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Chapter 3

Attributes control charts; Case K and Case U

3.0 Chapter overview

I ntroduction

When studying categorical quality characteristics the items or the units of product are inspectec
and classified simply as conforming (they meet certain specifications) or nonconforming (they do no
meet the specifications). The classification is typically carried out with respect to one or more of the
specifications on some desired characteristics. We label such characteristics “attributes” and call tr
data collected “attributes data” (see e.g. Chapter 6, p.265 of Montgomery, (2005)).

The p-chart and the-chart are well known and commonly used attributes control chartsp-The
chart is based on the binomial distribution and works with the fraction of nonconforming items in a
sample. The-chart is based on the Poisson distribution and deals with the number of nonconformities
in an inspection unit. Several statistical process control (SPC) textbooks including the ones by Farnui
(1994), Ryan (2000) and Montgomery (2005) describe these charts.

M otivation

The p-chart andc-chart are particularly useful in the service industries and in non-manufacturing
quality improvements efforts since many of the quality characteristics found in these environments ar
in actual fact attributes. SPC with attributes data therefore constitutes an important area of research a

applications (see e.g. Woodall (1997) for a review).

The classical application of thp-chart and thec-chart requires that the parameters of the

distributions are known. In many situations the true fraction nonconfornungnd the true average

number of nonconformities in an inspection urat, are unknown or unspecified and need to be
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estimated from a reference sample or historical (past) data. While there are empirical rules an
guidelines for setting up the charts, little is known about their run-length distributions when the fact
that the parameters are estimated is taken into account. Understanding the effect of estimating tt
parameters on the in-control (IC) and the out-of-control (OOC) performance of the charts are therefor

of interest from a practical and a theoretical point of view.

In this chapter we derive and evaluate expressions for the run-length distributions of the Shewhar
type p-chart and the Shewhart-tymechart when the parameters are estimated. An exact approach
based on the binomial and the Poisson distributions is used since in many applications the @alues of
andc are such that the normal approximation to the binomial and the Poisson distributions is quite
poor, especially in the tails. The results are used to discuss the appropriateness of the widely followe
empirical rules for choosing the size of the Phase | sample used to estimate the unknown paramete
this includes both the number of reference samples (or inspection mmigs)d the sample size.

Note that, in our developments, we assume that the size of each subgroup or the size of each inspect

unit stays constant over time.

M ethodology

We examine the effect of estimating and c on the performance of tipechart and the-chart via

their run-length distributions and associated characteristics such as the average runAlehgtthe

false alarm rate KAR) and the probability of a “no-signal”. Exact expressions are derived for the
Phase Il run-length distributions and the related Phase Il characteristics using expectation b
conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the run-length
distributions conditioned on point estimates from Phase | and then find the unconditional
characteristics by averaging over the distributions of the point estimators. This two-step analysi:
provides valuable insight into the specific as well as the overall effects of parameter estimation on th
performance of the charts in Phase II.

The conditional characteristics let us focus on specific values of the estimators and look at the
performance of the charts in more detail for the particular value(s) at hand. The unconditional
characteristics characterize the overall performance of the charts i.e. averaged over all possible valu

of the estimators.

In practice we will obviously have only a single realization for each of the point estimators and the

characteristics of the conditional run-length distribution therefore provide important information
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specific only to our particular situation; but, since each user will have his own values for each of the
point estimators the conditional run-length performance will be different from user to user. The
unconditional run-length, on the other hand, lets us look at the bigger picture, averaged over a

possible values of the point estimators, and is therefore the same for all users.

Layout of Chapter 3

This chapter consists of two main sections and an appendix. The first section is labelgd “The
chart and the-chart for standards known (Case K)” and the second section is calleg-tHaat and
the c-chart for standards unknown (Case U)”. In the first section we study the charts when the
parameters are known. The second section focuses on the situation when the parameters are unknc
and forms the heart of Chapter 3. In both sections we study¢hart and the-chart in unison; this
points out the similarity and the differences between the charts and helps one to understand the thec
and/or methodology better.

Appendix 3A gives an example of each chart and contains a discussion on the characteristics of t
p-chart and the-chart in Case K. To the author’'s knowledge none of the standard textbooks and/or
articles currently available in the literature give a detailed discussion of the Gashaft’'s and the

Case Kc-chart’'s characteristics.
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3.1 Thep-chart and the c-chart for standards known (Case K)

I ntroduction

Case K is the scenario where known values for the parameters are available. This will happen i
high volume manufacturing processes where ample reliable information is available so that it is

possible to specify values for the parameters.

Studying Case K not only sets the stage for the situation when the parameters are unknown (Ca
U), but the characteristics and the performance of the charts in Case K are also important. In particule
it helps us understand the operation and the performance of the charts in the simplest of cases (wh
the parameters are known) and provides us with benchmark values which we can use to determine t
effect of estimating the parameters on the operation and the performance of the charts in Case U (wh

the parameters are unknown).

Thep-chart is used when we monitor the fraction of nonconforming items in a sample of=size
and is based on the binomial distribution. Thehart is based on the Poisson distribution and used
when we focus on monitoring the number of nonconformities in an inspection unit, where the

inspection unit may consist of one or more than one physical unit.

Assumptions

We derive and study the characteristics of the charts in Case K assuming that: (i) the sample si:
and the size of an inspection unit (whichever is applicable) stay constant over time, (ii) the
nonconforming items occur independently i.e. the occurrence of a nonconforming item at a particula
point in time does not affect the probability of a nonconforming item in the time periods that
immediately follow, and (iii) the probability of observing a nonconformity in an inspection unit is

small, yet the number of possible nonconformities in an inspection unit is infinite.

To this end, letX, ~iidBin(n, p) for i = 12... denote the number of nonconforming items in a
sample of sizen> ith true fraction nonconforming Op < ;Xhe sample fraction nonconforming
is then defined ag, = X, /n. Similarly, letY; ~iidPoi(c), c>0 for i = 1,2... denote the number of

nonconformities in an inspection unit wharedenotes the true average number of nonconformities in

an inspection unit.
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Charting statistics

The charting statistics of thp-chart is the sample fraction nonconforming = X, /n for
I =12...; the charting statistics of theechart is the number of nonconformiti¥s for i = 12..., in an

inspection unit.

Control limits

For known values of the true fraction nonconforming and the true average number of

nonconformities in an inspection unit, denoted fy and c, respectively, the upper control limits

(UCL’s), the centerlines@L’'s), and the lower control limitsL(CL ’s) of the traditionalp-chart and

the traditionak-chart are

UCLp =Pt 3/ Po (1_ Po )/I’] CLp =Py LCLp =Py _3\/ Po (1_ po)/n (3'1)

and
UCL, =¢, + 3/c, CL, =c, LCL, =c¢, -3/c, (3-2)
respectively (see e.g. Montgomery, (2005) p. 268 and p. 289).
The control limits in (3-1) and (3-2) ark-sigma limits (wher& = 3B and based on the tacit

assumption that both the binomial distribution and the Poisson distribution are well approximated by

the normal distribution.

The subscriptsp” and “c” in (3-1) and (3-2) are used to distinguish the control limits of the two

charts; where no confusion is possible the subscripts are dropped.
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I mplementation

The actual operation of the charts consist of: (i) taking independent samples and independer
inspection units at equally spaced successive time intervals, (i) computing the charting statistics, an
then (iii) plotting the charting statistics (one at a time) reflected on the vertical axis of the control

charts versus the sample number and the inspection unit number ref@cted on the horizontal

axis.

The control limits are also displayed on the charts so that every time a new charting statistic i

plotted it is in actual fact compared to the control limits. The aim is to detect when (or if) the true

process parameteng and c change (moves away) from their known or specified or target valyes

andc,, respectively.

Signaling and non-signaling events

The event when a charting statistic (point) plots outside the control limits, which is called a
signaling event and denoted Wy for i = 12..., is interpreted as evidence that the parameter is no
longer equal to its specified value. The charting procedure therefore stops, a signal (alarm) is givel
and we declare the process out-of-control (OOC) i.e. we say ghap, or state thatc#c,.

Investigation and corrective action is typically required to find and eliminate the possible assignable

cause(s) and/or source(s) of variability responsible for the behavior.

The complimentary event is when a plotted point lies between (within) the control limits and
labeled a non-signaling event or a “no-signal”. In case of a no-signal the charting procedure continue:

no user intervention is necessary, and we consider the process to be in-control (IC) i.e. we say th

p = p, or declare that = c,. We denote the non-signaling event by
A°:{LCL<Q <UCL}

whereQ, = p, orY, fori=12...and LCL andUCL denote the control limits in either (3-1) or (3-2).

Note that, in a hypothesis-testing framework, concluding that the process is out-of-control when
the process is actually in-control is called a type | error; similarly, concluding that the process is in-

control when it is really out-of-control is a called a type Il error.
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3.1.1 Probability of a no-signal

I ntroduction

The probability of a no-signal refers to the probability of a non-signaling event and is denoted by
B=Pr(A°) for i= 12...
The probability of a no-signal is important because: (i) it is the key for the derivation of the run-

length distribution, and (ii) plays a central role when we assess the performance of a control char
Once we have the probability of a no-signal, the run-length distribution is completely known.

Probability of a no-signal: p-chart

The probability of a no-signal on tipechart is the probability of the event
{LCL, <p, <UCL,} for i=12... (3-3)

Since p is known and equal tg, the control limitsLCL ; andUCL , are known values (constants)

which makesp, = X, /n the only random quantity in (3-3).

The cumulative distribution function of the sample fraction nonconfornping known and given

by

iy <a - i, insa)= i, )= 31Pr, = ) =5t

j:O j=0

for O<a<l1, 0< p<1 and where fha ]denotes the largest integer not exceedmag Because the
distribution of p, is defined in terms of that ok, ~ Bin(n, p) we re-express the non-signaling event
in (3-3) as

{nLCL, < X; <nUCL ;}

and use the properties of the distributionXgfto derive the probability of a no-signal.
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Thus, at thei™ observation the non-signaling probability for thehart is a function of and

depends omp, p, andn, and is derived as follows

B(p,py.n)=Pr(LCL, < p, <UCL))
=Pr(nLCL, < X; <nUCL )
=Pr(X; <nUCL,)-Pr(X; <nLCL )

_|H(B;p,n) if nLCL, <0

~ |H(;p,n)-H(a p,n) if nLCL, 20 (3-4)
_[1-1,+1n-b) if nLCL, <0

|1, @+1n-a)-1,(+Ln-b) if nLCL, >0

=1-1,0+Ln-b) =1 o ncLz OLCL,)A- 1 (@+1N~-a))

for 0< p,p, <1, whereUCL, and LCL ; are defined in (3-1) and both are functionshond p,,
b n ) )
H ©;p,n)=Pr(X; <b) = Z( .jp’ @-p™’
=0\ J
denotes the cumulative distribution function (c.d.f) of Bia n p( diskribution,
t
I, u,v)=(BU,v)"'B(t;u,v) for 0<t<1 and B(t;u,v) :J's”‘l(l—s)"’lds for uy>0
0

denotes the c.d.f of th®eta u {/, dlistribution (also known as the incomplete beta function) with

BU,v)=BLu,v),

(x) = 1 if x=0
oo =10 i x<o”
and where
min{nUCL , — In ifnUCL, isannteger
a=[nLCL,.] & =J t P } . b d (3-5)
P min{[nUCL, h } ifnUCL, isnotarinteger

and [x ] denotes the largest integer not exceeding
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Remark 1

() Making use of the c.d.f of the beta distribution and the indicator functiop, 1x helps us

write the probability of a no-signal in a more compact way (see e.g. the last line of (3-4)).

(i)  The relationship between the c.d.f of the binomial distribution and the c.d.f of the type | or
standard beta distribution is evident from (3-4) and given by
Honp)=1--1,b+Ln-b)=1_,(n-bb+1).

(i)  The charting constants and b in (3-5) are suitably modified to take account of the fact

that theBin ( p Mistribution assigns nonzero probabilities only to integers from 0. to

(iv)  To cover both the in-control and the out-of-control scenarios we do not assume that the

specified value for the fraction nonconforming in (3-4) is necessarily equal to the true

fraction nonconformingp .
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Probability of a no-signal: c-chart

The probability of a no-signal on tleechart is the probability that the event
{LCL, <Y, <UCL} for i= 12... (3-6)
occurs. Sincec is specified and equal tq, the control limitsLCL, andUCL_, are constants. As a
resulty, is the only random variable in (3-6). Because the distributiony a8 known (assumed) to be

Poisson with parameter (in general)we derive the probability of a no-signal on thehart (directly)

in terms of the distribution of; .

The probability of a no-signal on theechart is a function of and depends onand c,, and is

derived as follows

B.c,)=PrlLCL, <Y, <UCL,)
=Pr(Y, <UCL_)-Pr(Y, <LCL,)

3-7
=G(f;c)-G(d;c) 37
=T,1(0) —T4.4(C)
for c,c, > 0, whereUCL, and LCL, are defined in (3-2) and both are functionef
f —CnAj
Gumzmmsnzzef
i J:
denotes the c.d.f of theoi c¢ (distribution,
F(u) = (T ()T (t;u) where  T(t;u) :js“'le‘sds for tu>0
t
denotes the upper incomplete gamma function,
() =(t-1)!
for positive integer values df, and where
UCL.- 1 ifUCL, isannteger
d=max{,[LCL.]} & f= (3-8)
UCL, ] ifUCL, isnotannteger.
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Remark 2

() The relationship between the c.d.f of the Poisson distribution and the lower incomplete

gamma function is evident from (3-7) and given®§f ;c) =T,,,(c).

(i)  The constantsd and f in (3-8) incorporate the fact that thHeoi ¢ (djstribution only

assigns nonzero probabilities to non-negative integers.

(i)  We do not assume that in (3-7) is necessarily equal ty; this enables us to study both

the in-control and the out-of-control properties of ¢hehart.

3.1.2 Operating characteristic and the OC-curve

The Operating Characteristic (OC) or tferisk is the probability that a chart does not signal on
the first sample or the first inspection unit following a sustained (permanent) step shift in the paramete

and thus failing to detect the shift. For frehart the OC is the probability of a no-sigffap ©,.,n , )

with p # p, and for thec-chart the OC is the probabili§(c,c,) with c # c,.

A graphical display (plot) of the OC as a function ok p< (id case of the-chart), or as a

function of c > 0 (in case of the-chart), is called the operating characteristic curve or simply the OC-
curve. The OC-curve lets us see a chart’s ability to detect a shift in the process parameter and therefc

describes the performance of the chart.

3.1.3 Falsealarmrate

As an alternative to the OC-curve we can graph the probability of a signal as a funcfiofoof
values of & p< 1lor as a function ot for values ofc > 0 The probability of a signal i$- 4 i.e.

one minus the probability of a no-signal, and is in some situations intuitively easier understood that
the OC.

For thep-chart the probability of a signal - S(p, p,,n) where 5 @ p, n)is defined in (3-4)
and for thec-chart the probability of a signal is-13 ¢ €,, Where S € ¢, )is given in (3-7).
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When we substitutgp with p, in 1- 8(p, p,,n) and replacec with ¢, in 1- £(c,c,) we obtain
the false alarm rateHAR) of the charts, that is,
FAR(po’po’n)zl_ﬁ(po' p0|n) and FAR Cg Co :) _]-ﬁ C() Co )

The false alarm rate is the probability of a signal when the process is in-control (i.e. no shift

occurred) and often used a measure of a control chart’s in-control performance.

The OC-curve and the probability of a signal as functiongpobr c i.e. given a shift in the

process, focus on the probability of a single event and involves only one charting statistic. A more
popular and perhaps more useful method to evaluate and examine the performance of a control chart

its run-length distribution.

3.1.4 Run-length distribution

The number of rational subgroups to be collected or the number of charting statistics to be plotte
on a control chart before the first or next signal, is called the run-length of a chart. The discrete randol
variable defining the run-length is called the run-length random variable and denotdd e

distribution of N is called the run-length distribution.

Characteristics of the run-length distribution give us more insight into the performance of a chart.
The characteristics of the run-length distribution most often looked at are, for example, its moment:
(such as the expected value and the standard deviation) as well as the percentiles or the quartiles (
e.g. Shmueli and Cohen, (2003)).

If no shift occurred (i.ep = p, or ¢ =c,) the distribution ofN is called the in-control run-length
distribution. In contrast, if the process did encounter a shiftp(i#ep, or ¢ # c,) the distribution of

N is labeled the out-of-control run-length distribution. To distinguish between the in-control and the

out-of-control situations the notationsl, and N, are used; this notation is also used for the

characteristics of the run-length distribution.

Assuming that the rational subgroups are independent and that the probability of a signal is the
same for all samples (inspection units) the run-length distribution is given by

Pl =j)=8" &5) i=12,.. (3-9)
where 5 denotes the probability of a no-signal defined in (3-4) or (3-7).
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The distribution in (3-9) is recognized as the geometric distribution (of @jdeith probability of
“success”1- 5 so that we write, symbolicallyN ~Geo(1- ). The success probability is the
probability of a signal and, as mentioned before, completely characterizes the geometric (run-lengtr

distribution.

Various statistical characteristics of the run-léndtstribution provide insight into how a control
chart functions and performs. Typically we want the chart to signal quickly once a change takes plac
and not signal too often when the process is actually in-control, which is when no shift or no chang
has occurred. We are interested in the typical value as well as the spread or the variation in the ru
length distribution.

3.1.5 Averagerun-length

A popular measure of the central tendency of aildigion is the expected value (mean) or the
average. Accordingly, the average has been the most popular index or measure of a control char
performance and is called the average run-ler&ffL). TheARL is defined as the expected number of

rational subgroups that must be collected before the chart signals.

When the process is in-control the expected numberharting statistics that must be plotted
before the control chart signals erroneously is called the in-control average run-length and denoted
ARL,. The out-of-control average run-length is denoted ABL, and is the expected number of
charting statistics to be plotted before a chart signals after the process has gone out-of-contrc
Obviously, for an efficient control chart the in-control average run-length should be large and the out

of-control average run-length should be small.

From the properties of the geometric distributiomARL is the expected value ™ so that
ARL=E(N)=1/(1-B). (3-10)
Therefore, when the signaling events are independent and have the same probahHityahthe
chart is simply the reciprocal of the probability of a sighals . If the process is in-control, the in-
control ARL is equal to the reciprocal of tiRA\R, that is, ARL, =1/ FAR. It is this simple relationship

between the average run-length and the probability of a signal, or the in-control average run-length ar
the false alarm rate, that accounts for the popularity of the (in-control) average run-length and th

probability of a signal (false alarm rate) as measures of a control chart’s performance.
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3.1.6 Standard deviation and percentiles of the run-length

Other characteristics of the run-length distributewa also of interest. For example, in addition to
the mean we should also look at the standard deviation of the run-length distribution to get an ide

about the variation or spread.

Using results for the geometric distribution, thanstard deviation of the run-length, denoted by
SDRL, is given by

SDRL = stde(N) = /B /1- f). (3-11)

Since the geometric distribution is skewed to thgatrthe mean and the standard deviation become
guestionable measures of central tendency and spread so that additional descriptive measures
useful. For example, the percentiles, such as the median and the quartiles (which are more robust
outlier resistant), can provide valuable information about the location as well as the variation in the

run-length distribution.

Because the run-length distribution is discrete, 186q™ percentile (& q< ) is defined as the
smallest integejr such that the cumulative probability is at legsthat is,Pr(N < j) = q. The median
run-length (denoted bWIDRL) is the 58' percentile so thatj= 05whereas the first quartilg) ) is
the 28" percentile so thatj = 0. & .
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3.1.7 In-control and out-of-control run-length distributions

The characteristics of the in-control run-lengthtriisitions are essential in the design and
implementation of a control chart. Furthermore, for out-of-control performance comparisons we neec
the out-of-control run-length distributions and/or characteristics. For example, the in-control average
run-lengths of the charts are typically fixed at an acceptably high level so that the number of false
alarms or the false alarm rate is reasonably small. The chart with the smallest or the lowest out-o
control average run-length for a certain change (or shift of a specified size) in the process parameter
then selected to be the winner (i.e. the best performing chart). Alternatively, we can fix the false alarn
rate of the charts at an acceptably small value and then select that chart with the highest probability

a signal (given a specified shift in the parameter) as the winner.

Note that, the average run-length and the probglofita signal are two equivalent performance
measures in that they both lead to the same decision and follows from the relationship between tt
average run-length and the probability of a signal given in (3-10).

The run-length distributions and some related characteristics of the run-length distributions of the
p-chart and the-chart, which all conveniently follow from the properties of the geometric distribution

of order 1, are summarized in Table 3.1 and Table 3.2, respectively.

The characteristics of thechart and the-chart are seen to be all functions of and depend entirely

on the probability of a no-signal, that i& p 0,,n ,0f £(,c,); once we have expressions and/or
numerical values for the two probabilitig® p p,,n ,and S € c, ) the run-length distributions are

completely known.

The in-control run-length distributions and the omtrol characteristics of the run-length

distributions are obtained whem= p, and c = c,. The out-of-control run-length distributions and the

out-of-control characteristics are found by set{ing p, andc # c,, respectively.

An in-depth analysis and discussion of the in-cdnmtin-length distributions of thp-chart and the
c-chart in Case K (and their related in-control properties) are given in Appendix 3A. From time to time
we will refer to the results therein; especially when we study and look at the effects of paramete

estimation on the performance of the charts in Case U.
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Table 3.1: The probability mass function (p.m.f), the cumulative distribution function (c.d.f), the
falsealarm rate (FAR), the average run-length (ARL), the standard deviation of the run-length
(SDRL) and the quantile function (qf) of the run-length distribution of the p-chart in Case K

p.m.f P, =jpp, nEBOR NI EBOPN) =12 (3-12)
cdf P, <jpPN)EE BOPN)  j=12 (3-13)
FAR FAR(p, .n)=1- B(Py. Po.N) (3-14)
ARL ARL (p,p, n)=EN,)=1/0-B(p, Ppy.N)) (3-15)
SDRL SDRL p p, 0 )= stdewN, )=/B(p.p, ) /(L= B(P, Py, 1)) (3-16)

qf Qu,(G B po N =inf{int x:Pr(N, <x p p, N =2q 0<qg<l (3-17)

Table 3.2: The probability mass function (p.m.f), the cumulative distribution function (c.d.f), the
falsealarm rate (FAR), the average run-length (ARL), the standard deviation of the run-length
(SDRL) and the quantile function (gf) of the run-length distribution of the c-chart in Case K

pm PN, = j10.60)= A€.G) M A-pecy) (=12 (3-18)
cdf PN, < jic.G) =1- (A6, G)))  j=12 (3-19)
FAR FAR(C,) =1- f(C,,C,) (3-20)
ARL ARL €.c,)=EN,)=1/0-(c,c,)) (3-21)
SDRL SDRL € ¢, = stdewN, ) =./5(.c,) /- B(c,C,)) (3-22)

qf Quv(gccy =inflint x:Pr(N,<xcc) 2qp 0<qg<l1 (3-23)
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3.2 The p-chart and the c-chart for standards unknown (Case U)

Introduction

Case U is the scenario when the paramegerand ¢ are unknown. Case U occurs more often in

practice than Case K particularly when not much historical knowledge or expert opinion is available.
In the service industries, non-manufacturing environments and job-shop environments, which al

involve low-volume of “production”, it often happens that there is a scarcity of historical data.

Setting up a control chart in Case U consists of two phases: Phase | and Phase Il. The former is t
so-called retrospective phase whereas the latter is labeled the prospective or the monitoring phase (
e.g. Woodall, (2000)). In Phase | the parameters and the control limits are estimated from an in-contre
reference sample or calibration sample. In Phase IlI, new incoming subgroups are collecte
independently from the Phase | reference sample. The charting statistic for each Phase Il subgroup
then calculated and individually compared to the estimated Phase Il control limits until the first point

plots outside the limits. The goal is to detect when (or if) the process parameters change.

We study and analyze the performance ofgifedart andc-chart following a Phase | analysis. In
other words, we focus on the run-length distributions and the associated characteristics of the rur

length distributions of the p-chart and ttxehart in Phase II.
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3.2.1 Phase | of the Phase Ip-chart and c-chart

The charting procedures to ensure that the Phase | data is representative of the in-control state
the process were discussed in Chapter 2. Here we consider the matter only in very general terms a
assume that such in-control Phase | data is available; this implies that each sample and each inspect

unit in the reference sample has identical (unknown) parameters.

Phase | data and assumptions

The Phase | data is the in-control reference sample or the historical (past) data that is used
estimate the unknown parameters. In case ofpthbart the Phase | data consists rof mutually
independent samples each of skel. The Phase | data for theechart consists ofm mutually

independent inspection units.

To this end, leX, ~iidBin(n, p) for i = 12...,m denote the number of nonconforming items in
the i reference sample of siza> ith unknown true fraction nonconforming<(p< . The
sample fraction nonconforming of each preliminary sample,is X, /n for i = 12...,m. Similarly,
letY; ~iidPoi(c), c>0 for i = 12...,m denote the number of nonconformities in tflereference

inspection unit where denotes the unknown true average number of nonconformities in an inspection

unit.

Phase | point estimators for pand c

The average of then Phase | sample fractions nonconformipg p,.,..., p,, and the average of the
numbers of nonconformities in each Phase | inspectionYyi,....Y,,, are used to estimate andc,

respectively. In other words, we estimgieby

18 1 U
p=— L =— > X, =— 3-24
p=— i§:l P = ;:1 Rt (3-24)
andc by
1o Vv
C=—>> Y =— 3-25
le = (3-25)

where the random variable
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U => X; ~Bin(m, p)

i=1
denotes the total number of nhonconforming items in the entire sehafeference observations and

the random variable
V =>"Y, ~ Poi(mc)
i=1

denotes the total number of nonconformities in the entire sat dference inspection units.

Remark 3

0] It can be verified that the point estimatops and € in (3-24) and (3-25) are: (a) the

maximum likelihood estimators (MLE’s), and (b) the minimum variance unbiased

estimators (MVUE’s), ofp andc, respectively (see e.g. Johnson, Kemp and Kotz, (2005)

p. 126 and p. 174).

In particular, note that, the expected value and the varianpearé

and

varU) _ mp@-p) _ p@-p)

var(p) = (mn)? (mn)? mn

respectively, whereas the expected value and the variarceua

and

respectively.
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(i) It is essential to note that the distributionldfdepends on the unknown paramepeiand

the distribution ofV depends on the unknown parameteso that it is technically correct

to write
U | p ~ Bin(mn, p) and V |c ~ Poi(mc) .

This observation will become vital when we study the unconditional run-length
distributions and the characteristics of the unconditional run-length distribution in later

sections.
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3.2.2 Phase llp-chart and c-chart

A Phase Il chart refers to the operation and implementation of a chart following a Phase | analysi

in which any unknown parameters were estimated from the Phase | reference sample.

Phase Il estimated control limits

It is standard practice to replag® with p in (3-1) and substitute for c, in (3-2) when the
parametersp and/or ¢ are unknown (see e.g. Ryan, (2000) p. 155 and p. 169 and, Montgomery,
(2005) p. 269 and p. 290). The estimated upper control IirhléL(s), the estimated centerlines
(éL 's), and the estimated lower control Iimits@;L 's) of the p-chart and thes-chart are therefore
given by

UCL,=p+3p@p)h CL,=p LCL,=p-3/pl-P)/n (3-26)
and
UCL,=c+3[c CL,=¢ LCL =c-3Jc (3-27)

respectively.

By the invariance property of MLE’s the estimated control limits in (3-26) and (3-27) are the
MLE’s of the control limits of (3-1) and (3-2) in Case K (see e.g. Theorem 7.2.10 in Casella and
Berger, (2002) p. 320). However, unlike in Case K, the Phase Il estimated control limits are functions

of and depend on the point estimators (variabfes)r ¢ and are random variables. We therefore need

to account for the variability in the estimated control limits while determining and understanding the

chart’s properties.

Phase Il charting statistics

Let p, =X;/n for i =m+ 1m+ 2... denote the Phase Il charting statistics forgehart where
X, ~iidBin(n, p,) denote the number of nonconforming items inithehase 1l sample of size> 1
with fraction nonconforming0< p, <1. Similarly, let Y, ~iidPoi(c,), ¢, >0 for i =m+ 1m+ 2...
denote the number of nonconformities in tiePhase |I inspection unit wheg denotes the average
number of nonconformities in an inspection unit in Phase Il. Theseare the Phase Il charting

statistics of the-chart.
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The p-chart

It is important to note that the application of thehart in Case U depends on three

parameters: the unknown true fraction nonconformmghe point estimatg and p,.

In Phase Il we denotg@ with p, so that p, denotes the probability of an item being
nonconforming in the prospective monitoring phase andenotes the probability of an

item being nonconforming in the retrospective phase. To maintain greater generality and tc
cover both the in-control (IC) and the out-of-control (OOC) cases, we do not assume that

p, is necessarily equal tp . We therefore writep, = p for the IC scenario andp, Z p

for the OOC case.

