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Chapter 1

| ntr oduction and resear ch objectives

1.0 Introduction

Statistical process control (SPC) refers to the collection of statistical procedures and problem
solving tools used to control and monitor the quality of the output of some production process,
including the output of services (see e.g. Balakrishnan et al., (2006) p. 6678 and Montgomery, (200E&
p. 148). The aim of SPC is to detect and eliminate or, at least reduce, unwanted variation in the outp
of a process. The benefits include saving time, increasing profits and an overall increase in the quali

of products and services.

The quality of process output can be measured in various ways. Frequently the percentage or tt
fraction of items that does not conform to specifications is used. In many practical situations it is more
convenient to measure the quality of the product or the service by the number of nonconformities pe
“‘inspection unit” or the “unit area of opportunity” such as the number of scratches on a plate of glass
the number of tears in a sheet of material or the number of errors made by a cash register attendz
during a day. Sometimes the quality of a sample of items is measured by the mean (average) of tl
measurements or by some other measure of central tendency such as a percentile. Consider,
example, a beverage filling machine designed to fill each container (such as a bottle or a can) wit
500ml of cool drink. Some containers will have slightly more than 500ml and some will have slightly
less, in accordance with a fill volume distribution. If the filling machine begins to wear or, its inputs or
its environment changes, the distribution of the net filling volume can change. If such a change i
permanent and goes undetected more and more containers will be filled incorrectly, resulting in wast
or containers filled below specifications. While in the former case the waste is in the form of “free”
product for the consumer, typically waste consists of rework or scrap. We can measure the quality c
the process, i.e. the ability of the beverage filling machine to fill the containers with 500ml of cool

drink, in a number of ways. We can, for instance, take successive samples of containers and count t
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number of containers with too much or too little cool drink, according to the required specifications.
Alternatively, we could measure the amount of cool drink in each container and then calculate the
average fill volume for each sample. Both these summary measures provide useful informatior
regarding the functioning of the process; for example, if either the number of containers that are nc
filled according to the specifications or the average fill volume increases above or drop below certair
critical points, action is required to find the root cause and rectify the problem.

SPC has long been applied in high-volume manufacturing processes such as the one describ
above. In recent times it has also been applied in government offices, by educators and administratc
from the public and private sectors, by providers of healthcare services, and by those in the servic
industries (such as finance, hospitality and transportation) to name but a few. These are primaril
service industries where the “volume” or the “speed” of production is less in comparison to the usua
manufacturing process and the quality characteristics are less tangible and not easily measured or
numerical scale. The key idea, however, is that the principles and concepts of SPC can be applied
any repetitive process, i.e. a process wherein the same action is performed over-and-over with tf

intention to obtain the same “outcome” or “result” on each “trial”.

A wide range of statistical procedures are used in the various stages of SPC; these range from ba:
descriptive techniqgues and summary measures (such as histograms, stem-and-leaf diagrams, che
sheets, scatter diagrams etc.) to more advanced procedures (such as process optimization, evolution
operation and design of experiments). Many of the statistical procedures that are used in SPC have
long and rich history and/or fill a separate niche in the process control environment; these include
amongst many other procedures, acceptance sampling and sampling schemes, measurement syst
analysis, calibration, process capability analysis and capability indices, reliability analysis, statistical
and stochastic modeling, six sigma as well as statistical process control and statistical proces
monitoring using control charts. For an excellent reference source and a comprehensive overview c
these and other related topics see, for examplérityelopedia of Statistics in Quality and Reliability
edited by Ruggeri et al. and published in 2007 by John Wiley & Sons Ltd.

The collection of statistical tools is undoubtedly an important component of SPC but it should be
kept in mind that they comprise merely its technical aspects. SPC, in general, builds an environment |

which all the individuals of an organization seek continuous improvement in quality and productivity
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and is best implemented and most successful when management becomes involved (Montgomel
(2005) p. 148).

Given the multifaceted structure of SPC, it is essential that a researcher accurately describes as |
as it is possible the context and the exact nature of his research within the SPC domain. Therefore, it
appropriate to say that:

This thesis focuses on improving existing control charting methodologies and
developing new control charts; more specifically, it focuses on univariate parametric
and nonparametric Shewhart-type Phase | and Phase Il variables control charts and
attributes control charts (for samples of sime>1) when process parameters are

estimated.

To have a better handle on the precise meaning of the above statement and the focus of this the:
the rest of Chapter 1 is devoted to explaining what a control chart is and discusses the similaritie
and/or dissimilarities between the major types of control charts. This exposition includes a discussio
on:

0] Shewhart-type charts vs. EWMA-type and CUSUM-type charts,

(i) Univariate charts vs. multivariate charts,

(i)  Variables charts vs. attributes charts,

(iv)  Phase | charts vs. Phase Il charts, and

(v) Parametric charts vs. nonparametric charts.

Following the discussion concerning the different types of control charts, we describe in more

detail what is done in each of the remaining chapters of this thesis.

It is important to note that the author of this thesis does not intend to present a full-blown
discussion and/or overview on all the aspects of SPC in Chapter 1. Instead, we cover only the ke
aspects to equip the reader with the necessary terminology (principles) in order to grasp what is to
covered in the rest of this thesis. We hope that a discussion regarding points (i) to (v) listed above wi

give the reader the necessary background of the underlying basic ideas about this vast area.

Also, note that, we focus on control charts for samples ofrsize andluse the phrases “rational
subgroup” and “random sample” interchangeably throughout the thesis but, strictly speaking, a ratione
subgroup is not necessarily a random sample (see e.g. the discussion in Montgomery, (2005) on
162).
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Control chart

A control chart is a statistical procedure (or scheme) that can be depicted graphically for on-line
process monitoring of a measurable characteristic (such as the mean measurement value or t
percentage nonconforming items) with the objective to show whether the process is operating withi
the limits of expected variation (see e.g. Ruggeri, Kenett and Faltin (2007) p. 429) . The simplest an
most widely used control chart is the Shewhart-type of chart; this chart is named after the father o
quality control i.e. Dr. Walter A. Shewhart (1891-1967) of Bell Telephone Laboratories, who
developed the chart in the 1930’s and laid the foundation of modern statistical process control in hi
book Economic Control of Quality of Manufactured Product that was originally published in 1931.The
the wider use and popularity of control charts outside manufacturing, which lead to Quality

Management and Six Sigma, can be attributed to Deming (1986).

Shewhart-type control chart

A typical Shewhart-type control chart is shown in Figure 1.1. The chart is a basic graphical display
of the successive values of a summary measure (statistic) calculated from a sample of measureme
taken on a key quality characteristic and plotted on the vertical axis versus the sample number or tirr
on the horizontal axis. The control chart usually has a centefihé &nd two horizontal lines, one
line on either side of the centerline. The line above the centerline is called the upper control limit
(UCL ) whereas the line below the centerline is called the lower control IuGit §. These three lines
are placed on the control chart to aid the user in making an informed and objective decision whether
process is in-control or not; this decision is primarily based on the pattern of the points plotted on the
chart and/or their position relative to the control limits. Notice that it is customary to join the points on

a control chart using straight-line segments for easier visualization over time.

UCL

AN .
J vV

LCL

M easur ements

1 2 3 4 5 6 7 8 9 10 11 12
Sample number / Time

Figure 1.1: A Shewhart-type of control chart
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The basic assumption underlying control chart analysis is that the variation in the quality of
products or services is due in part to common causes (or chance causes) and in part to special cau
(or assignable causes) — see Deming (1986). The term common cause refers to the inherent or f
natural variability that is present in a process. This is also referred to as the uncontrollable or the ev
present “background noise” that might be due to the cumulative effect of many small and undetectabl
(but unavoidable) causes. Special causes are those sources of variability that are not part of tl
common causes (or natural variability of a process) and therefore directly affect the quality of a

process.

Combining these two sources of variation, i.e. common causes and assignable causes of variatic
accounts for the total variation present in a process. Based on this point of view, a process i
considered to be in-control if it is operating only in the presence of common causes and when speci
causes are part of the process variability, the process is said to be out-of-control. The fundamental id
of the Shewhart-type of control chart entails identifying and removing, to an extent that is

economically viable, the assignable causes of variation.

Control charts play a crucial role in detecting whether a process is in-control or out-of-control. The
standard Shewhart-type control charts are based on inspecting samples at equally spaced time interv
and issuing an alarm (a signal) if the “result of the sample” is considerably worse (i.e. larger or
smaller) than what one can expect if the process was operating on target. For example, a single po
(plotting statistic) that plots outside the control limits i.e. lies above the upper control limit or lies
below the lower control limit, is usually interpreted as a signal (an alarm) of a possible special cause
The alarm signals that the process is deemed to be in an out-of-control state, which is indicative ¢
deteriorated performance of the process. Investigation is thus required to find the origin of the sourc
of the variation and, if necessary, action is needed for its elimination. On the other hand, if no poin
plots outside the control limits we continue drawing successive samples from the output of the proces

to monitor the process.

EWMA and CUSUM charts

More technically sophisticated control charts than the Shewhart-type of chart have been propose
and are widely used in practice; the most popular being the exponentially weighted moving averag
(EWMA) and the cumulative sum (CUSUM) control charts. The EWMA and CUSUM control charts
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are different from the Shewhart-type of chart in that they are memory-based charts which sequentiall
combine the information from multiple (past) samples with the present (or current) sample information
in the decision making process. The Shewhart-type of chart, however, uses only the informatior
available from the most recent (last) sample. For the essential theoretical underpinning of the CUSUN
control chart the reader may consult the original articles by Page (1954, 1961) or the book by Hawkin
and Olwell (1998). The seminal article by Roberts (1959), who introduced the EWMA chart, as well
the articles by Crowder (1987, 1989) and Lucas and Saccucci (1990) provide good discussions on tf
EWMA chart. For an application-orientated perspective on the CUSUM and EWMA charts, the books
by Montgomery (2005) and Ryan (2000) are worth reading.

Multivariate control charts

Some practical situations require the simultaneous monitoring and control of two or more relatec
(correlated) quality characteristics. The usual practice (see Ryan, (2000) p. 253) is to monitor eac
characteristic separately; this results in a univariate control chart for each variable but, may b
inefficient or may lead to erroneous conclusions (see Ryan, (2000) p. 254 and Montgomery, (2005)

486). Control charts to deal with multiple measurements (variables) were therefore developed.

The control charts for the monitoring and control of multiple variables parallel the charts for a
single variable. Hence, there are multivariate extensions to the univariate Shewhart, the univariat
EWMA and the univariate CUSUM charts. The corresponding multivariate charts are labeled the
Hotelling’s T2 chart, the multivariate EWMA (abbreviated MEWMA) control chart and the
multivariate CUSUM chatrt.

In this thesis, we focus on univariate control charts. An overview of multivariate control charts,

which includes a discussion on the Hotelling'$chart, the MEWMA chart and the multivariate

CUSUM chart, can be found in Ruggeri, Kenett and Faltin (2007). For an applied and self-containec

text that provides a detailed coverage of the practical and theoretical aspects of HotEflintyart,
the book by Mason and Young (2002) gives a good expaosition.
Variables and Attributes control charts

A quality characteristic that can be measured on a numerical scale is called a variable. Example

include width, length, temperature, volume, speed etc. When monitoring a variable we need to monitc
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both its location (i.e. mean or average) and its spread (i.e. variance or standard deviation or range
Sample statistics most commonly used to monitor the location of a process are the sample mean a
the sample median or some other percentile (order statistic), whereas the sample range, the sam

standard deviation and the sample variance are regularly used to monitor the process variation.

In situations where it is not practical or the quality characteristics cannot conveniently be
represented numerically, we typically classify each item as either conforming or nonconforming to the
specifications on the particular quality characteristic(s) of interest; such types of quality characteristic:
are called attributes. Some examples of quality characteristics that are attributes, are the number
nonconforming parts manufactured during a given time period or the number of tears in a sheet c

material.

The p-chart and thep-chart are attribute charts that are based on the binomial distribution and are
used to monitor the proportion (fraction) of nonconforming items in a sample and the number of
nonconforming items in a sample, respectively. Another type of attribute chartasliaet, which is
based on the Poisson distribution, and is useful for monitoring the number of occurrences o
nonconformities (defects) over some interval of time or area of opportunity, rather than the proportior

of nonconforming items in a sample.

A thorough bibliography of articles related to attributes control charts can be found in Woodall
(1997).

Phase| and Phasell control charts

The statistical process control regime is typically implemented in two stages: Phase | (the so-calle
retrospective phase) and Phase Il (the prospective or the monitoring phase). In Phase |, the prima
interest is to better understand the process and to assess process stability; the latter step often cons
of trying to bring a process in-control by analysing historical or preliminary data, locating and
eliminating any assignable causes of variation. A process operating at or around a desirable level
specified target with no assignable causes of variation is said to be stable or in statistical control, c
simply in-control. Once control is established to the satisfaction of the user, any unknown quantitie:
(parameters) are estimated from the in-control data (also called reference data), leading to the setti

up of control charts so that effective on-line process monitoring can begin in Phase II.
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In Phase | the goal is to make sure that a process is operating at or near acceptable target(s) un
some natural (common) causes of variation and that no special causes or concerns are present. Phe
analysis is usually an iterative process in which control charts play an important role. The contro
limits obtained early in Phase | are viewed as trial limits and are often revised and refined to ensur
that the process is in-control. If target values of the parameters of interest are known (often referred 1
as the standards known case or Case K), one needs to ensure that the process is operating at or clos
these given targets subject only to common causes of variation. If the parameters are unknowi
establishing control of the process involves estimation of the parameters as well as setting up
estimating the control limits. This situation is often referred to as the standards unknown case (or Ca:
U). Both of these situations (Case K, U) can occur in practice but Case U occurs more often

particularly when not much historical knowledge or expert opinion is available.

The decision problem under a Phase | control charting scenario is similar, in principle, to that in
multi-sample test of homogeneity problem, where one tests whether the data from various group
come from the same distribution (in-control process). Champ and Jones (2004) have noted this fac
for example. Under this motivation, the false alarm probabikgK), i.e. the probability of at least
one false alarm, is used to construct and evaluate Phase | control charts. Thus a Phase | control chat

designed by specifying a nominal false alarm probability Fdy.

In Phase Il the control chart is used to monitor the process on-line in order to detect the occurrenc
of any assignable causes of variation (such as process shifts) so that any necessary corrective acti
can be taken quickly. The operation of the Phase Il chart involves: (i) taking successive samples fror
the output of the process, (ii) calculating the specified sample statistic from each sample, and (iii
comparing the value of each sample statistic (i.e. the plotting statistic), one after the other, with th
Phase Il control limits. If a point plots outside the control limits an alarm signals and a search for
assignable causes typically follows. Because we want the Phase Il chart to signal quickly when
change takes place and not signal too often when the process is actually in-control (which is when r
shift or change has taken place) the design objective in Phase Il focuses on the performance of tl
chart (i.e. how efficient the chart is in detecting changes) and therefore concentrates on the distributic

of the run-length random variable associated with the chart.

The run-length is defined as the number of samples to be collected or the number of points to b
plotted on the chart before the first or next out-of-control signal is observed. The discrete randon
variable defining the run-length is called then-length random variable and the distribution of this
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random variable is called then-length distribution. The characteristics of this distribution give us

more insight into the performance of a chart and can be used to design a Phase Il chart. Hence,
Phase Il when designing the chart, we typically specify some attribute of the in-control Phase Il run.
length distribution to be complied with, such as the average run-length, and determine the appropria

Phase Il control limits that gives the desired performance.

Parametric and Nonparametric control charts

In the process control environment of variables data (i.e. data that can be measured on a continuo
numerical scale) parametric control charts are typically used; these charts are based on the assumpt
that the process output follows a specific distribution, for example, a normal distribution. Often this
assumption cannot be verified or is not met. It is well-known that if the underlying process distribution
is not normal, the control limits are no longer valid so that the performance of the parametric chart:
can be degraded. Such considerations provide reasons for the development and application of easy
use and more flexible and robust control charts that are not specifically designed under the assumptit
of normality or any other parametric distribution. Distribution-free or nonparametric control charts can

serve this broader purpose.

A thorough review of the literature on nonparametric control charts can be found in Chakraborti et
al. (2001, 2007). The term nonparametric is not intended to imply that there are no parameter
involved, quite to the contrary. While the term distribution-free seems to be a better description of
what one expects these charts to accomplish, nonparametric is perhaps the term more often used;
this thesis, both terms (distribution-free and nonparametric) are used since for our purposes they me.
the same.

The main advantage of nonparametric charts is their general flexibility i.e. their application does
not require knowledge of the specific probability distribution for the underlying process. In addition,
nonparametric control charts are likely to share the robustness properties of the well-knowr
nonparametric tests and confidence intervals; these properties entail, among others, that outliers and

deviations from assumptions like symmetry far less impact them.

A formal definition of a nonparametric or distribution-free control chart could be given in terms of
its run-length distribution, namely that, if the in-control run-length distribution is the same for every
continuous probability distribution, the chart is called distribution-free or nonparametric (see e.g.
Chakraborti et al. 2001, 2007).
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1.1 Research objectives

We now turn our attention to the specific research questions studied in the remaining chapters c
this thesis, which consists of Chapters 2, 3, 4 and 5. Each of Chapters 2, 3 and 4 focuses on a partictL
aspect of Shewhart-type Phase | and Phase Il variables and attributes control charts when proce
parameters are estimated; these three chapters form the heart of this thesis. Chapter 5 provide:
summary of the research done in this thesis and offers concluding remarks on some unanswer:

guestions and/or future research.

1.1.1 Chapter 2

Chapter 2 focuses on Phase | Shewhart-type variables control charts to monitor the spread (i.e. tl

variance, the standard deviation or the range) of a process.

Consider setting up a Shewhart-type Phase | control chart for the variance or the standard deviatic

or the range of a process that follows a normal distribution with an unknown meaand an

unknown varianceg?, based on the availability ofi independent rational subgroups (samples) each

of size n taken when the process was thought to be in-control.

Constructing a Shewhart-type Phase | control chart for a spread parameter typically entails:

(1) Estimating the unknown parameters (if they are not known or unspecified),

(i) Calculating or estimating the Phase | control limits,

(i)  Plotting the estimated Phase | control limits and the Phase | charting statistics on the
control chart, and then

(iv)  Simultaneously comparing all the Phase | charting statistics with the estimated Phase

control limits.

If any of the charting statistics plot on or outside the estimated control limits, the corresponding
subgroups are suspected to be from an out-of-control process. These subgroups are then examin
possibly discarded and steps (i) to (iv) are repeated. This iterative, trial-and-error process usuall
continues until all the remaining charting statistics plot between the latest control limits and show nc
non-random pattern. Once this state is reached, the remaining data are considered to be from an
control process and this final Phase | data set (often referred to as in-control or reference data) is us

to estimate the process variance or the standard deviation or the range, which is subsequently used

10
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setting up the Shewhart-type Phase | control charts for the mean. Note that, if a Phase | chartin
statistic plots on or outside the estimated Phase | limits but no assignable cause can be found tt
warrants its removal, it is typically not discarded. To illustrate the above methodology and the way it is

currently applied in practice, consider the data of Table 1.1.

Table 1.1 displaysm= 2Qational subgroups each of size= dmulated from a normal
distribution; for our current purpose the mean and the variance of the normal distribution(s) from

which the samples were simulated are not mentioned because we assume that both these parame

are unknown. Also shown in Table 1.1 are the sample variag&ieghe sample standard deviations,
S, and the sample rangés, for i = 12...20. We use these data to construct Shewhart-type Phase |

control charts for the variance, the standard deviation and the range. The purpose of setting up tl
Phase | charts is to inquire whether all 20 samples are from a normal distribution(s) with equa

variances or equal standard deviations.

Table 1.1: Datafor constructing Shewhart-type Phase | control chartsfor the variance, the
standard deviation and the range

Sam?rllemneug;ber / Xil xi2 Xi3 xi4 xi5 Si2 Si Ri
1 23.0 278 215 243 18pP10.93 3.31 8.9(
2 142 259 273 179 194 30.77 5.55 13.1(
3 247 16.6; 22.8 26.9 21p15.03 3.88 10.3(
4 236 208 284 186 24p13.95 3.74 9.8(
5 141; 209 18.2 19.0 28]J7 28.85 537 14.6(
6 23.0 134 294 284 11p68.83 8.30 17.8(
7 195 149 233 121 11p26.20 512 12.1(
8 16.8; 255 192 19.7y 23)12.39 3.52 8.7(
9 151 18.1 223 184 23]010.64 3.26 7.9(
10 175 16.0 19.1 26.8 23J119.42 441 10.8(
11 262 243 220 214 25P 4.82 2.20 4.80
12 159 232 17.& 166 13B1241 3.52 9.4(
13 148, 170 191 131 15p 532 2.31 6.00
14 13.8; 183 25.0 18.2 18} 16.03 4.000 11.2(
15 28.2 232 166 18.8 18]/ 21.53 4.64 11.6(
16 129 20.00 322 16.4 26[59.47 7.71  19.3(
17 220, 119 215 211 17Pp17.80 4.22 10.1¢
18 211 194 163 21.8 14310.23 3.20 7.5(
19 16.2 214 255 142 28 34.67 5.89 13.8(
20 125, 172 179 144 16p 4.92 2.22 5.40

11
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Phasel S? chart

First, consider constructing a Shewhart-type PhaS& ¢ontrol chart for the variance. In this case

the unknown process varianag’, is estimated using the unbiased pooled variance estimator

o_ 1< -
sp-m;s (1-1)

where S? :nilz(xij - X,)? for i = 12...,m denotes thé™ sample variance.
-14
The charting statistics for th®” chart are the sample variancgs, i = 1,2...,m and the estimated
Phase | probability limits (see e.g. Montgomery, (2005) p. 231) are
Ss)(;,n—l

uCL = P2t CL=S§? LCL =

1 (1-2)

where )(j’n_l is the 100t a J" percentile of the chi-square distribution with- dégrees of freedom.

Note that, typically one takeg =  00013#Hd finds the chi-square percentiles so that the probability

that a single point plotting outside the control limits is 0.0027 for any sample.

For the data in Table 1.1 we find that

1 & 1
S: :2—0232 =26 (L098 307# .+ 492)= 2121.

Taking @ = 000135with n— 1= 5-1=4 we calculate (using MS Excel) thatss., = 01058 and

)(20001354 = 178004, substituting these values of the percentiles ﬁﬁwt 2121 in (1-2) yields the

values of the estimated Phase | control limits i.e.

UCL = 2121‘4178004: 9438 CL = 2121 LCL :w = 0561.

