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Chapter 1 
 

Introduction and research objectives 

 

 

1.0 Introduction 
 

 

Statistical process control (SPC) refers to the collection of statistical procedures and problem-

solving tools used to control and monitor the quality of the output of some production process, 

including the output of services (see e.g. Balakrishnan et al., (2006) p. 6678 and Montgomery, (2005) 

p. 148). The aim of SPC is to detect and eliminate or, at least reduce, unwanted variation in the output 

of a process. The benefits include saving time, increasing profits and an overall increase in the quality 

of products and services. 

 

 

The quality of process output can be measured in various ways. Frequently the percentage or the 

fraction of items that does not conform to specifications is used. In many practical situations it is more 

convenient to measure the quality of the product or the service by the number of nonconformities per 

“inspection unit” or the “unit area of opportunity” such as the number of scratches on a plate of glass, 

the number of tears in a sheet of material or the number of errors made by a cash register attendant 

during a day.  Sometimes the quality of a sample of items is measured by the mean (average) of the 

measurements or by some other measure of central tendency such as a percentile. Consider, for 

example, a beverage filling machine designed to fill each container (such as a bottle or a can) with 

500ml of cool drink. Some containers will have slightly more than 500ml and some will have slightly 

less, in accordance with a fill volume distribution. If the filling machine begins to wear or, its inputs or 

its environment changes, the distribution of the net filling volume can change. If such a change is 

permanent and goes undetected more and more containers will be filled incorrectly, resulting in waste 

or containers filled below specifications. While in the former case the waste is in the form of “free” 

product for the consumer, typically waste consists of rework or scrap. We can measure the quality of 

the process, i.e. the ability of the beverage filling machine to fill the containers with 500ml of cool 

drink, in a number of ways. We can, for instance, take successive samples of containers and count the 
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number of containers with too much or too little cool drink, according to the required specifications. 

Alternatively, we could measure the amount of cool drink in each container and then calculate the 

average fill volume for each sample. Both these summary measures provide useful information 

regarding the functioning of the process; for example, if either the number of containers that are not 

filled according to the specifications or the average fill volume increases above or drop below certain 

critical points, action is required to find the root cause and rectify the problem. 

 

 

SPC has long been applied in high-volume manufacturing processes such as the one described 

above. In recent times it has also been applied in government offices, by educators and administrators 

from the public and private sectors, by providers of healthcare services, and by those in the service 

industries (such as finance, hospitality and transportation) to name but a few. These are primarily 

service industries where the “volume” or the “speed” of production is less in comparison to the usual 

manufacturing process and the quality characteristics are less tangible and not easily measured on a 

numerical scale. The key idea, however, is that the principles and concepts of SPC can be applied to 

any repetitive process, i.e. a process wherein the same action is performed over-and-over with the 

intention to obtain the same “outcome” or “result” on each “trial”.  

 

 

A wide range of statistical procedures are used in the various stages of SPC; these range from basic 

descriptive techniques and summary measures (such as histograms, stem-and-leaf diagrams, check 

sheets, scatter diagrams etc.) to more advanced procedures (such as process optimization, evolutionary 

operation and design of experiments). Many of the statistical procedures that are used in SPC have a 

long and rich history and/or fill a separate niche in the process control environment; these include, 

amongst many other procedures, acceptance sampling and sampling schemes, measurement systems 

analysis, calibration, process capability analysis and capability indices, reliability analysis, statistical 

and stochastic modeling, six sigma as well as statistical process control and statistical process 

monitoring using control charts. For an excellent reference source and a comprehensive overview on 

these and other related topics see, for example, the Encyclopedia of Statistics in Quality and Reliability 

edited by Ruggeri et al. and published in 2007 by John Wiley & Sons Ltd.  

 

 

The collection of statistical tools is undoubtedly an important component of SPC but it should be 

kept in mind that they comprise merely its technical aspects. SPC, in general, builds an environment in 

which all the individuals of an organization seek continuous improvement in quality and productivity 
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and is best implemented and most successful when management becomes involved (Montgomery, 

(2005) p. 148). 

 

Given the multifaceted structure of SPC, it is essential that a researcher accurately describes as far 

as it is possible the context and the exact nature of his research within the SPC domain.  Therefore, it is 

appropriate to say that: 

 

This thesis focuses on improving existing control charting methodologies and 

developing new control charts; more specifically, it focuses on univariate parametric 

and nonparametric Shewhart-type Phase I and Phase II variables control charts and 

attributes control charts (for samples of size 1>n ) when process parameters are 

estimated. 

 

To have a better handle on the precise meaning of the above statement and the focus of this thesis, 

the rest of Chapter 1 is devoted to explaining what a control chart is and discusses the similarities 

and/or dissimilarities between the major types of control charts. This exposition includes a discussion 

on: 

(i) Shewhart-type charts vs. EWMA-type and CUSUM-type charts, 

(ii)  Univariate charts vs. multivariate charts, 

(iii)  Variables charts vs. attributes charts, 

(iv) Phase I charts vs. Phase II charts, and 

(v) Parametric charts vs. nonparametric charts. 

 

Following the discussion concerning the different types of control charts, we describe in more 

detail what is done in each of the remaining chapters of this thesis. 

 

It is important to note that the author of this thesis does not intend to present a full-blown 

discussion and/or overview on all the aspects of SPC in Chapter 1. Instead, we cover only the key 

aspects to equip the reader with the necessary terminology (principles) in order to grasp what is to be 

covered in the rest of this thesis.  We hope that a discussion regarding points (i) to (v) listed above will 

give the reader the necessary background of the underlying basic ideas about this vast area. 

 

Also, note that, we focus on control charts for samples of size 1>n  and use the phrases “rational 

subgroup” and “random sample” interchangeably throughout the thesis but, strictly speaking, a rational 

subgroup is not necessarily a random sample (see e.g. the discussion in Montgomery, (2005) on p. 

162).  
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Control chart 
 

A control chart is a statistical procedure (or scheme) that can be depicted graphically for on-line 

process monitoring of a measurable characteristic (such as the mean measurement value or the 

percentage nonconforming items) with the objective to show whether the process is operating within 

the limits of expected variation (see e.g. Ruggeri, Kenett and Faltin (2007) p. 429) . The simplest and 

most widely used control chart is the Shewhart-type of chart; this chart is named after the father of 

quality control i.e. Dr. Walter A. Shewhart (1891-1967) of Bell Telephone Laboratories, who 

developed the chart in the 1930’s and laid the foundation of modern statistical process control in his 

book Economic Control of Quality of Manufactured Product that was originally published in 1931.The 

the wider use and popularity of control charts outside manufacturing, which lead to Quality 

Management and Six Sigma, can be attributed to Deming (1986). 

 

Shewhart-type control chart 
 

A typical Shewhart-type control chart is shown in Figure 1.1. The chart is a basic graphical display 

of the successive values of a summary measure (statistic) calculated from a sample of measurements 

taken on a key quality characteristic and plotted on the vertical axis versus the sample number or time 

on the horizontal axis. The control chart usually has a centerline (CL ) and two horizontal lines, one 

line on either side of the centerline. The line above the centerline is called the upper control limit 

(UCL ) whereas the line below the centerline is called the lower control limit (LCL ). These three lines 

are placed on the control chart to aid the user in making an informed and objective decision whether a 

process is in-control or not; this decision is primarily based on the pattern of the points plotted on the 

chart and/or their position relative to the control limits. Notice that it is customary to join the points on 

a control chart using straight-line segments for easier visualization over time. 
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Figure 1.1: A Shewhart-type of control chart 
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The basic assumption underlying control chart analysis is that the variation in the quality of 

products or services is due in part to common causes (or chance causes) and in part to special causes 

(or assignable causes) – see Deming (1986). The term common cause refers to the inherent or the 

natural variability that is present in a process. This is also referred to as the uncontrollable or the ever 

present “background noise” that might be due to the cumulative effect of many small and undetectable 

(but unavoidable) causes. Special causes are those sources of variability that are not part of the 

common causes (or natural variability of a process) and therefore directly affect the quality of a 

process.  

 

Combining these two sources of variation, i.e. common causes and assignable causes of variation, 

accounts for the total variation present in a process. Based on this point of view, a process is 

considered to be in-control if it is operating only in the presence of common causes and when special 

causes are part of the process variability, the process is said to be out-of-control. The fundamental idea 

of the Shewhart-type of control chart entails identifying and removing, to an extent that is 

economically viable, the assignable causes of variation. 

 

Control charts play a crucial role in detecting whether a process is in-control or out-of-control. The 

standard Shewhart-type control charts are based on inspecting samples at equally spaced time intervals 

and issuing an alarm (a signal) if the “result of the sample” is considerably worse (i.e. larger or 

smaller) than what one can expect if the process was operating on target.   For example, a single point 

(plotting statistic) that plots outside the control limits i.e. lies above the upper control limit or lies 

below the lower control limit, is usually interpreted as a signal (an alarm) of a possible special cause. 

The alarm signals that the process is deemed to be in an out-of-control state, which is indicative of 

deteriorated performance of the process. Investigation is thus required to find the origin of the source 

of the variation and, if necessary, action is needed for its elimination. On the other hand, if no point 

plots outside the control limits we continue drawing successive samples from the output of the process 

to monitor the process. 

 

 

EWMA and CUSUM charts 
 

More technically sophisticated control charts than the Shewhart-type of chart have been proposed 

and are widely used in practice; the most popular being the exponentially weighted moving average 

(EWMA) and the cumulative sum (CUSUM) control charts. The EWMA and CUSUM control charts 
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are different from the Shewhart-type of chart in that they are memory-based charts which sequentially 

combine the information from multiple (past) samples with the present (or current) sample information 

in the decision making process. The Shewhart-type of chart, however, uses only the information 

available from the most recent (last) sample. For the essential theoretical underpinning of the CUSUM 

control chart the reader may consult the original articles by Page (1954, 1961) or the book by Hawkins 

and Olwell (1998). The seminal article by Roberts (1959), who introduced the EWMA chart, as well 

the articles by Crowder (1987, 1989) and Lucas and Saccucci (1990) provide good discussions on the 

EWMA chart. For an application-orientated perspective on the CUSUM and EWMA charts, the books 

by Montgomery (2005) and Ryan (2000) are worth reading.  

 

 

Multivariate control charts 
 

Some practical situations require the simultaneous monitoring and control of two or more related 

(correlated) quality characteristics. The usual practice (see Ryan, (2000) p. 253) is to monitor each 

characteristic separately; this results in a univariate control chart for each variable but, may be 

inefficient or may lead to erroneous conclusions (see Ryan, (2000) p. 254 and Montgomery, (2005) p. 

486). Control charts to deal with multiple measurements (variables) were therefore developed. 

 

The control charts for the monitoring and control of multiple variables parallel the charts for a 

single variable. Hence, there are multivariate extensions to the univariate Shewhart, the univariate 

EWMA and the univariate CUSUM charts. The corresponding multivariate charts are labeled the 

Hotelling’s 2T  chart, the multivariate EWMA (abbreviated MEWMA) control chart and the 

multivariate CUSUM chart. 

 

In this thesis, we focus on univariate control charts. An overview of multivariate control charts, 

which includes a discussion on the Hotelling’s 2T chart, the MEWMA chart and the multivariate 

CUSUM chart, can be found in Ruggeri, Kenett and Faltin (2007). For an applied and self-contained 

text that provides a detailed coverage of the practical and theoretical aspects of Hotelling’s 2T  chart, 

the book by Mason and Young (2002) gives a good exposition.  

 

 

Variables and Attributes control charts 
 

A quality characteristic that can be measured on a numerical scale is called a variable.  Examples 

include width, length, temperature, volume, speed etc. When monitoring a variable we need to monitor 
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both its location (i.e. mean or average) and its spread (i.e. variance or standard deviation or range). 

Sample statistics most commonly used to monitor the location of a process are the sample mean and 

the sample median or some other percentile (order statistic), whereas the sample range, the sample 

standard deviation and the sample variance are regularly used to monitor the process variation.  

 

In situations where it is not practical or the quality characteristics cannot conveniently be 

represented numerically, we typically classify each item as either conforming or nonconforming to the 

specifications on the particular quality characteristic(s) of interest; such types of quality characteristics 

are called attributes. Some examples of quality characteristics that are attributes, are the number of 

nonconforming parts manufactured during a given time period or the number of tears in a sheet of 

material. 

 

The p-chart and the np-chart are attribute charts that are based on the binomial distribution and are 

used to monitor the proportion (fraction) of nonconforming items in a sample and the number of 

nonconforming items in a sample, respectively. Another type of attribute chart is the c-chart, which is 

based on the Poisson distribution, and is useful for monitoring the number of occurrences of 

nonconformities (defects) over some interval of time or area of opportunity, rather than the proportion 

of nonconforming items in a sample.  

 

A thorough bibliography of articles related to attributes control charts can be found in Woodall 

(1997).  

 

 

Phase I and Phase II control charts 
 

The statistical process control regime is typically implemented in two stages: Phase I (the so-called 

retrospective phase) and Phase II (the prospective or the monitoring phase).  In Phase I, the primary 

interest is to better understand the process and to assess process stability; the latter step often consists 

of trying to bring a process in-control by analysing historical or preliminary data, locating and 

eliminating any assignable causes of variation.  A process operating at or around a desirable level or 

specified target with no assignable causes of variation is said to be stable or in statistical control, or 

simply in-control.  Once control is established to the satisfaction of the user, any unknown quantities 

(parameters) are estimated from the in-control data (also called reference data), leading to the setting 

up of control charts so that effective on-line process monitoring can begin in Phase II.    
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In Phase I the goal is to make sure that a process is operating at or near acceptable target(s) under 

some natural (common) causes of variation and that no special causes or concerns are present.   Phase I 

analysis is usually an iterative process in which control charts play an important role.  The control 

limits obtained early in Phase I are viewed as trial limits and are often revised and refined to ensure 

that the process is in-control.  If target values of the parameters of interest are known (often referred to 

as the standards known case or Case K), one needs to ensure that the process is operating at or close to 

these given targets subject only to common causes of variation.  If the parameters are unknown, 

establishing control of the process involves estimation of the parameters as well as setting up or 

estimating the control limits.  This situation is often referred to as the standards unknown case (or Case 

U).  Both of these situations (Case K, U) can occur in practice but Case U occurs more often, 

particularly when not much historical knowledge or expert opinion is available. 

 

The decision problem under a Phase I control charting scenario is similar, in principle, to that in a 

multi-sample test of homogeneity problem, where one tests whether the data from various groups 

come from the same distribution (in-control process).  Champ and Jones (2004) have noted this fact, 

for example.  Under this motivation, the false alarm probability (FAP ), i.e. the probability of at least 

one false alarm, is used to construct and evaluate Phase I control charts.  Thus a Phase I control chart is 

designed by specifying a nominal false alarm probability, say0FAP . 

 

In Phase II the control chart is used to monitor the process on-line in order to detect the occurrence 

of any assignable causes of variation (such as process shifts) so that any necessary corrective actions 

can be taken quickly. The operation of the Phase II chart involves: (i) taking successive samples from 

the output of the process, (ii) calculating the specified sample statistic from each sample, and (iii) 

comparing the value of each sample statistic (i.e. the plotting statistic), one after the other, with the 

Phase II control limits. If a point plots outside the control limits an alarm signals and a search for 

assignable causes typically follows. Because we want the Phase II chart to signal quickly when a 

change takes place and not signal too often when the process is actually in-control (which is when no 

shift or change has taken place) the design objective in Phase II focuses on the performance of the 

chart (i.e. how efficient the chart is in detecting changes) and therefore concentrates on the distribution 

of the run-length random variable associated with the chart. 

 

The run-length is defined as the number of samples to be collected or the number of points to be 

plotted on the chart before the first or next out-of-control signal is observed. The discrete random 

variable defining the run-length is called the run-length random variable and the distribution of this 
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random variable is called the run-length distribution. The characteristics of this distribution give us 

more insight into the performance of a chart and can be used to design a Phase II chart. Hence, in 

Phase II when designing the chart, we typically specify some attribute of the in-control Phase II run-

length distribution to be complied with, such as the average run-length, and determine the appropriate 

Phase II control limits that gives the desired performance. 

 

Parametric and Nonparametric control charts 
 

In the process control environment of variables data (i.e. data that can be measured on a continuous 

numerical scale) parametric control charts are typically used; these charts are based on the assumption 

that the process output follows a specific distribution, for example, a normal distribution. Often this 

assumption cannot be verified or is not met. It is well-known that if the underlying process distribution 

is not normal, the control limits are no longer valid so that the performance of the parametric charts 

can be degraded. Such considerations provide reasons for the development and application of easy to 

use and more flexible and robust control charts that are not specifically designed under the assumption 

of normality or any other parametric distribution. Distribution-free or nonparametric control charts can 

serve this broader purpose. 

 

A thorough review of the literature on nonparametric control charts can be found in Chakraborti et 

al. (2001, 2007).  The term nonparametric is not intended to imply that there are no parameters 

involved, quite to the contrary.  While the term distribution-free seems to be a better description of 

what one expects these charts to accomplish, nonparametric is perhaps the term more often used; in 

this thesis, both terms (distribution-free and nonparametric) are used since for our purposes they mean 

the same.   

 

The main advantage of nonparametric charts is their general flexibility i.e. their application does 

not require knowledge of the specific probability distribution for the underlying process.  In addition, 

nonparametric control charts are likely to share the robustness properties of the well-known 

nonparametric tests and confidence intervals; these properties entail, among others, that outliers and/or 

deviations from assumptions like symmetry far less impact them.  

