 0.66 1.24 3 5 0.1875 0.8125 1.23 0.53 0.0000 1.0000 
20 1.00 1.00 1.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 1.0000 

 

 

 

Suppose, for instance, that we observe seven nonconforming items out of the possible twenty in the 

entire Phase I reference sample. Our chance to find exactly seven nonconforming items is 

approximately 0.0739 (which is relatively high, see e.g. column 11); the probability to find less than 

seven nonconforming items is 0577.0)5.0|7( ≈<UP  (see e.g. column 12). 

 

A value of 7=U  gives a point estimate for p  of 35.020/7 ==p  so that (3-26) yields an 

estimated upper control limit and an estimated lower control limit of 

   99.05/)65.0(35.0335.0ˆ =+=pLCU      and     29.05/)65.0(35.0335.0ˆ −=−=pLCL  

respectively . 

Because 45.1)29.0)(5(ˆ −=−=pLCnL  is less than zero the chart has no lower control limit. We 

therefore do not calculate a value for â  in this case. The constant b̂ , on the other hand, is found to be 

4}5],95.4min{[}5)],99.0)(5min{[(}5],ˆmin{[ˆ ==== pLCnUb . 
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Finally, after substituting b̂  in (3-30) we calculate the conditional probability of a no-signal and 

then also the CFAR, the CARL0 and the CSDRL0 using expressions (3-36), (3-37) and (3-38) in Table 

3.3. 

 

The conditional probability of a no-signal is 

 9688.0)5.0,35.0|5,4,5.0(ˆ)5.0,7|5,4,5.0(ˆ
11 ============ ppnmppUnmp ββ , 

so that the conditional false alarm rate is 

0313.09688.01)5.0,7|5,4,5.0(1 =−==== pUpCFAR . 

The Phase II  p-chart then has an in-control conditional ARL of 

00.320313.0/1)5.0,7|5,4,5.0(10 ===== pUpCARL  

and an in-control conditional SDRL of  

50.310313.0/9688.0)5.0,7|5,4,5.0(10 ===== pUpSDRL . 

 

If the process remains to operate at 5.01 =p  (i.e. the process stays in-control) we expect that the 

chart would, on average, give a false alarm or erroneous signal on every 32nd sample. This is more 

often that what we would nominally expect from a 3-sigma Shewhart-type control chart, which 

typically has an in-control ARL of 370.4.  We also see that the conditional false alarm rate (CFAR), 

particularly for 7=U , is much higher than the nominally expected 0.0027 even though the point 

estimate 35.0=p  is  0.70)35.01(35.0/)50.035.0(5 =−− standard deviation units from the 

supposedly known value of 5.0=p .  

 

For values of U  from 8 to 12 the CFAR is equal to zero and as a result the moments of the run-

length distribution, such as the 0CARL  and the 0CSDRL , are all undefined; this implies that, in 

practice, the conditional Phase II chart will not signal and that the 0CARL  and the 0CSDRL  are both 

infinite. Although we typically want a high in-control ARL , an ARL of infinity is not practical. Thus, 

4=m  subgroups each of size 5=n  is not adequate to control the false alarm rate (FAR) at a small yet 

practically desirable level, and at the same time ensure that a high in-control ARL is achieved.  This 

suggests that one needs more reference data and that n  needs to be larger relative to m  in order to 

achieve any reasonable probability of a false alarm with attributes data. 
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T = 20 with m = 1 and n = 20 
 

 

To study the effect of choosing a larger value of n  relative to m  suppose that a total of 20=T  in-

control Phase I reference observations are available but in one sample of twenty observations, that is, 

1=m  and 20=n .  Calculations for this situation are shown in Table 3.6. 

 

We observe that the conditional probability of a no-signal i.e. 

)5.0,|20,1,5.0(ˆ),|Signal NoPr( 1 ====== puUnmppU β  

is non-zero for all values of 20,...,1,0=U . As a result none of the CFAR’s values are zero and 

therefore all the moments (such as the in-control ARL, the in-control SDRL etc.) of the conditional run-

length distribution are defined and finite. This suggests the need for a very careful choice of the 

number of reference samples m  and the size n  of each of the samples before a p-chart with an 

unknown value of p  is implemented in practice. 

 

 

Table 3.6: Conditional probability of a no-signal, the conditional false alarm rate (CFAR), the in-
control conditional average run-length (CARL0) and the in-control conditional standard 

deviation of the run-length (CSDRL0) of the p-chart in Case U for 1====m  and 20====n , assuming 
that 5.01 ======== pp  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

u  obsp  pLCL ˆ  pLCU ˆ  â  b̂  Pr(No Signal | U, p) CFAR CARL0 CSDRL0 Pr(U=u| p) Pr(U<=u| p) 

0 0.00 0.00 0.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 0.0000 
1 0.05 -0.10 0.20 NA 3 0.0013 0.9987 1.00 0.04 0.0000 0.0000 
2 0.10 -0.10 0.30 NA 6 0.0577 0.9423 1.06 0.25 0.0002 0.0002 
3 0.15 -0.09 0.39 NA 7 0.1316 0.8684 1.15 0.42 0.0011 0.0013 
4 0.20 -0.07 0.47 NA 9 0.4119 0.5881 1.70 1.09 0.0046 0.0059 
5 0.25 -0.04 0.54 NA 10 0.5881 0.4119 2.43 1.86 0.0148 0.0207 
6 0.30 -0.01 0.61 NA 12 0.8684 0.1316 7.60 7.08 0.0370 0.0577 
7 0.35 0.03 0.67 0 13 0.9423 0.0577 17.34 16.84 0.0739 0.1316 
8 0.40 0.07 0.73 1 14 0.9793 0.0207 48.27 47.77 0.1201 0.2517 
9 0.45 0.12 0.78 2 15 0.9939 0.0061 163.66 163.16 0.1602 0.4119 
10 0.50 0.16 0.84 3 16 0.9974 0.0026 388.07 387.57 0.1762 0.5881 
11 0.55 0.22 0.88 4 17 0.9939 0.0061 163.66 163.16 0.1602 0.7483 
12 0.60 0.27 0.93 5 18 0.9793 0.0207 48.27 47.77 0.1201 0.8684 
13 0.65 0.33 0.97 6 19 0.9423 0.0577 17.34 16.84 0.0739 0.9423 
14 0.70 0.39 1.01 7 20 0.8684 0.1316 7.60 7.08 0.0370 0.9793 
15 0.75 0.46 1.04 9 20 0.5881 0.4119 2.43 1.86 0.0148 0.9941 
16 0.80 0.53 1.07 10 20 0.4119 0.5881 1.70 1.09 0.0046 0.9987 
17 0.85 0.61 1.09 12 20 0.1316 0.8684 1.15 0.42 0.0011 0.9998 
18 0.90 0.70 1.10 13 20 0.0577 0.9423 1.06 0.25 0.0002 1.0000 
19 0.95 0.80 1.10 16 20 0.0013 0.9987 1.00 0.04 0.0000 1.0000 
20 1.00 1.00 1.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 1.0000 
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The conditional false alarm rate  
 

Panels (a) to (f) of Figures 3.1 and 3.2 display the conditional false alarm rate (CFAR) 

)5.0,|,,5.0(ˆ1 1 ===− puUnmpβ      as a function of    mnu ,...,1,0=  

for various combinations of m and n  when a total of 20=T  and a total of 50=T  individual Phase I 

reference observations are used to estimate p . For illustration purposes we assume that 50.01 == pp .  

 

The impact of the actual number of nonconforming items u  in the entire Phase I reference sample 

is easily noticed. The distribution of the CFAR is seen to be U-shaped and symmetric at the point 

2/mn ; this is  the mean value of U.  For values of U near the two tails the CFAR can be very high, 

sometimes close to 1 or 100%, which obviously means many false alarms.  Of course, this only 

happens at the rather extreme values of U that occur with very small probabilities (see e.g. columns 11 

and 12 in Tables 3.5 and 3.6). However, even when U  is not as extreme there can be a significantly 

high probability of a false alarm and it is seen that only when U   takes on a value in the 

neighbourhood of its mean, will the CFAR be reasonably small. A potential problem is that for some 

combinations of m and n values, especially with smaller values of n relative to m , some of the CFAR 

values equal 0, which (as mentioned before) leads to an in-control average run-length that is 

undefined.  

 

Note that, panels (d) and (f) of Figure 3.1 are in fact displaying the CFAR’s of column 8 in Tables 

3.5 and 3.6, respectively. 
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(a)  T = 20 (m = 20 , n = 1) 

T=20 (m=10,n=2)
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(b)  T = 20 (m = 10 , n = 2) 

T=20 (m=5,n=4)
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(c)  T = 20 (m = 5 , n = 4) 

T=20 (m=4,n=5)
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(d)  T = 20 (m = 4 , n = 5) 

T=20 (m=2,n=10)
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(e)  T = 20 (m = 2 , n = 10) 

T=20 (m=1,n=20)
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(f)  T = 20 (m = 1 , n = 20) 

Figure 3.1: The conditional false alarm rate (CFAR) as a function of 20,...,1,0====u  for various 
combinations of m  and n  such that 20======== mnT
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(a)  T = 50 (m = 50 , n = 1) 

T=50 (m=25,n=2)
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(b)  T = 50 (m = 25 , n = 2) 

T=50 (m=10,n=5)
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(c)  T = 50 (m = 10 , n = 5) 

T=50 (m=5,n=10)
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(d)  T = 50 (m = 5 , n = 10) 

T=50 (m=2,n=25)
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(e)  T = 50 (m = 2 , n = 25) 

T=50 (m=1,n=50)
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(f)  T = 50 (m = 1 , n = 50) 

Figure 3.2: The conditional false alarm rate (CFAR) as a function of 50,...,1,0====u  for various 
combinations of m  and n  such that 50======== mnT  
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The conditional probability of a no-signal 
 

 

The distribution of 1-CFAR, which is the conditional probability of a no-signal when the process is 

in-control, is shown in panels (a) to (d) of Figure 3.3 for 20=T , 50, 100 and  200 when 1=m  and 

Tn =  i.e. for large n  relative to m . 

 

It is seen that the distribution of 1-CFAR is bell-shaped and symmetric; these two characteristics 

follow from that of CFAR shown in Figure 3.1 and 3.2.  
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(a)  T = 20 (m = 1 , n = 20) 

T=50 (m=1,n=50)
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(b)  T = 50 (m = 1 , n = 50) 

T=100 (m=1,n=100)
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(c)  T = 100 (m = 1 , n = 100) 

T=200 (m=1,n=200)
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(d)  T = 200 (m = 1 , n = 200) 

Figure 3.3: The conditional probability of a no-signal when the process is in-control (1-CFAR) as 
a function of Tu ,...,1,0====  for 1====m  and 20======== Tn ,50, 100 and 200 
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The out-of-control conditional performance of the p-chart  
 

 

The in-control performance of the Phase II p-chart (in theory) refers to the characteristics of the 

chart in the situation where the process operates at the same level in Phase II as what it did in Phase I; 

this is the scenario when pp =1 . However, because p  is unknown and estimated by p , the observed 

value obsp  plays the role of p  so that the conditional in-control performance (in practice) refers to the 

situation when obs1 pp =  (see e.g. the earlier section labelled “Phase II implementation and 

operation”). The out-of-control performance (in practice) then refers to the characteristics of the p-

chart when obs1 pp ≠ . 

 

Taking into consideration the aforementioned, we can study the out-of-control performance of the 

Phase II p-chart by making use of the results from the previous section. In particular, by conditioning 

on a specific observed value obsp , the run-length distribution is affected in the same way it would be if 

the unknown true fraction nonconforming was to change from p  (in Phase I) to 1p  (in Phase II). In 

other words, the out-of-control performance of the Phase II  p-chart (i.e. when p  has incurred either a 

downward or an upward shift to 1p  so that pp ≠1 ) is  equivalent  to the  performance of the 

conditional p-chart when obspp ≠  i.e. if p  was either overestimated or underestimated (see e.g. Jones, 

Champ and Rigdon, (2004)); this correspondence allows us to examine the out-of-control performance 

of the p-chart by using the conditional statistical characteristics. 

 

To this end, consider, for example, Table 3.7 which lists the false alarm rate (CFAR), the average 

run-length (CARL0) and the standard deviation of the run-length (CSDRL0) of the conditional run-

length distribution for different combinations of m  and n , provided that 20== mnT  and 

5.01 == pp . In each case the run-length distribution is conditioned on an estimate of p  through a 

particular realization u  of the random variable U  or, equivalently, on a specific realization obsp . 

 

The values on which we condition are, for illustration proposes only, 7=U  (i.e. 

35.020/7 ==p ), 8=U  (i.e. 40.020/8 ==p )  and 10=U  (i.e. 50.020/10 ==p ). These values 

correspond to the 10th, the 25th and the 50th percentiles of the probability distribution of 

U ~ )5.0,20( == pmnBin , respectively; note that, because the )5.0,20(Bin  distribution is symmetric, 

conditioning on 7=U  and 8=U  are like conditioning on 13720 =−=U  (i.e. 65.020/13 ==p )  

and 12820 =−=U  (i.e. 60.020/12 ==p ), which are the  90th and the 75th percentiles of the 

probability distribution of U , respectively. 
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In particular, by assuming that 5.01 == pp  and then conditioning on 7=U  or 8=U  (i.e. 

35.0=p  or 40.0=p ) the performance of the Phase II  p-chart are comparable to that of a process that 

has sustained a permanent step shift from 0.35 to 0.5 or encountered a lasting step shift from 0.4 to 0.5 

i.e. an increase of either 43% or 25%, respectively. Similarly, if we assume that 5.01 == pp  and then 

condition on 13=U  or 12=U  (i.e. 65.0=p  or 60.0=p ) the performance of the Phase II  p-chart is 

like that of a process that has sustained a permanent step shift from 0.65 to 0.5 (a decrease of 23%) or 

incurred a step shift from 0.6 to 0.5 (a decrease of 17%). 

 

When )20,1(),( =nm  and we condition on a value of 8=U  (or 12), which is the 25th (or the 75th) 

percentile of the distribution of )5.0,20(~5.0| BinpU = , the CFAR is 0.0207 and the CARL0 is 48.27. 

The CFAR is approximately %29%100)10160.0/0207.0( ≈×−  higher than the probability of a signal 

of 0160.0)20,5.0,6.0or  4.0(1 0 ====− nppβ  of Case K whereas the CARL0 is roughly 

%23%100)15.62/27.48( ≈×−   lower than the out-of-control (OOC) ARL of Case K following a 

sustained shift from 0.4 or 0.6 to 5.0 , which is equal to 5.62)20,5.0,6.0or  4.0( 0 ==== nppARL  

(see e.g. Tables A3.4 and A3.5 in Appendix 3A). 

This means that when 1=m  and 20=n , and p  is either underestimated or overestimated by 25% 

(i.e. the process fraction nonconforming has endured either a 25% decrease or increase and is out-of-

control), the p-chart of Case U would be better at detecting such a shift than the p-chart of Case K. 

However, note that, this superior performance is a side-effect of estimating p . 

 

The same is true for other combinations of ),(nm . For example, if our Phase I reference data 

consisted of 2=m  samples each of size 10=n  and we then condition on  8=U  (or 12), the 

conditional FAR is 0107.0=CFAR  and the in-control conditional ARL is 09.930 =CARL . These 

values are approximately 73% higher and 43% lower than the probability of a signal and the out-of-

control ARL of 0.0062 and 162.6 if p  had been known. 

 

In contrast, it is noteworthy to see what happens if we condition on  10=U  (i.e. the 50th percentile 

of the distribution of U ), which implies that our estimate of p  is spot on, that is, the point estimate 

5.0=p  on which we condition is equal to p , so that we are in actual fact dealing with the in-control 

(IC) performance of the p-chart in Case U.  

 

In this case, the CFAR and the in-control conditional ARL for both the scenarios )20,1(),( =nm  

and )10,2(),( =nm , are exactly equal to the in-control performance of the p-chart in Case K  with 
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0026.0=FAR  &  388.070 =ARL and 0020.0=FAR  & .005120 =ARL , respectively (see e.g. Tables 

A3.4 and A3.5 in Appendix 3A). Furthermore, note that, as mentioned before, for some combinations 

of ),( nm , especially when nm >> , it happens that  for certain values of U  the CFAR  equals zero 

which causes the 0CARL  and 0CSDRL  to be undefined, which is undesirable. 

 

To summarize, when 20=T  and p  is either underestimated or overestimated (i.e. the process is 

OOC), the Case U p-chart would do better than the Case K chart at detecting a shift, and only if our 

estimate p  of p is on target (i.e. the process is IC) would the performance of the Case U and Case K 

charts be similar. 

 

Table 3.7: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that 20======== mnT  and 5.01 ======== pp  

 

U = 7 or 13 (OOC) 
( 0.65or  35.0====p ) 

U = 8 or 12 (OOC) 
( 0.6or  4.0====p ) 

U = 10 (IC) 
( 5.0====p ) T = 20 

10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

1 20 0.0577 17.34 16.84 0.0207 48.27 47.77 0.0026 388.07 387.57 
2 10 0.0107 93.09 92.59 0.0107 93.09 92.59 0.0020 512.00 511.50 
4 5 0.0313 32.00 31.50 0.0 ∞  ∞  0.0 ∞  ∞  

5,4 10,2 
20,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

 

 

Calculations similar to those in Table 3.7 are shown in Tables 3.8, 3.9, 3.10, and 3.11 for a larger 

range of values for T ; we specifically look at 10=T ,15, 25, 30, 50, 75, 100, 200, 250, 300, 500, 750, 

1000 and 1500. 

For each value of T  we look at all possible combinations of m  and n  such that mnT =  where 

both m  and n  are integers. We again condition on the 10th (or the 90th), the  25th (or the 75th), and the 

50th percentiles of )5.0,(~5.0| mnTBinpU ==  so that the interpretation of these conditional 

characteristics is similar to those for 20=T  of Table 3.7. The values of the percentiles of U  and the 

corresponding values of p  are clearly indicated. 

The characteristics that are highlighted in grey indicate those ),(nm  combinations for which the 

Case U p-chart performs worse than the Case K p-chart; for all the other ),( nm  combinations the Case 

U p-chart performs better or just as well as the Case K p-chart. 
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The conditional characteristics of Tables 3.8, 3.9, 3.10, and 3.11 are of great help to the 

practitioner as he/she gets an idea of the ramifications when (or if) p  is underestimated or 

overestimated for his/her particular combination of m  and n  values at hand (even before any data is 

collected); this is similar to investigating the power of a test. 

 

 

Table 3.8: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that ====T 10, 15, 25 and 30 and 5.01 ======== pp  

 

 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

T = 10 
U = 3 or 7 (OOC) 
( 0.7or  3.0====p ) 

U = 4 or 6 (OOC) 
( 0.6or  4.0====p ) 

U = 5 (IC) 
( 5.0====p ) 

1 10 0.0547 18.29 17.78 0.0107 93.09 92.59 0.0020 512.00 511.50 
2 5 0.0313 32.00 31.50 0.0 ∞  ∞  0.0 ∞  ∞  

5,2 10,1 0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 15 
U = 5 or 10 (OOC) 
( .. 0.66or  33.0====p ) 

U = 6 or 9 (OOC) 
( 0.6or  4.0====p ) 

U = 7 (IC) 
( .46.0====p ) 

1 15 0.0592 16.88 16.37 0.0176 56.79 56.29 0.0042 239.18 238.68 
3 5 0.0 32.00 31.50 0.0 ∞  ∞  0.0 ∞  ∞  

5,3 15,1 0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 25 
U = 9 or 16 (OOC) 
( 0.64or  36.0====p ) 

U = 11 or 14 (OOC) 
( 0.56or  44.0====p ) 

U = 12 (IC) 
( 48.0====p ) 

1 25 0.0539 18.56 18.05 0.0074 135.23 134.73 0.0025 400.98 400.48 
5,5 25,1 0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 30 
U = 11 or 19 (OOC) 
( .. 0.63or  36.0====p ) 

U = 13 or 17 (OOC) 
( .. 0.56or  43.0====p ) 

U = 15 (IC) 
( 5.0====p ) 

1 30 0.1002 9.98 9.46 0.0081 123.58 123.08 0.0014 698.86 698.36 
2 15 0.0176 56.89 56.39 0.0037 268.59 268.09 0.0010 1024.00 1023.50 
3 10 0.0107 93.09 92.59 0.0010 1024.00 1023.50 0.0020 512.00 511.50 
5 6 0.0 64.00 63.50 0.0 ∞  ∞  0.0 ∞  ∞  

6,5 10,3 
15,2 30,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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Table 3.9: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that ====T 50 , 75, 100, 200 and 250 and 5.01 ======== pp  

 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

T = 50 
U = 20 or 30 (OOC) 

( 0.6or  4.0====p ) 
U = 23 or 27 (OOC) 
( 0.54or  46.0====p ) 

U = 25 (IC) 
( 5.0====p ) 

1 50 0.0595 16.82 16.31 0.0078 127.77 127.27 0.0026 384.29 383.79 
2 25 0.0217 46.18 45.68 0.0078 128.67 128.17 0.0041 245.26 244.76 
5 10 0.0107 93.09 92.59 0.0010 1024.00 1023.50 0.0020 512.00 511.50 

10,5 25,2 
50,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 75 
U = 32 or 43 (OOC) 

( .. 0.573or  426.0====p ) 
U = 35 or 40 (OOC) 
( .. 0.53or  46.0====p ) 

U = 37 (IC) 
( .493.0====p ) 

1 75 0.0527 18.98 18.47 0.0104 96.39 95.89 0.0038 260.67 260.17 
3 25 0.0074 135.23 134.73 0.0025 400.98 400.48 0.0025 400.98 400.48 
5 15 0.0037 268.59 268.09 0.0042 239.18 238.68 0.0010 1024.00 1023.50 