Also, in Phase | we estimate by p, which (due to sampling variability) is not
necessarily equal te ; we write this asp=p and p# p. When p=p we say thatp is

estimated without error.

This is a key observation. Because we [séo calculate the estimated control limits, in

Phase Il we are actually comparing againstp and not againstp; this leads to the

following four unique scenarios:

(i) p,=p=p :the processis IC in Phase Il apdis estimated without error,
(i) p, # p=7p :the process is OOC in Phase Il apds estimated without error,
(i) p, = p# p: the process is IC in Phase Il apdis not estimated without error, and

(iv) p, Z p# p: the process is OOC in Phase Il apds not estimated without error.

To simplify matters we assume, without loss of generality, that the process operates IC in

Phase Il andp is not necessarily equal §o; this is scenario (iii) listed above.
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The cchart

For thec-chart in Case U we have a similar situation as that forpthkart i.e. the
application of thec-chart in Case U depends on three parameters: the true (but unknown)

average number of nonconformities in an inspection anihe point estimaté andc, .

In Phase Il we denote with ¢, so thatc, denotes the average number of nonconformities

in an inspection unit in the prospective monitoring phase @ndenotes the average
number of nonconformities in an inspection unit in the retrospective phase. To maintain
greater generality and to cover both the in-control (IC) and the out-of-control (OOC) cases,

we do not assume thai is necessarily equal to, which we write asc, = c for the IC

scenario andc, # ¢ for the OOC case.

In Phase | however we estimate by €, which (due to sampling variability) is not
necessarily equal to and we write this as =C andc#C. Whenc =C we say that is

estimated without error.

Now, because we useé to calculate the estimated control limits, in Phase Il we are
actually comparingc, againstc and notc; this leads to the following four unique

scenarios for the Phasectchart:

(i) ¢, =c=c :the process is IC in Phase Il ands estimated without error,
(i) c, Zc=C:the process is OOC in Phase Il anes estimated without error,
(iii) ¢, =c#cC:the processis IC in Phase Il aads not estimated without error, and

(iv) c, #c#¢cC :the process is OOC in Phase Il angs not estimated without error.

To simplify matters we assume, without loss of generality, that the process operates IC in
Phase Il and we assume tl@atis not necessarily equal to; this is scenario (iii) listed

above.
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Phase Il implementation and operation

The actual operation of thechart and the-chart in Phase Il consists of: (i) taking independent
samples and independent inspection units (independent from the Phase | data), (ii) calculating tt

Phase Il sample fractions nonconformimg = X, /n and the numbers of nonconformities in each
Phase Il inspection uni¥, for i=m+ 1m+ 2..., and then (iii) comparing these charting statistics

(one at a time) to the estimated control limits in (3-26) and (3-27), respectively.

The moment that the first charting statistic plots on or outside the estimated limits a signal is giver
and the charting procedure stops. The process is then declared out-of-control and we say (in practic

that p, # p (in case of th@-chart) or state that, # T (in case of the-chart).

By comparing the Phase Il charting statistics with the estimated control limits, the Phase II
characteristics of the charts are (unlike in case K) affected by the variation in the point estimate:

p=U/mn andC=V/m whereU |p~Bin(mn,p) andV |c~ Poi(mc) are random variables but

the values ofm andn can be controlled or decided upon by the user.

The variation in the estimated control limits has significant implications on the properties of the
charts. Most importantly the Phase Il run-length distributions are no longer geometric since the Phas
Il signaling events are no longer independent. Intuitively, since estimating the limits introduces extre
uncertainty it is expected that the run-length distributions in Case U will be more skewed to the righ
than the geometric. The additional variation must therefore be accounted for while determining anc
understanding the chart’s properties. We give a systematic examination and detailed derivations of tt

Phase Il run-length distributions of thechart andc-chart in what follows.
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Phase Il signaling event and Phase Il non-signaling event

The event that occurs when a Phase Il charting statistic plots outside the estimated control limits |

called a Phase Il signaling event and denotedBpyfor i =m+ 1m+ 2.... In case of a Phase Il

signaling event, an alarm or signal is given and we declare the process out-of-control, that is, we sc

that p, # p or state thatc, #C. This means, for instance, that in practice we conclude that the

probability p, of an item being nonconforming in Phase Il is not equal to the estimatedwalue

The Phase Il non-signaling event is the complementary event of the Phase Il signaling event an
occurs when a Phase Il charting statistic plots within or between the estimated control limits. We
denote the Phase Il non-signaling event by

BC: {LCL <Q <UCL}
whereQ, = p, orY, fori =m+ 1m+ 2... and LCL andUCL are the control limits in either (3-26) or

(3-27), respectively.

In case of a Phase Il non-signaling event no signal is given and we consider the process in-contrc

that is, we say thap, = p or state that, =C.

Dependency of the Phase Il non-signaling events

If the Phase Il signaling events were independent, the sequence of trials comparing each Phase
charting statisticQ, with the estimated limit&JCL and LCL, would be a sequence of independent

Bernoulli trials. The run-length between occurrences of the signaling event would therefore be &

geometric random variable with probability of success equal t8 PrMoreover, the average run-

length would beARL = 1/Pr(B,) .

However, the signaling event8, and B, (or, equivalently, the non-signaling event8® and
Bjc) are not mutually independent for # j =m+ 1m+ 2... and the distribution of the run-length
between the occurrences of the evBntis as a resultot geometric. In particular, because each Phase

Il p, (orY,) fori=m+ Im+ 2...is compared to the same set of estimated control limits, which are

random variables, the signaling events are dependent.
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To derive exact closed form expressions for the Phase Il run-length distributions we use a two-ste
approach called the “method of conditioning” (see e.g. Chakraborti, (2000)). First we condition on the
observed values of the random variablésand V to obtain theconditional Phase II run-length
distribution and then use thlenditional Phase Il run-length distributions to obtain the marginal or

unconditional Phase Il run-length distributions.

To this end, note thagjven (or conditional on or having observed) particular estimates op and
C (say p,, andc,,), the Phase Il non-signaling eveate mutually independent each with thesame

probability so that theonditional Phase 1l run-length distributior@se geometric. For instance, for a

given or observed value op (say p,.), the estimated Phase Il control limits of grehart are

constant i.e. they amot random variables, so that the conditional Phase Il non-signaling events of the

p-chart

{P-3/PA-P)/n<p <p+3/PL-P/n| P= Pyt for i=m+1im+2..

are mutually independent each with tkeme probability given by
1- 4, = 1 Prp-3/pA-P)/n<p <p+3/PA-P)/n|P=P,s). (3-28)
The same is true for tleechart. That is, for an observed valueto{sayc,,.) the events
{c-3Jc <Y, <c+3Jec|c=c,} for i=m+1m+2..
are mutually independent each with tkeme probability given by

1-B. =1-Prc-3Jc <Y, <c+3/c|c=c,,). (3-29)
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The parameters of thenditional Phase Il (geometric) run-length distributions are the conditional

probabilities1 - [a’p andl- [5’c so that, symbolically, we write

(N |P = Pyss) ~ GeoL- 5,) and (N |c=C,.)~Geoll-25,).

Thus, once the Phase | reference samples are gathered and the control limits are estimated,
Phase Il run-length of a particular chart will follow soooaditional distribution which will depend

on the realization of the random variablé =u or V =v, or, alternatively, on the observed values

F_) = I_Dobs or C = Eobs.'

Note that the distributions ol | p ~ Bin(mn, p) and V |c~ Poi(mc), or, equivalently, the
distributions of p andC, depend on the values of the unknown paramepers c (see e.g. Remark
3(ii) as well as expressions (3-24) and (3-25), respectively). It is therefore better to write the

conditional run-length distributions as

(N |P= Py P) ~GeO@-53,)  and (N |E =Cy,C) ~ Geo(l-4.).

Moreover the conditional Phase Il run-length distribution therefore provides only hypothetical
information about the performance of a control chart with an estimated parameter. We can, fo

example, only assume some hypothetical valuggfar ¢ and then suppose that this estimatgobr
c is the 2% or the 78 percentile of the sampling distributions @ or © so that the run-length

distribution, conditioned on such a value, gives some insight into how a chart with this estimate
performs in practice. This gives the user an idea of just how poorly or how well a chart will perform in
a hypothetical case with an estimated parameter.

To overcome this abovementioned dilemma, tharginal or the unconditional run-length
distribution can give a practitioner insight into a chart's general performance. The marginal
distribution incorporates the additional variability which is introduced to the run-length through
estimation ofp or c by averaging over all possible values of the random varldbte V (while, of
course, assuming a particular value foror ¢). With the unconditional run-length distribution the
practitioner therefore sees the overall effect of estimation on the run-length distrimiticany data

is collected.
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3.2.3 Conditional Phase Il run-length distributions and characteristics

The conditional run-length distributions and the associated conditional characteristics focus on th

performance of the charts givgn= p,,, andC =c..

Conditional probability of a no-signal

The probability of a no-signal in Phase Il conditional on the point estipate,,, or T =cC, iS
called the conditional probability of a no-signal. This probability, which we previously denotég by

or,@’c, is in general denoted by
B=Pr@°|6) for i=m+1im+2...

where 8 = (p, p) in case of th@-chart andd = (C,c) in case of the-chart.

The conditional probability of a no-signal, like in Case K (see e.g. Tables 3.1 and 3.2), completely

characterizes the conditional Phase Il run-length distribution and is thus the key to derive and examir
the conditional Phase Il run-length distributions of Case U. We derive exact expressiqﬁﬁs‘dor

both charts in what follows.
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Conditional probability of a no-signal: p-chart

This probability is derived by conditioning on an observed valuef the random variabl& or,

equivalently, conditioning on an observed vaigg, of the point estimatop =U /mn (see e.g.

(3-28)).

In doing so, the Phase Il charting statispc= X;/n for i =m+ 1m+ 2...is the only random
variable in (3-28). The cumulative distribution function pf for i =m+ 1m+ 2..., as mentioned

earlier, is completely known and given by

[na] [na,
Prp, <a)= PrX; n<a)=Pr(X; <na)= ) Pr(X; = j) = Z( ]pl @-p,)"’ for 0<as<1and

j=0

p, denotes the true fraction nonconforming in Phase Il (see Remark 4).

We therefore derive the conditional probability of a no-signal by first re-expressing the Phase I

conditional non-signaling event in terms &, . This is done by making use of the relationship
X; =np,. We then use the properties of, to derive an explicit and exact expression for the

conditional probability of a no-signal.
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For thep-chart the conditional probability of a no-signal in Phase Il is
B(p,.MN | D= Poss P)

=Pr(LCL, < p, <UCL, | P = Pyys: P)
= Pr(X; <NUCL|P = Poss. P)~ Pr(X; < NLCL IP = Poys: P)

=Pr(X; <n{p+3y{ P = P/ NHP = Poyss P) ~Pr(X; < n{Pp =3y Pl ~ D)/ N}P = Pyps: P)

=pr(X, <> +3] L a-y/n} U =u, p) -Pr(X, < - -3 L@ -/ njju =u, p)
mn mn mn mn mn mn

=Pr(X, <m*U +3VmU -n"U?)|U =u,p)-Pr(X, <m™*U -3VymU -n"U?)|U =u, p)

(3-30)
0 if U=0o0rU =mn
={H (0, p,,n) if nLCL, <0
H(b, p,n)-H(@& p,n) if nLCL, 20
0 if U=0o0rVU =mn
=41-1, (b+1n-b) ) i nL(:JLp<O
I, @+Ln-8) -1, (b+Ln-b) if nLCL, 20
0 if U=0o0rU =mn
- 1—Ipl(b+],n—b)—]7nLéLp:nLéLp20}(nLCLp)(l—Ipl(é+1n—é)) if U=22..mn-1
for 0< p,p,p, <1, where
pu—o 6 . o
A pun) = (ol @ p)™
j=0
denotes the c.d.f of thBin(n, p,) distribution and
a=amn|U, p) =[nLCL, ] (3-31a)
and
b= B(m,n U.p) = mi-n{nUCI_Ap -1 n | if nLAJCL | isan'n.teger (3-31b)
min{[nUCL ], 4  if nUCL is notannteger.
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The conditional probability of a no-signal for thelpart is a function of and depends on

the fraction nonconforming in Phasep|,

o &

the number of reference samples

o

the sample siza,

d. the point estimatoip or, equivalently, the random varialdle, and
e. the unknown true fraction nonconforming; indirectly via the random variable

U | p ~ Bin(mn, p).

As noted earlier in Remark 4(ip, is not necessarily equal tp and because of sampling

variability p is typically different fromp .

When none of the Phase | reference sample observations are nonconforming, that is, whe

U =0o0r p=0, it makes sense not to continue to Phase Il but examine the situation in

more detail. Similar logic applies to the other extreme, that is when all the observations are

nonconforming so thdt =mn or p=1.

Based on this intuitive reasoning the conditional probability of a no-signal
,/3"(pl ,m,n|p, p) is defined to be zero in both of these boundary situations. It then follows
that the conditional probability of a signal ,@(pl,m,nn_), p) is one. Effectively the
control chart signals, in these cases, whenfor i =m+ 1m+ 2... plots on or beyond

either of the two estimated control limits or is equal to either @;othis, in actual fact,

implies that the ghart signals on the first Phase Il sample.
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Conditional probability of a no-signal: c-chart

By conditioning on an observed valweof the random variabl® or, equivalently, conditioning

on an observed valug,, of the point estimatoc =V /m, the Phase II charting statistl; for
i =m+ 1m+ 2... is the only random quantity (variable) in (3-29).

Because the distribution of is known (assumed) to be Poisson with parametewe use the

properties of this distribution to derive an explicit and exact expression for the conditional probability

of a no-signal for the-chart.

The conditional probability of a no-signal in Phase Il is

B(c,,m|E=t,.,c)
=Pr(LCL, <Y, <UCL, |E =T,
=Pr(Y, <UCL, [c =T,

s C)—Pr(Y; < LCA:LC |C =C,,C)

=PrtY, <c+3/c [c=c,,.c)-PrlY <c-3/c|c=C,,,0)

c)

_ V. Vo VAN VAR

= Pr(Y, <E+%/%|V_V’C) Pr(Y, SE 3\/%|V—v,c) (3-32)
_[o if V=0

" |G(fic)-G(dr,) if V=123,

_ |0 if V=0
ML 6T 6) if V=123,

for c,C,c, >0, where

G(fic)=)

denotes the c.d.f of thBoi(c,) distribution and

d=dm|V,c) = max{0,[LCL, ]} (3-33a)
and
A a UCA:Lc -1 if UCA:LC isarinteger
f=f(m|V,c)= R R (3-33b)
[UCL, ] if UCL, isnotannteger.
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Remark 6

(1) The probability of a no-signal for theahart is a function of and depends on

the average number of nonconformities in an inspection unit in Phase Il

o &

the number of reference inspection umtsfrom Phase |,

o

the point estimatot or, equivalently, the random variable, and

Q

the unknown true average number of nonconformities in an inspection;undirectly

via the random variablg |c ~ Poi(mc) .

Again, note that,c, is not necessarily equal to, and sincec is subject to sampling

variation it is typically different fronc.

(i) When we observe no nonconformities in the Phase | reference sample i.eV witemr
€ =0, it is essential to pause and examine the situation in more detail. Thifs=forthe
conditional probability of a no-signal in Phase 1l is defined to be zero so that the

conditional probability of a signal in Phase 1l is one.
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Summary of the conditional run-length distributions and the related conditional characteristics

Given observed values and v of the random variables andV, the conditional run-length
distributions of the charts are geometric with the probability of success equal to the conditional

probability of a signal i.e.
1-B(p, mn|U=up) and 1-B3@ M|V =v,.)

respectively.

This is so, because for given or fixed valuestbfEu and V =v the control limits can be

calculated exactly and the analyses continue as if the parangetansl ¢ are known. This is similar

to the standards known case (Case K) where the run-length distribution was seen to be geometric. £
the characteristics of the conditional run-length distributions therefore follow from the well-known
properties of the geometric distribution. In particular, the conditional run-length distributions and the
associated conditional characteristics for phehart and the-chart are summarized in Table 3.3 and

Table 3.4, respectively.

The conditional run-length distribution and the conditional characteristics of the run-length
distributions all depend on either the observed value of the random vddablethat ofV ; these
observed values cannot be controlled by the user and is a direct result of estimmatidg . Thus, as
the values ofJ andV change (randomly), the conditional run-length distributions and the conditional
characteristics of the run-length distributions will also change randomly. This implies, for example,
that the conditional characteristics are random variables which all have their own probability
distributions so that one can present a quantity such as the expected condDé&nhali.e.

E, CSDRL(p, ,m,n|U, p) or E, (CDRL (c,,m|V,c). Although this is technically correct it is not the
best approach; a better approach would be to calculate the unconditional standard deviation i.e.

USDRL =,/E, (varp, mn U ,p))+ vay E (p,,mn|U, p))

or

USDRL =/E, (var§ m V ¢))+ vay (E(,,m|V,c))

which is computed from the marginal run-length distribution and incorporates both the expected
conditionalSDRL and the variation in the expected conditioABL. We discuss this in more detail

later when we examine the conditional and unconditional properties of the charts.
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Table 3.3: The conditional probability mass function (c.p.m.f), the conditional cumulative
distribution function (c.c.d.f), the conditional false alarm rate CFAR), the conditional average
run-length (CARL) and the conditional standard deviation of the run-length CSDRL) of the

p-chart in Phase Il of Case U

cpmf| PIN, =j;p,mn|U, p) =[B(p,mn|U, p)""[1-B o mn Y p)] j=12... |(3-34)
c.cdf PrN, < j;p.mnjU,p)=1-[B o, mn U p) j=12.. (3-35)
CFAR CFAR(p, mn|U,p=p,)=1-B(p,.mn|U,p=p,) (3-36)
CARL CARL (p, m,n U, p) =1/[1- B(p,,mn|U, p)] (3-37)
CSDRL CSDRL (p, m,n|U, p) =4/A(p, mn|U, p) /1= B(p,,mn|U, p)] (3-38)

cqf Qu, @ p,mn|U, p) =inf{int X :Pr(N, < j;p,mn|U, P 2t 0<qg<1 (3-39)

Table 3.4: The conditional probability mass function (c.p.m.f), the conditional cumulative
distribution function (c.c.d.f), the conditional false alarm rate CFAR), the conditional average
run-length (CARL) and the conditional standard deviation of the run-length CSDRL) of the

c-chart in Phase Il of Case U

c.p.mf PI(N, = jic,.m|V,0) =[B(c, mIV.0) " [1-B¢ mV ¢)] j=12... (3-40)
c.c.df PrN, < jio, IV, =1-[B¢ mV¢c) j=12.. (3-41)
CFAR CFAR(E, m|V,c=c,)=1-B(, m|V.c=¢,) (3-42)
CARL CARL ¢, m|V,c)=1/[1- B(c,,m|V, )] (3-43)
CSDRL CSDRL (G, m|V,¢) =+/B(c,.m|V.¢) - Bc,.m|V, 0)] (3-44)

caf Qy, (g;c, m|V) =inf{int x:Pr(N < j;c,m[V,9 2¢ 0<q<1 (3-45)
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It is important to note that the conditional run-length distributions and the associated characteristic
of the conditional run-length distributions do not only depend on the random vatihldesV ; they

also indirectly depend on the unknown parameferand c.

The dependency od andV follows from the fact that we estimaje using p=U /mn and we
estimatec using € =V /m. The indirect dependency op and c follows from the fact that the
distribution ofU (which is binomial with parametersn and p) and the distribution o¥ (which is
Poisson with parametamc) depend on the unknown parametgrsand c. To evaluate any of the

conditional characteristics we need the observed valué$ @ndV but we also need to assume

values forp andc.

The aforementioned point is demonstrated in the following two examples which illustrate the
operation and the implementation of the Phagechart and the Phasedichart when we are given a

particular Phase | sample.
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Example 1: A Phase llp-chart

Consider Example 6.1 on p. 289 of Montgomery (2001) concerning a frozen orange juice
concentrate that is packed in 6-0z cardboard cans. A machine is used to make the cans and the gosc
to set up a control chart to improve i.e. decrease, the fraction of nonconforming cans produced by tt

machine. Since no specific value of the fraction nonconfornping given the scenario is an example

of Case U, that is, when the standard is unknown. The chart is therefore implemented in two stages.

Phase |

To establish the control charn= 3fkeference samples were taken each with cais,
selected in half hour intervals over a three-shift period in which the machine was in continuous
operation. Once the Phase | control chart was established samples 15 and 23 were found to be out-
control and eliminated after further investigation. Revised control limits were calculated using the
remainingm= 28samples. Based on the revised control limits sample 21 was found out-of-control,
but since further investigations regarding sample 21 did not produce any reasonable or logice
assignable cause it was not discarded. This is the retrospective phase (or Phase 1) of the analy:
The final 28 samples were used to estimate the control limits and then monitor the process in Phase ||

Phase Il (conditional)

Although the random variablé&J could theoretically take on any integer value from 0 to
mn = 2& 50=1400, for the given set of reference data it was found that ; 804 was the total
number of nonconforming cans after discarding samples 15 and 23. It follows from (3-24) that the
point estimate ofp is p= 301/1400= 0215.

The estimated control limits and centerline corresponding to  aB®1ound from (3-26) to be

UCL, = 02%5.8 02150785 /50= 03893andLCL, = 0215.3 02150785/50= 00407.

We find the constantd andb using (3-31) to be

bra= 28 = 50U =301p)=19 and ar= 28 = 50U = 301p)=2.
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BecauselJ is unequal to 0 omn it follows from (3-30) that the conditional probability of a no-signal

in Phase Il is

A

Bp(m= B& 5p= O021F 9 4I, (@956 19 1 (-1, (250-2-1))
=1, (471, (1930

for 0< p,p, <1.

Assuming, without loss of generality, that the process is in-control at a fraction nonconforming of

0.2, that is,p, = p = 0.2, the conditional false alarm rateRAR) is equal to

1-B p £ 022890k 0215= 02 4l,, (2431, @930F (002218
The in-control conditional average run-length therefore equals

CARL, = 1/0.002218450.89

and is found using (3-37).

Compared to the Case KAR andARL of 0.0027 and 369.84 (see e.g. Tables A3.4 and A3.5 of
Appendix 3A) we see that oup-chart (here, in Case U, wittp= 0215 and assuming that
p, = p = 0.2) would signal less often, if the process is in-control, than what it woutd liad in fact

been known to be equal to 0.2.

However, note that, since each user has his/her own unique reference sample, the pointgestimate
will differ from one user to the next so that the performance of each user’s chart will also vary. To this
end, the unconditional characteristics are useful as they do not depend on any specific observed val
of the point estimate. This, however, is looked at later when we continue Example 1 after having
derived expressions for the unconditional characteristics of ptobbart's Phase Il run-length

distribution.m
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Example 2: A Phase llc-chart

Consider Example 6.3 on p. 310 in Montgomery (2001) about the quality control of manufactured
printed circuit boards. Since is not specified it had to be estimated. The chart was therefore

implemented in two phases.

Phase |

A total of 26 successive inspection units each consisting of 100 individual items of product were
obtained to estimate the unknown true average number of nonconformities in an inspectontunit
was found that units number 6 and 20 were out-of-control and therefore eliminated. The reviset
control limits were calculated using the remaining=24 inspection units with the number of
nonconformities in an inspection unit shown in Table 6.7 on p. 311 of Montgomery (2001). The

revised control limits were used for monitoring the process in Phase II.

Phase Il (conditional)

Theoretically the variabl¥ , the total number of nonconformities in the 24 inspection units, could

take on any positive integer value including zero V.el {012,.Fpr the given Phase | data it is

found thatV =472. Using (3-25) the average number of nonconformities in an inspectiort usit
estimated a€ = 472/24= 1967 so that the estimated 3-sigma control limits are found from (3-27) to
be

UCL,=3297 and LCL, = 636.

These estimated limits yield

d (= 24V =472c)=6 and f = 24V = 472c)=32.
BecauseV is unequal to zero it follows from (3-32) that the probability of a no-signal is

B ¢ 24 =1967,c) =T, (c)-T,(c) for c,c >0.
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For the given (observed) value ¥f=472 one can investigate the chart’'s performance using the
conditional properties. Assuming, without loss of generality, that the process operates in-control at a
average of twenty nonconformities in an inspection unit, that,is,c =20 is the true in-control
average number of nonconformities in an inspection unit, the conditional false alarm rate i.e. the fals
alarm rate givery =472, is found to be equal to

CFAR= %I, 20y, (20~ 0004983

The CFAR is approximately 72% larger than the value of 0.0029 one would have obtained in Case
K for ¢, =20 and is 85% higher than the nominal value 0.0027 (see e.g. Table A3.12 in Appendix
3A); this is true even though the estimated average number of nonconformities in an inspection un
(C=1967) is within | L96F 20%/?([): 007 standard deviation units of the true average number of
nonconformities in an inspection unit € ROHowever, note that, like the-chart of Example 1,

each user typically has his/her own distinct Phase | data so that the performanaeabfaitien Case

U will be different for each usem.

To get an overall picture of p-chart's or ac-chart’'s performance one needs to look at the
unconditional properties of the chart; this is looked at later. First we look at the conditional run-length

distribution and the related conditional characteristics of ttiegpt and echart.

The characteristics of the conditional run-length distribution depend on and are functions of the
random variable$) or V ; as a result, these characteristics are random variables themselves and var

asU orV changes.

To understand the effect dJ or V on the characteristics of the conditional run-length
distribution, it is instructive to study the conditional characteristics of the charts as functldnaraf
V as they show precisely how the conditional characteristics of each chart vary as the point estimats

p andc fluctuate.

First we look at the conditional characteristics of thehart and then at those of theleart.
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3.2.3.1 Conditional characteristics of the p-chart

Once we observed a value of the random variabldJ we can calculate the conditional
probability of a signal. The Phase Il conditional run-length distribution is then completely known (see
e.g. Table 3.3).

Tables 3.5 and 3.6 illustrate the exact steps to calculate the conditional probability of a no-signal
the conditional probability of a signal or the conditional false alarm @EAR), the conditional
average run-lengtfCARL) and the conditional standard deviation of the run-len@8DRL) for the p
chart. These are all conditional Phase Il properties as they all depend on an observed value from Phé
l.

For illustration purposes we assume a totalafmn = iklvidual Phase | observations is used
to estimatep using p=U /mn as point estimate and th@at = p = 0.5. The latter assumption implies
that the process operated at a fraction nonconformingof dWbhg Phase | and that in Phase I
the process continues to operate at this same level sp,thad.5; this is the same as saying that the

process is in-control in Phase Il. However, note that, because of sampling variation the observed valt

of p may of course not be equalfo(see e.g. Remark 4(i)).

The calculations of Table 3.5 are based on the assumptionntkat independent Phase |
reference samples each of size af® used whereas the computations of Table 3.6 are based on
m=1 with n = 20.

In particular, column 1 lists all the valuesWf (the total number of possible nonconforming items
in the entire Phase | reference sample) that can possibly be attained. This ranges from a minimum
zero to a maximum of twenty. Column 2 converts the observed vabhfdJ into a point estimate of
the unknown true fraction of nonconforming items, that is, we calcufeteu /20=p,,, which
estimateg . Because each row entry in each of the succeeding columns (i.e. columns 3 to 12) is

computed by conditioning on a row entry from column 1 (or, equivalently, from column 2) we start
calculating the conditional properties in columns 1 and/or 2 and sequentially proceed to the right-han

side of the tables. Thus, given a valuer p,,. the lower and the upper control limits are estimated in
columns 3 and 4 using (3-26). These estimated limits are then used to compute the two c@nstants

and b defined in (3-31), which are shown in columns 5 and 6, respectively. Finally, columns 7
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through 10 list the probability of a no-signal, thaR, the in-controlARL and the in-controEDRL
given the observed valueu from column 1, respectively. These properties are labeled
Pr(NaSignallU, p), CFAR, CARL, andCSDRL,, and calculated using (3-30) and the expressions in

Table 3.3. Columns 11 and 12 show the values of the probability mass function (p.m.f) and the
cumulative distribution function (c.d.f) of the random varidblep = 05~Bin (200.5), that is,

Pr =u |p=05) :(ZUOJO.SZO and PrU <u|p=05)= i(zjoJO.Szo for u= 012...20

i=0

Both these probability functions are useful when interpreting the characteristics of the conditional

run-length distribution. The former shows the exact probability of obtaining a particularwatie

whereas the latter can be used to find the percentiles of the distributibn of

T=20withm=4andn=5

Consider Table 3.5 which uses a total ®f= #dividual in-control Phase | reference

observations froom=4ndependent samples each of size . 5

There are two unique scenarios. The first takes place when (the inimum value possible)
and the second occurs when= x 4= 5 @8e maximum value). In both these cases the probability
of a no-signal is zero by definition and the chart signals once the first Phase Il sample is observed. £

a result the conditional in-control average run-lengthCARL, = . Inlthe former situation the
estimated control limits ardaéLp =UCA:Lp =0 and in the latter the limits arleCA:Lp :UéLp =1.1In

both these situations the constadtsand b need not be calculated; this is indicated by NA (read as

“not applicable”) in columns 5 and 6, respectively (see e.g. (3-30) and Remark 5(ii)).