 

A formal definition of a nonparametric or distribution-free control chart could be given in terms of 

its run-length distribution, namely that, if the in-control run-length distribution is the same for every 

continuous probability distribution, the chart is called distribution-free or nonparametric (see e.g. 

Chakraborti et al. 2001, 2007). 
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1.1 Research objectives  
 

We now turn our attention to the specific research questions studied in the remaining chapters of 

this thesis, which consists of Chapters 2, 3, 4 and 5. Each of Chapters 2, 3 and 4 focuses on a particular 

aspect of Shewhart-type Phase I and Phase II variables and attributes control charts when process 

parameters are estimated; these three chapters form the heart of this thesis. Chapter 5 provides a 

summary of the research done in this thesis and offers concluding remarks on some unanswered 

questions and/or future research. 

 

 

 

1.1.1 Chapter 2 
 

Chapter 2 focuses on Phase I Shewhart-type variables control charts to monitor the spread (i.e. the 

variance, the standard deviation or the range) of a process. 

 

Consider setting up a Shewhart-type Phase I control chart for the variance or the standard deviation 

or the range of a process that follows a normal distribution with an unknown mean, µ , and an 

unknown variance, 2σ , based on the availability of m  independent rational subgroups (samples) each 

of size n  taken when the process was thought to be in-control. 

 

Constructing a Shewhart-type Phase I control chart for a spread parameter typically entails: 
 

(i) Estimating the unknown parameters (if they are not known or unspecified), 

(ii)  Calculating or estimating the Phase I control limits, 

(iii)  Plotting the estimated Phase I control limits and the Phase I charting statistics on the 

control chart, and then 

(iv) Simultaneously comparing all the Phase I charting statistics with the estimated Phase I 

control limits. 
 

If any of the charting statistics plot on or outside the estimated control limits, the corresponding 

subgroups are suspected to be from an out-of-control process. These subgroups are then examined, 

possibly discarded and steps (i) to (iv) are repeated. This iterative, trial-and-error process usually 

continues until all the remaining charting statistics plot between the latest control limits and show no 

non-random pattern.  Once this state is reached, the remaining data are considered to be from an in-

control process and this final Phase I data set (often referred to as in-control or reference data) is used 

to estimate the process variance or the standard deviation or the range, which is subsequently used in 
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setting up the Shewhart-type Phase I control charts for the mean. Note that, if a Phase I charting 

statistic plots on or outside the estimated Phase I limits but no assignable cause can be found that 

warrants its removal, it is typically not discarded. To illustrate the above methodology and the way it is 

currently applied in practice, consider the data of Table 1.1. 

 

Table 1.1 displays 20=m  rational subgroups each of size 5=n  simulated from a normal 

distribution; for our current purpose the mean and the variance of the normal distribution(s) from 

which the samples were simulated are not mentioned because we assume that both these parameters 

are unknown. Also shown in Table 1.1 are the sample variances, 2
iS , the sample standard deviations, 

iS , and the sample ranges,iR , for 20,...,2,1=i . We use these data to construct Shewhart-type Phase I 

control charts for the variance, the standard deviation and the range. The purpose of setting up the 

Phase I charts is to inquire whether all 20 samples are from a normal distribution(s) with equal 

variances or equal standard deviations. 

 

 

 

Table 1.1: Data for constructing Shewhart-type Phase I control charts for the variance, the 
standard deviation and the range 

Sample number / 
Time (i) 1iX  2iX  3iX  4iX  5iX  2

iS  iS  iR  

1 23.0 27.8 21.5 24.3 18.9 10.93 3.31 8.90 
2 14.2 25.9 27.3 17.9 19.1 30.77 5.55 13.10 
3 24.7 16.6 22.8 26.9 21.5 15.03 3.88 10.30 
4 23.6 20.8 28.4 18.6 24.5 13.95 3.74 9.80 
5 14.1 20.9 18.2 19.0 28.7 28.85 5.37 14.60 
6 23.0 13.4 29.4 28.4 11.6 68.83 8.30 17.80 
7 19.5 14.9 23.3 12.1 11.2 26.20 5.12 12.10 
8 16.8 25.5 19.2 19.7 23.6 12.39 3.52 8.70 
9 15.1 18.1 22.3 18.4 23.0 10.64 3.26 7.90 

10 17.5 16.0 19.1 26.8 23.1 19.42 4.41 10.80 
11 26.2 24.3 22.0 21.4 25.9 4.82 2.20 4.80 
12 15.9 23.2 17.8 16.6 13.8 12.41 3.52 9.40 
13 14.8 17.0 19.1 13.1 15.0 5.32 2.31 6.00 
14 13.8 18.3 25.0 18.2 18.5 16.03 4.00 11.20 
15 28.2 23.2 16.6 18.8 18.7 21.53 4.64 11.60 
16 12.9 20.0 32.2 16.4 26.1 59.47 7.71 19.30 
17 22.0 11.9 21.5 21.1 17.9 17.80 4.22 10.10 
18 21.1 19.4 16.3 21.8 14.3 10.23 3.20 7.50 
19 16.2 21.4 25.5 14.2 28.0 34.67 5.89 13.80 
20 12.5 17.2 17.9 14.4 16.5 4.92 2.22 5.40 
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Phase I 2S  chart 
 

First, consider constructing a Shewhart-type Phase I 2S  control chart for the variance. In this case 

the unknown process variance, 2σ , is estimated using the unbiased pooled variance estimator 

∑
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The charting statistics for the 2S  chart are the sample variances 2
iS , mi ,...,2,1=  and the estimated 

Phase I probability limits (see e.g. Montgomery, (2005) p. 231) are 
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where 2
1, −nαχ  is the )1(100 α− th percentile of the chi-square distribution with 1−n  degrees of freedom.  

Note that, typically one takes 00135.0=α  and finds the chi-square percentiles so that the probability 

that a single point plotting outside the control limits is 0.0027 for any sample.    

 

 

For the data in Table 1.1 we find that  
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Taking 00135.0=α  with 4151 =−=−n  we calculate (using MS Excel) that 1058.02
4,99865.0 =χ  and 

8004.172
4,00135.0 =χ ; substituting these values of the percentiles and 21.212 =pS  in (1-2)  yields the 

values of the estimated Phase I control limits i.e. 

 

38.94
4

8004.1721.21ˆ =×=LCU           21.21ˆ =LC           561.0
4

1058.021.21ˆ =×=LCL . 

 

The corresponding Phase I 2S  chart is shown in Figure 1.2. Because all the sample variances, i.e. 

2
iS   for 20,...,2,1=i , displayed in Table 1.1, plot between the estimated control limits the process 

variance is considered to be in-control. Essentially, this decision implies that the underlying population 
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variances (from which the samples were obtained) are not significantly different but, as will be pointed 

out later, this conclusion might be wrong because of the fact that multiple comparisons (between the 

charting statistics and the same set of estimated control limits) are to be dealt with is not taken into 

account in making the in-control or not-in-control decision. 
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Figure 1.2: The Shewhart-type Phase I 2S  control chart for the data in Table 1.1 
 

 

 

Phase I S  chart 
 

Next, consider setting up a Shewhart-type Phase I S  control chart for the data in Table 1.1. In this 

case, the unknown process standard deviation, σ , is estimated using the unbiased point estimator  


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where 2
ii SS = denotes the ith  sample standard deviation and 4c  denotes the unbiasing constant, 

which is tabulated, for example, in Appendix VI of Montgomery (2005). 

 

The charting statistics for the S  chart are the sample standard deviations, i.e.iS , for mi ,...,2,1= .  

The estimated k-sigma control limits and the estimated centerline of the Phase I S  chart are 
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where the charting constant, k , is typically set equal to 3 so that we can write  

SBLCU 4
ˆ =    SLC =ˆ               SBLCL 3

ˆ =       (1-5) 

    94.38 
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where 2
4

4
3 1

3
1 c

c
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4
4
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3
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c

B −+=  are constants and tabulated, for example, in 

Appendix VI of Montgomery, (2005). 

 

For the data of Table 1.1 we get  

317.4)22.2...55.531.3(
20

1

20

1 20

1

=+++== ∑
=i

iSS  

and find that the charting constants, for 5=n , are  089.24 =B  and 03 =B  . 

 

We find the estimated 3-sigma control limits for the Phase I S  chart by substituting 317.4=S , 

089.24 =B  and 03 =B   in (1-5), which gives 

 

018.9ˆ =LCU    317.4ˆ =LC     0ˆ =LCL . 

 

The corresponding Phase I S  chart is shown in Figure 1.3. The points plotted on the chart are the 

twenty sample standard deviation i.e. iS  for 20,...,2,1=i , of Table 1.1. Because none of the points 

plots outside the control limits, the process standard deviation is deemed to be in-control.  
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Figure 1.3: The Shewhart-type Phase I S  control chart for the data in Table 1.1 
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Phase I R  chart 
 

Lastly, consider the R  chart. This chart is popular in practice since the range is easy to calculate 

and it is known that for small samples, the range is an efficient estimator of the standard deviation of a 

normal distribution. 

 

In case of the R  control chart, the unknown process standard deviation, σ , is estimated using the 

unbiased point estimator  








== ∑
=

m

i
iR R

mdd

R

122

11σ̂    (1-6) 

where )min()max( ijiji XXR −= , nj ,...,2,1=  is the ith sample range and 2d  is an unbiasing constant 

which is tabulated, for example, in Appendix VI of Montgomery (2005). 

 

For the Phase I R  chart the charting statistics are the sample ranges i.e. iR  for mi ,...,2,1= , and 

the estimated k-sigma limits and the estimated centerline are (see e.g. Montgomery, (2005) p. 197 and 

p. 198) 

R
d

d
kLCU 








+=

2

31ˆ       RLC =ˆ            R
d

d
kLCL 








−=

2

31ˆ      (1-7) 

where 3d  is a known function of n  (see e.g. Montgomery, (2005) p.198). In routine applications, the 

charting constant k  is set equal to 3, which leads to a simpler representation of the estimated control 

limits of the R  chart i.e. 

   RDLCU 4
ˆ =   RLC =ˆ             RDLCL 3

ˆ =      (1-8) 

where 
2

3
3 31

d

d
D −=  and 

2

3
4 31

d

d
D +=  are constants and tabulated, for example, in Appendix VI of 

Montgomery, (2005). 

 

For the data of Table 1.1 it is calculated that  

66.10)40.5...10.1390.8(
20

1

20

1 20

1

=+++== ∑
=i

iRR  

and that 03 =D  and 114.24 =D ; using these values the estimated control limits and the estimated 

centerline of the R  chart are calculated using (1-8) and found to be 

 

52.22ˆ =LCU  66.10ˆ =LC       0ˆ =LCL . 
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The Phase I R  chart is shown in Figure 1.4. The points plotted on the chart are the sample ranges 

i.e. iR  for 20,...,2,1=i  listed in the last column of Table 1.1. Like the Phase I 2S  chart and the Phase 

I S  chart, there is no indication that the process spread is out-of-control. One would thus typically 

proceed with setting up the Shewhart-type Phase I X  for the mean as described by Champ and Jones 

(2004). 
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Figure 1.4: The Shewhart-type Phase I S  control chart for the data in Table 1.1 

 

 

 

There are a number of problems in setting up the Phase I control charts in the usual manner as 

described above. These problems are: 

 

 

(i) The m  charting statistics are simultaneously compared to the estimated control limits, which 

are functions of the estimated parameters and are therefore random variables themselves (this 

was indicated by the  ̂ - notation; read hat-notation). Since the charting statistics and the 

control limits are obtained using the same data, successive comparisons (over subgroups) of the 

charting statistics with the estimated control limits are dependent events. The signaling events 

(defined as the event when a charting statistic plots on or outside the control limits) for the ith 

and the jth  subgroups (where mji ,...,2,1=≠ ) are therefore statistically dependent.  

 

Thus, in order to correctly design a Phase I control chart in the unknown parameter case, both 

the dependence of the signaling events and the multiple nature of the comparisons inherent in 

the decision process must be taken into account.  Both of these considerations require a certain 

    22.52 

    10.66 

      0 
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joint probability distribution and this joint distribution (and the associated manipulations 

thereof) are at the heart of the study of a Phase I control chart (which is done in Chapter 2). 

 

 

(ii)  The estimated control limits of the Phase I 2S , S  and R  charts ignores the dependency 

between the signaling events and are incorrectly calculated in such a way as to ensure that the 

false alarm rate (denoted FAR  and defined as the probability for a single charting statistic to 

plot outside the control limits when the process is in-control) is approximately 0.0027. Given 

the inherently repetitive nature of a Phase I analysis and the fact that the charting statistics from 

all the subgroups are simultaneously compared with the same estimated control limits, using 

the FAR to design a Phase I chart is not a good idea since this naturally inflates the FAP  i.e. 

the probability that at least one charting statistic plots outside the estimated control limits when 

the process is in-control.  

 

The following example illustrates this problem in the context of the Shewhart-type X control 

chart in Case K: If there are 15 samples and one uses the traditional 3-sigma control limits for 

setting up a Phase I chart for the mean, iX , when standards are known (i.e. mean of 0µ  and 

variance equal to 2
0σ ) , the FAR is equal to 

 

0027.0

)|/3/3Pr(1

)|Pr(1

0000

=
+<<−−=

<<−=

ICnXn

ICUCLXLCLFAR

i

i

σµσµ  

 

for each sample, which is at a commonly desirable level, but theFAP  is equal to 
 

0397.0

)0027.01(1

alarm) false No Pr(1

alarm) false oneleast At  Pr(

15

=
−−=

−=
=FAP

 

 

which may be deemed rather large. Thus the recommendation is to determine the Phase I 

control limits so that the FAP   is controlled at some desirable (nominal) small value. 

 

 

(iii)  The estimated k -sigma control limits of the S  chart and the R chart are based on the tacit 

assumption that the sampling distributions of the sample standard deviation and the sample 

range are symmetric. It is well-known that this is not the case; in fact, the sampling 

distributions are asymmetric. 
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By using the relevant joint distribution of the charting statistics to calculate the charting 

constants this common mistake can be corrected. 

 

 

The above-mentioned problems with regard to the construction of the Phase I control charts for the 

variance, the standard deviation and the range lead to the question:  

 

How should one calculate the control limits of these three Phase I charts so that, 

when one simultaneously compares all m  the charting statistics with the 

corresponding control limits, the probability that at least one point plots outside the 

limits, if the process is in-control, is equal to a nominal (desired) value?  

 

 

This question is answered in Chapter 2 where we specifically study and design the Phase I 2S , S  

and R  control charts assuming that the mean and the variance are both unknown and are estimated on 

the basis of m  independent rational subgroups each of size n  available from a normally distributed 

process.  The derivations recognize that in Phase I (with unknown parameters) the signaling events are 

dependent and that more than one comparison is made against the same estimated limits 

simultaneously and leads to working with the joint distribution of a set of random variables.  Using 

intensive computer simulations, tables are provided for the charting constants for each chart for a given 

false alarm probability of 0.01, 0.05 and 0.10, respectively. 

 

 

In view of the problems currently associated with setting up Phase I control charts for the variance, 

the standard deviation and the range, an extensive overview of the literature on Shewhart-type Phase I 

parametric control charts for univariate variables data is presented assuming that the form of the 

underlying continuous distribution is known. The overview not only presents the current state of the art 

but also points out what challenges still remain. 
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1.1.2   Chapter 3 
 

 

Chapter 3 focuses on the Phase II Shewhart-type p-chart and c-chart with unknown parameters. For 

completeness we also study the statistical properties of these charts assuming that the parameters are 

known.  

 

Consider constructing a Phase II attributes p-chart or a Phase II attributes c-chart for the situation 

when the process parameters p  and c  are unknown and estimated from an in-control reference sample 

following a Phase I analysis. 

 

The setting up of the Phase II  p-chart and the Phase II  c-chart, in general, entails: 

 

(i) Obtaining a point estimate of the unknown process parameter based on the in-control Phase 

I data, 

(ii)  Estimating the Phase II control limits, and then  

(iii)  Comparing each Phase II charting statistic, one at a time and based on new incoming 

samples or inspection units, with the estimated Phase II control limits.  

 

As long as no Phase II charting statistic plots on or outside the control limits, we continue to draw 

successive samples from the process output and monitor the process. However, as soon as a charting 

statistics plots on or outside the estimated Phase II control limits, we stop the charting procedure, 

declare the process out-of-control and start a search for assignable causes. To illustrate the steps 

outlined in (i) to (iii) listed above we look at an example based on the data of Table 1.2 next; this 

example demonstrates how the Phase II attributes p-chart is typically implemented in practice. 

 

Column 1 of Table 1.2 lists the sample numbers; these range from 1 to 25. The iX  values in 

column 2 were obtained via simulation from a binomial distribution with parameters 50=n  and p . 

Note that, because we assume that the fraction nonconforming is unknown the value of p  is not 

mentioned here. In this simulated scenario we can assume that theseiX ’s represent the number of 

nonconforming items in 25 consecutive Phase II samples, each of size 50 , taken from the output of 

some process. The corresponding observed fractions nonconforming, i.e. 50/ii Xp = , are displayed in 

column 3. To illustrate the approach outlined in steps (i) to (iii) listed above, assume that p  was 

estimated from a Phase I study and found to be 0.175. Using this point estimate of the unknown 
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fraction nonconforming, typically denoted as p , and the data from Table 1.2 we can construct a 

Shewhart-type Phase II  p-chart.  