15,5 25,3 
75,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 100 
U = 44 or 56 (OOC) 
( 0.56or  44.0====p ) 

U = 47 or 53 (OOC) 
( 0.53or  47.0====p ) 

U = 50 (IC) 
( 5.0====p ) 

1 100 0.0443 22.56 22.05 0.0107 93.51 93.01 0.0035 284.28 283.78 
2 50 0.0165 60.74 60.23 0.0035 289.59 289.09 0.0026 384.29 383.79 
4 25 0.0074 135.23 134.73 0.0025 400.98 400.48 0.0041 245.26 244.76 
5 20 0.0061 163.66 163.16 0.0015 671.30 670.80 0.0026 388.07 387.57 
10 10 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 0.0020 512.00 511.50 

20,5 25,4 
50,2 100,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 200 
U = 91 or 109 (OOC) 
( 0.545or  455.0====p ) 

U = 95 or 105 (OOC) 
( 0.525or  475.0====p ) 

U = 100 (IC) 
( 5.0====p ) 

1 200 0.0384 26.02 25.52 0.0098 102.24 101.74 0.0023 438.70 438.20 
2 100 0.0176 56.69 56.19 0.0062 160.75 160.25 0.0035 284.28 283.78 
4 50 0.0078 127.77 127.27 0.0038 265.37 264.87 0.0026 384.29 383.79 
5 40 0.0084 119.25 118.75 0.0036 281.45 280.95 0.0022 450.16 449.66 
8 25 0.0074 135.23 134.73 0.0025 400.98 400.48 0.0041 245.26 244.76 
10 20 0.0061 163.66 163.16 0.0015 671.30 670.80 0.0026 388.07 387.57 
20 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 
25 8 0.0039 256.00 255.50 0.0 ∞  ∞  0.0 ∞  ∞  

40,5 50,4 
100,2 200,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 250 
U = 115 or 135 (OOC) 

( 0.54or   46.0====p ) 
U = 120 or 130 (OOC) 

( 0.52or  48.0====p ) 
U = 125 (IC) 

( 5.0====p ) 

1 250 0.0438 22.85 22.35 0.0097 103.13 102.63 0.0029 347.38 346.88 
2 125 0.0157 63.53 63.03 0.0063 159.02 158.52 0.0022 449.14 448.64 
5 50 0.0078 127.77 127.27 0.0038 265.37 264.87 0.0026 384.29 383.79 
10 25 0.0078 128.67 128.17 0.0025 400.98 400.48 0.0041 245.26 244.76 
25 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

50,5 125,2 
250,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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Table 3.10: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that ====T 300, 500 and 750 and 5.01 ======== pp  
 

 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

T = 300 
U = 139 or 161 (OOC) 
( .. 0.536or  463.0====p ) 

U = 144 or 156 (OOC) 
( 0.52or  48.0====p ) 

U = 150 (IC) 
( 5.0====p ) 

1 300 0.0470 21.29 20.79 0.0122 81.82 81.32 0.0032 315.53 315.03 
2 150 0.0205 48.81 48.30 0.0058 173.44 172.94 0.0024 415.71 415.21 
3 100 0.0106 94.51 94.01 0.0065 154.96 154.46 0.0035 284.28 283.78 
4 75 0.0102 97.68 97.18 0.0058 171.50 171.00 0.0024 409.13 408.63 
5 60 0.0069 144.06 143.56 0.0036 274.60 274.10 0.0027 374.47 373.97 
6 50 0.0078 127.77 127.27 0.0038 265.37 264.87 0.0026 384.29 383.79 
10 30 0.0028 360.50 360.00 0.0033 300.58 300.08 0.0014 698.86 698.36 
12 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
15 20 0.0061 163.66 163.16 0.0015 671.30 670.80 0.0026 388.07 387.57 
20 15 0.0042 239.18 238.68 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 
25 12 0.0034 292.57 292.07 0.0034 292.57 292.07 0.0005 2048.00 2047.50 
30 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

50,6 60,5 
75,4 100,3 
150,2 300,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 500 
U = 236 or 264 (OOC) 
( 0.528or   472.0====p ) 

U = 242 or 258 (OOC) 
( 0.516or   484.0====p ) 

U = 250 (IC) 
( 5.0====p ) 

1 500 0.0405 24.68 24.17 0.0113 88.24 87.74 0.0027 370.81 370.31 
2 250 0.0184 54.39 53.88 0.0070 143.25 142.75 0.0029 347.38 346.88 
4 125 0.0100 100.06 99.56 0.0038 260.91 260.41 0.0022 449.14 448.64 
5 100 0.0062 160.75 160.25 0.0038 266.28 265.78 0.0035 284.28 283.78 
10 50 0.0038 265.37 264.87 0.0038 265.37 264.87 0.0026 384.29 383.79 
20 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
25 20 0.0015 671.30 670.80 0.0015 671.30 670.80 0.0026 388.07 387.57 
50 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

100,5 125,4 
250,2 500,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 750 
U = 357 or 393 (OOC) 
( 0.524or   476.0====p ) 

U = 366 or 384 (OOC) 
( 0.512or  488.0====p ) 

U = 375 (IC) 
( 5.0====p ) 

1 750 0.0430 23.24 22.73 0.0089 112.45 111.95 0.0024 413.68 413.18 
2 375 0.0194 51.54 51.03 0.0051 196.82 196.32 0.0027 370.96 370.46 
3 250 0.0134 74.53 74.02 0.0051 197.15 196.65 0.0029 347.38 346.88 
5 150 0.0090 111.07 110.56 0.0038 262.77 262.27 0.0024 415.71 415.21 
6 125 0.0061 163.01 162.51 0.0041 242.72 242.22 0.0022 449.14 448.64 
10 75 0.0055 181.29 180.79 0.0032 317.07 316.57 0.0024 409.13 408.63 
15 50 0.0038 265.37 264.87 0.0018 565.23 564.73 0.0026 384.29 383.79 
25 30 0.0033 300.58 300.08 0.0033 300.58 300.08 0.0014 698.86 698.36 
30 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
50 15 0.0042 239.18 238.68 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 
75 10 0.0020 512.00 511.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

125,6 150,5 
250,3 375,2 
750,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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Table 3.11: The false alarm rate (FAR), the average run-length (ARL) and the standard 

deviation of the run-length (SDRL) of the conditional run-length distribution for different 
combinations of m  and n , provided that ====T 1000 and 1500 and 5.01 ======== pp  

 
 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL CSDRL CFAR CARL CSDRL CFAR CARL CSDRL 

T = 1000 
U = 480 or 520 (OOC) 

( 0.52or   48.0====p ) 
U = 489 or 511 (OOC) 
( 0.511or  489.0====p ) 

U = 500 (IC) 
( 5.0====p ) 

1 1000 0.0410 24.40 23.90 0.0106 94.61 94.11 0.0026 378.00 377.50 
2 500 0.0178 56.25 55.75 0.0056 179.73 179.23 0.0027 370.81 370.31 
4 250 0.0097 103.13 102.63 0.0051 197.15 196.65 0.0029 347.38 346.88 
5 200 0.0067 149.04 148.53 0.0033 306.27 305.77 0.0023 438.70 438.20 
8 125 0.0063 159.02 158.52 0.0041 242.72 242.22 0.0022 449.14 448.64 
10 100 0.0065 154.96 154.46 0.0038 266.28 265.78 0.0035 284.28 283.78 
20 50 0.0038 265.37 264.87 0.0018 565.23 564.73 0.0026 384.29 383.79 
25 40 0.0036 281.45 280.95 0.0022 450.16 449.66 0.0022 450.16 449.66 
40 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
50 20 0.0015 671.30 670.80 0.0026 388.07 387.57 0.0026 388.07 387.57 
100 10 0.0020 512.00 511.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

125,8 200,5 
250,4 500,2 
1000,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 1500 
U = 725 or 775 (OOC) 
( .. 0.516or   483.0====p ) 

U = 737 or 763 (OOC) 
( .. 0.5086or   4913.0====p ) 

U = 750 (IC) 
( 5.0====p ) 

1 1500 0.0418 23.92 23.41 0.0095 105.36 104.85 0.0025 398.62 398.12 
2 750 0.0187 53.44 52.94 0.0061 163.72 163.22 0.0024 413.68 413.18 
3 500 0.0113 88.24 87.74 0.0045 221.21 220.71 0.0027 370.81 370.31 
4 375 0.0089 112.99 112.48 0.0040 247.16 246.66 0.0027 370.96 370.46 
5 300 0.0091 109.95 109.45 0.0038 265.71 265.21 0.0032 315.53 315.03 
6 250 0.0070 143.25 142.75 0.0038 261.95 261.45 0.0029 347.38 346.88 
10 150 0.0059 168.33 167.83 0.0027 364.75 364.25 0.0024 415.71 415.21 
12 125 0.0038 260.91 260.41 0.0026 383.35 382.84 0.0022 449.14 448.64 
15 100 0.0038 266.28 265.78 0.0027 376.82 376.32 0.0035 284.28 283.78 
20 75 0.0032 317.07 316.57 0.0032 317.07 316.57 0.0024 409.13 408.63 
25 60 0.0036 274.60 274.10 0.0019 535.30 534.80 0.0027 374.47 373.97 
30 50 0.0038 265.37 264.87 0.0018 565.23 564.73 0.0026 384.29 383.79 
50 30 0.0033 300.58 300.08 0.0033 300.58 300.08 0.0014 698.86 698.36 
60 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
75 20 0.0015 671.30 670.80 0.0026 388.07 387.57 0.0026 388.07 387.57 
100 15 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 
125 12 0.0034 292.57 292.07 0.0005 2048.00 2047.50 0.0005 2048.00 2047.50 
150 10 0.0020 512.00 511.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

250,6 300,5 
375,4 500,3 
750,2 1500,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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3.2.3.2 Conditional characteristics of the c-chart 
 

 

Like the p-chart, once we observe a value v  of the random variable V  we can calculate the 

conditional probability of a no-signal of the c-chart so that the Phase II conditional run-length 

distribution and its associated conditional characteristics are completely known (see e.g. Table 3.4). To 

this end, Table 3.12 illustrates the steps to calculate the conditional probability of a no-signal, the 

conditional false alarm rate (CFAR), the conditional average run-length (CARL) and the conditional 

standard deviation of the run-length (CSDRL) of the c-chart. 

 

For illustration purposes we assume that 201 == cc ; this implies that the process operated at a 

level of twenty nonconformities (on average) in an inspection unit during Phase I and that in Phase II 

the process continues to operate at this same level. In addition, we assume that 100=m  Phase I 

inspection units are available to estimate c  using obs/ cmVc == , which (because of sampling 

variation) may or may not be equal to c . 
 

In particular, column 1 lists some values of 6000)200(0=V , which (in theory) can be any integer 

greater than or equal to zero.  Column 2 converts the observed value v  of V  of column 1 into a point 

estimate of c  by calculating 100/obs vc = . Because each row entry in each of the succeeding columns 

(i.e. columns 3 to 10) is computed by conditioning on a row entry from column 1 or column 2, we start 

calculating the conditional properties in column 1 or 2 and sequentially proceed to the right-hand side 

of the table. So, given a value v  or obsc  the lower and the upper control limits are estimated in columns 

3 and 4 using (3-27) and then used to compute the two constants d̂  and f̂  defined in (3-33), which are 

shown in columns 5 and 6, respectively.  Finally, columns 7 through 10 list the probability of a no-

signal, the FAR, the ARL and the SDRL conditioned on the observed value v  from column 1, 

respectively. These properties are labeled ),|Signal NoPr( cV , CFAR, CARL0 and CSDRL0, and 

calculated using (3-32) and the expressions in Table 3.4. 

 

An examination of Table 3.12 reveals one special scenario i.e. when 0=V  (the minimum possible 

value). In this particular case the estimated control limits are 0ˆˆ == cc LCULCL  so that the constants 

d̂  and f̂ need not be calculated (see e.g. expression (3-32) and Remark 6(ii)); as a result, the 

probability of a no-signal is defined to be zero so that the c-chart signals with probability one once the 

first Phase II inspection unit is sampled i.e. both the conditional FAR and the conditional ARL are one 

(as shown in columns 8 and 9, respectively). For values of 0≠V  we proceed as follows. 
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Table 3.12: Conditional Probability of a no-signal, the conditional false alarm rate (CFAR), 
the conditional average run-length (CARL) and the conditional standard deviation of the run-

length (CSDRL) of the c-chart in Case U for 100====m  and assuming that 201 ======== cc  
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

v  obsc  
cLCL ˆ  cLCU ˆ  d̂  f̂  Pr(No Signal | V, c) CFAR CARL0 CSDRL0 

0 0 0.00 0.00 NA NA 0.0000 1.0000 1.00 0.00 
200 2 -2.24 6.24 0 6 0.0003 0.9997 1.00 0.02 
400 4 -2.00 10.00 0 9 0.0050 0.9950 1.01 0.07 
600 6 -1.35 13.35 0 13 0.0661 0.9339 1.07 0.28 
800 8 -0.49 16.49 0 16 0.2211 0.7789 1.28 0.60 
1000 10 0.51 19.49 0 19 0.4703 0.5297 1.89 1.29 
1200 12 1.61 22.39 1 22 0.7206 0.2794 3.58 3.04 
1400 14 2.78 25.22 2 25 0.8878 0.1122 8.91 8.40 
1600 16 4.00 28.00 4 27 0.9475 0.0525 19.05 18.54 
1800 18 5.27 30.73 5 30 0.9865 0.0135 73.82 73.32 
2000 20 6.58 33.42 6 33 0.9971 0.0029 339.72 339.22 
2200 22 7.93 36.07 7 36 0.9988 0.0012 832.30 831.80 
2400 24 9.30 38.70 9 38 0.9949 0.0051 195.92 195.42 
2600 26 10.70 41.30 10 41 0.9892 0.0108 92.39 91.89 
2800 28 12.13 43.87 12 43 0.9610 0.0390 25.63 25.13 
3000 30 13.57 46.43 13 46 0.9339 0.0661 15.12 14.61 
3200 32 15.03 48.97 15 48 0.8435 0.1565 6.39 5.87 
3400 34 16.51 51.49 16 51 0.7789 0.2211 4.52 3.99 
3600 36 18.00 54.00 18 53 0.6186 0.3814 2.62 2.06 
3800 38 19.51 56.49 19 56 0.5297 0.4703 2.13 1.55 
4000 40 21.03 58.97 21 58 0.3563 0.6437 1.55 0.93 
4200 42 22.56 61.44 22 61 0.2794 0.7206 1.39 0.73 
4400 44 24.10 63.90 24 63 0.1568 0.8432 1.19 0.47 
4600 46 25.65 66.35 25 66 0.1122 0.8878 1.13 0.38 
4800 48 27.22 68.78 27 68 0.0525 0.9475 1.06 0.24 
5000 50 28.79 71.21 28 71 0.0343 0.9657 1.04 0.19 
5200 52 30.37 73.63 30 73 0.0135 0.9865 1.01 0.12 
5400 54 31.95 76.05 31 76 0.0081 0.9919 1.01 0.09 
5600 56 33.55 78.45 33 78 0.0027 0.9973 1.00 0.05 
5800 58 35.15 80.85 35 80 0.0008 0.9992 1.00 0.03 
6000 60 36.76 83.24 36 83 0.0004 0.9996 1.00 0.02 

M  M  M  M  M  M  M  M  M  M  
 
 

 

Suppose, for example, that we observe two thousand four hundred nonconformities in the entire 

Phase I reference sample. The value of 2400=V  gives an observed value of the point estimate for c  

of 24100/2400obs ==c  so that (3-27) yields an estimated upper control limit and an estimated lower 

control of  

70.3824324ˆ =+=cLCU       and      30.924324ˆ =−=cLCL  

respectively. 
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The constants d̂  and f̂   are thus found to be 

9]}3.9[,0max{]}ˆ[,0max{ˆ === cLCLd        and       38]70.38[]1ˆ[ˆ ==−= cLCUf  

so that upon substituting d̂  and f̂ in (3-32) we calculate the conditional probability of a no-signal and 

then also the CFAR, the CARL0 and the CSDRL0 using expressions (3-42), (3-43) and (3-44) in Table 

3.4. 

 

The conditional probability of a no-signal, in particular, is 

9949.0)20,24|100,20(ˆ)20,2400|100,20(ˆ
11 ========== ccmccVmc ββ  

so that the conditional false alarm rate is 

0051.09949.01)20,2400|100,20(1 =−==== cVcCFAR . 

 

The Phase II  c-chart then has a conditional in-control ARL of 

92.1950051.0/1)20,2400|100,20(10 ===== cVcCARL  

and a conditional in-control SDRL of 

42.1950051.0/9949.0)20,2400|100,20(10 ===== cVcSDRL . 

 

 

The conditional false alarm rate 
 

Figure 3.4 displays the conditional false alarm rate (CFAR), that is, )20,|,20(ˆ1 1 ===− cvVmcβ  

as a function of ,...2,1,0=v  when m = 50 or 75 or 100 individual Phase I inspection units are used to 

estimate c ; the curve labeled 100=m  corresponds to the CFAR ’s of column 8 in Table 3.12. 

 

The impact of the actual observed number of nonconformities v  in the entire Phase I reference 

sample is easily noticed. The distribution function of the CFAR is seen to be slightly negatively U-

shaped.  For values of V near the two tails (i.e. the extreme left and right) the CFAR can be very high, 

sometimes close to 1 or 100%, which obviously means many false alarms. 
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Figure 3.4: The conditional false alarm rate (CFAR) as a function of 

,...2,1,0====v  for m  = 50,75 and 100  

 

 

However, even when V  is not near the two tails there can be a significantly high probability of a 

false alarm; this is more easily seen from Figure 3.5, which (for illustration purposes) displays values 

of )20,|100,20(ˆ1 1 ====− cvVmcβ  for values of v  between 1800 and 2600 only. 

 

It is seen that only when V   takes on a value in the neighbourhood of its mean i.e. 

200020100)20|( =×=== mccVE  (or, equivalently, when c  is close to the true average number of 

nonconformities, which is 20 in this case) will the CFAR be reasonably small and close to its Case K 

value of 0.0029 (see e.g. Table A3.12 in Appendix 3A). 

 

However even though the CFAR may be small, it is (for most values of v ) still far from the typical 

or nominal expected value of 0.0027 of a Shewhart X-bar chart with 3-sigma limits. Thus, the 

performance of the c-chart, as measured by the false alarm rate, is considerably degraded and 

unfavourably affected by a poor point estimate c . 
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Figure 3.5: The conditional false alarm rate (CFAR) as a function of 2600,...,1800====v  when      
m  = 100 in relation to the nominal FAR of 0.0027 

)20,|100,20(ˆ1 1 ====− cvVmcβ  
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The out-of-control conditional performance of the c-chart  
 

The in-control performance of the Phase II c-chart (in theory) refers to the characteristics of the 

chart in the situation where the process operates at the same level in Phase II than what it did in Phase 

I; this is the scenario when cc =1 . But, because c  is unknown and estimated by c , the observed value 

obsc  plays the role of c  so that the conditional in-control performance (in practice) refers to the 

situation when obs1 cc =  (see e.g. the earlier section labelled “Phase II implementation and operation”). 

The out-of-control performance (in practice) then refers to the characteristics of the c-chart when 

obs1 cc ≠ . 

 

In view of the abovementioned, we can study the out-of-control performance of the Phase II c-

chart by making use of the results from the previous section concerning the conditional characteristics 

of the Phase II c-chart. In particular, note that, by conditioning on a specific observed value obsc  the 

run-length distribution of the Phase II c-chart is affected in the same way it would be if the unknown 

true average number of nonconformities in an inspection was to change from c  (in Phase I) to 1c  (in 

Phase II). In other words, the out-of-control performance of the Phase II  c-chart (i.e. when c  has 

incurred either a downward or an upward shift to 1c  so that cc ≠1 ) is  equivalent  to the  performance 

of the c-chart when obscc ≠  i.e. if c  was either overestimated or underestimated (see e.g. Jones, 

Champ and Rigdon, (2004)); this correspondence allows us to examine the out-of-control performance 

of the c-chart by using the conditional statistical characteristics of the Phase II c-chart. 

 

Consider, for example, Tables 3.13, 3.14 and 3.15 which list the false alarm rate (CFAR), the 

average run-length (CARL) and the standard deviation of the run-length (CSDRL) of the conditional 

run-length distribution assuming that 30 and 20 , 15 , 10 , 5 =c  with 150 ,100 ,75 ,50 ,25 ,20 ,15 ,10=m  

and 200. For each combination of ),(cm -values the run-length distribution is conditioned on (for 

illustration purposes only) the 10th , 25th , 50th , 75th and 90th percentiles of the distribution of 

)(~| mcPoicV . 

 

In particular, suppose that )20,20(),( =cm  and we observed 400=V  so that our estimate 20=c  

is spot on. In this case, Table 3.14 shows that the conditional false alarm rate is 

0029.0)20,400|20,20(1 ===== cVmcCFAR , 

the conditional average run-length is 

72.3390029.0/1)20,400|20,20(10 ====== cVmcCARL  
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and the conditional standard deviation of the run-length is 

22.3390029.0/0029.01)20,400|20,20(10 =−===== cVmcCSDRL . 

 

These conditional characteristics i.e. conditioned on the 50th percentile of )400(~20| PoicV = , 

are identical to the in-control characteristics of the Case K c-chart, that is, 

0029.0)20,20(1 0 ===− ccβ , 72.339)20,20( 0 === ccARL  and 22.339)20,20( 0 === ccSDRL , 

which can be found from Table A3.12 in Appendix 3A. To illustrate the out-of-control (OOC) 

performance of the Case U c-chart we should condition on a percentile of )(~| mcPoicV  other than 

the 50th percentile. To this end, consider again, for example, the situation when )20,20(),( =cm , but 

conditioning on the 25th percentile of )400(~20| == mcPoicV , that is, 386=V  or 

30.1920/386 ==c ; this implies that c  is underestimated by approximately %4%100)13.19/20( ≈−  

or, equivalently, that the average number of nonconformities in an inspection unit has increased by 

4%. 