The probability that none or all of the Phase | reference observations are nonconforming is o
course rather small. The probabilities of these two event®Pafe= 0|05 P U = 20|05)= 05

which are zero when rounded to four decimal places (see e.g. column 11). For all other values
U#0 and U Zzmn= 20 that is, whenU U {12...19}, we proceed with the calculation of the

conditional characteristics as follows.
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Table 3.5: Conditional probability of a no-signal, the conditional false alarm rateQFAR), the
in-control conditional average run-length CARL() and the in-control conditional standard
deviation of the run-length (CSDRL¢) of the p-chart in Case U form =4 and n = 5, assuming

that p, = p=05

1 @ B @ 6 6 ) (8) 9) (10) (11) (12)
U Pgys |LCL, UCL, a p |Pr(NoSignal |[U,p) CFAR CARL, CSDRL, |Pr(U=u|p) Pr(U<=u|p)
0 0.00f 0.00 0.00] NA NA 0.0000 1.0000 1.00 0.00 0.0000 0.0000
1 0.05/-024 034 NA 1 0.1875 0.8125 1.23 0.53 0.0000 0.0000
2 0.10/-0.30 0.50] NA 2 0.5000 0.5000 2.00 1.41 0.0002 0.0002
3 0.15/-0.33 0.63| NA 3 0.8125 0.1875 5.33 4.81 0.0011 0.0013
4 0.20] -0.34 0.74] NA 3 0.8125 0.1875 5.33 4.81 0.0046 0.0059
5 0.25/-0.33 0.83| NA 4 0.9688 0.0313 32.00 31.50 0.0148 0.0207
6 0.30/-0.31 0.91| NA 4 0.9688 0.0313 32.00 31.50 0.0370 0.0577

7.035[-029 099 NA 4| 09688 00313 3200 3150 | 00739 01316
8 0.40|-0.26 1.06f NA 5 1.0000 0.0000 00 00 0.1201 0.2517

9 045/-022 112 NA 5 1.0000 0.0000 00 00 0.1602 0.4119
10 0.50| -0.17 1.17| NA 5 1.0000 0.0000 00 00 0.1762 0.5881
11 0.55|-0.12 1.22| NA 5 1.0000 0.0000 00 00 0.1602 0.7483
12 0.60| -0.06 1.26| NA 5 1.0000 0.0000 00 00 0.1201 0.8684
13 0.65| 0.01 1.29 0 5 0.9688 0.0313 32.00 31.50 0.0739 0.9423
14 0.70| 0.09 1.31 0 5 0.9688 0.0313 32.00 31.50 0.0370 0.9793
15 0.75] 0.27 133] O 5 0.9688 0.0313 32.00 31.50 0.0148 0.9941
16 0.80| 0.26 134 1 5 0.8125 0.1875 5.33 4.81 0.0046 0.9987
17 0.85/ 0.37 133] 1 5 0.8125 0.1875 5.33 4.81 0.0011 0.9998
18 0.90| 0.50 1.30| 2 5 0.5000 0.5000 2.00 1.41 0.0002 1.0000
19 0.95| 0.66 1.24| 3 5 0.1875 0.8125 1.23 0.53 0.0000 1.0000
20 1.00| 1.00 1.00| NA NA 0.0000 1.0000 1.00 0.00 0.0000 1.0000

Suppose, for instance, that we observe seven nonconforming items out of the possible twenty in tf
entire Phase | reference sample. Our chance to find exactly seven nonconforming items i
approximately 0.0739 (which is relatively high, see e.g. column 11); the probability to find less than

seven nonconforming items BY < 7|05)= 00577 (see e.g. column 12).

A value of U = 7 gives a point estimate fop of p= 7/20= 035 so that (3-26) yields an
estimated upper control limit and an estimated lower control limit of
UCL,= 035 J 035065/5=099 and LCL,= 035 ¢ 035065/5=-029
respectively .

BecausenLéLp = (B5)€ 029)=-145 is less than zero the chart has no lower control limit. We

therefore do not calculate a value ®iin this case. The constaﬁt on the other hand, is found to be

b =min{{nUCL],5} = min{[(5)(099)] 5} = min{[495] 5} = 4.
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Finally, after substitutingﬁ in (3-30) we calculate the conditional probability of a no-signal and
then also th€€FAR, the CARL, and theCSDRL, using expressions (3-36), (3-37) and (3-38) in Table
3.3.

The conditional probability of a no-signal is
B, = 05m= 4n=5U=7p=05=4p(= 0m= &= 5p= 035 = 05)= 09688,
so that the conditional false alarm rate is
CFAR p(= 0548 = Pp= 05 % 09688 00313
The Phase Il gghart then has an in-control conditiodL of
CARL, p(= 054% = H= 05 1/00313- 3200
and an in-control condition&DRL of

DRL, p,E 0548|= @= 05+ 09688/00313 3150.

If the process remains to operatet= 0.5 (i.e. the process stays in-control) we expect that the

chart would, on average, give a false alarm or erroneous signal on e¥&sasple. This is more
often that what we would nominally expect from a 3-sigma Shewhart-type control chart, which
typically has an in-controARL of 370.4. We also see that the conditional false alarm C&tAR),
particularly forU = 7, is much higher than the nominally expected 0.0027 even though the point

estimate p= 035 is ‘\/_ 5(035 050)) 035t 035 =0.70standard deviation units from the

supposedly known value gg= 05

For values ofu from 8 to 12 theCFAR is equal to zero and as a result the moments of the run-

length distribution, such as th€ARL, and the CSDRL,, are all undefined; this implies that, in
practice, the conditional Phase Il chart will not signal and thaCl¥elL, and theCSDRL, are both

infinite. Although we typically want a high in-contrédRL , an ARL of infinity is not practical. Thus,
m=4 subgroups each of size= % not adequate to control the false alarm afgRj at a small yet
practically desirable level, and at the same time ensure that a high in-&Ritr&d achieved. This
suggests that one needs more reference data and the¢ds to be larger relative to in order to

achieve any reasonable probability of a false alarm with attributes data.

167



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

=

N UNIVERSITEIT VAN PRETORIA
Qo

T=20withm=1andn =20

To study the effect of choosing a larger valuenofelative tom suppose that a total df=  20-
control Phase | reference observations are available but in one sample of twenty observations, that

m=1andn= 20 Calculations for this situation are shown in Table 3.6.

We observe that the conditional probability of a no-signal i.e.
Pr(NoSignal|lU, p) =3 p, = 05m= In= 20U =u,p = 05)
is non-zero for all values o) = 01...20As a result none of th€FAR's values are zero and
therefore all the moments (such as the in-coRil, the in-controlSDRL etc.) of the conditional run-
length distribution are defined and finite. This suggests the need for a very careful choice of the
number of reference samples and the sizen of each of the samples beforepahart with an

unknown value ofp is implemented in practice.

Table 3.6: Conditional probability of a no-signal, the conditional false alarm rateGFAR), the in-
control conditional average run-length CARL) and the in-control conditional standard
deviation of the run-length (CSDRL) of the p-chart in Case U for m= 1and n = 20, assuming
that p, =p=05

) @] B @] 6B (6 (1) (8) 9) (10) 11) 12)
U Poos LCL, UCL, A b |Pr(NoSignal|U,p) CFAR CARL, CSDRL,| Pr(U=u|p) Pr(U<=u|p)
0 0.00] 0.00 0.00f NA NA 0.0000 1.0000 1.00 0.00 0.0000 0.0000
1 0.05] -0.10 0.20] NA 3 0.0013 0.9987 1.00 0.04 0.0000 0.0000
2 0.10[ -0.10 0.30| NA 6 0.0577 0.9423 1.06 0.25 0.0002 0.0002
3 0.15 -0.09 0.39] NA 7 0.1316 0.8684 1.15 0.42 0.0011 0.0013
4 0.20[ -0.07 0.47| NA 9 0.4119 0.5881 1.70 1.09 0.0046 0.0059
5 0.25 -0.04 0.54| NA 10 0.5881 0.4119 2.43 1.86 0.0148 0.0207
6 0.30] -0.01 0.61| NA 12 0.8684 0.1316 7.60 7.08 0.0370 0.0577
7 0.35 0.03 067 0 13 0.9423 0.0577 17.34 16.84 0.0739 0.1316
8 0.40) 0.07 0.73| 1 14 0.9793 0.0207 48.27 47.77 0.1201 0.2517
9 045 0.12 0.78 2 15 0.9939 0.0061163.66 163.16 0.1602 0.4119
10 0.50/ 0.16 0.84| 3 16 0.9974 0.0026388.07 387.57 0.1762 0.5881
11 0.55 0.22 0.88| 4 17 0.9939 0.0061163.66 163.16 0.1602 0.7483
12 0.60 0.27 0.93| 5 18 0.9793 0.0207 48.27 47.77 0.1201 0.8684
13 0.65 0.33 0.97| 6 19 0.9423 0.0577 17.34 16.84 0.0739 0.9423
14 0.700 0.39 101 7 20 0.8684 0.1316 7.60 7.08 0.0370 0.9793
15 0.75 046 104 9 20 0.5881 0.4119 2.43 1.86 0.0148 0.9941
16 0.80 0.53 1.07| 10 20 0.4119 0.5881 1.70 1.09 0.0046 0.9987
17 0.85 0.61 1.09| 12 20 0.1316 0.8684 1.15 0.42 0.0011 0.9998
18 0.90] 0.70 1.10| 13 20 0.0577 0.9423 1.06 0.25 0.0002 1.0000
19 0.95 0.80 1.10| 16 20 0.0013 0.9987 1.00 0.04 0.0000 1.0000
20 1.00, 1.00 1.00] NA NA 0.0000 1.0000 1.00 0.00 0.0000 1.0000
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The conditional false alarm rate

Panels (a) to (f) of Figures 3.1 and 3.2 display the conditional false alarrCiate)(
1—,@ 0, = 05mn U =u,p=05) asafunction of u= 01l...,mn
for various combinations ah andn when a total off = 2Qand a total off = 50dndividual Phase |

reference observations are used to estinpat€or illustration purposes we assume tpat p = 050.

The impact of the actual number of nonconforming itemis the entire Phase | reference sample
is easily noticed. The distribution of tl&FAR is seen to be U-shaped and symmetric at the point
mn/2; this is the mean value &f. For values ofJ near the two tails th€EFAR can be very high,
sometimes close to 1 or 100%, which obviously means many false alarms. Of course, this onl
happens at the rather extreme valueld tiat occur with very small probabilities (see e.g. columns 11
and 12 in Tables 3.5 and 3.6). However, even whbers not as extreme there can be a significantly
high probability of a false alarm and it is seen that only when takes on a value in the
neighbourhood of its mean, will tf&~AR be reasonably small. A potential problem is that for some
combinations ofn andn values, especially with smaller valuesnafelative tom, some of theCFAR
values equal 0, which (as mentioned before) leads to an in-control average run-length that i

undefined.

Note that, panels (d) and (f) of Figure 3.1 are in fact displayin@E#&R’'s of column 8 in Tables
3.5 and 3.6, respectively.
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Figure 3.1: The conditional false alarm rate CFAR) as a function ofu = 0,1,....2C for various
combinations of m and n such thatT =mn = 20
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Figure 3.2: The conditional false alarm rate CFAR) as a function ofu = 0,1,... 50 for various
combinations of m and n such that T = mn = 50
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The conditional probability of a no-signal

The distribution ofl-CFAR, which is the conditional probability of a no-signal when the process is
in-control, is shown in panels (a) to (d) of Figure 3.3Tor , 20, 100 and 200 whem= dnd

n=T i.e. for largen relative tom.

It is seen that the distribution @fCFAR is bell-shaped and symmetric; these two characteristics

follow from that of CFAR shown in Figure 3.1 and 3.2.
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Figure 3.3: The conditional probability of a no-signal when the process is in-control{CFAR) as
a functionof u=0,1,... T for m=1 and n=T = 20,50, 100 and 200
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The out-of-control conditional performance of thep-chart

The in-control performance of the Phase-thart (in theory) refers to the characteristics of the
chart in the situation where the process operates at the same level in Phase Il as what it did in Phas

this is the scenario whep, = p. However, becaus@ is unknown and estimated [y, the observed
value p,,, plays the role ofp so that the conditional in-control performance (in practice) refers to the
situation when p, = p,,. (see e.g. the earlier section labelled “Phase Il implementation and

operation”). The out-of-control performance (in practice) then refers to the characteristicspef the

chart whenp, # p,,.-

Taking into consideration the aforementioned, we can study the out-of-control performance of the
Phase llp-chart by making use of the results from the previous section. In particular, by conditioning
on a specific observed valyg,., the run-length distribution is affected in the same way it would be if
the unknown true fraction nonconforming was to change fgr(in Phase 1) top, (in Phase II). In
other words, the out-of-control performance of the Phagedhart (i.e. whenp has incurred either a
downward or an upward shift t@, so that p, # p) is equivalent to the performance of the
conditional pchart whenp # p,, i.e. if p was either overestimated or underestimated (see e.g. Jones,

Champ and Rigdon, (2004)); this correspondence allows us to examine the out-of-control performanc

of the pchart by using the conditional statistical characteristics.

To this end, consider, for example, Table 3.7 which lists the false alarnCFAR)( the average
run-length CARLo) and the standard deviation of the run-lendl®RL,) of the conditional run-
length distribution for different combinations afh and n, provided thatT =mn= 20and

p, = p=05. In each case the run-length distribution is conditioned on an estimatetiofough a

particular realizatioru of the random variablel or, equivalently, on a specific realizatig,.

The values on which we condition are, for illustration proposes okly= (i.8.
p= 7/20=035), U =8 (i.e. p= 8/20=040) andU = 10(i.e. p= 10/20= 050). These values
correspond to the Y0 the 2%' and the 58 percentiles of the probability distribution of
U ~Bin fn= 20,p = 0.5), respectively; note that, because Bia (20@stribution is symmetric,
conditioning onU = 7andU = 8 are like conditioning orJ = 20- 7=13 (i.e. p= 13/20= 065)
and U = 20-8=12 (i.e. p= 12/20= 060), which are the 90 and the 7% percentiles of the

probability distribution ofU , respectively.
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In particular, by assuming thap, = p=05 and then conditioning ot = r U =8 (i.e.
P = 035 or p = 040) the performance of the Phase Hclpart are comparable to that of a process that

has sustained a permanent step shift from 0.35 to 0.5 or encountered a lasting step shift from 0.4 to (

i.e. an increase of either 43% or 25%, respectively. Similarly, if we assump,thgh = 0.5 and then
condition onU = 13orU =12 (i.e. p = 065 or p = 060) the performance of the PhasepHchart is

like that of a process that has sustained a permanent step shift from 0.65 to 0.5 (a decrease of 23%)
incurred a step shift from 0.6 to 0.5 (a decrease of 17%).

When mn)= (120) and we condition on a value bf = (8r 12), which is the 25(or the 7%)
percentile of the distribution dd = 05~Bin (200.5), the CFARIis 0.0207 and the CARls 48.27.
The CFAR is approximately (00207/00166 1x 100%= 290 higher than the probability of a signal
of -18 p(= 04o0r04,= 05n= 20)= 00160 of Case K whereas the&CARL, is roughly

4827/625 1k 100%0= 23% lower than the out-of-control (OO@IRL of Case K following a
sustained shift from 0.4 or 0.6 to 05, which is equaARb p(= 040r0.6,= 05n= 20)= 625
(see e.g. Tables A3.4 and A3.5 in Appendix 3A).

This means that whem= dndn= 20 and p is either underestimated or overestimated by 25%

(i.e. the process fraction nonconforming has endured either a 25% decrease or increase and is out-
control), thep-chart of Case U would be better at detecting such a shift thgmdhart of Case K.

However, note that, this superior performance is a side-effect of estinating

The same is true for other combinations af n( .,Fpr example, if our Phase | reference data
consisted ofm= 2samples each of siza= 18nd we then condition onU = &or 12), the

conditional FAR is CFAR = 00107 and the in-control conditionadRL is CARL, = 9309. These

values are approximately 73% higher and 43% lower than the probability of a signal and the out-of
control ARLof 0.0062 and 162.6 ip had been known.

In contrast, it is noteworthy to see what happens if we conditiobon  (i.el@he 58 percentile

of the distribution ofU ), which implies that our estimate gqf is spot on, that is, the point estimate
p = 05 on which we condition is equal tp, so that we are in actual fact dealing with the in-control

(IC) performance of thp-chart in Case U.

In this case, th€FAR and the in-control conditionaRL for both the scenariogm,n)= (120)

and (m,n)= (210), are exactly equal to the in-control performance ofptobart in Case K with
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FAR = 00026 & ARL, =388.07and FAR = 00020& ARL, = 51200, respectively (see e.g. Tables
A3.4 and A3.5 in Appendix 3A). Furthermore, note that, as mentioned before, for some combination:

of (m,n), especially whenm >>n, it happens that for certain valuesdf the CFAR equals zero

which causes th€ARL, and CSDRL, to be undefined, which is undesirable.

To summarize, whe = 2@nd p is either underestimated or overestimated (i.e. the process is

0O0C), the Case P-chart would do better than the Case K chart at detecting a shift, and only if our

estimatep of pis on target (i.e. the process is IC) would the performance of the Case U and Case K

charts be similar.

Table 3.7: The false alarm rate CFAR), the average run-length CARL) and the standard
deviation of the run-length (CSDRL) of the conditional run-length distribution for different
combinations of m and n, provided that T =mn =20and p, = p=05

U=7 or 13 (O0OC) U=8or 12 (00C) U =10 (IC)
=20 (P= 0350r0.65) (P= 040r0.6) (p=05)
10" or 90" Percentile 2% or 75" Percentile 50" Percentile

m n CFAR CARL, CSDRL,| CFAR CARLy CSDRL,| CFAR CARL, CSDRLq
1 20 0.0577 17.34 16.84 0.0207  48.27 47.07 0.0026 388.07 38|r.57
2
4

10 0.0107 93.09 92.59 0.0107 93.09 92.59 0.0020 512.00 511.50
5 0.0313 32.00 31.50 0.0 0 00 0.0 0 00

Calculations similar to those in Table 3.7 are shown in Tables 3.8, 3.9, 3.10, and 3.11 for a large
range of values forl ; we specifically look afl = 1(5, 25, 30, 50, 75, 100, 200, 250, 300, 500, 750,
1000 and 1500.

For each value o we look at all possible combinations of and n such thatT = mn where
both m andn are integers. We again condition on th& {or the 98), the 2%' (or the 7%)), and the
50" percentiles ofU |p= 05~Bin{(T =mn,05) so that the interpretation of these conditional
characteristics is similar to those for= 2@ Table 3.7. The values of the percentiledJofand the
corresponding values @b are clearly indicated.

The characteristics that are highlighted in grey indicate thosa (cgmbinations for which the
Case Up-chart performs worse than the Case-ghart; for all the othernf n, fombinations the Case

U p-chart performs better or just as well as the CasecKapt.
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The conditional characteristics of Tables 3.8, 3.9, 3.10, and 3.11 are of great help to the
practitioner as he/she gets an idea of the ramifications when (op ifis underestimated or
overestimated for his/her particular combinationnofand n values at hand (even before any data is

collected); this is similar to investigating the power of a test.

Table 3.8: The false alarm rate CFAR), the average run-length CARL) and the standard
deviation of the run-length (CSDRL) of the conditional run-length distribution for different
combinations of m and n, provided that T =10, 15, 25 and 30 andp, = p=05

10" or 90" Percentile 2% or 75" Percentile 50" Percentile
m n | CFAR CARL, CSDRL,| CFAR CARL, CSDRL,| CFAR CARL, CSDRL,
T-10 U=3or7(00C) U =4 or 6 (OOC) U=5(IC)
= (p= 030r0.7) (p= 040r0.6) (p=05)
1 10| 0.0547  18.29 17.78| 0.0107 93.09 9259 0.0020 512.00 51f.50
L2 500313 3200  31.50| 00 o S 00 o ®
52 10,1 0.0 o0 00 0.0 ) o0 0.0 ) 00
U =5 or 10 (OOC) U =6 or 9 (O0C) U=7(IC)
T=15 _ , = - .
(p= 033 0r0.68) (p= 040r0.6) (p=046)
1 15| 0.0592 16.88 16.37| 0.0176 56.79 56.29 0.0042 239.18 23B.68
3 5 0.0 32.00 31.50 00 o o0 0.0 o o
53 15,1 0.0 ) 00 0.0 ) o0 0.0 0 00
~ U =9 or 16 (OOC) U =11 or 14 (OOC) U =12 (IC)
T=25 (p= 0360r0.64) (P= 0440r0.56) (p=048)
1 25| 0.0539 1856  18.05 | 0.0074 135.23 134.73 | 0.0025 400.98  400.4B
55 251 0.0 o0 00 0.0 o0 0 0.0 0 )
B U =11 or 19 (OOC) U =13 or 17 (OOC) U =15 (IC)
T=30 (Pp= 036 0r0.63) (Pp= 043 0r0.56) (p=05)

1 30 | 0.1002 9.98 9.46 0.0081 123.58 123.08 0.0014 698.86 698.36
2 15 | 0.0176 56.89 56.39| 0.0037 268.59 268.09 0.0010 1024.00 10p3.50
3 10 | 0.0107 93.09 92.59| 0.0010 1024.00 1023.50| 0.0020 512.00 511.5p

.5 6] | 00 6400  6350] 00 o S 00 o ©
65 103 0.0 0 0 0.0 00 0 0.0 00 0
15,2 30,1
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Table 3.9: The false alarm rate CFAR), the average run-length CARL) and the standard
deviation of the run-length CSDRL) of the conditional run-length distribution for different
combinations of m and n, provided that T =50, 75, 100, 200 and 250 arg = p= 0.5

10" or 90" Percentile 298" or 75" Percentile 50" Percentile
m n CFAR CARL, CSDRL, [CFAR CARLy; CSDRLy |CFAR CARLy CSDRLg
oso U = 20 or 30 (OOC) U = 23 or 27 (OOC) U =25 (IC)
= (P= 040r0.6) (P= 0460r0.54) (p=05)

1 50 |0.0595 16.82 16.31 | 0.0078127.77 127.27 | 0.0026384.29  383.79
2 25 10.0217 46.18 45.68 | 0.0078 128.67 128.17 | 0.0041245.26  244.76
5 10 |0.0107 93.09 92.59 |0.0010 1024.00 1023.50 | 0.0020512.00 511.50

10,5 25,2

50.1 0.0 o0 00 0.0 00 00 0.0 00 00
To7 U=320r43(00C) U =35 0r 40 (0O0C) U=37(IC)
=75 (p= 0426 0r0.573) (p= 046 0r0.53) (p=0493)

1 75 | 0.0527 18.98 18.47 | 0.010496.39 95.89 | 0.0038260.67 260.17
3 25 | 0.0074 135.23 134.73 |0.0025 400.98 400.48 | 0.0025 400.98 400.48
5 15 | 0.0037 268.59 268.09| 0.004239.18 238.68 | 0.00101024.00 1023.5(

%g:i 253 0.0 00 o0 0.0 0 0 0.0 00 00
T =100 U =44 or 56 (OOC) U =47 or 53 (OOC) U =50 (IC)
- (p= 0440r0.56) (p= 0470r0.53) (p=05)

1 100 | 0.0443  22.56 22.05 | 0.010793.51 93.01 | 0.0035284.28 283.78
2 50 | 0.0165 60.74 60.23 |0.0035 289.59 289.09 | 0.0026 384.29  383.79
4 25 | 0.0074 135.23 134.73 |0.0025 400.98 400.48 | 0.0041 245.26  244.76
5 20 | 0.0061 163.66 163.16 |0.0015 671.30 670.80 | 0.0026 388.07 387.57
10 10 | 0.0010 1024.00 1023.50 [0.0010 1024.00 1023.50 | 0.0020 512.00 511.50

205 254
502 1001 O ° * 0.0 * * 0.0 * *
T 200 U =91 or 109 (OOC) U = 95 or 105 (OOC) U =100 (IC)
= (P= 04550r0.545) (P= 04750r0.525) (P=05)

1 200 | 0.0384  26.02 25.52 | 0.0098102.24 101.74 | 0.0023438.70  438.20
2 100 | 0.0176 56.69 56.19 |0.0062 160.75 160.25 | 0.0035 284.28  283.78
4 50 | 0.0078 127.77 127.27 |0.0038 265.37 264.87 | 0.0026 384.29  383.79
5 40 | 0.0084 119.25 118.75| 0.003&81.45 280.95 | 0.0022450.16  449.66
8 25 | 0.0074 135.23 134.73 |0.0025 400.98 400.48 | 0.0041 245.26  244.76
10 20 | 0.0061 163.66 163.16|0.0015 671.30 670.80 | 0.0026 388.07  387.57
20 10 | 0.0010 1024.00 1023.50 [0.0020 512.00 511.50 | 0.0020 512.00 511.50

25 8 ]0.0039 25600 25550/ 0.0 o o | 00 o o
40,5 50,4
100,2 200,1| °° * * 00 * 0.0 e *
j U = 115 or 135 (OOC) U = 120 or 130 (OOC) U =125 (IC)
T =250 (P= 046 0r0.54) (P= 0480r0.52) (p=05)

1 250 [0.0438 2285  22.35| 0.0097103.13  102.63 | 0.0029347.38  346.88
2 125 |0.0157 63.53  63.03 | 0.0063159.02  158.52 | 0.0022449.14  448.64
5 50 |0.0078 127.77  127.27| 0.003@65.37  264.87 | 0.0026384.29  383.79
10 25 |0.0078 128.67  128.17|0.0025 400.98 400.48 | 0.0041 245.26  244.76
225 10 | S SO SESED ENNSD DD BEER) | 0.0020512.00  511.50

50,5 125,2
250,1
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Table 3.10: The false alarm rate CFAR), the average run-length CARL) and the standard
deviation of the run-length CSDRL) of the conditional run-length distribution for different
combinations of m and n, provided that T =300, 500 and 750 andp, = p= 05

10" or 90" Percentile 2% or 75" Percentile 5¢" Percentile
m n CFAR CARL, CSDRLy| CFAR CARLy CSDRLy | CFAR CARLp, CSDRLg,
T =300 U =139 or 161 (OOC) U = 144 or 156 (OOC) U =150 (IC)
(p= 0463 0r0.536) (p= 0480r0.52) (p=05)
1 300 | 0.0470 21.29 20.79 0.0122 81.82 81.32 0.0032 315.53 315.03
2 150 | 0.0205 48.81 48.30 0.0058 173.44 172.94 | 0.0024 415.71 415.21
3 100 | 0.0106 94.51 94.01 0.0065 154.96 154.46 | 0.0035 284.28 283.78
4 75 |0.0102 97.68 97.18 0.0058 171.50 171.00| 0.0024 409.13 408.63
5 60 | 0.0069 144.06 143.56 | 0.0036 274.60 274.10 | 0.0027 374.47 373.97
6 50 |0.0078 127.77 127.27| 0.0038 265.37 264.87 | 0.0026 384.29 383.79
10 30 | 0.0028 360.50 360.00| 0.0033300.58 300.08 | 0.0014 698.86 698.36
12 25 | 0.0025 400.98 400.48 | 0.0025 400.98 400.48 | 0.0041 245.26 244.76
15 20 | 0.0061 163.66 163.16| 0.0015 671.30 670.80 | 0.0026 388.07 387.57
20 15 | 0.0042 239.18 238.68| 0.0010 1024.00 1023.50 | 0.00101024.00 1023.50
25 12 | 0.0034 292.57 292.07| 0.0034 292.57 292.07 | 0.00052048.00 2047.50
.30 10 |0/0010 102400 102350| 0.0020 512.00 §IL50 | 0.0020 512.00 51150
50,6 60,5
75,4 100,3| 0.0 00 00 0.0 00 00 0.0 00 o0
150,2 300,1
T =500 U = 236 or 264 (OOC) U = 242 or 258 (OOC) U = 250 (IC)
(P= 0472 0r0.528) (P= 0484 0r0.516) (p=05)
1 500 | 0.0405 24.68 24.17 0.0113 88.24 87.74 0.0027 370.81 370.31
2 250 | 0.0184 54.39 53.88 0.0070 143.25 142.75| 0.0029 347.38 346.88
4 125 | 0.0100 100.06 99.56 0.0038 260.91 260.41 | 0.0022 449.14 448.64
5 100 | 0.0062 160.75 160.25 | 0.0038 266.28 265.78 | 0.0035 284.28 283.78
10 50 |0.0038 265.37 264.87 | 0.0038 265.37 264.87 | 0.0026 384.29 383.79
20 25 [0.0025 400.98 400.48 | 0.0025 400.98 400.48 | 0.0041 245.26 244.76
25 20 | 0.0015 671.30 670.80 | 0.0015 671.30 670.80 | 0.0026 388.07 387.57
50 10 |0.0010 102400 10235000020 512.00 51150 | 0.0020 512.00 51150
100,5 125,4
250.2 500.1 0.0 o0 o0 0.0 00 00 0.0 00 00
T2 750 U = 357 or 393 (OOC) U = 366 or 384 (OOC) U =375 (IC)
= (P= 0476 0r0.524) (P= 04880r0.512) (p=05)
1 750 | 0.0430 23.24 22.73 0.0089 112.45 111.95| 0.0024 413.68 413.18
2 375 [ 0.0194 51.54 51.03 | 0.0051 196.82 196.32 | 0.0027 370.96 370.46
3 250 | 0.0134 74.53 74.02 0.0051 197.15 196.65| 0.0029 347.38 346.88
5 150 | 0.0090 111.07 110.56| 0.0038 262.77 262.27 | 0.0024 415.71 415.21
6 125 | 0.0061 163.01 162.51| 0.0041242.72 242.22 | 0.0022 449.14 448.64
10 75 |0.0055 181.29 180.79| 0.0032317.07 316.57 | 0.0024 409.13 408.63
15 50 |0.0038 265.37 264.87 | 0.0018 565.23 564.73 | 0.0026 384.29 383.79
25 30 | 0.0033 300.58 300.08| 0.0033300.58 300.08 | 0.0014 698.86 698.36
30 25 [0.0025 400.98 400.48 | 0.0025 400.98 400.48 | 0.0041 245.26 244.76
50 15 | 0.0042 239.18 238.68| 0.0010 1024.00 1023.50 | 0.00101024.00 1023.50
7510 |00020 51200 51150 | 00020 512.00 51150 | 0.0020 512.00 51150
125,6 150,5
250,3 375,21 0.0 ) 00 0.0 00 00 0.0 ) 0
750,1
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Table 3.11: The false alarm rateRAR), the average run-length ARL) and the standard
deviation of the run-length (SDRL) of the conditional run-length distribution for different
combinations of m and n, provided that T =1000 and 1500 andp, = p=05