 

Table 1.2: Data for constructing Shewhart-type Phase II p-chart for monitoring the fraction 
nonconforming items in samples of size 50====n  

Sample number / 
Time ( i) 

Number of 
nonconforming items,  

iX  

Sample fraction 
nonconforming 

50/ii Xp ====  

1 14 0.28 
2 8 0.16 
3 12 0.24 
4 9 0.18 
5 12 0.24 
6 13 0.26 
7 11 0.22 
8 10 0.20 
9 16 0.32 

10 10 0.20 
11 7 0.14 
12 10 0.20 
13 11 0.22 
14 14 0.28 
15 9 0.18 
16 4 0.08 
17 10 0.20 
18 8 0.16 
19 12 0.24 
20 7 0.14 
21 11 0.22 
22 10 0.20 
23 10 0.20 
24 13 0.26 
25 9 0.18 

 

In case of the Phase II  p-chart, the estimated 3-sigma control limits and center line are 

 

npppLCU /)1(3ˆ −+=   pLC =ˆ      npppLCL /)1(3ˆ −−=  

 

where p  denotes the point estimate of the unknown fraction nonconforming, p , obtained at the end of 

a successful Phase I analysis and n  denotes the sample size (see e.g. Montgomery, (2005) p. 269). 

Note that, if the estimated lower control limit turns out to be negative, it is adjusted upward and set 

equal to zero.  

 

The Phase II charting statistics are the fractions nonconforming in the samples, i.e. ip  for 

,...2,1=i , 25 calculated from successive Phase II samples taken from the output of the process. 
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Based on the point estimate 175.0=p  the estimated 3-sigma control limits and centerline, for our 

example, are 

 

3362.050/)825.0(175.03175.0ˆ =+=LCU  

         175.0ˆ =LC  

0138.050/)825.0(175.03175.0ˆ =−=LCL . 

 

The Phase II p - chart is shown in Figure 1.5. The points that are plotted on the control chart are 

the ip ’s from column 3 of Table 1.2. Note that, unlike the Phase I charts discussed earlier,  each 

charting statistic of a Phase II control chart is plotted one at a time as soon as it is calculated from the 

most recent (i.e. the latest or last) sample taken from the output of the process; this typically happen in 

real-time.  Because none of the points plot outside the control limits, the process is deemed to be in-

control and we can continue to draw successive samples from the process output and monitor the 

process over time. 
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Figure 1.5: The Shewhart-type Phase II p -chart for the data in Table 1.2 with 1750.0====p  
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There is a major concern in setting up the Phase II p-chart in the usual manner as described above: 

 

The point estimate p  influences the performance of the Phase II p-chart and this influence 

is typically not taken into account when setting up a Phase II chart. To illustrate how 

significant the influence of  p  can be, suppose, for example, that a different Phase I sample 

was used to estimate p  and that 16.0=p , that is, 1750.0≠p . Under these circumstances 

the estimated Phase II control limits would be  

 
 

3155.050/)84.0(16.0316.0ˆ =+=LCU  

16.0ˆ =LC  

0045.050/)84.0(16.0316.0ˆ =−=LCL  

  

and the Phase II  p-chart, based on the data in column 3 of Table 1.2, with these estimated 

control limits are shown in Figure 1.6. It is observed that, with the point estimate of 

16.0=p , the estimated control limits are narrower (than those in Figure 1.5) and that the 

chart signals on the 9th sample indicating that the process is out-of-control. Thus, with a 

different Phase I sample and/or a change in the value of the point estimate, p ,  the Phase II 

p-chart can lead to a different decision regarding the state of the process. The same concern 

appears in application of the Phase II c-chart.  
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                                Figure 1.6: The Shewhart-type Phase II p -chart for the data in  

Table 1.2 with 1600.0====p  
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The questions that emanate from the above-mentioned concern regarding the application of the 

Phase II p-chart and the Phase II c-chart is: 

 

How large should the Phase I reference samples (used to estimate the unknown 

parameters p  and c ) be so that the performance of the charts when the parameters 

are unknown and estimated, is comparable to their performance when the 

parameters are known?  Are the widely-followed empirical guidelines (i.e. 20=m  

or 25 with 4=n  or 5 to estimate the unknown parameters) reasonable? 

 

 

To answer these questions, we investigate the effect of estimating the unknown parameters p  and 

c  on the performance of the charts in detail in Chapter 3. To do this, we derive and evaluate 

expressions for the run-length distributions of the Phase II Shewhart-type p-chart and the Phase II 

Shewhart-type c-chart when the parameters are estimated. We then examine the effect of estimating p  

and c  on the performance of the p-chart and the c-chart via their run-length distributions and 

associated characteristics such as the average run-length, the false alarm rate and the probability of a 

“no-signal”.  

 

An exact approach based on the binomial and the Poisson distributions is used to derive 

expressions for the Phase II run-length distributions and the related Phase II characteristics using 

expectation by conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the 

run-length distributions conditioned on point estimates from Phase I and then find the unconditional 

characteristics by averaging over the distributions of the point estimators. 

 

Next, the in-control and the out-of-control properties of the charts are looked at. The results are 

used to discuss the appropriateness of the widely followed empirical rules for choosing the size of the 

Phase I sample, used to estimate the unknown parameters; this includes both the number of reference 

samples m  and the sample size n . 
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1.1.3   Chapter 4 
 

 

Chapter 4 focuses on improving some of the existing nonparametric control charts and designing 

new distribution-free charting procedures. 

 

Consider the situation where monitoring the location parameter, θ , of a quality characteristic (that 

is measured on a continuous numerical scale) with an unknown continuous cumulative distribution 

function is of interest. In such a case the usual control chart procedures that are based on a particular 

parametric distribution are not appropriate and a distribution-free (or nonparametric) control chart 

procedure would be more useful. 

 

If θ  is the median and it is required to monitor whether or not θ  changes (i.e. moves away) from 

its specified or known value, 0θ  (say), one can construct a control chart that uses the well-known sign 

test statistic as a charting statistic. A Shewhart-type control chart based on the sign test statistic was 

studied by Amin, Reynolds and Bakir (1995) and is known as the sign chart. Using the sign chart 

entails that one: 

 

(i) Takes successive samples of size n  from the process output, 

(ii)  Calculates the number of observations greater than or equal to the specified value, 0θ , 

within each sample, iT  (say), and then 

(iii)  Compares each charting statistic, iT , one at a time, with appropriately chosen control 

limits. 

 

The sign chart signals, like any other typical Shewhart-type control chart, if a single point plots on 

or outside the control limits, that is, on or below the lower control limit or, on or above the upper 

control limit. 

 

The sign chart is easy to apply in practice and it requires the minimum number of assumptions 

(namely it only requires that the underlying process distribution be continuous and that a specified 

value, 0θ ,  for the location parameter, θ , is available) but, it has a serious shortcoming. For any 

sample size, n , the number of possible in-control average run-length values (0ARL ’s) to choose from 

when designing the chart is limited and, furthermore, the maximum attainable 0ARL , for a two-sided 

chart, is 12 −n . For 5=n , which is often the recommended sample size used in practice, the maximum 
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0ARL  is 162 15 =− ; the corresponding false alarm rate is 0625.016/1/1 0 ==ARL . Such a small 0ARL  

or, alternatively, such a large FAR , implies that the chart would signal (erroneously) more often than a 

typical 3-sigma Shewhart-type chart and would lead to deteriorated performance of the charting 

procedure.  

 

To allow the practitioner more flexibilily in designing the sign chart, that is, to have a wider range 

of  0ARL ’s and FAR ’s to choose from, in this thesis we enhance the sign chart by proposing new 

runs-type signaling rules  (i.e. decision rules). These signaling rules are based on runs of the charting 

statistics outside the control limits. Similar signaling rules were successfully used, for example, by 

Chakraborti and Eryilmaz (2007) to solve a similar weakness of the signed-rank chart introduced by 

Bakir (2004). In addition to the signaling rules, we further improve the sign chart of Amin, Reynolds 

and Bakir (1995) and consider the situation where it is required to monitor percentiles other than the 

median. 

 

If expert knowledge is not available and a value for the location parameter, θ , can not be specified 

one can not use the sign chart; this situation requires a different nonparametric control chart i.e. one 

requires a nonparametric control chart that can handle the scenario where monitoring a continuous 

random variable with an unknown cumulative distribution function and an unknown or an unspecified 

value for the location parameter is of interest. Chakraborti, Van der Laan and Van de Wiel (2004) 

considered a class of nonparametric control charts capable of solving this problem. Their charts, called 

precedence charts, are based on the two-sample median test statistic, which requires the availability of 

an in-control Phase I reference sample from which to estimate the control limits.  

 

To construct a precedence chart entails: 

 

(i) Arranging the observations mXXX ,...,, 21  from the in-control Phase I reference sample of 

size m  in ascending order i.e. mmmm XXX ::2:1 ,...,, , where miX :  is the i th smallest observation 

in the group of m ; 

 

(ii)  Estimating the lower control limit and the upper control limit by maXLCL :
ˆ =  and 

mbXLCU :
ˆ = , where maX :  and mbX :  (with mba ≤<≤1 ) are suitably selected order statistics 

from the Phase I sample; 
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(iii)  Obtaining new incoming Phase II samples each of size n  (independently from one another 

and from the Phase I sample);  

 

(iv) Calculating the charting statistic, njY : , which is the j th order statistic of the Phase II sample 

and depends on the quantile being monitored, and then 

 

(v) Comparing each  njY :  , one at a time, with the estimated control limits.  

 

The precedence chart signals if a single point plots on or outside the control limits. 

 

In this thesis we extend the precedence charts of Chakraborti et al. (2004) by incorporating the 

same signaling rules (or tests), involving runs of the charting statistic, that we used with the sign chart.  

These signaling rules, as mentioned earlier, are appealing because Chakraborti and Eryilmaz (2007) 

showed that when the in-control median is specified (and it is not necessary to estimate the median) 

the incorporation of similar rules provide more practical and powerful control charts. Similar 

extensions have been considered in the literature for Shewhart-type control charts in the case of the 

normal distribution (see e.g. Nelson, (1984), Klein, (2000) and Shmueli and Cohen, (2003)).  

 

To summarize:  

 

In Chapter 4 a new class of nonparametric control charts with runs-type signaling 

rules for the situations where the location parameter of the distribution is known 

and unknown is considered. In the former situation the charts are based on the sign 

test statistic and enhance the sign chart proposed by Amin et al. (1995); in the latter 

situation the charts are based on the two-sample median test statistic and improve 

the precedence charts by Chakraborti et al. (2004). 

 

 

To design the nonparametric control charts and study their performance, their run-length 

distributions are required. The run-length distributions and the associated performance characteristics 

for the “runs rule enhanced” charts are derived by using a Markov chain approach (see e.g. Fu and 

Lou, (2003)) and, in some cases, we also draw on the results of the geometric distribution of order k  

(see e.g. Balakrishnan and Koutras, (2002), Chapter 2). To implement the charts in practice we provide 

tables with the necessary charting constants and/or control limits and examples are given to illustrate 

the application and usefulness of the charts. 
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Lastly, the in-control and the out-of-control performance of the new distribution-free charts are 

studied and compared to the existing nonparametric charts, using the average run-length, the standard 

deviation of run-length, the false alarm rate and some percentiles of the run-length, including the 

median run-length.  It is shown that the newly developed runs rules enhanced sign charts offer more 

practically desirable in-control average run-lengths and false alarm rates than the sign chart of Amin, 

Reynolds and Bakir (1995) and the precedence charts of Chakraborti, Van der Laan and Van de Wiel 

(2004) and, perform better than the Shewhart X chart and a number of existing nonparametric charts 

for some distributions. 

 

 

Layout of the Thesis 
 

The rest of this thesis is structured as follows. In Chapter 2 we look at Phase I variables control 

charts; this includes the design of the Phase I 2S , S  and R  charts and an in-depth overview of the 

literature on Phase I parametric control charts for univariate variables data. In Chapter 3 we study the 

Phase II Shewhart-type p-chart and the Phase II Shewhart-type c-chart. In Chapter 4 we design a new 

class of nonparametric Shewhart-type control charts with runs-type signaling rules (i.e. runs of the 

charting statistics above and below the control limits) for the scenarios where the percentile of interest 

of the distribution is either known or unknown. Lastly, in Chapter 5 we wrap up this thesis with a 

summary of the research carried out and offer concluding remarks concerning unanswered questions 

and/or future research opportunities. In Chapter 5 we also list the research outputs related to and based 

on this thesis; this list includes the details of the technical reports and the peer-reviewed articles that 

were published, the articles that were accepted for publication, the local and the international 

conferences where papers were presented and the draft articles that were submitted and are currently 

under review.  
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Chapter 2 
 

Variables control charts: Phase I 
 

 

2.0    Chapter overview 
 

 

Introduction 
 

In practice the statistical process control (SPC) regime is implemented in two phases: Phase I, the 

so-called retrospective phase, and Phase II, the prospective or the monitoring phase (see e.g. Woodall, 

(2000)). 

 

In Phase I the primary interest is to better understand the process and to assess process stability. 

The latter step consists of trying to bring a process in-control by analyzing historical data in order to 

locate and eliminate assignable causes of variation.  A process operating at or around a desirable level 

or specified target with no assignable causes of variation is said to be stable, or in statistical control, or 

simply in-control (IC). 

 

Montgomery (2005) p. 199 describes the process of establishing control in Phase I as iterative and 

that the control limits are viewed as trial limits. Once statistical control is established to the satisfaction 

of the user, any unknown quantities or parameters are estimated from the in-control data which leads 

to the setting-up of control charts so that effective process monitoring can begin in Phase II. 

 

In addition to the use of various exploratory (e.g. graphical) and confirmatory (e.g. testing of 

hypotheses) statistical tools, control charts play a crucial role in a Phase I analysis.  They help in 

getting a better view of what is going on over time and assist in diagnosing the source(s) of assignable 

causes so that their effect can be minimized or removed. 
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Motivation 
 

The success of process monitoring in Phase II depends critically on the success of the 

corresponding Phase I analysis.  In this regard, the effects of parameter estimation based on Phase I 

reference data on the performance of Phase II control charts have been studied by several authors (see 

e.g. Jensen et al. (2006) for an overview). These studies emphasize the importance for a proper 

understanding of the issues while setting accurate Phase I control limits. 

 

The most familiar control charts in practice include those for the mean and the spread i.e. the 

variance and/or the standard deviation, of an assumed (at least approximately) normally distributed 

process.  While Champ and Jones (2004) studied the Shewhart-type Phase I X  chart for the mean, we 

study and design Shewhart-type Phase I 2S , S  and R  charts for the process variance and/or standard 

deviation. The spread charts are particularly important since an estimate of the variance or the standard 

deviation is usually necessary in setting up the control chart for the mean.  Thus, the spread of the 

process must be monitored and controlled before (or at least simultaneously) attempting to monitor the 

mean. 

 

Despite the fact that Phase I analysis is such an important component of SPC, not all authors make 

a clear distinction between Phases I and II or discuss the various ramifications in the current teaching 

and practice of SPC.  Moreover, although several authors studied some statistical aspects of Phase I 

control charting methods, a search of the standard textbooks on SPC methods (with some exceptions, 

such as Montgomery, (2005) p. 199) did not reveal much, if any, discussion of this important topic. It 

would therefore be helpful and beneficial for researchers, instructors (educators) and practitioners to 

know what the issues are, what the present state of the art is and what challenges still remain.  To this 

end, an overview of the literature on univariate parametric Shewhart-type Phase I variables control 

charts for the mean and the variance is given, under the assumption that the form of the underlying 

continuous process distribution is known. 

 

 

Methodology 
 

A key to the Phase I analysis, as Champ and Jones (2004) stated, “requires a different paradigm 

than studying the prospective monitoring of a process”.  One implication of this statement is that the 

metric of a control chart’s performance must be carefully chosen depending on which phase of the 

analysis (I or II) one is referring to.  
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Because Phase I control charting is about ensuring that a process is in-control, it is in principle 

similar to a multi-sample hypothesis testing problem for homogeneity that tests if the data from several 

independent samples come from the same (in-control) distribution or process.  With this motivation, 

the false alarm probability, denotedFAP , is the criterion typically used to measure and evaluate 

control limits in Phase I. The FAP  is defined as the probability of at least one false alarm (signal) 

when the process is actually in-control. 

 

The Phase I 2S , S  and R  control charts that are developed in this chapter are designed and/or 

implemented by specifying a nominal false alarm probability, say 0FAP , and then determining the 

charting constants (Phase I control limits) so that the FAP  is less than or equal to the 0FAP . The 

derivations take into account that the signaling events (when a charting statistic falls outside either of 

the control limits) are dependent and use the relevant joint probability distribution of the Phase I 

charting statistics while computing the FAP . 

 

 

Layout of Chapter 2 
 

We begin with a general discussion of Phase I, in which we describe the goals and discuss some of 

the standard methods for designing and implementing Shewhart-type Phase I charts; this is done 

Section 2.1. The design of the Shewhart-type Phase I 2S , S  and R  charts are then studied in Section 

2.2. This is followed by an overview of the literature on univariate parametric Shewhart-type Phase I 

control charts for the mean and the spread of variables data in Section 2.3. Finally, we conclude 

Chapter 2 with a summary and recommendations for future research. 
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2.1     Phase I SPC  
 

 

Introduction 
 

Much of the preliminary statistical analysis is done in Phase I. This includes planning, 

administration, design of the study, data collection, data management, exploratory work (including 

graphical and numerical analysis, goodness-of-fit analysis, and so on) to ensure that the process is truly 

in a state of statistical control (see e.g. Woodall, (2000) and Montgomery, (2005) p. 168 and p. 199). 