 

Table 3.14 shows that the 0050.0=CFAR , the 70.2000 =CARL  and the 20.2000 =CSDRL . 

Compared to the probability of a signal of 0020.0)20,30.19(1 0 ===− ccβ , the OOC average run-

length of 85.507)20,30.19( 0 === ccARL  and the OOC  standard deviation of the run-length of 

35.507)20,30.19( 0 === ccSDRL  of Case K (which are found by evaluating expressions (3-7), (3-21) 

and (3-22), respectively)  we observe that the Case U c-chart would detect an increase from 19.30 to 

20 quicker than the c-chart of Case K. However, this is (as mentioned earlier in case of the p-chart) a 

side-effect of estimating c  and not due to improved performance. 

 

On the other hand, when )20,20(),( =cm , and we condition on the 90th percentile of 

)400(~20| == mcPoicV , that is, 426=V  or 30.2120/426 ==c , which implies that c  is 

overestimated by %5.6%100)120/3.21( =−  (or, equivalently, that the average number of 

nonconformities in an inspection unit has decreased by 6.5%), Table 3.14 shows that the 

0016.0=CFAR , the 01.6320 =CARL  and the 51.6310 =CSDRL which implies that the Case U c-

chart performs worse than the Case K c-chart with probability of a signal of 

0068.0)20,3.21(1 0 ===− ccβ , an out-of-control ARL of 15.146)20,30.21( 0 === ccARL  and an 

out-of-control  SDRL of 65.145)20,30.21( 0 === ccSDRL . 

Note that, when conditioning on a particular percentile of V , the OOC performance of the Case U 

c-chart is the same for two or more ),(cm  combinations and thus the overlap of  certain of the cells as 

 
 
 



 187 

seen in Tables 3.13, 3.14 and 3.15. For example, the OOC performance of the Case U c-chart when (i) 

)20,20(),( =cm and conditioning on the 90th percentile of )400(~20| == mcPoicV , and (ii) 

)20,15(),( =cm  and we condition on the 90th percentile of )3002015(~20| =×= PoicV  i.e. 

322=V  so that 47.21=c  (which corresponds to an decrease of 7.35% in c  from 21.47 to 20), are 

similar. 

Table 3.13: The false alarm rate (FAR), the average run-length (ARL) and the standard 
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart  for 

m  = 10, 15, 20, 25, 50, 75, 100, 150, 200 when 10 and  5====c  

 c = 5 c = 10 
Percentile m = 10 15 20 25 50 75 100 150 200 10 15 20 25 50 75 100 150 200 

10th  
(OOC) 

0.0204 
48.94 
48.44 

0.0122 
82.03 
81.53 

0.0143 
69.82 
69.32 

0.0072 
138.28 
137.78 

0.0035 
285.74 
285.23 

25th 

(OOC) 

0.0204 
48.94 
48.44 

0.0122 
82.03 
81.53 

0.0072 
138.28 
137.78 

0.0035 
285.74 
285.23 

50th 

(IC) 

CFAR = 0.0122 
CARL = 82.03 

CSDRL = 81.53 

CFAR = 0.0035 
CARL = 285.74 

CSDRL = 285.23 

75th 

(OOC) 

0.0088 
114.20 
113.70 

0.0122 
82.03 
81.53 

0.0016 
612.12 
611.62 

0.0035 
285.74 
285.23 

90th 

(OOC) 

0.0074 
134.48 
133.98 

0.0088 
114.20 
113.70 

0.0012 
833.99 
833.49 

0.0016 
612.12 
611.62 

0.0035 
285.74 
285.23 

 
 

Table 3.14: The false alarm rate (FAR), the average run-length (ARL) and the standard 
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart  for 

m  = 10, 15, 20, 25, 50, 75, 100, 150, 200 when 20 and  15====c  

 c = 15 c = 20 
Percentile m  = 10 15 20 25 50 75 100 150 200 10 15 20 25 50 75 100 150 200 

10th  
(OOC) 

0.0112 
89.25 
88.75 

0.0062 
160.66 
160.16 

0.0064 
156.34 
155.84 

0.0035 
283.83 
283.33 

0.0135 
73.82 
73.32 

0.0082 
122.49 
121.99 

0.0050 
200.70 
200.20 

25th 

(OOC) 

0.0062 
160.66 
160.16 

0.0064 
156.34 
155.84 

0.0035 
283.83 
283.33 

0.0048 
208.36 
207.86 

0.0050 
200.70 
200.20 

0.0029 
339.72 
339.22 

50th 

(IC) 

CFAR = 0.0035 
CARL = 283.83 

CSDRL = 283.33 

CFAR = 0.0029 
CARL = 339.72 

CSDRL = 339.22 

75th 

(OOC) 

0.0019 
518.90 
518.40 

0.0035 
283.83 
283.33 

0.0023 
440.99 
440.49 

0.0017 
573.34 
572.84 

0.0029 
339.72 
339.22 

90th 

(OOC) 

0.0017 
582.29 
581.79 

0.0026 
388.74 
388.24 

0.0019 
518.90 
518.40 

0.0016 
632.01 
631.51 

0.0023 
440.99 
440.49 

0.0017 
573.34 
572.84 

0.0029 
339.72 
339.22 
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Table 3.15: The false alarm rate (FAR), the average run-length (ARL) and the standard 
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart  for 

m  = 10, 15, 20, 25, 50, 75, 100, 150, 200 when 30====c  

 
 c = 30 

Percentile m = 10 15 20 25 50 75 100 150 200 

10th   
(OOC) 

0.0098 
102.05 
101.55 

0.0064 
155.37 
154.87 

0.0041 
242.41 
241.91 

0.0044 
229.10 
228.60 

25th 

(OOC) 

0.0064 
155.37 
154.87 

0.0041 
242.41 
241.91 

0.0044 
229.10 
228.60 

0.0029 
349.94 
349.44 

50th 

(IC) 

CFAR = 0.0029 
CARL = 349.94 

CSDRL = 349.44 

75th 

(OOC) 

0.0024 
415.11 
414.61 

0.0019 
527.54 
527.04 

0.0029 
349.94 
349.44 

90th 

(OOC) 

0.0025 
405.45 
404.95 

0.0018 
553.19 
552.69 

0.0024 
415.11 
414.61 

0.0019 
527.54 
527.04 
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3.2.4 Unconditional Phase II run-length distributions and characteristics 
 

 

The conditional run-length distribution and the associated characteristics of the conditional run-

length distribution present the performance of a chart only for one particular realization of the point 

estimator and a supposed value for the parameter. For each individual realization of mnUp /=  or 

mVc /=  and the true p  or c  value the performance of the chart will be different – some charts 

performing acceptable and others poorly. 

 

In case of the p-chart the variable U  can take on any value between and including 0 and mn  i.e. 

},...,1,0{ mnU ∈ , so that there is a finite number 1+mn  possible values on which we can condition. 

For the c-chart the variable V  can be any positive integer greater or equal to zero i.e. ,...}2,1,0{∈V , 

and so the number of possible values on which we can condition is infinite. 

 

To avoid calculating the conditional performance of the charts for each realization of the point 

estimator and to asses the overall performance of the charts, the influence of a single realization should 

ideally be removed. The unconditional run-length distribution and its associated characteristics serve 

this purpose and better represent the overall performance of the charts when the parameters are 

estimated and let one see the bigger picture. 

 

The unconditional characteristics of the charts can be found from the conditional run-length 

distribution by averaging over the distributions of U  and V  respectively, and allow us to look at the 

marginal (or the unconditional) run-length distribution. This incorporates the additional variation 

introduced to the run-length through the estimation of p  and c  by taking into account all possible 

realizations of the random variables on which we condition. In particular, we derive expressions for 

the: 

(i) unconditional run-length distribution, 

(ii)  unconditional average run-length, and 

(iii)  unconditional variance of the run-length 

of each chart.  
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Unconditional run-length distribution: p-chart and c-chart (Case U) 
 

 

Because: 

 

(i) the observations in the Phase I reference sample are assumed to be independent and 

identically distributed, that is, ),(~ pniidBinX i  and )(~ ciidPoiYi  for mi ,...,2,1= , and 

 

(ii)  we assume that the Phase I iX ’s and iY ’s are independent from the Phase II observations 

i.e. ),(~ 1pniidBinX i  and )(~ 1ciidPoiYi  for ,...2,1 ++= mmi , 

 

the joint probability distribution of  

 

(i) the Phase I point estimator pmnU =  and the Phase II run-length random variable pN , and 

 

(ii)  the Phase I point estimator cmV =  and the Phase II run-length random variable cN  

 

can straightforwardly be obtained (see e.g. Definition 4.2.1 in Casella and Berger, (2002) p. 148) as 

 

)|Pr().,|,,;Pr()|,,;,Pr( 11 puUpuUnmpjNpnmpuUjN pp ======  (3-46) 

and 

)|Pr().,|,;Pr()|,;,Pr( 11 cvVcvVmcjNcmcvVjN cc ======   (3-47) 

 

for ,...2,1=j , mnu ,...,1,0=  and ,...2,1,0=v  where 

 

),|,,;Pr( 1 puUnmpjN p ==        and        ),|,;Pr( 1 cvVmcjN c ==  

 

are the conditional run-length distributions of the p-chart and the c-chart given in Tables 3.3 and 3.4, 

respectively, and 

umnu pp
u

mn
puU −−








== )1()|Pr(     for    mnu ,...,2,1,0=  

and 

!

)(
)|Pr(

v

mce
cvV

vmc−

==     for    ,...2,1,0=v  

are the probability distributions of the estimators U  and V , which depend on the unknown parameters 

p  and c , respectively. 
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The marginal or unconditional run-length distributions are then found from the joint probability 

distributions and given by  
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and 
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  (3-49) 

 

for ,...2,1=j  (see e.g. Definition 4.2.1 in Casella and Berger, (2002) p. 148). 

 

 

One can think of these unconditional distributions as weighted averages i.e. the conditional 

distributions averaged over all possible values of the parameter estimators, where a weight is the 

probability of obtaining a particular realization of the point estimator which is given by )|Pr( puU =  

or )|Pr( pvV = . 

 

It is important to note that the unconditional run-length distributions in (3-48) and (3-49) are 

unconditional only with respect to the random variables U  and V ; the unconditional run-length 

distributions still depend on the parameters p  and c . This means that when we evaluate the 

unconditional run-length distributions and the associated characteristics of the unconditional run-

length distributions, the results apply only for those particular values of p  and c  that are used. 
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The unconditional average run-length and the unconditional variance of the run-length 

distributions 
 

 

Apart from the unconditional run-length distributions we can also compute higher order moments 

of the unconditional run-length distribution. 

 

The unconditional k th non-central moments, for example, are 

)),|(()|( pUNEEpNE k
pU

k
p =      and     )),|(()|( cVNEEcNE k

cV
k
c =  

where 

),|( pUNE k
p          and         ),|( cVNE k

c  

are the k th non-central moments of the conditional run-length distributions of the p-chart and c-chart, 

respectively (see e.g. Theorem 5.4.4 in Bain and Engelhardt, (1992) p. 183). 

 

 

In particular, when 1=k  we have that the unconditional average run-length, denoted by UARL, 

which are  

 

)),|(()|( pUNEEpNEUARL pUpp ==      and     )),|(()|( cVNEEcNEUARL cVcc ==  

where  

1
1 )),|,,(ˆ1(),|( −−= pUnmppUNE p β         and         1

1 )),|,(ˆ1((),|( −−= cVmccVNE c β  

 

are the conditional ARL’s (conditioned on  particular observations of  the random variables U  and V ), 

respectively. 

 

Hence, it follows that 
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Similarly, the unconditional variance of the run-length, denoted by UVARL, can be found using 

 

(i) the conditional variance of the run-length (CVAR ), 

(ii)  the conditional average run-length (CARL ), and 

(iii)  the unconditional average run-length (UARL ), 

 

and is given by  

22)()( UARLCARLECVARLEUVARL ZZ −+= .   (3-52a) 

where Z  plays the role of U  and/or V . 

 

Result (3-52a) follows from the fact that, in general, the unconditional variance can be obtained 

from the expected value of the conditional variance and the variance of the conditional expected value 

i.e.  

 

22

22

)()(

}))]|(([]))|([({))|(var(

))|((var))|(var()var(

UARLCARLECVARLEUVARL

ZNEEZNEEZNE

ZNEZNEN

ZZ

ZZZ

ZZ

−+=

−+=

+=

  (3-52b) 

 

where )var(N  is the unconditional variance of the run-length , 

2)ˆ1/(ˆ)|var( ββ −== ZNCVARL  

denotes the conditional variance of the run-length, 

)ˆ1/(1)|( β−== ZNECARL  

denotes the conditional average run-length, β̂   denotes (in general) the conditional probability of a no-

signal and Z  plays the role of U  and/or V , which is the random variable on which we condition in 

the particular  case (see e.g. Theorem 5.4.3 in Bain and Engelhardt, (1992) p. 182). 
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In case of the p-chart, using (3-52a), the unconditional variance of the run-length is 
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whilst for the c-chart we have  
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The unconditional standard deviation of the run-length follows by taking the square root of the 

unconditional variance of the run-length i.e. UVARLUSDRL = . 

 

The unconditional probability mass function (u.p.m.f), the unconditional cumulative distribution 

function (u.c.d.f), the unconditional false alarm rate (UFAR), the unconditional average run-length 

(UARL), and the unconditional variance of the run-length (UVARL) for the p-chart and the c-chart are 

summarized in Tables 3.16 and 3.17, respectively. 

 

These characteristics, as mentioned before, are important as they help us understand the full impact 

of estimating the unknown parameters on the performance of the charts. Note, however, that when 

evaluating the unconditional distributions and the unconditional characteristics in Tables 3.16 and 3.17 
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one still has to select values for p  and c ; hence, the results are only applicable to the particular values 

of p  and c  that are selected. 

 

 

Table 3.16: The unconditional probability mass function (u.p.m.f), the unconditional cumulative 
distribution function (u.c.d.f), the unconditional false alarm rate (UFAR), the unconditional 

average run-length (UARL) and the unconditional variance of the run-length (UVARL) of the    
p-chart in Case U 
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Table 3.17: The unconditional probability mass function (u.p.m.f), the unconditional cumulative 

distribution function (u.c.d.f.), the unconditional false alarm rate (UFAR), the unconditional 
average run-length (UARL) and the unconditional variance of the run-length (UVARL) of the    

c-chart in Case U 
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3.2.4.1 Unconditional characteristics of the p-chart 
 

The necessary steps and calculations to obtain a numerical value for a particular unconditional 

characteristic of the Phase II run-length distribution of the p-chart are explained via the examples 

shown in Tables 3.18 and 3.19; these tables are essentially the same as Tables 3.5 and 3.6 that we used 

to illustrate the mechanics for calculating the FAR , the ARL and the SDRL of the conditional run-

length distribution. However, here, we go a step further and calculate the unconditional characteristics 

of the run-length distribution, that is, the unconditional FAR (UFAR), the unconditional ARL (UARL) 

and the unconditional SDRL (USDRL). In addition, note that, although we still assume that 

5.01 == pp  we now assume that 15== mnT  with )15,1(),( =nm  and )5,3(),( =nm  individual Phase 

I reference observations are used to estimate p . 

 

T = 15 with m = 1 and n = 15 
 

First consider Table 3.18 which assumes that )15,1(),( =nm . Recall that to calculate the conditional 

properties we begin in column 1 and sequentially move to the right-hand side of the table up to column 

9. To illustrate the concept once more, assume that we observe nine nonconforming items from the 

entire fifteen reference observations i.e. suppose that 9=U , so that we get a point estimate of 

6.015/9obs ==p  for the unknown true fraction nonconforming 10 << p  in column 2. Thus, using  

(3-26), we find that the estimated control limits are 22.0ˆ =pLCL  and 98.0ˆ =pLCU ; these values are  

listed in columns 3 and 4, respectively. Then, making use of (3-31) we find that the charting constants 

are 3ˆ =a  and 14ˆ =b  (which are listed in columns 5 and 6, respectively) so that (3-36) yields a 

conditional false alarm rate of 0176.0)5.0,9|15,1,5.0(1 ====== pUnmpCFAR  which leads to a 

conditional average run-length and a conditional variance of the run-length (found from (3-37) and  

(3-38)) of  

79.56)5.0,9|15,1,5.0(1 ====== pUnmpCARL  

and 

[ ] 35.3168)5.0,9|15,1,5.0( 2
1 ======= pUnmpCSDRLCVARL ; 

these values are displayed in columns  8 and 9, respectively. 

To calculate the unconditional properties of the p-chart we calculate a weighted average of all the 

values (rows) for each of columns 7, 8 and 9, respectively. The weights are found from the probability 
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distribution of the random variable )5.0,15(~5.0| BinpU =  which is given in column 10 and 

calculated from evaluating 155.0
15

)5.0|Pr( 







===

u
puU  for 15,...,1,0=u . 

Table 3.18: The conditional and unconditional characteristics of the run-length distribution 
for 1====m  and 15====n  when 5.01 ======== pp  

Phase I Phase II : Conditional Properties Phase II : Unconditional Properties 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)=(7)x(10) (12)=(8)x(10) (13)=(8)2x(10) (14)=(9)x(10) 

U obsp  pLCL ˆ  pLCU ˆ  â  b̂  CFAR CARL CVARL Pr(U=u|p) CFAR.Pr(U=u|p) CARL.Pr(U=u|p) CARL2.Pr(U=u|p) CVARL.Pr(U=u|p) 

0 0.00 0.00 0.00 NA NA 1.0000 1.00 0.00 0.0000 0.00003 0.00003 0.0000 0.0000 

1 0.07 -0.13 0.26 NA 3 0.9824 1.02 0.02 0.0005 0.00045 0.00047 0.0005 0.0000 

2 0.13 -0.13 0.40 NA 5 0.8491 1.18 0.21 0.0032 0.00272 0.00377 0.0044 0.0007 

3 0.20 -0.11 0.51 NA 7 0.5000 2.00 2.00 0.0139 0.00694 0.02777 0.0555 0.0278 

4 0.27 -0.08 0.61 NA 9 0.1509 6.63 37.30 0.0417 0.00629 0.27609 1.8299 1.5538 

5 0.33 -0.03 0.70 NA 10 0.0592 16.88 268.12 0.0916 0.00543 1.54714 26.1189 24.5717 

6 0.40 0.02 0.78 0 11 0.0176 56.79 3168.35 0.1527 0.00269 8.67418 492.60905 483.9349 

7 0.47 0.08 0.85 1 12 0.0042 239.18 56969.08 0.1964 0.00082 46.97080 11234.5932 11187.6224 

8 0.53 0.15 0.92 2 13 0.0042 239.18 56969.08 0.1964 0.00082 46.97080 11234.5932 11187.6224 

9 0.60 0.22 0.98 3 14 0.0176 56.79 3168.35 0.1527 0.00269 8.67418 492.6091 483.9349 

10 0.67 0.30 1.03 4 15 0.0592 16.88 268.12 0.0916 0.00543 1.54714 26.1189 24.5717 

11 0.73 0.39 1.08 5 15 0.1509 6.63 37.30 0.0417 0.00629 0.27609 1.8299 1.5538 

12 0.80 0.49 1.11 7 15 0.5000 2.00 2.00 0.0139 0.00694 0.02777 0.0555 0.0278 

13 0.87 0.60 1.13 9 15 0.8491 1.18 0.21 0.0032 0.00272 0.00377 0.0044 0.0007 

14 0.93 0.74 1.13 11 15 0.9824 1.02 0.02 0.0005 0.00045 0.00047 0.0005 0.0000 

15 1.00 1.00 1.00 NA NA 1.0000 1.00 0.00 0.0000 0.00003 0.00003 0.0000 0.0000 

          0.05074 115.00 23510.42 23395.42 

          UFAR UARL USDRL = 183.52 

 

Unconditional false alarm rate  
 

To obtain the unconditional false alarm rate (UFAR), we need the conditional false alarm rate and 

the related probability )5.0|Pr( == puU  for 15,...,1,0=u , which are listed in columns 7 and 10, 

respectively. Multiplying corresponding row entries of column 7 and column 10, we end up with 

column 11, that is, 

)5.0|Pr()),|15,1,5.0(ˆ1()5.0|Pr()5.0,|15,1,5.0(1 ==×−===×=== puUpUpuUpuUpCFAR β  

for 15,...,1,0=u  so that adding up all the entries in column 11 yields the unconditional false alarm rate 

i.e.  

05074.0)5.0|Pr()5.0,|15,1,5.0()5.0|15,1,5.0(
15

0
1 ======== ∑

=u

puUpuUCFARppUFAR  

(see e.g. (3-55) in Table 3.16).  The unconditional FAR value implies that the probability of a signal on 

any new incoming Phase II sample, for any practitioner, while the process is in-control at a fraction 

nonconforming of 0.5, is expected to be 0.05074.
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Unconditional average run-length 
 

Like the unconditional FAR, the unconditional ARL is found by multiplying each of the conditional 

average run-length values listed in column 8 with the corresponding probability )5.0|Pr( == puU  

listed in column 10 and then adding up all the resultant products. 

 

To this end, column 12 lists all the values of 

)5.0|Pr()5.0,|15,1,5.0(1 ==×=== puUpuUpCARL        for        15,...,1,0=u  

so that by totalling the values of column 12 we find the unconditional average run-length to be 

00.115)5.0|(Pr)5.0,15150()5.0|15,1,5.0(
15

0
11 ========= ∑

=u

puUpu|U,,.pCARLppUARL  

(see Table 3.16, (3-56)). 

 

An unconditional ARL of 115.00 means that a practitioner that estimates p  using mnUp /=  , (which 

is based on a Phase I reference sample that consists of a total of 15=T  individual observations from  

1 sample of size 15) can expect that his Phase II p-chart would, on average, signal on the 115th sample 

when the process remains in-control at a fraction nonconforming of 0.5.  