10" or 90" Percentile 25" or 75" Percentile 50" Percentile
m n CFAR CARL CSDRL | CFAR CARL CSDRL | CFAR CARL CSDRL
T 1000 U = 480 or 520 (OOC) U = 489 or 511 (OOC) U =500 (IC)
(p= 048 0r0.52) (p= 04890r0.511) (p=05)
1 1000 | 0.0410 24.40 23.90 0.0106 94.61 94.11 0.0026 378.00 371.50
2 500 | 0.0178 56.25 55.75 | 0.0056 179.73 179.23 | 0.0027 370.81 370.31
4 250 | 0.0097 103.13 102.63| 0.0051 197.15 196.65 0.0029 347.38 34(.88
5 200 | 0.0067 149.04 148.53| 0.0033 306.27 305.77 | 0.0023 438.70 438.20
8 125 | 0.0063 159.02 158.52| 0.0041 242.72 242.22 0.0022 449.14 448.64
10 100 | 0.0065 154.96 154.46| 0.0038 266.28 265.78 | 0.0035 284.28 283.78
20 50 | 0.0038 265.37 264.87| 0.0018 565.23 564.73 | 0.0026 384.29 383.79
25 40 | 0.0036 281.45 280.95| 0.0022 450.16 449.66 | 0.0022 450.16 449.66
40 25 |1 0.0025 400.98 400.48 | 0.0025 400.98 400.48 | 0.0041 245.26 244.76
50 20 | 0.0015 671.30 670.80 | 0.0026 388.07v 387.57 | 0.0026 388.07 387.5]
100 10 |00020 51200 51150 |00020 51200 5ILSD | 00020 51200 5115p
125,8 200,5
250,4 500,20 0.0 00 co 0.0 00 00 0.0 00 o0
1000,1
U = 725 or 775 (OOC) U = 737 or 763 (OOC) U = 750 (IC)
T=1500 (P= 0483 or 0.516) (= 049130r0.5086) (p=05)
1 1500 | 0.0418 23.92 23.41 0.0095 105.36 104.85 0.0025 398.62 398.12
2 750 | 0.0187 53.44 52.94 0.0061 163.72 163.22 0.0024 413.68 413.18
3 500 | 0.0113 88.24 87.74 | 0.0045 221.21 220.71 | 0.0027 370.81 370.3
4 375 | 0.0089 112.99 112.48 | 0.0040 247.16 246.66 | 0.0027 370.96 370.4
5 300 | 0.0091 109.95 109.45| 0.0038 265.71 265.21 | 0.0032 315.53 315.0
6 250 | 0.0070 143.25 142.75 | 0.0038 261.95 261.45 | 0.0029 347.38 346.8
10 150 | 0.0059 168.33 167.83| 0.0027 364.75 364.25 | 0.0024 415.71 415.2
12 125 | 0.0038 260.91 260.41 | 0.0026 383.35 382.84 | 0.0022 449.14 448.6
15 100 | 0.0038 266.28 265.78 | 0.0027 376.82 376.32 | 0.0035 284.28 283.7
20 75 |0.0032 317.07 316.57 | 0.0032 317.07 316.5y 0.0024 409.13 40863
25 60 | 0.0036 274.60 274.10| 0.0019 535.30 534.80 | 0.0027 374.47 373.9
30 50 | 0.0038 265.37 264.87| 0.0018 565.23 564.73 | 0.0026 384.29 383.7
50 30 | 0.0033 300.58 300.08| 0.0033 300.58 300.08 0.0014 698.86 698.36
60 25 | 0.0025 400.98 400.48 | 0.0025 400.98 400.48 0.0041 245.26 244,76
75 20 | 0.0015 671.30 670.80 | 0.0026 388.07v 387.57 | 0.0026 388.07 387.5]
100 15 | 0.0010 1024.00 1023.50| 0.0010 1024.00 1023.50| 0.0010 1024.00 1023.30
125 12 | 0.0034 292.57 292.07| 0.0005 2048.00 2047.50| 0.0005 2048.00 2047.%0
150 10 10.0020 512.00 511.50 | 0.0020 512.00 511.50 | 0.0020 512.00  511.5p
250,6 300,5
375,4 500,3 0.0 ) co 0.0 ) 00 0.0 0 0
750,2 1500,1
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3.2.3.2 Conditional characteristics of thec-chart

Like the p-chart, once we observe a valweof the random variabl®/ we can calculate the
conditional probability of a no-signal of thechart so that the Phase Il conditional run-length
distribution and its associated conditional characteristics are completely known (see e.g. Table 3.4). T
this end, Table 3.12 illustrates the steps to calculate the conditional probability of a no-signal, the
conditional false alarm rat€€CFAR), the conditional average run-lenglBARL) and the conditional
standard deviation of the run-lengtDRL) of the echart.

For illustration purposes we assume tleat ¢ = 20; this implies that the process operated at a

level of twenty nonconformities (on average) in an inspection unit during Phase | and that in Phase |
the process continues to operate at this same level. In addition, we assumre=that Pha%60I

inspection units are available to estimateusing C=V/m=¢

obs?

which (because of sampling

variation) may or may not be equal¢o

In particular, column 1 lists some values\of 0@200600Mich (in theory) can be any integer
greater than or equal to zero. Column 2 converts the observedwaliu¢ of column 1 into a point

estimate ofc by calculatingC

obs

=v /100. Because each row entry in each of the succeeding columns

(i.e. columns 3 to 10) is computed by conditioning on a row entry from column 1 or column 2, we start
calculating the conditional properties in column 1 or 2 and sequentially proceed to the right-hand sid

of the table. So, given a valweor T, the lower and the upper control limits are estimated in columns

3 and 4 using (3-27) and then used to compute the two condtantd f defined in (3-33), which are

shown in columns 5 and 6, respectively. Finally, columns 7 through 10 list the probability of a no-
signal, theFAR, the ARL and theSDRL conditioned on the observed valwe from column 1,
respectively. These properties are labeled Pr(NoSighall, CFAR, CARL, and CSDRL,, and

calculated using (3-32) and the expressions in Table 3.4.

An examination of Table 3.12 reveals one special scenario i.e. When (the éhinimum possible

value). In this particular case the estimated control IimitstﬁtaC :UéLc =0 so that the constants

d and f need not be calculated (see e.g. expression (3-32) and Remark 6(ii)); as a result, th

probability of a no-signal is defined to be zero so thattbleart signals with probability one once the
first Phase Il inspection unit is sampled i.e. both the conditiARland the conditionaARL are one

(as shown in columns 8 and 9, respectively). For valugs#sf we Proceed as follows.
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Table 3.12: Conditional Probability of a no-signal, the conditional false alarm rateGFAR),
the conditional average run-length CARL) and the conditional standard deviation of the run-
length (CSDRL) of the c-chart in Case U for m = 100and assuming thatc, =c =20

L @ (©) @ | 6 6 @) 8) (©) (10)

V. Cus | LCL, UCL, | d f | Pr(NosSignal|v,c) CFAR CARL, CSDRL,

0 0 000 000 | NA NA 0.0000 1.0000 1.00 0.00
200 2 | 224 624 0 6 0.0003 0.9997 1.00 0.02
400 4 | -200 1000, O 9 0.0050 0.9950 1.01 0.07
600 6 | -1.35 1335 0 11 0.0661 0.9339 1.07 0.28
800 8 | -0.49 16.49| 0 16 0.2211 0.7789 1.28 0.60
1000 10 | 051 1949 0 19 0.4703 0.5297 1.89 1.29
1200 12 | 161 2239 1 2P 0.7206 0.2794 3.58 3.04
1400 14 | 278 2522 2 2% 0.8878 0.1122 8.91 8.4Q
1600 16 | 4.00 28.00] 4 2 0.9475 0.0525 19.05 18.50
1800 18 | 527 3073 5 30 0.9865 0.0135 73.82 73.3p
2000 20 | 658 3342 6 3B 0.9971 0.0029 339.72 339.22
2200 22 | 793 3607 7 36 0.9988 0.0012 832.30 831.80
2400 24 | 930 3870, 9 38 0.9949 0.0051 195.92 195.42
2600 26 | 10.70 4130 10 4j 0.9892 0.0108 92.39 91.80
2800 28 | 1213 4387 12 4B 0.9610 0.0390 25.63 25.18
3000 30 | 1357 4643 13 4p 0.9339 0.0661 15.12 14.60
3200 32 | 1503 4897 15 4B 0.8435 0.1565 6.39 5.87
3400 34 | 1651 5149 16 5| 0.7789 0.2211 4.52 3.94
3600 36 | 18.00 54.000 18 5B 0.6186 0.3814 2.62 2.04
3800 38 | 1951 5649 19 5B 0.5297 0.4703 2.13 1.58
4000 40 | 21.03 5897 21 5B 0.3563 0.6437 1.55 0.9
4200 42 | 2256  61.44 22 6 0.2794 0.7206 1.39 0.7
4400 44 | 2410 63.90] 24 6B 0.1568 0.8432 1.19 0.47
4600 46 | 2565 66.35 25 6p 0.1122 0.8878 1.13 0.3§
4800 48 | 27.22 6878 27 6B 0.0525 0.9475 1.06 0.24
5000 50 | 28.79 7121 28 7l 0.0343 0.9657 1.04 0.19
5200 52 | 30.37 7363 30 7B 0.0135 0.9865 1.01 0.1
5400 54 | 31.95 76.05 31 7B 0.0081 0.9919 1.01 0.04
5600 56 | 33.55 7845 33 7B 0.0027 0.9973 1.00 0.04
5800 58 | 3515 80.85 35 8P 0.0008 0.9992 1.00 0.0

36 8B

6000 60 36.76 83.24 0.0004 0.9996 1.00 0.07

Suppose, for example, that we observe two thousand four hundred nonconformities in the entir
Phase | reference sample. The valu&/cf 2gi@s an observed value of the point estimatecfor

of T, = 2400/100= 24 so that (3-27) yields an estimated upper control limit and an estimated lower
control of
UCL, = 24 3/24=3870 and LCL = 24 3/24=930

respectively.
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The constantgl and f are thus found to be
d = max0,[LCL.J} =max{0,[93]} =9  and f =[UCL, - 1]= [3870]=38

so that upon substitutiné and f in (3-32) we calculate the conditional probability of a no-signal and

then also th€€FAR, the CARL, and theCSDRL using expressions (3-42), (3-43) and (3-44) in Table
3.4.

The conditional probability of a no-signal, in particular, is
B o= 20n= 100y = 240Qc=20)= B c(= 2Mm= 100G = 24 = 20)= 09949
so that the conditional false alarm rate is
CFARcc, € 20100|= 2400= 20r % 09943 00051

The Phase llc-chart then has a conditional in-control ABL
CARL, c, € 20100|= 2406= 20F 1/0005%F 19592
and a conditional in-control SDRbf

DRL, ¢, ¥ 20180F 240F 26+ 09949/0005F 19542.

The conditional false alarm rate

Figure 3.4 displays the conditional false alarm r&fAR), that is,l—,[;’ €, = 20m|V =v,c=20)
as a function ofv=012..whenm= 50 or 75 or 100ndividual Phase | inspection units are used to

estimatec; the curve labeledn= 100orresponds to th€EFAR’s of column 8 in Table 3.12.

The impact of the actual observed number of nonconformitiés the entire Phase | reference
sample is easily noticed. The distribution function of @AR is seen to be slightly negatively U-
shaped. For values dfnear the two tails (i.e. the extreme left and right)GRAR can be very high,

sometimes close to 1 or 100%, which obviously means many false alarms.
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Figure 3.4: The conditional false alarm rate CFAR) as a function of
v=0,12,.. for m =50,75 and 100

However, even whel is not near the two tails there can be a significantly high probability of a

false alarm; this is more easily seen from Figure 3.5, which (for illustration purposes) displays values

of 1—,@ ¢ = 20m= 100JV =v,c = 20) for values ofv between 1800 and 2600 only.

It is seen that only wher’V takes on a value in the neighbourhood of its mean i.e.
EYV |c=20)=mc= 10& 20= 2000 (or, equivalently, whert is close to the true average number of

nonconformities, which is 20 in this case) will tBEAR be reasonably small and close to its Case K
value of 0.0029 (see e.g. Table A3.12 in Appendix 3A).

However even though tHeFAR may be small, it is (for most values vj still far from the typical
or nominal expected value of 0.0027 of a Shewhart X-bar chart with 3-sigma limits. Thus, the
performance of thec-chart, as measured by the false alarm rate, is considerably degraded anc

unfavourably affected by a poor point estimate
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Figure 3.5: The conditional false alarm rate CFAR) as a function ofv = 180C,...260(C when
m =100 in relation to the nominalFAR of 0.0027
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The out-of-control conditional performance of thec-chart

The in-control performance of the Phase-ithart (in theory) refers to the characteristics of the
chart in the situation where the process operates at the same level in Phase Il than what it did in Pheé

l; this is the scenario wheq) = c. But, because is unknown and estimated lzy, the observed value
C,.s Plays the role ofc so that the conditional in-control performance (in practice) refers to the
situation whenc, =C,,, (see e.g. the earlier section labelled “Phase Il implementation and operation”).

The out-of-control performance (in practice) then refers to the characteristics ofctiaget when

C,# Cyps-

In view of the abovementioned, we can study the out-of-control performance of the Pbase Il
chart by making use of the results from the previous section concerning the conditional characteristic
of the Phase It-chart. In particular, note that, by conditioning on a specific observed egluthe
run-length distribution of the PhasecHchart is affected in the same way it would be if the unknown
true average number of nonconformities in an inspection was to change f(onPPhase 1) toc, (in
Phase 1l). In other words, the out-of-control performance of the Phasehhrt (i.e. whenc has
incurred either a downward or an upward shifcteso thatc, #c) is equivalent to the performance
of the c-chart whenc#¢C, i.e. if ¢ was either overestimated or underestimated (see e.g. Jones,

Champ and Rigdon, (2004)); this correspondence allows us to examine the out-of-control performanc
of the cehart by using the conditional statistical characteristics of the Phashdrc

Consider, for example, Tables 3.13, 3.14 and 3.15 which list the false alarnCFate),( the
average run-lengthCARL) and the standard deviation of the run-lengi®RL) of the conditional
run-length distribution assuming that=5,10,15,20and30 with m=  101520,2550,75100150
and 200. For each combination ah ¢ ;values the run-length distribution is conditioned on (for

illustration purposes only) the %0, 25" , 50" , 758" and 98' percentiles of the distribution of
V |c ~ Poi(mc) .

In particular, suppose thafn ¢ )= (2020) and we observel = 4080 that our estimate = 20
is spot on. In this case, Table 3.14 shows that the conditional false alarm rate is
CFAR c(= 2f= 20f = 40G = 20= 00029,
the conditional average run-length is

CARL, c,E 20= 20|= 406= 20r 1/0002% 33972
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and the conditional standard deviation of the run-length is

CDRL,c, £ @60 20F 40 28+ -1 00029/0002% 33922.

These conditional characteristics i.e. conditioned on tffepg@centile ofV k= 20~Poi 400),
are identical to the in-control characteristics of the Case d<hart, that s,

B ¢= 20, = 20= 00029, ARL ¢= 2@, = 20)= 33972 and SDRL ¢= 2@, = 20)= 33922,
which can be found from Table A3.12 in Appendix 3A. To illustrate the out-of-control (OOC)
performance of the Case ddchart we should condition on a percentile\ofc |Pet mc( other than
the 50" percentile. To this end, consider again, for example, the situation \@en= (2020) , but
conditioning on the 2% percentile of V = 20~Poi (mc=400, that is, V= 386 or
C = 386/20= 1930; this implies thatc is underestimated by approximately20/19.3- 1100%= 4%

or, equivalently, that the average number of nonconformities in an inspection unit has increased b
4%.

Table 3.14 shows that thEFAR=  0005the CARL, = 20070 and the CSDRL, = 20020.
Compared to the probability of a signal ot 8 = 1930, = 20)= 00020, the OOC average run-
length of ARL o= 193G, = 20)= 50785 and the OOC standard deviation of the run-length of
SDRL o= 193¢, = 20)= 50735 of Case K (which are found by evaluating expressions (3-7), (3-21)

and (3-22), respectively) we observe that the Casechhrt would detect an increase from 19.30 to
20 quicker than the-chart of Case K. However, this is (as mentioned earlier in case pfdart) a

side-effect of estimating and not due to improved performance.

On the other hand, whefmc)= (2020), and we condition on the 90 percentile of
V = 20~Poi (nc =400, that is, V= 426 or C= 426/20= 2130, which implies thatc is
overestimated by (213/26- 1100%= 65% (or, equivalently, that the average number of
nonconformities in an inspection unit has decreased by 6.5%), Table 3.14 shows that the

CFAR = 00016, the CARL, = 63201 and theCSDRL, = 6315Which implies that the Case t}

chart performs worse than the Case B&chart with probabilty of a signal of

14 d= 213, = 20)= 00068, an out-of-controARL of ARL d= 213G, = 20)= 14615 and an
out-of-control SDRLof SDRL o= 2130, = 20)= 14565.

Note that, when conditioning on a particular percentil®¥ gfthe OOC performance of the Case U

c-chart is the same for two or more € ,cdmbinations and thus the overlap of certain of the cells as
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seen in Tables 3.13, 3.14 and 3.15. For example, the OOC performance of thecZdmsetWhen (i)
M c)= (2020) and conditioning on the 80 percentile of V = 20~Poi (mc =400, and (ii)

Mmgc)= (15200 and we condition on the YOpercentile of V ¢= 20~Poi (L5 20=300 i.e.

V =322 so thatC = 2147 (which corresponds to an decrease of 7.35% iinom 21.47 to 20), are

similar.

Table 3.13: The false alarm rate FAR), the average run-length ARL) and the standard
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart for

m =10, 15, 20, 25, 50, 75, 100, 150, 200 wieen 5 and10
c=5 c=10
Percentile| m=10] 15| 20 29 50 75 100 150 2pao] 15] 20| 25 54 75 10p 150  20(
10" 0.0204 0.0122 0.0143 0.0072 0.0035
(000) 48.94 82.03 69.82 138.28 285.74
48.44 81.53 69.32 137.78 285.23
ogh | 0.0204 0.0122 0.0072 0.0035
©oc) | 4894 82.03 138.28 285.74
48.44 81.53 137.78 285.23
s CFAR=0.0122 CFAR = 0.0035
(C) CARL = 82.03 CARL = 285.74
CSDRL = 81.53 CSDRL = 285.23
2gh 0.0088 0.0122 0.0016 0.0035
(000) 114.20 82.03 612.12 285.74
113.70 81.53 611.62 285.23
ogh | 0:0074 0.0088 0.0012 0.0016 0.0035
©oc) | 13448 114.20 833.99 612.12 285.74
133.98 113.70 833.49 611.62 285.23

Table 3.14: The false alarm rate FAR), the average run-length ARL) and the standard
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart for

m =10, 15, 20, 25, 50, 75, 100, 150, 200 wiien 15 and20
c=15 c=20
Percentlie] m =10 |15/ 200 25 | 50 75 100 130 2po10 | 15| 20] 25| 5§ 75 10p 150 20
10" 0.0112 0.0062 0.0064 | 0.0035 | 0.0135 0.0082 0.0050
(000) 89.25 160.66 156.34 | 283.83 | 73.82 122.49 200.70
88.75 160.16 155.84 | 283.33 | 73.32 121.99 200.20
oeh 0.0062 0.0064 0.0035 0.0048 0.0050 0.0029
o0c 160.66 156.34 283.83 208.36 200.70 339.72
(00C) 160.16 155.84 283.33 207.86 200.20 339.22
- CFAR = 0.0035 CFAR= 0.0029
' CARL = 283.83 CARL =339.72
(1 CSDRL = 283.33 CSDRL = 339.22
75 0.0019 0.0035 0.0023 0.0017 0.0029
00C 518.90 283.83 440.99 573.34 339.72
(00C) 518.40 283.33 440.49 572.84 339.22
oo™ 0.0017 0.0026 0.0019 0.0016 0.0023 0.0017 | 0.0029
00C 582.29 388.74 518.90 632.01 440.99 573.34 339.72
( ) 581.79 388.24 518.40 631.51 440.49 572.84 339.22
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Table 3.15: The false alarm rateRAR), the average run-length ARL) and the standard
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart for

DO

m = 10, 15, 20, 25, 50, 75, 100, 150, 200 wlosn 30
c=30
Percentle | m=10 | 15] 20 29 50| 75 10p 150 2
10" 0.0098 0.0064 0.0041 0.0044
(000) 102.05 155.37 242.41 229.10
101.55 154.87 241.91 228.60
oeh 0.0064 | 0.0041 0.0044 0.0029
(000) 155.37 | 242.41 229.10 349.94
154.87 | 241.91 228.60 349.44
s CFAR = 0.0029
() CARL = 349.94
CSDRL = 349.44
g 0.0024 0.0019 0.0029
(000) 415.11 527.54 349.94
414.61 527.04 349.44
ogh 0.0025 0.0018 0.0024 0.0019
(000) 405.45 553.19 415.11 527.54
404.95 552.69 414.61 527.04

188



UNIVERSITEIT VAN PRETORIA

E.i UNIVERSITY OF PRETORIA
Qe

YUNIBESITHI YA PRETORIA

3.2.4 Unconditional Phase Il run-length distributions and characteristics

The conditional run-length distribution and the associated characteristics of the conditional run-
length distribution present the performance of a chart only for one particular realization of the point

estimator and a supposed value for the parameter. For each individual realizapignUofmn or
€c=V/m and the truep or c value the performance of the chart will be different — some charts

performing acceptable and others poorly.

In case of the@-chart the variabléJ can take on any value between and including Orandi.e.

U 0O{01...,mn}, so that there is a finite numben+ pbssible values on which we can condition.
For thec-chart the variablé/ can be any positive integer greater or equal to zend lle. {01.2,...}

and so the number of possible values on which we can condition is infinite.

To avoid calculating the conditional performance of the charts for each realization of the point
estimator and to asses the overall performance of the charts, the influence of a single realization shot
ideally be removed. The unconditional run-length distribution and its associated characteristics serv
this purpose and better represent the overall performance of the charts when the parameters ¢

estimated and let one see the bigger picture.

The unconditional characteristics of the charts can be found from the conditional run-length
distribution by averaging over the distributionsbfandV respectively, and allow us to look at the
marginal (or the unconditional) run-length distribution. This incorporates the additional variation
introduced to the run-length through the estimationpofind ¢ by taking into account all possible
realizations of the random variables on which we condition. In particular, we derive expressions fol
the:

() unconditional run-length distribution,

(i) unconditional average run-length, and

(i) unconditional variance of the run-length

of each chart.
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Unconditional run-length distribution: p-chart and c-chart (Case U)

Because:

0] the observations in the Phase | reference sample are assumed to be independent a
identically distributed, that isX;, HdBin n(p, andY; ~iidPoi(c) for i = 12...,m, and

(i)  we assume that the Phas&]’s andY;’s are independent from the Phase Il observations

i.e. X, ~iidBin(n, p,) andY, ~iidPoi(c,) for i =m+ 1m+ 2...,
the joint probability distribution of

0] the Phase I point estimatbr = mnp and the Phase Il run-length random variallg, and

(i) the Phase | point estimater=mc and the Phase Il run-length random varialdle

can straightforwardly be obtained (see e.g. Definition 4.2.1 in Casella and Berger, (2002) p. 148) as

PN,=jU=up mn p)yr PN, =jp mnplU=u,p)Pry =ulp) (3-46)
and

PN, =jV=ve m¢)yr Pl =jc, mV=ve)Pry =v]c) (3-47)
for j=12...,u=01...,mn andv= 012...where
Pr(Np =j;p,,mn|U =u,p) and Pr(N, = j;c,.m|V =v,c)

are the conditional run-length distributions of thehart and the-chart given in Tables 3.3 and 3.4,

respectively, and
PrU =u| p) z(mnj p'@-p)™* for u= 012...,mMn
u

and

e ™ (mc)"

Pri =v|c) = v

for v= 012...

are the probability distributions of the estimatbrsandV , which depend on the unknown parameters

p andc, respectively.
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The marginal or unconditional run-length distributions are then found from the joint probability
distributions and given by

P, =jp mn Ip)=2 PrN, = j U =u;p,,mn| p)

oMé iV g

PqN,=jp mnlU=u,p)PrU =ulp) (3-48)

/3’(p1,mnlu p)'™[1- 4 (p, m,n |u, p)]( Jp @-pm™
and

PriN; =j £, mc)= ZPF(N =V =vic;,mc)

P, = B m NV =ve)Priv =v|o) (3-49)

1
ﬁMg <
© o

5. Ale miv) - Ale, miv o). S

I
gk

for j = 12... (see e.g. Definition 4.2.1 in Casella and Berger, (2002) p. 148).

One can think of these unconditional distributions as weighted averages i.e. the conditiona
distributions averaged over all possible values of the parameter estimators, where a weight is tf

probability of obtaining a particular realization of the point estimator which is giveRrfy=u| p)

or Pr{ =v|p).

It is important to note that the unconditional run-length distributions in (3-48) and (3-49) are
unconditional only with respect to the random varialdlesand V ; the unconditional run-length
distributions still depend on the parameteps and c¢c. This means that when we evaluate the
unconditional run-length distributions and the associated characteristics of the unconditional run

length distributions, the results apply only for those particular valugs afid c that are used.
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The unconditional average run-length and the unconditional variance of the run-length
distributions

Apart from the unconditional run-length distributions we can also compute higher order moments

of the unconditional run-length distribution.

The unconditionak ™ non-central moments, for example, are
EN, Ip)=E, EN; |U,p) and EWN; |c)=E, (E(N; |V,c))
where
ENSIU,p)  and  ENSVMc)
are thek ™ non-central moments of the conditional run-length distributions of-teagt and hart,

respectively (see e.g. Theorem 5.4.4 in Bain and Engelhardt, (1992) p. 183).

In particular, wherk = we have that the unconditional average run-length, denoted by,UARL
which are

UARL, =E(N, |p)=E, (E(N, |U,p)) and UARL =E(N, |c)=E, (E(N,|V,0)
where

EN, |U,p)=@-B@.mnlU,p)* and EN, |V,c)= (-4, m|V,0)™

are the conditionadRL’s (conditioned on particular observations of the random varidblesdV ),

respectively.

Hence, it follows that

UARL (p, m,n|p) = i(l-/? @, mn |u,p))y* PrU =u|p)

(1 7 (3-50)
=2, A=F @ mnlu p))‘l(rznjp“ a-pm

and

UARL (G, m|c)=3 @3 € m Iv.e)* Priv =v|o)
Ve (3-51)

=3 a-pemivop* SO
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Similarly, the unconditional variance of the run-length, denoted\WRL, can be found using

(i) the conditional variance of the run-lengtbvAR ),
(i) the conditional average run-lengt@ARL ), and

(i) the unconditional average run-lengthARL ),

and is given by
UVARL = E, (CVARL) + E, (CARL*) —UARL?. (3-52a)

where Z plays the role ot and/orV .