The goal is to make sure that a process is operating at or near an acceptable target(s) under some 

natural or common causes of variation and that no special causes or concerns are present. In this regard 

Phase I control charts play an important role. While Champ and Jones (2004) studied the Shewhart-

type Phase I X  chart for the mean, we study and design Shewhart-type Phase I 2S , S  and R  charts 

for the process variance and/or standard deviation. 

 

 

Case K and Case U 
 

If target values of the parameters of interest are known, one needs to ensure that the process is 

operating at or around these given targets subject only to common causes of variation. This situation is 

referred to as the “Standards Known Case” and denoted Case K. 

 

If the parameters are unknown, establishing control involves estimation of the parameters and the 

control limits; this causes that both the charting statistics and the control limits of a Phase I chart are 

random variables. This situation is referred to as the “Standards Unknown Case” and denoted Case U.   

 

Although both of these situations can occur in practice, Case U occurs more often, particularly 

when not much historical information or expert opinion is available. 

 

 

Phase I control charting 
 

At the beginning of a Phase I analysis it is assumed that m independent random samples or rational 

subgroups are available, each of size 1>n , taken sequentially over time from a process with a 

continuous cumulative distribution function (c.d.f) );( θxF , where F is a known function and 

),...,,( 21 kθθθ=θ , 1≥k , is a vector of unknown parameters.  Symbolically, we write );(~ θxiidFX ij  
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where iid denotes “independently and identically distributed”, andijX  denotes the thj  observation in 

the thi  sample for mi ,...,2,1=  and nj ,...,2,1= . 

  

 Generally speaking, depending on the parameter of interest, we calculate a charting statistic iC  for 

mi ,...,2,1=  from each subgroup and calculate the point estimates )ˆ,...,ˆ,ˆ(ˆ
21 kθθθ=θ  using the mn  

individual observations combined (pooled). Using statistical distribution theory and some given 

performance criterion, an estimated lower and upper control limit, denoted 

)ˆ(ˆ
1 θgLCL =             and             )ˆ(ˆ

2 θgLCU =  

are then obtained, where 1g  and 2g  are two specified functions of θ̂  such that LCULCL ˆˆ < . 

 

A plot of the charting statistics (from all m the subgroups) together with the estimated control 

limits constitutes the Phase I control chart. 

  

If all m  the charting statistics plot between the control limits and no systematic pattern is present, 

the process is considered to be in control (IC).  On the contrary, if any one or more of the iC ’s  fall on 

or outside the estimated control limits, the process is declared to be out-of-control (OOC) and some 

action or intervention is required. This entails, for example, that the OOC samples are re-examined, 

possibly discarded and the remaining samples are then re-checked for control.  Revised values are 

subsequently obtained for the estimators as well as the control limits from the remaining samples and 

the corresponding charting statistics are then plotted against the revised limits.  

 

This iterative trial-and-error process continues until all the charting statistics plot inside the latest 

control limits for the samples at hand.  Once this state is reached, the remaining data are thought to be 

from an in-control process and this final Phase I data set is used to find appropriate control limits for 

Phase II monitoring of the process.  This final Phase I data is referred to as in-control data or a set of 

reference data. 

 

Note that, if at any stage during Phase I control charting it happens that some of the Phase I 

charting statistics plot outside the estimated control limits but no assignable cause(s) can be found that 

justify their removal, the process may be considered in-control and the observations from these 

samples are then included in the reference data.  
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Remark 1 
 

(i) Intuitively, the charting statistic iC  for the ith sample is taken to be an efficient estimator of 

the parameter of interest. 

 

For example, if it is assumed that the underlying process distribution is normal with an 

unknown mean µ  and an unknown variance 2σ , the data would be represented as 

),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1= ; thus, if the unknown process mean µ  

is the parameter of interest, the ith sample mean iX  (the best estimator) is a natural charting 

statistic. 

 

(ii)  Estimation of the parameters is an important step in setting-up control charts in Case U.  

Unbiased estimators are preferred and if more than one such estimator is available, the 

minimum variance unbiased (MVU) estimators should be used. 

 

For example, if it is assumed that ),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1=  

where both µ  and 2σ  are unknown, it is common practice to use the overall mean of the 

pooled sample 
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 to estimate 2σ . In this case, we would say that ),(ˆ VX=θ  estimates ),( 2σµ=θ . 

 

(iii)  Since the Phase I charting statistics and the estimated control limits are obtained using the 

same data, successive comparisons (over subgroups) of the charting statistics with the 

estimated control limits are dependent events.  This implies that the signaling events (i.e. 

the event that a charting statistic falls on or outside the control limits) or the non-signaling  

events (i.e. the event that a charting statistic plots between the control limits) for the ith and 

the jth subgroups, where mji ,...,2,1=≠ , are statistically dependent. 
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To illustrate the dependency of the non-signaling events, assume, for example, that 

),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1=  where both µ  and 2σ  are unknown 

and that we are interested in monitoring the mean. In this case, the sample means iX  for 

mi ,...,2,1=  would be the Phase I charting statistics and the MVU’s are ),(ˆ VX=θ , which 

would be used to estimate the unknown parameters ),( 2σµ=θ . Thus, writing the 

estimated control limits as functions of θ̂  i.e. 

),(ˆ
1 VXgLCL =        and           ),(ˆ

2 VXgLCU =  

it is clear that the events 

       }|),(),({ 21 1
ICVXgXVXg t <<          and          }|),(),({ 21 2

ICVXgXVXg t <<  

where mtt ,...,2,121 =≠  are dependent, because the overall mean X  and the pooled 

variance V  are  functions of all the ijX ’s. 

 

It is important to note that, because the m  charting statistics are compared to the control 

limits simultaneously, the false alarm probability (which is the probability for one or more 

of the charting statistics to plot outside the control limits when the process is in-control) is 

expected to be inflated.  Thus, in order to correctly design a Phase I control chart in Case U, 

the dependence of the signaling events and the multiple nature of the comparisons must be 

taken into account.   

 

(iv) It is believed that at the end of a successful Phase I analysis the practitioner will have a set 

of in-control data or reference data which can be used to estimate any unknown parameters 

and to obtain a set of control limits to be used in Phase II process monitoring.  

Without any loss of generality, it is assumed that m  denotes the final number of reference 

samples at the end of a successful Phase I analysis.  Thus the reference data set is assumed 

to have mnN =  individual observations. 

 

(v) For greater generality, only two-sided charts are considered in the discussions that follow. 

In applications where a one-sided chart is more meaningful or preferred, these discussions 

can be suitably adapted. 
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2.1.1 Design and implementation of two-sided Shewhart-type Phase I charts 
 

 

Introduction 
 

The decision problem under a Phase I control charting scenario is similar, in principle, to a multi-

sample test of homogeneity problem where one tests whether the data from various samples come 

from the same in-control distribution or in-control process (see e.g. Champ and Jones, (2004)).  

 

Under this motivation, the false alarm probability (FAP ), which is the probability of at least one 

false alarm when the process is in-control, is used to construct and evaluate Phase I control charts and 

not the false alarm rate (FAR ), which is the probability for a single charting statistic to plot outside the 

control limits when the process is in-control. 

 

 

False alarm probability 
 

An out-of-control situation is indicated when a charting statistic falls either on or above the 

estimated upper control limit or plots on or below the estimated lower control limit.  This important 

event is called a signal or a signaling event. 

To study the false alarm probability it is convenient to consider the complementary event, that is, 

when a subgroup does not signal, called the non-signaling event.  Thus, if  

}ˆˆ{ LCUCLCLE ii <<=     for     mi ,...,2,1=  

denote the non-signaling event for the i th subgroup, the false alarm probability can be expressed as  
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where ),...,,( 21,...,, 21 mCCC cccf
m

 denotes the joint probability density function (p.d.f) of the charting 

statistics mCCC ,...,, 21  when the process is in-control and for notational convenience the estimated 

control limits are written as lLCL =ˆ  and uLCU =ˆ . 

 

 

False alarm rate 
 

The false alarm rate, which is the probability of a single charting statistic plotting outside the 

control limits when the process is in-control, can be expressed as  

∫−=<<−=
u

l

iiCi dccgICLCUCLCLFAR
i

)(1)|ˆˆPr(1   (2-2) 

where )( iC cg
i

 denotes the marginal p.d.f of any of the charting statistics iC  for mi ,...,2,1=  when the 

process is in-control. 

 

 

Remark 2 
 

(i) It is clear from (2-1) that theFAP  involves m non-signaling events simultaneously. Also, 

because the control limits are estimated and the charting statistics are all compared with the 

same pair of control limits, the non-signaling events are dependent. Hence, calculation of 

the FAP  requires knowledge of the joint (multivariate) distribution of the charting 

statistics, when the process is in-control; this is highlighted in the last step of (2-1). The 

derivation of this joint distribution and the subsequent determination of the control limits 

(associated charting constants) form the main stumbling blocks in the study and the design 

of Phase I control charts. 

 

(ii)  Expression (2-2) shows that the FAR  involves only a single sample and a single signaling 

event. Calculation of the FAR  therefore requires only the marginal (univariate) distribution 

of the ith charting statistic iC  when the process is in-control. This in-control marginal 

distribution is typically the same for all ,,....,2,1 mi =  so that it can be called a common 

FAR. 

 

(iii)  Given the inherent repetitive nature of a Phase I analysis and the fact that the charting 

statistics from all m  the subgroups are judged simultaneously, the FAP  is a more useful 

and logical metric.  The FAP  is as a result the recommended chart design criterion adopted 
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in Phase I so that a Phase I control chart is designed by specifying a nominal false alarm 

probability, say 0FAP , as apposed to specifying a nominal FAR , say 0FAR . 

 

(iv) The objective and the design criterion in Phase I is different from designing Phase II 

control charts (see e.g. Chapter 3), based on in-control Phase I data, where one would 

specify some attribute of the in-control Phase II run-length distribution, such as the average 

run-length ( 0ARL ), to determine the control limits.  

 

Also, even though the FAR  is a commonly used performance measure in practice, it is 

most often used in the design of Phase II control charts. When the FAR  is used in 

designing a Phase I control chart it should be done with caution and the user should be 

aware of the effects on the performance of the Phase I chart; this is discussed in more detail 

in the next section.  

 

 

Implementation of two-sided Shewhart-type Phase I charts 
 

Implementation of Phase I charts requires the determination of the control limits and/or the 

charting constants. Different approaches exist and may be used. Each approach is based on an 

assumption regarding the dependence or independence of the charting statistics coupled with a 

particular performance criterion. Four approaches are considered and they are: 

(i) FAP-based control limits, 

(ii)  FAR-based control limits, 

(iii)  Approximate FAR-based control limits, and  

(iv) Bonferroni control limits. 

 

Methods (ii), (iii) and (iv) assume that the charting statistics are independent and use the FAR , in 

some way or another, in their design. However, while method (ii) incorrectly ignores the fact that 

several charting statistics are compared to the control limits at the same time, methods (iii) and (iv) do 

not. Furthermore, while method (ii) focuses exclusively on controlling the FAR  at a nominal value of 

0FAR , methods (iii) and (iv) indirectly controls the FAP  by adjusting the FAR . 

 

Method (i), on the other hand, is distinctly different from methods (ii), (iii) and (iv) as it correctly 

controls the FAP  by explicitly taking into account the dependency between the charting statistics and 

the signaling events. 
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Method (i): FAP-based control limits 
 

The FAP-based control limits are the optimal pair of limits because they are derived from the 

relevant joint p.d.f of the charting statistics which correctly accounts for: (i) the fact that the Phase I 

control limits are estimated, (ii) the Phase I signaling events are dependent, and (iii) that multiple 

charting statistics are compared with the estimated control limits in a single step. 

 

In this approach the design of a Phase I control chart requires the user to specify a desirable 

nominal FAP value and then find the corresponding control limits.   This means that one needs to solve 

for that combination(s) of values of 
0FAPll =  and 

0FAPuu =   such that 
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where 0FAP  is the nominal value of FAP (typically set equal to 0.01, 0.05 or 0.10 in practice) and 

0FAPl  and 
0FAPu  denote the lower and the upper FAP -based control limits, respectively. 

 

Finding the two unknowns 
0FAPl  and 

0FAPu  from expression (2-3), uniquely, poses a problem 

without additional restrictions.    For example, in some cases the charting statistics are symmetrically 

distributed around zero (without any loss of generality) and then it makes sense to use symmetric 

control limits, that is, setting dLCULCL −=−= ˆˆ , say, where d  is then obtained by solving 
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If the plotting statistics are not symmetrically distributed and two-sided control charts are desired, 

one possibility is to use the equal-tailed conservative approach in which half the nominal FAP  is 

assigned in each tail i.e. half above the LCU ˆ  and half below the LCL ˆ , respectively.   This approach 

can be more clearly explained by expressing the FAP  of (2-1) as 
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Expression (2-5a) follows since the event that at least one of the charting statistics plot either above 

or below the control limits can be equivalently expressed as the union of two events: (i) that the 

minimum of the charting statistics lies below the LCL ˆ , and (ii) that the maximum of the charting 

statistics lies above the LCU ˆ .  From (2-5a) it follows that an upper bound for the FAP  is given by 

  
).|),...,,Pr(max()|),...,,Pr(min( 2121 ICuCCCIClCCCFAP mm ≥+≤≤     (2-5b) 

 

The equal-tails conservative method entails that one finds those values of the FAP -based control 

limits 
0FAPll =  and 

0FAPuu =  such that  

( ) 2/|),...,,min(Pr 021 0
FAPIClCCC FAPm =≤    (2-6a) 

and  

                                      ( ) 2/|),...,,max(Pr 021 0
FAPICuCCC FAPm =≥ .    (2-6b) 

and ensures that the false alarm probability is not greater than 0FAP . 

 

Using expressions (2-6a) and (2-6b) rather than (2-3) or (2-5a) to solve for 
0FAPl  and 

0FAPu  may be 

advantageous in some cases in the sense that it involves calculating the percentiles of some univariate 

distributions i.e. the distributions of the minimum and the maximum, which might be computationally 

easier than using the multivariate p.d.f in (2-3) or using the joint distribution of the minimum and the 

maximum in (2-5b) . However, finding closed form expressions for the p.d.f.’s of 

),...,,min( 21min mCCCC =        and       ),...,,max( 21max mCCCC =  

to evaluate analytically is complex as the iC ’s are statistically dependent random variables. 

 

Attained False Alarm Rate 
 

Given the FAP -based control limits 
0FAPl  and 

0FAPu  that satisfy (2-3) or (2-6a) and (2-6b), one may 

be interested in calculating the attained false alarm rate (AFAR ). TheAFAR  is the resultant 

probability for a single charting statistic to plot outside the FAP -based control limits when the process 

is in-control, and defined as  

    ∫−=<<−=
0

0
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)(1)|Pr(1

FAP

FAP

i

u

l

iiCFAPiFAP dccgICuClAFAR .                             (2-7) 

Using (2-7) one can compute the AFAR  given the marginal distribution )(iC cg
i

 of iC  for mi ,...,2,1=   

is known.
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Method (ii): FAR -based control limits 
 

Classically (see e.g. Hillier, (1969) and Yang and Hillier, (1970)) a Phase I chart is designed by 

controlling the false alarm rate at a nominal FAR  value, 0FAR  say. This entails finding that/those 

combination(s) of values for the control limits such that  

 

     ∫−=<<−=
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iiCFARiFAR dccgICuClFAR                  (2-8) 

where 
0FARl  and 

0FARu  denote the lower and the upper FAR -based control limits, respectively. 

 

It is evident from (2-8) that the FAR-based control limits use only the marginal distribution )(iC cg
i

 

for mi ,...,2,1=  of a single charting statistic to find the Phase I control limits and overlooks the fact 

that multiple charting statistics are simultaneously compared with the estimated control limits. Hence, 

this approach is flawed can be improved upon.  

 

Attained False Alarm Probability 
 

Given the values 
0FARl  and 

0FARu  that satisfy (2-8), the attained false alarm probability (AFAP ) 

may be calculated from (2-3) as  
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The AFAP  is the resultant probability that at least one charting statistic will plot outside the FAR-

based control limits when the process is in-control.  

 

Remark 3 
 

Solving for the control limits from (2-8) and then using the resultant FAR-based control 

limits to construct a Phase I chart not only ignores the fact that multiple charting statistics 

are compared to the control limits at the same time, but also ignores the dependency 

between the signaling events. The attained false alarm probably might thus be far-off the 

desired 0FAP  and, as a result, this approach is not recommended. Typically the AFAP  is 

inflated and larger than the chosen 0FAR . 
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If only the marginal distribution of iC  for mi ,...,2,1=  is available and one wishes to design a 

Phase I chart so that the FAP  is close to 0FAP  one may use the approximate FAR-based control limits 

or the Bonferroni control limits to find approximate Phase I control limits. Both these approaches 

assume that the iC ’s are independent and works with the (exact) marginal distribution of the charting 

statistic, but they do take into account that more than one signaling event need to be dealt with. 