The corresponding PhaseSf chart is shown in Figure 1.2. Because all the sample variances, i.e.
S§* for i = 12...20, displayed in Table 1.1, plot between the estimated control limits the process

variance is considered to be in-control. Essentially, this decision implies that the underlying populatior

12
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variances (from which the samples were obtained) are not significantly different but, as will be pointec
out later, this conclusion might be wrong because of the fact that multiple comparisons (between th
charting statistics and the same set of estimated control limits) are to be dealt with is not taken int

account in making the in-control or not-in-control decision.

90 94.3¢

Sample variance

20*./ -y \21.2]

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.56]
1 3 5 7 9 11 13 15 17 19

Sample number / Time

Figure 1.2: The Shewhart-type Phasel S? control chart for thedatain Table1.1

Phasel S chart

Next, consider setting up a Shewhart-type PhaSecbntrol chart for the data in Table 1.1. In this

case, the unknown process standard deviatraris estimated using the unbiased point estimator

O :E:i(iislj (1-3)

miz
where S, =,/S? denotes thé'i sample standard deviation agddenotes the unbiasing constant,

which is tabulated, for example, in Appendix VI of Montgomery (2005).

The charting statistics for th8 chart are the sample standard deviationsSi,gor i = 12...,m.

The estimated-kigma control limits and the estimated centerline of the Ph&sehlart are

UCL = S+k—> 1-c2 CL=S LéL=§—k§1/1—cf (1-4)

C, C,
where the charting constar, is typically set equal to 3 so that we can write

UCL =B,S CL=S LCL = B,S (1-5)

13
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where B, =1—i 1-c andB, =1+i 1-c; are constants and tabulated, for example, in
C4 C4

Appendix VI of Montgomery, (2005).

For the data of Table 1.1 we get

_ 20
S=i S =i (83L 555 .+ 222)= 4317
20°= 20

and find that the charting constants, for , abe B, = 2089 and B, = 0.

We find the estimated 3-sigma control limits for the Phase dhart by substitutings = 4317,
B, = 2089 and B, = 0 in (1-5), which gives

UCL = 9018 CL = 4317 LCL =0.

The corresponding PhaseSl chart is shown in Figure 1.3. The points plotted on the chart are the
twenty sample standard deviation i§. for i = 12...20, of Table 1.1. Because none of the points

plots outside the control limits, the process standard deviation is deemed to be in-control.

§ 10
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Sample number / Time

Figure 1.3: The Shewhart-type Phasel S control chart for thedatain Table 1.1

14
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Phasel R chart

Lastly, consider theR chart. This chart is popular in practice since the range is easy to calculate
and it is known that for small samples, the range is an efficient estimator of the standard deviation of

normal distribution.

In case of theR control chart, the unknown process standard deviatrans estimated using the
unbiased point estimator
. _R_1(1
,=—=—|—= ; 1-6
SRR L oo
whereR = maxk; > mingK; ) j=12...,nis thei™ sample range and, is an unbiasing constant

which is tabulated, for example, in Appendix VI of Montgomery (2005).

For the Phase R chart the charting statistics are the sample range&i.éor i = 12...,m, and

the estimated-sigma limits and the estimated centerline are (see e.g. Montgomery, (2005) p. 197 anc
p. 198)
A d, = A= A d, =
UCL =|1+k—2 |R CL=R LCL=[1-k—=2|R (1-7)
d, d,
where d, is a known function oh (see e.g. Montgomery, (2005) p.198). In routine applications, the
charting constank is set equal to 3, which leads to a simpler representation of the estimated control

limits of the R chart i.e.

N J—

UCL =D,R CL=R LCL =D,R (1-8)

d d . .
where D, =1- 3d—3 andD, =1+ 3d—3 are constants and tabulated, for example, in Appendix VI of
2 2

Montgomery, (2005).

For the data of Table 1.1 it is calculated that
_ 1 20 1
R=— . =— (890 1316 .+ 540)= 1066
20; R 20 ( )
and thatD, = Oand D, = 2114; using these values the estimated control limits and the estimated

centerline of theR chart are calculated using (1-8) and found to be

UCL = 2252 CL = 1066 LCL = 0.

15



W UNIVERSITEIT VAN PRETORIA

. UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

The Phase R chart is shown in Figure 1.4. The points plotted on the chart are the sample ranges
i.e. R fori= 12...20 listed in the last column of Table 1.1. Like the Pha§é thart and the Phase

| S chart, there is no indication that the process spread is out-of-control. One would thus typically

proceed with setting up the Shewhart-type Pha¥efor the mean as described by Champ and Jones
(2004).

25
22.5.
20 -
(]
=4
S 15 /\
2 ol D A os
‘%107./ \
5,
1 3 5 7 9 11 13 15 17 19
Sample number / Time

Figure 1.4: The Shewhart-type Phasel S control chart for thedatain Table 1.1

There are a number of problems in setting up the Phase | control charts in the usual manner :

described above. These problems are:

0] The m charting statistics are simultaneously compared to the estimated control limits, which
are functions of the estimated parameters and are therefore random variables themselves (tf
was indicated by th€ - notation; readhat-notation). Since the charting statistics and the
control limits are obtained using the same data, successive comparisons (over subgroups) of tl
charting statistics with the estimated control limits are dependent events. The signaling event:
(defined as the event when a charting statistic plots on or outside the control limits)ifdr the

and thg™ subgroups (where# j = 12....m) are therefore statistically dependent.

Thus, in order to correctly design a Phase | control chart in the unknown parameter case, bot
the dependence of the signaling events and the multiple nature of the comparisons inherent |
the decision process must be taken into account. Both of these considerations require a certa
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joint probability distribution and this joint distribution (and the associated manipulations
thereof) are at the heart of the study of a Phase | control chart (which is done in Chapter 2).

The estimated control limits of the PhaseSi, S and R charts ignores the dependency
between the signaling events and are incorrectly calculated in such a way as to ensure that tl
false alarm rate (denoteAR and defined as the probability for a single charting statistic to
plot outside the control limits when the process is in-control) is approximately 0.0027. Given
the inherently repetitive nature of a Phase | analysis and the fact that the charting statistics fror
all the subgroups are simultaneously compared with the same estimated control limits, using
the FAR to design a Phase | chart is not a good idea since this naturally inflatEéRhee.

the probability that at least one charting statistic plots outside the estimated control limits when

the process is in-control.

The following example illustrates this problem in the context of the ShewhartXygmntrol

chart in Case K: If there are 15 samples and one uses the traditional 3-sigma control limits fo!

setting up a Phase | chart for the mexn, when standards are known (i.e. meanugfand
variance equal t@;) , theFAR is equal to
FAR=1-Pr(LCL < X, <UCL|IC)

= 1- Pr(u, - 30, /n < X, < 1, + 30, /n | IC)
=0.0027

for each sample, which is at a commonly desirable level, b&#ARes equal to

FAP Pr(Atleasbndalsalarm)
4 Pr(Nofalsalarm)
+ (+ 00027)%

00397

which may be deemed rather large. Thus the recommendation is to determine the Phase

control limits so that thé-AP is controlled at some desirable (nominal) small value.

The estimatedk -sigma control limits of theS chart and theR chart are based on the tacit
assumption that the sampling distributions of the sample standard deviation and the sampl
range are symmetric. It is well-known that this is not the case; in fact, the sampling

distributions are asymmetric.
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By using the relevant joint distribution of the charting statistics to calculate the charting

constants this common mistake can be corrected.

The above-mentioned problems with regard to the construction of the Phase | control charts for th
variance, the standard deviation and the range lead to the question:

How should one calculate the control limits of these three Phase | charts so that,
when one simultaneously compares ail the charting statistics with the
corresponding control limits, the probability that at least one point plots outside the

limits, if the process is in-control, is equal to a nominal (desired) value?

This question is answered in Chapter 2 where we specifically study and design the hase |
and R control charts assuming that the mean and the variance are both unknown and are estimated
the basis ofm independent rational subgroups each of sizavailable from a normally distributed
process. The derivations recognize that in Phase | (with unknown parameters) the signaling events &
dependent and that more than one comparison is made against the same estimated lim
simultaneously and leads to working with the joint distribution of a set of random variables. Using
intensive computer simulations, tables are provided for the charting constants for each chart for a give
false alarm probability of 0.01, 0.05 and 0.10, respectively.

In view of the problems currently associated with setting up Phase | control charts for the variance
the standard deviation and the range, an extensive overview of the literature on Shewhart-type Phas
parametric control charts for univariate variables data is presented assuming that the form of th
underlying continuous distribution is known. The overview not only presents the current state of the ar

but also points out what challenges still remain.
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1.1.2 Chapter 3

Chapter 3 focuses on the Phase Il Shewhart-tygeag andcc-chart with unknown parameters. For
completeness we also study the statistical properties of these charts assuming that the parameters

known.

Consider constructing a Phase Il attribyteshart or a Phase Il attributeschart for the situation

when the process parametgrsand ¢ are unknown and estimated from an in-control reference sample

following a Phase | analysis.
The setting up of the Phase ltcpart and the Phase Ikcbart, in general, entails:

0] Obtaining a point estimate of the unknown process parameter based on the in-control Phas
| data,

(i) Estimating the Phase Il control limits, and then

(i)  Comparing each Phase Il charting statistic, one at a time and based on new incoming

samples or inspection units, with the estimated Phase Il control limits.

As long as no Phase Il charting statistic plots on or outside the control limits, we continue to draw
successive samples from the process output and monitor the process. However, as soon as a char
statistics plots on or outside the estimated Phase Il control limits, we stop the charting procedure
declare the process out-of-control and start a search for assignable causes. To illustrate the ste
outlined in (i) to (iii) listed above we look at an example based on the data of Table 1.2 next; this

example demonstrates how the Phase Il attributdsap is typically implemented in practice.

Column 1 of Table 1.2 lists the sample numbers; these range from 1 to 2%, Tha&ues in
column 2 were obtained via simulation from a binomial distribution with parameters an®®.
Note that, because we assume that the fraction nonconforming is unknown the values aiot
mentioned here. In this simulated scenario we can assume thaXtresepresent the number of

nonconforming items in 25 consecutive Phase Il samples, each of size 50, taken from the output

some process. The corresponding observed fractions nonconformirng, +.&, , ardSlisplayed in
column 3. To illustrate the approach outlined in steps (i) to (iii) listed above, assump thast

estimated from a Phase | study and found to be 0.175. Using this point estimate of the unknow
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fraction nonconforming, typically denoted gs, and the data from Table 1.2 we can construct a

Shewhart-type Phase fJ-chart.

Table 1.2: Datafor constructing Shewhart-type Phase |l p-chart for monitoring the fraction
nonconforming itemsin samples of size n =50

Number of Samplefraction

Sample number / nonconfor ming items, nonconforming

Time (i) X, p, = X, /50
1 14 0.28
2 8 0.16
3 12 0.24
4 9 0.18
5 12 0.24
6 13 0.26
7 11 0.22
8 10 0.20
9 16 0.32
10 10 0.20
11 7 0.14
12 10 0.20
13 11 0.22
14 14 0.28
15 9 0.18
16 4 0.08
17 10 0.20
18 8 0.16
19 12 0.24
20 7 0.14
21 11 0.22
22 10 0.20
23 10 0.20
24 13 0.26
25 9 0.18

In case of the Phase Il-ghart, the estimated 3-sigma control limits and center line are

UCL=p+3/pl-p)/n CL=p LCL = p-3/p-p)/n

where p denotes the point estimate of the unknown fraction nonconfornpingptained at the end of

a successful Phase | analysis amdlenotes the sample size (see e.g. Montgomery, (2005) p. 269).
Note that, if the estimated lower control limit turns out to be negative, it is adjusted upward and se

equal to zero.

The Phase Il charting statistics are the fractions nonconforming in the samplep, iffer

i =12..., 25 calculated from successive Phase Il samples taken from the output of the process.
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Based on the point estimaf@= 0175 the estimated 3-sigma control limits and centerline, for our

example, are

UCL= 01% .3 01750825/50= 03362

CL= 0175

LCL= 0175.B 01750825/50= 00138.

The Phase llp- chart is shown in Figure 1.5. The points that are plotted on the control chart are
the p;’s from column 3 of Table 1.2. Note that, unlike the Phase | charts discussed earlier, eacl

charting statistic of a Phase Il control chart is plotted one at a time as soon as it is calculated from tt
most recent (i.e. the latest or last) sample taken from the output of the process; this typically happen
real-time. Because none of the points plot outside the control limits, the process is deemed to be i
control and we can continue to draw successive samples from the process output and monitor tt

process over time.

0.40
£ 0.35- ‘
€ 0.30 0.336:
3oz A\
8 ) ) % E
S 15 v " 0.17:0
5 0.10-
8 0.05-
o0t 0.01%
=3 1 3 5 7 9 11 13 1517 19 21 23 25
3 Sample number / Time

Figure 1.5: The Shewhart-type Phasell p-chart for thedatain Table 1.2 with p =0.1750
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There is a major concern in setting up the Phagehiart in the usual manner as described above:

The point estimatg influences the performance of the Phagedhart and this influence

is typically not taken into account when setting up a Phase Il chart. To illustrate how

significant the influence ofp can be, suppose, for example, that a different Phase | sample
was used to estimatp and thatp = 016, that is, p# 01750. Under these circumstances

the estimated Phase Il control limits would be

UCL= 016 .8 016(084)/50= 03155
CL=016
LCL= 016 .8 016(084)/50= 00045

and the Phase Ip-chart, based on the data in column 3 of Table 1.2, with these estimated
control limits are shown in Figure 1.6. It is observed that, with the point estimate of
p = 016, the estimated control limits are narrower (than those in Figure 1.5) and that the
chart signals on the™sample indicating that the process is out-of-control. Thus, with a
different Phase | sample and/or a change in the value of the point esgimatiee Phase I
p-chart can lead to a different decision regarding the state of the process. The same conce

appears in application of the Phase-thart.

0.35

0.30 - 0.315!
0.25 -
0.20 - M

" v s 0.1€00

0.15
0.10

0.05 -
0.00 0.0045

1 3 5 7 9 11 13 1517 19 21 23 25
Sample number / Time

Sample fraction nonconfor ming

Figure 1.6: The Shewhart-type Phasell p-chart for thedatain
Table 1.2 with p = 0.1600
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The questions that emanate from the above-mentioned concern regarding the application of tr

Phase Il pchart and the Phase Hobart is:

How large should the Phase | reference samples (used to estimate the upknown
parametersp andc) be so that the performance of the charts when the parameters

are unknown and estimated, is comparable to their performance when the

parameters are known? Are the widely-followed empirical guidelinesnfi-e. 20

or 25 withn = 4 or 5 to estimate the unknown parameters) reasonable?

To answer these questions, we investigate the effect of estimating the unknown paransetdrs

c on the performance of the charts in detail in Chapter 3. To do this, we derive and evaluate
expressions for the run-length distributions of the Phase Il Shewharptgpart and the Phase I

Shewhart-type-chart when the parameters are estimated. We then examine the effect of estpmating

and ¢ on the performance of thp-chart and thec-chart via their run-length distributions and
associated characteristics such as the average run-length, the false alarm rate and the probability c

“no-signal’.

An exact approach based on the binomial and the Poisson distributions is used to derivi
expressions for the Phase Il run-length distributions and the related Phase Il characteristics usir
expectation by conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the
run-length distributions conditioned on point estimates from Phase | and then find the unconditiona

characteristics by averaging over the distributions of the point estimators.

Next, the in-control and the out-of-control properties of the charts are looked at. The results are
used to discuss the appropriateness of the widely followed empirical rules for choosing the size of th
Phase | sample, used to estimate the unknown parameters; this includes both the number of referer

samplesm and the sample size.
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1.1.3 Chapter 4

Chapter 4 focuses on improving some of the existing nonparametric control charts and designin

new distribution-free charting procedures.

Consider the situation where monitoring the location paramétesf a quality characteristic (that
is measured on a continuous numerical scale) with an unknown continuous cumulative distributior
function is of interest. In such a case the usual control chart procedures that are based on a particu
parametric distribution are not appropriate and a distribution-free (or nonparametric) control char

procedure would be more useful.

If & is the median and it is required to monitor whether oréhahanges (i.e. moves away) from

its specified or known valugj, (say), one can construct a control chart that uses the well-known sign

test statistic as a charting statistic. A Shewhart-type control chart based on the sign test statistic wi
studied by Amin, Reynolds and Bakir (1995) and is known as the sign chart. Using the sign char

entails that one:

0] Takes successive samples of sizérom the process output,

(i) Calculates the number of observations greater than or equal to the specifiedéyalue,
within each sampleT, (say), and then

(i)  Compares each charting statistiG,, one at a time, with appropriately chosen control
limits.

The sign chart signals, like any other typical Shewhart-type control chart, if a single point plots on

or outside the control limits, that is, on or below the lower control limit or, on or above the upper

control limit.

The sign chart is easy to apply in practice and it requires the minimum number of assumption:
(namely it only requires that the underlying process distribution be continuous and that a specifie

value, g,, for the location parametef], is available) but, it has a serious shortcoming. For any
sample sizen, the number of possible in-control average run-length vala&k (’s) to choose from
when designing the chart is limited and, furthermore, the maximum attaiA&tle, for a two-sided

chart, is2"™. For n = 5, which is often the recommended sample size used in practice, the maximum
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ARL, is 27 = 16; the corresponding false alarm rate I$ARL, = 1/16= 00625. Such a smallARL,

or, alternatively, such a largeAR, implies that the chart would signal (erroneously) more often than a
typical 3-sigma Shewhart-type chart and would lead to deteriorated performance of the charting

procedure.

To allow the practitioner more flexibilily in designing the sign chart, that is, to have a wider range

of ARL,’s and FAR’s to choose from, in this thesis we enhance the sign chart by proposing new

runs-type signaling rules (i.e. decision rules). These signaling rules are based on runs of the chartir
statistics outside the control limits. Similar signaling rules were successfully used, for example, by
Chakraborti and Eryilmaz (2007) to solve a similar weakness of the signed-rank chart introduced b
Bakir (2004). In addition to the signaling rules, we further improve the sign chart of Amin, Reynolds
and Bakir (1995) and consider the situation where it is required to monitor percentiles other than th

median.

If expert knowledge is not available and a value for the location pararfetesn not be specified
one can not use the sign chart; this situation requires a different nonparametric control chart i.e. or
requires a nonparametric control chart that can handle the scenario where monitoring a continuot
random variable with an unknown cumulative distribution function and an unknown or an unspecified
value for the location parameter is of interest. Chakraborti, Van der Laan and Van de Wiel (2004
considered a class of nonparametric control charts capable of solving this problem. Their charts, calle
precedence charts, are based on the two-sample median test statistic, which requires the availability

an in-control Phase | reference sample from which to estimate the control limits.
To construct a precedence chart entails:

0] Arranging the observationX,,X,,...,X, from the in-control Phase | reference sample of

X X,.m» Where X, is thei ™ smallest observation

2me =1 ¥ mm

sizem in ascending order i.eX

Im?

in the group ofm;

(i) Estimating the lower control limit and the upper control limit hf:L:Xam and

UCL = X,,,, where X,.m and X, (with 1< a<b<m) are suitably selected order statistics

bm?

from the Phase | sample;
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(i) Obtaining new incoming Phase Il samples each of sifmdependently from one another

and from the Phase | sample);

(iv)  Calculating the charting statisti¥,._, which is thej " order statistic of the Phase Il sample

jin

and depends on the quantile being monitored, and then

(v) Comparing eachy, , one at a time, with the estimated control limits.

jin
The precedence chart signals if a single point plots on or outside the control limits.

In this thesis we extend the precedence charts of Chakraborti et al. (2004) by incorporating th
same signaling rules (or tests), involving runs of the charting statistic, that we used with the sign char
These signaling rules, as mentioned earlier, are appealing because Chakraborti and Eryilmaz (200
showed that when the in-control median is specified (and it is not necessary to estimate the medial
the incorporation of similar rules provide more practical and powerful control charts. Similar
extensions have been considered in the literature for Shewhart-type control charts in the case of tl
normal distribution (see e.g. Nelson, (1984), Klein, (2000) and Shmueli and Cohen, (2003)).

To summarize:

In Chapter 4 a new class of nonparametric control charts with runs-type signaling
rules for the situations where the location parameter of the distribution is known
and unknown is considered. In the former situation the charts are based on the sign
test statistic and enhance the sign chart proposed by Amin et al. (1995); in the latter
situation the charts are based on the two-sample median test statistic and improve

the precedence charts by Chakraborti et al. (2004).

To design the nonparametric control charts and study their performance, their run-length
distributions are required. The run-length distributions and the associated performance characteristi
for the “runs rule enhanced” charts are derived by using a Markov chain approach (see e.g. Fu ar
Lou, (2003)) and, in some cases, we also draw on the results of the geometric distribution kf order
(see e.g. Balakrishnan and Koutras, (2002), Chapter 2). To implement the charts in practice we provic
tables with the necessary charting constants and/or control limits and examples are given to illustra

the application and usefulness of the charts.
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Lastly, the in-control and the out-of-control performance of the new distribution-free charts are
studied and compared to the existing nonparametric charts, using the average run-length, the stand.
deviation of run-length, the false alarm rate and some percentiles of the run-length, including the
median run-length. It is shown that the newly developed runs rules enhanced sign charts offer mol
practically desirable in-control average run-lengths and false alarm rates than the sign chart of Amir
Reynolds and Bakir (1995) and the precedence charts of Chakraborti, Van der Laan and Van de Wi
(2004) and, perform better than the Shewhéithart and a number of existing nonparametric charts

for some distributions.

Layout of the Thesis

The rest of this thesis is structured as follows. In Chapter 2 we look at Phase | variables contrc

charts; this includes the design of the Pha& | S and R charts and an in-depth overview of the

literature on Phase | parametric control charts for univariate variables data. In Chapter 3 we study tf
Phase Il Shewhart-tygechart and the Phase Il Shewhart-tgpehart. In Chapter 4 we design a new

class of nonparametric Shewhart-type control charts with runs-type signaling rules (i.e. runs of the
charting statistics above and below the control limits) for the scenarios where the percentile of intere:
of the distribution is either known or unknown. Lastly, in Chapter 5 we wrap up this thesis with a
summary of the research carried out and offer concluding remarks concerning unanswered questio
and/or future research opportunities. In Chapter 5 we also list the research outputs related to and bas
on this thesis; this list includes the details of the technical reports and the peer-reviewed articles th:
were published, the articles that were accepted for publication, the local and the internationa
conferences where papers were presented and the draft articles that were submitted and are currel

under review.
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Chapter 2

V ariables control charts: Phase |

2.0 Chapter overview

Introduction

In practice the statistical process control (SPC) regime is implemented in two phases: Phase |, tt
so-called retrospective phase, and Phase I, the prospective or the monitoring phase (see e.g. Wood
(2000)).