Result (3-52a) follows from the fact that, in general, the unconditional variance can be obtainec
from the expected value of the conditional variance and the variance of the conditional expected valu

i.e.

varll )= E, (varll Z))+ vas, (E(N | 2))

= E{var(N 2) { EJ(EN| 2) 7 -[E,(E(N| 2)]°} (3-52Db)
UVARL = E, (CVARL) + E, (CARL?) —UARL?

where varl )is the unconditional variance of the run-length ,
CVARL = var(N | Z) = B/(L- B)?
denotes the conditional variance of the run-length,
CARL=E(N |2)=1/1-p)
denotes the conditional average run-Iengffh,denotes (in general) the conditional probability of a no-

signal andZ plays the role ofJ and/orV , which is the random variable on which we condition in
the particular case (see e.g. Theorem 5.4.3 in Bain and Engelhardt, (1992) p. 182).
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the unconditional variance of the run-length is

UVARL, = E, (CVARL) +{E, (CARL?)-[UARL]?}

B(p,,mn|U, p)

1

1+ B(p,,mn|U, p)

@-A(p,.mn|U, p))>

M st
1-A(p,.mn|U, p)

: EU( :
- B(p,.mn|U, p)°®
1

1+ B(p,,mn|u, p)

@-B(p,, mn|U, p))*

mn
u=0

whilst for the echart we have

@- A (p, mn|u, p)?

U( 5 H
{ 1- B (p,,mn|U,p)
1

mn) _ A\M-u < mn) _ A\ Mn-u 2
J(Ujp =P {é(l—ﬁ(pym,nlu,m](u}p =P }

UVARL, = E, (CVARL) +{E, (CARL?)-[UARL]’}

B(c, .m|V,c)
@- B, .mlV,c))?

1+ B(c,,m|V,c)
@- B, .mlV,c))?

HEV[
HEV{l_ ﬁ(cjmw,wﬂz

e—mc

1
@-AB.c, mlV,c)?

J_{Ev[l_ﬁ(c,:,m|v,c)ﬂz}

e—n'r. (rm)v

1+,é(cl,m|v,c) j
@- B, .m|v,c)’

=l

(mo)’ _|< 1
vi {;[1—ﬁ(cl,mlv,C)J

The unconditional standard deviation of the run-length follows by taking the square root of the

unconditional variance of the run-length IWSDRL = vVUVARL .

The unconditional probability mass function (u.p.m.f), the unconditional cumulative distribution

function (u.c.d.f), the unconditional false alarm rdt#=AR), the unconditional average run-length

(UARL), and the unconditional variance of the run-lengilARL) for thep-chart and the-chart are

summarized in Tables 3.16 and 3.17, respectively.

These characteristics, as mentioned before, are important as they help us understand the full impz

of estimating the unknown parameters on the performance of the charts. Note, however, that whe

evaluating the unconditional distributions and the unconditional characteristics in Tables 3.16 and 3.1
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one still has to select values fpr and c; hence, the results are only applicable to the particular values

of p andc that are selected.

Table 3.16: The unconditional probability mass function (u.p.m.f), the unconditional cumulative
distribution function (u.c.d.f), the unconditional false alarm rate (UFAR), the unconditional
average run-length JARL) and the unconditional variance of the run-length VARL) of the
p-chart in Case U

wpmi| PN, = jipmnlp) =S (B (g, mn fu,p) -3 @ mnlu, p»[”;”j 0’ (- p)™ |(3-53)

u=0

: il ~ (MY o
ucdf | PN, <jip.mnip)=> A-(8 6 mn Up)) E y jp EpJ™ j=12... |(3-54)
u=0
- P mn u mn-u
UFAR UFAR (pl m,n|p :pl) = Z (1—,8([)1 m,n |u, p :pl))( u jpl (1_p1) (3-55)
u=0
. p -1 mn u mn-u
UARL UARL (p, . m,n|p)=> @~ B(p,,mn|u, p)) L @-p) (3-56)
u=0
_&(_1+B(p.,mn]|u, p) (anu _ m_u_{m[ 1 J(mnju ) } ]
UVARL UVARL, = . 1 - 1 3-57
" é[a—ﬂ(pl,m,nw, p))Z] T LA Dol b Terer iy BT L (3-57)

Table 3.17: The unconditional probability mass function (u.p.m.f), the unconditional cumulative
distribution function (u.c.d.f.), the unconditional false alarm rate JFAR), the unconditional
average run-length JARL) and the unconditional variance of the run-length yVARL) of the

c-chart in Case U

spmi| PN = jic,mio) =3 A6 mve) - e mive) S j= 12 |@se)
u.c.d.f PriN_ < jic,,m|c) = gl—(ﬁ’(cl,mlv, c))’ emc% j=12,... (3-59)
UFAR UFAR(cl,m|c:cl):21—,[;’(cl,m|v,c:cl)w (3-60)
UARL UARL (, ,m|c) :ga— B, mlv, c))-lw (3-61)
e :gi(llj g(éil’;nltv’,;)f}e-m(w@v {g[l—/}(cll,mw, c)Je_m(wfm)T 02
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3.2.4.1 Unconditional characteristics of thep-chart

The necessary steps and calculations to obtain a numerical value for a particular unconditiong
characteristic of the Phase Il run-length distribution of gkehart are explained via the examples
shown in Tables 3.18 and 3.19; these tables are essentially the same as Tables 3.5 and 3.6 that we
to illustrate the mechanics for calculating th&R , the ARL and theSDRL of the conditional run-
length distribution. However, here, we go a step further and calculate the unconditional characteristic
of the run-length distribution, that is, the unconditioRAR (UFAR), the unconditionaRRL (UARL)
and the unconditionaBDRL (USDRL). In addition, note that, although we still assume that
p, = p=05 we now assume thd@t=mn= Wsith m,n)= @15 and (m,n)= (35) individual Phase

| reference observations are used to estinpate

T=15withm=1 andn =15

First consider Table 3.18 which assumes thain )= (115) . Recall that to calculate the conditional

properties we begin in column 1 and sequentially move to the right-hand side of the table up to colum
9. To illustrate the concept once more, assume that we observe nine nonconforming items from tf
entire fifteen reference observations i.e. suppose that , so9that we get a point estimate of

Pops = 9/15= 06 for the unknown true fraction nonconforming® < il column 2. Thus, using

(3-26), we find that the estimated control limits aLr@ALp = OﬂﬁjUCLp = 098 these values are
listed in columns 3 and 4, respectively. Then, making use of (3-31) we find that the charting constant

are 4= 3and b=14 (which are listed in columns 5 and 6, respectively) so that (3-36) yields a
conditional false alarm rate @FAR p{ = 0B = h= 13) = 9p= 05)= 00176 which leads to a

conditional average run-length and a conditional variance of the run-length (found from (3-37) and
(3-38)) of
CARL p(= OB= = 15) = 9p= 05)= 5679
and
CVARL =[CSDRL p(= O0H= 6= 18) = 9= 05) = 316835;
these values are displayed in columns 8 and 9, respectively.

To calculate the unconditional properties of phehart we calculate a weighted average of all the
values (rows) for each of columns 7, 8 and 9, respectively. The weights are found from the probabilit
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distribution of the random variable) p= 05~Bin @50.5) which is given in column 10 and

15
calculated from evaluatindPry =u |p = 05) = ( ) jO.S15 foru= 01...15.

Table 3.18: The conditional and unconditional characteristics of the run-length distribution
for m=1 and n=15when p=p, =05

Phase | Phase Il : Conditional Properties Phase Il : Unconditional Properties

1 @ 3 @ |6 © 0 ®) 9 (10) (11)=(7)x(10)  (12)=(8)x(10)  (13)%§)0)  (14)=(9)x(10)

U Pobs LCALp UéLp a b | CFAR CARL CVARL [Pr(U=ulp)lCFAR.Pr(U=ulp) CARL.Pr(U=ulp) CARLZPr(U=u|p) CVARL.Pr(U=ulp)

0 0.00 0.00 0.00f NA NA 1.0000 1.00 0.00 0.00po 0.00003 0.00003 0.0000 0.0040

1 0.07 -0.13 026 NA 3 0.9824 1.02 0.02 0.00p5 0.00045 0.00047 0.0005 0.00Q0

2 013 -0.13 040, NA 5 0.8491 1.18 0.21 0.00B2 0.00272 0.00377 0.0044 0.003[7

3 0.20 -0.11 051 NA 7 0.5000 2.00 2.00 0.0139 0.00694 0.02777 0.0555 0.0218

4 027 -0.08 061 NA 9 0.1509 6.63 37.3( 0.0417 0.00629 0.27609 1.8299 1.5538

5 033 -0.03 0.70| NA 10 0.0592 16.88 268.12 0.0916 0.00543 154714 26.1189 24.5Y17

6 0.40 0.02 0.78 0 111 0.0176  56.79 3168.35  0.1p27 0.00269 8.67418 492.60905 483.9349

7 047 0.08 0.85 1 12 0.0042 239.18 56969.08 0.1P64 0.00082 46.97080 11234.5932 1118}.622

8 0.53 0.15 0.92 2 13 0.0042 239.18 5696908 0.1P64 0.00082 46.97080 11234.5932 1118}.622

9 0.60 0.22 0.98 3 14 0.0176 56.79 3168.85  0.1p27 0.00269 8.67418 492.6091 483.9349

10 0.67 0.30 1.03 4 151 0.0592 16.88 268.12 0.0916 0.00543 1.54714 26.1189 24.5¥17

11 0.73 0.39 1.08 5 15 0.1509 6.63 37.3 0.0417 0.00629 0.27609 1.8299 1.55j8

12 0.80 0.49 111 7 15 0.5000 2.00 2.00 0.0139 0.00694 0.02777 0.0555 0.02}8

13 0.87 0.60 1.13 9 15 0.8491 1.18 0.21 0.0032 0.00272 0.00377 0.0044 0.0007

14 0.93 0.74 1.13 11 15 0.9824 1.02 0.02 0.0do5 0.00045 0.00047 0.0005 0.00fp0

15 1.00 1.00 1.00f NA NA| 1.0000 1.00 0.00 0.0000 0.00003 0.00003 0.0000 0.0000
0.05074 115.00 23510.42 23395.42
UFAR UARL USDRL = 183.52

Unconditional false alarm rate

To obtain the unconditional false alarm rdtd-AR), we need the conditional false alarm rate and
the related probabilityPrJ =u |p=05) for u= 0]1...15, which are listed in columns 7 and 10,
respectively. Multiplying corresponding row entries of column 7 and column 10, we end up with
column 11, that is,

CFAR p(= 05118) =u p= 05K Py =u [p=05)=(1-4 (05115 p)K Pry =u |p = 05)
for u= 01...15 so that adding up all the entries in column 11 yields the unconditional false alarm rate
ie.

UFAR f, = 05115|p=05) = §CFAR (0O5116/ =u p= O05)P{=u p= 05= 005074

u=0
(see e.g. (3-55) in Table 3.16). The unconditional FAR value implies that the probability of a signal on
any new incoming Phase Il sample, for any practitioner, while the process is in-control at a fraction

nonconforming of 0.5, is expected to be 0.05074.
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Unconditional average run-length

Like the unconditionaFAR, the unconditionafRL is found by multiplying each of the conditional

average run-length values listed in column 8 with the corresponding probaBilfly=u |p = 0.5)

listed in column 10 and then adding up all the resultant products.

To this end, column 12 lists all the values of
CARL p{= 05118) =u p= 05x Pry =u [p=05) for u= 01..15

so that by totalling the values of column 12 we find the unconditional average run-length to be
15
UARL [, = 05115|p=05)=> CARL p(= .051)8 =u p= O05)PK =u p= 05)=11500
u=0
(see Table 3.16, (3-56)).

An unconditional ARLof 115.00 means that a practitioner that estimgtessing p =U /mn , (which

is based on a Phase | reference sample that consists of a tbtal ofindividual observations from
1 sample of sizd5) can expect that his Phas@thart would, on average, signal on the®1&&mple

when the process remains in-control at a fraction nonconforming of 0.5.

Unconditional variance of the run-length

Using expression (3-52a) to calculate the unconilivariance of the run-lengtlie note that,
E, CVARL = 2339342 (listed in column 14)E, CARL® ¥ 23512 (listed in column 13) so that

the unconditional standard deviation of the run-length is found to be

USDRL =,/E, (CVARL) + E, (CARL?) ~UARL? =/ 2339542 2351042 (L1500} = 18352.

The unconditional standard deviation is the samealbrthe users and measures the overall

variation in the run-length distribution.
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Remark 7

In particular, note that, fof = 1&here(m n)= (1,15):

(i)

(ii)

(iii)

The unconditional average run-length is not equal to the reciprocal of the unconditional false
alarm rate i.eUARL # (UFAR) ™. The reason is that the unconditional run-length distribution

is not geometric (see e.g. expression (3-53) in Table 3.16).

This is unlike in Case K wherdRL = (FAR)™ (see e.g. expression (3-12) in Table 3.1),

which makes both the average run-length and false alarm rate popular measures of a contr

chart’s performance.

The unconditional average run-length is smaller than the unconditional standard deviation of
the run-length; this is not the situation in Case K wh&Rt. > SDRL =,/ ARL(ARL —-1) (see

e.g. Appendix 3A, section 3.4.2.2) and is due to extra variation introduced to the run-length

distribution when estimatingp .

The unconditionaFAR is greater than tHeAR of 0.0010 of Case K whilst the unconditional
ARL and the unconditionag®DRL is less than theARL of 1024.00 andSDRL of 1023.50 of

Case K, respectively.

This implies that a Phase Ip-chart in Case U, based on an estimatepofising T = 15

observations, will signal more often than the Casp ¥hart with a known standard.
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T=15withm=3 andn=5

To study the effect of choosing a smaller valuenoffelative tom (i.e. changing the composition
of the reference sample while keeping the total number of Phase | observation the same) on tt
unconditional characteristics of the run-length distribution, Table 3.19 shows the calculations
necessary to obtain the unconditioR&R, the unconditionaRRL and the unconditiond&DRL when
T=15with m=3 andn=5

Although the steps in calculating the values in €ll9 are similar to that of Table 3.18, we note
that the finer points where tHeFAR = |, @re somewhat lost when we look at the unconditi¢ifeR,
which is found by averaging the conditiof@fR (given in column (7)) over all fifteen values Of
and their associated probabilities (as given in column (10)). For example, from column (11) in Table
3.19 an unconditiondAR equal to 0.01726 is found, which is more than six times the nominal false
alarm rate of 0.0027; in spite of this, the unconditioAdL and the unconditionaBDRL are still
undefined. One can therefore deduce that three subgroups each consisting of five in-contrc

observations do not work satisfactorily in practice.

Table 3.19: The conditional and unconditional characteristics of the run-length distribution for
m=3 and n=5when p=p, =05

Phase | Phase Il : Conditional Properties Phase Il : Unconditional Properties

1 @ (3 @ | 6 6 Q) (8) 9) (10) (A1)=(7)x(10)  (12)=(8)x(10)  (13)%&0)  (14)=(9)x(10)
U  Pobs L(:;‘Lp UéLp a b | CFAR CARL CVARL [Pr(U=ulp)lCFAR.Pr(U=ulp) CARL.Pr(U=ulp) CARLZPr(U=ulp) CVARL.Pr(U=ulp)
0 0.00 0 0 NA NA| 1.0000 1.00 0.00 0.00@0 0.0000 0.0000 0.0000 0.000
1 o0.07 -0.27 040 NA 2| 0.5000 2.00 2.00 0.00p5 0.0002 0.0009 0.0018 0.00Q9
2 013 -0.32 059 NA 2| 0.5000 2.00 2.00 0.00B2 0.0016 0.0064 0.0128 0.0064
3 020 -0.34 0.74 NA 3 0.1875 5.33 23.11 0.0139 0.0026 0.0741 0.3950 0.32Q9
4 0.27 -0.33 0.86 NA 4 0.0313 32.00 992.00 0.0417 0.0013 1.3330 42.6563 41.3232
5 033 -0.30 0.97 NA 4 0.0313 32.00 992.00 0.0416 0.0029 2.9326 93.8438 90.9111
6 040 -0.26 106 NA 5| 0.0000 o 0 0.1527 0.0000 0 0 0
7 047| -0.20 114 NA 5| 0.0000 o 0.1964 0.0000 o o o
8 053 -0.14 120 NA 5| 0.0000 0 0.1964 0.0000 0 0 0
9 0.60]| -0.06 126 NA 5| 0.0000 o 0.1527 0.0000 o o o
10 0.67 0.03 1.30 0 5 0.0313 32.00 992.00 0.09416 0.0029 2.9326 93.8438 90.9111
11 0.73 0.14 1.33 0 5| 0.0313 32.00 992.00 0.0417 0.0013 1.3330 42.6563 41.3232
12 0.80 0.26 1.34 1 5| 0.1875 5.33 23.11 0.0139 0.0026 0.0741 0.3950 0.3209
13 0.87 0.41 1.32 2 5| 0.5000 2.00 2.00 0.00B2 0.0016 0.0064 0.0128 0.0064
14 0.93 0.60 1.27 2 5| 0.5000 2.00 2.00 0.0005 0.0002 0.0009 0.0018 0.00Q9
15 1.00 1.00 1.00 NA NA| 1.0000 1.00 0.00 0.00§0 0.0000 0.0000 0.0000 0.000p

0.01726 o o o

UFAR UARL USDRL = o
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To illustrate and help understand the overall effects of parameter estimation on the properties c
the p-chart in more detail, some results (similar to those in Tables 3.18 and 3.19) are presented i
Tables 3.20, 3.21 and 3.22 fdr= 10,20,25.3050,75100200250300500,/501.00@&Nd.500,

each time considering several combinationsnoind n values so thal = mn. Thus, we look at what

happens to the unconditional characteristics (in particulddE#R and thedUARL) when:

(@) T increases, and

(b) when the composition of the Phase | sample changes i.e. vanyiaugd n.

The resulting unconditiond&AR’'s and the unconditional in-contrédRL’s are listed undeUFAR
and UARL,, respectively. Also shown is the percentage diffeeeof the unconditiondfAR and in-
control unconditionaARL of Case U versus

(a) theFAR andARL of Case K (see e.g. Tables A3.4 and A3.5 in Appendix 3A), and

(b) the nominaFAR of 0.0027 and the nominARL of 370.

Several interesting facts emerge from an examinatidhe results in Tables 3.20, 3.21 and 3.22:

0] A lot of reference data is needed before tHéAR is anywhere near the nominal value of
0.0027 implicitly expected in a typical application of frehart. In addition, the choice of
the number of subgroups and the subgroup size are both seen to be important.

For example, the calculations show that unlike endhse with variables data, when studying
attributes data the subgroup sigeneeds to be much larger than the number of subgroups
m, to ensure that thdFAR is reasonably close to the nominal value and (at the same time)
ensure that th&JARL is not undefined (see e.g. Table 3.21 whEre wifh m=10 and
n=30).

(i) There is great variation in théFAR values and it could be hundreds of percents off from its
nominal value of 0.0027 and/or its Case K value for many combinatiomsafd n that are

typically used in practice.

For example, wheil = 1QQwe find that
(@) with m=4 and n= 25the UFAR is 191.5% above the nominal value and 92% above
its Case K value of 0.0041, and
(b) with m=20 and n= 5the UFAR is 95.9% lower than the nominal value but close to

its Case K value of zero.
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Unless one is careful about the choicerodndn, the unconditional in-control average run-
length of the chart can be undefined particularly wmer>n, which is undesirable in
practice. This is due to the fact that the conditional probability of a false alarm can be zero
for certain values ofm and n, since althoughJ can take on any integer value between 0
and mn (including both) with a non-zero probability, the binomial distribution (for the
number of nonconforming items within each monitored group) assigns zero probability to

any value greater tham.

The effect of the discreteness of the binomial distribution is also seen to be substantial or
both theFAR and ARL values. For example, unlike in the variables case, with attributes
data, only a certain number ARL, values are attainable depending on the combination

values ofm, n and p the user has at hand.

As mentioned before, unlike in Case K, the unconditiédl is not equal to the reciprocal
of the unconditionaFAR nor is it smaller than the unconditior@RL (not listed here); this

is an important effect of estimating the unknown parangeter

For the (n n )combinations wherem< &e Case K-AR is zero and the associated Case K

ARL is undefined (see e.g. Tables A3.4 and A3.5 in Appendix 3A).

In these cases, it is not practical to calculate plecentage difference and therefore
indicated by an asterisk. In addition, for those n ¢ombinations where theFAR is zero
and/or theUARL is undefined it is impractical to calculate the percentage difference from

the nominal values and thus indicated by the hash sign.

The aforementioned results suggest that there éed for a large amount of reference data, with a

larger amount of data in each subgroup than the number of subgroups>.e1. For example, when
T =200 with m=8 and n= 25 the UFAR is 0.00447 which is 65.5% above the nominal value,

whereas whenl = 5Q00both (mn)= (25200 and M n)= (2025 lead to an unconditional false

alarm rate close to the nominal. This suggests one would need at least 400-500 in-control referent

data points to achieve any meaningful control of the false alarm rate near the nominal 0.0027. Al

examination of th&JARL values also lead to similar conclusions, in the sense that the combination of

the number of subgroups and the size of the subgroup play an important role in dictating the (stable

properties of th@-chart.
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Table 3.20: The unconditional false alarm rate FAR ) and the unconditional in-control average
run-length (UARL () values for thep-chart for various values of m and n such that T =mn

when p=p, =05

% difference

% difference

% difference

% difference

m n UFAR UARL from Case K | from Case K | from nominal | from nominal
FAR' ARL? FAR=0.0027 ARL=37¢
1 10 | 0.06896 168.73 3348.1 203.5 2454.2 -54.4
T=10 2 5 0.03552 0 * * 1215.6 #
5 2 0.00684 0 * * 153.2 #
10 1 0.01172 0 * * 334.0 #
1 20 | 0.04553 135.62 1651.0 186.1 1586.2 -63.3
2 10 | 0.01913 455.94 856.4 12.3 608.5 23.2
=20 4 5 0.01021 0 * * 278.1 #
5 4 0.00787 0 * * 191.4 #
10 2 0.00065 0 * * -76.1 #
20 1 0.00020 0 * * 925 #
1 25 | 0.04567 171.89 1014.0 42.7 1591.7 -53.5
T=25 5 5 0.00405 0 * * 50.1 #
25 1 0.00001 0 * * -99.6 #
1 30 | 0.04287 235.16 2962.0 197.2 1487.7 -36.4
2 15 | 0.01765 288.78 1665.1 254.6 553.7 -22.0
3 10 | 0.01119 605.83 459.4 -15.5 314.3 63.7
=30 5 6 0.00724 0 * * 168.2 #
- 6 5 0.00333 0 * * 23.2 #
10 3 0.00066 0 * * -75.7 #
15 2 0.00008 0 * * -97.0 #
30 1 0 o0 * * # #
1 50 | 0.03686 140.47 1317.6 173.6 1265.1 -62.0
2 25 | 0.01838 171.32 348.2 43.2 580.6 -53.7
T=50 5 10 | 0.00600 553.53 200.1 -75 122.3 49.6
10 5 0.00104 0 * * -61.5 #
25,2 50,1 0 00 * * # #
1 75 | 0.04094 105.69 1606.0 287.1 1416.4 -71.4
3 25 | 0.01022 254.50 149.2 -3.6 278.5 -31.2
T=75 5 15 | 0.00612 492.82 512.3 107.8 126.8 33.2
15 5 0.00033 0 * * -87.7 #
253 75,1 0 00 * * # #
1 100 | 0.04006 108.45 1044.5 162.1 1383.6 -70.7
2 50 | 0.01475 234.72 467.3 63.7 446.3 -36.6
4 25 | 0.00787 246.68 92.0 -0.6 191.5 -33.3
T = 100 5 20 | 0.00577 348.72 122.0 11.3 113.7 5.8
10 10 | 0.00332 647.93 65.9 -21.0 22.9 75.1
20 5 0.00011 0 * * -95.9 #
25,4 50,2 . .
1001 0 00 # #

! ydeviatiorr 100UFARIFAR.,., —1)
®  udeviationrer100UFAR/ 00027-1);

2

4

Ydeviatiorr 100UARLy/ARL o — 1) ;
Ydeviatiorr100UARL,/ 370-1)
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Table 3.21: The unconditional false alarm rate JF AR) and the unconditional in-control average
run-length (UARL () values for thep-chart for various values of m and n such that T =mn
when p=p, =05

% difference | % difference % difference | % difference
m n UFAR UARL, from Case K | from Case K | from nominal | from nominal
FAR! ARL? FAR=0.0027 ARL=370
1 200 0.03328 162.34 1347.0 170.2 1132.6 -56.1
2 100 0.01587 164.72 353.3 72.6 487.6 -55.5
4 50 0.00708 259.93 172.2 47.8 162.1 -29.7
5 40 0.00593 275.48 169.4 63.4 119.5 -25.5
T =200 8 25 0.00447 31251 9.0 -21.5 65.5 -15.5
10 20 0.00374 409.26 43.8 -5.2 38.5 10.6
20 10 0.00207 683.52 3.7 -25.1 -23.2 84.7
25 8 0.00171 0 * * -36.7 #
40,5 50,4
100,2 200,1 0 ® ’ : # #
1 250 0.03546 131.33 1122.7 164.5 1213.3 -64.5
2 125 0.01440 187.77 554.7 139.2 433.4 -49.3
5 50 0.00616 285.03 137.0 34.8 128.3 -23.0
T=250| 10 25 0.00392 330.65 -4.4 -25.8 45.1 -10.6
25 10 0.00181 697.63 9.4 46.8 -32.9 88.5
50,5 125,2
250,1 0 ® ’ : # #
1 300 0.03725 120.40 1064.0 162.1 1279.6 -67.5
2 150 0.01488 177.10 520.1 134.7 451.2 -52.1
3 100 0.01006 197.37 187.3 44.0 272.5 -46.7
4 75 0.00765 223.40 218.9 83.1 183.5 -39.6
5 60 0.00602 282.98 122.8 32.3 122.8 -23.5
6 50 0.00532 276.87 104.7 38.8 97.2 -25.2
10 30 0.00387 369.27 176.1 89.3 432 -0.2
T =300 12 25 0.00362 343.82 -11.7 -28.7 34.0 7.1
15 20 0.00303 444.15 16.4 -12.6 12.1 20.0
20 15 0.00245 670.29 144.9 52.8 -9.3 81.2
25 12 0.00228 988.67 355.3 107.1 -15.7 167.2
30 10 0.00175 693.34 -12.5 -26.2 -35.2 87.4
50 6 0.00001 0 * * -99.6 #
60,5 75,4
100,3 150,2 0 0 * * # #
300,1
1 500 0.03406 139.83 1161.6 165.2 1161.6 -62.2
2 250 0.01416 187.50 388.3 85.3 424 .4 -49.3
4 125 0.00735 245.93 234.2 82.6 172.3 -33.5
5 100 0.00638 236.94 82.3 20.0 136.3 -36.0
T =500 10 50 0.00398 328.92 53.0 16.8 47.3 -11.1
20 25 0.00296 373.74 -27.8 -34.4 9.7 1.0
25 20 0.00258 470.72 -0.9 -17.6 -4.6 27.2
50 10 0.00175 626.47 -12.5 -18.3 -35.2 69.3
100,5 125,4 . .
250,2 500,1 0 * # #

Ydeviatiors L00UFARFAR,,., 1) ; °
Y%deviation-100UFAR/ 00027-1);

4

Ydeviatiorr 100UARL,/ARLc 4o =1 5
Ydeviatiorr100UARL,/ 370-1)
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when p=p, =05

UNIVERSITEIT VAN PRETORIA JNnconditional in-control average
>fm and n such that T =mn

% difference

% difference

% difference

% difference

m n UFAR UARL, | from Case K | from Case K | from nominal | from nominal
FAR! ARL? FAR=0.0027 | ARL=37(¢'
1 750 | 0.03373 154.68 1305.5 167.4 1149.3 -58.2
2 375 | 0.01429 195.58 429.2 89.7 429.2 -47.1
3 250 | 0.00927 220.66 219.5 57.4 243.2 -40.4
5 150 | 0.00628 239.35 161.6 73.7 132.6 -35.3
6 125 | 0.00543 259.56 147.0 73.0 101.3 -29.8
10 75 | 0.00417 291.37 73.6 40.4 54.3 -21.3
T =750 15 50 | 0.00339 351.05 30.3 9.5 25.5 -5.1
25 30 | 0.00282 426.66 101.5 63.8 4.5 15.3
30 25 | 0.00270 388.13 -34.3 -36.8 -0.2 49
50 15 | 0.00180 822.08 79.8 24.6 -33.4 122.2
75 10 | 0.00180 590.93 -9.8 -13.4 -33.2 59.7
125,6 150,5
250,3 375,2 0 00 * * # #
750,1
1 1000| 0.03362 142.52 1193.2 165.2 1145.3 -61.5
2 500 | 0.01434  193.35 431.0 91.8 431.0 -47.7
4 250 | 0.00746 221.21 157.4 57.0 176.5 -40.2
5 200 | 0.00613 253.58 166.6 73.0 127.1 -31.5
8 125 | 0.00456  286.10 107.5 57.0 69.1 -22.7
10 100 | 0.00422 285.01 20.6 -0.3 56.3 -23.0
T = 1000 20 50 | 0.00312 364.70 20.0 5.4 15.6 -1.4
25 40 | 0.00290 374.32 31.7 20.3 7.3 1.2
40 25 | 0.00260 393.72 -36.7 -37.7 -3.8 6.4
50 20 | 0.00232 475.03 -10.7 -18.3 -14.0 28.4
100 10 | 0.00186 559.96 -6.9 -8.6 -31.0 51.3
125 8 0.00024 00 * * -91.0 #
200,5 250,4 . .
5002 1000, ° ° # #
1 1500| 0.03315 149.71 1226.1 166.3 1127.9 -59.5
2 750 | 0.01401 189.14 483.9 118.7 419.0 -48.9
3 500 | 0.00943 205.42 249.4 80.5 249.4 -44.5
4 375 | 0.00716 233.25 165.1 59.0 165.1 -37.0
5 300 | 0.00629 235.43 96.4 34.0 132.8 -36.4
6 250 | 0.00538 258.84 85.4 34.2 99.1 -30.0
10 150 | 0.00418 287.19 74.3 44.8 55.0 -22.4
12 125 | 0.00382 307.31 73.8 46.2 41.6 -16.9
15 100 | 0.00361  308.79 3.3 -7.9 33.9 -16.5
20 75 | 0.00327 331.32 36.3 235 21.1 -10.5
T =1500 25 60 | 0.00303 360.64 12.4 3.8 12.4 -2.5
30 50 | 0.00287 380.90 10.5 0.9 6.4 2.9
50 30 | 0.00253 466.77 81.0 49.7 -6.2 26.2
60 25 | 0.00254 397.09 -38.1 -38.2 -6.0 7.3
75 20 | 0.00235 453.58 -9.8 -14.4 -13.1 22.6
100 15 | 0.00135 933.58 34.6 9.7 -50.2 152.3
125 12 | 0.00109 1686.74 118.2 21.4 -59.6 355.9
150 10 | 0.00191 533.16 -4.4 -4.0 -29.2 44.1
250,6 300,5
375,4 500,3 0 00 * * # #
750,2 1500,1L

Ydeviatiorr LOOUFAR/FAR..,.«
Y%deviation=100UFAR/ 00027-1);

3

-1

2
4

Ydeviatiorr 100UARL,/ARLc s =1 5
Ydeviationm100UARL,/ 370-1)
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3.2.4.2 Unconditional characteristics of thec-chart

The unconditional characteristics of thehart can be calculated in the same manner as that of the
p-chart. To this end, the necessary steps are shown in Table 3.23 where we assame,thdt and

m =5 individual and independent Phase | inspection units are used to estimate

First, we calculate the conditional characteristics in columns 7, 8 and 9 (based on the observe
valueu or ¢, and the estimated control limits and resulting chart constants listed in columns 1 to 6)
and then we calculate the unconditional properties of the run-length distribution (in particular, the
UFAR, theUARL and theUSDRL using expressions (3-59), (3-61) and (3-52)) by means of the results
of columns 11 to 14. Note, however, that although theoretidally {01 ZT.able 3.23 only shows

the conditional properties fo¥ [0 {012...20} in order to save space.