 

 

 

Unconditional variance of the run-length 
 

Using expression (3-52a) to calculate the unconditional variance of the run-length we note that, 

42.23395)( =CVARLEU  (listed in column 14), 42.23510)( 2 =CARLEU  (listed in column 13) so that 

the unconditional standard deviation of the run-length is found to be 

 52.183)00.115(42.2351042.23395)()( 222 =−+=−+= UARLCARLECVARLEUSDRL UU . 

 

The unconditional standard deviation is the same for all the users and measures the overall 

variation in the run-length distribution. 
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Remark 7 
 

 

In particular, note that, for 15=T  where )15 , 1() , ( =nm : 

 

(i) The unconditional average run-length is not equal to the reciprocal of the unconditional false 

alarm rate i.e. 1)( −≠ UFARUARL . The reason is that the unconditional run-length distribution 

is not geometric (see e.g. expression (3-53) in Table 3.16). 

 

This is unlike in Case K where 1)( −= FARARL  (see e.g. expression (3-12) in Table 3.1), 

which makes both the average run-length and false alarm rate popular measures of a control 

chart’s performance. 

 

(ii)  The unconditional average run-length is smaller than the unconditional standard deviation of 

the run-length; this is not the situation in Case K where )1( −=> ARLARLSDRLARL  (see 

e.g. Appendix 3A, section 3.4.2.2) and is due to extra variation introduced to the run-length 

distribution when estimating p .  

 

(iii)  The unconditional FAR  is greater than theFAR  of 0.0010 of Case K whilst the unconditional 

ARL  and the unconditional SDRL  is less than the ARL  of 1024.00 and SDRL of 1023.50 of 

Case K, respectively. 

 

This implies that a Phase II  p-chart in Case U, based on an estimate of p  using  15=T  

observations, will signal more often than the Case K p -chart with a known standard. 
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T = 15 with m = 3 and n = 5 
 

To study the effect of choosing a smaller value of n  relative to m  (i.e. changing the composition 

of the reference sample while keeping the total number of Phase I observation the same) on the 

unconditional characteristics of the run-length distribution, Table 3.19 shows the calculations 

necessary to obtain the unconditional FAR, the unconditional ARL and the unconditional SDRL when 

15=T  with 3=m  and 5=n . 

 

Although the steps in calculating the values in Table 3.19 are similar to that of Table 3.18, we note 

that the finer points where the 0=CFAR , are somewhat lost when we look at the unconditional FAR , 

which is found by averaging the conditional FAR  (given in column (7)) over all fifteen values of U  

and their associated probabilities (as given in column (10)).  For example, from column (11) in Table 

3.19 an unconditional FAR equal to 0.01726 is found, which is more than six times the nominal false 

alarm rate of 0.0027; in spite of this, the unconditional ARL  and the unconditional SDRL  are still 

undefined.  One can therefore deduce that three subgroups each consisting of five in-control 

observations do not work satisfactorily in practice. 

 

Table 3.19: The conditional and unconditional characteristics of the run-length distribution for 
3====m  and 5====n  when 5.01 ======== pp  

 

Phase I Phase II : Conditional Properties Phase II : Unconditional Properties 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)=(7)x(10) (12)=(8)x(10) (13)=(8)2x(10) (14)=(9)x(10) 

U obsp  pLCL ˆ  pLCU ˆ  â  b̂  CFAR CARL CVARL Pr(U=u|p) CFAR.Pr(U=u|p) CARL.Pr(U=u|p) CARL2.Pr(U=u|p) CVARL.Pr(U=u|p)

0 0.00 0 0 NA NA 1.0000 1.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.07 -0.27 0.40 NA 2 0.5000 2.00 2.00 0.0005 0.0002 0.0009 0.0018 0.0009 

2 0.13 -0.32 0.59 NA 2 0.5000 2.00 2.00 0.0032 0.0016 0.0064 0.0128 0.0064 

3 0.20 -0.34 0.74 NA 3 0.1875 5.33 23.11 0.0139 0.0026 0.0741 0.3950 0.3209 

4 0.27 -0.33 0.86 NA 4 0.0313 32.00 992.00 0.0417 0.0013 1.3330 42.6563 41.3232 

5 0.33 -0.30 0.97 NA 4 0.0313 32.00 992.00 0.0916 0.0029 2.9326 93.8438 90.9111 

6 0.40 -0.26 1.06 NA 5 0.0000 ∞  ∞  0.1527 0.0000 ∞  ∞  ∞  
7 0.47 -0.20 1.14 NA 5 0.0000 ∞  ∞  0.1964 0.0000 ∞  ∞  ∞  
8 0.53 -0.14 1.20 NA 5 0.0000 ∞  ∞  0.1964 0.0000 ∞  ∞  ∞  
9 0.60 -0.06 1.26 NA 5 0.0000 ∞  ∞  0.1527 0.0000 ∞  ∞  ∞  
10 0.67 0.03 1.30 0 5 0.0313 32.00 992.00 0.0916 0.0029 2.9326 93.8438 90.9111 

11 0.73 0.14 1.33 0 5 0.0313 32.00 992.00 0.0417 0.0013 1.3330 42.6563 41.3232 

12 0.80 0.26 1.34 1 5 0.1875 5.33 23.11 0.0139 0.0026 0.0741 0.3950 0.3209 

13 0.87 0.41 1.32 2 5 0.5000 2.00 2.00 0.0032 0.0016 0.0064 0.0128 0.0064 

14 0.93 0.60 1.27 2 5 0.5000 2.00 2.00 0.0005 0.0002 0.0009 0.0018 0.0009 

15 1.00 1.00 1.00 NA NA 1.0000 1.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

          0.01726 ∞  ∞  ∞  
          UFAR UARL USDRL = ∞  
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To illustrate and help understand the overall effects of parameter estimation on the properties of 

the p-chart in more detail, some results (similar to those in Tables 3.18 and 3.19) are presented in 

Tables 3.20, 3.21 and 3.22 for 1500 and 1000 750, 500, 300, 250, 200, 100, 75, 50, 30, 25, 20, 10,=T , 

each time considering several combinations of m  and n  values so that mnT = . Thus, we look at what 

happens to the unconditional characteristics (in particular the UFAR and the UARL) when: 

(a) T  increases, and 

(b) when the composition of the Phase I sample changes i.e. varying m  and n . 

 

The resulting unconditional FAR’s and the unconditional in-control ARL’s are listed under UFAR 

and UARL0, respectively. Also shown is the percentage difference of the unconditional FAR and in-

control unconditional ARL of Case U versus 

(a) the FAR and ARL of Case K (see e.g. Tables A3.4 and A3.5 in Appendix 3A), and 

(b) the nominal FAR of 0.0027 and the nominal ARL of 370. 

 

Several interesting facts emerge from an examination of the results in Tables 3.20, 3.21 and 3.22: 
 

 

(i) A lot of reference data is needed before the UFAR is anywhere near the nominal value of 

0.0027 implicitly expected in a typical application of the p-chart.  In addition, the choice of 

the number of subgroups m  and the subgroup size n  are both seen to be important. 

 

For example, the calculations show that unlike in the case with variables data, when studying 

attributes data the subgroup size n  needs to be much larger than the number of subgroups 

m , to ensure that the UFAR is reasonably close to the nominal value and (at the same time) 

ensure that the UARL  is not undefined (see e.g. Table 3.21 where 300=T  with 10=m  and 

30=n ).  

 

(ii)  There is great variation in the UFAR values and it could be hundreds of percents off from its 

nominal value of 0.0027 and/or its Case K value for many combinations of m  and n  that are 

typically used in practice. 

 

For example, when 100=T , we find that  

(a) with 4=m  and 25=n  the UFAR is 191.5% above the nominal value and 92% above 

its Case K value of 0.0041, and  

(b) with 20=m  and 5=n  the UFAR is 95.9% lower than the nominal value but close to 

its Case K value of zero.  
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(iii)  Unless one is careful about the choice of m and n, the unconditional in-control average run-

length of the chart can be undefined particularly when nm >> , which is undesirable in 

practice. This is due to the fact that the conditional probability of a false alarm can be zero 

for certain values of m  and n , since although U  can take on any integer value between 0  

and mn  (including both) with a non-zero probability, the binomial distribution (for the 

number of nonconforming items within each monitored group) assigns zero probability to 

any value greater than n .  

 

(iv) The effect of the discreteness of the binomial distribution is also seen to be substantial on 

both the FAR and ARL values.  For example, unlike in the variables case, with attributes 

data, only a certain number of ARL0 values are attainable depending on the combination of 

values of m , n  and p  the user has at hand.  

 

(v) As mentioned before, unlike in Case K, the unconditional ARL is not equal to the reciprocal 

of the unconditional FAR nor is it smaller than the unconditional SDRL (not listed here); this 

is an  important effect of estimating the unknown parameterp . 

 

(vi) For the ),( nm  combinations where 8≤n  the Case K FAR is zero and the associated Case K 

ARL is undefined  (see e.g. Tables A3.4 and A3.5 in Appendix 3A). 

 

In these cases, it is not practical to calculate the percentage difference and therefore 

indicated by an asterisk. In addition, for those ),(nm  combinations where the UFAR  is zero 

and/or the UARL  is undefined it is impractical to calculate the percentage difference from 

the nominal values and thus indicated by the hash sign. 

 

The aforementioned results suggest that there is a need for a large amount of reference data, with a 

larger amount of data in each subgroup than the number of subgroups i.e. mn >> .  For example, when 

200=T  with 8=m  and 25=n , the UFAR is 0.00447 which is 65.5% above the nominal value, 

whereas when 500=T , both )20,25(),( =nm  and )25,20(),( =nm  lead to an unconditional false 

alarm rate close to the nominal.  This suggests one would need at least 400-500 in-control reference 

data points to achieve any meaningful control of the false alarm rate near the nominal 0.0027. An 

examination of the UARL values also lead to similar conclusions, in the sense that the combination of 

the number of subgroups and the size of the subgroup play an important role in dictating the (stable) 

properties of the p-chart. 
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Table 3.20: The unconditional false alarm rate (UFAR ) and the unconditional in-control average 
run-length (UARL0 ) values for the p-chart for various values of m  and n  such that mnT ====  

when 5.01 ======== pp  
 

 m n UFAR UARL0 
% difference 
from Case K 

FAR1 

% difference 
from Case K 

ARL2 

% difference 
from nominal 
FAR=0.00273 

% difference 
from nominal 

ARL=3704 

1 10 0.06896 168.73 3348.1 203.5 2454.2 -54.4 
2 5 0.03552 ∞  * * 1215.6 # 
5 2 0.00684 ∞  * * 153.2 # 

T = 10 

10 1 0.01172 ∞  * * 334.0 # 
1 20 0.04553 135.62 1651.0 186.1 1586.2 -63.3 
2 10 0.01913 455.94 856.4 12.3 608.5 23.2 
4 5 0.01021 ∞  * * 278.1 # 
5 4 0.00787 ∞  * * 191.4 # 
10 2 0.00065 ∞  * * -76.1 # 

T = 20 

20 1 0.00020 ∞  * * -92.5 # 
1 25 0.04567 171.89 1014.0 42.7 1591.7 -53.5 
5 5 0.00405 ∞  * * 50.1 # T = 25 
25 1 0.00001 ∞  * * -99.6 # 
1 30 0.04287 235.16 2962.0 197.2 1487.7 -36.4 
2 15 0.01765 288.78 1665.1 254.6 553.7 -22.0 
3 10 0.01119 605.83 459.4 -15.5 314.3 63.7 
5 6 0.00724 ∞  * * 168.2 # 
6 5 0.00333 ∞  * * 23.2 # 
10 3 0.00066 ∞  * * -75.7 # 
15 2 0.00008 ∞  * * -97.0 # 

T = 30 

30 1 0 ∞  * * # # 
1 50 0.03686 140.47 1317.6 173.6 1265.1 -62.0 
2 25 0.01838 171.32 348.2 43.2 580.6 -53.7 
5 10 0.00600 553.53 200.1 -7.5 122.3 49.6 
10 5 0.00104 ∞  * * -61.5 # 

T = 50 

25,2 50,1 0 ∞  * * # # 
1 75 0.04094 105.69 1606.0 287.1 1416.4 -71.4 
3 25 0.01022 254.50 149.2 -3.6 278.5 -31.2 
5 15 0.00612 492.82 512.3 107.8 126.8 33.2 
15 5 0.00033 ∞  * * -87.7 # 

T = 75 

25,3 75,1 0 ∞  * * # # 
1 100 0.04006 108.45 1044.5 162.1 1383.6 -70.7 
2 50 0.01475 234.72 467.3 63.7 446.3 -36.6 
4 25 0.00787 246.68 92.0 -0.6 191.5 -33.3 
5 20 0.00577 348.72 122.0 11.3 113.7 -5.8 
10 10 0.00332 647.93 65.9 -21.0 22.9 75.1 
20 5 0.00011 ∞  * * -95.9 # 

25,4 50,2 

T = 100 

100,1  
0 ∞  * * # # 

1 )1100( deviation  % K Case −= UFAR/FAR ; 2 )1100( deviation  % K Case0 −= /ARLUARL ;  
3 )10027.0100( deviation  % −= UFAR/ ; 4 )1370100( deviation  % 0 −= /UARL  
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Table 3.21: The unconditional false alarm rate (UFAR) and the unconditional in-control average 
run-length (UARL0) values for the p-chart for various values of m  and n  such that mnT ====  

when 5.01 ======== pp  
 

 m n UFAR UARL0 
% difference 
from Case K 

FAR1 

% difference 
from Case K 

ARL2 

% difference 
from nominal 
FAR=0.00273 

% difference 
from nominal 

ARL=3704 

1 200 0.03328 162.34 1347.0 170.2 1132.6 -56.1 
2 100 0.01587 164.72 353.3 72.6 487.6 -55.5 
4 50 0.00708 259.93 172.2 47.8 162.1 -29.7 
5 40 0.00593 275.48 169.4 63.4 119.5 -25.5 
8 25 0.00447 312.51 9.0 -21.5 65.5 -15.5 
10 20 0.00374 409.26 43.8 -5.2 38.5 10.6 
20 10 0.00207 683.52 3.7 -25.1 -23.2 84.7 
25 8 0.00171 ∞  * * -36.7 # 

T = 200 

40,5 
100,2 

50,4 
200,1 

0 ∞  * * # # 

1 250 0.03546 131.33 1122.7 164.5 1213.3 -64.5 
2 125 0.01440 187.77 554.7 139.2 433.4 -49.3 
5 50 0.00616 285.03 137.0 34.8 128.3 -23.0 
10 25 0.00392 330.65 -4.4 -25.8 45.1 -10.6 
25 10 0.00181 697.63 -9.4 46.8 -32.9 88.5 

125,2 

T = 250 

50,5 
250,1  

0 ∞  * * # # 

1 300 0.03725 120.40 1064.0 162.1 1279.6 -67.5 
2 150 0.01488 177.10 520.1 134.7 451.2 -52.1 
3 100 0.01006 197.37 187.3 44.0 272.5 -46.7 
4 75 0.00765 223.40 218.9 83.1 183.5 -39.6 
5 60 0.00602 282.98 122.8 32.3 122.8 -23.5 
6 50 0.00532 276.87 104.7 38.8 97.2 -25.2 
10 30 0.00387 369.27 176.1 89.3 43.2 -0.2 
12 25 0.00362 343.82 -11.7 -28.7 34.0 -7.1 
15 20 0.00303 444.15 16.4 -12.6 12.1 20.0 
20 15 0.00245 670.29 144.9 52.8 -9.3 81.2 
25 12 0.00228 988.67 355.3 107.1 -15.7 167.2 
30 10 0.00175 693.34 -12.5 -26.2 -35.2 87.4 
50 6 0.00001 ∞  * * -99.6 # 

75,4 
150,2 

T = 300 

60,5 
100,3 
300,1  

0 ∞  * * # # 

1 500 0.03406 139.83 1161.6 165.2 1161.6 -62.2 
2 250 0.01416 187.50 388.3 85.3 424.4 -49.3 
4 125 0.00735 245.93 234.2 82.6 172.3 -33.5 
5 100 0.00638 236.94 82.3 20.0 136.3 -36.0 
10 50 0.00398 328.92 53.0 16.8 47.3 -11.1 
20 25 0.00296 373.74 -27.8 -34.4 9.7 1.0 
25 20 0.00258 470.72 -0.9 -17.6 -4.6 27.2 
50 10 0.00175 626.47 -12.5 -18.3 -35.2 69.3 

100,5 125,4 

T = 500 

250,2 500,1 
0 ∞  * * # # 

1 )1100( deviation  % K Case −= UFAR/FAR ; 2 )1100( deviation  % K Case0 −= /ARLUARL ;  
3 )10027.0100( deviation  % −= UFAR/ ; 4 )1370100( deviation  % 0 −= /UARL
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Table 3.22: The unconditional false alarm rate (UFAR) and the unconditional in-control average 
run-length (UARL0) values for the p-chart for various values of m  and n  such that mnT ====  

when 5.01 ======== pp  
 

 m n UFAR UARL0 
% difference 
from Case K 

FAR1 

% difference 
from Case K 

ARL2 

% difference 
from nominal 
FAR=0.00273 

% difference 
from nominal 

ARL=3704 

1 750 0.03373 154.68 1305.5 167.4 1149.3 -58.2 
2 375 0.01429 195.58 429.2 89.7 429.2 -47.1 
3 250 0.00927 220.66 219.5 57.4 243.2 -40.4 
5 150 0.00628 239.35 161.6 73.7 132.6 -35.3 
6 125 0.00543 259.56 147.0 73.0 101.3 -29.8 
10 75 0.00417 291.37 73.6 40.4 54.3 -21.3 
15 50 0.00339 351.05 30.3 9.5 25.5 -5.1 
25 30 0.00282 426.66 101.5 63.8 4.5 15.3 
30 25 0.00270 388.13 -34.3 -36.8 -0.2 4.9 
50 15 0.00180 822.08 79.8 24.6 -33.4 122.2 
75 10 0.00180 590.93 -9.8 -13.4 -33.2 59.7 

125,6 150,5     
250,3 375,2 * * # # 

T = 750 

750,1  
0 ∞  

    
1 1000 0.03362 142.52 1193.2 165.2 1145.3 -61.5 
2 500 0.01434 193.35 431.0 91.8 431.0 -47.7 
4 250 0.00746 221.21 157.4 57.0 176.5 -40.2 
5 200 0.00613 253.58 166.6 73.0 127.1 -31.5 
8 125 0.00456 286.10 107.5 57.0 69.1 -22.7 
10 100 0.00422 285.01 20.6 -0.3 56.3 -23.0 
20 50 0.00312 364.70 20.0 5.4 15.6 -1.4 
25 40 0.00290 374.32 31.7 20.3 7.3 1.2 
40 25 0.00260 393.72 -36.7 -37.7 -3.8 6.4 
50 20 0.00232 475.03 -10.7 -18.3 -14.0 28.4 
100 10 0.00186 559.96 -6.9 -8.6 -31.0 51.3 
125 8 0.00024 ∞  * * -91.0 # 

200,5 250,4 

T = 1000 

500,2 1000,1 
0 ∞  * * # # 

1 1500 0.03315 149.71 1226.1 166.3 1127.9 -59.5 
2 750 0.01401 189.14 483.9 118.7 419.0 -48.9 
3 500 0.00943 205.42 249.4 80.5 249.4 -44.5 
4 375 0.00716 233.25 165.1 59.0 165.1 -37.0 
5 300 0.00629 235.43 96.4 34.0 132.8 -36.4 
6 250 0.00538 258.84 85.4 34.2 99.1 -30.0 
10 150 0.00418 287.19 74.3 44.8 55.0 -22.4 
12 125 0.00382 307.31 73.8 46.2 41.6 -16.9 
15 100 0.00361 308.79 3.3 -7.9 33.9 -16.5 
20 75 0.00327 331.32 36.3 23.5 21.1 -10.5 
25 60 0.00303 360.64 12.4 3.8 12.4 -2.5 
30 50 0.00287 380.90 10.5 0.9 6.4 2.9 
50 30 0.00253 466.77 81.0 49.7 -6.2 26.2 
60 25 0.00254 397.09 -38.1 -38.2 -6.0 7.3 
75 20 0.00235 453.58 -9.8 -14.4 -13.1 22.6 
100 15 0.00135 933.58 34.6 9.7 -50.2 152.3 
125 12 0.00109 1686.74 118.2 21.4 -59.6 355.9 
150 10 0.00191 533.16 -4.4 -4.0 -29.2 44.1 

250,6 300,5     
375,4 500,3 * * # # 

T = 1500 

750,2 1500,1 
0 ∞  

    
1 )1100( deviation  % K Case −= UFAR/FAR ; 2 )1100( deviation  % K Case0 −= /ARLUARL ;  
3 )10027.0100( deviation  % −= UFAR/ ; 4 )1370100( deviation  % 0 −= /UARL
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3.2.4.2 Unconditional characteristics of the c-chart 

 

The unconditional characteristics of the c-chart can be calculated in the same manner as that of the 

p-chart. To this end, the necessary steps are shown in Table 3.23 where we assume that 11 == cc  and 

5=m  individual and independent Phase I inspection units are used to estimate c . 

 

First, we calculate the conditional characteristics in columns 7, 8 and 9 (based on the observed 

value u  or obsc  and the estimated control limits and resulting chart constants listed in columns 1 to 6) 

and then we calculate the unconditional properties of the run-length distribution (in particular, the 

UFAR, the UARL and the USDRL using expressions (3-59), (3-61) and (3-52)) by means of the results 

of columns 11 to 14. Note, however, that although theoretically ,...}2,1,0{∈V , Table 3.23 only shows 

the conditional properties for  }20,...,2,1,0{∈V  in order to save space. 