In Phase | the primary interest is to better understand the process and to assess process stabil
The latter step consists of trying to bring a process in-control by analyzing historical data in order tc
locate and eliminate assignable causes of variation. A process operating at or around a desirable le
or specified target with no assignable causes of variation is said to be stable, or in statistical control, «

simply in-control (IC).

Montgomery (2005) p. 199 describes the process of establishing control in Phase | as iterative ar
that the control limits are viewed as trial limits. Once statistical control is established to the satisfactior
of the user, any unknown quantities or parameters are estimated from the in-control data which leac

to the setting-up of control charts so that effective process monitoring can begin in Phase Il.

In addition to the use of various exploratory (e.g. graphical) and confirmatory (e.g. testing of
hypotheses) statistical tools, control charts play a crucial role in a Phase | analysis. They help i
getting a better view of what is going on over time and assist in diagnosing the source(s) of assignab

causes so that their effect can be minimized or removed.
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Motivation

The success of process monitoring in Phase Il depends critically on the success of the
corresponding Phase | analysis. In this regard, the effects of parameter estimation based on Phas
reference data on the performance of Phase Il control charts have been studied by several authors (
e.g. Jensen et al. (2006) for an overview). These studies emphasize the importance for a prop

understanding of the issues while setting accurate Phase | control limits.

The most familiar control charts in practice include those for the mean and the spread i.e. the

variance and/or the standard deviation, of an assumed (at least approximately) normally distribute
process. While Champ and Jones (2004) studied the Shewhart-type Phagw®it for the mean, we

study and design Shewhart-type Pha$s] S and R charts for the process variance and/or standard

deviation. The spread charts are particularly important since an estimate of the variance or the stande
deviation is usually necessary in setting up the control chart for the mean. Thus, the spread of tr
process must be monitored and controlled before (or at least simultaneously) attempting to monitor th

mean.

Despite the fact that Phase | analysis is such an important component of SPC, not all authors mal
a clear distinction between Phases | and Il or discuss the various ramifications in the current teachir
and practice of SPC. Moreover, although several authors studied some statistical aspects of Phas
control charting methods, a search of the standard textbooks on SPC methods (with some exceptior
such as Montgomery, (2005) p. 199) did not reveal much, if any, discussion of this important topic. It
would therefore be helpful and beneficial for researchers, instructors (educators) and practitioners t
know what the issues are, what the present state of the art is and what challenges still remain. To tl
end, an overview of the literature on univariate parametric Shewhart-type Phase | variables contrc
charts for the mean and the variance is given, under the assumption that the form of the underlyin

continuous process distribution is known.

Methodology

A key to the Phase | analysis, as Champ and Jones (2004) stated, “requires a different paradig
than studying the prospective monitoring of a process”. One implication of this statement is that the
metric of a control chart's performance must be carefully chosen depending on which phase of th

analysis (1 or II) one is referring to.
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Because Phase | control charting is about ensuring that a process is in-control, it is in principle
similar to a multi-sample hypothesis testing problem for homogeneity that tests if the data from severe
independent samples come from the same (in-control) distribution or process. With this motivation
the false alarm probability, denotedP, is the criterion typically used to measure and evaluate
control limits in Phase I. Th&AP is defined as the probability of at least one false alarm (signal)
when the process is actually in-control.

The Phase IS, S and R control charts that are developed in this chapter are designed and/or

implemented by specifying a nominal false alarm probability, BAf%,, and then determining the
charting constants (Phase | control limits) so that A is less than or equal to thHeAR,. The

derivations take into account that the signaling events (when a charting statistic falls outside either c
the control limits) are dependent and use the relevant joint probability distribution of the Phase |

charting statistics while computing theAP .

Layout of Chapter 2

We begin with a general discussion of Phase I, in which we describe the goals and discuss some
the standard methods for designing and implementing Shewhart-type Phase | charts; this is dor
Section 2.1. The design of the Shewhart-type Ph&%e IS and R charts are then studied in Section
2.2. This is followed by an overview of the literature on univariate parametric Shewhart-type Phase
control charts for the mean and the spread of variables data in Section 2.3. Finally, we conclud

Chapter 2 with a summary and recommendations for future research.
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2.1 Phasel SPC

Introduction

Much of the preliminary statistical analysis is done in Phase I. This includes planning,
administration, design of the study, data collection, data management, exploratory work (including
graphical and numerical analysis, goodness-of-fit analysis, and so on) to ensure that the process is trt
in a state of statistical control (see e.g. Woodall, (2000) and Montgomery, (2005) p. 168 and p. 199
The goal is to make sure that a process is operating at or near an acceptable target(s) under so
natural or common causes of variation and that no special causes or concerns are present. In this reg
Phase | control charts play an important role. While Champ and Jones (2004) studied the Shewhat
type Phase X chart for the mean, we study and design Shewhart-type PtgfseS and R charts

for the process variance and/or standard deviation.

Case K and Case U

If target values of the parameters of interest are known, one needs to ensure that the process
operating at or around these given targets subject only to common causes of variation. This situation
referred to as the “Standards Known Case” and denoted Case K.

If the parameters are unknown, establishing control involves estimation of the parameters and th
control limits; this causes that both the charting statistics and the control limits of a Phase | chart ar

random variables. This situation is referred to as the “Standards Unknown Case” and denoted Case L
Although both of these situations can occur in practice, Case U occurs more often, particularly

when not much historical information or expert opinion is available.

Phase | control charting

At the beginning of a Phase | analysis it is assumedilatlependent random samples or rational
subgroups are available, each of size 1, taken sequentially over time from a process with a

continuous cumulative distribution function (c.d.§(x;0), where F is a known function and

0=0©,.0,....6,), k=1, is a vector of unknown parameters. Symbolically, we wxite~ iidF (x;0)
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whereiid denotes “independently and identically distributed”, Xpddenotes thej ™ observation in

thei™ sample fori = 12...m and j = 12...,n.

Generally speaking, depending on the parameter of interest, we calculate a chartingGtdtstic

i =122...,m from each subgroup and calculate the point estiméte@ ,éz,...,ék) using the mn

individual observations combined (pooled). Using statistical distribution theory and some given

performance criterion, an estimated lower and upper control limit, denoted
LCL =g, (0) and  UCL=g,(0)

are then obtained, wheig and g, are two specified functions & such thatLCL <UCL .

A plot of the charting statistics (from ath the subgroups) together with the estimated control
limits constitutes the Phase | control chart.

If all m the charting statistics plot between the control limits and no systematic pattern is present

the process is considered to be in control (IC). On the contrary, if any one or moreCpftifall on

or outside the estimated control limits, the process is declared to be out-of-control (OOC) and som
action or intervention is required. This entails, for example, that the OOC samples are re-examinec
possibly discarded and the remaining samples are then re-checked for control. Revised values &
subsequently obtained for the estimators as well as the control limits from the remaining samples ar

the corresponding charting statistics are then plotted against the revised limits.

This iterative trial-and-error process continues until all the charting statistics plot inside the latest
control limits for the samples at hand. Once this state is reached, the remaining data are thought to
from an in-control process and this final Phase | data set is used to find appropriate control limits fo
Phase Il monitoring of the process. This final Phase | data is referred to as in-control data or a set
reference data.

Note that, if at any stage during Phase | control charting it happens that some of the Phase
charting statistics plot outside the estimated control limits but no assignable cause(s) can be found th
justify their removal, the process may be considered in-control and the observations from thes

samples are then included in the reference data.
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Intuitively, the charting statistiC, for thei™ sample is taken to be an efficient estimator of

the parameter of interest.

For example, if it is assumed that the underlying process distribution is normal with an

unknown meanu and an unknown variancer”, the data would be represented as

X,

; ~1idN (u,0%) fori=12...m and j = 1,2...,n; thus, if the unknown process mean

is the parameter of interest, tifesample mearX; (the best estimator) is a natural charting

statistic.

Estimation of the parameters is an important step in setting-up control charts in Case U.
Unbiased estimators are preferred and if more than one such estimator is available, th

minimum variance unbiased (MVU) estimators should be used.

For example, if it is assumed tha{; ~iidN(¢,0%) for i=12..m and j=12...,n

where bothu and o® are unknown, it is common practice to use the overall mean of the

pooled sample

Since the Phase | charting statistics and the estimated control limits are obtained using th
same data, successive comparisons (over subgroups) of the charting statistics with th
estimated control limits are dependent events. This implies that the signaling events (i.e.
the event that a charting statistic falls on or outside the control limits) or the non-signaling
events (i.e. the event that a charting statistic plots between the control limits)ifdatie

thej™ subgroups, wheiez j = 12....m, are statistically dependent.
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To illustrate the dependency of the non-signaling events, assume, for example, that

X; ~iidN(u,0?) for i=12..,m and j = 12..,n where bothy and g* are unknown

and that we are interested in monitoring the mean. In this case, the sampleXpdans

i = 12...,m would be the Phase | charting statistics and the MVU’sﬁa:e{?,V), which
would be used to estimate the unknown parame€ers(y,o?). Thus, writing the

estimated control limits as functions @fi.e.

LCL =g,(X,V) and  UCL =g,(X,V)
it is clear that the events

[9(X,V) <X, <g(X,V]IC}  and  {g,(X,V) < X, <g,(X,V)]| IC}

where t; #t, = 12....,m are dependent, because the overall meanand the pooled

varianceV are functions of all the;; ’s.

It is important to note that, because timecharting statistics are compared to the control
limits simultaneously, the false alarm probability (which is the probability for one or more
of the charting statistics to plot outside the control limits when the process is in-control) is
expected to be inflated. Thus, in order to correctly design a Phase | control chart in Case U
the dependence of the signaling events and the multiple nature of the comparisons must &

taken into account.

It is believed that at the end of a successful Phase | analysis the practitioner will have a se
of in-control data or reference data which can be used to estimate any unknown parameter
and to obtain a set of control limits to be used in Phase Il process monitoring.

Without any loss of generality, it is assumed thatdenotes the final number of reference
samples at the end of a successful Phase | analysis. Thus the reference data set is assur

to have N = mn individual observations.

For greater generality, only two-sided charts are considered in the discussions that follow.
In applications where a one-sided chart is more meaningful or preferred, these discussion

can be suitably adapted.
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2.1.1 Design and implementation of two-sided Shewhart-type Phase | charts

Introduction

The decision problem under a Phase | control charting scenario is similar, in principle, to a multi-
sample test of homogeneity problem where one tests whether the data from various samples cor

from the same in-control distribution or in-control process (see e.g. Champ and Jones, (2004)).

Under this motivation, the false alarm probabilifyAP ), which is the probability of at least one
false alarm when the process is in-control, is used to construct and evaluate Phase | control charts a
not the false alarm ratd=AR), which is the probability for a single charting statistic to plot outside the

control limits when the process is in-control.

False alarm probability

An out-of-control situation is indicated when a charting statistic falls either on or above the
estimated upper control limit or plots on or below the estimated lower control limit. This important
event is called a signal or a signaling event.

To study the false alarm probability it is convenient to consider the complementary event, that is
when a subgroup does not signal, called the non-signaling event. Thus, if

E ={LCL<C <UCL} for i=12...m

denote the non-signaling event for tHesubgroup, the false alarm probability can be expressed as

FAP

Pr(Atleasbndalsalarmfromthensamples)

- 1 Pr(Nofalsalarmfromthensamples)

=1 —Pr(ﬁ{ E}|IC) (2-1)

=1-Pr((J{LCL <C, <UCL}|IC)

i=1

= 1—?}? 1‘(:1 Cs oo ¢, ¢, ,...Cc,)dc,dc,..dc,,
11 |
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where f. . . (€ C,.,C,) denotes the joint probability density function (p.d.f) of the charting
statisticsC, C,,...,C,, when the process is in-control and for notational convenience the estimated

control limits are written a&CL =1 andUCL =u.

False alarm rate

The false alarm rate, which is the probability of a single charting statistic plotting outside the

control limits when the process is in-control, can be expressed as
FAR=1-Pr(LCL <C, <UCL |IC) =1~ [gc (c)dc, (2-2)
|

whereg. € ) denotes the marginal p.d.f of any of the charting stati€tjicfor i = 12...,m when the

process is in-control.

Remark 2

0] It is clear from (2-1) that theAP involvesm non-signaling events simultaneously. Also,
because the control limits are estimated and the charting statistics are all compared with th
same pair of control limits, the non-signaling events are dependent. Hence, calculation of
the FAP requires knowledge of the joint (multivariate) distribution of the charting
statistics, when the process is in-control; this is highlighted in the last step of (2-1). The
derivation of this joint distribution and the subsequent determination of the control limits
(associated charting constants) form the main stumbling blocks in the study and the desigt
of Phase | control charts.

(i) Expression (2-2) shows that tl&AR involves only a single sample and a single signaling
event. Calculation of th&AR therefore requires only the marginal (univariate) distribution
of the i charting statisticC, when the process is in-control. This in-control marginal
distribution is typically the same for all= 12....m, so that it can be called a common

FAR.

(i)  Given the inherent repetitive nature of a Phase | analysis and the fact that the charting
statistics from allm the subgroups are judged simultaneously, A is a more useful

and logical metric. ThéAP is as a result the recommended chart design criterion adopted
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in Phase | so that a Phase | control chart is designed by specifying a nominal false alarn

probability, sayFAPR,, as apposed to specifying a nomif#R, say FAR, .

(iv)  The objective and the design criterion in Phase | is different from designing Phase I
control charts (see e.g. Chapter 3), based on in-control Phase | data, where one woul
specify some attribute of the in-control Phase Il run-length distribution, such as the average

run-length (ARL, ), to determine the control limits.

Also, even though thd=AR is a commonly used performance measure in practice, it is
most often used in the design of Phase Il control charts. WherFAfe is used in
designing a Phase | control chart it should be done with caution and the user should be
aware of the effects on the performance of the Phase | chart; this is discussed in more deta

in the next section.

Implementation of two-sided Shewhart-type Phase | charts

Implementation of Phase | charts requires the determination of the control limits and/or the
charting constants. Different approaches exist and may be used. Each approach is based on
assumption regarding the dependence or independence of the charting statistics coupled with
particular performance criterion. Four approaches are considered and they are:

0] FAP-based control limits,

(i) FAR-based control limits,

(i)  ApproximateFAR-based control limits, and

(iv)  Bonferroni control limits.

Methods (ii), (iii) and (iv) assume that the charting statistics are independent and &gdthia
some way or another, in their design. However, while method (ii) incorrectly ignores the fact that
several charting statistics are compared to the control limits at the same time, methods (iii) and (iv) d
not. Furthermore, while method (ii) focuses exclusively on controlling=#ie at a nominal value of

FAR,, methods (iii) and (iv) indirectly controls tHeAP by adjusting theFAR.

Method (i), on the other hand, is distinctly different from methods (ii), (iii) and (iv) as it correctly
controls theFAP by explicitly taking into account the dependency between the charting statistics and

the signaling events.
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Method (i): FAP-based control limits

The FAP-based control limits are the optimal pair of limits because they are derived from the
relevant joint p.d.f of the charting statistics which correctly accounts for: (i) the fact that the Phase |
control limits are estimated, (ii) the Phase | signaling events are dependent, and (iii) that multiple

charting statistics are compared with the estimated control limits in a single step.

In this approach the design of a Phase | control chart requires the user to specify a desirab
nominalFAP value and then find the corresponding control limits. This means that one needs to solve
for that combination(s) of values b 1,, andu=ug,, such that

Urary Urary Urapg

FAP, =1- j j j fe.c,c. €1 CorenCy)deyde,.. dc, (2-3)

Ieary 1rary Ieary

where FAPR, is the nominal value ofAP (typically set equal to 0.01, 0.05 or 0.10 in practice) and

leap, @ndug,, denote the lower and the updeAP -based control limits, respectively.

Finding the two unknowns,, and u.,, from expression (2-3), uniquely, poses a problem

without additional restrictions.  For example, in some cases the charting statistics are symmetricall

distributed around zero (without any loss of generality) and then it makes sense to use symmetr

control limits, that is, settingéL =-UCL=-d, say, wherdal is then obtained by solving

dd d
FAR, =1~ [ [+ [ foc, o €1 €5 oG )dCdC, . e, (2-4)

-d-d -
If the plotting statistics are not symmetrically distributed and two-sided control charts are desired,

one possibility is to use the equal-tailed conservative approach in which half the néARals

assigned in each tail i.e. half above thé€L and half below theCL , respectively. This approach

can be more clearly explained by expressingRA® of (2-1) as

FAP = 1—“
[

—— c

fcl CorC C]_ 1C2 PR )Cm )dcldC2 . .de

Prmig G, .G, ¥l ormaxC, C,....C,)=u]|IC) (2-5a)

Pr(mig( G, ,.C, ¥! IC ¥ Pr(max¢, C,,...C,)=u|IC)
- Pr(mC, ,.C, 3l andmaxC, C,,..C,)=u]lC).
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Expression (2-5a) follows since the event that at least one of the charting statistics plot either abov
or below the control limits can be equivalently expressed as the union of two events: (i) that the

minimum of the charting statistics lies below th€L , and (ii) that the maximum of the charting

statistics lies above tHdCL . From (2-5a) it follows that an upper bound for t&P is given by
FAP< Pr(mig( G, ,.C, ¥! IC ¥ Pr(imax¢, C,,...C,,)=u]IC). (2-5b)

The equal-tails conservative method entails that one finds those values BARhbased control
limits | =15, andu =ug,, such that

P(minC, C,....Cp,) < lpsp, |1C) = FAP, /2 (2-6a)
and

PfmaxC, C,,...Cp) 2 Ugs, | IC)= FAP, /2. (2-6b)

and ensures that the false alarm probability is not greaterRARy.

Using expressions (2-6a) and (2-6b) rather than (2-3) or (2-5a) to solig.foand u.,, may be

advantageous in some cases in the sense that it involves calculating the percentiles of some univari
distributions i.e. the distributions of the minimum and the maximum, which might be computationally
easier than using the multivariate p.d.f in (2-3) or using the joint distribution of the minimum and the
maximum in (2-5b) . However, finding closed form expressions for the p.d.f.’s of

Cmin = mincl ’CZ""’Cm) and Cmax = maXCl 1C2""’Cm)

to evaluate analytically is complex as t@€s are statistically dependent random variables.

Attained False Alarm Rate

Given theFAP-based control limitd.,, andug,, that satisfy (2-3) or (2-6a) and (2-6b), one may

be interested in calculating the attained false alarm r&€AR). TheAFAR is the resultant
probability for a single charting statistic to plot outside B#P -based control limits when the process
is in-control, and defined as

Ueamy
AFAR = 1= Pr(gpe <C <Ugy, [IC) =1~ [gq (c)dc, - (2-7)

IFAFb
Using (2-7) one can compute td-AR given the marginal distributiog. c( 9f C, fori=12..,.m

is known.
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Method (ii): FAR-based control limits

Classically (see e.g. Hillier, (1969) and Yang and Hillier, (1970)) a Phase | chart is designed by

controlling the false alarm rate at a nomifgAR value, FAR, say. This entails finding that/those
combination(s) of values for the control limits such that
Urary

FAR, = 1-Pr( i, <C, <Ugp, [IC) =1~ [gc (c)dc (2-8)

Iearo

wherel,, andug,, denote the lower and the uppéAR-based control limits, respectively.

FAR,

It is evident from (2-8) that theAR-based control limits use only the marginal distributgan ¢ ()

for i = 12...,m of a single charting statistic to find the Phase | control limits and overlooks the fact

that multiple charting statistics are simultaneously compared with the estimated control limits. Hence

this approach is flawed can be improved upon.
Attained False Alarm Probability

Given the valued,; and ug,; that satisfy (2-8), the attained false alarm probabilRy-AP)
may be calculated from (2-3) as
Ueary UraRg Upary

AFAP=1- [ [ [fe o o € G Cpldcyde,..de,. (2-9)

leary IFaRg Ieary

The AFAP is the resultant probability that at least one charting statistic will plot outsidARe

based control limits when the process is in-control.
Remark 3

Solving for the control limits from (2-8) and then using the resuF#R-based control

limits to construct a Phase | chart not only ignores the fact that multiple charting statistics
are compared to the control limits at the same time, but also ignores the dependenc
between the signaling events. The attained false alarm probably might thus be far-off the

desired FAR, and, as a result, this approach is not recommended. TypicallxRA® is

inflated and larger than the chosEAR, .
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If only the marginal distribution ofC, for i = 1,2...,m is available and one wishes to design a
Phase | chart so that tlAP is close toFAPR, one may use the approximd&tdR-based control limits

or the Bonferroni control limits to find approximate Phase | control limits. Both these approaches

assume that th€,’s are independent and works with the (exact) marginal distribution of the charting

statistic, but they do take into account that more than one signaling event need to be dealt with.

Method (iii): Approximate FAR-based control limits

A simple and popular alternative to the exBé&P-based control limits is the approxim&aR-
based control limits. The latter is often used and yields an approximate solution (see e.g. Champ at
Jones, (2004)).

In this approach one approximates the Phase | control limits by ignoring the dependence among tt

signaling events, but account for the fact that multiple comparisons are made at the same time.

In particular, when the number of subgroupsis large, the correlation among the charting
statistics approaches zero and the charting statistics are approximately independent. Then, from (2-
and (2-2) it can be seen that

FAP = 1—|EJ PrE, [IC)=1-[PIE, |IC)]" =1- - FAR)" (2-10)

so that

1

FAR=1- (L- FAP)™, (2-11)

Expressions (2-10) and (2-11) show the relationship betweeRAReand theFAR for large m
and can be used to ensure thatfi#& = FAP, by controlling theFAR.

For example, it follows from (2-11) that for symmetrically distributed charting statistics the
approximate FAR-based control limits are given by the

1 1
% [1- (1- FAP, )™ LOO" and [1—%{1— (L- FAR)™}]100"

percentiles of the marginal in-control distribution of a single charting statistic and would yield a false

alarm probability of approximatefyAPR,.
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For asymmetric approximate FAR-based control limits one may use the

1 1

w[l- (1- FAP, )™ LOO" and [1- @ -w){1- - FAR)™}]100"

percentiles of the marginal in-control distribution@ffor i = 12...,m, with Osw< 1.

Method (iv): Bonferroni control limits

A fourth approach is to use a Bonferroni-type adjustment when calculating the Phase | limits. This
method also yields an approximate solution, but is applicable whether or not the charting statistics al
symmetrically distributed and ensures that the false alarm probability is at most as specified (see e.
Ryan, (1989) p. 74 - 76).