Table 3.23: The conditional and unconditional characteristics of the run-length distribution for
m=5whenc=1

Phase | Phase Il : Conditional Properties Phase Il : Unconditional Properties
H @] 3 @ [ G®6) ™ (8) 9 (10) (11)=(")x(10)  (12)=(8)x(10) (13)=(8)10) (14)=(9)x(10)
V Cops| LCL, UCL.|d f |CFAR CARL CVARL |Pr(V=vic)| CFARPr(V=vic) CARL.Pr(V=vlc) CARLZPr(V=vic) CVARL.Pr(V=vic)
0 0.0 o0.00 0.00f O @ 1.0000L.0000 0.0000| 0.0067# 0.00674 0.00674 0.0067 0.0000
1 02| -1.14 1.54 0 1 0.63211.5820 0.9207| 0.0336p 0.02130 0.05330 0.0843 0.0310
2 04] -1.50 2.30 0 2 0.4482.2312 2.7472| 0.0842p 0.03775 0.18792 0.4193 0.2314
3 06| -1.72 2.92 0 2 0.4482.2312 2.7472| 0.1403f 0.06291 0.31321 0.6988 0.3856
4 08| -1.88 3.48 0 3 0.3862.5849 4.0967| 0.1754f 0.06788 0.45356 1.1724 0.7188
5 10| -200 400 O 3 0.3862.5849 4.0967| 0.1754f 0.06788 0.45356 1.1724 0.7188
6 12| -209 449 0 4 0.3712.6915 4.5527| 0.1462p 0.05433 0.39356 1.0593 0.6657
7 14| -215 495 0 4 0.3712.6915 4.5527| 0.1044{ 0.03881 0.28111 0.7566 0.4755
8 16| -219 539 0 § 0.368%.7139 4.6513| 0.0652§ 0.02405 0.17716 0.4808 0.3036
9 18| -2.22 5.82 0 § 0.3682.7139 4.6513| 0.0362]f 0.01336 0.09842 0.2671 0.1687
10 2.0| -2.24 6.24 0 ¢ 0.368.7177 4.6680| 0.0181p 0.00667 0.04928 0.1339 0.0846
11 22| -2.25 6.65 0 g 0.368®.7177 4.6680| 0.0082# 0.00303 0.02240 0.0609 0.0385
12 24| -2.25 7.05 0 7 0.36792.7182 4.6704| 0.0034p 0.00126 0.00933 0.0254 0.0160
13 26| -224 744 0 7 0.367R.7182 4.6704| 0.0013p 0.00049 0.00359 0.0098 0.0062
14 28| -222 782 0 7 0.367R.7182 4.6704| 0.0004f 0.00017 0.00128 0.0035 0.0022
15 30| -220 820 O § 0.367R.7183 4.6707| 0.0001p 0.00006 0.00043 0.0012 0.0007
16 32| -217 857 0 § 0.367R.7183 4.6707| 0.00000 0.00002 0.00013 0.0004 0.0002
17 34| -2.13 8.93 0 § 0.36792.7183 4.6707| 0.0000fL 0.00001 0.00004 0.0001 0.0001
18 3.6| -2.09 9.29 0 9 0.36792.7183 4.6708| 0.0000p 0.00000 0.00001 0.0000 0.0000
19 3.8 -2.05 9.65 0 9 0.36792.7183 4.6708| 0.0000p 0.00000 0.00000 0.0000 0.0000
20 40| -2.00 10004 O 9 0.3672.7183 4.6708| 0.0000p 0.00000 0.00000 0.0000 0.0000
0.40672 2.51 6.35 3.85
UFAR UARL USDRL =1.98
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To obtain the unconditional false alarm rate, for instance, we need the conditional false alarm rat
and the related probabilityer{/ =v|c=1) for v= 012... listed in columns 7 and 10, respectively.
Multiplying the corresponding row entries of columns 7 and 10, we end up with column 11, that is,

CFARq = Im= 5V =v = 1)x Pr(/:v|c:1):(1—,[§’c(L: 1 m=5V=ve=D)xPr{y =v|c=1)
for v=012..

so that summing the entries in column 11 yields the unconditional false alarm rate i.e.

UFAR €,= ],m=5|c=1)=iCFARC{: M= 5/=vc= IPK =v £= 1= 040672

v=0

(see e.g. (3-61) in Table 3.17). Similarly, we find an unconditiéftl and unconditionaBDRL of
2.51 and 1.98, respectively. Note that, in the calculation of the unconditional characteristics in Table

3.23 the summation was done urRilY =v |c=1)=0.

Compared to the Case KAR, ARL and SDRL of 0.3869, 2.58 and 2.02, respectively (see e.g.
Table A3.12 in Appendix 3A) we see that the unconditional values are not far off. However, the
unconditional values do not measure up to the norkiAR| ARL andSDRL values of 0.0027, 370 and
369 typically expected from a 3-sigma control chart; the reason for this big discrepancy is twofold:

() the normal approximation to thBoi c ( jor small c, is inaccurate so that the charting

formula (meant 3 standard deviations) may be inaccurate, and

(i) due to the discrete nature of the Poisson distribution only certain (condittékR|)ARL
andSDRL values can be attained.

Note that, from Table 3.23 it is clear that, unlikecase of thg-chart, none of th€FAR values of
thec-chart are zero and thus none of the moments, such B&#&fand thdJSDRL, are undefined.

To illustrate the effect of parameter estimationtio@ overall performance of thechart, Table
3.24 displays theUFAR, the UARL and the USDRL for various values of m when
c=c¢ = 1,2,4,6,810,20and30. Also shown are thEAR, theARL and theSDRL for Case K and the

nominal values — given in the last two rows of the table.
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We observe that, in general:

(i)

(ii)

(iii)

As the size of the Phase | reference sammplé&ecomes larger, the unconditional properties

gets closer to the Case K values, regardless the value of

For instance, whee =c, =8 andm= 2Q theUFAR = 00054 the UARL = 31532 and the

USDRL = 46824 but, when the Phase | sample increasents iB8Pection units, the
UFAR = 00041, the UARL = 24681 and theUSDRL = 24768, which is close to th€AR,
the ARL and theéSDRL of Case K i.e. 0.0041, 246.70 and 246.20, respectively;

Unlessc and m are both large thelFAR, the UARL and theUSDRL are nowhere near the
nominally expected values of 0.0027, 370.0 and 369.9.

For instance, wherc = @&nd m= 25 the UFAR= 00079 the UARL = 15649 and the
USDRL = 18141 but, whenc= 20and m= 200the UFAR = 00032 the UARL = 33340

and theUSDRL = 35201 gets closer but still not equal to the nominal values. Although this
could be a reason for concern for the practitioner, the nominal values are not entirely

appropriate given the fact that the Poisson distribution is discrete ;

The unconditionalARL is not equal to the reciprocal of the unconditioRAR nor is it
smaller than the uncondition&RL (for all combinations oim andc).

This is unlike the situation of treechart in Case K and is a result of estimating the unknown

parameterc; this was also observed in the case of thehart with an unknown standard.
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Table 3.24: The unconditional false alarm rate UFAR), the unconditional in-control average
run-length (UARL () and the unconditional in-control standard deviation of the run-length
1,2,4,6,8,10,20and30"

(USDRL) values for thec-chart for various values ofm whenc=c, =

Cc
m 1 2 4 6 8 10 20 30
0.4067 0.1603 0.0325 0.0136 0.0104 0.0095 0.0078 0.po72
5 251 6.54 38.49 166.91 436.17 399.00 303.41 26P.39
1.98 6.22 4231 226.85 855.24 664.34 420.94 34p.01
0.3901 0.1485 0.0272 0.0097 0.0069 0.0062 0.0052 0.po48
10 2.58 6.82 40.34 162.21 370.41 378.91 330.91 30.82
2.03 6.37 42.30 205.76 653.10 577.22 42750 36p.61
0.3845 0.1463 0.0259 0.0087 0.0060 0.0053 0.0045 0.po42
15 261 6.88 41.04 159.53 326.93 356.59 333.40 32[1.49
2.05 6.40 4233 194.19 525.47 520.67 416.14 37p.15
0.3824 0.1448 0.0252 0.0082 0.0054 0.0048 0.0041 0.po38
20 2.62 6.93 41.48 15790 315.32 353.51 338.79 32B.11
2.06 6.44 4235 187.07 468.24 489.44 41220 37f.23
0.3813 0.1446 0.0248 0.0079 0.0052 0.0045 0.0039 0.p037
25 2.63 6.94 4174 156.49 298.67 343.85 336.93 33p.19
2.07 6.44 4237 181.41 425.57 460.87 403.04 37B.39
0.3807 0.1439 0.0247 0.0077 0.0050 0.0044 0.0038 0.p0o36
30 2.63 6.96 41.78 155.76 290.10 333.52 334.53 33p.60
2.07 6.46 4232 177.97 39540 43850 392.87 37p.15
0.3799 0.1434 0.0241 0.0073 0.0047 0.0040 0.0035 0.po33
50 2.63 6.99 4222 154.09 276.24 32248 335.16 33p.25
2.08 6.48 4242 169.72 344.81 401.00 379.88 36p.80
0.3796 0.1424 0.0239 0.0070 0.0044 0.0038 0.0033 0.p032
100 2.64 7.03 42.40 154.12 261.79 308.18 334.20 33p.49
2.08 6.52 42.44 162.69 300.06 360.11 363.95 36p.06
0.3795 0.1413 0.0239 0.0066 0.0042 0.0037 0.0032 0.po31
200 2.64 7.08 42.45 156.83 252.11 295.09 333.40 34{1.43
2.08 6.57 42.48 160.31 268.28 320.34 352.01 35p.01
0.3794 0.1407 0.0238 0.0064 0.0041 0.0036 0.0031 0.p030
300 2.64 7.11 42.47 159.17 248.61 289.82 332.90 34p.34
2.08 6.59 4249 160.92 255.61 302.17 344.89 35p.47
0.3794 0.1402 0.0238 0.0062 0.0041 0.0035 0.0031 0.p030
500 2.64 7.13 42.48 161.91 246.81 285.81 331.23 33pP.38
2.08 6.61 4251 162.24 247.68 287.77 334.07 34p.30
0.3869 0.1399 0.0264 0.0061 0.0041 0.0035 0.0029 0.p0o29
Case K 2.58 7.15 37.81 163.74 246.70 285.74 339.72 34P.94
2.02 6.63 37.31 163.24 246.20 285.23 339.22 34P.44
Nominal 0.0027, 370.0, 369.9

The three rows of each cell shows AR, theUARL, and thedJSDRL,, respectively

209



W UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
G

YUNIBESITHI YA PRETORIA

Example 1 continued: A Phase Ip-chart

Phase | and Phase Il (conditional)

Recall that the final Phase | data consistednef  s@®ples each of size= %6ee pages 160-
161). Based on these data, it was found that 301/1400= 0215 so that the estimated Phase Il

control limits were set altJCA:Lp = 0389and LCA:Lp = 00407 Given the particular Phase | data, it
was shown that the resultant Phase Hchart has a conditional false alarm rateGHAR = 0002218

and a conditional average run-length@ARL, = 45089

To get an idea of the general performance of a Phagechart based om= 28amples each of

size n = 50 (even prior to collecting the data) one has to look at the unconditional properties of the

Phase Il p-chart; the unconditional properties takes into account all the possible realizations of

p :ig{o,i,i,m,mn_l
N mn mn mn

1}

Phase Il (unconditional)

Using (3-56) and averaging over alin+ 1=28x ®+ 1=1401 possible values and the

corresponding binomial probabilities bf, the in-control unconditionaRL is found to be
1400 ~ 1400

UARL, ff, = 0an= 281 = 50|p=02)=> (1-f (O.2,28,50|u,0.2))‘1( . ] 02 (08} = 40151
u=0

which is about 11% smaller than the in-control conditi@Ril for the given data,

CARL, p(= 022850) = 30l = 02)= 45089.

Perhaps more importantly, it is seen that whens estimated from Phase | data, the in-control

unconditionalARL is 8.5% higher than the corresponding in-con&BL of 370 as obtained in the
standard known case. Thus, whenis estimated, the in-contréddRL can be much larger than the

nominal value.

210



-

N UNIVERSITEIT VAN PRETORIA
. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Example 2 continued: A Phase lc-chart

Phase | and Phase Il (conditional)

The final Phase | data consisted wof= Wspection units each of 100 individual items of

product; this resulted in a point estimaie= 472/24= 1967 so that the estimated Phase Il control
limits were set aU(AJLc = 3297 and LCAZLC = 636 (see pages 162 — 163). Given the particular Phase |

data, it was shown that the resultant Phasec4thart has a conditional false alarm rate of
CFAR = (004983 it follows that the conditional average run-length s
CARL, = 1/0004983= 20068.

Like in the case of the Phasepl-chart, one can get an idea of the general performance of a Phase

Il c-chart based oom= 24hspection units each of 100 individual items of product (even prior to
collecting the data) by looking at the unconditional properties of the Phasechart; the

" . . : o )Y/ 1
unconditional properties take into account all the possible realizations of 01{0,—,—,...}.
m m m

Phase Il (unconditional)

Using (3-60) and (3-61), and averaging over all gussible values and the corresponding

probabilities ofV = 20~Poi (mc =480), the unconditional false alarm ratdKAR) is found to be
0.0039 and the in-control unconditional average run lengfR(, ) is found to be 335.30.
The UFAR is 20% less than ti&FAR of 0.004983 and th&IARL, is 67% larger than th€ARL

of 200.68; both these conditional properties are based on an observed JAlegwl to 472.

Note that, with regards to the unconditional chadpprties, the in-control unconditional average

run-length UARL,) is 1.3% less than the in-control average run-length of 339.72 one would have
obtained in Case K foc, = 2@nd the unconditional false alarm r&atEAR is 34.5% larger than the

FAR of 0.0029 obtainable in Case K (see e.g. Table A3.12 in Appendix 3A); we can thus expect more

false alarms (given the Phase | data at hand) than what would be the case if it is knosvn that 20
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3.3 Concluding remarks: Summary and recommendations

The false alarm rateHAR) and the in-control average run lengthRL,) of thep-chart and the-
chart are substantially affected by the estimation of the unknown true fraction of nonconforming items
p and/or the unknown true average number of nonconformities in an inspection @atculations

show that whenp andc are estimated:

0] The unconditionalFAR, unlike in Case K, is not equal (not even close) to the reciprocal of

the unconditionalARL, and vice versa,;
(i) The unconditionalARL, is, unlike in Case K, smaller than the unconditio8aRL;

(i)  Unlessm and/orn are rather large, the unconditional false alarm rates and the in-control
unconditional average run-lengths can be substantially different from the nominal values of
0.0027 and 370;

(iv)  Even if more Phase | data is available, neither th&RL, nor theUFARwill necessarily be

exactly equal to the commonly used nominally expected values (primarily due to the

discreteness of the underlying distributions);

(v) The typical recommendation of using betwear  ab@ 25 subgroups of size 5 appears to
be inadequate and can be very problematic with attributes charts with regard td-ARrue

or true ARL,; and

(vi)  Since one deals with a discrete (binomial or Poisson) distribution in the case of attributes
charts, it is rather unlikely to be able to guarantee an exact false alarm rate as is typical for

variables control chart.

For thep-chart, in particular, even with a large amount of reference datasi{much) larger than
n (as is the case in a typical variables charting situation) the false alarm rate can be too small and tl
in-control average run-length can be undefined, which are, of course, undesirable. In practice, at lea
T = 200 reference data points are recommended, in 10 subgroups of 20 observations each; a gene

rule is n m> 05 To this end, Table 3.20, 3.21 and 3.22 can provide valuable guidance in the
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process of choosingn andn. Similarly, for thec-chart, Table 3.24 can be used as a guide to select an

appropriate numbem of Phase | inspection units.

If the necessary amount of reference data is ndladein a given situation, the user can calculate
the exact unconditional false alarm rates and the exact in-control unconditRinahlues using the
formulas given in this chapter for the specificand/orn values at hand and get an idea of the

ramifications of estimatingp and/orc.

Another alternative would be to adjust the contiolits by finding the value of the charting

constantk >0 (which is equal to 3 in routine applications) so that the unconditiBAR equals a
specified FAR or the unconditionalARL equals a particula®RL,, say. This would mean either

expanding or contracting the control limits and entails, for example, in case of the Ppa$ear,

solving for k from

< N 4 MNY -, mn-u *
UARL, (, = p. mnk|p=p.)=> - B(p = p..mn|u,p=p.)) 1( J ]p* @-p)™" = ARL,

u=0

wherem, n and p, = p=p. for some0O< p. <1 and
B, mnku,p)=PrLCL, < p, <UCL, | P, p)

=Pr(p-k{yp@-pP)/n<p <p+kypd-p)/n|p,p)

= Pris — Ky (- %) /n < p, <& +ky5% 1-L)/n|u, p)

(see e.g. expression (3-30) whére ). 3

However, note that, in solving the above equati@nuber has to, as in the preceding examples,

specify a value ofp - the same parameter that is unknown! This implies that the practitioner has to

know the process that is monitored quite well because the charting constant(s) found from solving th

above equation would only be appropriate for the particpldhat is selected.

To overcome the predicament of choosing a spec#iciers for p (denoted p.) one can, for
instance, make use of the idea of mixture distributions and assume a particular distribugQrsdgr

f(p;0) for O<p<1 where® are the (known or specified) parameters of the distribution (which
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handles our uncertainty about the parameieby treating it as a random variable rather than a fixed

value) and then solve fdt from

I(Ta—ﬁmf:&mﬁkhLmY{TjWﬂ—pqufW&mp=AH%

Again, the exact equations given in this chapterlmamelpful in this regard, but the practitioner
still needs to select and substantiate, from a practical point of view, a distridgmp6) and provide

the parameter(s) for this distribution.

If the idea of mixture distributions is to be folled, we suggest that(p;0) and its parameters be

chosen in such a way, that best conveys the practitioner’s believe about the unknown true fractio

nonconforming. For example, because we know thatp® , ong possibility is to use the type | (or
standard) Beta distribution with parametersf , which has the interval (0,1) as support, as a prior
distribution. But which beta distribution should we use? If it is believed phest in the neighborhood

of 0.25 (say) we may, for instance, choos8etaa = 1,5 = 3) distribution which has a mean of 0.25

and a variance of 0.0375. Other options are certainly also available.

A third approach that one can use to obtain the appropriate Phase Il control limits is a Bayesia
procedure. As an example, we briefly outline the Bayes approach for the Ppadeit. According
to Bayes’ theorem the posterior distributiay, is proportional to the likelihood function,, times
the prior distribution,f .

For thep-chart the likelihood is

m m

L ( PPhasddata)C] p;X (1- p)mn 2

where the Phase | data are the observed valu¥s,af= 12...,m and denoted by, i = 12...,m.

The Jeffreys’ prior (which is the best noninformative prior for the unknown paramgiggiven by

1

f(p)Op2@-p) 2.
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From the likelihood and the prior it follows that the posterior distributiorpaf a beta distribution
i.e.

18 L
g p Phasddatg ={B(in +%,mn—2xi +%H p;x ’1-p) &2 , O0<p<l
i=1 i=1

If the process remains in-control during Phase lhitooing, the control limits for a Phase I
sample of n independent Bernoulli trials (units), which results¥n i =m+ 1m+ 2... successes
(nonconforming units), can be derived using a predictive distributiof;he conditional distribution

of Y, i=m+1m+ 2..., given the sample siza and p, is binomialf p )and the unconditional

predictive distribution ofY, is a beta-binomial distribution i.e.

h y( H’hasddata):i(;jpy @p "Yg ( Phasddatapp

i 1 = 1
(”j B(;xi oty izzl:xi +oHn y}
y B(ixi +1,mn—zm:xi+1]

=z 2 = 2

where y=012,...n and i =m+ 1m+ 2....

The Phase Il control limits, via a Bayes approaaie, then derived (using the unconditional

predictive distribution) from the resulting rejection region of gsizethat is,R & ) which is defined as

a = h y( Phasddata).

R(a)

Because there is currently no evidence to suggest that the one approach (i.e. either assuming tl

p is deterministic and unknown and therefore specifying a valu@ for using a Bayes approach) is

superior and none of the approaches is without any obstacles, more research is needed to find suita

charting constants for the Phase Il attributes charts.
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3.4 Appendix 3A: Characteristics of the p-chart and the c-chart in
Case K

The characteristics of the p-chart and theghart in Case K are important because it

(1) helps us understand the operation and the performance of the charts in the simplest of cas

(when the parameters are known), and

(i) provide us with benchmark values that we can use to determine the effect of estimating the
parameters on the operation and the performance of the charts in Case U (when th

parameters are unknown).

We compute and examine the characteristics opttleart and that of the-chart in two different

sections. For each chart we give an example that shows
0] the calculations that are needed to implement the chart, and
(i) how to determine the chart’'s characteristics via its run-length distribution.

Each example is followed by a general discussion of the results which were obtained from ar
analysis of the chart’s in-control (IC) and out-of-control (OOC) characteristics listed in Tables 3.1 and

3.2, respectively.

To the author’s knowledge none of the standard textbooks and/or articles currently available in th
literature give such a detailed elucidation of fhehart’s or thec-chart’s characteristics as is done

here.
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34.1 Thep-chartin CaseK: An example

We first look at an example of@chart in Case K in order to illustrate the typical application of

the chart. In other words, we investigate the properties of the chart for a specific combingpipn of
(the specified value op) and n while varying 0< p<1 (the true fraction nonconforming). In later

sections the performance of the chart is then further studied by considering multiple (various)

combinations ofp, andn.

Example Al: A CaseK p-chart

Assume that the sample sine= 50 and suppose that the true fraction nonconformmng known
or specified to b@, = 02The upper control limit, the centerline and the lower control limit are then
set at

UCL,= 02 02(08)/50= 03697 CL, =020 LCL, = 02 0.2(0.8) /50= 00303.

Twelve X, values (or counts) that were simulated fronBia GOo@Btribution are shown in

Table A3.1. Without any loss of generality these counts may be regarded as the number o
nonconforming items in twelve independent random samples each of size 50 from a process with a trt

fraction nonconforming of 0.2. The corresponding sample fraction nonconforpirgX, for50

each sample is also shown; these are the charting statisticspatioaurt.

The p-chart is shown in Figure A3.1. The chart displays the two control lirgi@&_@nd LCL ),

the centerline CL ), and the sample fraction nonconformimg from each sample. Because none of

the points plot outside the limits we continue to monitor the process. Once a point does plot outside th
limits the charting procedure will stop and a search for assignable causes (i.e. additional and/c

unwanted sources of variation) will begin.

Table A3.1: Datafor thep-chart in Case K

Sample number / Time: i 1 2 3 4 5 6 7 8 9 10 | 11 | 12
Counts: X, 12 | 8 6 | 14| 8 12 9 7 13 16 11 4
plefraction 0.24| 0.16| 0.12 0.28 0.1 0.24 0.18 0J14 026 0.32 .22 |0.16
nonconforming: p, = X, /50 |~ ' ' 28 0 N ' ' ‘ ' '
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Figure A3.1: A p-chart in CaseK

Given the operation of the chart it is natural to ask ‘How long before the chart signals?’ or ‘What is
the probability for a point to plot between or outside the control limits?’ etc. These performance baset

guestions are relevant while the process remains in-control and even more so when a shift occurs.

To answer these questions we study the run-length distribution of the chart. The run-lengtf
distribution, as mentioned earlier in section 3.1.1, is characterized entirely by the probability of a no.

signal 8 (p ,p, n) or, equivalently, the probability of a signbkt S(p, p,.N) (see e.g. Table 3.1).

Our starting point when analyzing the performance of the chart is therefore to find the probability
of a no-signal. Once we have the probability of a no-signal both the in-control and the out-of-control
properties of th@-chart in Case K are easily found.
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Performance of the p-chart

For our particular combination of the parametersn.e. a®@ p, = 0.2 the control limits are set
atUCL, = 03697and LCL ; = 00303 so that we proceed as follows to find the probability of a no-

signal:

First, we calculate the two charting constaatandb defined in (3-5), which gives
a= pLCL, F [(50)(00303]= [152]=1 and b=min{[nUCL],n}= min{[1849]50} =18.

Using (3-4) shows that the probability of a no-signal is
B KR = 0250F1, 48-1, 1831 for kp<l1
so that substituting values fop allow us to study the in-control (whep=  D.and the out-of-

control (whenp # 0.2 properties and performance of the chart.

In-control properties

While the true fraction nonconforming remains constant and equal pg = 02 have the in-

control scenario. The probability of a no-signal is then
B pE 02025051,, (148-1,, (1831)= 09973
and the probability of a signal, or the false alarm rate, is
FAR (0256} 44 (0.20250)= 00027.

The in-control run-length distribution is therefore geometric with probability of success 0.0027, which
we write asN, ~Geo (00027).

Expressions (3-15) and (3-16) in Table 3.1 show that the in-coARDbl and the in-controSDRL

can be calculated as
ARL, = 1/(00027= 3704 and SDRL, =+ 09973/(00027= 3699

respectively.

An in-control ARL of 370.4 means that while the process remains in-control we could expect the
chart to issue a false alarm or an erroneous signal (on average) eVesagifle. However, with the
large standard deviation of 369.9 we could expect a phase (or cycle) during which the chart signal
frequently i.e. many false signals occurring one after the other within a relatively short period of time,

which is then followed by a phase where the chart hardly ever signals.
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Out-of-control properties

When the true fraction nonconforming changes it implies thas no longer equal to its specified
value of p, = 0.2and then we deal with the out-of-control case. Sipcean increase or decrease we

consider both situations.