 
 
Table 3.23: The conditional and unconditional characteristics of the run-length distribution for 

5====m  when 1====c  
 

Phase I Phase II : Conditional Properties Phase II : Unconditional Properties 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)=(7)x(10) (12)=(8)x(10) (13)=(8)2x(10) (14)=(9)x(10) 

v obsc
cLCL ˆ  cLCU ˆ  d̂  f̂  CFAR CARL CVARL Pr(V=v|c) CFAR.Pr(V=v|c) CARL.Pr(V=v|c) CARL2.Pr(V=v|c) CVARL.Pr(V=v|c) 

0 0.0 0.00 0.00 0 0 1.0000 1.0000 0.0000 0.00674 0.00674 0.00674 0.0067 0.0000 

1 0.2 -1.14 1.54 0 1 0.6321 1.5820 0.9207 0.03369 0.02130 0.05330 0.0843 0.0310 

2 0.4 -1.50 2.30 0 2 0.4482 2.2312 2.7472 0.08422 0.03775 0.18792 0.4193 0.2314 

3 0.6 -1.72 2.92 0 2 0.4482 2.2312 2.7472 0.14037 0.06291 0.31321 0.6988 0.3856 

4 0.8 -1.88 3.48 0 3 0.3869 2.5849 4.0967 0.17547 0.06788 0.45356 1.1724 0.7188 

5 1.0 -2.00 4.00 0 3 0.3869 2.5849 4.0967 0.17547 0.06788 0.45356 1.1724 0.7188 

6 1.2 -2.09 4.49 0 4 0.3715 2.6915 4.5527 0.14622 0.05433 0.39356 1.0593 0.6657 

7 1.4 -2.15 4.95 0 4 0.3715 2.6915 4.5527 0.10444 0.03881 0.28111 0.7566 0.4755 

8 1.6 -2.19 5.39 0 5 0.3685 2.7139 4.6513 0.06528 0.02405 0.17716 0.4808 0.3036 

9 1.8 -2.22 5.82 0 5 0.3685 2.7139 4.6513 0.03627 0.01336 0.09842 0.2671 0.1687 

10 2.0 -2.24 6.24 0 6 0.3680 2.7177 4.6680 0.01813 0.00667 0.04928 0.1339 0.0846 

11 2.2 -2.25 6.65 0 6 0.3680 2.7177 4.6680 0.00824 0.00303 0.02240 0.0609 0.0385 

12 2.4 -2.25 7.05 0 7 0.3679 2.7182 4.6704 0.00343 0.00126 0.00933 0.0254 0.0160 

13 2.6 -2.24 7.44 0 7 0.3679 2.7182 4.6704 0.00132 0.00049 0.00359 0.0098 0.0062 

14 2.8 -2.22 7.82 0 7 0.3679 2.7182 4.6704 0.00047 0.00017 0.00128 0.0035 0.0022 

15 3.0 -2.20 8.20 0 8 0.3679 2.7183 4.6707 0.00016 0.00006 0.00043 0.0012 0.0007 

16 3.2 -2.17 8.57 0 8 0.3679 2.7183 4.6707 0.00005 0.00002 0.00013 0.0004 0.0002 

17 3.4 -2.13 8.93 0 8 0.3679 2.7183 4.6707 0.00001 0.00001 0.00004 0.0001 0.0001 

18 3.6 -2.09 9.29 0 9 0.3679 2.7183 4.6708 0.00000 0.00000 0.00001 0.0000 0.0000 

19 3.8 -2.05 9.65 0 9 0.3679 2.7183 4.6708 0.00000 0.00000 0.00000 0.0000 0.0000 

20 4.0 -2.00 10.00 0 9 0.3679 2.7183 4.6708 0.00000 0.00000 0.00000 0.0000 0.0000 

M  M  M  M  M  M  M  M  M  M  M  M  M  M  
          0.40672 2.51 6.35 3.85 

          UFAR UARL USDRL = 1.98 
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To obtain the unconditional false alarm rate, for instance, we need the conditional false alarm rate 

and the related probability )1|Pr( == cvV  for ,...2,1,0=v  listed in columns 7 and 10, respectively. 

Multiplying the corresponding row entries of columns 7 and 10, we end up with column 11, that is, 

)1|Pr())1,|5  ,  1(ˆ1()1|Pr()1,|5 , 1( 11 ==×====−===×==== cvVcvVmccvVcvVmcCFAR β
 

 for     ,...2,1,0=v  

so that summing the entries in column 11 yields the unconditional false alarm rate i.e. 

40672.0)1|Pr()1,|5,1()1|5,1(
0

11 =========== ∑
∞

=v

cvVcvVmcCFARcmcUFAR  

(see e.g. (3-61) in Table 3.17). Similarly, we find an unconditional ARL and unconditional SDRL of 

2.51 and 1.98, respectively. Note that, in the calculation of the unconditional characteristics in Table 

3.23 the summation was done until 0)1|( ≈== cvVP . 

 

Compared to the Case K FAR, ARL and SDRL of 0.3869, 2.58 and 2.02, respectively (see e.g. 

Table A3.12 in Appendix 3A) we see that the unconditional values are not far off. However, the 

unconditional values do not measure up to the nominal FAR, ARL and SDRL values of 0.0027, 370 and 

369 typically expected from a 3-sigma control chart; the reason for this big discrepancy is twofold: 

 

(i) the normal approximation to the )(cPoi , for small c , is inaccurate so that the charting 

formula (mean ±  3 standard deviations) may be inaccurate, and 

 

(ii)  due to the discrete nature of the Poisson distribution only certain (conditional) FAR, ARL 

and SDRL values can be attained. 

 

Note that, from Table 3.23 it is clear that, unlike in case of the p-chart, none of the CFAR values of 

the c-chart are zero and thus none of the moments, such as the UFAR and the USDRL, are undefined. 

 

To illustrate the effect of parameter estimation on the overall performance of the c-chart, Table 

3.24 displays the UFAR, the UARL and the USDRL for various values of m  when 

30 and 20 10, 8, 6, 4, 2, 1,1 == cc . Also shown are the FAR, the ARL and the SDRL for Case K and the 

nominal values – given in the last two rows of the table.  
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We observe that, in general: 

 

 

(i) As the size of the Phase I reference sample m  becomes larger, the unconditional properties 

gets closer to the Case K values, regardless the value of c . 

 

For instance, when 81 == cc  and 20=m , the 0054.0=UFAR , the 32.315=UARL  and the 

24.468=USDRL  but, when the Phase I sample increase to 500=m  inspection units, the 

0041.0=UFAR , the 81.246=UARL  and the 68.247=USDRL , which is close to the FAR, 

the ARL and the SDRL of Case K i.e. 0.0041, 246.70 and 246.20, respectively; 
 

 

(ii)  Unless c  and m  are both large the UFAR, the UARL and the USDRL are nowhere near the 

nominally expected values of 0.0027, 370.0 and 369.9. 

 

For instance, when 6=c  and 25=m , the 0079.0=UFAR , the 49.156=UARL  and the 

41.181=USDRL  but, when 20=c  and 200=m  the 0032.0=UFAR , the 40.333=UARL  

and the 01.352=USDRL  gets closer but still not equal to the nominal values. Although this 

could be a reason for concern for the practitioner, the nominal values are not entirely 

appropriate given the fact that the Poisson distribution is discrete ; 

 

 

(iii)  The unconditional ARL is not equal to the reciprocal of the unconditional FAR nor is it 

smaller than the unconditional SDRL (for all combinations of m  and c ). 

 

This is unlike the situation of the c-chart in Case K and is a result of estimating the unknown 

parameter c ; this was also observed in the case of the p -chart with an unknown standard. 
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Table 3.24: The unconditional false alarm rate (UFAR), the unconditional in-control average 

run-length (UARL0) and the unconditional in-control standard deviation of the run-length 
(USDRL0) values for the c-chart for various values of m  when 30 and 20 10, 8, 6, 4, 2, 1,1 ======== cc 1 

 
 c 

m 1 2 4 6 8 10 20 30 
0.4067 0.1603 0.0325 0.0136 0.0104 0.0095 0.0078 0.0072 
2.51 6.54 38.49 166.91 436.17 399.00 303.41 269.39 5 
1.98 6.22 42.31 226.85 855.24 664.34 420.94 345.01 

0.3901 0.1485 0.0272 0.0097 0.0069 0.0062 0.0052 0.0048 
2.58 6.82 40.34 162.21 370.41 378.91 330.91 307.82 10 
2.03 6.37 42.30 205.76 653.10 577.22 427.50 369.61 

0.3845 0.1463 0.0259 0.0087 0.0060 0.0053 0.0045 0.0042 
2.61 6.88 41.04 159.53 326.93 356.59 333.40 321.49 15 
2.05 6.40 42.33 194.19 525.47 520.67 416.14 376.15 

0.3824 0.1448 0.0252 0.0082 0.0054 0.0048 0.0041 0.0038 
2.62 6.93 41.48 157.90 315.32 353.51 338.79 328.11 20 
2.06 6.44 42.35 187.07 468.24 489.44 412.20 377.23 

0.3813 0.1446 0.0248 0.0079 0.0052 0.0045 0.0039 0.0037 
2.63 6.94 41.74 156.49 298.67 343.85 336.93 330.19 25 
2.07 6.44 42.37 181.41 425.57 460.87 403.04 373.39 

0.3807 0.1439 0.0247 0.0077 0.0050 0.0044 0.0038 0.0036 
2.63 6.96 41.78 155.76 290.10 333.52 334.53 332.60 30 
2.07 6.46 42.32 177.97 395.40 438.50 392.87 372.15 

0.3799 0.1434 0.0241 0.0073 0.0047 0.0040 0.0035 0.0033 
2.63 6.99 42.22 154.09 276.24 322.48 335.16 336.25 50 
2.08 6.48 42.42 169.72 344.81 401.00 379.88 366.80 

0.3796 0.1424 0.0239 0.0070 0.0044 0.0038 0.0033 0.0032 
2.64 7.03 42.40 154.12 261.79 308.18 334.20 339.49 100 
2.08 6.52 42.44 162.69 300.06 360.11 363.95 360.06 

0.3795 0.1413 0.0239 0.0066 0.0042 0.0037 0.0032 0.0031 
2.64 7.08 42.45 156.83 252.11 295.09 333.40 341.43 200 
2.08 6.57 42.48 160.31 268.28 320.34 352.01 355.01 

0.3794 0.1407 0.0238 0.0064 0.0041 0.0036 0.0031 0.0030 
2.64 7.11 42.47 159.17 248.61 289.82 332.90 342.34 300 
2.08 6.59 42.49 160.92 255.61 302.17 344.89 352.47 

0.3794 0.1402 0.0238 0.0062 0.0041 0.0035 0.0031 0.0030 
2.64 7.13 42.48 161.91 246.81 285.81 331.23 339.38 500 
2.08 6.61 42.51 162.24 247.68 287.77 334.07 342.30 

0.3869 0.1399 0.0264 0.0061 0.0041 0.0035 0.0029 0.0029 
2.58 7.15 37.81 163.74 246.70 285.74 339.72 349.94 Case K 
2.02 6.63 37.31 163.24 246.20 285.23 339.22 349.44 

Nominal 0.0027 ,  370.0 ,  369.9 
1The three rows of each cell shows the UFAR, the UARL0 and the USDRL0, respectively 
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Example 1 continued: A Phase II p-chart  
 

 

Phase I and Phase II (conditional) 
 

Recall that the final Phase I data consisted of 28=m  samples each of size 50=n  (see pages 160-

161). Based on these data, it was found that 215.01400/301 ==p  so that the estimated Phase II 

control limits were set at 3893.0ˆ =pLCU  and 0407.0ˆ =pLCL . Given the particular Phase I data, it 

was shown that the resultant Phase II p -chart has a conditional false alarm rate of 002218.0=CFAR  

and a conditional average run-length of 89.4500 =CARL . 

 

To get an idea of the general performance of a Phase II p -chart based on 28=m  samples each of 

size 50=n  (even prior to collecting the data) one has to look at the unconditional properties of the 

Phase II p -chart; the unconditional properties takes into account all the possible realizations of 

}1,
1

,...,
2

,
1

,0{
mn

mn

mnmnmn

U
p

−∈= . 

 

 

Phase II (unconditional) 
 

Using (3-56) and averaging over all 1401150281 =+×=+mn  possible values and the 

corresponding binomial probabilities of U , the in-control unconditional ARL is found to be  

51.401)8.0(2.0
1400

))2.0,|50,28,2.0(ˆ1()2.0|50,28,2.0(
1400

0

14001
10 =








−===== ∑

=

−−

u

uu

u
upnmpUARL β

 

which is about 11% smaller than the in-control conditional ARL for the given data, 

89.450)2.0,301|50,28,2.0(10 ==== pUpCARL . 

 

Perhaps more importantly, it is seen that when p  is estimated from Phase I data, the in-control 

unconditional ARL is 8.5% higher than the corresponding in-control ARL of 370 as obtained in the 

standard known case.  Thus, when p  is estimated, the in-control ARL can be much larger than the 

nominal value.  
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Example 2 continued: A Phase II c-chart  
 

 

Phase I and Phase II (conditional) 
 

The final Phase I data consisted of 24=m  inspection units each of 100 individual items of 

product; this resulted in a point estimate 67.1924/472 ==c  so that the estimated Phase II control 

limits were set at 97.32ˆ =cLCU  and 36.6ˆ =cLCL  (see pages 162 – 163). Given the particular Phase I 

data, it was shown that the resultant Phase II c -chart has a conditional false alarm rate of 

004983.0=CFAR ; it follows that the  conditional average run-length is 

68.200004983.0/10 ==CARL . 

 

Like in the case of the Phase II p -chart, one can get an idea of the general performance of a Phase 

II c -chart based on 24=m  inspection units each of 100 individual items of product (even prior to 

collecting the data) by looking at the unconditional properties of the Phase II c -chart; the 

unconditional properties take into account all the possible realizations of ,...}
2

,
1

,0{
mmm

V
c ∈= . 

 

 

Phase II (unconditional) 
 

Using (3-60) and (3-61), and averaging over all the possible values and the corresponding 

probabilities of )480(~20| == mcPoicV , the unconditional false alarm rate (UFAR ) is found to be 

0.0039 and the in-control unconditional average run length ( 0UARL ) is found to be 335.30. 

The UFAR  is 20% less than theCFAR  of 0.004983 and the 0UARL  is 67% larger than the CARL  

of 200.68; both these conditional properties are based on an observed value of V  equal to 472. 

 

Note that, with regards to the unconditional chart properties, the in-control unconditional average 

run-length ( 0UARL ) is 1.3% less than the in-control average run-length of 339.72 one would have 

obtained in Case K for 200 =c  and the unconditional false alarm rate UFAR  is 34.5% larger than the 

FAR  of 0.0029 obtainable in Case K (see e.g. Table A3.12 in Appendix 3A); we can thus expect more 

false alarms (given the Phase I data at hand) than what would be the case if it is known that  20=c .  
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3.3 Concluding remarks: Summary and recommendations 
 

 

The false alarm rate (FAR ) and the in-control average run length ( 0ARL ) of the p-chart and the c-

chart are substantially affected by the estimation of the unknown true fraction of nonconforming items 

p  and/or the unknown true average number of nonconformities in an inspection unit c . Calculations 

show that when p  and c  are estimated: 

 

(i) The unconditional FAR , unlike in Case K, is not equal (not even close) to the reciprocal of 

the unconditional 0ARL and vice versa; 

 

(ii)  The unconditional 0ARL  is, unlike in Case K, smaller than the unconditional 0SDRL ; 

 

(iii)  Unless m and/or n are rather large, the unconditional false alarm rates and the in-control 

unconditional average run-lengths can be substantially different from the nominal values of 

0.0027 and 370; 

 

(iv) Even if more Phase I data is available, neither the  0UARL  nor the UFAR will necessarily be 

exactly equal to the commonly used nominally expected values (primarily due to the 

discreteness of the underlying distributions);  

 

(v) The typical recommendation of using between 10=m  and 25 subgroups of size 5 appears to 

be inadequate and can be very problematic with attributes charts with regard to a true FAR  

or true 0ARL ; and 

 

(vi) Since one deals with a discrete (binomial or Poisson) distribution in the case of attributes 

charts, it is rather unlikely to be able to guarantee an exact false alarm rate as is typical for a 

variables control chart. 

 

 For the p-chart, in particular, even with a large amount of reference data, if m is (much) larger than 

n (as is the case in a typical variables charting situation) the false alarm rate can be too small and the 

in-control average run-length can be undefined, which are, of course, undesirable.  In practice, at least 

200≥T  reference data points are recommended, in 10 subgroups of 20 observations each; a general 

rule is 5.0/ ≥mn . To this end, Table 3.20, 3.21 and 3.22 can provide valuable guidance in the 
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process of choosing m and n. Similarly, for the c-chart, Table 3.24 can be used as a guide to select an 

appropriate number m  of Phase I inspection units. 

 

If the necessary amount of reference data is not available in a given situation, the user can calculate 

the exact unconditional false alarm rates and the exact in-control unconditional ARL values using the 

formulas given in this chapter for the specific m and/or n values at hand and get an idea of the 

ramifications of estimating p  and/or c .  

 

Another alternative would be to adjust the control limits by finding the value of the charting 

constant 0k >  (which is equal to 3 in routine applications) so that  the unconditional FAR  equals a 

specified *FAR or the unconditional ARL  equals a particular *
0ARL , say.  This would mean either 

expanding or contracting the control limits and entails, for example, in case of the Phase II p-chart, 

solving for k  from 
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where m , n  and *1 ppp ==  for some 10 * << p  and  
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(see e.g. expression (3-30) where 3=k ).  

 

However, note that, in solving the above equation the user has to, as in the preceding examples, 

specify a value of p  - the same parameter that is unknown! This implies that the practitioner has to 

know the process that is monitored quite well because the charting constant(s) found from solving the 

above equation would only be appropriate for the particular p  that is selected.  

 

To overcome the predicament of choosing a specific value for p (denoted *p ) one can, for 

instance, make use of the idea of mixture distributions and assume a particular distribution for p , say 

);( θpf  for 10 << p   where θ  are the (known or specified) parameters of the distribution (which 
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handles our uncertainty about the parameter p  by treating it as a random variable rather than a fixed 

value) and then solve for k  from 
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Again, the exact equations given in this chapter can be helpful in this regard, but the practitioner 

still needs to select and substantiate, from a practical point of view, a distribution );( θpf  and provide 

the parameter(s) for this distribution. 

 

If the idea of mixture distributions is to be followed, we suggest that );( θpf  and its parameters be 

chosen in such a way, that best conveys the practitioner’s believe about the unknown true fraction 

nonconforming. For example, because we know that 10<< p , one possibility is to use the type I (or 

standard) Beta distribution with parameters ),(βα , which has the interval (0,1) as support, as a prior 

distribution. But which beta distribution should we use? If it is believed that p  is in the neighborhood 

of 0.25 (say) we may, for instance, choose a )3,1(Beta == βα  distribution which has a mean of 0.25 

and a variance of 0.0375. Other options are certainly also available. 

 

A third approach that one can use to obtain the appropriate Phase II control limits is a Bayesian 

procedure. As an example, we briefly outline the Bayes approach for the Phase II p-chart. According 

to Bayes’ theorem the posterior distribution, g ,  is proportional to the likelihood function, L ,  times 

the prior distribution, f .  

For the p-chart the likelihood is 
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where the Phase I data are the observed values of iX , mi ,...,2,1=  and denoted by ix , mi ,...,2,1= . 

The Jeffreys’ prior (which is the best noninformative prior for the unknown parameterp ) is given by 
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From the likelihood and the prior it follows that the posterior distribution of p  is a beta distribution 

i.e.  
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If the process remains in-control during Phase II monitoring, the control limits for a Phase II 

sample of n  independent Bernoulli trials (units), which results in iY , ,...2,1 ++= mmi  successes 

(nonconforming units), can be derived using a predictive distribution, h . The conditional distribution 

of iY , ,...2,1 ++= mmi , given the sample size n  and p ,  is binomial ),( pn  and the unconditional 

predictive distribution of iY  is a beta-binomial distribution i.e. 
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where ,...,n,, y 210=  and  ,...2,1 ++= mmi . 

 

The Phase II control limits, via a Bayes approach, are then derived (using the unconditional 

predictive distribution) from the resulting rejection region of size α , that is, )(αR , which is defined as 

∑=
)(

data) I Phase |(
α

α
R

yh . 

 

 

Because there is currently no evidence to suggest that the one approach (i.e. either assuming that 

p  is deterministic and unknown and therefore specifying a value for p  or using a Bayes approach) is 

superior and none of the approaches is without any obstacles, more research is needed to find suitable 

charting constants for the Phase II attributes charts. 
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3.4 Appendix 3A: Characteristics of the p-chart and the c-chart in 

Case K 

 

 

The characteristics of the p-chart and the c-chart in Case K are important because it 

 

(i) helps us understand the operation and the performance of the charts in the simplest of cases 

(when the parameters are known), and 

 

(ii)  provide us with benchmark values that we can use to determine the effect of estimating the 

parameters on the operation and the performance of the charts in Case U (when the 

parameters are unknown). 

 

We compute and examine the characteristics of the p-chart and that of the c-chart in two different 

sections. For each chart we give an example that shows 

 

(i) the calculations that are needed to implement the chart, and 

 

(ii)  how to determine the chart’s characteristics via its run-length distribution. 

 

Each example is followed by a general discussion of the results which were obtained from an 

analysis of the chart’s in-control (IC) and out-of-control (OOC) characteristics listed in Tables 3.1 and 

3.2, respectively. 