 

 

Method (iii): Approximate  FAR-based control limits 
 

A simple and popular alternative to the exact FAP-based control limits is the approximate FAR-

based control limits. The latter is often used and yields an approximate solution (see e.g. Champ and 

Jones, (2004)). 

 

In this approach one approximates the Phase I control limits by ignoring the dependence among the 

signaling events, but account for the fact that multiple comparisons are made at the same time. 

 

In particular, when the number of subgroups m is large, the correlation among the charting 

statistics approaches zero and the charting statistics are approximately independent. Then, from (2-1) 

and (2-2) it can be seen that 
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so that  

     mFAPFAR
1

)1(1 −−≈ .     (2-11) 

 

Expressions (2-10) and (2-11) show the relationship between the FAP  and the FAR  for large m  

and can be used to ensure that the 0FAPFAP ≈  by controlling the FAR . 

 

For example, it follows from (2-11) that for symmetrically distributed charting statistics the 

approximate FAR-based control limits are given by the 

100])1(1[
2

1 1

0
mFAP−− th    and  100}])1(1{

2
1

1[
1

0
mFAP−−− th 

percentiles of the marginal in-control distribution of a single charting statistic and would yield a false 

alarm probability of approximately 0FAP . 
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For asymmetric approximate FAR-based control limits one may use the 

100])1(1[
1

0
mFAPw −− th  and  100}])1(1){1(1[

1

0
mFAPw −−−− th 

percentiles of the marginal in-control distribution of iC  for  mi ,...,2,1= , with 10 ≤≤ w . 

 

 

Method (iv): Bonferroni control limits 
 

A fourth approach is to use a Bonferroni-type adjustment when calculating the Phase I limits. This 

method also yields an approximate solution, but is applicable whether or not the charting statistics are 

symmetrically distributed and ensures that the false alarm probability is at most as specified (see e.g. 

Ryan, (1989) p. 74 - 76). 

 

It follows from Bonferroni’s inequality (see e.g. Casella and Berger, (2002) p. 13) that one can find 

an upper bound for the false alarm probability as a function of the false alarm rate; this upper bound is 

given by  
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If it is desired that the 0FAPFAP ≤ , it is seen from (2-12) that setting 0FAPmFAR =  i.e. setting 

the false alarm rate equal to mFAPFAR /0= , would meet the requirement. In this case, the 

symmetrically placed control limits are given by the 

 

    100]2/[ 0 mFAP th       and       100)]2/(1[ 0 mFAP− th 

 

percentiles of the marginal in-control distribution of a single charting statistic. 
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Remark 4 
 

(i) In some situations it may be reasonable to assume that the marginal distribution of the 

charting statistics iC  for mi ,...,2,1=  is normal (or, at least approximately so) and then use 

the percentiles of a normal distribution to find the control limits in the FAR-based  

approach, the approximate FAR-based approach and/or the Bonferroni approach, instead of 

using the exact marginal distribution )(iC cg
i

 for mi ,...,2,1= . This, however, might result 

in a Phase I control chart with incorrectly placed limits, especially when m  and n  are not 

large. 

 

Although the assumption of normality might be acceptable in some cases, there are 

scenarios (e.g. the 2S , S  and R  charts) where the marginal distribution of the charting 

statistic (e.g. the sample variance or the sample standard deviation or the sample range) is 

markedly non-normal; this is particularly true when small sample sizes are used. 

 

(ii)  The approximate FAR-based limits and the Bonferroni limits are easier to calculate than the 

exact FAP-based limits because one does not need to work with the joint distribution of the 

entire set of charting statistics. However, these two sets of limits are generally not suitable 

if the number of subgroups m  is small. 
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Comparison of methods (i), (ii), (iii) and (iv) to design a Shewhart-type Phase I control chart 
 

The four methods to design a Shewhart-type Phase I chart are illustrated in Figure 2.1 for the X  

chart in Case U. For this illustration a set of simulated data from the standard normal distribution was 

used and it was assumed that 15=m  random samples each of size 5=n  are available. The charting 

statistics are the sample means iX  for 15,...,2,1=i  of the simulated data in this research. The details 

on how to calculate the four pairs of control limits are given in Champ and Jones, (2004). 

 

It is seen that there can be more false alarms if one uses the FAR-based control limits, denoted 

LCL(FAR) and UCL(FAR), than when one uses the FAP -based control limits.  This is simply because 

the FAR-based control limits are tighter than the FAP-based control limits, denoted LCL(FAP) and 

UCL(FAP).  

 

In contrast, it is noticed that the approximate FAR-based control limits (i.e. LCL(Approx FAR) 

and UCL(Approx FAR)) and the Bonferroni control limits (i.e. LCL(Bon) and UCL(Bon)) almost 

coincide and are both slightly wider than the FAP-based control limits. It is thus likely that one can 

observe less false alarms if one uses the approximate FAR-based control limits or the Bonferroni 

control limits instead of the FAP-based control limit. Although less false alarms might be appealing 

from a practical point of view, if the control limits are too wide, unwanted variation might go 

undetected. 
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Figure 2.1:   Shewhart-type Phase I X  control charts in Case U 
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2.2    Shewhart-type S2, S and R charts: Phase I 
 

 

Introduction 
 

The most familiar control charts in practice include those for the mean and the variance of an 

assumed (at least approximately) normally distributed process. While Champ and Jones (2004) studied 

the Shewhart-type Phase I X  chart for the mean, we study and design Shewhart-type Phase I 2S , S  

and R  charts for the spread. 

 

Control charts for the spread are particularly important since an estimate of the variance or the 

standard deviation is necessary in creating a control chart for the mean.  The spread must therefore be 

monitored and controlled before (or at least simultaneously) attempting to monitor the mean. 

 

 

Assumptions 
 

Suppose that m  independent rational subgroups each of size 1>n  are available from a normal 

distribution with an unknown mean µ  and an unknown variance 2σ .  The data are represented as 

),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1=  where ijX  is thej th observation from the i th 

subgroup.  

 

 

Point estimators for the unknown standard deviation and the unknown variance and their 

probability distributions 
 

Estimation of the mean and the variance affects the performance of the 2S , S  and R  charts 

because their control limits are defined in terms of the unknown variance and the charting statistics (in 

case of the 2S  chart and the S  chart) also depend on the unknown mean.  Furthermore, the sampling 

distributions of the charting statistics are affected since the degrees of freedom of the chi-square 

distribution and the chi distribution changes from n  to 1−n  when the mean is estimated. 
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Point estimators 
 

Two unbiased point estimators for the process standard deviation and one for the process variance 

are 


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mdd
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and 

∑
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m

i
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m
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p
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22 1σ̂ ,      (2-15) 

respectively, where 

 

),...,,min(),...,,max( 2121 iniiiniii XXXXXXR −= , 

 

denotes the i th  sample range, 
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denote the i th  sample variance and the sample mean, respectively and the i th  sample standard 

deviation is defined as  

2
ii SS =   

for mi ,...,2,1= . 

 

The unbiasing constants 2d  and 4c  are tabulated, for example, in Appendix VI of Montgomery (2005). 

 

The first estimator in (2-13) is typically used when the R  chart is used to monitor spread. The 

second estimator in (2-14) is used in the application of the S  chart, while the third estimator in (2-15) 

is a pooled variance estimator and is used in the 2S  chart. 
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Distribution of the point estimators 
 

Under the assumption that the process follows a normal distribution, it is well-known that 

2
)1(2

~
)1(

−
−

nm

Vnm χ
σ

 

so that  

)1(
~

2
)1(

2

−
−

nm
V nmχσ

; 

this is an exact result. 

 

 

The exact distribution of 2ˆ Rσ  is complicated. Patnaik (1950) presented a method for approximating 

the distribution of 
22

2ˆ

σ
σ

c

w R  by that of a 2
wχ  distribution where )(wcc =  is a constant and a function of 

w .  This is done using a technique called “moment matching” (see e.g. Casella and Berger, (2002) p. 

314) and involves setting the first two moments of the distribution of 
σ

σ Rˆ
 equal to those of 

w

c wχ
 

where wχ  is a random variable which follows a chi distribution i.e. the square root of a chi-square 

random variable with w  degrees of freedom (see e.g. Johnson, Kotz and Balakrishnan, (1994, 1995)). 

Then, approximately, 

w

c w
R

χσσ ~ˆ . 

 

Using a similar approach, one can show that approximately 

t

d t
S

χσσ ~ˆ , 

where the constant )(tdd =  is a function of t  (see e.g. Champ and Jones, (2004)). 

 

Values of the constants c  and d  for  Rσ̂  and Sσ̂  were numerically approximated and tabulated by 

Champ and Jones (2004) for 40)5(10)1(3=m  and .10)1(3=n  
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2.2.1  Phase I  S2 chart 
 

 

Introduction  
 

The application of the 2S  chart in Case K and its operation in prospective process monitoring in 

Case U, are discussed in various SPC textbooks (see e.g. Ryan, (1989) and Montgomery, (2005) p. 

231). Here we study the retrospective use of the Phase I 2S  chart in Case U. 

 

 

Charting statistics and control limits 
 

For the Phase I 2S  chart the charting statistics are the sample variances 2
iS  for mi ,...,2,1=  and 

one uses the probability limits  

 

1
ˆ

2
1,1

−
= −−

n

V
LCL

nLαχ
     VLC =ˆ   

1
ˆ

2
1,

−
= −

n

V
LCU

nUαχ
     (2-16) 

 

where 2
1, −nξχ  is the )1(100 ξ− th percentile of the chi-square distribution with 1−n  degrees of freedom 

(see e.g. Montgomery, (2005) p. 231). 

 

Typically one would take 00135.0== UL αα  and find the chi-square percentiles with the idea that 

the false alarm rate is approximately 0.00270 =FAR . However, in Phase I charting, as noted earlier, it 

is better to control the false alarm probability at some nominal value i.e. 0FAPFAP = , which results in 

some false alarm rate  

 

UL AFARAFARAFAR +=       (2-17) 

where 

 

)|ˆPr(
0

2 ICLCLSAFAR FAPiL ≤=  and            )|ˆPr(
0

2 ICLCUSAFAR FAPiU ≥=     (2-18) 

 

are the probabilities that a charting statistic plots on or outside the estimated lower and upper limits, 

respectively, which result from controlling the false alarm probability. The resultant FAR  is called the 

attained false alarm rate and denoted AFAR . Depending on the values of 0FAP , m  and n , the AFAR  

can be substantially different from 0.0027, as will be seen later. 
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Design of the Phase I 2S chart for a nominal FAP  
 

The objective when designing a Phase I 2S  chart is to know where to place the control limits of 

the 2S  chart so that if the m  charting statistics are simultaneously plotted on the chart, the probability 

of at least one charting statistic plotting on or outside the estimated control limits, when the process is 

in-control, is at most equal to 0FAP . This goal is identical to ensure that the FAP  of the Phase I 2S  

chart is less than or equal to a pre-specified FAP  i.e. 0FAPFAP ≤ ; for this we need an expression to 

calculate the FAP . 

 

First we derive FAP-based control limits for the 2S  chart, which is an exact solution and takes 

account of the dependence between the signaling events. We then also find approximate FAR-based 

control limits, which is an approximate solution and is suitable when the number of Phase I subgroups 

m  is large. 
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False alarm probability of the Phase I S2 chart  
 

The exact false alarm probability of the Phase I 2S  chart, under the assumption of i.i.d. observations 

from a normal distribution with the mean and the variance both unknown, is 
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are called the charting constants, and 
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where the iX  for mi ,...,2,1=  denotes independent chi-square random variables each with 1−n  

degrees of freedom and  ),...,,( 21 myyyf  denotes the joint p.d.f of ),...,,( 21 mYYY  when the process is 

in-control. 
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Remark 5 
 

 

(i) From the definitions of the estimated control limits LCL ˆ  and LCU ˆ  and the charting 

constants a  and b  in (2-16) and (2-20), respectively, it is seen that one may also write the 

control limits as 

 

      VmaLCL =ˆ      and              VmbLCU =ˆ   (2-22) 

 where m  is the number of Phase I subgroups and V  is defined in (2-15). 

 

The control limits in (2-16) are defined in terms of the marginal distribution of the charting 

statistics (i.e. the percentiles of the 2
1−nχ  distribution) and allows one to easily calculate the 

estimated control limits of a Phase II 2S  chart. In contrast, the alternative form of the 

estimated control limits in (2-22) simplifies the calculation of the limits for a Phase I 

2S chart, which is the focus here. Example 1 (given later) explains how the limits in (2-22) 

may be used. 

 

 

(ii)  From the derivation of theFAP  in (2-19) it is clear that any two non-signaling or signaling 

events are dependent since the corresponding iY  random variables are statistically 

dependent. This is so because each iY  is a function of and depends on all the 2
iS ’s through 

∑
=

=
m

i
iS

m
V

1

21
  in their denominators (see e.g. expression (2-21)). The joint probability 

distribution of the charting statistics when the process is in-control i.e. ),...,,( 21 myyyf , is 

therefore needed to calculate and study the false alarm probability; this is highlighted by the 

last step in (2-19). 
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Joint probability distribution of  ),...,,( mYYY 21  

 

Deriving an exact closed form expression for ),...,,( 21 myyyf  in order to calculate the FAP  of the 

2S  chart is difficult. A particular obstacle is the fact that the iY  random variables are linearly 

dependent i.e. 1
1

=∑
=

m

i
iY ; this causes the joint distribution of 1 2( , ,..., )mY Y Y  to be singular and of 

dimension 1−m . To calculate the FAP  one can use the joint distribution of ),...,,( 121 −mYYY ; this is 

looked at next. 

 

 

Calculating the exact FAP of the S2 chart 
 

To analytically calculate the FAP  one may begin with (2-19) and proceed as follows: 
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where the joint p.d.f of ),...,,( 121 −mYYY , which is denoted ),...,,( 121 −myyyf , is integrated over the 

region  
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Remark 6 
 

 

(i) The first two steps in (2-23) are identical to the last two steps of (2-19) but in the reverse 

order.  

 

(ii)  The third step in (2-23) follows by using the fact that 1
1

=∑
=

m

i
iY  and then writing 

∑
−

=
−=

1

1

1
m

i
im YY . 

 

(iii)  From the third and the fourth steps in (2-23) it is evident that calculating the FAP  does not 

necessarily require the joint distribution of ),...,,( 21 mYYY . Instead one may use the joint 

distribution of ),...,,( 121 −mYYY , which is known. 

 

(iv) Given a closed form expression for the joint p.d.f ),...,,( 121 −myyyf , the last integral 

expression in (2-23) can be evaluated using a computer software package(s) capable of 

numerical integration (for e.g. Mathcad® or Mathematica®). 
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Joint probability distribution of ),...,,( 121 −mYYY  

 

The joint distribution of iY  for 1,...,2,1 −= mi  is the type I or standard Dirichlet distribution and is 

regarded as a multivariate generalization of the beta distribution (see e.g. Chapter 49 of Kotz, 

Balakrishnan and Johnson, (2000)). 

 

The standard Dirichlet distribution, in general, is denoted );,...,,(~),...,,( 121121 mm
I

m DYYY θθθθ −−   

where iθ  for mi ,...,2,1=  are the parameters of the distribution. 

 

The joint p.d.f of ),...,,( 121 −mYYY  is given by 
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where }1  and  1,...,2,1for    0{
1

1
∑

−

=
≤−=≤

m

i
ii ymiy  and the correlation between iY  and jY  for all 

1,...,2,1 −=≠ mji ,  is given by 
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(see e.g. Chapter 49 of Kotz, Balakrishnan and Johnson, (2000)). 

 

Substituting (2-24) in (2-23), with each 
2

1−= n
iθ  for mi ,...,2,1= , one can analytically calculate the 

FAP  of the 2S  chart. 
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FAP-based control limits for the S2 chart 
 

Calculating the FAP  of the Phase I 2S  chart and designing the chart is not the same. Calculating 

the FAP  requires one to evaluate expression (2-23). The design, as noted earlier, requires one to find 

the proper position of the control limits so that the FAP  is less than or equal to 0FAP . This implies 

that one has to find combinations of values for a  and b , denoted â  and b̂ , so that  
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or, equivalently, such that 
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Remark 7 
 

(i) The equivalence of expressions (2-26) and (2-27) follows from the first and the last steps in 

(2-23). 

 

(ii)  Solving for â  and b̂  from (2-26) is not possible because, as mentioned earlier, a closed 

form expression for ),...,,( 21 myyyf  is not traceable. Also, solving for â  and b̂  from 

(2-27) involves multiple integrals (as little as 2=m  but even as many as 300=m  or 500) 

to be evaluated using numerical integration procedures; because this approach is 

computationally very demanding (i.e. computer intensive and time consuming) it is 

undesirable. As an alternative approach, we use a re-written form of (2-26) coupled with 

computer simulation experiments to solve for â  and b̂ .  
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From expressions (2-5a) and (2-5b) it follows that expression (2-26) can also be written as 
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which implies that 

)|ˆ),...,,Pr(max()|ˆ),...,,Pr(min( 2121 ICbYYYICaYYYFAP mm ≥+≤≤ .  (2-29b) 

 

Expressions (2-29a) and (2-29b) follow because we need the probability that at least one of the iY ’s 

plots either on or below the estimated lower control limit or, on or above the estimated upper control 

limit.  The first probability can be expressed in terms of the smallest of the iY ’s whereas the second in 

terms of the largest of the iY ’s. This is consistent with our earlier discussions in section 2.1.1. 