It follows from Bonferroni’s inequality (see e.g. Casella and Berger, (2002) p. 13) that one can find
an upper bound for the false alarm probability as a function of the false alarm rate; this upper bound i

given by

FAP =1 —Pr(ﬁ{ E}IC)<m- Zmlpr({ E}|IC)=m- Zm: (1-FAR) =mFAR.  (2-12)

i=1 i=1

If it is desired that the=AP < FAR,, it is seen from (2-12) that settimgFAR = FAPR, i.e. setting
the false alarm rate equal tBAR=FAR,/m, would meet the requirement. In this case, the

symmetrically placed control limits are given by the
FAP, /2nTL00" and [1- (FAP, /2m)1LO0"

percentiles of the marginal in-control distribution of a single charting statistic.
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In some situations it may be reasonable to assume that the marginal distribution of the
charting statistic<C, for i = 1,2...,m is normal (or, at least approximately so) and then use
the percentiles of a normal distribution to find the control limits in FEAd&R-based
approach, the approximak®R-based approach and/or the Bonferroni approach, instead of

using the exact marginal distributiagqy. ¢ ( for i = 12...,m. This, however, might result

in a Phase | control chart with incorrectly placed limits, especially wheamd n are not

large.

Although the assumption of normality might be acceptable in some cases, there are

scenarios (e.g. th&*, S and R charts) where the marginal distribution of the charting
statistic (e.g. the sample variance or the sample standard deviation or the sample range)

markedly non-normal; this is particularly true when small sample sizes are used.

The approximat&AR-based limits and the Bonferroni limits are easier to calculate than the
exactFAP-based limits because one does not need to work with the joint distribution of the
entire set of charting statistics. However, these two sets of limits are generally not suitable

if the number of subgroups is small.
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Comparison of methods (i), (ii), (iii) and (iv) to design a Shewhart-type Phase | control chart

The four methods to design a Shewhart-type Phase | chart are illustrated in Figure 2.2Xfor the
chart in Case U. For this illustration a set of simulated data from the standard normal distribution wa

used and it was assumed tmt  rHhdom samples each of sine= aBe available. The charting
statistics are the sample meaXs for i = 1,2...15 of the simulated data in this research. The details

on how to calculate the four pairs of control limits are given in Champ and Jones, (2004).

It is seen that there can be more false alarms if one uséf\Rbased control limits, denoted
LCL(FAR) and UCL(FAR), than when one uses &P -based control limits. This is simply because
the FAR-based control limits are tighter than thAP-based control limits, denoted LCL(FAP) and
UCL(FAP).

In contrast, it is noticed that the approxim#R-based control limits (i.e. LCL(Approx FAR)
and UCL(Approx FAR)) and the Bonferroni control limits (i.e. LCL(Bon) and UCL(Bon)) almost
coincide and are both slightly wider than #&P-based control limits. It is thus likely that one can
observe less false alarms if one uses the approxiFraRebased control limits or the Bonferroni
control limits instead of th&AP-based control limit. Although less false alarms might be appealing
from a practical point of view, if the control limits are too wide, unwanted variation might go

undetected.

LCL(FAP)
UCL(FAP)
— — LCL(FAR)
— — UCL(FAR)
° LCL(Approx FAR)
e  UCL(Approx FAR)
------- LCL(Bon)
------- UCL(Bon)

{e..0..0..0..0..0..0..0..0..0..0-.0..0-.0..0 | | —®—Xbar (Ci's)

Plotting Statistic

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Time / Sample Number

Figure 2.1: Shewhart-type Phase IX control charts in Case U
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2.2 Shewhart-typeS’, Sand R charts: Phase |

Introduction

The most familiar control charts in practice include those for the mean and the variance of ar

assumed (at least approximately) normally distributed process. While Champ and Jones (2004) studi

the Shewhart-type PhaseX chart for the mean, we study and design Shewhart-type Pt&iseS

and R charts for the spread.

Control charts for the spread are particularly important since an estimate of the variance or th
standard deviation is necessary in creating a control chart for the mean. The spread must therefore

monitored and controlled before (or at least simultaneously) attempting to monitor the mean.

Assumptions

Suppose thatm independent rational subgroups each of size arelavailable from a normal
distribution with an unknown meap and an unknown variance®. The data are represented as
X ~iidN(u,0°) for i=12..,m and j=12...n where X, is thej" observation from the "

subgroup.

Point estimators for the unknown standard deviation and the unknown variance and their

probability distributions

Estimation of the mean and the variance affects the performance &*th& and R charts
because their control limits are defined in terms of the unknown variance and the charting statistics (i
case of theS® chart and theS chart) also depend on the unknown mean. Furthermore, the sampling
distributions of the charting statistics are affected since the degrees of freedom of the chi-squar

distribution and the chi distribution changes froanto n—1 when the mean is estimated.
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Point estimators

Two unbiased point estimators for the process standard deviation and one for the process varianc

are
. R 1(1y
g, =—=—| — L, 2-13
"7, dz(mgaj (=13)
. S 1(1&
G.====|=V's 2-14
orelnss) =
and
5;) =V zrinzsz’ (2-15)

respectively, where
R = maxX;; X, ,...X;, )= minX;;,X,,...X;,),

denotes theé™ sample range,

denote thé ™ sample variance and the sample mean, respectively antf ti@mple standard

deviation is defined as

SENCY

fori=1212....m.
The unbiasing constants, andc, are tabulated, for example, in Appendix VI of Montgomery (2005).

The first estimator in (2-13) is typically used when tRechart is used to monitor spread. The
second estimator in (2-14) is used in the application o&hahart, while the third estimator in (2-15)

is a pooled variance estimator and is used inghehart.
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Distribution of the point estimators

Under the assumption that the process follows a normal distribution, it is well-known that

m(n - 1)\7 2
o7 ~ Xmn-1)
so that
vl JZXri(n—l) ,
mn-1 '

this is an exact result.

The exact distribution 067 is complicated. Patnaik (1950) presented a method for approximating
fwﬁé
c’o

the distribution o by that of a)(\,z; distribution wherec =c W )is a constant and a function of

2

w. This is done using a technique called “moment matching” (see e.g. Casella and Berger, (2002) |

314) and involves setting the first two moments of the distributiog—'éf equal to those OFX—W
o

Jw
where y,, is a random variable which follows a chi distribution i.e. the square root of a chi-square
random variable withw degrees of freedom (see e.g. Johnson, Kotz and Balakrishnan, (1994, 1995)).
Then, approximately,

-~ OCX,

[ ok

Using a similar approach, one can show that approximately
. _ady,
Os ~ ;
Y

where the constard =d t (i} a function oft (see e.g. Champ and Jones, (2004)).

Values of the constants andd for &, and g, were numerically approximated and tabulated by

Champ and Jones (2004) for= 3@L0B)Mddn= 3(1)10.
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2.2.1 Phase IS? chart

Introduction

The application of theS”* chart in Case K and its operation in prospective process monitoring in
Case U, are discussed in various SPC textbooks (see e.g. Ryan, (1989) and Montgomery, (2005)

231). Here we study the retrospective use of the Ph&&echart in Case U.
Charting statistics and control limits

For the Phase B’ chart the charting statistics are the sample variagefor i = 12...,m and

one uses the probability limits

~ VX2, . A A~ Vx2 o
LCL = VAXia CL=V UCL = VXayna (2-16)
n-1 n-1

where )(jn_l is the 100 & )" percentile of the chi-square distribution with- dégrees of freedom

(see e.g. Montgomery, (2005) p. 231).

Typically one would taker, = a, = 000135 and find the chi-square percentiles with the idea that
the false alarm rate is approximatéhpAR, = 0.00Ribwever, in Phase | charting, as noted earlier, it
is better to control the false alarm probability at some nominal valleARe= FAR,, which results in

some false alarm rate

AFAR = AFAR, + AFAR, (2-17)

where
AFAR =Pr(S? < LClL;y, |IC)  and AFAR, = Pr(S? 2UCL., | IC) (2-18)

are the probabilities that a charting statistic plots on or outside the estimated lower and upper limits,
respectively, which result from controlling the false alarm probability. The resi#ERtis called the

attained false alarm rate and denofelAR. Depending on the values 6#AR,, m andn, the AFAR

can be substantially different from 0.0027, as will be seen later.
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Design of the Phase IS*chart for a nominal FAP

The objective when designing a Phas®’l chart is to know where to place the control limits of

the S* chart so that if then charting statistics are simultaneously plotted on the chart, the probability

of at least one charting statistic plotting on or outside the estimated control limits, when the process |
in-control, is at most equal tBAP,. This goal is identical to ensure that tR&P of the Phase B?
chart is less than or equal to a pre-specifiéd® i.e.FAP < FAR,; for this we need an expression to

calculate theFAP.

First we deriveFAP-based control limits for th&s® chart, which is an exact solution and takes
account of the dependence between the signaling events. We then also find appeiRiagased
control limits, which is an approximate solution and is suitable when the number of Phase | subgroup

m is large.
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False alarm probability of the Phase IS* chart

The exact false alarm probability of the Phas®’ Ichart, under the assumption of i.i.d. observations

from a normal distribution with the mean and the variance both unknown, is

FAP Pr(Atleasbndalsealarmfromthensamples)

- 1 Pr(Nofalsalarmfromthensamples)

l—Pr(ﬁ{ LCL < S2 <UCL}| IC)
i=1

m V)(fa n-1 _X§ ,n-1
=1-Pr —< —==11IC
iol{ S n-1 |
2 2
=1- PrﬁXHL”l § Hunilyic
i=1 \J n- 1 (2-19)
(n-)§*
m 2
=1—Prﬂ Xl—al_nl Xaunl ||C
i=1l m(n— 1) m(n i\ m(n 1
2
=1 r(ﬁ{a< Y, <b} |IC
i=1
bb b
= E[].JF G Yo Ym)dydy,.. dy,
where
2 2
— Xl—aL n-1 and — Xau n-1 (2_20)
m(n-1) m(n-1)
are called the charting constants, and
h-)S*  (-DS
e (021)\7 i (021)52 = (2-21)
m(n— m (N
o? z o? in
i=

where theX, for i = 12...,m denotes independent chi-square random variables eacimwith 1

degrees of freedom and (y,,y,,...,y,,) denotes the joint p.d.f ofY,(Y,, ,Y,, When the process is

in-control.
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From the definitions of the estimated control limit<CL and UCL and the charting
constantsa andb in (2-16) and (2-20), respectively, it is seen that one may also write the

control limits as

LCL = maV and UCL = mbV (2-22)

wherem is the number of Phase | subgroups ¥nds defined in (2-15).

The control limits in (2-16) are defined in terms of the marginal distribution of the charting
statistics (i.e. the percentiles of the , distribution) and allows one to easily calculate the
estimated control limits of a Phase & chart. In contrast, the alternative form of the
estimated control limits in (2-22) simplifies the calculation of the limits for a Phase |
S?chart, which is the focus here. Example 1 (given later) explains how the limits in (2-22)

may be used.

From the derivation of thHeAP in (2-19) it is clear that any two non-signaling or signaling

events are dependent since the correspondingrandom variables are statistically

dependent. This is so because e¥cls a function of and depends on all t§&'s through

ZS,Z in their denominators (see e.g. expression (2-21)). The joint probability

v=1
miz

distribution of the charting statistics when the process is in-contrdl ye,y,,....Y,,), IS

therefore needed to calculate and study the false alarm probability; this is highlighted by the
last step in (2-19).
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Joint probability distribution of  {/,.Y,,....Y,,)

Deriving an exact closed form expression fofy, ,y.,,...,Y,,) in order to calculate th€AP of the

S? chart is difficult. A particular obstacle is the fact that tije random variables are linearly
dependent i.eZYi =1, this causes the joint distribution d¥,,Y,,....,Y,,) to be singular and of
i=1

dimensionm- 1 To calculate theFAP one can use the joint distribution @, .Y,,....Y, ) ; this is

looked at next.

Calculating the exactFAP of the S? chart

To analytically calculate thEAP one may begin with (2-19) and proceed as follows:

FAP= T fOy.Y,eYydydy,..dy,

QD C—— T

jz
a
m

:1—P{Q{a<Yi <b}|ICj
=1- p{{mﬁ{aq <b}}ﬂ{a<1—ZYi <b}|ICj

i=1

QD C— T

(2-23)

R(y)

where the joint p.d.f of(Y,.Y,,....Y,.,), which is denotedf (y,,Y,,...,Y.4), IS integrated over the

region

m-1
Ry(:){ V(Y2 ¥ma H<Y <b foi= 12.m- landa<l->y, <b}.

i=1
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Remark 6

(1) The first two steps in (2-23) are identical to the last two steps of (2-19) but in the reverse

order.

(i) The third step in (2-23) follows by using the fact thEt:Yi =1 and then writing

i=1

m-=

Y, =1-)]

1
i=1

Y, .

(i)  From the third and the fourth steps in (2-23) it is evident that calculatingARedoes not

necessarily require the joint distribution @f,.Y,,....Y,,). Instead one may use the joint

distribution of (Y, Y,,...,Y,,) , which is known.

(iv)  Given a closed form expression for the joint p.d.y,.Y,,....Y.,), the last integral

expression in (2-23) can be evaluated using a computer software package(s) capable ¢

numerical integration (for e.g. Mathdaor Mathematic).
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Joint probability distribution of (Y, .Y,,....Y,,_;)

The joint distribution ofY; for i = 1,2...m-1 is the type | or standard Dirichlet distribution and is

regarded as a multivariate generalization of the beta distribution (see e.g. Chapter 49 of Kotz
Balakrishnan and Johnson, (2000)).

The standard Dirichlet distribution, in general, is denot¢dy, ,...Y.,)~D"' @, .6,.....6,.;6,.)

where @ for i = 12...,m are the parameters of the distribution.

The joint p.d.f of (¥, .Y,,....Y,.;) IS given by

r(iaJ m-1 m-1 On-1
F Y0 Yima) =m—1” yf'l(l-zyij (2-24)
IJ r) - =

m-1
where {&y fori= 12..m- land Zyi <1} and the correlation betweefi and; for all

i=1

i£j=12..m-1, is given by

corr(Y;,Y,) = —\/a o, /(Z 6. -6 )(z 6, —6,) (2-25)
k=1 k=1
(see e.g. Chapter 49 of Kotz, Balakrishnan and Johnson, (2000)).

Substituting (2-24) in (2-23), with ead® :n_;l for i = 12...,m, one can analytically calculate the

FAP of the S? chart.
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FAP-based control limits for the S? chart

Calculating theFAP of the Phase B chart and designing the chart is not the same. Calculating
the FAP requires one to evaluate expression (2-23). The design, as noted eatrlier, requires one to find

the proper position of the control limits so that &P is less than or equal 6AF,. This implies

that one has to find combinations of valuesdoandb, denoteda and 6, so that

FAP(a=4b=0 F T[] f (1 Ys0mey )y, Oy, < FAR (2-26)

aa a

or, equivalently, such that

FAP(a=4b=b)=1- [[..]F 61YoYos)dyidy, . Ay, < FAR, (2-27)
R(y)
where
~ ~ m_l ~
R )= { 02 Yo reYma) [A<y, <b foi = 12.m- landd<1-) y, < b}. (2-28)
i=1
Remark 7

0] The equivalence of expressions (2-26) and (2-27) follows from the first and the last steps in
(2-23).

(i) Solving for a and b from (2-26) is not possible because, as mentioned earlier, a closed
form expression forf (y,,Y,,...,y,,) iS not traceable. Also, solving feér andb from

(2-27) involves multiple integrals (as little as= b2t even as many asa= 3@ 500)
to be evaluated using numerical integration procedures; because this approach i
computationally very demanding (i.e. computer intensive and time consuming) it is

undesirable. As an alternative approach, we use a re-written form of (2-26) coupled with

computer simulation experiments to solve foandb.
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From expressions (2-5a) and (2-5b) it follows that expression (2-26) can also be written as

FAP(a=4b=Db)= Pr(miny,.Y,,...Y,) <& |C } Pr(maxy,Y,,...Y,) = b|IC) (2-292)
~ Pr(mint, Y,,...Y.,) <& andmaxy,y,....Y,)=b|IC)
which implies that

FAP < Pr(min¥,.Y,,....Y,,)<a |C }* Pr(maxy,.Y,,...,Y,,) 26| IC). (2-29b)

Expressions (2-29a) and (2-29b) follow because we need the probability that at least on¥ 'sf the

plots either on or below the estimated lower control limit or, on or above the estimated upper contro

limit. The first probability can be expressed in terms of the smallest of thevhereas the second in

terms of the largest of thé’s. This is consistent with our earlier discussions in section 2.1.1.

Because, in general, thé’s are not symmetrically distributed the two probabilities on the right in

(2-29b) will not be equal in general. This creates a problem since two unknowns cannot ordinarily be

determined uniquely from a single condition.

To simplify matters we follow an equal-tailed conservative approach indtheaid b are found

such that each term on the right in (2-29) is at mg%P—o Thus, we finda andb so that

FAP, FAR,

and Pr(maxy,.Y,,...Y.,)=b|IC) < = (2-30)

Pr(miny,.Y,,....Y,,) <&|IC) <

The distribution theory of the largest and the smallest of order statistics of ‘thés fairly

involved and is not attempted here (see e.g. Eisenhart, Hastay and Wallis, (1947)). Instead we u

intensive computer simulations (accounting for the dependence among the charting statistics) to sol\

the equations in (2-30) and find the charting constanasdb .
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Simulation algorithm for determining the FAP-based control limits of theS? chart

The steps of the computer simulation algorithm to findndb are:

Step 1: Generate 100,000 vector valued observations from the joint distributi¢f) ¥f,....Y, ) .

To obtain one such observation we generatindependenty?, random variables for a givenandn

(denoted by, for i = 12...,m), calculate the sun8UM, =" X, , and then calculat¥ = s{j(|\l/| for

=1 1
i =122...,m. The vector(Y, Y,,...,Y,) is one such observation.

Step 2: Find Y, = maxy,.Y,,....,Y,,) andY,,, = min{,Y,,....Y,.).

Step 3:
Let

a= max{u: Pr (ming, Y,,...Y,)<u|IC) < FAZPO}

and

b= min{u : Py (maxy, Y, ,...Y, ) 2u|IC) < FAZPO}

where O<u< 1 this means that we chooseto be that value ofu such that the proportion &, 's

PO

. FA ~
less than or equal t@a is at most and we choosd to be that value ou such that the

. ~ FAPRP
proportion ofY, . 's greater than or equal tw is less than or equal tez—o

Note that, in the above expressions &andb, the" P; " and the" Py "denote relative

frequencies and are therefore, strictly speaking, empirical probabilities i.e.

numbemfsimulated. values< u P numberofsimulat values= u
ed;, and Pr,(u) = e :

|5rl(u) =
100,000 100,000
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Remark 8

Step 3 of the simulation algorithm is a conservative equal-tailed approach that ensures the

the false alarm probability is not greater than the nonfiAd? .

FAP-based charting constants foiS? chart

The values ofd andb for m= 3110152025 and n= 3(1)10 such that theFAP does not

exceed 0.01, 0.05 and 0.10 are given in Tables 2.1, 2.2 and 2.3, respectively. Note that, for son
combinations ofm and n it is seen thati= G0 that the estimated lower control limit equals zero;

this implies that the Phas&1 chart would have only an upper control limit.

To find the position of the Phase | control limits one replacesith a, substituteb for b and

replace\7 with its observed valug into (2-22).

Example 1

Suppose tham= Phase | samples are available each of size and that it is desired that
FAP < FAR, = 005.