 

To the author’s knowledge none of the standard textbooks and/or articles currently available in the 

literature give such a detailed elucidation of the p-chart’s or the c-chart’s characteristics as is done 

here. 
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3.4.1 The p-chart in Case K: An example 
 
 

We first look at an example of a p-chart in Case K in order to illustrate the typical application of 

the chart. In other words, we investigate the properties of the chart for a specific combination of 0p  

(the specified value of p ) and n  while varying 10 << p  (the true fraction nonconforming). In later 

sections the performance of the chart is then further studied by considering multiple (various) 

combinations of 0p  and n . 

 

 

Example A1: A Case K p-chart 
 

Assume that the sample size 50=n  and suppose that the true fraction nonconforming p  is known 

or specified to be 2.00 =p . The upper control limit, the centerline and the lower control limit are then 

set at 

     3697.050/)8.0(2.032.0 =+=pUCL       20.0=pCL        0303.050/)8.0(2.032.0 =−=pLCL . 

 

Twelve iX  values (or counts) that were simulated from a )2.0,50(Bin  distribution are shown in 

Table A3.1. Without any loss of generality these counts may be regarded as the number of 

nonconforming items in twelve independent random samples each of size 50 from a process with a true 

fraction nonconforming of 0.2.  The corresponding sample fraction nonconforming 50/ii Xp =  for 

each sample is also shown; these are the charting statistics of our p-chart. 

 

The p-chart is shown in Figure A3.1. The chart displays the two control limits (UCL and LCL ), 

the centerline (CL ), and the sample fraction nonconforming ip  from each sample. Because none of 

the points plot outside the limits we continue to monitor the process. Once a point does plot outside the 

limits the charting procedure will stop and a search for assignable causes (i.e. additional and/or 

unwanted sources of variation) will begin.  

 

Table A3.1: Data for the p-chart in Case K 

Sample number / Time:  i  1 2 3 4 5 6 7 8 9 10 11 12 

Counts:  iX  12 8 6 14 8 12 9 7 13 16 11 8 

Sample fraction 
nonconforming:  50/ii Xp =  0.24 0.16 0.12 0.28 0.16 0.24 0.18 0.14 0.26 0.32 0.22 0.16 
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Figure A3.1: A p-chart in Case K 
 

 

Given the operation of the chart it is natural to ask ‘How long before the chart signals?’ or ‘What is 

the probability for a point to plot between or outside the control limits?’ etc. These performance based 

questions are relevant while the process remains in-control and even more so when a shift occurs. 

 

To answer these questions we study the run-length distribution of the chart. The run-length 

distribution, as mentioned earlier in section  3.1.1, is characterized entirely by the probability of a no-

signal ),,( 0 nppβ  or, equivalently, the probability of a signal ),,(1 0 nppβ−  (see e.g. Table 3.1). 

 

Our starting point when analyzing the performance of the chart is therefore to find the probability 

of a no-signal. Once we have the probability of a no-signal both the in-control and the out-of-control 

properties of the p-chart in Case K are easily found. 
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Performance of the p-chart 
 

For our particular combination of the parameters i.e. 50=n  and 2.00 =p , the control limits are set 

at 3697.0=pUCL  and 0303.0=pLCL , so that we  proceed as follows to find the probability of a no-

signal: 

 

First, we calculate the two charting constants a  and b  defined in (3-5), which gives 

1]52.1[)]0303.0)(50[(][ ==== pnLCLa      and     18}50],49.18min{[}],min{[ === nnUCLb p . 

 

Using (3-4) shows that the probability of a no-signal is 

)31,18()48,1()50,2.0,( 0 pp IIpp −==β       for      10 << p  

so that substituting values for p  allow us to study the in-control (when 2.0=p ) and the out-of-

control (when 2.0≠p ) properties and performance of the chart. 

 

 

In-control properties 
 

While the true fraction nonconforming p  remains constant and equal to 2.00 =p  we have the in-

control scenario. The probability of a no-signal is then 

9973.0)31,18()48,1()50,2.0,2.0( 2.02.0 =−== IIpβ  

and the probability of a signal, or the false alarm rate, is 

0027.0)50,2.0,2.0(1)50,2.0( =−= βFAR . 

The in-control run-length distribution is therefore geometric with probability of success 0.0027, which 

we write as )0027.0(~0 GeoN . 

Expressions (3-15) and (3-16) in Table 3.1 show that the in-control ARL  and the in-control SDRL  

can be calculated as 

4.370)0027.0/(10 ==ARL        and       9.369)0027.0/(9973.00 ==SDRL  

respectively. 

An in-control ARL of 370.4 means that while the process remains in-control we could expect the 

chart to issue a false alarm or an erroneous signal (on average) every 370th sample. However, with the 

large standard deviation of 369.9 we could expect a phase (or cycle) during which the chart signals 

frequently i.e. many false signals occurring one after the other within a relatively short period of time, 

which is then followed by a phase where the chart hardly ever signals.  
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Out-of-control properties 
 

When the true fraction nonconforming changes it implies that p  is no longer equal to its specified 

value of 2.00 =p  and then we deal with the out-of-control case. Since p  can increase or decrease we 

consider both situations. 

 

 

Increase in p : Upward shift 
 

Suppose that p  increases by 12.5% from 0.2 to 225.0 . The probability of a no-signal of 0.9973 

then becomes 

0097.0)31,18()48,1()50,2.0,225.0( 225.0225.0 =−== IIpβ  

so that the probability of a signal becomes 9903.0)50,2.0,225.0(1 =− β . 

 

Assuming that the change in p  is permanent so that all future samples that we collect come from a 

process with a fraction nonconforming equal to 225.0=p , the out-of-control run-length distribution 

of the p-chart is )9903.0(~1 GeoN . The out-of-control average run-length is then calculated using 

(3-15) as 

01.1)9903.0/(11 ==ARL  

and implies that (on average) we could expect the chart to signal on approximately the 1st sample 

following an increase from 0.2 to 0.225. The out-of-control SDRL of the run-length distribution is 

01.0)9903.0/(0097.01 ==SDRL  

and is calculated using (3-16). 

 

 

Decrease in p : Downward shift 
 

Suppose that the true fraction nonconforming permanently decreased by 25% from 0.2 to 15.0 . 

The probability of a no-signal then changes from its in-control value of 0.9973 to 

003.0)31,18()48,1()50,2.0,15.0( 15.015.0 =−== IIpβ  

so that the out-of-control run-length distribution is geometric with probability of success equal to the 

probability of a signal 997.0)50,2.0,15.0(1 =− β . We could thus expect the chart to signal (on 

average) on the 1st sample following the change (decrease) inp . 
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The OC-curve 
 

The OC-curve is the probability of a no-signal ),,(0 nppβ  plotted as a function of p  for a known 

(specified) value of 0p  and a given (selected) sample size n. 

 

The OC-curve for 50=n  and 2.00 =p , that is, )50,2.0,( 0 == nppβ  for 55.00 ≤< p  is 

displayed in Figure A3.2. The probability of a signal )50,2.0,(1 0 ==− nppβ  as a function of p  is 

also shown. These two probabilities are plotted on the vertical axis for a given value of p  on the 

horizontal axis. Table A3.2 displays values of the OC and the probability of a signal for selected 

values of 550.0)025.0(025.0=p ; it also shows the average run-length and the standard deviation of 

the run-length associated with each value of p . 

 

Examining Figure A3.2 we begin at the in-control value of 2.0=p  where the probability of a no-

signal is 9973.0)50,2.0,2.0( =β  and the probability of a signal is equal to 0027.0)50,2.0,2.0(1 =− β ; 

these two points are indicated on the graphs. We observe that: 

 
 

(i) As we move in either direction away from 2.0=p  (i.e. either to the left or to the right) the 

probability of a no-signal, in general, decreases whereas the probability of a signal, in 

general, increases. 

 

This indicates that as p  changes (moves away) from the known or specified value of 0.2 

the likelihood of a signal that the process is out-of-control increases. We can therefore 

expect the chart to signal more often (sooner) when the process is out-of-control than when 

the process is in-control; which is good and confirms that using a control chart is an 

effective tool in detecting changes in a process. 

 

(ii) The values of )50,2.0,(pβ  and )50,2.0,(1 pβ−  vary between zero and one, and happens 

since both functions compute a probability.  

 

In particular, as the process moves further out-of-control the probability of a no-signal 

approaches zero whereas the probability of a signal approaches one. 
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(iii) Neither the probability of a no-signal nor the probability of a signal is symmetric 

about 2.0=p . 

 

This implies, for example, that the rate at which )50,2.0,(pβ  changes as p  decreases or 

increases (i.e. moves to the left or to the right away from 0.2) is not the same. A decrease 

and an increase of 10% (say) in p  from 0.2 to 0.18 and 0.22 (respectively) would therefore 

not result in the same decrease in )50,2.0,(pβ . The same is true for the probability of a 

signal and happens since the binomial (50,0.2) distribution is not symmetric. 

 

(iv) As p  decreases from 0.2 the probability of a no-signal increases slightly until it reaches a 

maximum and then decreases (as mentioned in (i)). Similarly, the probability of a signal 

first decreases a little as p  decreases until it reaches a minimum and then it increases 

again. 

 

This tendency is also seen in Table A3.2. For instance, at 2.0=p  we have 

9973.0)50,2.0,2.0( ==pβ  which is less than the probability of a no-signal at 175.0=p  

of 9988.0)50,2.0,175.0( ==pβ . For a detailed discussion on this phenomenon see e.g. 

Acosta-Mejia (1999). 
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Figure A3.2: The OC-curve and the probability of a signal as a function of p  when 200 .=p  and 
50=n  
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Table A3.2: The Probability of a no-signal, the Probability of a signal, the ARL and the SDRL for 
550002500250 .).(.=p  when 200 .=p  and 50=n  

 

p Pr(No Signal | process OOC) Pr(Signal | process OOC) ARL SDRL 

0.025 0.3565 0.6435 1.55 0.93 

0.050 0.7206 0.2794 3.58 3.04 

0.075 0.8975 0.1025 9.76 9.24 
0.100 0.9662 0.0338 29.60 29.09 
0.125 0.9897 0.0103 97.42 96.92 
0.150 0.9970 0.0030 337.26 336.76 
0.175 0.9988 0.0012 802.13 801.63 
0.200 0.9973 0.0027 369.84 369.34 
0.225 0.9903 0.0097 103.13 102.63 
0.250 0.9713 0.0287 34.79 34.29 
0.275 0.9306 0.0694 14.42 13.91 
0.300 0.8594 0.1406 7.11 6.60 
0.325 0.7544 0.2456 4.07 3.54 
0.350 0.6216 0.3784 2.64 2.08 
0.375 0.4758 0.5242 1.91 1.32 
0.400 0.3356 0.6644 1.51 0.87 
0.425 0.2167 0.7833 1.28 0.59 
0.450 0.1273 0.8727 1.15 0.41 
0.475 0.0678 0.9322 1.07 0.28 
0.500 0.0325 0.9675 1.03 0.19 
0.525 0.0139 0.9861 1.01 0.12 
0.550 0.0053 0.9947 1.01 0.07 
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Average run-length 
 

The average run-length is the expected number of samples that must be collected before the chart 

signals. 

 

To quickly detect changes in a process it is desirable that the average run-length 

 )),,(1/(1),,( 00 nppnppARL β−=  

is at its maximum when the process is in-control i.e. when 0pp = . This is not always the case for the 

p-chart. For a p-chart based on a charting statistic that has a (positively) skewed distribution such as 

the 2.0,50(Bin ) distribution the value of )50,2.0,( 0 == nppARL  increases initially as p  decreases; 

this causes the p-chart to have poor performance in detecting small to moderate decreases in p . 

 

Figure A3.3 displays the average run-length )50,2.0,(pARL  as a function of p  for 3.005.0 ≤≤ p .  

The value of )50,2.0,(pARL  is plotted on the vertical axis for a specific value of p  on the horizontal 

axis. The average run-length is much higher for values of p  slightly less than 0.2 than at 0.2 i.e. the 

point that indicates the in-control average run-length of 84.369 . In particular, at 175.0=p  the 

average run-length is 802.13 (see e.g. Table A3.2). 

 

This phenomenon, as mentioned before, is caused by the skewness of the binomial distribution and 

the smaller the value of p  the greater the skewness and the larger the problem. For a detailed 

discussion on this phenomenon see e.g. Acosta-Mejia (1999).  
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Figure A3.3: The average run-length (ARL) as a function of p  when 50=n  and 200 .=p  
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Run-length distributions 
 

In Case K the in-control and the out-of-control run-length distributions are both geometric (see e.g. 

Table 3.1). 

 

A graphical display of the in-control and the out-of-control run-length distributions is useful since 

it helps us (better) see the effect of a change in the process parameter on the entire run-length 

distribution. 

 

We consider two types of displays: Boxplot-like graphs and probability mass functions (p.m.f’s). 

The former (visually) reveals more about the change in the run-length distribution than do the p.m.f’s.  

 

 

Boxplot-like graphs 
 

Figure A3.4 shows boxplot-like graphs (i.e. the minimum value is replaced by the 1st percentile of 

the run-length distribution and the maximum value is replaced by the 99th percentile of the run-length 

distribution) of the in-control as well as the out-of-control run-length distributions. Figure A3.4 is 

accompanied by Table A3.3 which summarizes some of the properties of the in-control and the out-of-

control run-length distributions. 

 

Studying Figure A3.4 and Table A3.3 we note that: 

 

 

(i) The run-length distributions are severely positively skewed i.e. the spread (variation) in the 

upper 25% of the distribution between the 75th percentile (or 3Q ) and the 99th percentile, is 

much larger than the spread in the lower 25% of the distribution between the 1st percentile 

and the 25th percentile (or 1Q ).  

 

The skewness of the run-length distribution is confirmed by the fact that the average run-

length (indicated by the diamond symbol) is larger than the median run-length (indicated by 

the circle) in all three the distributions. The exact numerical values of the average run-

lengths and the median run-lengths are also indicated. The skewness follows from the fact 

that the run-length distributions are geometric. 
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(ii) The run-length distribution is considerably altered following a process change. 

 

Compare, for example, the boxplot-like graph associated with the run-length distribution of 

the out-of-control process (when 225.0=p ) to the boxplot-like graph of the in-control run-

length distribution (when 2.0=p ). In particular we see that both the average run-length of 

103.1 and the median run-length of 72 of the out-of-control run-length distribution is far 

less than the average run-length of 369.8 and the median run-length of 257 associated with 

the in-control run-length distribution. A comparison of the percentiles and the standard 

deviation of the run-length leads to the same conclusion. 

 

234

72

257

337.3

103.1

369.8

0

200

400

600

800

1000

1200

1400

1600

1800

0.2 0.225 0.15

p

 

       Figure A3.4: Boxplot-like graphs of the in-control and the 

out-of-control run-length distributions of the p-chart in Case K 

Table A3.3: Summary measures of the in-control 
(IC) and the out-of-control (OOC) run-length 
distributions of the p-chart when 50=n  and 

200 .=p  in Case K 
 

 IC OOC 
(increase in p) 

OOC 
(decrease in p) 

p 0.2 0.225 0.15 
Pr(No Signal) 0.9973 0.9903 0.997 

Pr(Signal) 0.0027 0.0097 0.003 
ARL 369.84 103.13 337.26 

SDRL 369.34 102.63 336.76 
1st percentile 4 2 4 
5th  percentile 19 6 18 

10th  percentile 39 11 36 
25th (Q1) 107 30 97 

50th (MDRL) 257 72 234 
75th (Q3) 513 143 467 

90th  percentile 851 237 776 
95th  percentile 1107 308 1009 

99th  percentile 1701 473 1551 
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Probability mass functions 
 

Studying the p.m.f’s of the run-length distributions is another way to look at  the effect of a change in 

the process on the performance of the chart. 

 

Figure A3.5 displays the p.m.f’s of the in-control and the out-of-control run-length distributions, that 

is, 

0027.09973.0)50,2.0,2.0;Pr( 1
0

−== jjN        and       997.0003.0)50,2.0,15.0;Pr( 1
1

−== jjN  

for ,....2,1=j . The former is the in-control p.m.f and the latter the out-of-control p.m.f which corresponds 

to a decrease by 25% in the fraction of nonconforming p from 0.2 to 0.15. 

 

For values of j  less than approximately 370 the likelihood of obtaining these shorter run-lengths is 

larger following a decrease in the fraction non-conforming. We can write this as )Pr()Pr( 01 jNjN =>=  

for 370<j . The converse also holds, that is, for values of j  larger than approximately 370 we see that 

)Pr()Pr( 01 jNjN =<= . This means that the p-chart will signal sooner when the process moves out-of-

control than when it is in-control; which is good. 
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Figure A3.5: The probability distributions of 0N  (when 200 .== pp ) and 1N  (when 20.=p  

with 1500 .=p )1  

                                                 
1 Note: Instead of displaying the usual histograms, the tops of the bars of the histograms have been joined to better display the 
shapes of these distributions, and the bars of the histograms have been deleted. 
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3.4.2 The p-chart in Case K: Characteristics of the in-control run-length 

distribution  
 

The preceding example focused on only one particular combination of n  and 0p  i.e. 50=n  and 

2.00 =p . Other combinations of n  and 0p  are also of interest and gives us an idea of the p-chart’s 

performance over a wider range of the parameters. 

 

The false alarm rate and the average run-length are two well-known characteristics of the run-length 

distribution and most often used to measure a chart’s performance. More recently other characteristics of 

the run-length distribution, such as the standard deviation and the percentiles (quartiles), have also been 

used and supplemented the false alarm rate and the average run-length. 

 

We study all the abovementioned performance measures for the p-chart. 

 

 

3.4.2.1 False alarm rate 
 

The false alarm rate (FAR ) is the probability of a signal when the process is truly in-control and is 

given by ),,(1 00 nppp =− β  where ),,( 00 nppp =β  is found from (3-4). We can calculate the FAR  by 

substituting different combinations of values for n  and 0p  into ),,(1 00 nppp =− β . 

 

Table A3.4 lists the FAR -values (rounded to 4 decimal places) for =0p 0.01, 0.025, 0.05, 0.10, 0.15, 

0.20, 0.25, 0.30, 0.40 and 0.50 when the sample size =n  1(1)10, 12, 15(5)30, 40, 50, 75, 100, 125, 

150(50)300, 375, 500, 750, 1000 and 1500. 

 

For some combinations of n  and 0p  (especially for small values of  n  and large values of 0p ) we 

observe that the false alarm rate is zero. Although we typically expect (desire) a small false alarm rate, 

zero is not practical since all moments (such as the average and the standard deviation) of the run-length 

distribution will be undefined (see e.g. Tables A3.5 and A3.6). 
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Table A3.4: The false alarm rate (FAR) of the p -chart as a function of the sample size n  and the 
known or the specified true fraction nonconforming 0p  in Case K 

 

The known or the specified true fraction nonconforming 0p  Sample size 
n  0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1 0.0100 0.0250 0.0500 0.1000 0.0 0.0 0.0 0.0 0. 0 0.0 
2 0.0199 0.0494 0.0025 0.0100 0.0225 0.0 0.0 0.0 0.0 0.0 
3 0.0297 0.0731 0.0073 0.0280 0.0034 0.0080 0.0156 0.0 0.0 0.0 
4 0.0394 0.0036 0.0140 0.0037 0.0120 0.0016 0.0039 0.0081 0.0 0.0 
5 0.0490 0.0059 0.0226 0.0086 0.0022 0.0067 0.0010 0.0024 0.0 0.0 
6 0.0585 0.0088 0.0328 0.0158 0.0059 0.0016 0.0046 0.0007 0.0041 0.0 
7 0.0679 0.0121 0.0038 0.0027 0.0121 0.0047 0.0013 0.0038 0.0016 0.0 
8 0.0773 0.0158 0.0058 0.0050 0.0029 0.0104 0.0042 0.0013 0.0007 0.0 
9 0.0865 0.0200 0.0084 0.0083 0.0056 0.0031 0.0013 0.0043 0.0003 0.0039 

10 0.0043 0.0246 0.0115 0.0128 0.0099 0.0064 0.0035 0.0016 0.0017 0.0020 
12 0.0062 0.0349 0.0196 0.0043 0.0046 0.0039 0.0028 0.0017 0.0028 0.0005 
15 0.0096 0.0057 0.0055 0.0127 0.0036 0.0042 0.0042 0.0037 0.0024 0.0010 
20 0.0169 0.0130 0.0159 0.0024 0.0059 0.0026 0.0039 0.0013 0.0021 0.0026 
25 0.0258 0.0238 0.0072 0.0095 0.0021 0.0056 0.0034 0.0019 0.0016 0.0041 
30 0.0361 0.0064 0.0033 0.0078 0.0029 0.0031 0.0029 0.0024 0.0012 0.0014 
40 0.0075 0.0174 0.0034 0.0051 0.0043 0.0031 0.0019 0.0030 0.0018 0.0022 
50 0.0138 0.0081 0.0032 0.0032 0.0019 0.0027 0.0031 0.0031 0.0021 0.0026 
60 0.0224 0.0039 0.0028 0.0057 0.0024 0.0022 0.0017 0.0029 0.0022 0.0027 
75 0.0069 0.0113 0.0041 0.0027 0.0028 0.0025 0.0036 0.0024 0.0030 0.0024 

100 0.0184 0.0037 0.0043 0.0049 0.0034 0.0040 0.0038 0.0031 0.0029 0.0035 
125 0.0087 0.0043 0.0040 0.0032 0.0031 0.0026 0.0029 0.0033 0.0025 0.0022 
150 0.0042 0.0047 0.0036 0.0020 0.0030 0.0031 0.0025 0.0032 0.0034 0.0024 
200 0.0043 0.0048 0.0027 0.0034 0.0022 0.0035 0.0025 0.0026 0.0030 0.0023 
250 0.0040 0.0046 0.0042 0.0024 0.0027 0.0034 0.0021 0.0030 0.0024 0.0029 
300 0.0036 0.0041 0.0027 0.0030 0.0028 0.0031 0.0027 0.0030 0.0026 0.0032 
375 0.0051 0.0034 0.0031 0.0035 0.0032 0.0024 0.0029 0.0023 0.0026 0.0027 
500 0.0052 0.0047 0.0032 0.0023 0.0033 0.0030 0.0023 0.0029 0.0030 0.0027 
750 0.0044 0.0031 0.0027 0.0029 0.0030 0.0030 0.0024 0.0028 0.0025 0.0024 

1000 0.0033 0.0036 0.0030 0.0027 0.0030 0.0030 0.0024 0.0027 0.0027 0.0026 
1500 0.0034 0.0031 0.0026 0.0030 0.0027 0.0027 0.0026 0.0026 0.0029 0.0025 

 
 

Figure A3.6 displays the  FAR-values for 50 and 25 ,10=n  on the vertical axis for selected values of 

0p  on the horizontal axis. Also shown is the nominal FAR  of 0.0027, which is the FAR  on a 3-sigma 

Shewhart X-bar control chart when the charting statistics follow a normal distribution. 