 

Because, in general, the iY ’s are not symmetrically distributed the two probabilities on the right in 

(2-29b) will not be equal in general. This creates a problem since two unknowns cannot ordinarily be 

determined uniquely from a single condition. 

 

 

To simplify matters we follow an equal-tailed conservative approach in that â  and b̂  are found 

such that each term on the right in (2-29) is at most  
2

0FAP
.  Thus, we find â  and b̂   so that 

 

        
2

)|ˆ),...,,Pr(min( 0
21

FAP
ICaYYY m ≤≤     and    

2
)|ˆ),...,,Pr(max( 0

21

FAP
ICbYYY m ≤≥ .         (2-30) 

 

The distribution theory of the largest and the smallest of order statistics of the iY ’s is fairly 

involved and is not attempted here (see e.g. Eisenhart, Hastay and Wallis, (1947)). Instead we use 

intensive computer simulations (accounting for the dependence among the charting statistics) to solve 

the equations in (2-30) and find the charting constants â  and b̂ .  
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Simulation algorithm for determining the FAP-based control limits of the S2 chart  
 

The steps of the computer simulation algorithm to find â  and b̂  are: 

 

Step 1:   Generate 100,000 vector valued observations from the joint distribution of ),...,,( 21 mYYY . 

To obtain one such observation we generate m  independent 2
1−nχ  random variables for a given m and n 

(denoted by iX  for mi ,...,2,1= ), calculate the sum ∑
=

=
m

j
jXSUM

1
1 , and then calculate 

1SUM

X
Y i

i =  for 

mi ,...,2,1= . The vector ),...,,( 21 mYYY  is one such observation. 

 

Step 2:   Find ),...,,max( 21max mYYYY =  and ),...,,min( 21min mYYYY = . 

 

Step 3:  

Let  
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where 10 << u ; this means that we choose â  to be that value of  u  such that the proportion of minY ’s  

less than or equal to â  is at most 
2

0FAP
 and we choose b̂  to be that value of u  such that the 

proportion of maxY ’s greater than or equal to b̂  is less than or equal to 
2

0FAP
. 

 

 

Note that, in the above expressions for â  and b̂ , the "rP̂" 1  and the "rPˆ" 2  denote relative 

frequencies and are therefore, strictly speaking, empirical probabilities i.e. 

    

100,000

      values simulated ofnumber 
)(rP̂ min

1

uY
u

≤=    and   
100,000

      values simulated ofnumber 
)(rP̂ max

2

uY
u

≥= . 
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Remark 8 
 

Step 3 of the simulation algorithm is a conservative equal-tailed approach that ensures that 

the false alarm probability is not greater than the nominal FAP . 

 

 

FAP-based charting constants for S2 chart 
 

The values of â  and b̂  for  25,20,15,10)1(3=m  and 10)1(3=n  such that the FAP  does not 

exceed 0.01, 0.05 and 0.10 are given in Tables 2.1, 2.2 and 2.3, respectively. Note that, for some 

combinations of m  and n  it is seen that 0ˆ =a  so that the estimated lower control limit equals zero; 

this implies that the Phase I2S  chart would have only an upper control limit. 

 

To find the position of the Phase I control limits one replaces a  with â , substitute b̂  for  b  and 

replace V  with its observed value v  into (2-22). 

 

 

Example 1 
 

Suppose that 7=m  Phase I samples are available each of size 6=n  and that it is desired that 

05.00 =≤ FAPFAP .  

From Table 2.1 we obtain 0115.0ˆ =a  and 4271.0ˆ =b ; thus 0805.0)0115.0)(7(ˆ ==am  and 

9897.2)4271.0)(7(ˆ ==bm  so that the estimated lower and upper control limits of the Phase I 2S  chart 

in (2-22) are found to be  

vLCL 0805.0ˆ =            and           vLCU 9897.2ˆ =  

respectively. These limits ensure a 05.0≤FAP . 
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Table 2.1: Values of â  and b̂  so that the false alarm probability of the Phase I 2S  chart is  

less than or equal to  0.01 when m = 3(1)10,15,20,25 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0008 0.0053 0.0135 0.0219 0.0320 0.0418 0.0501 0.0600 
3 

0.9595 0.9080 0.8604 0.8199 0.7881 0.7621 0.7384 0.7176 
0.0004 0.0029 0.0078 0.0141 0.0208 0.0271 0.0336 0.0389 

4 
0.8910 0.8107 0.7520 0.7074 0.6669 0.6418 0.6144 0.5954 
0.0002 0.0018 0.0056 0.0099 0.0146 0.0194 0.0240 0.0288 

5 
0.8213 0.7284 0.6683 0.6200 0.5800 0.5496 0.5286 0.5101 
0.0001 0.0013 0.0040 0.0074 0.0109 0.0149 0.0184 0.0223 

6 
0.7615 0.6624 0.5952 0.5494 0.5105 0.4812 0.4630 0.4445 
0.0001 0.0010 0.0031 0.0059 0.0087 0.0122 0.0155 0.0179 

7 
0.7011 0.5997 0.5384 0.4915 0.4588 0.4322 0.4124 0.3956 
0.0000 0.0008 0.0024 0.0050 0.0074 0.0099 0.0125 0.0156 

8 
0.6533 0.5521 0.4869 0.4472 0.4161 0.3909 0.3722 0.3543 
0.0000 0.0006 0.0019 0.0041 0.0062 0.0084 0.0107 0.0133 

9 
0.6042 0.5132 0.4533 0.4108 0.3832 0.3567 0.3367 0.3222 
0.0000 0.0005 0.0017 0.0033 0.0051 0.0075 0.0095 0.0115 

10 
0.5715 0.4749 0.4182 0.3793 0.3495 0.3296 0.3100 0.2950 
0.0000 0.0002 0.0009 0.0019 0.0030 0.0043 0.0055 0.0067 

15 
0.4366 0.3533 0.3092 0.2766 0.2542 0.2363 0.2221 0.2114 
0.0000 0.0001 0.0005 0.0012 0.0020 0.0029 0.0038 0.0047 

20 
0.3564 0.2822 0.2440 0.2172 0.1990 0.1846 0.1737 0.1648 
0.0000 0.0001 0.0004 0.0008 0.0015 0.0021 0.0028 0.0035 

25 
0.2985 0.2370 0.2022 0.1806 0.1650 0.1521 0.1432 0.1361 

 
 
 



 60 

 

 

Table 2.2: Values of â  and b̂  so that the false alarm probability of the Phase I 2S  chart is 

less than or equal to 0.05 when m = 3(1)10,15,20,25 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0041 0.0156 0.0301 0.0433 0.0568 0.0694 0.0790 0.0889 
3 

0.9088 0.8413 0.7877 0.7483 0.7173 0.6896 0.6682 0.6498 
0.0020 0.0089 0.0179 0.0273 0.0361 0.0444 0.0524 0.0580 

4 
0.8151 0.7303 0.6722 0.6303 0.5964 0.5712 0.5514 0.5335 
0.0012 0.0056 0.0123 0.0191 0.0257 0.0319 0.0380 0.0431 

5 
0.7329 0.6433 0.5854 0.5440 0.5116 0.4867 0.4673 0.4507 
0.0008 0.0041 0.0089 0.0144 0.0197 0.0245 0.0292 0.0337 

6 
0.6673 0.5765 0.5183 0.4789 0.4492 0.4253 0.4063 0.3929 
0.0005 0.0031 0.0069 0.0115 0.0156 0.0198 0.0239 0.0272 

7 
0.6067 0.5203 0.4662 0.4271 0.4008 0.3789 0.3617 0.3482 
0.0004 0.0024 0.0055 0.0094 0.0129 0.0162 0.0197 0.0230 

8 
0.5625 0.4740 0.4216 0.3876 0.3612 0.3415 0.3249 0.3116 
0.0003 0.0019 0.0046 0.0078 0.0109 0.0139 0.0167 0.0196 

9 
0.5210 0.4389 0.3882 0.3546 0.3301 0.3119 0.2960 0.2839 
0.0002 0.0016 0.0039 0.0066 0.0093 0.0121 0.0146 0.0171 

10 
0.4866 0.4072 0.3599 0.3282 0.3034 0.2863 0.2724 0.2597 
0.0001 0.0008 0.0020 0.0036 0.0053 0.0070 0.0086 0.0100 

15 
0.3676 0.3026 0.2629 0.2374 0.2190 0.2054 0.1943 0.1857 
0.0000 0.0005 0.0013 0.0023 0.0035 0.0047 0.0059 0.0070 

20 
0.2972 0.2405 0.2085 0.1872 0.1720 0.1609 0.1521 0.1446 
0.0000 0.0003 0.0009 0.0017 0.0026 0.0035 0.0044 0.0052 

25 
0.2492 0.2016 0.1734 0.1554 0.1430 0.1328 0.1256 0.1195 
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Table 2.3: Values of â  and b̂   so that the false alarm probability of the Phase I 2S  chart is 

less than or equal to 0.10 when m = 3(1)10,15,20,25 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0083 0.0248 0.0431 0.0586 0.0740 0.0863 0.0967 0.1066 
3 

0.8709 0.7979 0.7441 0.7078 0.6778 0.6516 0.6325 0.6161 
0.0042 0.0141 0.0256 0.0366 0.0467 0.0555 0.0639 0.0700 

4 
0.7689 0.6823 0.6283 0.5904 0.5586 0.5363 0.5176 0.5023 
0.0025 0.0092 0.0175 0.0254 0.0329 0.0397 0.0463 0.0516 

5 
0.6817 0.5969 0.5445 0.5063 0.4780 0.4549 0.4383 0.4237 
0.0016 0.0067 0.0128 0.0193 0.0256 0.0307 0.0356 0.0401 

6 
0.6159 0.5323 0.4803 0.4451 0.4185 0.3975 0.3813 0.3685 
0.0012 0.0049 0.0100 0.0153 0.0201 0.0247 0.0290 0.0326 

7 
0.5598 0.4795 0.4309 0.3971 0.3729 0.3529 0.3376 0.3257 
0.0009 0.0039 0.0080 0.0125 0.0167 0.0204 0.0241 0.0274 

8 
0.5164 0.4374 0.3910 0.3595 0.3353 0.3183 0.3036 0.2922 
0.0007 0.0031 0.0066 0.0105 0.0140 0.0173 0.0204 0.0235 

9 
0.4779 0.4029 0.3582 0.3285 0.3069 0.2904 0.2768 0.2663 
0.0005 0.0026 0.0056 0.0089 0.0120 0.0150 0.0178 0.0204 

10 
0.4456 0.3731 0.3314 0.3035 0.2819 0.2669 0.2543 0.2439 
0.0002 0.0012 0.0029 0.0049 0.0067 0.0087 0.0104 0.0120 

15 
0.3352 0.2768 0.2420 0.2198 0.2035 0.1914 0.1811 0.1737 
0.0001 0.0007 0.0019 0.0031 0.0045 0.0058 0.0071 0.0083 

20 
0.2699 0.2204 0.1922 0.1734 0.1597 0.1500 0.1420 0.1357 
0.0000 0.0005 0.0013 0.0023 0.0033 0.0043 0.0053 0.0062 

25 
0.2276 0.1846 0.1603 0.1442 0.1328 0.1237 0.1175 0.1119 
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Attained false alarm rate 
 

To calculate the attained FAR  of the Phase I 2S  chart designed such that its 0FAPFAP ≤ , one 

needs the marginal distribution of iY  for mi ,...,2,1= . 

 

It can be verified (see e.g. Chapter 49 of Kotz, Balakrishnan and Johnson, (2000)) that each iY  for 

mi ,...,2,1=  follows a standard or type I beta distribution with parameters 
2

1−n
 and 

2

)1)(1( −− nm
. 

The beta distribution, in general, is denoted ),(~ vuBetaYi , where 0, >vu  are the parameters of 

the distribution (see e.g. Gupta and Nadarajah, (2004)).  

 

Given the FAP-based control limits aa ˆ=  and bb ˆ= , the attained false alarm rate can be calculated as 
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  (2-31) 

 

where   ∫
−−− −=

x
vu

x dtttvuBvuI
0

111 )1()],([),( ,     10 << x  

is the c.d.f of the beta distribution, also known as the incomplete beta function (see e.g. Gupta and 

Nadarajah, (2004)). 

 

Some AFAR values for the Phase I 2S  chart are shown in Table 2.4 for some selected values of m  and 

n . 

Table 2.4: AFAR values for the 2S  chart for selected values of m and n when 0500 .=FAP  

  Sample size (n) 

m 4 6 8 10 

15 0.00322 0.00328 0.00335 0.00327 
20 0.00252 0.00240 0.00249 0.00256 
25 0.00182 0.00196 0.00201 0.00195 
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Example 2 
 

Consider again Example 1. It was found that 0115.0ˆ =a  and 4271.0ˆ =b . Since 7=m  and 6=n  it 

follows that )15 , 5.2(~BetaYi  for mi ,...,2,1=  so that the attained false alarm rate of this Phase I 2S  

chart corresponding to a 05.00=FAP can be calculated using (2-31) and is equal to 

 

                         

.007391.0

003737.0003654.0

)15 , 5.2()]15 , 5.2(1[ 0115.04271.0

=
+=

+−= IIAFAR

 

 

TheAFAR  is different from the typical and anticipated 0.0027 and is a result of the parameter 

estimation and the simultaneous comparisons. Note that the tail false alarm probabilities UAFAR  and 

LAFAR   are unequal in this case; this is so since the )15 , 5.2(Beta  distribution is asymmetric. 

 

 

Remark 9 
 

Because marginally each )
2

)1)(1(
,

2

1
(~

−−− nmn
BetaYi  for mi ,...,2,1=  it follows that 

each 
2

1−= n
iθ  for mi ,...,2,1=  in (2-24) and (2-25). Thus, in our situation (with equal 

sample sizes) the correlation between any iY  and jY  is equal to  

 

)1/(1),(corr −−= mYY ji    for all    1,...,2,1 −=≠ mji   (2-32) 

 

and follows by substituting 
2

1−n
 for iθ  where 1,...,3,2,1 −= mi  in (2-25). 

 

The result of (2-32) means that any two of the iY ’s are equally and negatively correlated; 

this corresponds to the result of Champ and Jones (2004) in case of the Shewhart-type 

Phase I X  chart. Most importantly, as m  increases )1/(1),(corr −−= mYY ji  tends to zero; 

the significance thereof is described below. 
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Approximate FAR-based control limits for the Phase I S2 chart  
 

Because the correlation between iY  and jY  approaches zero as the number of subgroups m  

increases, we can approximate a  and b  assuming that the iY ’s are independently distributed when m  

is large. In particular, for 25≥m  the correlation between any pair of iY ’s  is less than 0.05 in absolute 

value.  

 

If the iY ’s are independent and identically distributed the false alarm probability equals 
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It follows from (2-33) that  

m
i FAPICbYaFAR

1

)1(1)|Pr(1 −−≈<<−=    (2-34) 

so that, under the equal-tailed approach, we may approximate a  and b  for a specified 0FAP  

such that  
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Thus, a  and b  can be approximated by the 

100])1(1[
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percentiles, of a )
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,
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Beta  distribution; these approximate FAR -based control limits 

are denoted by a~  and b
~

, respectively. 

 

Moreover, it follows from (2-31) and (2-33) that the (approximate) attained false alarm rate is 
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Approximate FAR-based charting constants 
 

Tables 2.5, 2.6 and 2.7 give the approximate values of a  and b , denoted a~  and b
~

, for m = 

25,30,50,100,300, n = 3(1)10 and a false alarm probability of 0.01, 0.05 and 0.10, respectively. 

 

 

Table 2.5: Values of a~  and b
~

 so that the false alarm probability of the Phase I 2S  chart 

approximately equals 0.01 when m = 25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0000 0.0001 0.0004 0.0009 0.0015 0.0022 0.0029 0.0035 25 
0.2986 0.2374 0.2029 0.1805 0.1646 0.1526 0.1432 0.1356 
0.0000 0.0001 0.0003 0.0007 0.0012 0.0017 0.0023 0.0028 

30 
0.2590 0.2046 0.1742 0.1545 0.1406 0.1302 0.1220 0.1154 
0.0000 0.0000 0.0001 0.0003 0.0006 0.0009 0.0012 0.0015 

50 
0.1713 0.1333 0.1125 0.0991 0.0898 0.0828 0.0774 0.0730 
0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0005 0.0006 

100 
0.0952 0.0730 0.0610 0.0535 0.0482 0.0443 0.0413 0.0388 
0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 

300 
0.0361 0.0273 0.0226 0.0197 0.0176 0.0161 0.0150 0.0140 

 

 

Table 2.6: Values of a~  and b
~

  so that the false alarm probability of the Phase I 2S  chart 

approximately equals 0.05 when m = 25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0000 0.0003 0.0009 0.0017 0.0026 0.0035 0.0044 0.0053 
25 

0.2493 0.2004 0.1729 0.1550 0.1423 0.1327 0.1251 0.1190 
0.0000 0.0002 0.0007 0.0013 0.0020 0.0028 0.0035 0.0042 

30 
0.2162 0.1728 0.1486 0.1328 0.1217 0.1133 0.1067 0.1014 
0.0000 0.0001 0.0003 0.0006 0.0010 0.0014 0.0018 0.0022 

50 
0.1432 0.1129 0.0963 0.0856 0.0780 0.0724 0.0680 0.0644 
0.0000 0.0000 0.0001 0.0002 0.0004 0.0006 0.0007 0.0009 

100 
0.0801 0.0623 0.0526 0.0465 0.0422 0.0389 0.0365 0.0345 
0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 

300 
0.0309 0.0236 0.0197 0.0173 0.0156 0.0143 0.0134 0.0126 
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Table 2.7: Values of a~  and b
~

  so that the false alarm probability of the Phase I 2S  chart 

approximately equals 0.10 when m = 25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0001 0.0006 0.0014 0.0024 0.0034 0.0044 0.0054 0.0063 25 
0.2265 0.1834 0.1592 0.1433 0.1320 0.1235 0.1168 0.1114 
0.0001 0.0004 0.0010 0.0018 0.0026 0.0035 0.0042 0.0050 

30 
0.1965 0.1583 0.1369 0.1229 0.1130 0.1056 0.0998 0.0950 
0.0000 0.0002 0.0005 0.0009 0.0013 0.0018 0.0022 0.0026 

50 
0.1306 0.1038 0.0890 0.0794 0.0727 0.0676 0.0637 0.0605 
0.0000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0009 0.0011 

100 
0.0734 0.0575 0.0489 0.0433 0.0394 0.0365 0.0343 0.0325 
0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 

300 
0.0285 0.0220 0.0184 0.0162 0.0147 0.0135 0.0126 0.0119 

 

Comparing the approximate charting constants a~  and b
~

 from Tables 2.5, 2.6 and 2.7 with the 

exact (simulated) charting constants â  and b̂  in Tables 2.1, 2.2 and 2.3, for 25=m , we see that the 

values are almost identical and the approximation is thus reasonable. 
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2.2.2  Phase I S chart 
 

 

Introduction 
 

In situations where it is desirable to estimate and monitor the process spread using the sample 

standard deviation  the S  chart is used. 