From Table 2.1 we obtairi= 00118nd b= 04271 thus ma= (7)(00115= 00805 and

mb = (7)(04271)= 29897 so that the estimated lower and upper control limits of the Ph&sehart
in (2-22) are found to be
LCL = 008057 and  UCL = 2989%

respectively. These limits ensurd=AP < 005
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less than or equal to 0.01 whem = 3(1)10,15,20,25 and = 3(1)10

Sample size )

m 3 4 5 6 7 8 9 10
3 0.0008| 0.0053 0.0135 0.0219 0.0320 0.0418 0.0501 0.p600
0.9595| 0.908Q 0.8604 0.8199 0.7881 0.7621 0.4384 0.f176
4 0.0004| 0.0029 0.0078 0.0141 0.0208 0.0271 0.0336 0.p389
0.8910| 0.8104 0.752p 0.7074 0.6669 0.6418 0.6144 0.5954
5 0.0002| 0.0018 0.0056 0.0099 0.0146 0.0194 0.0240 0.p288
0.8213| 0.7284 0.6683 0.6200 0.5800 0.5496 0.5286 0.p101
6 0.0001| 0.0013 0.004D 0.0074 0.0109 0.0149 0.0184 0.p223
0.7615| 0.6624 0.595P 0.5494 0.5105 0.4812 0.4630 0.%445
7 0.0001| 0.001g 0.003g 0.00%9 0.0087 0.0122 0.9155 0.p179
0.7011| 0.59971 0.5384 0.4915 0.4588 0.4822 0.4124 0.8956
8 0.0000| 0.0008 0.0024 0.00%50 0.0074 0.0099 0.0125 0.p156
0.6533| 0.5521 0.4860 0.4472 0.4161 0.3909 0.3722 0.B543
9 0.0000| 0.0006 0.0019 0.0041 0.0062 0.0084 0.0107 0.p133
0.6042| 0.5137 0.4533 0.4108 0.3832 0.3%67 0.3367 0.8222
10 0.0000| 0.000§ 0.001f 0.0033 0.0051 0.0075 0.0095 0.p115
0.5715| 0.4749 0.4182 0.3793 0.3495 0.3296 0.3100 0.p950
15 0.0000| 0.000Z 0.0009 0.0019 0.0030 0.0043 0.0055 0.poe67
0.4366| 0.3533 0.3092 0.2766 0.2542 0.2863 0.2221 0.p114
20 0.0000| 0.0003 0.000p 0.0012 0.0020 0.0029 0.0038 0.po47
0.3564| 0.2827 0.244p 0.2172 0.1990 0.1846 0.1737 0.[1648
o5 0.0000| 0.0001 0.0004 0.0008 0.0015 0.0021 0.0028 0.p035
0.2985| 0.237Q 0.2022 0.1806 0.1650 0.1%21 0.1432 0.1361
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Table 2.2: Values ofd and b so that the false alarm probability of the Phase IS* chart is
less than or equal to 0.05 whem = 3(1)10,15,20,25 and = 3(1)10

Sample size )

m 3 4 5 6 7 8 9 10
3 0.0041| 0.0156 0.030L 0.0433 0.0568 0.0694 0.g790 0.p889
0.9088| 0.8413 0.787¢ 0.7483 0.71j73 0.6896 0.6682 0.p498
4 0.0020| 0.0089 0.0179 0.0273 0.0361 0.0444 0.0524 0.p580
0.8151| 0.7303 0.6722 0.6303 0.5964 0.5712 0.5514 0.p335
5 0.0012| 0.005¢ 0.0123 0.0191 0.0257 0.0819 0.0380 0.p431
0.7329| 0.6433 0.5854 0.5440 0.5116 0.4867 0.4673 0.4507
6 0.0008| 0.0041 0.0089 0.0144 0.0197 0.0245 0.0292 0.p337
0.6673| 0.5765 0.5183 0.4789 0.4492 0.4253 0.4063 0.B929
7 0.0005| 0.0033 0.0069 0.0115 0.0156 0.0198 0.0239 0.p272
0.6067| 0.5203 0.4662 0.4271 0.4008 0.3Y89 0.3617 0.482
8 0.0004| 0.0024 0.005p 0.0094 0.0129 0.0162 0.0197 0.p230
0.5625| 0.474Q 0.4215 0.3876 0.3612 0.3415 0.3249 0.B116
9 0.0003| 0.0019 0.0045 0.0078 0.0109 0.0139 0.0167 0.p196
0.5210| 0.4389 0.3882 0.3546 0.3301 0.3119 0.2960 0.p839
10 0.0002| 0.0014 0.0039 0.0066 0.0093 0.0121 0.0146 0.p171
0.4866| 0.4072 0.3599 0.3282 0.3034 0.2863 0.4724 0.p597
15 0.0001| 0.0008 0.0020 0.0036 0.0053 0.0070 0.0086 0.p100
0.3676| 0.3026 0.2629 0.2374 0.2190 0.2054 0.1943 0.1857
20 0.0000| 0.000§ 0.00183 0.0023 0.0035 0.0047 0.0059 0.po70
0.2972| 0.2403 0.2085 0.1872 0.1720 0.1609 0.1521 0.[1446
o5 0.0000| 0.0003 0.0009 0.0017 0.0026 0.0035 0.0044 0.po52
0.2492| 0.2014 0.1734 0.15%4 0.1430 0.1828 0.1256 0.1195
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less than or equal to 0.10 whem = 3(1)10,15,20,25 and = 3(1)10

Sample size )

1066
5161

D700
5023

D516
4237

D401
3685

D326
3257

D274
922

D235
P663

D204
439

D120
1737

D083
1357

m 3 4 5 6 7 8 9 10
3 0.0083| 0.0248 0.043L 0.0586 0.0740 0.0863 0.0967 O.
0.8709| 0.7979 0.7441L 0.7078 0.67[7/8 0.6516 0.6325 O.
4 0.0042| 0.0141} 0.0256 0.0366 0.0467 0.0%55 0.0639 O.
0.7689| 0.6823 0.6283 0.5904 0.5586 0.5863 0.5176 O.
5 0.0025| 0.0097 0.017p 0.02%4 0.0329 0.0897 0.0463 O.
0.6817| 0.5969 0.5445 0.5063 0.4780 0.4549 0.4383 O.
6 0.0016| 0.0067 0.0128 0.0193 0.0256 0.0807 0.0356 O.
0.6159| 0.5323 0.4808 0.4451 0.4185 0.3975 0.3813 0.
7 0.0012| 0.0049 0.010p 0.01%3 0.0201 0.0247 0.0290 O.
0.5598| 0.4795 0.4309 0.3971 0.3729 0.3%29 0.3376 O.
8 0.0009| 0.0039 0.008Dp 0.0125 0.0167 0.0204 0.0241 O.
0.5164| 0.4374 0.391p 0.3595 0.3353 0.3183 0.3036 O.
9 0.0007| 0.0033 0.0066 0.0105 0.0140 0.0173 0.0204 O.
0.4779| 0.4029 0.3582 0.3285 0.3069 0.2904 0.2768 0.
10 0.0005| 0.0026 0.0056 0.0089 0.0120 0.0150 0.d178 O.
0.4456| 0.3731 0.3314 0.3035 0.2819 0.2669 0.2543 O.
15 0.0002| 0.001Z2 0.0029 0.0049 0.0067 0.0087 0.104 O.
0.3352| 0.2768 0.2420 0.2198 0.2035 0.1914 0.1811 0.
20 0.0001| 0.0004 0.0019 0.0031 0.0045 0.0058 0.9071 O.
0.2699| 0.2204 0.1922 0.1734 0.1597 0.1500 0.1420 O.
o5 0.0000| 0.0005 0.0018 0.0023 0.0033 0.0043 0.9053 O.
0.2276| 0.1846 0.1608 0.1442 0.1328 0.1237 0.4175 O

D062

1119
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Attained false alarm rate

To calculate the attaineBAR of the Phase B* chart designed such that iBAP < FAP,, one

needs the marginal distribution ¥f for i = 12...,m.

It can be verified (see e.g. Chapter 49 of Kotz, Balakrishnan and Johnson, (2000)) théatfeach

i =12...,m follows a standard or type | beta distribution with paramert](-)z_é andw.

The beta distribution, in general, is denot¢d- Beta(u,v), whereu y> Oare the parameters of

the distribution (see e.g. Gupta and Nadarajah, (2004)).
Given theFAP-based control limits=a andb = 6, the attained false alarm rate can be calculated as

AFAR = 1-Pr@@<Y, <b|IC)

=1-[Pr(Y, <b |IC)-Pr(Y, < 4| IC)]

—[-1 A(n—l, (m—l)(n—l))] .l A(n—]_, (m—l)(n—l)) (2-31)

2 2 2 2
= AFAR, + AFAR,

where | (u,v) = [B(u,v)]™ j tt1-t)"*dt, O<x<1
0

is the c.d.f of the beta distribution, also known as the incomplete beta function (see e.g. Gupta ar
Nadarajah, (2004)).

SomeAFAR values for the PhaseS? chart are shown in Table 2.4 for some selected values afid

n.

Table 2.4: AFAR values for the S* chart for selected values ofn and n when FAP, = 005

Sample size )

m 4 6 8 10
15 0.00322| 0.00328 0.00335 0.003%27
20 0.00252 | 0.00240 0.0024P9 0.002%6
25 0.00182| 0.00196 0.00201 0.00195
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Example 2

Consider again Example 1. It was found that 00a@8 b = 04271 Sincem= 7andn = 6it
follows thatY, ~Beta (25,15 for i = 12...,m so that the attained false alarm rate of this Pha&&% |

chart corresponding to BAP,=  06&n be calculated using (2-31) and is equal to

AFAR = [ 1 571 (25 15)H | 515 (25,19
0003654 003737
0007391

TheAFAR is different from the typical and anticipated 0.0027 and is a result of the parameter

estimation and the simultaneous comparisons. Note that the tail false alarm probakHaiRs and

AFAR  are unequal in this case; this is so sinceB#@ (25,15) distribution is asymmetric.

Remark 9

Because marginally eachf ~ Beta(ngl, (m—li(n—l)) for i=12...m it follows that

each 8 =n7_1 for i=12....m in (2-24) and (2-25). Thus, in our situation (with equal

sample sizes) the correlation between ngndY; is equal to
corr(Y; ,Y;)=-1/(m-1) forall i#j=12..m-1 (2-32)
and follows by substitutingnz;1 for 8 wherei = 1,23...m-1 in (2-25).

The result of (2-32) means that any two of thé are equally and negatively correlated;
this corresponds to the result of Champ and Jones (2004) in case of the Shewhart-typ
Phase IX chart. Most importantly, am increasescorr(y; ,Y; )= -1/(m-1) tends to zero;

the significance thereof is described below.
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Approximate FAR-based control limits for the Phase 5° chart

Because the correlation betwe&h and Y, approaches zero as the number of subgraups
increases, we can approximateandb assuming that th¥, 's are independently distributed when

is large. In particular, fom> 2%he correlation between any pairgfs is less than 0.05 in absolute

value.

If the Y, ’s are independent and identically distributed the false alarm probability equals

FAP =1 —Pr(ﬂ{a<Yi <b}| IC]

i=1

- 1- ﬁ Pra<Y <b|IC) (2-33)

=1-Pr@<y, <b|IC)"

=1- (1- FAR)".

It follows from (2-33) that

1

FAR=1-Pr@<Y, <h|IC)=1- (1- FAP)" (2-34)
so that, under the equal-tailed approach, we may approxematel b for a specifiedFAPR,

such that

1

P(Y <allC)=P(Y, 2b|IC)=%[1—(1—FAPO)m]. (2-35)

Thus,a andb can be approximated by the

1

1
% [1- (1- FAR,)™ JLOO" and [1—%{1— (L- FAP,)™ }J100™

percentiles, of éBeta( (n;l), (m—l;(n—l)) distribution; these approximateAR -based control limits

are denoted by andb, respectively.

Moreover, it follows from (2-31) and (2-33) that the (approximate) attained false alarm rate is

1 1

AFAR=1-P(A <Y, <b |IC)" =1- (1~ FAP)™.
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Approximate FAR-based charting constants

Tables 2.5, 2.6 and 2.7 give the approximate valuea @fnd b, denoteda and b, form =
25,30,50,100,300, n = 3(1)10 and a false alarm probability of 0.01, 0.05 and 0.10, respectively.

Table 2.5: Values ofa and b so that the false alarm probability of the Phase IS* chart
approximately equals 0.01 whemn = 25,30,50,100,300 andal = 3(1)10

Sample size )
m 3 4 5 6 7 8 9 10
o5 0.0000| 0.0001 0.0004 0.0009 0.0015 0.0022 0.0029 0.p035
0.2986| 0.2374 0.2029 0.1805 0.1646 0.1526 0.1432 0.1356
30 0.0000| 0.0001 0.0008 0.0007 0.0012 0.0017 0.0023 0.po28
0.2590| 0.2044 0.1742 0.1545 0.1406 0.1802 0.1220 0.1154
50 0.0000( 0.0000 0.000L 0.0003 0.0006 0.0009 0.0012 0.p015
0.1713| 0.1333 0.1125 0.0991 0.0898 0.0828 0.0774 0.p730
100 0.0000| 0.0000 0.000L 0.0001 0.0002 0.0004 0.0005 0.po0o6
0.0952| 0.0730 0.0610 0.0535 0.0482 0.0443 0.0413 0.p388
300 0.0000( 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.po02
0.0361| 0.0273 0.0226 0.0197 0.0176 0.0161 0.0150 0.p140

Table 2.6: Values ofa and b so that the false alarm probability of the Phase 5 chart
approximately equals 0.05 whemn = 25,30,50,100,300 and = 3(1)10

Sample size )
m 3 4 5 6 7 8 9 10
o5 0.0000| 0.0003 0.0009 0.0017 0.0026 0.0035 0.0044 0.po53
0.2493| 0.2004 0.1729 0.1550 0.1423 0.1827 0.1251 0.0190
30 0.0000| 0.0002 0.000F 0.0013 0.0020 0.0028 0.0035 0.po42
0.2162| 0.1728 0.1486 0.1328 0.1217 0.1133 0.1067 0.1014
50 0.0000| 0.0001 0.00083 0.0006 0.0010 0.0014 0.0018 0.p022
0.1432| 0.1129 0.0968 0.08%56 0.0780 0.0724 0.0680 0.p644
100 0.0000| 0.000Q 0.000L 0.0002 0.0004 0.0006 0.0007 0.po09
0.0801| 0.0623 0.0526 0.0465 0.0422 0.0889 0.0365 0.p345
300 0.0000| 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.p002
0.0309| 0.023§ 0.019F 0.0173 0.0156 0.0143 0.0134 0.p126
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Table 2.7: Values ofa and b so that the false alarm probability of the Phase 5 chart
approximately equals 0.10 whemn = 25,30,50,100,300 and = 3(1)10

Sample size )
m 3 4 5 6 7 8 9 10
o5 0.0001| 0.0004 0.0014 0.0024 0.0034 0.0044 0.0054 0.po63
0.2265| 0.1834 0.1592 0.1433 0.1320 0.1235 0.1168 0.p114
30 0.0001| 0.0004 0.0010 0.0018 0.0026 0.0035 0.0042 0.p050
0.1965| 0.1583 0.1369 0.1229 0.1130 0.1056 0.0998 0.p950
50 0.0000| 0.0004 0.0005 0.0009 0.0013 0.0018 0.0022 0.p026
0.1306| 0.103§ 0.0890 0.0794 0.0727 0.0676 0.0637 0.p605
100 0.0000| 0.0001 0.0002 0.0003 0.0005 0.0007 0.0009 0.po11
0.0734| 0.0575 0.0489 0.0433 0.0394 0.0865 0.0343 0.p325
300 0.0000| 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.p003
0.0285| 0.0220 0.0184 0.0162 0.0147 0.0135 0.0126 0.p119

Comparing the approximate charting constaamtand b from Tables 2.5, 2.6 and 2.7 with the

exact (simulated) charting constartsand b in Tables 2.1, 2.2 and 2.3, fon=  2@e see that the

values are almost identical and the approximation is thus reasonable.
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2.2.2 Phase B chart

Introduction

In situations where it is desirable to estimate and monitor the process spread using the samp

standard deviation th8 chart is used.

Charting statistics and control limits

The charting statistics for the PhaseSI chart are the sample standard deviatidss for

i =12....,m. The estimated-gigma control limits and the centerline of the PhaSedhart are

LéL:§—kL§1/1—cf CL=S UCL =S+ kuéw/l—cf. (2-36)
C C

4 4

Typically the charting constantg k, > &e taken to b& =k, =k =3; in these scenarios the

constantsB, and B, are defined as
- 2 _q. 3 2
B, =1-—,/1-c, and B, =1+—,/1-c, (2-37)
C
and the control limits are written as
LCL=B,S CL=S UCL =B,S

(see e.g. Montgomery, (2005) p. 224).

For more flexibility and to account for the fact that the sampling distributior§ ofs not

symmetric we assume thkf is not necessarily equal tq .
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Design of the Phase 8§ chart for a nominal FAP

The Phase B chart is applied in a manner similar to t8& chart. The aim is also the same i.e. we

want to find values for the charting constamis and k;, so that if them charting statistics are

simultaneously plotted on th® chart the probability that at least one of t§és for i = 12...,m plot

outside LCL and/or UCL is at most equal td~AP,. To design the Phase 3 chart we need an
expression for the false alarm probability.
False alarm probability of the Phase IS chart

The false alarm probability of the Phas8 Ichart is derived as follows:

FAP =1-Pr| [ |{LCL<S <UCL}| IC]

i=1

=1-P ﬁ{_ 1—%@}3 <§(1+%ﬂj}|lcj

i=1

i=1 4 4

=1-P ﬂ{l—ﬁwll—céf <%< 1+k—U 1‘05}“(:}
: C C

-M i 1S Kk e (2-38)
AL c C
=1-Pr 4 < g < IC
Q m Zm:\/n—lsj m |
=
=1-Py ﬂ{B—e' <V, <B—4}|IC]
| m m
=1-Pr|(Xc<V, <d}|ICJ
i=1
where
. 5
c=—- and d=—"2% (2-39)
m m
with
- - K
B, :1—£ 1-c and B, =1+—,/1-c; (2-40)
C4 C4

68



and

where

UMNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

2%

Vn-1S
V = o _ W
Zm:«/n—lsj sz
j=1 g j=1
W = n-13 for i=12...m

are independent and identically distributed chi random variables eacin wittdegrées of freedom.

Remark 10

If k, =k, =3 it follows from (2-37) and (2-40) tha8, =B, and B, =B,.
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FAP-based control limits for the S chart

The design of a PhaseS chart requires one to find that combination(s) of valuesfandd,

denoted¢ and &, so that

FAP :1—Pr(ﬂ{6 <V <d}| ICJ < FAP, (2-41)

i=1

and then obtairk, andk, needed for calculating the estimated control limits.

A major problem in the analytical determination®fand d from (2-41) is finding a closed form

expression for the joint distribution ¢¥,,V,,...V..). In this regard, note that, thé’s are correlated

and linearly dependent. In particular, it is seen from the definition &r i = 12...,m that Z\/i =1.

i=1

As a result, even for an in-control process, the joint distributioMpV,,....V.. ) is complicated.

To overcome these obstacles in designing the Ph&sehlart we make use of the equal-tails

approach (described in section 2.1.1) coupled with computer simulation (as was the cas&%or the

chart) and obtain the charting constaktsandk, of the S chart by first solving for andd from

P{miny, V,,...V, ) <&|1C) < AR and P(max(/1 V,,..V.)=d| IC)s P (2-42)
and then calculating the valueslgf andk;, as
= &d2m) and K, = (md-Y (2-43)

vi-¢; N
where equation (2-43) follows from the definitionsafd, B, and B, given in (2-39) and (2-40),

respectively.

The steps of the simulation algorithm for determining the charting constants & dhart are

similar to those of theés” chart and found by modifying steps 1, 2 and 3, described earlier, in a natural

way.
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Simulation algorithm for determining the FAP-based control limits of theS chart

Step 1: Generate 100,000 vector valued observations frojoittilistribution of /, V,,....V,,) .
To obtain one such observation we generatindependenty?, random variables for a given amdn

(denoted by, for i=12..,m), calculate /X, for i=12..,m, calculate their sum
m Ixi . .

UM, :Z X;, and then calculat¥ ZW for i = 12...,m. The vector ¥, V,,....V,,) is one
j=1 2

such observation.

Step 2: FindV,,, = maxy, V,,....V,,) andV_ = min{, V,,..V,).

Step 3:
Let

&= max{u L Py (miny, V,....V.)<u|IC) < F/;PO}

and

d= min{u : Py (maxy, V, ...V, )= u|IC) < F'ZPO}

where O<u < land the empirical probabilities are defined as

numberofsimulateq,, values< u ~ numberofsimulateq,, values> u
and Pr,(u) = ,

Pr.(u) =
() 100,000 100,000

respectively.
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FAP-based charting constants for thes chart

Tables 2.8, 2.9 and 2.10 display the valuekofand k, for m= 3(110152025305010G300
and n= 3()10so that the false alarm probability of ti& chart do not exceed 0.01, 0.05 and 0.10,

respectively.

For n= 3 andmz= 10Q the tabulated values & is 1.9128, which results in a lower control limit

of zero, whenFAP = 001Similar observations can also be made wi&kP = 009.10 when
n =3 for m=300. This is interesting to note because for the usiahart, the lower control limit is
negative forn< 5and is therefore adjusted upwards to be equal to zero - see e.g. the values of th

constantB, in Appendix VI of Montgomery, (2005) p. 725.
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Table 2.8: Values ofk, and k, so that the false alarm probability of the Phase IS chart is
less than or equal to 0.01 whem = 3(1)10,15,20,25,30,50,100,300 amd- 3(1)10

Sample size )
m 3 4 5 6 7 8 9 10
3 1.7974| 2.0132 2.110p 2.1789 2.2311 2.2435 2.2640 2.p613
2.6131| 2.614Q 2.5992 2.5624 2.5600 2.5331 2.5293 2.5132
4 1.8156| 2.0613 2.1898 2.2775 2.3335 2.3624 2.3937 2.4059
3.0413| 2.9607 2.9106 2.8788 2.8437 2.8098 2.7910 2.8183
5 1.8325| 2.1004 2.2413 2.3320 2.3981 2.4360 2.4658 2.4855
3.2957| 3.1594 3.107p 3.05%7 3.0376 3.0082 2.9980 2.9801
6 1.8393| 2.1219 2.284{L 2.3877 2.4403 2.4Y42 285277 25442
3.4962| 3.3369 3.253p 3.2110 3.1641 3.1270 3.1230 3.1168
7 1.8472| 2.1421 2.309f 2.4108 2.4872 2.5438 2.5762 2.5188
3.6037| 3.4471 3.395P 3.315%5 3.2988 3.2863 3.2270 3.p228
8 1.8516| 2.1513 2.3364 2.4347 25253 2.5728 2.6113 2.p624
3.7261| 3.5653 3.4495 3.3996 3.3634 3.3353 3.3083 3.p828
9 1.8560| 2.1667 2.341fL 2.4582 2.5443 2.6001 2.6613 2.p637
3.7940| 3.6226 3.5531 3.445%7 3.4407 3.4107 3.3772 3.8607
10 1.8631| 2.1679 2.3612 2.4743 25614 2.6199 2.6728 2119
3.8428| 3.6961 3.5955 3.5475 3.4696 3.4773 3.4533 3.4412
15 1.8697| 2.2022 2.403Dp 2.5407 2.6311 2.7083 2.1654 2.8146
4.1240| 3.9034 3.8242 3.7640 3.6958 3.6999 3.6504 3.5235
20 1.8822| 2.2176 2.4356 2.58%6 2.6736 2.7671 2.8226 2.8670
4.2196| 4.0567 3.9179 3.8660 3.8437 3.7754 3.7529 3.f639
o5 1.8841| 2.2271 2.4590 2.6134 2.7127 2.7874 2.8482 2.9026
4.3659| 4.1107 4.0364 3.9743 3.9288 3.9097 3.8633 3.8352
30 1.8841| 2.2413 2.465p 2.6196 2.7382 2.8186 2.8896 2.9215
4.4166| 4.2410 4.088F 4.0423 3.9968 3.9373 3.9461 3.D065
50 1.8937| 2.2627 2.5072 2.67%3 2.8063 2.8886 2.9566 3.p179
46576 4.4069 4.3119 4.2526 4.21579 4.1397 4.1195 4.p867
100 1.9128| 2.2982 2.56238 2.7526 2.8913 2.9806 3.0355 3.11436
4.8776| 4.6675 4.546]l 4.4846 4.4560 4.4156 4.3364 4.3172
300 1.9128| 2.3693 2.672p 2.8145 2.99834 3.1277 3.2326 3.3113
5.2028| 4.9518 4.8491 4.7939 4.7622 4.7100 4.5729 4.5106
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Table 2.9: Values ofk, and k;, so that the false alarm probability of the Phase IS chart is
less than or equal to 0.05 whem = 3(1)10,15,20,25,30,50,100,300 and- 3(1)10