Increasein p : Upward shift

Suppose thatp increases by 12.5% from 0.2 to 0225. The probability of a no-signal of 0.9973
then becomes
B pE 02250256 | . (148 |, (1831)= 00097
so that the probability of a signal become$s (02250.250)= 09903.

Assuming that the change im is permanent so that all future samples that we collect come from a
process with a fraction nonconforming equal ge= 02&%e out-of-control run-length distribution
of thep-chart isN, ~Geo (09903 . The out-of-control average run-length is then calculated using
(3-15) as
ARL, = 1/(09903= 101
and implies that (on average) we could expect the chart to signal on approximatelystmple
following an increase from 0.2 to 0.225. The out-of-corflRL of the run-length distribution is
SDRL, =+ 00097/(09903= 001

and is calculated using (3-16).

Decreasein p : Downward shift

Suppose that the true fraction nonconforming permanently decreased by 25% from 0.2 to 015

The probability of a no-signal then changes from its in-control value of 0.9973 to
B pE 015025Cr 1,5 1481, (1831)= 0003

so that the out-of-control run-length distribution is geometric with probability of success equal to the
probability of a signal 44 (0150.250)= 0997. We could thus expect the chart to signal (on

average) on the®lsample following the change (decrease) in

220



W UNIVERSITEIT VAN PRETORIA

. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

The OC-curve

The OC-curve is the probability of a no-sign@lp 1§, ,n plptted as a function op for a known

(specified) value op, and a given (selected) sample size

The OC-curve forn= 50andp, = 02 that is, 8P .,p, = 02n=50) for O<p< 055 is
displayed in Figure A3.2. The probability of a signkl 5 p ,p, = 02,n=50) as a function ofp is
also shown. These two probabilities are plotted on the vertical axis for a given vajueoofthe

horizontal axis. Table A3.2 displays values of the OC and the probability of a signal for selected

values of p= 002500250550; it also shows the average run-length and the standard deviation of

the run-length associated with each valugof

Examining Figure A3.2 we begin at the in-control valuepof WiZere the probability of a no-
signal is 5 (0.20.250)= 09973 and the probability of a signal is equal td 5 (0.20.250)= 00027;

these two points are indicated on the graphs. We observe that:

() As we move in either direction away from=  (Re. either to the left or to the right) the

probability of a no-signal, in general, decreases whereas the probability of a signal, in

general, increases.

This indicates that ap changes (moves away) from the known or specified value of 0.2

the likelihood of a signal that the process is out-of-control increases. We can therefore
expect the chart to signal more often (sooner) when the process is out-of-control than wher
the process is in-control; which is good and confirms that using a control chart is an

effective tool in detecting changes in a process.

(i)  The values off p( ,0250)and * S (p 0250) vary between zero and one, and happens

since both functions compute a probability.

In particular, as the process moves further out-of-control the probability of a no-signal

approaches zero whereas the probability of a signal approaches one.
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(i)  Neither the probability of a no-signal nor the probability of a signal is symmetric

aboutp = 0.2

This implies, for example, that the rate at whiBhp ( ,0.280anges agp decreases or
increases (i.e. moves to the left or to the right away from 0.2) is not the same. A decreas

and an increase of 10% (say) infrom 0.2 to 0.18 and 0.22 (respectively) would therefore
not result in the same decreasgBip ( ,0250he same is true for the probability of a

signal and happens since the binomial (50,0.2) distribution is not symmetric.

(iv)  As p decreases from 0.2 the probability of a no-signal increases slightly until it reaches a

maximum and then decreases (as mentioned in (i)). Similarly, the probability of a signal

first decreases a little ap decreases until it reaches a minimum and then it increases

again.

This tendency is also seen in Table A3.2. For instance, pat WE2 have

LB = 020.250= 09973 which is less than the probability of a no-signalpat 0175
of £ p= 01750.250= 09988. For a detailed discussion on this phenomenon see e.g.
Acosta-Mejia (1999).

1.0
0.9973
08+ 4--f------- N
06 +-4f-------------m e N
2
3
S o4t N
°
o
0244 %o N
0.0027
0.0 T B T T T
0.00 0.10 0.20 0.30 0.40 0.50
p
e P(No Signal) = B(p,0.2,50)
——  P(Signal) = 1-B(p,0.2,50)

Figure A3.2: The OC-curve and the probability of a signal asa function of p when p, =0.2 and
n =50
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Table A3.2: The Probability of a no-signal, the Probability of a signal, the ARL and the SDRL for
p = 0.025(0.025)0.550 when p, =0.2 and n=50

p Pr(No Signal | processOOC) | Pr(Signal | process OOC) ARL SDRL
0.025 0.3565 0.6435 1.55 0.93
0.050 0.7206 0.2794 3.58 3.04
0.075 0.8975 0.1025 9.76 9.24
0.100 0.9662 0.0338 29.60 29.09
0.125 0.9897 0.0103 97.42 96.92
0.150 0.9970 0.0030 337.26 336.76
0.175 0.9988 0.0012 802.13 801.63
0.200 0.9973 0.0027 369.84 369.34
0.225 0.9903 0.0097 103.13 102.63
0.250 0.9713 0.0287 34.79 34.29
0.275 0.9306 0.0694 14.42 13.91
0.300 0.8594 0.1406 7.11 6.60
0.325 0.7544 0.2456 4.07 3.54
0.350 0.6216 0.3784 2.64 2.08
0.375 0.4758 0.5242 1.91 1.32
0.400 0.3356 0.6644 151 0.87
0.425 0.2167 0.7833 1.28 0.59
0.450 0.1273 0.8727 1.15 0.41
0.475 0.0678 0.9322 1.07 0.28
0.500 0.0325 0.9675 1.03 0.19
0.525 0.0139 0.9861 1.01 0.12
0.550 0.0053 0.9947 1.01 0.07
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Averagerun-length

The average run-length is the expected number of samples that must be collected before the chi

signals.

To quickly detect changes in a process it is desirable that the average run-length
ARL (p.,py n)= 1/~ B(p, Po.N))
is at its maximum when the process is in-control i.e. whem,. This is not always the case for the
p-chart. For go-chart based on a charting statistic that has a (positively) skewed distribution such as
theBin (500.2) distribution the value ofARL (@ ,p, = 0.2,n =50) increases initially agp decreases;

this causes the-chart to have poor performance in detecting small to moderate decregses in

Figure A3.3 displays the average run-lengBL (p ,0250) as a function ofp for 005< p< 0.3.
The value of ARL [ ,0.250)is plotted on the vertical axis for a specific valuepfon the horizontal
axis. The average run-length is much higher for valuep @lightly less than 0.2 than at 0.2 i.e. the
point that indicates the in-control average run-length of 36984 . In particulap,=at 0e75

average run-length is 802.13 (see e.g. Table A3.2).

This phenomenon, as mentioned before, is caused by the skewness of the binomial distribution ar

the smaller the value op the greater the skewness and the larger the problem. For a detailed

discussion on thishenomenorsee e.g. Acosta-Mejia (1999).

900

750 +

600 -

450 +

ARL

Figure A3.3: The averagerun-length (ARL) asafunction of p when n=50 and p, =0.2
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Run-length distributions

In Case K the in-control and the out-of-control run-length distributions are both geometric (see e.g
Table 3.1).

A graphical display of the in-control and the out-of-control run-length distributions is useful since
it helps us (better) see the effect of a change in the process parameter on the entire run-leng
distribution.

We consider two types of displays: Boxplot-like graphs and probability mass functions (p.m.f's).
The former (visually) reveals more about the change in the run-length distribution than do the p.m.f's.

Boxplot-like graphs

Figure A3.4 shows boxplot-like graphs (i.e. the minimum value is replaced b§ frercentile of
the run-length distribution and the maximum value is replaced by the&gentile of the run-length
distribution) of the in-control as well as the out-of-control run-length distributions. Figure A3.4 is
accompanied by Table A3.3 which summarizes some of the properties of the in-control and the out-o1
control run-length distributions.

Studying Figure A3.4 and Table A3.3 we note that:

(1) The run-length distributions are severely positively skewed i.e. the spread (variation) in the

upper 25% of the distribution between th& percentile (orQ;) and the 99 percentile, is

much larger than the spread in the lower 25% of the distribution betweefi preecentile
and the 2% percentile (0rQ,).

The skewness of the run-length distribution is confirmed by the fact that the average run-
length (indicated by the diamond symbol) is larger than the median run-length (indicated by
the circle) in all three the distributions. The exact numerical values of the average run-
lengths and the median run-lengths are also indicated. The skewness follows from the fac

that the run-length distributions are geometric.
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(i) The run-length distribution is considerably altered following a process change.

Compare, for example, the boxplot-like graph associated with the run-length distribution of
the out-of-control process (whegn= 022 the boxplot-like graph of the in-control run-
length distribution (whenp = OR In particular we see that both the average run-length of
103.1 and the median run-length of 72 of the out-of-control run-length distribution is far
less than the average run-length of 369.8 and the median run-length of 257 associated wit
the in-control run-length distribution. A comparison of the percentiles and the standard

deviation of the run-length leads to the same conclusion.

1800
1600 4 - - - - —|--—-------- - -
K
1400 L Table A3.3: Summary measures of thein-control
(IC) and the out-of-control (OOC) run-length
distributions of the p-chart when n =50 and
1200 f ~ — - | P, =0.2 in CaseK
Ic 0oC 0ooC
0000 (increaseinp) | (decreasein p)
p 0.2 0.225 0.15
Pr(No Signal) | 0.9973 0.9903 0.997
Pr(Signal) 0.0027 0.0097 0.003
e e ittt tiitl ARL 369.84 103.13 337.26
SDRL 369.34 102.63 336.76
1% percentile 4 2 4
600 - === —|- === - - - --mm oo ooooopoooo 5" percentile 19 6 18
10" percentile 39 11 36
K 25" (Q)) 107 30 97
400 Lo ool o 50" (MDRL) 257 72 234
* | 3698 o 3373 75" (Qy) 513 143 467
. 90" percentile | 851 237 776
. A e | 234/l | 95" percentile | 1107 308 1009
99" percentile | 1701 473 1551
- 103.1
L B= ]
0 : X
0.2 0.225 0.15
p

Figure A3.4: Boxplot-like graphs of thein-control and the
out-of-control run-length distributions of the p-chart in Case K
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Probability mass functions

Studying the p.m.f’s of the run-length distributions is another way to look at the effect of a change in

the process on the performance of the chart.

Figure A3.5 displays the p.m.f’s of the in-control and the out-of-control run-length distributions, that
IS,
(=] :020250F 0997300027 and (=] ;0150250F 00030997
for j = 12..... The former is the in-control p.m.f and the latter the out-of-control p.m.f which corresponds

to a decrease by 25% in the fraction of nonconfornprfgpom 0.2 to 0.15.

For values ofj less than approximately 370 the likelihood of obtaining these shorter run-lengths is
larger following a decrease in the fraction non-conforming. We can write thi#s@s = j)> Pr(N, = j)
for j <370. The converse also holds, that is, for valueg darger than approximately 370 we see that
Pr(N, = j)<Pr(N, = j). This means that thechart will signal sooner when the process moves out-of-

control than when it is in-control; which is good.

P(N=)

‘ P(N=j | process ICy=P(N=j | process OOd:)

Figure A3.5: The probability distributionsof N, (when p=p, =0.2) and N, (when p=02
with p, = 0.15)*

! Note: Instead of displaying the usual histograms, the tops of the bars of the histograms have been joined to better display the
shapes of these distributions, and the bars of the histograms have been deleted.
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3.4.2 Thep-chartin CaseK: Characteristics of thein-control run-length
distribution

The preceding example focused on only one particular combination afd p, i.e. n= 50 and
p, = 0.2. Other combinations ofi and p, are also of interest and gives us an idea ofptichart’s

performance over a wider range of the parameters.

The false alarm rate and the average run-length are two well-known characteristics of the run-lengt
distribution and most often used to measure a chart’s performance. More recently other characteristics
the run-length distribution, such as the standard deviation and the percentiles (quartiles), have also be

used and supplemented the false alarm rate and the average run-length.

We study all the abovementioned performance measures foictieat.

3421 Falsealarmrate

The false alarm rateHAR) is the probability of a signal when the process is truly in-control and is

given by 1- B(p = Py, Py,N) Where B(p = p,, Py, N) is found from (3-4). We can calculate tRAR by

substituting different combinations of values forand p, into 1- S(p = Py, Py, N) -

Table A3.4 lists the=AR-values (rounded to 4 decimal places) fgr=0.01, 0.025, 0.05, 0.10, 0.15,

0.20, 0.25, 0.30, 0.40 and 0.50 when the sample size1(1)10, 12, 15(5)30, 40, 50, 75, 100, 125,
150(50)300, 375, 500, 750, 1000 and 1500.

For some combinations af and p, (especially for small values oh and large values op,) we

observe that the false alarm rate is zero. Although we typically expect (desire) a small false alarm rat
zero is not practical since all moments (such as the average and the standard deviation) of the run-len
distribution will be undefined (see e.g. Tables A3.5 and A3.6).
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Table A3.4: Thefalsealarm rate (FAR) of the p-chart asa function of the sample size n and the
known or the specified true fraction nonconforming p, in CaseK

Sample size The known or the specified true fraction nonconforming p,

n 0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

1 0.0100 0.0250 0.0500 0.1000 0.0 0.0 0.0 0.0 0.0 00

2 0.0199 0.0494 0.0025 0.0100 0.0225 0.0 0.0 0.0 0.0 d.0

3 0.0297 0.0731 0.0073 0.0280 0.0034 0.0080 0.0156 0.0 0.0 D.0

4 0.0394 0.0036 0.0140 0.0037 0.0120 0.0016 0.0039 0.0081 0.0 0.0

5 0.0490 0.0059 0.0226 0.0086 0.0022 0.0067 0.0010 0.0024 0.0 0.0

6 0.0585 0.0088 0.0328 0.0158 0.0059 0.0016 0.0046 0.0007 0.0041 0.0

7 0.0679 0.0121 0.0038 0.0027 0.0121 0.0047 0.0013 0.0038 0.0016 0.0

8 0.0773 0.0158 0.0058 0.0050 0.0029 0.0104 0.0042 0.0013 0.0007 0.0

9 0.0865 0.0200 0.0084 0.0083 0.0056 0.0031 0.0013 0.0043 0.0003 (@.0039
10 0.0043 0.0246 0.0115 0.0128 0.0099 0.0064 0.0035 0.0016 0.0017 (@.0020
12 0.0062 0.0349 0.0196 0.0043 0.0046 0.0039 0.0028 0.0017 0.0028 (@.0005
15 0.0096 0.0057 0.0055 0.0127 0.0036 0.0042 0.0042 0.0037 0.0024 Q0010
20 0.0169 0.0130 0.0159 0.0024 0.0059 0.0026 0.0039 0.0013 0.0021 QL0026
25 0.0258 0.0238 0.0072 0.0095 0.0021 0.0056 0.0034 0.0019 0.0016 QL0041
30 0.0361 0.0064 0.0033 0.0078 0.0029 0.0031 0.0029 0.0024 0.0012 Q0014
40 0.0075 0.0174 0.0034 0.0051 0.0043 0.0031 0.0019 0.0030 0.0018 QL0022
50 0.0138 0.0081 0.0032 0.0032 0.0019 0.0027 0.0031 0.0031 0.0021 QL0026
60 0.0224 0.0039 0.0028 0.0057 0.0024 0.0022 0.0017 0.0029 0.0022 (@.0027
75 0.0069 0.0113 0.0041 0.0027 0.0028 0.0025 0.0036 0.0024 0.0030 Q.0024
100 0.0184 0.0037 0.0043 0.0049 0.0034 0.0040 0.0038 0.0031 0.0029 (@.0035
125 0.0087 0.0043 0.0040 0.0032 0.0031 0.0026 0.0029 0.0033 0.0025 QL0022
150 0.0042 0.0047 0.0036 0.0020 0.0030 0.0031 0.0025 0.0032 0.0034 Q.0024
200 0.0043 0.0048 0.0027 0.0034 0.0022 0.0035 0.0025 0.0026 0.0030 QL0023
250 0.0040 0.0046 0.0042 0.0024 0.0027 0.0034 0.0021 0.0030 0.0024 QL0029
300 0.0036 0.0041 0.0027 0.0030 0.0028 0.0031 0.0027 0.0030 0.0026 (@.0032
375 0.0051 0.0034 0.0031 0.0035 0.0032 0.0024 0.0029 0.0023 0.0026 @.0027
500 0.0052 0.0047 0.0032 0.0023 0.0033 0.0030 0.0023 0.0029 0.0030 @.0027
750 0.0044 0.0031 0.0027 0.0029 0.0030 0.0030 0.0024 0.0028 0.0025 (Q.0024
1000 0.0033 0.0036 0.0030 0.0027 0.0030 0.0030 0.0024 0.0027 0.0027 (0.0026
1500 0.0034 0.0031 0.0026 0.0030 0.0027 0.0027 0.0026 0.0026 0.0029 (Q.0025

Figure A3.6 displays thé=AR-values forn = 10,25andb0 on the vertical axis for selected values of
P, on the horizontal axis. Also shown is the nomif&R of 0.0027, which is thd=AR on a 3-sigma

Shewhart X-bar control chart when the charting statistics follow a normal distribution.

Figure A3.6 shows that for small values pf the FAR of thep-chart is considerably larger than the

nominal value of 0.0027. For larger values jof (or, values nearer to 0.5) tHeAR is closer to the

nominal of 0.0027 but still not equal. This illustrates that even for known values of the true fraction

nonconforming there is no guarantee thatfAdR of thep-chart will be equal to the nominal 0.0027.
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There are two reasons for these discrepancies:

(1) when p is small the normal approximation to the binomial distribution is poor so both the

charting constank = 3and the charting formula (meah 3 standard deviations) may be
inaccurate, and

(i)  due to the discrete nature of the binomial distribution only cefi@Rivalues can be attained.

0.03

0.03 -

0.02 -

0.02 -

FAR (]

0.01 -

0.01 | II II 0.0027
0.00 - |_| “H “H “|_|

0.01 0.025 0. 0. 0.25 0.5
Po
EEE (=10 B n=25 —1n=50 ---e--- Nominal FAR

Figure A3.6: Thefalsealarm rate (FAR) of the p-chart for n =10, 25and 50 when
p,=001002500501,015,02,025,0.3,0.4and 0.5 in Case K compared to the nominal FAR of
0.0027
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3.4.2.2 Averagerun-length and standard deviation of the run-length

The average run-lengthARL ) is the expected value or the mean of the run-length distribution and is

equal to the reciprocal of the probability of a signal, that is,
ARL (p,p, .n)=1/Q=B(p, Po. 1))
The in-control ARL is found by replacingp with p, in ARL(p, p,,n) and is the reciprocal of the
false alarm rate, that is,
ARL, = ARL (o, ,p, N)=1/A- B (p,y,P,.N)) =1/ FAR.

The ARL is a measure of how fast (or slow) the control chart signals and is therefore typically used

for out-of-control performance comparisons of the charts.

Since the geometric distribution is (severely) positively skewedfe becomes questionable as the
sole metric for a chart’s performance and we therefore need to look at the standard deviation of the rul
length (SDRL ) too.

The SDRL measures the variation or the spread in the run-length distribution and is given by
SDRL (p,py :n)=+/B(P.Po.n) /A= B(P, Po. 1)) -
The in-control SDRL is found by substitutingy, for p in SDRL(p, p,,n) which gives

SDRL, = SDRL (0 .0 N)=+/B (o 1P ") /A= B(Po. Po.M)) = V1~ FAR/FAR;
this shows that th&DRL, is (like the ARL,) a function of theFAR.

The values of theARL, and theSDRL, that correspond to thEAR-values of Table A3.4 are shown
in Tables A3.5 and A3.6 (rounded to 2 decimal places), respectively. We can also calcuire tland

the SDRL, for different combinations oh and p, not shown in Tables A3.5 and Table A3.6 and is

carried out by direct evaluation of expressions (3-15) and (3-16).

For example, to find the in-contrdARL and the in-controlSDRL when p= 025 p, = 025, and

n=11we proceed as follow:

We first calculate the control limits. These are given by (3-1) as

UCL,= 026 025079 /1= 06417 and LCL,= 025 0250.75)/11= — 01417.
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Then (3-5) shows thab = min{[70584 11} =7. The constanta need not be calculated since the
lower control limits is negative, that i6CL j < . Using (3-4) we find that the probability of a no-signal
is B (02502511 *1,,, (7,3)= 09988 so that the false alarm rate is

FAR (0250253 -18 (02502511F | ,. (7.3)= 00012.

The in-control ARL is thereforeARL, = (& 0998§" = 8416 and the in-control standard deviation

is SDRL, =+ 09988/(00012= 8461.

The calculations for the out-of-contrdARL and the out-of-controlSDRL are similar; we simply
replacep in B p ,02510)=1-1(73) with a value other tharp, = 02&nd proceed along the same

lines.

Table A3.5: Thein-control average run-length (ARL,) of the p-chart asa function of the sample
size n and the known or the specified true fraction nonconforming p, in Case K

Sample size The known (specified) true fraction nonconforming p,

n 0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

1 100.00  40.00 20.00 10.00 0 0 0 00 )

2 50.25 20.25 400.00 100.00 4444 00 ) ) 00

3 33.67 13.67 137.93 3571 296.30 125.00 64.00 « 0 )

4 2538 275,77 7133 270.27 8346 625.00 256.00 123.46 00

5 2040 168.26 4426 116.82 448.93 148.81 1024.00 411.52« 00

6 17.09 11406 30.51 63.09 169.92 625.00 215,58 1371.74 244.14

7 14.72 82.84  266.17 366.57 82.62 214.04 744.73 263.80 610.350

8 12.94 63.17 172.76 199.03 350.40 96.09 236.59 775.00 1525.88

9 11.56 49.96 119.60 120.03 177.66 326.12 744.73 233.05 3814.70 256.00
10 234.40  40.63 86.93 78.15 101.28 157.00 285.25 628.78 596.05 5[12.00
12 161.96  28.63 51.10 230.98 215.44 256.20 359.52 591.14 355.85 2()48.00
15 103.84 176.24 18291 7861 27735 23586 238.49 273.78 417.02 1(24.00
20 59.31 77.19 62.89 419.10 168.89 385.38 253.67 781.93 468.26 3B8.07
25 38.82 4196  139.57 105.53 467.01 180.02 296.70 522.87 611.72 245.26
30 27.66  157.04 304.65 128.47 339.86 321.44 34152 410.34 854.91 8.86
40 133.38 57.31 29482 197.51 231.84 325.83 539.81 33142 550.59 0.16
50 72.37 12296 313.64 31057 512.93 369.84 320.92 323.37 469.25 4.29
60 4460 259.52 351.05 176.03 411.27 44691 585.24 347.13 457.45 4.47
75 14451 88.38 242.82 368.47 351.24 404.72 280.73 424.38 336.52 9.13
100 5442 270.11 233.96 203.98 294.90 250.93 265.00 32431 344.84 4.28
125 11461 230.59 248.37 31250 322.82 392.14 349.00 303.11 405.93 9.14
150 237.46 212.87 27754 488.03 329.49 32575 398.29 31345 293.42 15.71
200 232.80 206.23 370.42 294.04 44957 28428 40199 389.85 333.58 8.70
250 248.43 219.07 240.23 41564 376.32 29156 467.00 338.68 424.89 7.38
300 27757 24439 365.86 335.28 354.65 32453 373.71 330.57 384.63 15.53
375 197.63 296.17 325.93 284.05 314.43 41351 343.76 431.32 381.72 70.96
500 192.01 213.20 316.36 429.94 306.11 328.38 434.37 34598 336.29 70.81
750 227.35 323.23 367.35 343.32 32948 33259 418.21 358.28 397.20 13.68
1000 300.16 279.22 327.92 370.18 331.16 330.18 410.94 37421 374.59 78.00
1500 297.89 323.23 384.88 332.36 370.33 372.32 385.02 389.48 345.82 98.62
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It is straightforward to show using (3-15) and (3-16) tBBRL =,/ ARL(ARL —1) and implies that

the standard deviation is always less than the average run-lendgiRe < ARL , and holds whether the

process is in-control or out-of-control.

This relationship between th&DRL and the ARL is clearly visible from Tables A3.5 and A3.6. For
example, forn= 5and p, = 0025the in-control ARL equals 168.26 whereas the in-cont&DRL

equals 167.67. We also looked at this relationship betweei®dfRt. and the ARL of the run-length

distribution in Case U when the process parameters are unknown.

Note that, as mentioned before, the in-control average run-lendthble A3.5 and the in-control

standard deviation of the run-length in Table A3.6 are undefined for the same combinatioasdp,

for which the false alarm rate in Table A3.4 is zero. This is undesirable and shows that for some

combinations oin and p, thep-chart would not perform satisfactorily in practice.
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Table A3.6: Thein-control standard deviation of the run-length (SDRL) of the p-chart asa
function of the sample size n and the known or the specified fraction nonconforming p, in Case K

Samplesize The known or the specified fraction nonconforming p,

n 0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

1 99.50 39.50 19.49 9.49 0 0 0 0 ) 0

2 49.75 19.75 399.50 99.50 4394 0 0 0 00

3 33.17 13.16 13743 3521 29580 12450 6350 o 0o 00

4 24.87 27527 70.83 269.77 8296 62450 25550 122.96 0

5 1990 167.76  43.76 116.32 448.43 148.31 102350 411.02 0

6 16.58 11356 30.01 62.59 169.42 62450 215.08 1371.24 243.640

7 14.21 82.34  265.67 366.07 82.12 21354 74423 263.30 609.8%0

8 12.43 62.67 172.26 198,53 349.90 9559 236.09 77450 1525.38

9 11.05 49.45  119.10 119.53 177.16 325.62 744.23 23255 3814.20 2b5.50
10 233.90 40.13 86.43 77.65 100.77 156.50 284.75 628.28 59555 5011.50
12 161.45  28.13 50.60 230.48 21494 255.70 359.02 590.64 355.35 2()47.50
15 103.34 17574 18241 78.11 276.85 235.36 237.99 273.28 416.52 1(23.50
20 58.81 76.69 62.39 418.60 168.39 384.88 253.17 781.43 467.76 3B7.57
25 38.32 41.45 139.07 105.02 466.51 179.52 296.20 522.37 611.22 244.76
30 27.16  156.53 304.15 127.97 339.36 320.93 341.02 409.84 854.41 8.36
40 132.88 56.81 294.32 197.01 231.34 325.33 539.31 330.92 550.09 9.66
50 71.87 12246 313.14 310.07 51243 369.34 320.42 322.87 468.75 3.79
60 44.10 259.02 350.55 17552 410.77 446.41 584.74 346.63 456.95 3.97
75 14401 87.88 24232 367.97 350.74 404.22 280.23 423.88 336.02 8.63
100 53.92  269.61 233.46 203.48 29440 250.43 26450 323.81 344.34 3.78
125 114.11 230.09 247.87 312.00 322.32 391.64 34850 302.61 405.43 8.64
150 236.96 21237 277.03 487.53 328,99 325.25 397.79 31295 292.92 15.21
200 232.30 205.73 369.92 293.54 449.07 283.78 401.49 389.35 333.08 8.20
250 24793 218,57 239.72 41514 37582 291.06 466.50 338.18 424.39 6.88
300 277.07 243.89 365.36 334.78 354.15 324.03 373.21 330.07 384.13 15.03
375 197.13 295.67 32543 283.55 313.92 413.01 343.26 430.82 381.22 70.46
500 19151 212,70 315.86 429.44 305.61 327.88 433.87 34548 335.79 70.31
750 226.85 322.73 366.85 342.82 328.98 332.09 417.71 357.78 396.70 13.18
1000 299.66 278.72 327.42 369.68 330.66 329.68 410.44 373.71 374.09 77.50
1500 297.39 322.73 384.38 331.86 369.83 371.82 38452 388.98 345.32 98.12
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3.4.2.3 Run-length distribution

Figure A3.6 showed the discrepancy between the false alarmF&ARe) (f thep-chart in Case K and
the nominal FAR of 0.0027 i.e. theFAR associated with a 3-sigma X-bar chart for a normal process.
Because the run-length distribution holds more information thafAReit is instructive to also look at
graphs of the run-length distribution of thehart in Case K compared to the run-length distribution of
the 3-sigma Shewhart X-bar chart.

Figure A3.7 displays boxplot-like graphs of the run-length distributions gp-ttteart in Case K for
n= 102%ndb0 when p, = 0050.1,02,0.3and.5. Also shown in Figure A3.7 is the boxplot-like

graph of the 3-sigma Shewhart X-bar chart, which h&#&\B of 0.0027, an in-controARL of 370.4 and
an in-controlSDRL of 369.9.

The properties of the 3-sigma Shewhart X-bar chart are the nominally expected values for a 3-sigm
chart such as the-chart. We therefore typically use the performance characteristics of the X-bar chart as

benchmark values for that of thechart (or any other Shewhart-type chart) in Case K.