 

 

Charting statistics and control limits 
 

The charting statistics for the Phase I S  chart are the sample standard deviations iS  for 

mi ,...,2,1= .  The estimated k-sigma control limits and the centerline of the Phase I S  chart are  

 

  2
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c

S
kSLCU U −+= .  (2-36) 

 

Typically the charting constants 0, ≥UL kk  are taken to be 3=== kkk UL ; in these scenarios the 

constants 3B  and 4B  are defined as 
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4 1
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1 c
c

B −+=      (2-37) 

 

and the control limits are written as 

 

SBLCL 3
ˆ =  SLC =ˆ      SBLCU 4

ˆ =  

 

(see e.g. Montgomery, (2005) p. 224). 

 

For more flexibility and to account for the fact that the sampling distribution of iS  is not 

symmetric we assume that Lk  is not necessarily equal to Uk . 
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Design of the Phase I S chart for a nominal FAP 
 

The Phase I S  chart is applied in a manner similar to the 2S  chart. The aim is also the same i.e. we 

want to find values for the charting constants Lk  and Uk  so that if the m  charting statistics  are 

simultaneously plotted on the S  chart the probability that at least one of the iS ’s for mi ,...,2,1=  plot 

outside LCL ˆ  and/or LCU ˆ  is at most equal to 0FAP . To design the Phase I S  chart we need an 

expression for the false alarm probability. 

 

 

False alarm probability of the Phase I S chart 
 

The false alarm probability of the Phase I S  chart is derived as follows: 
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where 
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=       for     mi ,...,2,1=  

 

are independent and identically distributed chi random variables each with 1−n  degrees of freedom. 

 

 

Remark 10 
 

If 3== UL kk  it follows from (2-37) and (2-40) that 3
**

3 BB =  and 4
**

4 BB = .  
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FAP-based control limits for the S chart 
 

The design of a Phase I S  chart requires one to find that combination(s) of values for c  and d , 

denoted ĉ  and d̂ , so that 
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and then obtain Lk  and Uk  needed for calculating the estimated control limits. 

 

A major problem in the analytical determination of ĉ  and d̂  from (2-41) is finding a closed form 

expression for the joint distribution of 1 2( , ,..., )mV V V . In this regard, note that, the iV ’s are correlated 

and linearly dependent. In particular, it is seen from the definition of iV  for mi ,...,2,1=  that ∑
=

=
m

i
iV

1

1. 

As a result, even for an in-control process, the joint distribution of  1 2( , ,..., )mV V V  is complicated.  

 

To overcome these obstacles in designing the Phase I S  chart we make use of the equal-tails 

approach (described in section 2.1.1) coupled with computer simulation (as was the case for the 2S  

chart) and obtain the charting constants Lk  and Uk  of the S  chart by first solving for ĉ  and d̂  from  
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and then calculating the values of Lk  and Uk  as  
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where equation (2-43) follows from the definitions of c , d , **
3B  and **

4B  given in (2-39) and (2-40), 

respectively. 

 

The steps of the simulation algorithm for determining the charting constants of the S  chart are 

similar to those of the 2S chart and found by modifying steps 1, 2 and 3, described earlier, in a natural 

way.  
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Simulation algorithm for determining the FAP-based control limits of the S chart 
 

Step 1:   Generate 100,000 vector valued observations from the joint distribution of ),...,,( 21 mVVV . 

To obtain one such observation we generate m  independent 2
1−nχ  random variables for a given m and n 

(denoted by iX  for mi ,...,2,1= ), calculate iX  for mi ,...,2,1= , calculate their sum 

∑
=

=
m

j
jXSUM

1
2 , and then calculate 

2SUM

X
V i

i =  for mi ,...,2,1= . The vector ),...,,( 21 mVVV  is one 

such observation. 

 

Step 2:   Find ),...,,max( 21max mVVVV =  and ),...,,min( 21min mVVVV = . 

 

Step 3:  

Let  







 ≤≤=

2
)|),...,,(min(rP̂:maxˆ 0

211

FAP
ICuVVVuc m  

and 







 ≤≥=

2
)|),...,,(max(rP̂:minˆ 0

212

FAP
ICuVVVud m  

 

where 10 << u  and the empirical probabilities are defined as 

 

100,000

      values simulated ofnumber 
)(rP̂ min

1

uY
u

≤=    and    
100,000

      values simulated ofnumber 
)(rP̂ max

2

uY
u

≥= ,  

 

respectively. 
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FAP-based charting constants for the S chart 
 

Tables 2.8, 2.9 and 2.10 display the values of Lk  and Uk  for 300,100,50,30,25,20,15,10)1(3=m  

and 10)1(3=n  so that the false alarm probability of the S  chart do not exceed 0.01, 0.05 and 0.10, 

respectively. 

 

For 3=n  and 100≥m , the tabulated values of Lk  is 1.9128, which results in a lower control limit 

of zero, when 01.0=FAP . Similar observations can also be made when 05.0=FAP  or 0.10 when 

3=n  for 300=m . This is interesting to note because for the usual S  chart, the lower control limit is 

negative for 5≤n  and is therefore adjusted upwards to be equal to zero - see e.g. the values of the 

constant 3B  in Appendix VI of Montgomery, (2005) p. 725. 
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Table 2.8: Values of Lk  and Uk   so that the false alarm probability of the Phase I S  chart is 

less than or equal to 0.01 when m = 3(1)10,15,20,25,30,50,100,300  and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.7974 2.0132 2.1105 2.1789 2.2311 2.2435 2.2640 2.2613 
3 

2.6131 2.6140 2.5992 2.5624 2.5600 2.5331 2.5293 2.5132 
1.8156 2.0613 2.1898 2.2775 2.3335 2.3624 2.3937 2.4059 

4 
3.0413 2.9607 2.9106 2.8788 2.8437 2.8098 2.7910 2.8183 
1.8325 2.1004 2.2413 2.3320 2.3981 2.4360 2.4658 2.4855 

5 
3.2957 3.1594 3.1079 3.0557 3.0376 3.0082 2.9980 2.9801 
1.8393 2.1219 2.2841 2.3877 2.4403 2.4742 2.5277 2.5442 

6 
3.4962 3.3369 3.2539 3.2110 3.1641 3.1270 3.1230 3.1168 
1.8472 2.1421 2.3097 2.4108 2.4872 2.5438 2.5762 2.6188 

7 
3.6037 3.4471 3.3952 3.3155 3.2988 3.2363 3.2270 3.2228 
1.8516 2.1513 2.3364 2.4347 2.5253 2.5728 2.6113 2.6624 

8 
3.7261 3.5653 3.4495 3.3996 3.3634 3.3353 3.3083 3.2828 
1.8560 2.1667 2.3411 2.4582 2.5443 2.6001 2.6613 2.6637 

9 
3.7940 3.6226 3.5531 3.4457 3.4407 3.4107 3.3772 3.3607 
1.8631 2.1679 2.3612 2.4743 2.5614 2.6199 2.6728 2.7119 

10 
3.8428 3.6961 3.5955 3.5475 3.4696 3.4773 3.4533 3.4412 
1.8697 2.2022 2.4039 2.5407 2.6311 2.7083 2.7654 2.8146 

15 
4.1240 3.9034 3.8242 3.7640 3.6958 3.6999 3.6504 3.6235 
1.8822 2.2176 2.4356 2.5856 2.6736 2.7671 2.8226 2.8670 

20 
4.2196 4.0562 3.9179 3.8660 3.8437 3.7754 3.7529 3.7639 
1.8841 2.2271 2.4590 2.6134 2.7127 2.7874 2.8482 2.9026 

25 
4.3659 4.1107 4.0364 3.9743 3.9288 3.9097 3.8633 3.8352 
1.8841 2.2413 2.4659 2.6196 2.7382 2.8186 2.8896 2.9215 

30 
4.4166 4.2410 4.0887 4.0423 3.9968 3.9373 3.9461 3.9065 
1.8937 2.2627 2.5072 2.6753 2.8063 2.8886 2.9566 3.0179 

50 
4.6576 4.4069 4.3119 4.2526 4.2179 4.1397 4.1195 4.0867 
1.9128 2.2982 2.5623 2.7526 2.8913 2.9806 3.0355 3.1436 

100 
4.8776 4.6675 4.5461 4.4846 4.4560 4.4156 4.3364 4.3172 
1.9128 2.3693 2.6725 2.8145 2.9934 3.1277 3.2326 3.3113 

300 
5.2028 4.9518 4.8491 4.7939 4.7622 4.7100 4.5729 4.6106 
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Table 2.9: Values of Lk  and Uk   so that the false alarm probability of the Phase I S  chart is 

less than or equal to 0.05 when m = 3(1)10,15,20,25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.6500 1.7722 1.8187 1.8579 1.8698 1.8748 1.8867 1.8878 3 
2.1442 2.1207 2.0851 2.0669 2.0743 2.0529 2.0420 2.0278 
1.7001 1.8594 1.9319 1.9658 2.0001 2.0121 2.0326 2.0354 

4 
2.4644 2.3968 2.3628 2.3406 2.3253 2.2976 2.2817 2.2852 
1.7330 1.9132 2.0003 2.0614 2.0834 2.1103 2.1268 2.1418 

5 
2.6693 2.5849 2.5362 2.5021 2.4933 2.4709 2.4658 2.4541 
1.7521 1.9428 2.0526 2.1149 2.1382 2.1806 2.2060 2.2123 

6 
2.8455 2.7228 2.6786 2.6524 2.6212 2.5905 2.5837 2.5811 
1.7682 1.9762 2.0860 2.1446 2.2015 2.2321 2.2478 2.2873 

7 
2.9597 2.8384 2.7858 2.7483 2.7345 2.6954 2.6751 2.6888 
1.7797 1.9959 2.1226 2.1872 2.2505 2.2696 2.2928 2.3338 

8 
3.0390 2.9360 2.8588 2.8404 2.8056 2.7730 2.7627 2.7530 
1.7871 2.0217 2.1402 2.2188 2.2658 2.3053 2.3456 2.3506 

9 
3.1243 3.0149 2.9530 2.8918 2.8682 2.8477 2.8344 2.8175 
1.7980 2.0281 2.1656 2.2392 2.2926 2.3292 2.3692 2.3975 

10 
3.1886 3.0730 3.0004 2.9567 2.9219 2.9106 2.8896 2.8795 
1.8210 2.0814 2.2303 2.3273 2.3913 2.4433 2.4757 2.5002 

15 
3.4354 3.3028 3.2167 3.1794 3.1345 3.1149 3.1005 3.0891 
1.8363 2.1134 2.2813 2.3815 2.4491 2.5022 2.5387 2.5736 

20 
3.5846 3.4355 3.3558 3.2969 3.2791 3.2529 3.2168 3.2107 
1.8458 2.1324 2.3075 2.4124 2.4916 2.5390 2.5920 2.6197 

25 
3.7060 3.5421 3.4646 3.4176 3.3930 3.3485 3.3213 3.3008 
1.8497 2.1489 2.3254 2.4433 2.5239 2.5758 2.6294 2.6574 30 
3.7739 3.6297 3.5432 3.4856 3.4560 3.4295 3.4021 3.3658 
1.8650 2.1916 2.3832 2.5052 2.6022 2.6678 2.7398 2.7664 50 
4.0073 3.8382 3.7471 3.6650 3.6567 3.6245 3.6071 3.5837 
1.8937 2.2271 2.4521 2.5980 2.7212 2.7966 2.8383 2.8921 100 
4.2846 4.0989 3.9950 3.9588 3.9118 3.8637 3.8239 3.8142 
1.9128 2.2982 2.5899 2.7217 2.8913 3.0174 2.9960 3.0598 300 
4.6863 4.4542 4.3532 4.2372 4.2519 4.1581 4.0998 4.1076 
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Table 2.10: Values of Lk  and Uk   so that the false alarm probability of the Phase I S  is 

less than or equal to 0.10 when m = 3(1)10,15,20,25,30,50,100,300  and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.5461 1.6251 1.6559 1.6704 1.6861 1.6838 1.6904 1.6904 
3 

1.9032 1.8691 1.8446 1.8285 1.8212 1.8100 1.7996 1.7990 
1.6136 1.7277 1.7810 1.8062 1.8259 1.8369 1.8497 1.8526 

4 
2.1813 2.1276 2.0984 2.0759 2.0668 2.0489 2.0310 2.0354 
1.6574 1.7971 1.8570 1.9021 1.9151 1.9392 1.9533 1.9637 

5 
2.3757 2.3065 2.2717 2.2407 2.2297 2.2189 2.2076 2.2005 
1.6844 1.8348 1.9138 1.9646 1.9811 2.0150 2.0334 2.0362 

6 
2.5276 2.4427 2.4042 2.3778 2.3559 2.3322 2.3211 2.3196 
1.7053 1.8750 1.9567 2.0060 2.0467 2.0647 2.0795 2.1054 

7 
2.6477 2.5581 2.5138 2.4863 2.4631 2.4352 2.4185 2.4277 
1.7246 1.8973 1.9970 2.0512 2.0926 2.1136 2.1256 2.1628 

8 
2.7330 2.6498 2.5855 2.5633 2.5389 2.5199 2.5072 2.5015 
1.7355 1.9257 2.0212 2.0796 2.1219 2.1464 2.1788 2.1846 

9 
2.8162 2.7142 2.6629 2.6273 2.6018 2.5894 2.5790 2.5610 
1.7464 1.9381 2.0499 2.1062 2.1498 2.1821 2.2076 2.2299 

10 
2.8826 2.7768 2.7194 2.6877 2.6566 2.6494 2.6334 2.6239 
1.7808 2.0068 2.1311 2.2067 2.2586 2.2943 2.3278 2.3493 

15 
3.1312 3.0185 2.9439 2.9103 2.8794 2.8610 2.8403 2.8313 
1.8018 2.0471 2.1821 2.2639 2.3267 2.3697 2.3968 2.4311 

20 
3.2900 3.1559 3.0858 3.0433 3.0206 2.9953 2.9645 2.9592 
1.8124 2.0672 2.2179 2.3119 2.3641 2.4102 2.4540 2.4835 

25 
3.3904 3.2637 3.1960 3.1547 3.1209 3.0909 3.0749 3.0493 
1.8267 2.0921 2.2427 2.3413 2.4117 2.4544 2.4993 2.5317 

30 
3.4870 3.3525 3.2787 3.2258 3.2008 3.1645 3.1537 3.1394 
1.8458 2.1442 2.3144 2.4279 2.5001 2.5574 2.6018 2.6406 

50 
3.7204 3.5776 3.4991 3.4330 3.4015 3.3669 3.3705 3.3322 
1.8745 2.2034 2.3970 2.5361 2.6192 2.6862 2.7595 2.8083 

100 
4.0169 3.8619 3.7471 3.7114 3.6737 3.6429 3.5874 3.5628 
1.9128 2.2982 2.5072 2.6289 2.7893 2.9070 2.9960 3.0598 

300 
4.3994 4.2410 4.1052 4.0516 4.0478 3.9373 3.9816 3.8562 
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Attained false alarm rate 
 

To analytically calculate the attained false alarm rate of the S  chart for given m , n  and 0FAP  the 

marginal distribution of iV  i.e. the ratio of a chi random variable, iW , to the sum of m  independent chi 

random variables, ∑
=

m

j
jX

1

, is needed. Currently, the distribution of ∑
=

m

j
jX

1

for 3≥m  is unknown; only 

the distributions of the sum and the ratio of 2=m  correlated chi variates are known and available in 

the literature (see e.g. Krishnan, (1967)). Thus, we used computer simulation to determine the AFAR  

for selected values of m  and  n  when 05.00 =FAP . These values are shown in Table 2.11.  