 

Figure A3.6 shows that for small values of 0p  the FAR  of the p-chart is considerably larger than the 

nominal value of 0.0027. For larger values of 0p  (or, values nearer to 0.5) the FAR  is closer to the 

nominal of 0.0027 but still not equal. This illustrates that even for known values of the true fraction 

nonconforming there is no guarantee that the FAR  of the p-chart will be equal to the nominal 0.0027.  
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There are two reasons for these discrepancies: 

 

(i) when p  is small the normal approximation to the binomial distribution is poor so both the 

charting constant 3=k  and the charting formula (mean ±  3 standard deviations) may be 

inaccurate, and 

 

(ii) due to the discrete nature of the binomial distribution only certain FAR values can be attained.  

 

 

0.0027

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.01 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

p0

FAR

n=10 n=25 n=50 Nominal FAR
 

Figure A3.6: The false alarm rate (FAR) of the p-chart  for 50 and 25 10,=n  when 
 0.5 and 40 30 250 20 150 10 050 0250 0100 .,.,.,.,.,.,.,.,.=p in Case K compared to the nominal FAR of 

0.0027 
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3.4.2.2 Average run-length and standard deviation of the run-length 
 

The average run-length (ARL ) is the expected value or the mean of the run-length distribution and is 

equal to the reciprocal of the probability of a signal, that is, 

)),,(1/(1),,( 00 nppnppARL β−= . 

The in-control ARL  is found by replacing p  with 0p  in ),,( 0 nppARL  and is the reciprocal of the 

false alarm rate, that is, 

FARnppnppARLARL /1)),,(1/(1),,( 00000 =−== β . 

The ARL  is a measure of how fast (or slow) the control chart signals and is therefore typically used 

for out-of-control performance comparisons of the charts. 

 

Since the geometric distribution is (severely) positively skewed the ARL  becomes questionable as the 

sole metric for a chart’s performance and we therefore need to look at the standard deviation of the run-

length (SDRL ) too. 

 

The SDRL  measures the variation or the spread in the run-length distribution and is given by 

)),,(1/(),,(),,( 000 nppnppnppSDRL ββ −= . 

The in-control SDRL  is found by substituting 0p  for p  in ),,( 0 nppSDRL  which gives 

FARFARnppnppnppSDRLSDRL /1)),,(1/(),,(),,( 0000000 −=−== ββ ; 

this shows that the 0SDRL  is (like the 0ARL ) a function of the FAR . 

 

The values of the 0ARL  and the 0SDRL  that correspond to the FAR -values of Table A3.4 are shown 

in Tables A3.5 and A3.6 (rounded to 2 decimal places), respectively. We can also calculate the 0ARL  and 

the 0SDRL   for different combinations of n  and 0p  not shown in Tables A3.5 and Table A3.6 and is 

carried out by direct evaluation of expressions (3-15) and (3-16). 

 

For example, to find the in-control ARL  and the in-control SDRL   when 25.0=p , 25.00 =p , and  

11=n  we proceed as follow: 

We first calculate the control limits. These are given by (3-1)  as 

6417.011/)75.0(25.0325.0 =+=pUCL      and     1417.011/)75.0(25.0325.0 −=−=pLCL . 
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Then (3-5) shows that 7}11],0584.7min{[ ==b . The constant a  need not be calculated since the 

lower control limits is negative, that is, 0<pLCL . Using (3-4) we find that the probability of a no-signal 

is 9988.0)3,7(1)11,25.0,25.0( 25.0 =−= Iβ  so that the false alarm rate is 

0012.0)3,7()11,25.0,25.0(1)7,25.0,25.0( 25.0 ==−= IFAR β . 

The in-control ARL  is therefore 6.841)9988.01( 1
0 =−= −ARL  and the in-control standard deviation 

is 1.846)0012.0/(9988.00 ==SDRL . 

The calculations for the out-of-control ARL  and the out-of-control SDRL  are similar; we simply 

replace p  in )3,7(1)11,25.0,( pIp −=β  with a value other than 25.00 =p  and proceed along the same 

lines. 

 

Table A3.5: The in-control average run-length (ARL0) of the p -chart as a function of the sample 
size n  and the known or the specified true fraction nonconforming 0p  in Case K 

 

The known  (specified) true fraction nonconforming 0p  Sample size 
n  0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1 100.00 40.00 20.00 10.00 ∞  ∞  ∞  ∞  ∞  ∞  
2 50.25 20.25 400.00 100.00 44.44 ∞  ∞  ∞  ∞  ∞  
3 33.67 13.67 137.93 35.71 296.30 125.00 64.00 ∞  ∞  ∞  
4 25.38 275.77 71.33 270.27 83.46 625.00 256.00 123.46 ∞  ∞  
5 20.40 168.26 44.26 116.82 448.93 148.81 1024.00 411.52 ∞  ∞  
6 17.09 114.06 30.51 63.09 169.92 625.00 215.58 1371.74 244.14 ∞  
7 14.72 82.84 266.17 366.57 82.62 214.04 744.73 263.80 610.35 ∞  
8 12.94 63.17 172.76 199.03 350.40 96.09 236.59 775.00 1525.88 ∞  
9 11.56 49.96 119.60 120.03 177.66 326.12 744.73 233.05 3814.70 256.00 

10 234.40 40.63 86.93 78.15 101.28 157.00 285.25 628.78 596.05 512.00 
12 161.96 28.63 51.10 230.98 215.44 256.20 359.52 591.14 355.85 2048.00 
15 103.84 176.24 182.91 78.61 277.35 235.86 238.49 273.78 417.02 1024.00 
20 59.31 77.19 62.89 419.10 168.89 385.38 253.67 781.93 468.26 388.07 
25 38.82 41.96 139.57 105.53 467.01 180.02 296.70 522.87 611.72 245.26 
30 27.66 157.04 304.65 128.47 339.86 321.44 341.52 410.34 854.91 698.86 
40 133.38 57.31 294.82 197.51 231.84 325.83 539.81 331.42 550.59 450.16 
50 72.37 122.96 313.64 310.57 512.93 369.84 320.92 323.37 469.25 384.29 
60 44.60 259.52 351.05 176.03 411.27 446.91 585.24 347.13 457.45 374.47 
75 144.51 88.38 242.82 368.47 351.24 404.72 280.73 424.38 336.52 409.13 

100 54.42 270.11 233.96 203.98 294.90 250.93 265.00 324.31 344.84 284.28 
125 114.61 230.59 248.37 312.50 322.82 392.14 349.00 303.11 405.93 449.14 
150 237.46 212.87 277.54 488.03 329.49 325.75 398.29 313.45 293.42 415.71 
200 232.80 206.23 370.42 294.04 449.57 284.28 401.99 389.85 333.58 438.70 
250 248.43 219.07 240.23 415.64 376.32 291.56 467.00 338.68 424.89 347.38 
300 277.57 244.39 365.86 335.28 354.65 324.53 373.71 330.57 384.63 315.53 
375 197.63 296.17 325.93 284.05 314.43 413.51 343.76 431.32 381.72 370.96 
500 192.01 213.20 316.36 429.94 306.11 328.38 434.37 345.98 336.29 370.81 
750 227.35 323.23 367.35 343.32 329.48 332.59 418.21 358.28 397.20 413.68 

1000 300.16 279.22 327.92 370.18 331.16 330.18 410.94 374.21 374.59 378.00 
1500 297.89 323.23 384.88 332.36 370.33 372.32 385.02 389.48 345.82 398.62 
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It is straightforward to show using (3-15) and (3-16) that )1( −= ARLARLSDRL  and implies that 

the standard deviation is always less than the average run-length i.e. ARLSDRL < , and holds whether the 

process is in-control or out-of-control. 

 

This relationship between the SDRL and the ARL  is clearly visible from Tables A3.5 and A3.6. For 

example, for 5=n  and 025.00 =p  the in-control ARL  equals 168.26 whereas the in-control SDRL  

equals 167.67. We also looked at this relationship between the SDRL  and the ARL  of the run-length 

distribution in Case U when the process parameters are unknown. 

 

Note that, as mentioned before, the in-control average run-length in Table A3.5 and the in-control 

standard deviation of the run-length in Table A3.6 are undefined for the same combinations of n  and 0p  

for which the false alarm rate in Table A3.4 is zero. This is undesirable and shows that for some 

combinations of n  and 0p  the p-chart would not perform satisfactorily in practice. 
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Table A3.6: The in-control standard deviation of the run-length (SDRL0) of the p -chart as a 
function of the sample size n  and the known or the specified fraction nonconforming 0p  in Case K 

 

The known or the specified fraction nonconforming 0p  Sample size 
n  0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1 99.50 39.50 19.49 9.49 ∞  ∞  ∞  ∞  ∞  ∞  
2 49.75 19.75 399.50 99.50 43.94 ∞  ∞  ∞  ∞  ∞  
3 33.17 13.16 137.43 35.21 295.80 124.50 63.50 ∞  ∞  ∞  
4 24.87 275.27 70.83 269.77 82.96 624.50 255.50 122.96 ∞  ∞  
5 19.90 167.76 43.76 116.32 448.43 148.31 1023.50 411.02 ∞  ∞  
6 16.58 113.56 30.01 62.59 169.42 624.50 215.08 1371.24 243.64 ∞  
7 14.21 82.34 265.67 366.07 82.12 213.54 744.23 263.30 609.85 ∞  
8 12.43 62.67 172.26 198.53 349.90 95.59 236.09 774.50 1525.38 ∞  
9 11.05 49.45 119.10 119.53 177.16 325.62 744.23 232.55 3814.20 255.50 

10 233.90 40.13 86.43 77.65 100.77 156.50 284.75 628.28 595.55 511.50 
12 161.45 28.13 50.60 230.48 214.94 255.70 359.02 590.64 355.35 2047.50 
15 103.34 175.74 182.41 78.11 276.85 235.36 237.99 273.28 416.52 1023.50 
20 58.81 76.69 62.39 418.60 168.39 384.88 253.17 781.43 467.76 387.57 
25 38.32 41.45 139.07 105.02 466.51 179.52 296.20 522.37 611.22 244.76 
30 27.16 156.53 304.15 127.97 339.36 320.93 341.02 409.84 854.41 698.36 
40 132.88 56.81 294.32 197.01 231.34 325.33 539.31 330.92 550.09 449.66 
50 71.87 122.46 313.14 310.07 512.43 369.34 320.42 322.87 468.75 383.79 
60 44.10 259.02 350.55 175.52 410.77 446.41 584.74 346.63 456.95 373.97 
75 144.01 87.88 242.32 367.97 350.74 404.22 280.23 423.88 336.02 408.63 

100 53.92 269.61 233.46 203.48 294.40 250.43 264.50 323.81 344.34 283.78 
125 114.11 230.09 247.87 312.00 322.32 391.64 348.50 302.61 405.43 448.64 
150 236.96 212.37 277.03 487.53 328.99 325.25 397.79 312.95 292.92 415.21 
200 232.30 205.73 369.92 293.54 449.07 283.78 401.49 389.35 333.08 438.20 
250 247.93 218.57 239.72 415.14 375.82 291.06 466.50 338.18 424.39 346.88 
300 277.07 243.89 365.36 334.78 354.15 324.03 373.21 330.07 384.13 315.03 
375 197.13 295.67 325.43 283.55 313.92 413.01 343.26 430.82 381.22 370.46 
500 191.51 212.70 315.86 429.44 305.61 327.88 433.87 345.48 335.79 370.31 
750 226.85 322.73 366.85 342.82 328.98 332.09 417.71 357.78 396.70 413.18 

1000 299.66 278.72 327.42 369.68 330.66 329.68 410.44 373.71 374.09 377.50 
1500 297.39 322.73 384.38 331.86 369.83 371.82 384.52 388.98 345.32 398.12 
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3.4.2.3 Run-length distribution 
 

Figure A3.6 showed the discrepancy between the false alarm rate (FAR ) of the p-chart in Case K and 

the nominal FAR  of 0.0027 i.e. the FAR  associated with a 3-sigma X-bar chart for a normal process. 

Because the run-length distribution holds more information than the FAR it is instructive to also look at 

graphs of the run-length distribution of the p-chart in Case K compared to the run-length distribution of 

the 3-sigma Shewhart X-bar chart. 

 

Figure A3.7 displays boxplot-like graphs of the run-length distributions of the p-chart in Case K for 

50 and 25 ,10=n  when  0.5 and 3.0 ,2.0 ,1.0 ,05.00 =p . Also shown in Figure A3.7 is the boxplot-like 

graph of the 3-sigma Shewhart X-bar chart, which has a FAR  of 0.0027, an in-control ARL  of 370.4 and 

an in-control SDRL  of 369.9. 

 

The properties of the 3-sigma Shewhart X-bar chart are the nominally expected values for a 3-sigma 

chart such as the p-chart. We therefore typically use the performance characteristics of the X-bar chart as 

benchmark values for that of the p-chart (or any other Shewhart-type chart) in Case K. 

 

Table A3.7 accompanies Figure A3.7 and shows the false alarm rate (FAR ), the average run-length 

( ARL ), the standard deviation of the run-length (SDRL ) as well as the 1st, the 5th, the 10th, the 25th, the 

50th, the 75th, the 95th and the 99th percentiles of all the run-length distributions displayed in Figure A3.7. 

The 25th percentile is the 1st quartile (typically denoted by 1Q ), the 50th percentile is the 2nd quartile (also 

denoted by 2Q  and called the median run-length, or simply the MDRL ), whereas the 75th percentile is the 

3rd quartile (in some cases denoted by 3Q ). These percentiles are all important descriptive statistics. For 

example, the inter-quartile range (IQR ) is calculated as the difference between the 3rd and 1st quartiles, 

that is, 13 QQIQR −= . The IQR  measures the spread of the middle 50% in the run-length distribution. 

The median run-length (MDRL ) is a robust measure of the central tendency (location) of the run-length 

distribution and sometimes preferred instead of the average run-length. 

 

All the abovementioned characteristics of the p-chart were computed using expressions (3-12) 

through (3-17) in Table 3.1. The properties of the 3-sigma Shewhart X-bar chart were calculated using 

expressions available in the literature (see e.g. Chakraborti, (2000)). 

 

We assume that the 1st percentile is the minimum possible run-length and that the 99th percentile is the 

maximum achievable run-length and therefore compute the range (R ) of the run-length distribution as the 
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difference between the 99th percentile and the 1st percentile, that is, =−= minmaxR   99th percentile – 1st 

percentile. 

 

Figure A3.7 shows that for 10=n  and 25=n  the run-length distribution of the p-chart is much 

different from that of the X-bar chart. For example, for 05.00 =p , 0.1 and 0.2 the ARL  and the SDRL  

are both far less than the ARL  of 370.4 and the SDRL  of 369.9 of the X-bar chart (see e.g. Table A3.7). 

The range of the run-length distributions are also less. For 3.00 =p  and 0.5 the converse holds. In other 

words, the ARL , the SDRL  and the range of the run-length distribution of the p-chart are all larger than 

what we would nominally expect from a 3-sigma Shewhart-type control chart. 

 

For 50=n , the run-length distribution is more like that of the X-bar chart in that the ARL  is 

approximately equal to 370.4, the SDRL  is almost 369.9 and the range of the run-length distribution is 

close to being between 4 (the 1st percentile of the X-bar chart) and 1704 (the 99th percentile of the X-bar 

chart). However, the run-length distribution is still not exactly the same. This shows that even if the true 

fraction nonconforming is specified (known) and n  is large, the p-chart still does not perform as 

(nominally) expected.  

 

Table A3.7: Properties of the in-control (IC) run-length distribution of the  p-chart  for 
50 and 25 10,=n  when  0.5 and 30 20 10 0500 .,.,.,.=p in Case K, and that of the 3-sigma Shewhart 

X-bar chart 

 
     Percentiles / Quartiles 

n p0 FAR ARL SDRL 1st 5th 10th 25th 

(Q1) 
50th 

(MDRL) 
75th 
(Q3) 

90th 95th 99th 

0.05 0.0115 86.9 86.4 1 5 10 25 60 120 200 259 399 
0.10 0.0128 78.2 77.7 1 4 9 23 54 108 179 233 358 

0.20 0.0064 157.0 156.5 2 9 17 46 109 217 361 469 721 
0.30 0.0016 628.8 628.3 7 33 67 181 436 871 1447 1883 2894 

n = 10 

0.50 0.0020 512.0 511.5 6 27 54 148 355 710 1178 1533 2356 

0.05 0.0072 139.6 139.1 2 8 15 41 97 193 321 417 641 

0.10 0.0095 105.5 105.0 2 6 12 31 73 146 242 315 484 
0.20 0.0056 180.0 179.5 2 10 19 52 125 249 414 538 827 
0.30 0.0019 522.9 522.4 6 27 56 151 363 725 1203 1565 2406 

n = 25 

0.50 0.0041 245.3 244.8 3 13 26 71 170 340 564 734 1128 

0.05 0.0032 313.6 313.1 4 17 33 91 218 435 722 939 1443 
0.10 0.0032 310.6 310.1 4 16 33 90 215 430 714 929 1428 

0.20 0.0027 369.8 369.3 4 19 39 107 257 513 851 1107 1701 

0.30 0.0031 323.4 322.9 4 17 35 93 224 448 744 968 1487 
n = 50 

0.50 0.0026 384.3 383.8 4 20 41 111 267 533 884 1150 1768 

3-sigma X-bar 0.0027 370.4 369.9 4 19 39 107 257 513 852 1109 1704 
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Figure A3.7: Boxplot-like graphs of the in-control (IC) run-length distribution of the  p-chart  for 
50 and 25 10,=n  when  0.5 and 30 20 10 0500 .,.,.,.=p in Case K compared to the run-length 

distribution of the 3-sigma Shewhart X-bar chart 
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The foregoing discussion focused on the performance of the p-chart as measured by the false alarm 

rate, the average run-length, the standard deviation of the run-length and the percentiles of the run-length 

distribution and compared the p-chart’s performance to that of the well-known 3-sigma Shewhart X-bar 

chart. It is also useful and important to know how to design a p-chart. The design of the p-chart in Case K 

is therefore looked at next. 

 

 

3.4.2.4 The OC-curves and ARL curves 
 

When designing a p-chart in Case K we need to choose a sample size n  and while doing so keep in 

mind the size of the shift we are interested in detecting i.e. by how much the true fraction nonconforming 

p  will differ from its specified value 0p  once a shift occurs. 

 

Choosing the appropriate sample size is typically carried out by looking at a family of OC-curves or a 

family of ARL-curves, which are obtained by plotting multiple (at least two) OC-curves or multiple ARL-

curves on the same set of axis. 

 

Recall that an OC-curve is a graph (plot) of the probability of a no-signal ),,(0 nppβ  on the vertical 

axis for some values of 10 << p  on the horizontal axis. Hence, a family of two OC-curves is obtained by 

plotting ),,( 10 nnpp =β  and ),,( 20 nnpp =β , where 1n  and 2n  denote two different sample sizes, on 

the same set of axes; hence, each OC-curve corresponds to a specific sample size (in this case 1n  or 2n ) 

but the value of 0p  is the same for each curve. Similarly, an ARL-curve is a graph (plot) of the average 

run-length ),,( 0 nppARL  on the vertical axis for some values of 10 << p  on the horizontal axis so that 

family of two ARL-curves is obtained by plotting ),,( 10 nnppARL =  and ),,( 20 nnppARL = on the same 

set of axes. 

 

Suppose that we would like to compare and decide between two control charting plans to monitor the 

specified fraction nonconforming of 5.00 =p . Further, assume that both plans use a p-chart with 

3-sigmacontrol limits; the first plan uses 25=n  items per sample whereas the second plan uses double 

that i.e. 50=n ; the question is then what the effect of sampling twice as many items is. 

 

To assist us with our choice between the two control charting plans Figure A3.8 shows the OC-curve 

of each of the control charting plans. In other words, Figure A3.8 shows a family of two OC-curves where 

)25,5.0,( 0 == nppβ  and )50,5.0,( 0 == nppβ  are plotted on the vertical axis versus 10 << p  on the 
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horizontal axis. In addition, Table A3.8 lists some values of )25,5.0,(pβ  and )50,5.0,(pβ  for values 

of 95.0)05.0(05.0=p . 

 

Figure A3.8 shows that the plan that uses 50=n  items per sample has a consistently lower -riskβ  or 

OC. Thus, if the objective is to detect a shift in the fraction nonconforming as soon as possible and we 

can afford the extra cost of sampling, this plan will be preferred.  In the language of hypothesis testing, 

this shows that with all other things being equal, the power of test to detect a shift is higher for a larger 

sample size. 