Table A3.7 accompanies Figure A3.7 and shows the false alarmFaE),(the average run-length
(ARL), the standard deviation of the run-leng8DRL ) as well as the®] the &, the 10, the 2%, the
50", the 79", the 98" and the 99 percentiles of all the run-length distributions displayed in Figure A3.7.
The 25" percentile is theSiquartile (typically denoted b®, ), the 58" percentile is the™ quartile (also

denoted byQ, and called the median run-length, or simply MBRL ), whereas the T5percentile is the
3 quartile (in some cases denoted @y). These percentiles are all important descriptive statistics. For
example, the inter-quartile rangéQR) is calculated as the difference between tAead £' quartiles,
that is, IQR=Q; —Q,. The IQR measures the spread of the middle 50% in the run-length distribution.

The median run-lengthMDRL ) is a robust measure of the central tendency (location) of the run-length

distribution and sometimes preferred instead of the average run-length.

All the abovementioned characteristics of thehart were computed using expressions (3-12)
through (3-17) in Table 3.1. The properties of the 3-sigma Shewhart X-bar chart were calculated usin

expressions available in the literature (see e.g. Chakraborti, (2000)).

We assume that thé' percentile is the minimum possible run-length and that tHep@gcentile is the

maximum achievable run-length and therefore compute the rdhgef(the run-length distribution as the
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difference between the 9%ercentile and the®Ipercentile, that isR = max-min = 99" percentile — ¥

percentile.

Figure A3.7 shows that fon= 1@nd n= 25the run-length distribution of thp-chart is much
different from that of the X-bar chart. For example, gor= PO5L and 0.2 theARL and theSDRL

are both far less than th&RL of 370.4 and theSDRL of 369.9 of the X-bar chart (see e.g. Table A3.7).

The range of the run-length distributions are also less.p56¢ ar@30.5 the converse holds. In other

words, the ARL, the SDRL and the range of the run-length distribution of phehart are all larger than
what we would nominally expect from a 3-sigma Shewhart-type control chart.

For n= 50, the run-length distribution is more like that of the X-bar chart in thatARe is
approximately equal to 370.4, ttf®DRL is almost 369.9 and the range of the run-length distribution is
close to being between 4 (th& fercentile of the X-bar chart) and 1704 (th& @rcentile of the X-bar
chart). However, the run-length distribution is still not exactly the same. This shows that even if the true
fraction nonconforming is specified (known) amd is large, thep-chart still does not perform as
(nominally) expected.

Table A3.7: Properties of thein-control (1C) run-length distribution of the p-chart for
n =10, 25and 50 when p, =005,0.1,0.2,0.3and 0.5 in Case K, and that of the 3-sigma Shewhart

X-bar chart
Percentiles/ Quartiles
s th n 25" 50" 75" h th h
n Po FAR ARL | SDRL | 1 5 10 Q) (MDRL) (O 90 95 99
0.05 | 0.0115| 86.9 86.4 1 5 10 25 60 120 200 259 399
0.10 | 0.0128 | 78.2 77.7 1 4 9 23 54 108 179 233 358
n=10 | 020 | 0.0064 | 157.0| 156.5 2 9 17 46 109 217 361 469 121
0.30 | 0.0016 | 628.8| 628.3 7 33 67 181 436 871 1447 1883 4894
0.50 | 0.0020 | 512.0| 511.5 6 27 54 148 355 710 1178 1533 2356
0.05 | 0.0072 | 139.6| 139.1 2 8 15 41 97 193 321 417 441
0.10 | 0.0095 | 105.5| 105.0 2 6 12 31 73 146 242 315 484
n=25 | 020 | 0.0056 | 180.0| 179.5 2 10 19 52 125 249 414 538  §27
0.30 | 0.0019 | 522.9| 5224 6 27 56 151 363 725 1203 1565 2406
0.50 | 0.0041 | 245.3| 244.8 3 13 26 71 170 340 564 734 1128
0.05 | 0.0032 | 313.6| 313.1 4 17 33 91 218 435 722 939 1443
0.10 | 0.0032 | 310.6| 310.1 4 16 33 90 215 430 714 929 1428
n=50 | 020 | 0.0027 | 369.8| 369.3 4 19 39 107 257 513 851 1107 1701
0.30 | 0.0031 | 323.4| 3229 4 17 35 93 224 448 744 968 1487
0.50 | 0.0026 | 384.3| 383.8 4 20 41 111 267 533 884 1150 1768
3-sigmaX-bar | 0.0027 | 370.4| 369.9 4 19 39 107 257 513 852 1109 1704
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Figure A3.7: Boxplot-like graphs of thein-control (1C) run-length distribution of the p-chart for
n =10, 25and 50 when p, =005,0.1,0.2,0.3and 0.5 in Case K compared to the run-length

distribution of the 3-sigma Shewhart X-bar chart
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The foregoing discussion focused on the performance gb-tieart as measured by the false alarm
rate, the average run-length, the standard deviation of the run-length and the percentiles of the run-lenc
distribution and compared thpechart's performance to that of the well-known 3-sigma Shewhart X-bar
chart. It is also useful and important to know how to desightlaart. The design of thgchart in Case K

is therefore looked at next.

3424 TheOC-curvesand ARL curves

When designing @-chart in Case K we need to choose a samplersiaead while doing so keep in
mind the size of the shift we are interested in detecting i.e. by how much the true fraction nonconformin

p will differ from its specified valuep, once a shift occurs.

Choosing the appropriate sample size is typically carried out by looking at a family of OC-curves or &
family of ARL-curves, which are obtained by plotting multiple (at least two) OC-curves or miiihle

curves on the same set of axis.

Recall that an OC-curve is a graph (plot) of the probability of a no-signalp, (0, on the vertical
axis for some values of Op < dn the horizontal axis. Hence, a family of two OC-curves is obtained by
plotting A(p, p,,n=n,) and B(p, p,,N=n,), wheren, and n, denote two different sample sizes, on
the same set of axes; hence, each OC-curve corresponds to a specific sample size (inrthts ecg3e
but the value ofp, is the same for each curve. Similarly, ARL-curve is a graph (plot) of the average
run-length ARL(p, p,,n) on the vertical axis for some values ok @ < o1 the horizontal axis so that
family of two ARL-curves is obtained by plottingRL(p, p,,n =n,) and ARL(p, p,,n = n,) on the same

set of axes.

Suppose that we would like to compare and decide between two control charting plans to monitor th

specified fraction nonconforming ofp, = 05Further, assume that both plans us@-ehart with
3-sigmacontrol limits; the first plan uses = 2fems per sample whereas the second plan uses double

that i.e.n = 5Q the question is then what the effect of sampling twice as many items is.

To assist us with our choice between the two control charting plans Figure A3.8 shows the OC-curv
of each of the control charting plans. In other words, Figure A3.8 shows a family of two OC-curves where

B O.p,=05n=25 and S p .p, = 05n=50) are plotted on the vertical axis versus p< orithe
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horizontal axis. In addition, Table A3.8 lists some valuesBop ( ,05&% £ p ,0550) for values
of p= 005005)095.

Figure A3.8 shows that the plan that uses itBths per sample has a consistently loyensk or
OC. Thus, if the objective is to detect a shift in the fraction nonconforming as soon as possible and w
can afford the extra cost of sampling, this plan will be preferred. In the language of hypothesis testing
this shows that with all other things being equal, the power of test to detect a shift is higher for a large

sample size.

Figure A3.9 displays a family of twlRL-curves which corresponds to the OC-curves of Figure A3.8,
that is, Figure A3.9 shows the average run-length8RL @ ,p, = 05n=25 and

ARL (o ,p, = 05n=50) as functions of & p< 1A decision based on the OC-curves of Figure A3.8

and a decision based on thBL-curves of Figure A3.9 will therefore be exactly the same; this is so since

the relationship between the average run-length and the probability of a no-signal is one-to-one and give

by ARL (p,p,.n)= @—B(p,p,.n)) . Table A3.8 also shows the exact numerical values of
ARL (p,05,n) for n=50 and 25 atp = 005005)095.

1.0

0.8 -

0.5

P(No Signal)

0.3

0.0

00 01 02 03 04 05 06 0.7 08 0.9 1.0
Y

= B(p,0.5,n=50 )= B(p,0.5,n=25

Figure A3.8: Family of Operating Characteristic (OC) Curvesfor the p-chart for a specified
fraction nonconforming of p, =0.5 when n =50 and 25
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Figure A3.9: Family of Average Run-Length (ARL) Curvesfor the p-chart for a specified fraction
nonconforming of p, =0.5 when n =50 and 25

Table A3.8: Thevalues of the OC and the ARL of a p-chart n Case K when p, =0.5 and n =50

and 25
Praobability of a no-signal /
Operating C%aracterist?c (0QC) Average Run-Length (ARL)

p £(p,0.5n =50) L (p,0.5n =25) ARL (p,0.5,n=50) | ARL(p,0.5,n=25)
0.05 0.0000 0.0012 1.00 1.00
0.10 0.0001 0.0334 1.00 1.03
0.15 0.0053 0.1615 1.01 1.19
0.20 0.0607 0.3833 1.06 1.62
0.25 0.2519 0.6217 1.34 2.64
0.30 0.5532 0.8065 2.24 5.17
0.35 0.8122 0.9174 5.33 12.10
0.40 0.9460 0.9706 18.53 34.05
0.45 0.9895 0.9913 95.37 115.35
0.50 0.9974 0.9975 384.29 400.98
0.55 0.9895 0.9973 95.37 371.83
0.60 0.9460 0.9905 18.53 104.99
0.65 0.8122 0.9679 5.33 31.20
0.70 0.5532 0.9095 2.24 11.05
0.75 0.2519 0.7863 1.34 4.68
0.80 0.0607 0.5793 1.06 2.38
0.85 0.0053 0.3179 1.01 1.47
0.90 0.0001 0.0980 1.00 1.11
0.95 0.0000 0.0072 1.00 1.01
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Summary

The p-chart is well-known, easy to use and its’ applications is based on the implicit assumption that
the binomial distribution is well approximated by the normal distribution, which, as one might expect, is
not always the case. For example, as the preceding discussion shows, in some cases (especially for sr
values ofn) the FAR is zero which implies that th&RL , the SDRL and other moments are undefined.

Moreover, the performance of tipechart with a known or given or specified value formight not be

anything like that of the 3-sigma X-bar chart.

The p-chart is used to monitor the fraction nonconforming in a samplec-Chart on the other hand
is used to monitor the number of nonconformities in an inspection unit and is based on the Poissc

distribution. We study the Cased<chart in the next sections.
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343 Thec-chartin CaseK: An example

We first look at an example ofcachart in Case K to illustrate the typical application of the chart and

investigate the characteristics of the chart for a specific valug, dthe specified value ot) while

varying ¢ > 0 (true average number of nonconformities in an inspection). The performance of chart is

then further studied in subsequent sections by considering multiple (various) vatyes of

Example A2: A CaseK c-chart

Suppose that the true average number of nonconformities in an inspection igiknown or

specified to bec, = 14 The 3-sigma control limits for treechart are

UCL, = 14 ¥/14=2522 CL =14  LCL = 14 3/14= 278

C

and are calculated using (3-2).

Table A3.9 shows ten values simulated frorPa @dxribution. We can assume without loss of
generality that the values (counts) are the charting statistics ofctiart; we therefore denote them Yy
for i = 1,2...10. Thec-chart is shown in Figure A3.10. The chart displays the upper control U@it)(
the center line@L), the lower controll(CL) and theY;’s from each inspection unit plotted on the vertical

axis versus the inspection unit number (time) on the horizontal axis. We see from Figure A3.10 that non

of the 10 points plot out-of-control.

As long as no point plots outside the control limits we continue to monitor the process; this involves
obtaining independent successive inspection units, calculating the charting statistic (i.e. the number
nonconformities) for each new inspection unit, and then plotting these one at a time on the chart. Once
point plots outside the limits it is taken as evidence thas no longer equal to its specified value of

C, =14. A search for assignable causes is then started.

Table A3.9: Datafor thec-chart in Case K

I nspection unit number / Time: | 1 2 3 4 5 6 7 8 9 10

Counts: Y, 17 9 17 | 12| 16| 16 9 217 15 1)
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Figure A3.10: A c-chart in Case K

Perfor mance of the c-chart

To study the performance of the aforementioo@thart we analyze its in-control and out-of-control
properties for which we need the probability of a no-signal, or equivalently, the probability of a signal.

The probability of a no-signal completely characterizes the run-length distribution of the chart.

For ¢, = 14 it was shown that the upper control limitWCL, = 2520hd the lower control limit
ISLCL, = 278. Expression (3-8) shows that= [278] =2 and f = [2522]= 25, these constants are

needed to calculate the probability of a no-signal. We can study the in-control and the out-of-contro
performance of the chart by substituting values €orin the probability of a no-signal which is

B 14 =T,,(c)-T,(c) and is found using (3-7).
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In-control properties

As long as the true average number of nonconformitieeemains unchanged and equal to its
specified value ot, = 14ve deal with an in-control process. The probability of a no signal is then
B c= 1414rT,, @4-T, @4)= 09973
so that the false alarm rateFAR =1- 5(14,14)= 0.002.

The in-control run-length distribution is therefore geometric with probability of success equal to

0.0027, which we write abl, ~Geo (00027 .

Out-of-control properties

When the true average number of nonconformities in an inspection unit changesy longer equal

to ¢, =14 and implies that we have the out-of-control scenario. We look at the scenario ovhen

increases; a decreasedrcan be handled in a similar fashion.
Increasein c: Upward shift

Supposec increases from 14 to 15; this is approximately a 7.14% increaseTihe probability of a

no-signal decreases from 0.9973 (when the process was in-control) to
B c= 1514FT,, @5-T, @5= 09938
whereas the probability of a signal increases from 0.0027At6 ¢ = 1514)= 00062. The increase in

the probability of a signal is good since the likelihood of detecting the shift increases.

The out-of-control run-length distribution is geometric with probability of success equal to 0.0062.
Expression (3-21) shows that the out-of-control average run-lengtRlis= 1/00062= 16066. So, if it

happens that increases from4 to 15 (and stays fixed at 15) one would expect the chart to detect such a

shift (and signal) on approximately the $6&ample following the shift.
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The OC-curve

The OC-curve and the probability of a signal as fimms of ¢ for 0<c< 42 are shown in Figure

A3.11. In addition, Table A3.10 shows values of the probability of a no-sig@L4) =I,(c) —I;(c)
and the probability of a signdlr B € 14) =1-T,.(c) +;(c) for values ofc = 2(2)42

Studying the OC-curve and the probability of a sigas function ofc helps us see what the
performance of ouc-chart would be when a shift occurs. For example, ¥as to decrease from= 14
to c=8 (which may be interpreted as an improvement in the process as approximately 42.9% les
nonconformities (on average) in an inspection unit will in future be observed) we see from Table A3.1(

that ¥ 5 ¢= &, = 14)= 00138 so that theARL = 727@nd theSDRL = 7220

Note that, the two curves of Figure A3.11 are vémyilar to that of thep-chart considered earlier (see
e.g. Figure A3.2); this is so because the values aihd p, (for thep-chart) andc, (in case of the-
chart) is such that the false alarm raf&\R) of both the charts are 0.0027, and so, the IC run-length
distributions of these charts and all other performance measures (including the OOC performanc

measures) are roughly the same.

Probability

0 5 11 16 21 26 32 37 42
— P(No Signal | OOC) = B(c,14)

P(Signal | OOC) = 1-B(c,14

Figure A3.11: The OC-curve and the probability of a signal asa function of ¢ when c, =14
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Table A3.10: The Probability of a no-signal and the Probability of a signal for ¢ =2(2)42 when

c,=14

C P(No Signal | process OOC) P(Signal | process OOC) ARL SDRL
2 0.3233 0.6767 1.48 0.84
4 0.7619 0.2381 4.20 3.67
6 0.9380 0.0620 16.14 15.63
8 0.9862 0.0138 72.70 72.20
10 0.9972 0.0028 358.80 | 358.30
12 0.9992 0.0008 1204.80 1204.30
14 0.9973 0.0027 370.16 | 369.66
16 0.9869 0.0131 76.13 75.63
18 0.9554 0.0446 22.42 21.91
20 0.8878 0.1122 8.91 8.40
22 0.7771 0.2229 4.49 3.95
24 0.6319 0.3681 2.72 2.16
26 0.4739 0.5261 1.90 1.31
28 0.3272 0.6728 1.49 0.85
30 0.2084 0.7916 1.26 0.58
32 0.1228 0.8772 1.14 0.40
34 0.0674 0.9326 1.07 0.28
36 0.0345 0.9655 1.04 0.19
38 0.0166 0.9834 1.02 0.13
40 0.0076 0.9924 1.01 0.09
42 0.0033 0.9967 1.00 0.06

Run-length distributions

Figure A3.12 displays boxplot-like graphs of the in-control and the out-of-control run-length
distributions of thec-chart with the average run-length&R{’s) and the median run-lengthBIDRL’S)
indicated (the former by diamond symbols and the latter by circles). The exact numerical values of th
ARL’s and theMDRL'’s are also shown in Figure A3.12 and listed in Table A3.11 together with the
probability of a no-signal, the probability of a signal and some percentiles (quartiles) of the in-control anc

the out-of-control run-length distributions.

The ARL and theMDRL measures the central tendency (location) of the run-length distribution. The
MDRL however is more robust and outlier resistant tharARle In both the in-control and the out-of-
control run-length distributions th&RL is larger than th#MDRL and indicates that the in-control and the
out-of-control run-length distributions are non-normal and positively skewed. The skewness of the run

length distributions is also observed by comparing the upper and the lower tails of each of the
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distributions, that is, the distance between th® pércentile and the #5percentile to the distance
between the 2% percentile and the®Ipercentile; this comparison between the upper and lower tails is

done separately for each distribution.

For example, for the in-control run-length distribution (wbert, = ) Tdble A3.11 shows that the

distance between the ©%ercentile and the ¥Spercentile is 1703 513-1190 whereas the distance
between the 25and the T percentiles of the in-control run-length distribution is 10 4 108e latter
is much larger (approximately 1190/103 = 11.5 times) than the former and shows, as mentioned befor

that the in-control run-length distribution is positively skewed.

Most importantly however Figure A3.12 shows the overall difference between the in-control Y 14
and the out-of-controld= 215run-length distributions. For example, the out-of-control average run-
length is 160.7 compared to the in-control average run-length of 370.2. Similarly, the out-of-control
median run-length is 112 versus the in-control median run-length of 257. Furthermore, thé&yarge (
the inter-quartile rangel@QR) of the in-control and the out-of-control run-length distributions differ
somewhat. Both the range and the inter-quartile range measure the spread (variation) in the run-lenc
distributions. The range measures the overall spread and is the distance betweéh phec@gile
(maximum) and the®ipercentile (minimum). Th&QR, on the other hand, is the distance between'the 3

and the 1 quartile, that is,IQR=Q,-Q, and measures the variation in the middle 50% of the
distribution. For the in-control run-length distribution Table A3.11 shows that the range of the in-control
run-length distribution isR, = 1703 4=1699 and that the inter-quartile range of the in-control run-
length distribution iSIQR, = 513 107=406. The values oRR, and IQR, are both larger than that of the

out-of-control run-length distribution. For the out-of-control run-length distribution we have that
R = 738 2=736 and IQR, = 223 47=176. This big discrepancy between the range and the inter-
quartile range of the in-control and the out-of-control run-length distributions emphasizes that once a shi
occurs, the run-length distribution is severely altered in that we can expect the chart to signal (detect tt

shift) sooner, which is of course good.
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Table A3.11: Summary measures of the
e in-control (1C) and the out-of-control
(OOC) run-length distributions of the c-
chart when c, =14 in CaseK
1200 Lo IC OOC (increasein c)
c 14 15
Pr(No Signal) | 0.9973 0.9938
Pr(Signal) 0.0027 0.0062
ARL 370.16 160.66
900 f--mmm e SDRL 369.66 160.16
1% per centile 4 2
X 5™ percentile 19 9
10" percentile 39 17
600 - 25" (Qy) 107 47
50" (MDRL) 257 112
75" (Qa) 513 223
e |3702 90" percentile | 852 369
300l | L 95" percentile | 1108 480
* 257 99" percentile | 1703 738
o | 1607
¢ 112
0 x >‘<
14 15

Figure A3.12: Boxplot-like graphs of thein-control (1C)
and the out-of-control (OOC) run-length
distributions of the c-chart in Case K

The preceding discussion focused on the properties ot-ttart for one particular value aof

l.e.c, = 14. Other values ot, are also of interest in order to get an idea of the overall performance of the
c-chart and can only be obtained by studying the characteristics oftiaat for a wider range of values

for c,.
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344 Thec-chartin CaseK: Characteristicsof thein-control run-length
distribution

To get a better idea of the overall performance ofctibbart in Case K we look at the run-length

distribution and its characteristics for a range of valuegfoWe consider both small and large values of

Cy -

To this end, Table A3.12 shows the control limit<C{, andUCL,), the charting constants and
f , the probability of a no signal when the process is in-control, the false alarRAR)e the in-control
average run-length ARL,), and the in-control standard deviation of the run-lengd®RL,) when

C, = 1110(5)50, 75 and 100, respectively.

Table A3.12 is accompanied by Table A3.13 which shows the percentiles of the run-length

distributions of thec-chart for the same values of. The values in columns (2) through (9) of Table

A3.12 were computed using expressions (3-2), (3-7), (3-8) and the expressions in Table 3.2. Th

percentiles were calculated using expression (3-23) in Table 3.2.

For illustration purposes, consider ttehart withc, = 35 Table A3.12 shows that

LCL, = 35 &/35=1725 and UCL, = 33 &/35=5275
so that d = [1725]=17 and f = [5275]=52. It thus follows that 8 ¢= 3%, = 35= 09967,
ARL, €= 3%, = 35= 30142 and SDRL, ¢= 3%, = 35= 30092. In addition Table A3.13 shows
that theMDRL, = 20%nd that theQ, = 41&nd theQ, =87 so that thed QR =Q, - Q, = 402.

However, note that, since tR\R and theARL are most often used in OOC performance comparisons
we primarily focus on thEAR and the in-controfRL in our discussion on the performance of ckehart
in Case K. In particular, we compare th&R and theARL of thec-chart in Case K to that of the well-

known 3-sigma X-bar chart.
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¢, =1(1)10(5)50, 75 and 100

@ @ B @6 (6) @) (8) 9
Co LCLc UCLC d f Pr(No Signal | IC) FAR ARL, SDRL,
1 -2.00 4.00 0 3 0.6131 0.3869 2.58 2.02
2 -2.24 6.24 0 6 0.8601 0.1399 7.15 6.63
3 -2.20 8.20 0 8 0.9464 0.0536 18.66 18.15
4 -2.00 10.00 0 9 0.9736 0.0264 37.81 37.31
5 -1.71 11.71 0 11 0.9878 0.0122 82.03 81.53
6 -1.35 13.35 0 13 0.9939 0.0061| 163.74 163.24
7 -0.94 14.94 0 14 0.9934 0.0066| 150.85 150.35
8 -0.49 16.49 0 16 0.9959 0.0041| 246.70 246.20
9 0.00 18.00 0 17 0.9946 0.0054| 183.72 183.22
10 0.51 19.49 0 19 0.9965 0.0035| 285.74 285.23
15 3.38 26.62 3 26 0.9965 0.0035| 283.83 283.33
20 6.58 33.42 6 33 0.9971 0.0029| 339.72 339.22
25 10.00 40.00 100 39 0.9960 0.0040| 248.14 247.64
30 13.57 46.43 13] 46 0.9971 0.0029| 349.94 349.44
35 17.25 52.75 17) 52 0.9967 0.0033| 301.42 300.92
40 21.03 58.97 21 58 0.9964 0.0036| 275.36 274.86
45 24.88 65.12 24| 65 0.9976 0.0024| 413.04 412.54
50 28.79 71.21 28 71 0.9975 0.0025| 396.70 396.20
75 49.02 100.98| 49  10( 0.9967 0.0033  299.)7 299.p7
100 70.00 130.00( 70 129 0.9967 0.0033  307.B6 306.86

Table A3.13: Percentiles of thein-control run-length distribution of the c-chart for

¢, =1(1)10(5)50, 75 and 100

Per centiles of the run-length distribution
s t w | 25" [ 50" | 75" h t m

Co 1 5 10 Q) | (MDRL) | (Qy) 0 95 99

1 2 2 2 2 2 3 5 7 10

2 2 2 2 2 5 10 16 20 31

3 2 2 2 6 13 26 42 55 84

4 2 2 4 11 26 52 86 112 172

5 5 5 9 24 57 114 188 245 37¢

6 2 9 18 47 114 227 376 490 759

7 2 8 16 44 105 209 347 451 698

8 3 13 26 71 171 342 567 734 1134

9 2 10 20 53 128 255 422 544 841
10 3 15 31 83 198 396 657 854 1314
15 3 15 30 82 197 393 653 844 13@5
20 4 18 36 98 236 471 782 1017 1563
25 3 13 27 72 172 344 571 742 1141
30 4 18 37 101 243 485 805 1047 1610
35 4 16 32 87 209 418 693 902 1346
40 3 15 29 80 191 382 633 824 1266
45 5 22 44 119 286 572 95(Q 1236 1900
50 4 21 42 114 275 550 913 1187 1825
75 4 16 32 87 208 415 690 897 1379
100 4 16 33 89 213 426 707 92( 1414
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34.4.1 Falsealarmrateand averagerun-length

Figure A3.13 shows the percentage difference between the false alarfAR}eof the c-chart in
Case K and the nomin&AR of 0.0027 i.e. th&AR of a 3-sigma Shewhart X-bar chart. The percentage

difference is seen to be mostly positive; only égr= &% 50 is the percentage difference negative. It
is also clear that, in general, tR@R is far from 0.0027; especially for small valuescgfi.e. less than or

equal to 10, say.

In particular, Figure A3.13 shows, in general, that (i) BAR is hundreds of percents larger than

0.0027, and (ii) ax, increases the percentage difference gets smallerci#art based orc, = 6for
instance, has BAR of 0.0061, which is 126% larger than 0.0027 whereastwart based o, = 10as
a FAR of 0.0035 (which is 30% larger than 0.0027) ardchart based o,= 3%as a FAR equal to
0.0033 (which is only 23% larger).

170%
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110% -
90% -
70% -
50% -
30% -
10% -
-10% -
-30%

35%

0,
30%30% — 24%10,

Per centage difference

-109% 7%

6 7 8 9 10 15 20 25 30 35 40 45 50 75 100

Co

Figure A3.13: Percentage difference between the false alarm rate (FAR) of the c-chart and the
nominal FAR of 0.0027 for ¢, = 6(1)10(5)50, 75 and 100

Figure A3.14 shows the percentage difference between the average runA&tigtbf(thec-chart in
Case K and that of the nomin&RL of 370.4, which is th&RL of a 3-sigma Shewhart X-bar chart. The
percentage difference is seen to be mostly negative and implies shorter in-&Bhtsothan nominally
expected from a 3-sigma chart like tehart. Thus, we can deduce that, unless the specified ggaloke
c is reasonably large, thechart will erroneously signal more often than what is nominally expected

from a 3-sigma chart.
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Figure A3.14: Percentage difference between the average run-length (ARL) of the c-chart and the
nominal ARL of 370.4 for c, =1(1)10(5)50, 75 and 100.

3.4.4.2 Therun-length distribution

It is good to make a visual comparison of the run-length distributions since it gives us an overall ide:
of just how different (or similar) the run-length distribution of thehart is to that of the 3-sigma X-bar
chart. Figure A3.15 displays boxplot-like graphs of the run-length distribution ot-ttart when
C, = 6(LO(B)50 and also shows a boxplot-like graph of the run-length distribution of the 3-sigma X-bar

chart.

We see that, in general, for small valuescgfthe run-length distribution of the-chart differs
substantially from that of the 3-sigma X-bar chart in that A, and the MDRL, are considerably

smaller and the spread (as measured by the rBhge the run-length distribution of thechart is

noticeably less than that of the X-bar chart. Only for larger valueg dbes the run-length distribution

of the c-chart become more like that of the 3-sigma X-bar chart.
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Figure A3.15: Boxplot-like graphs of thein-control (IC) run-length distribution of the c-chart for
¢, =6,7,8,9,10, 15, 20, 25, 30, 35, 40, 45, 50, 75 and 100 in Case K compar ed to the run-length
distribution of the 3-sigma Shewhart X-bar chart

Summary

Like thep-chart, thec-chart is well-known and easy to apply but, even in Case K;-tirart does not
perform anything like the 3-sigma Shewhart X-bar chart. The discrepancy is due to the facts that

(1) when c is small the normal approximation to the Poisson distribution is poor so both the
charting constank = 3and the charting formula (meah 3 standard deviations) may be

inaccurate, and

(i)  due to the discrete nature of the Poisson distribution only c&drvalues can be attained.
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