Sample size )
m 3 4 5 6 7 8 9 10
3 1.6500| 1.7722 1.818f 1.8579 1.8698 1.8Y48 1.8867 1.8878
2.1442| 2.12079 2.0851 2.0669 2.0743 2.0529 2.0420 2.p278
4 1.7001| 1.8594 1.9319 1.96%8 2.0001 2.0121 2.0326 2.p354
2.4644| 2.3968 2.3628 2.3406 2.3253 2.2976 2.2817 2.p852
5 1.7330| 1.9132 2.0008 2.0614 2.0834 2.1103 2.1268 2.1418
2.6693| 2.5849 2.5362 2.5021 2.4933 2.4709 2.4658 2.4541
6 1.7521| 1.9428 2.0526 2.1149 2.1382 2.1806 2.2060 2.p123
2.8455| 2.7228 2.6786 2.6524 2.6212 2.5905 2.5837 2.5811
7 1.7682| 1.9762 2.086p 2.1446 2.2015 2.2321 2.2478 2.p873
2.9597| 2.8384 2.7858 2.7483 2.7345 2.6954 2.6751 2.5888
8 1.7797| 1.9959 2.1226 2.1872 2.2505 2.2696 2.2928 2.3338
3.0390| 2.9360 2.8588 2.8404 2.8056 2.7730 2.7627 2.y530
9 1.7871| 2.0217 2.140p 2.2188 2.2658 2.3053 2.3456 2.3506
3.1243| 3.0149 2.953Dp 2.8918 2.8682 2.8477 2.8344 2.8175
10 1.7980| 2.0281 2.165p 2.2392 2.2926 2.3292 2.3692 2.3975
3.1886| 3.0730 3.0004 2.9567 2.9219 2.9106 2.8896 2.8795
15 1.8210| 2.0814 2.2308 2.3273 2.3913 2.4433 24757 2.5002
3.4354| 3.3028 3.216f 3.1794 3.1345 3.1149 3.1005 3.p891
20 1.8363| 2.1134 2.2818 2.3815 2.4491 2.5022 2.5387 2.5736
3.5846| 3.4355 3.3558 3.2969 3.2791 3.2529 3.2168 3.p107
o5 1.8458| 2.1324 2.307p 2.4124 2.4916 2.58390 2.5920 2.p197
3.7060| 3.5421 3.4646 3.4176 3.3930 3.3485 3.3213 3.B008
30 1.8497| 2.1489 2.3254 2.4433 2.5239 2.5758 2.6294 2.p574
3.7739| 3.6297 3.543P2 3.4856 3.4560 3.4295 3.4021 3.B658
50 1.8650| 2.1916 2.383R2 2.50%2 2.6022 2.6678 2.1398 2./664
4.0073| 3.8382 3.7471 3.6650 3.6567 3.6245 3.6071 3.5837
100 1.8937| 2.2271 2.452{L 25980 2.7212 2.7966 2.8383 2.8921
4.2846| 4.0989 3.9950 3.9588 3.9118 3.8637 3.8239 3.8142
300 1.9128| 2.2982 2.5899 2.7217 2.8913 3.0174 2.9960 3.p598
4.6863| 4.4542 4.3532 4.2372 4.2519 4.1581 4.0998 4.1076
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Table 2.10: Values ofk, and k, so that the false alarm probability of the Phase IS is

less than or equal to 0.10 whem = 3(1)10,15,20,25,30,50,100,300 amd- 3(1)10

Sample size )

m 3 4 5 6 7 8 9 10
3 1.5461| 1.6251 1.6559 1.6704 1.6861 1.6838 1.6904 1.p904
1.9032| 1.8691 1.8446 1.8285 1.8212 1.8100 1.7996 1.f990
4 1.6136| 1.7277 1.7810 1.8062 1.8259 1.8369 1.8497 1.8526
2.1813| 2.127§ 2.0984 2.07%9 2.0668 2.0489 2.0310 2.p354
5 1.6574| 1.7971 1.857p 1.9021 19151 1.9892 1.9533 1.D637
2.3757| 2.3065 2.271y 2.2407 2.2297 2.2189 2.2076 2.p005
6 1.6844| 1.834§ 1.9138 1.9646 1.9811 2.0150 2.0334 2.p362
2.5276| 2.4427 2.404p 23778 2.3559 2.3822 2.3211 2.8196
7 1.7053| 1.875Q0 1.956f 2.0060 2.0467 2.0647 2.0795 2.J1054
2.6477| 25581 2.5138 2.4863 2.4631 2.4852 24185 24277
8 1.7246| 1.8973 1.997p 2.0512 2.0926 2.1136 2.1256 2.[1628
2.7330| 2.6498 2.585p 2.5633 2.5389 2.5199 25072 2.5015
9 1.7355| 1.9257 2.0212 2.0796 2.1219 2.1464 2.1788 2.11846
2.8162| 2.7142 2.6629 2.6273 2.6018 2.5894 2.5790 2.5610
10 1.7464| 1.9381 2.0499 2.1062 2.1498 2.1821 2.2076 2.p299
2.8826| 2.7768 2.7194 2.6877 2.6566 2.6494 2.6334 2.5239
15 1.7808| 2.0068 2.1311 2.2067 2.2586 2.2943 2.3278 2.B493
3.1312| 3.0185 2.943p 29103 2.8794 2.8610 2.8403 2.8313
20 1.8018| 2.0471 2.1821 2.2639 2.3267 2.3697 2.3968 2.4311
3.2900| 3.1559 3.0858 3.0433 3.0206 2.9953 2.9645 2.B592
o5 1.8124| 2.0672 2.217p 2.3119 23641 2.4102 2.4540 2.4835
3.3904| 3.26379 3.196p 3.1547 3.1209 3.0909 3.0749 3.p493
30 1.8267| 2.0921 2.242y 2.3413 24117 2.4%44 2.4993 2.5317
3.4870| 3.3525 3.278F 3.2258 3.2008 3.1645 3.1537 3.1394
50 1.8458| 2.1442 2.3144 2.4279 25001 2.5574 2.6018 2.5406
3.7204| 3.5776 3.4991 3.4330 3.4015 3.3669 3.3705 3.8322
100 1.8745| 2.2034 2.397p 2.5361 2.6192 2.6862 2.1595 2.8083
4.0169| 3.8619 3.7470 3.7114 3.6737 3.6429 3.5874 3.5628
300 1.9128| 2.2982 25072 2.6289 2.78093 2.9070 2.9960 3.p598
4.3994| 4.241Q0 4.1052 4.0516 4.0478 3.9873 3.9816 3.8562
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Attained false alarm rate

To analytically calculate the attained false alarm rate ofStehart for givenm, n and FAP, the

marginal distribution o¥, i.e. the ratio of a chi random variab\,, to the sum oin independent chi

m m
random variablesZ X;, is needed. Currently, the distribution E X, for m= 3 is unknown; only
=1 j=1

the distributions of the sum and the ratiomfE c@related chi variates are known and available in
the literature (see e.g. Krishnan, (1967)). Thus, we used computer simulation to deternARéfhe

for selected values ah and n when FAR, = 005 These values are shown in Table 2.11.

Table 2.11: TheAFAR values for the S chart for selectedm, n values whenFAPR, = 005

Sample size )
m 4 6 8 10
15 0.00324 | 0.00343 0.00329 0.00320
20 0.00252 | 0.00261] 0.0024y 0.002%8
25 0.00209 | 0.00177, 0.00212 0.00192
50 0.00096 | 0.00112] 0.00098 0.00069
100 0.00062 | 0.00051] 0.00046 0.00061

From Table 2.11 it is seen that, for a fixBAR, of 0.05, theAFAR (i) decreases as the number of

samples,m, increases, for a fixed sample sizeand (ii) stays fairly constant for a fixed but with

increasingn. Also, note that fom =20 and FAR, = 005 the AFAR is close to 0.0027 for all values

of n considered.
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2.2.3 Phase IR chart

Introduction

Finally we consider theR chart. This chart is popular in the industry since the range is easy to
calculate and for smah it is known that the range is a fairly efficient estimator of the standard

deviation of a normal distribution.

Charting statistics and control limits

For the Phase R chart the charting statistics are the sample rarfRje®or i = 12...,m and we

define the estimatekisigma control limits and the centerline of tRechart as

A J—

LCL=D, R CL=R UCL =D, R (2-44)
where
. d, . d,
D, =1-k -2 and D, =1+k, 2. (2-45)
d, d,

andk, k, = Oare the charting constants.
If k, =k, =3 thenD; =D, andD, =D, where

D, =1-3-2 and D, =1+ 3% (2-46)

2 2
(see e.g. Montgomery, (2005) p. 197 and p. 198).

As in the case of th& chart, the definitions oD, and D, in (2-45) extend the usu& chart by
accounting for the fact that the sampling distribution ®f is asymmetric and thus allows for a

charting constant(s) other than 3.
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False alarm probability of the R chart

An expression for the false alarm probability of tRechart is needed to design the chart. Such an

expression is obtained in a similar manner as that ofSthehart and theS chart and is derived as
follows:

i=1

FAP :1—Pr(ﬂ{ LCL <R <UCL}| IC]

:yp{ﬁ{ D, R<R <D, R}| IC]

i=1

=1- P{ﬁ{Dg <% < D4} | ICJ

" " (2-47)
:1—prﬂ Ds < R <D4 [IC
- m

n (D D"
=1-Pn( {—=-<U, <—2¢|IC

iz | M

=1-Pr (r'n]{e<ui < f}|ICj

i=1

where
o= Do and =2 (2-48)
m m
and
u ="~ (2-49)
SR
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FAP-based control limits for theR chart

As in the case of th8 chart, the charting constarks and k, of the R chart are obtained by first

finding that combination of values for the charting constamt€ and f = f such that

FAR FAP,

and Pr(max¢,U,,..U_ )= f|IC)< 5

P{minU, U,,..U,)<@é|IC)<

(2-50)

and then, once and f are found, we calculate the charting consténtsandk;, from

k, = (1—ém)% and k, = (fm—l)% (2-51)
3 3

which follow directly from the definitions ofe, f, D, and D, given in (2-48) and (2-45),

respectively

Here, similar to theS chart, there are problems in the analytical determination of the conétants
and f; these obstacles arise due to the fact that even for an in-control process, the marging

distribution of U, as well as the joint distribution ¢tJ,,U,,...U, )are complicated. Thus, we again

find the values ofé and f via computer simulation.
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Simulation algorithm for determining the FAP-based control limits of theR chart

The steps of the simulation algorithm to fiedand f were as follows:

Step 1: Generate 100,000 vector valued observations frojoitttelistribution of U, U,,....U ).

To obtain one such observation we: (i) generaténdependent random samples each of sizeom

the standard normal distribution, (ii) calculate the raRyei = 1,2...,m for each sample, (iii) obtain

the sumSUM; = z R, , and (iv) calculatdJ; = SLJRM fori=12....m. The vectorU, U,,..U) is

j=1 3
one such observation.

Step 2: FindU,_,, = max{, U,,...,.U) andU_, = minU, U,,...U.).

Step 3:
Let

&= max{u : Pr (minU, U,,..U,)<u|IC) < FAZPO}

and

f= min{u : Py (maxU, U,....U,)=u|IC) < F'ZPO}

where O<u < land the empirical probabilitie®r," and"Pr,"are as defined earlier.
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FAP-based charting constants for thek chart

Tables 2.12, 2.13 and 2.14 display the values of the charting condtantnd k, for

m= 31101520253050100300 and n = 3(1)10so that the false alarm probability does not exceed
0.01, 0.05 and 0.10, respectively.

Note that, similar to th& chart, whenFAP =0.01, n =3 and m=100, the tabulated value df

is 1.9065, which results in a lower control limit equal to zero, for the Ph&sehart. Similar
observations can also be made whekP = 0.05 or 0.10 form= 300 and whenn = 3 For the usual
R chart with symmetrically placed limits, on the other hand, the lower control limit is negative for

n<6 and is therefore adjusted upwards to be equal to zero - see e.g. the values of the Dgnistant

Appendix VI of Montgomery (2005) p. 725.
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Table 2.12: Values ofk, and k, so that the false alarm probability of the Phase R chart is

less than or equal to 0.01 whemm = 3(1)10,15,20,25,30,50,100,300 amd¢ 3(1)10

Sample size )

m 3 4 5 6 I 8 9 10
3 1.7881| 1.9853 2.068p 2.1222 2.1340 2.1%64 2.1782 2.1890
2.5799| 2.601)} 25898 2.5591 25560 2.5255 2.5127 2.5265
4 1.8112| 2.0487 2.156D 2.2172 2.2463 2.2845 2.2760 2.p863
3.0321| 2.957§ 2.8946 2.8711 2.8618 2.8664 2.8450 2.8501
5 1.8246| 2.0719 2.2143 2.2695 23112 2.3366 2.3488 23771
3.2993| 3.1739 3.1538 3.1107 3.0805 3.0484 3.0619 3.p799
6 1.8368| 2.0997 2.2318 2.3194 2.3599 2.3991 24120 2.4323
3.5111| 3.3599 3.3006 3.2727 3.2454 3.2296 3.2383 3.p356
7 1.8411| 2.1138 2.268]l 2.3398 2.3985 2.4318 2.4407 2.4697
3.6426| 3.4942 3.445F 3.4167 3.3980 3.3525 3.3640 3.3344
8 1.8455| 2.1226 2.2808 2.3738 2.4229 2.4665 2.4789 2.5026
3.7124| 3.607Q 3.504{L 3.4735 3.4798 3.4636 3.4258 3.4356
9 1.8516| 2.1418 2.3045 2.3965 2.4398 2.4814 2.5146 2.5203
3.8091| 3.6639 3.5978 3.5685 3.5464 3.5150 3.5394 3.b449
10 1.8570| 2.1432 2.3098 2.40%5 24735 25102 25326 2.5528
3.8817| 3.7647 3.6748 3.6187 3.6356 3.6247 3.6169 3.5264
15 1.8665| 2.1783 2.3610 2.4638 2.5352 2.5Y62 2.6171 2.p397
4.1505| 3.9741 3.9184 3.90%6 3.8580 3.8504 3.8834 3.8311
20 1.8722] 2.1947 2.3852 2.5101 2.5839 2.6248 2.6612 2.5879
4.2783| 4.1461 4.070p 4.0580 4.0381 4.0844 4.0139 4.p165
o5 1.8779| 2.2052 2.409p 2.52%0 2.6181 2.6647 2.6925 2.f420
4.3803| 4.2291 4.1598 4.1088 4.1225 4.0882 4.1260 4.p937
30 1.8837| 2.2134 2.4095 2.5489 2.6326 2.6908 2.7384 2.f613
4.4708| 4.321§ 4.2455 4.2014 4.2427 4.1837 4.2087 4.p250
50 1.8875| 2.2462 2.4633 2.5848 2.6943 2.7602 2.1936 2.8386
4.6996| 4.5158 4.4824 4.4973 4.4472 44441 44293 44606
100 1.9065| 2.2696 2.503) 2.6595 2.7592 2.8470 2.9038 2.p351
4.9189| 4.7731 4.7112 4.7214 4.7068 4.7219 4.4050 4.f116
300 1.9065| 2.3398 2.6114 2.7193 2.8566 2.9512 3.0141 3.p510
5.3002| 5.1709 5.061p 5.0800 5.0315 5.0690 5.0358 5.p592
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Table 2.13: Values ofk, and k, so that the false alarm probability of the Phase R chart is

less than or equal to 0.05 whem = 3(1)10,15,20,25,30,50,100,300 and- 3(1)10

Sample size )

m 3 4 5 6 I 8 9 10
3 1.6451 1.7523 1.790p 1.8210 1.8175 1.8273 1.8353 1.8286
2.1401] 2.107Q 2.0891 2.0607 2.0564 2.0%16 2.0485 2.p411
4 1.6945| 1.8428 1.8974 1.9292 1.9490 1.9610 1.9555 1.p634
2.4594| 24025 2.3594 2.3475 2.3320 2.3318 2.3113 2.8187
5 1.7273] 1.8917 1.9653 1.9991 2.0239 2.08380 2.0400 2.p584
2.6863| 2.5901 2.5683 2.5385 2.5190 2.5033 2.5032 2.5084
6 1.7487| 1.9298 2.0089 2.0577 2.0833 2.1012 2.1099 2.1218
2.8316| 2.7478 2.706Q 2.7043 2.6514 2.6505 2.6473 2.5516
7 1.7611| 1.9565 2.0571 2.0992 2.1327 2.1498 2.1551 2.1697
2.9593| 2.8718 2.83501 2.8143 2.7959 2.7668 2.1697 2.[f694
8 1.7693| 1.974§ 2.0783 2.1348 2.1606 2.1859 2.2054 2.p091
3.0505| 2.957§ 2.914p 2.88%4 2.8696 2.8664 2.8494 2.8548
9 1.7813| 1.9965 2.1082 2.1653 2.1885 2.2095 2.2301 2.p353
3.1416| 3.0405 2.9920 2.9715 2.9533 2.9807 2.9307 2.p401
10 1.7902| 2.0075 2.118f 2.1784 2.2268 2.2464 2.2606 2.p708
3.2049| 3.1096 3.050P 3.0360 3.0156 3.0137 3.0141 3.p123
15 1.8150| 2.059Q0 2.1874 2.2621 2.3112 2.3314 2.3525 2.B674
3.4670| 3.3424 3.2804 3.2870 3.2591 3.2567 3.2549 3.p402
20 1.8303| 2.091§ 2.2291 2.3129 2.36B32 2.3956 2.4186 2.%#330
3.6072| 3.5003 3.4459 3.4364 3.4214 3.4095 3.3964 3.8985
o5 1.8350| 2.1058 2.2614 2.34%7 2.4021 2.4390 24627 2.4910
3.7320] 3.6033 3.5671 3.5261 3.5220 3.5154 3.5103 3.5047
30 1.8436| 2.1222 2.280R 2.3696 2.4281 2.4720 2.4958 2.5180
3.8131] 3.7039 3.6478 3.6187 3.6194 3.5900 3.5912 3.5994
50 1.8589| 2.1643 2.328f¢ 2.43%4 25157 25519 25914 25068
4.0514| 3.9074 3.876f 3.8697 3.8466 3.8865 3.8412 3.8427
100 1.8875| 2.1994 2.3960 2.5101 2.5969 2.6Y34 2.6833 2.f420
4.3278| 4.1884 4.145D 4.1237 4.1225 4.1316 4.1168 4.1323
300 1.9065| 2.2696 2.530p 2.6296 2.7592 2.8470 2.9038 2.p351
4.7282| 4.6094 4.5766 4.5421 4.5445 A4.5483 4.4844 44799
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Table 2.14: Values ofk, and k, so that the false alarm probability of the Phase R chart is

less than or equal to 0.10 whem = 3(1)10,15,20,25,30,50,100,300 amd- 3(1)10

Sample size )

m 3 4 5 6 I 8 9 10
3 1.5353| 1.6105 1.6325 1.6426 1.6461 1.6513 1.6522 1.p456
1.8970| 1.8620 1.8460 1.8267 1.8149 1.8110 1.8092 1.y989
4 1.6091| 1.7136 1.7499 1.7690 1.7828 1.7887 1.7805 1.y873
2.1826| 2.1339 2.0966 2.0882 2.0788 2.0Y62 2.0599 2.p654
5 1.6549| 1.7747 1.8266 1.8542 1.8649 1.8Y66 1.8765 1.8846
2.3851| 2.3129 2.285p 2.2710 2.2528 2.2894 22477 2.399
6 1.6812| 1.8232 1.8780 1.9160 1.9314 1.9492 1.9489 1.D596
2.5319| 2.4584 2.426fy 2.4246 2.3865 2.3859 2.3826 2.3828
7 1.6997| 1.8582 1.932y 1.9633 1.9873 2.0016 2.0033 2.p102
2.6470| 2.5885 2.5411 2.5277 2.5050 2.4970 2.4892 24991
8 1.7159| 1.8817 1.962p 1.9985 2.0256 2.0415 2.0525 2.p546
2.7378| 2.6673 2.618D 25985 25917 25915 2.5760 2.5767
9 1.7298| 1.9018 1.9919 2.0308 2.0541 2.0Y21 2.0779 2.p893
2.8327| 2.752Q 2.706]l 2.6837 2.6728 2.6494 2.6561 2.p551
10 1.7407| 1.9210 2.0083 2.0589 2.0872 2.1005 2.1136 2.1241
2.8922| 2.8124 2.7648 2.7492 2.7365 2.7290 2.1274 2.[/188
15 1.7778| 1.9818 2.0864 2.1500 2.1846 2.2012 2.2201 2.p342
3.1582| 3.047§ 2.9936 2.99%7 29718 2.9650 2.9682 2.D563
20 1.7960| 2.021 2.1376 2.20%3 2.2463 2.2Y07 2.2937 2.3017
3.3097| 3.2008 3.1606 3.1496 3.1357 3.1178 3.1097 3.1282
o5 1.8064| 2.0473 2.173p 2.2486 2.2885 2.3175 2.3341 2.3558
3.4270| 3.3164 3.277fy 3.2422 3.2380 3.2876 3.2438 3.p248
30 1.8207| 2.066Q 2.1995 2.2710 2.3307 2.3575 2.3745 2.8906
3.5156| 3.409Q 3.3571 3.3408 3.3370 3.3192 3.3155 3.8213
50 1.8398| 2.1175 2.2614 2.3607 2.4183 2.4477 24811 2.4910
3.7559| 3.6383 3.594D 3.585%8 3.5707 3.5588 3.5471 3.p723
100 1.8684| 2.176Q 2.342p 2.4503 2.5320 2.5692 2.6098 2.5261
4.0418| 3.9308 3.876f 3.8548 3.8629 3.8539 3.8595 3.8620
300 1.9065| 2.2696 2.4498 2.6296 2.66(18 2.7428 2.7936 2.8192
4.4422| 4.3286 4.253p 4.2731 4.2524 4.2858 4.2639 4.p482
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Attained false alarm rate

To calculate the attained false alarm rate of Bhechart givenm, n and a specifiedFAP the

(marginal) distribution ofU, i.e. the ratio of a range to the sum f independent ranges, one of
which isU,, is required. Again as noted earlier, this distribution is complex and not available. Instead,
we used simulation to determine thd=AR for selected values ofmn and n when FAR, = 005

These values are shown in Table 2.15.

Table 2.15:AFAR values for the R chart for selectedm, n values whenFAR, = 005

Sample size ()
m 4 6 8 10
15 0.00311| 0.00322] 0.0035Y 0.003%2
20 0.00233 | 0.00238 0.00239 0.00245
25 0.00205| 0.00216/ 0.0020Y 0.00196
50 0.00099 | 0.00096/ 0.00105 0.00110
100 0.00044 | 0.00057, 0.00033 0.00039

The findings in case of thB chart is similar to that of th& chart i.e. from Table 2.15 we see that
for a fixed FAP, the attained false alarm rate (i) decreases as the number of sampleseases, for
a fixed sample size, and (ii) stays fairly constant for a fix@abut with increasingn. Also, note that

for m=20 and FAR, = 005 the AFAR is close to 0.0027 for all n considered.
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Example 3

To illustrate the calculations of the control limits for the Phagé | S and R charts we use a
dataset from Montgomery (2005), page 223, on the inside diameter measurements for automobi

engine piston rings. The data consistswof  s2hples each of size= d&nd are shown in Table

2.16. Also shown in Table 2.16 are the sample mXanthe sample rang® , the sample standard

deviation S and the sample varian@¥ for each sample. The unit of measurement is millimetra) (

and we omit mentioning this below to avoid repetition.