 

Figure A3.9 displays a family of two ARL-curves which corresponds to the OC-curves of Figure A3.8, 

that is, Figure A3.9 shows the average run-lengths )25,5.0,( 0 == nppARL  and 

)50,5.0,( 0 == nppARL  as functions of 10 << p . A decision based on the OC-curves of Figure A3.8 

and a decision based on the ARL-curves of Figure A3.9 will therefore be exactly the same; this is so since 

the relationship between the average run-length and the probability of a no-signal is one-to-one and given 

by 1
00 )),,(1(),,( −−= nppnppARL β . Table A3.8 also shows the exact numerical values of 

),5.0,( npARL  for 50=n  and 25 at 95.0)05.0(05.0=p . 
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Figure A3.8: Family of Operating Characteristic (OC) Curves for the p-chart for a specified 
fraction nonconforming of 500 .=p  when 50=n  and 25 
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Figure A3.9: Family of Average Run-Length (ARL) Curves for the p-chart for a specified fraction 
nonconforming of 500 .=p  when 50=n  and 25 

 

Table A3.8: The values of the OC and the ARL of a p-chart n Case K when 500 .=p  and 50=n  
and  25  

 Probability of a no-signal /  
Operating Characteristic (OC) 

Average Run-Length (ARL) 

p  ),.,( 5050 =npββββ  ),.,( 2550 =npββββ  ),.,( 5050 =npARL  ),.,( 2550 =npARL  

0.05 0.0000 0.0012 1.00 1.00 
0.10 0.0001 0.0334 1.00 1.03 
0.15 0.0053 0.1615 1.01 1.19 
0.20 0.0607 0.3833 1.06 1.62 
0.25 0.2519 0.6217 1.34 2.64 
0.30 0.5532 0.8065 2.24 5.17 
0.35 0.8122 0.9174 5.33 12.10 
0.40 0.9460 0.9706 18.53 34.05 
0.45 0.9895 0.9913 95.37 115.35 
0.50 0.9974 0.9975 384.29 400.98 
0.55 0.9895 0.9973 95.37 371.83 
0.60 0.9460 0.9905 18.53 104.99 
0.65 0.8122 0.9679 5.33 31.20 
0.70 0.5532 0.9095 2.24 11.05 
0.75 0.2519 0.7863 1.34 4.68 
0.80 0.0607 0.5793 1.06 2.38 
0.85 0.0053 0.3179 1.01 1.47 
0.90 0.0001 0.0980 1.00 1.11 
0.95 0.0000 0.0072 1.00 1.01 
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Summary 
 

The p-chart is well-known, easy to use and its’ applications is based on the implicit assumption that 

the binomial distribution is well approximated by the normal distribution, which, as one might expect, is 

not always the case. For example, as the preceding discussion shows, in some cases (especially for small 

values of n ) the FAR  is zero which implies that the ARL , the SDRL  and other moments are undefined. 

Moreover, the performance of the p-chart with a known or given or specified value for p  might not be 

anything like that of the 3-sigma X-bar chart. 

 

The p-chart is used to monitor the fraction nonconforming in a sample. The c-chart on the other hand 

is used to monitor the number of nonconformities in an inspection unit and is based on the Poisson 

distribution. We study the Case K c-chart in the next sections. 
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3.4.3 The c-chart in Case K: An example 
 

We first look at an example of a c-chart in Case K to illustrate the typical application of the chart and 

investigate the characteristics of the chart for a specific value of 0c  (the specified value of c ) while 

varying 0>c  (true average number of nonconformities in an inspection). The performance of chart is 

then further studied in subsequent sections by considering multiple (various) values of 0c . 

 

 

Example A2: A Case K c-chart 
 

Suppose that the true average number of nonconformities in an inspection unit c  is known or 

specified to be 140 =c .  The 3-sigma control limits for the c-chart are  

22.2514314 =+=cUCL          14=cCL           78.214314 =−=cLCL  

and are calculated using (3-2). 

 

Table A3.9 shows ten values simulated from a )14(Poi  distribution. We can assume without loss of 

generality that the values (counts) are the charting statistics of the c-chart; we therefore denote them by iY  

for 10,...,2,1=i . The c-chart is shown in Figure A3.10. The chart displays the upper control limit (UCL), 

the center line (CL), the lower control (LCL) and the iY ’s from each inspection unit plotted on the vertical 

axis versus the inspection unit number (time) on the horizontal axis. We see from Figure A3.10 that none 

of the 10 points plot out-of-control. 

 

As long as no point plots outside the control limits we continue to monitor the process; this involves 

obtaining independent successive inspection units, calculating the charting statistic (i.e. the number of 

nonconformities) for each new inspection unit, and then plotting these one at a time on the chart. Once a 

point plots outside the limits it is taken as evidence that c  is no longer equal to its specified value of 

140 =c . A search for assignable causes is then started. 

 

Table A3.9: Data for the c-chart in Case K 

Inspection unit number / Time: i  1 2 3 4 5 6 7 8 9 10 

Counts: iY  17 9 17 12 16 16 9 21 15 11 
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Figure A3.10: A c-chart in Case K 
 

 

Performance of the c-chart 
 

To study the performance of the aforementioned c-chart we analyze its in-control and out-of-control 

properties for which we need the probability of a no-signal, or equivalently, the probability of a signal.  

The probability of a no-signal completely characterizes the run-length distribution of the chart. 

 

For 140 =c  it was shown that the upper control limit is 22.25=cUCL  and the lower control limit 

is 78.2=cLCL . Expression (3-8) shows that 2]78.2[ ==d  and 25]22.25[ ==f ; these constants are 

needed to calculate the probability of a no-signal. We can study the in-control and the out-of-control  

performance of the chart by substituting values for c  in the probability of a no-signal which is 

)()()14,( 326 ccc Γ−Γ=β  and is found using (3-7).  
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In-control properties 
 

As long as the true average number of nonconformities c  remains unchanged and equal to its 

specified value of 140 =c  we deal with an in-control process. The probability of a no signal is then 

9973.0)14()14()14,14( 326 =Γ−Γ==cβ  

so that the false alarm rate is 1 (14,14) 0.0027FAR β= − = . 

The in-control run-length distribution is therefore geometric with probability of success equal to 

0.0027, which we write as )0027.0(~0 GeoN .  

 

 

Out-of-control properties 
 

When the true average number of nonconformities in an inspection unit changes, c  is no longer equal 

to 140 =c  and implies that we have the out-of-control scenario. We look at the scenario when c  

increases; a decrease in c  can be handled in a similar fashion.  

 

Increase in c : Upward shift 
 

Suppose c  increases from 14 to 15; this is approximately a 7.14% increase in c . The probability of a 

no-signal decreases from 0.9973 (when the process was in-control) to 

 9938.0)15()15()14,15( 326 =Γ−Γ==cβ  

whereas the probability of a signal increases from 0.0027 to 0062.0)14,15(1 ==− cβ . The increase in 

the probability of a signal is good since the likelihood of detecting the shift increases. 

 

The out-of-control run-length distribution is geometric with probability of success equal to 0.0062. 

Expression (3-21) shows that the out-of-control average run-length is 66.1600062.0/11 ==ARL . So, if it 

happens that c  increases from 14 to 15 (and stays fixed at 15) one would expect the chart to detect such a 

shift (and signal) on approximately the 161st  sample following the shift. 
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The OC-curve 
 

The OC-curve and the probability of a signal as functions of c  for 420 ≤< c  are shown in Figure 

A3.11. In addition, Table A3.10 shows values of the probability of a no-signal )()()14,( 326 ccc Γ−Γ=β  

and the probability of a signal )()(1)14,(1 326 ccc Γ+Γ−=− β  for values of 42)2(2=c . 

 

Studying the OC-curve and the probability of a signal as function of c  helps us see what the 

performance of our c-chart would be when a shift occurs. For example, if c  was to decrease from 14=c  

to 8=c  (which may be interpreted as an improvement in the process as approximately 42.9% less 

nonconformities (on average) in an inspection unit will in future be observed) we see from Table A3.10 

that 0138.0)14,8(1 0 ===− ccβ  so that the 70.72=ARL  and the 20.72=SDRL . 

 

Note that, the two curves of Figure A3.11 are very similar to that of the p-chart considered earlier (see 

e.g. Figure A3.2); this is so because the values of n  and  0p  (for the p-chart) and 0c  (in case of the c-

chart) is such that the false alarm rate (FAR) of both the charts are 0.0027, and so, the IC run-length 

distributions of these charts and all other performance measures (including the OOC performance 

measures) are roughly the same.  
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Figure A3.11: The OC-curve and the probability of a signal as a function of c  when 140 =c   
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Table A3.10: The Probability of a no-signal and the Probability of a signal for 4222 )(=c  when 
140 =c  

c P(No Signal | process OOC) P(Signal | process OOC) ARL SDRL 
2 0.3233 0.6767 1.48 0.84 
4 0.7619 0.2381 4.20 3.67 
6 0.9380 0.0620 16.14 15.63 
8 0.9862 0.0138 72.70 72.20 

10 0.9972 0.0028 358.80 358.30 
12 0.9992 0.0008 1204.80 1204.30 
14 0.9973 0.0027 370.16 369.66 
16 0.9869 0.0131 76.13 75.63 
18 0.9554 0.0446 22.42 21.91 
20 0.8878 0.1122 8.91 8.40 
22 0.7771 0.2229 4.49 3.95 
24 0.6319 0.3681 2.72 2.16 
26 0.4739 0.5261 1.90 1.31 
28 0.3272 0.6728 1.49 0.85 
30 0.2084 0.7916 1.26 0.58 
32 0.1228 0.8772 1.14 0.40 
34 0.0674 0.9326 1.07 0.28 
36 0.0345 0.9655 1.04 0.19 
38 0.0166 0.9834 1.02 0.13 
40 0.0076 0.9924 1.01 0.09 
42 0.0033 0.9967 1.00 0.06 

 

 

 

 

 

Run-length distributions 
 

Figure A3.12 displays boxplot-like graphs of the in-control and the out-of-control run-length 

distributions of the c-chart with the average run-lengths (ARL’s) and the median run-lengths (MDRL’s) 

indicated (the former by diamond symbols and the latter by circles). The exact numerical values of the 

ARL’s and the MDRL’s are also shown in Figure A3.12 and listed in Table A3.11 together with the 

probability of a no-signal, the probability of a signal and some percentiles (quartiles) of the in-control and 

the out-of-control run-length distributions. 

 

The ARL and the MDRL measures the central tendency (location) of the run-length distribution. The 

MDRL however is more robust and outlier resistant than the ARL. In both the in-control and the out-of-

control run-length distributions the ARL is larger than the MDRL and indicates that the in-control and the 

out-of-control run-length distributions are non-normal and positively skewed. The skewness of the run-

length distributions is also observed by comparing the upper and the lower tails of each of the 
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distributions, that is, the distance between the 99th percentile and the 75th percentile to the distance 

between the 25th percentile and the 1st percentile; this comparison between the upper and lower tails is 

done separately for each distribution. 

 

For example, for the in-control run-length distribution (when 140 == cc ) Table A3.11 shows that the 

distance between the 99th percentile and the 75th percentile is 11905131703 =−  whereas the distance 

between the 25th and the 1st percentiles of the in-control run-length distribution is 1034107=− . The latter 

is much larger (approximately 1190/103 = 11.5 times) than the former and shows, as mentioned before, 

that the in-control run-length distribution is positively skewed. 

 

Most importantly however Figure A3.12 shows the overall difference between the in-control ( 14=c ) 

and the out-of-control ( 15=c ) run-length distributions. For example, the out-of-control average run-

length is 160.7 compared to the in-control average run-length of 370.2. Similarly, the out-of-control 

median run-length is 112 versus the in-control median run-length of 257. Furthermore, the range (R) and 

the inter-quartile range (IQR) of the in-control and the out-of-control run-length distributions differ 

somewhat. Both the range and the inter-quartile range measure the spread (variation) in the run-length 

distributions. The range measures the overall spread and is the distance between the 99th percentile 

(maximum) and the 1st percentile (minimum). The IQR, on the other hand, is the distance between the 3rd 

and the 1st quartile, that is, 13 QQIQR −=  and measures the variation in the middle 50% of the 

distribution. For the in-control run-length distribution Table A3.11 shows that the range of the in-control 

run-length distribution is 1699417030 =−=R  and that the inter-quartile range of the in-control run-

length distribution is 4061075130 =−=IQR . The values of 0R  and 0IQR  are both larger than that of the 

out-of-control run-length distribution. For the out-of-control run-length distribution we have that 

73627381 =−=R  and 176472231 =−=IQR . This big discrepancy between the range and the inter-

quartile range of the in-control and the out-of-control run-length distributions emphasizes that once a shift 

occurs, the run-length distribution is severely altered in that we can expect the chart to signal (detect the 

shift) sooner, which is of course good. 
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Figure A3.12: Boxplot-like graphs of the in-control (IC) 

           and the out-of-control (OOC) run-length 

             distributions of the c-chart in Case K 

 

 

The preceding discussion focused on the properties of the c-chart for one particular value of c  

i.e. 140 =c . Other values of 0c  are also of interest in order to get an idea of the overall performance of the 

c-chart and can only be obtained by studying the characteristics of the c-chart for a wider range of values 

for 0c . 

Table A3.11: Summary measures of the 
in-control (IC) and the out-of-control 

(OOC) run-length distributions of the c-
chart when 140 =c  in Case K 

  IC OOC (increase in c ) 
c 14 15 

Pr(No Signal) 0.9973 0.9938 
Pr(Signal) 0.0027 0.0062 

ARL 370.16 160.66 
SDRL 369.66 160.16 

1st percentile 4 2 
5th  percentile 19 9 

10th  percentile 39 17 
25th (Q1) 107 47 

50th (MDRL) 257 112 
75th (Q3) 513 223 

90th  percentile 852 369 
95th  percentile 1108 480 

99th  percentile 1703 738 
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3.4.4 The c-chart in Case K: Characteristics of the in-control run-length 

distribution 
 

 

To get a better idea of the overall performance of the c-chart in Case K we look at the run-length 

distribution and its characteristics for a range of values for 0c . We consider both small and large values of 

0c . 

 

To this end, Table A3.12 shows the control limits ( cLCL  and cUCL ), the charting constants d  and 

f , the probability of a no signal when the process is in-control, the false alarm rate (FAR), the in-control 

average run-length ( 0ARL ), and the in-control standard deviation of the run-length ( 0SDRL ) when 

50)5(10)1(10 =c , 75 and 100, respectively. 

 

Table A3.12 is accompanied by Table A3.13 which shows the percentiles of the run-length 

distributions of the c-chart for the same values of 0c . The values in columns (2) through (9) of Table 

A3.12 were computed using expressions (3-2), (3-7), (3-8) and the expressions in Table 3.2. The 

percentiles were calculated using expression (3-23) in Table 3.2. 

  

For illustration purposes, consider the c-chart with 350 =c . Table A3.12 shows that 

25.1735335 =−=cLCL      and      75.5235335 =+=cUCL  

so that 17]25.17[ ==d  and 52]75.52[ ==f . It thus follows that 9967.0)35,35( 0 === ccβ , 

42.301)35,35( 00 === ccARL  and 92.300)35,35( 00 === ccSDRL . In addition Table A3.13 shows 

that the 2090 =MDRL  and that the 4183 =Q  and the 871 =Q  so that the 40213 =−= QQIQR . 

 

However, note that, since the FAR and the ARL are most often used in OOC performance comparisons 

we primarily focus on the FAR and the in-control ARL in our discussion on the performance of the c-chart 

in Case K. In particular, we compare the FAR and the ARL of the c-chart in Case K to that of the well-

known 3-sigma X-bar chart. 
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Table A3.12: Characteristics of the in-control run-length distribution of the c-chart for 
50510110 )()(=c , 75 and 100 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

0c  cLCL  cUCL  d  f  Pr(No Signal | IC) FAR ARL0 SDRL0 

1 -2.00 4.00 0 3 0.6131 0.3869 2.58 2.02 

2 -2.24 6.24 0 6 0.8601 0.1399 7.15 6.63 

3 -2.20 8.20 0 8 0.9464 0.0536 18.66 18.15 

4 -2.00 10.00 0 9 0.9736 0.0264 37.81 37.31 

5 -1.71 11.71 0 11 0.9878 0.0122 82.03 81.53 

6 -1.35 13.35 0 13 0.9939 0.0061 163.74 163.24 

7 -0.94 14.94 0 14 0.9934 0.0066 150.85 150.35 

8 -0.49 16.49 0 16 0.9959 0.0041 246.70 246.20 

9 0.00 18.00 0 17 0.9946 0.0054 183.72 183.22 

10 0.51 19.49 0 19 0.9965 0.0035 285.74 285.23 

15 3.38 26.62 3 26 0.9965 0.0035 283.83 283.33 

20 6.58 33.42 6 33 0.9971 0.0029 339.72 339.22 

25 10.00 40.00 10 39 0.9960 0.0040 248.14 247.64 

30 13.57 46.43 13 46 0.9971 0.0029 349.94 349.44 

35 17.25 52.75 17 52 0.9967 0.0033 301.42 300.92 

40 21.03 58.97 21 58 0.9964 0.0036 275.36 274.86 

45 24.88 65.12 24 65 0.9976 0.0024 413.04 412.54 

50 28.79 71.21 28 71 0.9975 0.0025 396.70 396.20 

75 49.02 100.98 49 100 0.9967 0.0033 299.77 299.27 

100 70.00 130.00 70 129 0.9967 0.0033 307.36 306.86 

 

Table A3.13: Percentiles of the in-control run-length distribution of the c-chart for 
50510110 )()(=c , 75 and 100 

 Percentiles of the run-length distribution 

0c  1st 5th 10th 
25th 
(Q1) 

50th 

(MDRL) 
75th 

(Q3) 
90th 95th 99th 

1 2 2 2 2 2 3 5 7 10 
2 2 2 2 2 5 10 16 20 31 
3 2 2 2 6 13 26 42 55 84 
4 2 2 4 11 26 52 86 112 172 
5 5 5 9 24 57 114 188 245 376 
6 2 9 18 47 114 227 376 490 752 
7 2 8 16 44 105 209 347 451 693 
8 3 13 26 71 171 342 567 738 1134 
9 2 10 20 53 128 255 422 549 844 

10 3 15 31 83 198 396 657 855 1314 
15 3 15 30 82 197 393 653 849 1305 

20 4 18 36 98 236 471 782 1017 1563 
25 3 13 27 72 172 344 571 742 1141 
30 4 18 37 101 243 485 805 1047 1610 
35 4 16 32 87 209 418 693 902 1386 
40 3 15 29 80 191 382 633 824 1266 
45 5 22 44 119 286 572 950 1236 1900 
50 4 21 42 114 275 550 913 1187 1825 
75 4 16 32 87 208 415 690 897 1379 

100 4 16 33 89 213 426 707 920 1414 
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3.4.4.1 False alarm rate and average run-length 
 

Figure A3.13 shows the percentage difference between the false alarm rate (FAR) of the c-chart in 

Case K and the nominal FAR of 0.0027 i.e. the FAR of a 3-sigma Shewhart X-bar chart. The percentage 

difference is seen to be mostly positive; only for 450 =c  and 50 is the percentage difference negative. It 

is also clear that, in general, the FAR is far from 0.0027; especially for small values of 0c  i.e. less than or 

equal to 10, say.  

 

In particular, Figure A3.13 shows, in general, that (i) the FAR is hundreds of percents larger than 

0.0027, and (ii) as 0c  increases the percentage difference gets smaller. A c-chart based on 60 =c , for 

instance, has a FAR of 0.0061, which is 126% larger than 0.0027 whereas a c-chart based on 100 =c  has 

a FAR of 0.0035 (which is 30% larger than 0.0027) and a c-chart based on 350=c  has a  FAR equal to 

0.0033 (which is only 23% larger).  
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Figure A3.13: Percentage difference between the false alarm rate (FAR) of the c-chart and the 
nominal FAR of 0.0027 for 50510160 )()(=c , 75 and 100 

 

Figure A3.14 shows the percentage difference between the average run-length (ARL) of the c-chart in 

Case K and that of the nominal ARL of 370.4, which is the ARL of a 3-sigma Shewhart X-bar chart. The 

percentage difference is seen to be mostly negative and implies shorter in-control ARL’s than nominally 

expected from a 3-sigma chart like the c-chart. Thus, we can deduce that, unless the specified value 0c  of 

c  is reasonably large, the c-chart will erroneously signal more often than what is nominally expected 

from a 3-sigma chart. 
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Figure A3.14: Percentage difference between the average run-length (ARL) of the c-chart and the 
nominal ARL of 370.4 for 50510110 )()(=c , 75 and 100. 

 

 

 

3.4.4.2 The run-length distribution 
 

 

It is good to make a visual comparison of the run-length distributions since it gives us an overall idea 

of just how different (or similar) the run-length distribution of the c-chart is to that of the 3-sigma X-bar 

chart. Figure A3.15 displays boxplot-like graphs of the run-length distribution of the c-chart when 

50)5(10)1(60 =c  and also shows a boxplot-like graph of the run-length distribution of the 3-sigma X-bar 

chart. 

 

We  see that, in general, for small values of 0c  the run-length distribution of the c -chart differs 

substantially from that of the 3-sigma X-bar chart in that the 0ARL  and the 0MDRL  are considerably 

smaller and the spread (as measured by the range R) in the run-length distribution of the c-chart is 

noticeably less than that of the X-bar chart. Only for larger values of 0c  does the run-length distribution 

of the c -chart become more like that of the 3-sigma X-bar chart. 
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Figure A3.15: Boxplot-like graphs of the in-control (IC) run-length distribution of the c-chart for 
100 and  75 50, 45, 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, =0c  in Case K compared to the run-length 

distribution of the 3-sigma Shewhart X-bar chart 

 

 

 

Summary 
 

Like the p-chart, the c-chart is well-known and easy to apply but, even in Case K, the c-chart does not 

perform anything like the 3-sigma Shewhart X-bar chart. The discrepancy is due to the facts that 

 

(i) when c is small the normal approximation to the Poisson distribution is poor so both the 

charting constant 3=k  and the charting formula (mean ±  3 standard deviations) may be 

inaccurate, and 

 

(ii) due to the discrete nature of the Poisson distribution only certain FAR values can be attained. 
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