Table 2.16: Inside diameter measurements (imm) for automobile engine piston rings

Observations Sample statistics
Sample number () | X, X, X, X, Xs X, R S S?
1 74.030 | 74.002] 74.019 73.992 74.008 74.010 0.038 0.0148 0.0002182
2 73.995| 73.992] 74.001 74.011 74.0p4 74.001 0.019 0.0075 0.0000563
3 73.988 | 74.024| 74.021 74.005 74.002 74.008 0.036 0.0147 0.0002175
4 74.002 | 73.996] 73.993 74.015 74.009 74.003 0.022 0.0091 0.0000825
5 73.992 | 74.007| 74.01% 73.989 74.004 74.003 0.026 0.0122 0.0001493
6 74.009 | 73.994| 73.997 73.985 73.9p3 73.996 0.024 0.0087 0.000(‘?758
7 73.995| 74.006] 73.994 74.000 74.005 74.000 0.012 0.0055 0.000%305
8 73.985| 74.003| 73.993 74.015 73.988 73.997 0.030 0.0123 0.0001502
9 74.008 | 73.995 74.009 74.005 74.0p4 74.004 0.014 0.0055 0.0000307
10 73.998 | 74.000 73.990 74.007 73.995 73.998 0.017 0.0063 0.000(#)395
11 73.994 | 73.998| 73.994 73995 73.9p0 73.994 0.008 0.0029 0.000(#)082
12 74.004 | 74.000, 74.007 74.000 73.996 74.001 0.011 0.0042 0.0000178
13 73.983| 74.002| 73.998 73.997 74.012 73.998 0.029 0.0105 0.0001093
14 74.006 | 73.967| 73.994 74.000 73.984 73.990 0.039 0.0153 0.0002342
15 74.012| 74.014| 73.998 73.999 74.0p7 74.006 0.016 0.0073 0.0000535
16 74.000 | 73.984| 74.005 73.998 73.996 73.997 0.021 0.0078 0.0000608
17 73.994 | 74.012| 73.986 74.005 74.0p7 74.001 0.026 0.0106 0.0001117
18 74.006 | 74.010 74.018 74.003 74.0p0 74.007 0.018 0.0070 0.0000488
19 73.984 | 74.002| 74.003 74.005 73.997 73.998 0.021 0.0085 0.000(#)717
20 74.000 | 74.010] 74.013 74.020 74.093 74.009 0.020 0.0080 0.000%637
21 73.982 | 74.001] 74.01% 74.005 73.996 74.000 0.033 0.0122 0.0001477
22 74.004 | 73.999] 73.990 74.006 74.009 74.002 0.019 0.0074 0.0000553
23 74.010 | 73.989] 73.990 74.009 74.004 74.002 0.025 0.0119 0.0001423
24 74.015| 74.008] 73.993 74.000 74.000 74.005 0.022 0.0087 0.0000757
25 73.982 | 73.984| 73.99% 74.047 74.003 73.998 0.035 0.0162 0.0002617

"Note: Table 2.16 is a modified version of Table 5.3 in Montgomery (2005).
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To illustrate how to construct the Phase | charts for a small number of samples (which is often the
case in practice) we use only the first 10 samples. Afterwards all 25 samples are used to illustrate the

construction of the charts for a larger number of samples.

Using only the firstm= 10samples the unbiased point estimates for the process standard

deviation, calculated using (2-13) and (2-14), are found to be

L1 (1
= 010232 and &.=——|-—=> S |= 0010280
R 2326(1OZRJ S 0.94[10Z j

respectively.

The values ofd, and 7 are displayed in the first panel (labeled= )1 Table 2.17 along
with the charting constants andk, for the Phase 5 chart and the PhaseR chart which ensures

that the false alarm probability of these charts is at most 0.05; these charting constants were obtain:
from Tables 2.9 and 2.13, respectively. The estimated lower control limit, the estimated centerline an
the estimated upper control limit (which are also shown in Table 2.17) are calculated from (2-36) anc
(2-44), respectively.

The unbiased point estimate of the process variance (based on the first 10 samples only) |
calculated using (2-15) i.e.
1 10
—Z = 0000105
104=

and is listed in the first panel (labeled= )16f Table 2.18. Also shown in Table 2.18 are the values

v

for the charting constanis and b, obtained from Table 2.2, so that the false alarm probability of the

Phase 1S? chart is less than or equal to 0.05. The estimated control limits and estimated centerline

were computed according to (2-22).

For all m= 25 samples similar calculations were carried out. The unbiased point estimates, the
charting constants, the estimated control limits and the estimated centerlines are given in the secol

panel (labeledn= 2pof each of Tables 2.17 and 2.18, respectively.

For largem the 0.001028 and the 0.998975percentiles of the univariate type | or standard

beta distribution with parameters 2 and 48 was used to approximate the charting c@nstadtsin
case of theS® chart. These percentiles and the ensuing estimated control limits are also shown in the

third panel of Table 2.18. A PhaseSf chart designed with these limits has a false alarm probability
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approximately equal to 0.05. It is seen that for= , 2% univariate beta approximation is

reasonably good compared to the simulation results.

The resultant Shewhart-type Phaseé | S and S* charts form= 10and m= 25are shown in
panels (a), (b) and (c) of Figures 2.2 and 2.3, respectively. It appears that the process standa
deviation is in control and it would be safe to use 0.00999, which is the centerline of the Fhase |
chart, as an unbiased estimate of the process standard deviation to calculate the Phase | mean con

chart proposed by Champ and Jones (2004) and to check to see if the process mean is in-control.

The Shewhart-type Phasesf, assuming independence of the of the charting statistics, is shown

in Figure 2.4; it is seen to be almost identical to the Shewhart-type PBased m = 25.

Table 2.17: Parameter estimates and chart constants for ti chart and the S chart

m=10 m=25
Schart R chart Schart R chart
PO}:\?EZ‘E;‘% 0.010280 0.010232 0.010000 0.009991
k, 2.1656 2.1187 2.3075 2.2614
K, 3.0004 3.0502 3.4646 3.5671
LAL 0.002068 0.005069 0.001527 0.003718
AL 0.009663 0.023800 0.009400 0.023240
uéL 0.020187 0.050766 0.021219 0.054033

Table 2.18: Parameter estimates and chart constants for t&f chart

Univariate beta distribution
m =10 m =25 assuming independence
(m = 25)
Unbiased
Point Estimate 0.000105 0.000101
a 0.0039 0.0009 a= 0.001025" percentile =0.0009
b 0.3599 0.1734 b = 0.998975" percentile =0.1729
LCL 0.000004 0.000002 0.000002
CL 0.000105 0.000101 0.000101
UCL 0.000378 0.000436 0.000434
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Figure 2.2: Shewhart-type Phase IR, S and S* charts for m=10
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Figure 2.3: Shewhart-type Phase R, S and S* charts for m =25
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Figure 2.4: Shewhart-type Phase IS* assuming independence of the charting statistics
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2.3 Literature review: Univariate parametric Shewhart-type Phase |

variables charts for location and spread

Phase | control charts form an integral part of SPC, but only a few authors make a clear distinctiol
between Phases | and Il, and no more than one of the popular SPC textbooks (e.g. Montgomer
(2005) p. 199 and p. 204) briefly talks about this important topic.

By giving an overview of the literature on univariate parametric Shewhart-type Phase | variables
control charts for the mean, standard deviation and variance this gap would be filled. The overviev
would be particularly helpful to researchers, instructors and practitioners as they would get to know
what the issues related to Phase | are, what the present state of the art is and what challenges and fu

research still remain.
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2.3.1 Phase | charts for the normal distribution

Introduction
First we review Shewhart-type Phase | control charts for the mean, standard deviation and varianc
when the underlying distribution is normally distributed.

Assumptions

Let X; ~iidN(u,0%) represent the Phase | data whefe for i=12..,m and j=12..,n

denotes th¢ " observation from thé™ subgroup,u denotes the unknown mean aod denotes the

unknown variance.

93



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
=

W UNIVERSITEIT VAN PRETORIA

Qe

(a) King (1954): “Probability Limits for the Average Chart When Process Standards Are
Unspecified”

One of the first authors to consider the Phase | problem was King (1954) who studied the Phase

X chart for Case U.

Using the overall average

(where X, is thei ™ sample mean an® is thei ™ sample range) to estimate the unknown mgan

and the unknown standard deviatian respectively, he suggests replacing the traditional estimated

3-sigma control limits

UCL/LEL =X £ AR

whereA, =

is a function of the sample sizeonly, with the limits

3
d,~/n

UCL/LCL = X +CR

. kK., . . .
where the charting constaft = —"— is a function of the number of rational subgroupsand the

d,~/n

sample sizen.

Essentially, King proposes to replace the number “3” in the expressioA,fdry a factork,,

which depends on and is a functionrof So to calculate the limits proposed by King one has to find

k,, and then substitute it i€ , which is then used to calculate the limits.

King graphically provides approximate values®@ffor m= 3(1)25 andn= 234510so0 that the

false alarm probability of the Phaseé| chart is approximately 0.05.

The values ofk, and k, are (apparently) obtained from theoretical considerations, whereas the

values of k, for m=5 are obtained using the fact that the false alarm probability for the Phése |

chart can be written as
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FAP, = 1-Pr(X: - X £k, AN ,...]Xn - X Kk,o/n|IC)

=1—Pr(_(m]{| Xi - X |k o/ /n}|IC)

=1- P{Ms k. fori=12..m|IC

J/\/ﬁ

where o denotes the unknown (but constant) process standard deviation.

King constructs the 95percentile of the sampling distribution M\/__Xl fori=1212...m
olvn

(for values ofm= § to find k, and then approximates the multipl@rby takingC = Ko

d,/n

King observes that the proposed charting constaampproachesA, rather rapidly asn increases,

but he also notes that his approximation is based on ignoring the sampling fluctuat®resnaf that

some of his Cvalues are obtained from simulations.

Remark 11

Despite the shortcomings in the approach used by King, his idea to design a Phase | contrc
chart using a nominal (specified) false alarm probability turned out to be the correct
approach.
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(b) Hillier (1969): “ X - and R-Chart Control Limits Based on A Small Number of Subgroups”

Hillier (1969) proposes a method for finding the control limits for the PhaXe dhart and the

Phase IR chart that can be reliably used regardless of how few Phase | subgroups are available.

Hillier acknowledges the fact that the Phase | signaling events are dependent and suggests that t

conventional factor#A,, D, and D, usually given in SPC textbooks and used in setting-up the control
limits at
UCL, /LEL, =X £ AR

for the X chart and

LCL, =D,R and UCL, =D,R

for the R chart, be replaced by more appropriate charting constgntsD; and D, so that the false

alarm rates of theX and theR charts are controlled at

FAR, =a, and FAR; =a,+a,,

respectively; wherer, is the FAR, for the X chart anda, and a, are the probabilities that a Phase

| sample rangeR for eachi = 1,2...,m plots below or above the estimated lower and upper control
limits of the R chart, respectively.

The factor A, is derived by studying the probability expression of the false alarm rate for the
Phase IX chart, which is given by

FAR, =1-Pr(LCL, < X, <UCL, |IC)

=1-Pr(X -A'R< X, < X + A'R|IC)
=X

|

=1-Pr(-A, <

= <A’ IC ) foeach = 12...m
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If the false alarm rate of th& chart should be controlled at,, it implies that

i?

, = 1-Pr(-A; < <A’ |C) fori=22..m

- . . e . — X
and that one has to solve fy ; for this one requires the dlstrlbutloney?ﬁ—.

To this end, Hillier notes that, under the assumption of normality,

X -X)~NO, " 15?) for i=12..m
mn

D2
(which is an exact result) and approximates the distributie\lc/lzl—?eg— by that of ay? distribution
co

wherec (which is a constant) and are functions oim and n(see Patnaik, (1950)). Hillier then uses
the fact that the numeratqk, —?) for i = 1,2...,m and the denominatdR are independent, to write

the probability expression of the false alarm rate of the PhXsehart as

(X. = X)/
,=1- Pr(cmAz< / A2|IC)
m- /VR /c’o

mn .. mn .
= 1-Pr(-c,|—— <T <c,|— IC
(- = A <T, <c|_—A1IC)

where

VR?/c%c? !
\ v

has approximately a Student:distribution withv degrees of freedom when the process is in-control.

(X =Xy /M5
mn =T
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Approximate values fo, can therefore be obtained by setting

mn .«
C,\[——A, :taz
m-1 7,v

and solving forA, i.e.

wheret, denotes the value such that, if the random variaplbas at-distribution withv degrees
7,V

of freedom, thenPr(-t, <T, <t, |IC)=1-a, wherea, is the desired false alarm rate.
?,v ?,v

The constant®; and D, for the Phase R chart are obtained in a similar manner by studying

an expression for the false alarm rate of the R chart. The details can be found in Hillier, (1969).

Tables with values ofy,, D; and D, are provided by Hillier (1969) for subgroups of size 5

when m=2(1)1015202550100~ and a, and/or a, and/or a, are equal to 0.001, 0.0027, 0.01,
0.025 and 0.05, respectively.
The implementation of Hillier's procedure is straightforward. First one chooses the desired values
of a,, a, anda, and calculate the recommended control limits using the appropriate valégs, of
D, and D . Then, for each Phase | subgroup, one checks if both its aviraged its rangeR fall
inside the control limits for theX chart and between those of Rehart. If they do not, the particular
subgroup(s) are discarded (only if an assignable cause was found) and the overal nteamean
rangeR and the control limits are re-calculated using the remaining subgroups where the Agctors
D, and D, are based on the updated valuenofi.e. the number of Phase | subgroups still being
used to calculat& and R. This iterative procedure is continued until all the remaining subgroup
means and subgroup ranges fall between the control limits of both the charts. Once this state is reach
one may calculate the appropriate control limits for prospective monitoring of the process in Phase Il.
Note that, if at any stage during Phase | control charting it happens that some of the Phase
charting statistics plot outside the estimated control limits but no assignable cause(s) can be found th

justify their removal, the process may be considered in-control and the observations from thes

samples are then included in the reference data.
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(c) Yang and Hillier (1970): “Mean and Variance Control Chart Limits Based on a Small

Number of Subgroups”

Yang and Hillier (1970) extend and improve the method proposed by Hillier (1969) to find
probability limits for the Phase X chart using the average (pooled) sample varia_ncelz S’
i=1

(instead of the mean rangR®) where S for i=12...m is the i subgroup variance; they also

develop Phase | limits for a variance chart and a standard deviation chart based on

Phase | X chart

In particular, Yang and Hillier (1970) recommend that instead of calculating the estimated control

limits of the Phase X chart in the usual way i.e.

UCL/LEL =X £ AR

one should replac® with W and substituted, for A, and calculate the control limits as

UCL/LEL=X = A' WV .

The charting constand,” comes from studying the false alarm rate of the Phasechart, which

is given by

FAR, = 1-Pr(LCL, < X, <UCL, |IC)

=1-Pr(X - A’ W <X, < X + AWV |IC)

x|

=1-Pr(-A, < Xi - <A’ |IC) fori=12..m

N7
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To control theFAR; at a level ofa implies that one has to find that value &, such that

X -X
NA4

a=1-Pr-A, < |[C) fori=122...m;

this requires one to find the distributioné"_—X :

0

In this regard, the authors note that, under the assumption of normality, the numerator
= m_l 2 .
X, =X)~N@O,——=0c°) for i=12...m
mn

and that the random variable

mn-1)v.
Tz Aoy

they then write the false alarm rate of the PhaXedhart as

(X - X)/,/Lla
mn .«
FAR, = 1-Pr(-,|—A, < 1/ A4 [1C)
m-1 mn-v/o?*
m(n—1)

/ mn .. mn .. )
=1-Pr(—,|—— <T < |[——o C) fori= ...,m
( m_1A4 m(n-1) m_1A4 I ) 1121

where T, ., is a random variable which has a Studemtdistribution with m (- 1) degrees of

m(n

freedom:; this is an exact result.

The charting constant can thus be calculated by solving.fofrom

mn .. / mn .. )
a=1-Pr(-|——A, <T < |—— IC) for i=12....m.
( m_1A4 m(n-1) m_1A4 | ) 1’2
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This is done by setting

mn ..
- :t
m—lA‘| 2 m(n-1)
and solving forA," i.e.
- m-1
=, [—t
A mn 5 .m-
wheret,, o denotes the value such that
—,m(n-1
2
Pr(-t <T, <t IC)=1-a
( %,m(n—l) v %,m(n—l) | )

and FARY = is the desired false alarm rate.

The authors provide a table with values o, for subgroups of sizen= 5when

m= 2110152025500100« anda equal to 0.001, 0.002, 0.01 and 0.05, respectively.

Phase | variance chart

m

For the variance chart based \7n=lz S’ Yang and Hillier (1970) propose that one usés
m
for i = 12...,m as charting statistics and that the estimated control limits be calculated as

LCL., =B,V and UCL_, =B,V

where B, andB; are the charting constants.

The charting constant8,” and B, are found using the fact that the random variable

s’/o’ _ (m-1)s’
MmO-1V - (" -)S’1/(Mm-Y(h-D)o®> mV -S?

has anF -distribution with degrees of freedom equal to-( afjd (h— DO - Di.e.
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(m-Ds° ¢ -
m\/_——SZ_Fn_l’(m_l)(”_l’ fori=12...m.

Solving algebraically forS” in terms of the random variabl¥s and Fr-1m-nm-y ONE finds that

LRLLL N

M=1+F, L m-u0

2
(

V for eachi = 12....m

which is a strictly increasing and monotone functiorof, ., for m>1.

The proposed control limits of Yang and Hillier for their Phase | variance chart to retrospectively

test the initial subgroups (using) are thus obtained by setting

*x mF} -1,(m-1)(n-1
and Bs _ ay n-L(m-1)(n-1)

m-1+ Fl—aL n-1(m-1)(n-1) m-1+ Fl—au n-1,(m-1)(n-1)

mF ta, n-1,(m-1)(n-1)

B,

where F; ., oy 1S the fractile such that, if the random varialble | has anF -distribution with
n, and n, degrees of freedom, theRr(F, . >F; i yny) =B and a, (ay) is the desired

probability that a Phase | sample variangé for i = 12...,m plots below (above) the estimated

control limit.

Phase | standard deviation chart

BecauseS’ is expressed in terms of a strictly increasing and monotone functign.qf ., for

m>1, the authors proposed that the adjusted control limits of their Phase | standard deviation chart &

calculated as
LCL =./B,V and UCL =,/B,'V .
One would then compare each sample standard devigtidor i = 1,2...,m with the estimated limits

VB,V and,B;V , respectively.
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Tables with values ofB, and B, are provided for subgroups of siza= ®&hen

m= 1(1)1015202550100~ anda, and/ora, are equal to 0.001, 0.005, 0.025, respectively.

Remark 12

It is important to note that, unlike King (1954), neither Hillier (1969) nor Yang and Hillier
(1970) consider the correlation (i.e. dependency) between the signaling events that resul
from the use of estimated process parameters, and they control the false alarm rate of eac
subgroup and not the false alarm probability (like King, (1954)).

The control limits by Hillier (1969) and Yang and Hillier (1970) are referred to as the “standard
limits”. Yang and Hillier (1970) also suggest a second method for constructing Phase | charts referre
to as “individual limits”. In the latter approach each subgroup is tested one at a time while treating the
other m— 1 subgroups as in-control. The control limits for the plotted charting statistic ai tane
therefore functions of the othen— damples and require recalculating different sets of control

limits.
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(d) Chou and Champ (1995): “A comparison of two Phase | control charts”, and
Champ and Chou (2003): “Comparison of Standard and Individual Limits Phase | Shewhart

X, R, and S Charts”

The standard limits and the individual limits are studied in detail by Chou and Champ (1995) and
Champ and Chou (2003). These authors discuss, evaluate and compare the standard limits and

individual limits Shewhart-type PhaseX charts assuming normality when the process parameters are

unknown.

Champ and Chou (2003) also show that the individual limits and the standard limits Shewhart-type
Phase IR charts can be designed to be equivalent; a result that they show also holds for the individue

limits and the standard limits Shewhart-type PhaSecharts.

Standard limits Phase | X chart

In particular, Champ and Chou (2003) define the estimated control limits of the standard limits

Shewhart-type PhaseX chart as

where
X = > X and V =
i=1

3=

are the overall mean and the pooled variance (which includes @ide Phase | samples),

e = VT (e-1+1/2)
e Imo =D (min-1)/2)

is the unbiasing constant and the charting constant

Kge =/ (M=1)/mC .t o100 i2m

was chosen using Boole’s inequality such that, if the process is in-control, the probability that at leas

one sample meaiX; for i = 1,2...,m is outside the control limits is at most, 0<a <1 and where
tne-noaiem 1S the [Fa /(2n )LOd" percentage point of the univariate central Studentistribution

with m(n—1) degrees of freedom.
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Individual limits Phase | X chart

The estimated control limits of the standard limits Shewhart-type Ph¥sehart are re-expressed

as
UCL, /LCL, =X = AW
where
A = M=D/(r)t o oaiem
and then, Champ and Chou (2003) define the estimated control limits of the individual limits

Shewhart-type PhaseX chart as

UCLg,,, / LCLyy, = Xiin + AV

where

and

are the overall mean and the pooled variance when oniy'tteample is removed, respectively and
A4[|] =ym/((m-D)n)t m-1)(-1).0 [(2m) *

Tables with values of,” and A,;; whenm= 5(0)25andn = 2(1)10for a = 005 are provided.

Performance comparison

In the performance comparison of the standard limits versus the individual limits of the Shewhart-
type Phase IX chart, the authors evaluate the effectiveness of the two charts in identifying an out-of-
control process. A simple out-of-control scenario is chosen where one of the samples is assumed to
out-of-control and the othen—- 4amples are in-control. Without any loss of generality they take the

first sample to be out-of-control and assume that

2 2
X, ~ N(,ul,%) and X ~ N(,u,%) for i= 23...m
where y, = u+ 5% so that the first sample is out-of-control and reflected only in its mean.
n
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The probabilities that the first and the second (without loss of generality) sample means fall outside th
standard limits are shown to be

p*;l =1 m(n-1), 91(1, A4 j m(n-1), el( ]/ A4 j
ok = MN s
p)?’2 :1_Tm(n—1),€2[ A4 ] m(n-1), 92[ m_1A4 J

respectively, whereas the probabilities that the first and the second sample means fall outside tt

and

individual limits are shown to be

* Kk g mn * % K g mn * kK
Pxm =1~ Tenn-n4, (\/ m— 1A4,[11 ] +Tin-ym-n.4, (‘ \ m— 1A4,[11 J
Py, 2 =1 Tannna, (\/ A4 1 j M-1(n-1.45 { \/ A4 W j

respectively, where

and

6, =6,=/(m-1)/ms,

Gy = =6, =—1/[m(m-1)]0
and 'Fvvg denotes the c.d.f of a univariate non-central Studentistribution withv degrees of

freedom and non-centrality parametér

Tables with values of p;,, Py, and p;,, are provided ford = 0.0(0.)20, m= 5(5)25

pi,[l]

and a = 005and used in the performance comparison.

Champ and Chou (2003) notes that, in genepgl, > p*;[l] for all size shiftsd in the mean,

number of samplesn, and the sample size. They also point out that although,’, = p*)i(f[Z], in

general, py, is slightly larger thanp .

Based on these results, they conclude that the standard Kmitkart slightly outperforms the

corresponding individual limitsX chart and highlight the fact that there is more work involved in

setting up the individual limits chart.
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Standard limits and Individual limits Phase | R and S charts
Lastly, Champ and Chou (2003) consider the Shewhart-type Phasatl S charts. Specifically,

they show that ithe standard limits and the individual limits Phage tharts are defined as

~ ﬁ . ﬁ
UCLg; =Kgy; 4 LCLy; = Key @
and
> - Ri] - B Ri]
UCLggiy =Kruji o LClLeiy = Kr iy <
2 2
respectively, and one lets
m-1 m-1
Kerf) =——o—— and Keviil =——=——
R L[i] mkR,lL,i -1 RU ] mkR,lU Yi 1

then the standard limits and the individual limits Phad® tharts are equivalent; whelf_éziz R,
j=1

is the mean range of ath the Phase | samples arR, zmi—l >R :m—_l(z R -R)
<Ly =

is the mean range excluding only tH&sample.

Similarly, the authors show that if the standard limits and the individual limits Pl&sdrts are

defined as
~ § R g
UCLg; =Kgy, c_4 LCLg; =Ks, ; c_4
and
UCLS[i] = kS,U,[i] % LCLS[i] = kS’L,[i] % ’
4 4

respectively, or, if the standard limits and the individual limits Ph&eharts are defined as

UéLS,i = ks,u i ﬂ LéLS,i = kS,L,i \/\7
Cam Cam
and
-~ _ _[I] -~ _ \T[i]
UCLS[i] - kS,U,[i] c LCLS[i] - kS,L,[i] c !
4m 4m

respectively, the standard limits and the individual limits Ph&&elharts are equivalent if one takes
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m-1 _ m-1

kS,L,[i] = kT and

Ko ==
s 1 mkgy,; —1

where S =iz S is the average standard deviation of all the Phase | samples and
i=1

m

= _ 1 _ 1l e
S0 = S = (S S)

m-—1,

is the average standard deviation excluding onlyi theample.
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(e) Champ and Jones (2004): “Designing PhaseX Charts with Small Sample Sizes”

One of the problems with the approach by Chou and Champ (1995) and Champ and Chou (200:

in developing their Phase X chart is that they use Boole’s inequality and do not explicitly take
account of the large number of simultaneous comparisons inherent in Phase I. Champ and Jon

(2004) recognized this by setting &@P-based probability limits for the Shewhart-type Phasé |
chart in Case U, when the mean and the standard deviation are both unknown. They use thr
unbiased estimatord of ¢ in the calculations of the control limits, which are defined as

UCL/LEL = X +k-Z

5T

: . : R . -
The estimatorsg are (i) the average sample range, (i) the average sample standard deviation

S , and (iii) the square root of the pooled sample vari , where R iZS
C,’ Cam :1 mi=

_ 1
andV =— 2.
S

The authors show that the joint distribution of thestandardized subgroups means

T, —01/—(?/:/1(} for i = 12...m,

follows either an exact or an approximate (depending on the estimator used &mui-correlated

central multivariatet -distribution with correlation— 11— 1) where the degrees of freedomand

the unbiasing constardt (which varies depending on the particular estimator (i), (ii) or (iii) used for

o, see Champ and Jones (2004) for details) are both functionsaoid n.

The exact false alarm probability of the Phasé thart is shown to be

FAP, =1- Pr(ﬂ{x k—<X <X+k—}|IC)

-1 Jn
=1—Pr(_ﬂ{—d <T,; <d}|IC)

Ql

dd d
= 1_ .[J- .[ fTvlTv 2""1Tvm V Arv 20 vm)dtv ldtVZ dt vV,m
-d-d -d
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where f. . . ¢,,4,,.--t,,,) is the joint density ofl,, T, ,,...,T,, ,d=kc ll and k equals
v,y 200 v,m ” ’ 1 e 1 3 m_

either k; or kg or k, depending on which unbiased estimatopofvas used.

Using a modified version of a program by Nelson (1982) for the equi-correlated multitariate
distribution, Champ and Jones (2004) provide tables for the charting conktanks and k, for
m= 41015 andn = 3(@)10for a nominal false alarm probability of 0.1, 0.05 and 0.01, respectively.
Note that, although Champ and Jones (2004) followed an exact approach, the accuracy of the values
the charting constantk,, ks and k, that they obtained, depend on the accuracy of the program by

Nelson (1982).

Champ and Jones (2004) use simulations to compare the performance of their control limits of th
X chart whenm=> 20with: (i) approximate limits using univariate Student’sritical values, and (ii)

approximate limits assuming that eadl approximately follows a standard normal distribution.

Although both of these approximate procedures are easy to use, the latter is not recommended unle

the number of subgroups is at least 30.
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(f) Neduraman and Pignatiello (2005): “On Constructing RetrospectiveX Control Chart

Limits”

Neduraman and Pignatiello (2005) adopted the analysis of means (ANOM) approach (see e.g. tr
book by Nelson, Wludyka and Copeland, (2005)) to construct a Shewhart-type Phagialt for the

mean while maintaining the false alarm probability at a desired level. They also compare the
performance of their ANOM based control limits with that of Bonferroni-adjusted control limits
through computer simulation experiments and make recommendations as to when each of th

approaches may be used.

Their chart is based on the result that if

Yi—x

= — for i=12...,m,
\/(m—l)V/mn

then the standardized charting statisti¢g ,T,,...,T,,)) has an equi-correlated multivariate-
distribution with common correlatiorr W= 1Using this result they find critical values, denoted

bY Nepp, my» SUCH that

FAR, :1_Pr(ﬂ{ _hFAPo,m,v <T < hFAPO,m,v} |1C)

i
i=1

= + Prmax|T, Khyg ,, 11C)

where v=m (- 1)represents the degrees of freedom of the variance estiMatord FAP, is the

nominal false alarm probability. The Phase | ANOM based control limits are given by

UCL/LEL = X £hep, 4/ (M=DV /mm

where the plotting statistics are the usual sample m¥arfer i = 1,2...,m.

The authors provide tables for the critical valieg, ,,, for m=5(5)30005075100, n= 5710

and FAR, = 00027001005.

Finally, Neduraman and Pignatiello (2005) compare the performance of their ANOM based control

limits with those obtained by a Bonferroni-type adjustment via computer simulation.
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The Bonferroni-adjusted control limits are obtained by setting the false alarm rate for each

subgroup equal t&-AR, / m so that the estimated Bonferroni-adjusted control limits are given by
UCL/LEL = X £ Zppe 1) (S/C,) 14N

where S denotes the average of thesample standard deviations, is the unbiasing constant and

Zepp, 1om 1S the (I- FAR, /2m100™ percentage point of the standard normal distribution.

Neduraman and Pignatiello (2005) found that: (i) for small subgroup sizes the ANOM based
control limits perform better than the Bonferroni-adjusted limits in that it maintains the false alarm
probability at the desired level for all subgroup sizes considered, (ii) that the estimated (or empirical
false alarm probability of the ANOM approach is relatively close to the desired level, whereas it is
higher than the desired level when the Bonferroni-adjusted limits are used for small sample sizes, b
(iit) for large n, the two sets of limits perform relatively similarly.

The authors recommend that the exact ANOM control limits be used for small subgroup sizes an
that either approach may be used for larger subgroup sizes to control the overall probability of a fals
alarm (i.e. thé&-AP). Note, however, that these authors incorrectly base the two-sided Bonferroni-

adjusted control limits oz, ,,, and not oz, 5, -
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Remark 13

(ii)

(iii)

The ANOM based control limits of Neduraman and Pligfia (2005) are derived using

whereas the Bonferroni-adjusted limits, to which they compare their ANOM based limits,

are based oS

It is apparent that the ANOM based approach of Nemdan and Pignatiello (2005) is
similar in spirit to that of Champ and Jones (2004), particularly when véings an

estimator ofog?. It should be noted that while Champ and Jones (2004) used the unbiased

estimator\/\://c4 of o, Nedumaran and Pignatiello (2005) did not; they simply u@d

In the approach by Neduraman and Pignatiello (2@@8)that of Champ and Jones (2004)

we are working with a singular multivariatadistribution (sinceZTvyi =1 and ZTi =1)
i=1 i=1

with a negative and common correlation-of mA . 3o, the computer programs used to

find the critical values must take account of the singularity of the joint distribution.
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2.3.2 Phase | charts for other settings

Control charts for rational subgroups of simee frdm a normal distribution is important, but
there are situations where (a) the assumption of normality is not valid, for example, when the time
between some events (such as failures) is monitored and it is well-known that the exponentic
distribution is a better model, and (b) in some cases it is more natural to analyze the individua
observations as they are collected so that the sampl& size(see B.g. Montgomery, (2005)) . Two

methods that are useful in these situations are considered next.

(@) Jones and Champ (2002): “Phase | control chart for times between events”

Phase | charts have been considered for distributions other than the normal that is useful in SP
applications. Jones and Champ (2002) proposed Phase | charts to monitor the time between events

the standards known and unknown cases. These charts are referred to as Phase | exponential charts.

Assuming that the occurrence of defects in a continuous process variable can be well modelled &
a Poisson process and denoting the time of occurrence of thefect byT,, with the time between

successive defects denoted Ky =T, —T,_;, it is well-known thatX; ~iidEXP(z;) for i = 12....m.

Standard known: Case K

In the standards known cage = x4, for all i = 12...,m, the charting statistics are th¢ s and
the control limits for the Phase | exponential chart are given by
LCL = k4, and UCL =k, 4,
where 1, is the known (specified) value gi and the charting constanks and k, are selected

such thatO <k, <k; .

Jones and Champ (2002) show that the Phase | exponential chart in Case K can be designed

choosing values fok, and k; such that the probability of an alarm in case of an out-of-control

process is greater than the desired false alarm probabA#y i.e. choosing, andk, such that

1-Pr(( YKt < X; <k, 4, }lateasone; # 11, 0i) = FAR,.

i=1
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Because the above equation is satisfied wkem, and k, 1, are taken to be the™ and the
(1-a +71)™ percentage points of the exponential distribution with mearit follows that

k., =-Inl-71) and ky, =-In(a -1)
with a=1-(1-FAR)'™ , 0<r<a, and where 7 is determined such that

@-7)In@-7)-(@-1)In(a-1)=0.

Tables with values of , k, andk for various values oFAR, and m are provided that can be

used to easily calculate the control limits.

Standard unknown: Case U
For the standards unknown case the authors design exact lower one-sided charts (details omitted)
as well as approximate two-sided Phase | exponential charts so that the false alarm probability is at

mosta . This is done using the fact th&t /7 is related to the univariaté -distribution, when the

process is in-control, through
X _ m

g 1+ (m-1) Fom-1.2

where the random variable,,_,, , follows anF - distribution with 2(n- 1)and 2 degrees of

freedom.

Using this result together with Boole’s inequality it is shown that

A

Pr| ()¢ i <X < i HIC |21-a
im L1t (m_l)FZ(m—l),Z,l—a 1+ (m_l)FZ(m—l),Z,r

-T

where @ =FAP,/m, 0<7<a, and Fop 1514+ and Fppy,, are the a+7 § and 7™

percentage points of thé -distribution with 2(n— 1) and 2 degrees of freedom, respectively.

Consequently, the estimated control limits for the approximate two-sided Phase | exponential chat
are given by
LEL A ucL m

= and =
1+ (M=D)F 5400 1+ (M=DF 0y,

alm-1

with 1= lz X, and0<7 <a/m, respectively.

i=1
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The performance of the Phase | exponential charts are evaluated by Jones and Champ (2002) usi

computer simulation experiments and assumingnhat them X;’s ~ EXP(u +cu) are out-of-

control while the remainingn—n X,’s ~ EXP(u) are in-control.

For the standards known case a table containing values of the probability of at least one signal fc

various values ofFAR,, n and c, and samples of sizen= 30s provided. For the standards

unknown case similar tables are provided which contain values of the proportion of charts with at leas

one signal for various values &AR,, n andc, and samples of sizm= 30

The authors point out that the sensitivity of the Phase | exponential charts is inversely related t

theFAPR, value and it should therefore not be set too low or the charts may not achieve the desirel

level of sensitivity.
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(b) Change-point modeling and other control charting methods

In some applications it is natural to collect and record the data as they are observed individually
In this setting, some authors have suggested formulating the question of whether or not a process is |
control as a change-point problem. This formulation typically assumes that the observations up to ar
including a point in time (called the change-point) are i.i.d. (with the same mean and variance) witf
some known distribution (such as the normal) while the observations after the change-point are als

i.i.d. with the same distribution but with a different mean and/or variance.

For example, when the common distribution is normal, one writes

iidN @, g7 ) fori=1..r

iidN @, g7 )fori=r+1..n

where X, for i = 12...,m denotes an individual observation a@& 7 <n is the unknown change-

point (in time). The goal is to be able to detect and/or locate the change-point as well as measure t

magnitude of the change as quickly as possible.

The change-point problem has a rich history in the statistics literature. In the SPC context, ther
are several papers, including Hawkins (1977), Sullivan and Woodall (1996), Hawkins, Qiu and Kang
(2003) as well as Hawkins and Zamba (2005). Because the majority of these methods are based on-
likelihood ratio testing procedure and because only the typical Phase | setting (i.e. checking whethe
one or more Phase | plotting statistics plot outside the control limits) is the focus here, a detailec

discussion is not given.

Other control charting methods for Case U include, for example

0] Q-charts (Quesenberry, (1991)),

(i) control charts using sequential sampling schemes (see e.g. Zhang, Xie and Goh, (2006)),
and

(i)  the model-based control charts (Koning, (2006)).

The Qcharts and charts based on sequential sampling schemes can be used in situations where
self-starting techniques are needed, for example, in low-volume, job-shop (short-run) processes and/c
in start-up situations. While these charts are useful in these situations, they are not applied in a typic

Phase | setting.
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2.4 Concluding remarks: Summary and recommendations

The focus in this chapter was primarily univariate variables Shewhart-type Phase | control charts.

In particular, we
(1) looked at what a Shewhart-type Phase | control chart is and how it is typically designed,
(i) studied the design of Phase | control charts for process spread, and
(i)  gave an overview on the literature of univariate parametric Shewhart-type Phase | control

chart for location and spread.

Section 2.1 gave a general discussion on Shewhart-type Phase | control charts in which the goals
Phase | control charting and the methods for designing and implementing Shewhart-type Phase | cha
were described.

It turned out that th&AP-based control limits are the best to use when designing a Phase | chart
because they correctly account for the fact that the Phase | signaling events are dependent and t
multiple signaling events have to be dealt with simultaneously to make an in-control or not in-control
decision; as a result it is recommended that the exact joint probability distribution of the charting
statistics should be used (where possible) to control the false alarm probability when designing a Pha
| chart.

The approximaté&AR-based limits and the Bonferroni control limits were both shown to be close
competitors of th&AP-based control limits; however, these two sets of control limits are both slightly
wider than thé=AP-based control limits and might lead to fewer alarms. In situations where the exact
joint probability distribution is not available either of these two simpler (approximate) sets of control
limits may be used; in such scenarios the marginal in-control distribution of each charting statistic is
required.

Lastly, it was shown that thEAR-based control limits ignore the dependency of the Phase |
charting statistics and overlooks the fact that multiple charting statistics are to be dealt with
simultaneously; as a result, it is likely that one my observe more false alarms that what is typically
expected and this approach should therefore not be used in designing a Shewhart-type Phase | con

chart.
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The techniques used in designing the PhaSé,l Sand R charts of section 2.2 recognized that

multiple signaling events are involved and that the comparisons of the charting statistics with the

estimated control limits are not independent. The design dthehart form< 25needs to be based
on a multivariate singular beta distribution, also known as the type | or standard Dirichlet distribution,

with common correlation 1iG— 1) whereas form=> 25 percentiles of the univariate type | or

standard beta distribution may be used as an approximation. Hardhe theS charts, the design of
the charts depends on some joint probability distribution(s) that are currently unknown.

Using computer simulations, the necessary charting constants for each chart were calculated so tf
the false alarm probabilities of the charts do not exceed 0.01, 0.05 and 0.10, respectively. For othi
desirable nominal false alarm probabilities the methods given in section 2.2 can be used to find th
appropriate charting constants.

It is recommended that practitioners use the charting constants provided in Tables 2.1, 2.2, 2.3, 2.

2.6,2.7,2.8,2.9, 2.10, 2.12, 2.13, 2.14 when computing the control limits of the Pfas8and R
charts. The connection between the false alarm rate and the false alarm probability in a number

selective cases was also examined in order to provide some guidance to the user.

Finally, In section 2.3 we gave an overview on univariate parametric Shewhart-type Phase | contrc
charts for location and spread. It is believed that this would be to the benefit of all users of contro
charts in that it informs them what the present state of the art is and what future research still remains

Although the Phase | control charts included in the overview are all based on the assumption thg
the observations are i.i.d., one can argue that autocorrelation can be present in a number of potent
applications. Thus further research on Phase | control charts for autocorrelated data (see e.g. Marac
and Woodall, (1992) and Boyles, (2000)) will be of great benefit to the SPC practitioner. Also, even
though the overview focused on variables data, attributes data are common in some applications and
a result Phase | charts for attributes data (see e.g. Borror and Champ (2001)) are also useful and m
work needs to be done in this area. Moreover, since not much is typically known or can be assume
about the underlying process distribution in a Phase | setting, nonparametric Phase | control char
would be of practical benefit and should be investigated.

It should be noted that, a clear consensus does not appear to exist as to how Phase | charts shc
be compared and contrasted. In Phase Il, control chart performance is typically measured in terms
some attribute of the run-length distribution. In Phase |, the preferred performance metric is the
probability of at least one signal. So for the in-control case, one can compare two or more charts b

comparing theifFAP’s. In the out-of-control case, if there are two control charts with the same or
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roughly the sam&AP, one can examine the probability of at least one signal when there is a shift in
the process parameter and the chart with a higher probability of a signal should be preferred. Thi
would be in line with comparing the power of two tests that are of the same size. Champ and Jone

(2004) undertook the in-contrélAP comparison in a simulation study whereas Jones and Champ

(2002) looked at the out-of-control comparison of Phase | control charts.
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2.5 Appendix 2A: SAS programs

2.5.1 SAS program to find the charting constants for the Phase & chart

proc im;

sim=100000;

m=5;

dof= 4;

x=j(simm, .);

y=j(sim, 2,.);

call randgen(x, 'CHISQ' ,dof);

do i= 1 to sim;
sum=x[i,+];

yli, 1]=max(x[i,])/sum;
yli, 2]=min(x[i,])/sum;
end;

out=j( 2000, 2, .);

do alpha= 0.0001to 0.2by 0.0001;
a=cinv(alpha/  2,dof)/(m*dof);
b=cinv( 1l-alpha/ 2,dof)/(m*dof);
r= 10000*alpha;

t=j(sim, 3,.);

t 1=yl 1]>jsim,  1,b);
th 2]=yl, 2]<j@sim,  1a)
L 3l=t, 1, 2,

FAP =t[+, 3]/sim;

out[r, 1]=alpha;

out[r, 2]=FAP;

end;

create FAP_Ssq from out[colname={alpha FAP}];
append from out;

qui t;

proc export data =FAP_Ssq

outfile  ="c:\\FAP_Ssq.xls" replace
run;
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2.5.2 SAS program to find the charting constants for the Phase & chart

proc im;
sim=10;
m=5;
n=>5;
x=j(sim,m,  0);
y=j(sim, 2,.);
do i= 1 to sim;
do j= 1tom;
z=j( 1,n, 0);
call randgen(z, 'NORMAL');
X[i,j]=sart((ssq(z)-sum(z)*sum(z)/n)/(n- 1);
end;

end;

do i= 1 to sim;
sum=x[i,+];

yli, 1]=max(x[i,])/sum;
yli, 2]=min(x[i,])/sum;
end;

out=j( 350, 2, .);

dok=0.01to 3.5by 0.01;

lcl=(  1-k*sqrt( 1-0.94*0.94)/ 0. 94)/m;
ucl=( 1+k*sqgrt( 1-0.94*0.94)/ 0. 94)/m;
r=100%*k;

t=j(sim, 3,.);

t, 1]1=y[L, 1] >j(sim, 1,ucl);

t, 2]=y[, 2]<j(sim, 1,lcl);

L 3l=t, 1, 2,

FAP =t[+, 3]/sim;

out[r, 1]=k;
out[r, 2]=FAP;
end;

create FAP_S from out[colname={k FAP}];
append from out;

proc export data =FAP_S
outfile  ="c:\FAP_S.xIs" replace
qui t;
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2.5.3 SAS program to find the charting constants for the Phase R chart

proc im;
sim= 10;
m=5;
n=5;
x=j(sim,m,  0);
y=j(sim, 2,.);
do i= 1 to sim;
do j= 1tom;
z=j( 1,n, 0);

call randgen(z, 'NORMAL");
X[i,j]=max(z)-min(z);
end;
end;

do i= 1 to sim;
sum=x[i,+];

yli, 1]=max(x[i,])/sum;
yli, 2]=min(x[i,])/sum;
end;

outsj( 350, 2, .);

dok=0.01to 3.5by 0.01;
ucl=( 1+k* 0. 864/ 2. 326)/m;
lcl=( 1-k* 0.864/2.326)/m;
r=100*k;

t=j(sim, 3,.);

t, 1=y, 1] > j(sim, 1,ucl);
t, 2]=y[, 2]<j(sim, 1,lcl);
L 3l=t, 1t 2,

FAP =t[+, 3]/sim;

out[r, 1]=k;
out[r, 2]=FAP;
end;

create FAP_R from out[colname={k FAP}];
append from out;

proc export data =FAP_R

outfile  ="c:\\FAP_R.xIs" replace
qui t;
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