 

 

Table 2.11: The AFAR values for the S  chart for selected m, n values when 0500 .=FAP  

 Sample size (n) 
m 4 6 8 10 
15 0.00324 0.00343 0.00329 0.00320 
20 0.00252 0.00261 0.00247 0.00258 
25 0.00209 0.00177 0.00212 0.00192 
50 0.00096 0.00112 0.00098 0.00069 
100 0.00062 0.00051 0.00046 0.00061 

 

 

From Table 2.11 it is seen that, for a fixed 0FAP  of 0.05, the AFAR  (i) decreases as the number of 

samples, m , increases, for a fixed sample size n, and (ii) stays fairly constant for a fixed m but with 

increasing n .  Also, note that for 20m =  and 05.00 =FAP , the AFAR  is close to 0.0027 for all values 

of n considered. 
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2.2.3  Phase I  R  chart 
 

 

Introduction 
 

Finally we consider the R  chart.  This chart is popular in the industry since the range is easy to 

calculate and for small n it is known that the range is a fairly efficient estimator of the standard 

deviation of a normal distribution. 

 

 

Charting statistics and control limits 
 

For the Phase I R  chart the charting statistics are the sample ranges iR  for mi ,...,2,1=  and we 

define the estimated k-sigma control limits and the centerline of the R  chart as 

 

RDLCL **
3

ˆ =  RLC =ˆ         RDLCU **
4

ˆ =     (2-44) 

where 

 

2

3**
3 1

d

d
kD L−=  and 

2

3**
4 1

d

d
kD U+= .  (2-45) 

 

and 0, ≥UL kk  are the charting constants. 

 

If 3== UL kk   then 3
**

3 DD =  and 4
**

4 DD =  where 

 

2

3
3 31

d

d
D −=  and 

2

3
4 31

d

d
D +=   (2-46) 

 

(see e.g. Montgomery, (2005) p. 197 and p. 198). 

 

As in the case of the S  chart, the definitions of **
3D  and **

4D  in (2-45) extend the usual R  chart by 

accounting for the fact that the sampling distribution of iR  is asymmetric and thus allows for a 

charting constant(s) other than 3. 
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False alarm probability of the R chart 
 

An expression for the false alarm probability of the R  chart is needed to design the chart. Such an 

expression is obtained in a similar manner as that of the 2S  chart and the S  chart and is derived as 

follows: 
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(2-47) 

 

where  

m

D
e

**
3=             and          

m

D
f

**
4=    (2-48) 

 

and  

∑
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FAP-based control limits for the R chart 
 

As in the case of the S chart, the charting constants Lk  and Uk  of the R  chart are obtained by first 

finding that combination of values for the charting constants ee ˆ=  and ff ˆ=  such that 

 

( )
2

|ˆ),...,,min(Pr 0
21

FAP
ICeUUU m ≤≤     and     

2
)|ˆ),...,,Pr(max( 0

21

FAP
ICfUUU m ≤≥     (2-50) 

 

and then, once e  and f  are found, we calculate the charting constants Lk   and Uk  from 

 

3

2)ˆ1(
d

d
mekL −=   and  

3

2)1ˆ(
d

d
mfkU −=                      (2-51) 

 

which follow directly from the definitions of e , f , **
3D  and **

4D  given in (2-48) and (2-45), 

respectively 

 

 

Here, similar to the S  chart, there are problems in the analytical determination of the constants ê  

and f̂ ; these obstacles arise due to the fact that even for an in-control process, the marginal 

distribution of iU  as well as the joint distribution of 1 2( , ,..., )mU U U are complicated. Thus, we again 

find the values of  ê  and f̂  via computer simulation. 
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Simulation algorithm for determining the FAP-based control limits of the R chart 
 

 

The steps of the simulation algorithm to find ê  and f̂ were as follows: 

 

Step 1:   Generate 100,000 vector valued observations from the joint distribution of ),...,,( 21 mUUU . 

To obtain one such observation we: (i) generate m  independent random samples each of size n  from 

the standard normal distribution, (ii) calculate the range iR , mi ,...,2,1=  for each sample, (iii) obtain 

the sum ∑
=

=
m

j
jRSUM

1
3 , and (iv) calculate 

3SUM

R
U i

i =  for mi ,...,2,1= . The vector ),...,,( 21 mUUU  is 

one such observation. 

 

Step 2:   Find ),...,,max( 21max mUUUU =  and ),...,,min( 21min mUUUU = . 

 

Step 3:  

Let  







 ≤≤=

2
)|),...,,(min(rP̂:maxˆ 0

211

FAP
ICuUUUue m  

and 


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2
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212

FAP
ICuUUUuf m  

 

where 10 << u  and the empirical probabilities "Pr" 1  and "Pr" 2 are as defined earlier. 
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FAP-based charting constants for the R chart 
 

Tables 2.12, 2.13 and 2.14 display the values of the charting constants Lk  and Uk  for 

300,100,50,30,25,20,15,10)1(3=m  and 10)1(3=n  so that the false alarm probability does not exceed 

0.01, 0.05 and 0.10, respectively.  

 

Note that, similar to the S  chart, when 0.01FAP = , 3=n  and 100m ≥ , the tabulated value of Lk  

is 1.9065, which results in a lower control limit equal to zero, for the Phase I R chart.  Similar 

observations can also be made when 0.05FAP =  or 0.10 for 300m ≥  and when 3=n .  For the usual 

R  chart with symmetrically placed limits, on the other hand, the lower control limit is negative for 

6≤n  and is therefore adjusted upwards to be equal to zero - see e.g. the values of the constant 3D  in 

Appendix VI of Montgomery (2005) p. 725. 
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Table 2.12: Values of Lk  and Uk   so that the false alarm probability of the Phase I R  chart is  
less than or equal to 0.01 when  m = 3(1)10,15,20,25,30,50,100,300  and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.7881 1.9853 2.0686 2.1222 2.1340 2.1564 2.1782 2.1890 
3 

2.5799 2.6011 2.5898 2.5591 2.5560 2.5255 2.5127 2.5265 
1.8112 2.0487 2.1569 2.2172 2.2463 2.2845 2.2760 2.2863 

4 
3.0321 2.9575 2.8946 2.8711 2.8618 2.8664 2.8450 2.8501 
1.8246 2.0719 2.2143 2.2695 2.3112 2.3366 2.3488 2.3771 

5 
3.2993 3.1739 3.1538 3.1107 3.0805 3.0484 3.0619 3.0799 
1.8368 2.0997 2.2318 2.3194 2.3599 2.3991 2.4120 2.4323 

6 
3.5111 3.3599 3.3006 3.2727 3.2454 3.2296 3.2383 3.2356 
1.8411 2.1138 2.2681 2.3398 2.3985 2.4318 2.4407 2.4697 

7 
3.6426 3.4942 3.4457 3.4167 3.3980 3.3525 3.3640 3.3344 
1.8455 2.1226 2.2808 2.3738 2.4229 2.4665 2.4789 2.5026 

8 
3.7124 3.6070 3.5041 3.4735 3.4798 3.4636 3.4258 3.4356 
1.8516 2.1418 2.3045 2.3965 2.4398 2.4814 2.5146 2.5203 

9 
3.8091 3.6639 3.5978 3.5685 3.5464 3.5150 3.5394 3.5449 
1.8570 2.1432 2.3098 2.4055 2.4735 2.5102 2.5326 2.5528 

10 
3.8817 3.7647 3.6748 3.6187 3.6356 3.6247 3.6169 3.6264 
1.8665 2.1783 2.3610 2.4638 2.5352 2.5762 2.6171 2.6397 

15 
4.1505 3.9741 3.9184 3.9056 3.8580 3.8504 3.8834 3.8311 
1.8722 2.1947 2.3852 2.5101 2.5839 2.6248 2.6612 2.6879 

20 
4.2783 4.1461 4.0705 4.0580 4.0381 4.0344 4.0139 4.0165 
1.8779 2.2052 2.4095 2.5250 2.6131 2.6647 2.6925 2.7420 

25 
4.3803 4.2291 4.1593 4.1088 4.1225 4.0882 4.1260 4.0937 
1.8837 2.2134 2.4095 2.5489 2.6326 2.6908 2.7384 2.7613 

30 
4.4708 4.3216 4.2455 4.2014 4.2427 4.1837 4.2087 4.2250 
1.8875 2.2462 2.4633 2.5848 2.6943 2.7602 2.7936 2.8386 

50 
4.6996 4.5158 4.4824 4.4973 4.4472 4.4441 4.4293 4.4606 
1.9065 2.2696 2.5037 2.6595 2.7592 2.8470 2.9038 2.9351 

100 
4.9189 4.7731 4.7112 4.7214 4.7068 4.7219 4.7050 4.7116 
1.9065 2.3398 2.6114 2.7193 2.8566 2.9512 3.0141 3.0510 

300 
5.3002 5.1709 5.0612 5.0800 5.0315 5.0690 5.0358 5.0592 
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Table 2.13: Values of Lk  and Uk   so that the false alarm probability of the Phase I R  chart is  
less than or equal to 0.05 when m = 3(1)10,15,20,25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.6451 1.7523 1.7900 1.8210 1.8175 1.8273 1.8353 1.8286 3 
2.1401 2.1070 2.0891 2.0607 2.0564 2.0516 2.0485 2.0411 
1.6945 1.8428 1.8974 1.9292 1.9490 1.9610 1.9555 1.9634 

4 
2.4594 2.4025 2.3594 2.3475 2.3320 2.3318 2.3113 2.3187 
1.7273 1.8917 1.9653 1.9991 2.0239 2.0380 2.0400 2.0584 

5 
2.6863 2.5901 2.5683 2.5385 2.5190 2.5033 2.5032 2.5084 
1.7487 1.9298 2.0089 2.0577 2.0833 2.1012 2.1099 2.1218 

6 
2.8316 2.7478 2.7061 2.7043 2.6514 2.6505 2.6473 2.6516 
1.7611 1.9565 2.0571 2.0992 2.1327 2.1498 2.1551 2.1697 

7 
2.9593 2.8718 2.8351 2.8143 2.7959 2.7668 2.7697 2.7694 
1.7693 1.9748 2.0783 2.1348 2.1606 2.1859 2.2054 2.2091 

8 
3.0505 2.9575 2.9140 2.8854 2.8696 2.8664 2.8494 2.8548 
1.7813 1.9965 2.1082 2.1653 2.1885 2.2095 2.2301 2.2353 

9 
3.1416 3.0405 2.9920 2.9715 2.9533 2.9307 2.9307 2.9401 
1.7902 2.0075 2.1187 2.1784 2.2268 2.2464 2.2606 2.2708 

10 
3.2049 3.1096 3.0502 3.0360 3.0156 3.0137 3.0141 3.0123 
1.8150 2.0590 2.1874 2.2621 2.3112 2.3314 2.3525 2.3674 

15 
3.4670 3.3424 3.2804 3.2870 3.2591 3.2567 3.2549 3.2402 
1.8303 2.0918 2.2291 2.3129 2.3632 2.3956 2.4186 2.4330 

20 
3.6072 3.5003 3.4459 3.4364 3.4214 3.4095 3.3964 3.3985 
1.8350 2.1058 2.2614 2.3457 2.4021 2.4390 2.4627 2.4910 

25 
3.7320 3.6033 3.5671 3.5261 3.5220 3.5154 3.5103 3.5047 
1.8436 2.1222 2.2802 2.3696 2.4281 2.4720 2.4958 2.5180 30 
3.8131 3.7039 3.6478 3.6187 3.6194 3.5900 3.5912 3.5994 
1.8589 2.1643 2.3287 2.4354 2.5157 2.5519 2.5914 2.6068 50 
4.0514 3.9074 3.8767 3.8697 3.8466 3.8365 3.8412 3.8427 
1.8875 2.1994 2.3960 2.5101 2.5969 2.6734 2.6833 2.7420 100 
4.3278 4.1882 4.1459 4.1237 4.1225 4.1316 4.1168 4.1323 
1.9065 2.2696 2.5306 2.6296 2.7592 2.8470 2.9038 2.9351 300 
4.7282 4.6094 4.5766 4.5421 4.5445 4.5483 4.4844 4.4799 
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Table 2.14: Values of Lk  and Uk   so that the false alarm probability of the Phase I R  chart is  
less than or equal to 0.10 when m = 3(1)10,15,20,25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.5353 1.6105 1.6325 1.6426 1.6461 1.6513 1.6522 1.6456 
3 

1.8970 1.8620 1.8460 1.8267 1.8149 1.8110 1.8092 1.7989 
1.6091 1.7136 1.7499 1.7690 1.7828 1.7887 1.7805 1.7873 

4 
2.1826 2.1339 2.0966 2.0882 2.0788 2.0762 2.0599 2.0654 
1.6549 1.7747 1.8266 1.8542 1.8649 1.8766 1.8765 1.8846 

5 
2.3851 2.3129 2.2856 2.2710 2.2528 2.2394 2.2477 2.2399 
1.6812 1.8232 1.8780 1.9160 1.9314 1.9492 1.9489 1.9596 

6 
2.5319 2.4586 2.4267 2.4246 2.3865 2.3859 2.3826 2.3828 
1.6997 1.8582 1.9327 1.9633 1.9873 2.0016 2.0033 2.0102 

7 
2.6470 2.5885 2.5411 2.5277 2.5050 2.4970 2.4892 2.4991 
1.7159 1.8812 1.9620 1.9985 2.0256 2.0415 2.0525 2.0546 

8 
2.7378 2.6673 2.6189 2.5985 2.5917 2.5915 2.5760 2.5767 
1.7298 1.9018 1.9919 2.0308 2.0541 2.0721 2.0779 2.0893 

9 
2.8327 2.7520 2.7061 2.6837 2.6728 2.6494 2.6561 2.6551 
1.7407 1.9210 2.0083 2.0589 2.0872 2.1005 2.1136 2.1241 

10 
2.8922 2.8124 2.7648 2.7492 2.7365 2.7290 2.7274 2.7188 
1.7778 1.9818 2.0864 2.1500 2.1846 2.2012 2.2201 2.2342 

15 
3.1582 3.0476 2.9936 2.9957 2.9718 2.9650 2.9682 2.9563 
1.7960 2.0216 2.1376 2.2053 2.2463 2.2707 2.2937 2.3017 

20 
3.3097 3.2008 3.1606 3.1496 3.1357 3.1178 3.1097 3.1282 
1.8064 2.0473 2.1739 2.2486 2.2885 2.3175 2.3341 2.3558 

25 
3.4270 3.3166 3.2777 3.2422 3.2380 3.2376 3.2438 3.2248 
1.8207 2.0660 2.1995 2.2710 2.3307 2.3575 2.3745 2.3906 

30 
3.5156 3.4090 3.3571 3.3408 3.3370 3.3192 3.3155 3.3213 
1.8398 2.1175 2.2614 2.3607 2.4183 2.4477 2.4811 2.4910 

50 
3.7559 3.6383 3.5940 3.5858 3.5707 3.5588 3.5471 3.5723 
1.8684 2.1760 2.3422 2.4503 2.5320 2.5692 2.6098 2.6261 

100 
4.0418 3.9308 3.8767 3.8548 3.8629 3.8539 3.8595 3.8620 
1.9065 2.2696 2.4498 2.6296 2.6618 2.7428 2.7936 2.8192 

300 
4.4422 4.3286 4.2536 4.2731 4.2524 4.2358 4.2639 4.2482 
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Attained false alarm rate 
 

To calculate the attained false alarm rate of the R  chart given m , n  and a specified FAP  the 

(marginal) distribution of iU  i.e. the ratio of a range to the sum of m  independent ranges, one of 

which is iU , is required. Again as noted earlier, this distribution is complex and not available. Instead, 

we used simulation to determine the AFAR  for selected values of m  and  n  when 05.00 =FAP . 

These values are shown in Table 2.15. 

 

Table 2.15: AFAR values for the R  chart for selected m , n  values when 0500 .=FAP  

 Sample size (n ) 

m 4 6 8 10 
15 0.00311 0.00322 0.00357 0.00352 
20 0.00233 0.00238 0.00239 0.00245 
25 0.00205 0.00216 0.00207 0.00196 
50 0.00099 0.00096 0.00105 0.00110 
100 0.00044 0.00057 0.00033 0.00039 

 

 

The findings in case of the R  chart is similar to that of the S  chart i.e. from Table 2.15 we see that 

for a fixed FAP , the attained false alarm rate (i) decreases as the number of samples m  increases, for 

a fixed sample size n, and (ii) stays fairly constant for a fixed m but with increasing n . Also, note that 

for 20m =  and 05.00 =FAP , the AFAR  is close to 0.0027 for all  n considered. 

 
 
 



 86 

Example 3 
 

To illustrate the calculations of the control limits for the Phase I 2S , S  and R  charts we use a 

dataset from Montgomery (2005), page 223, on the inside diameter measurements for automobile 

engine piston rings.  The data consists of 25=m  samples each of size 5=n  and are shown in Table 

2.16. Also shown in Table 2.16 are the sample mean iX , the sample range iR , the sample standard 

deviation iS  and the sample variance 2iS  for each sample. The unit of measurement is millimetre (mm) 

and we omit mentioning this below to avoid repetition. 

Table 2.16: Inside diameter measurements (in mm) for automobile engine piston rings* 

 Observations Sample statistics 

Sample number (i) 1X  2X  3X  4X  5X  iX  iR  iS  2
iS  

1 74.030 74.002 74.019 73.992 74.008 74.010 0.038 0.0148 0.0002182 

2 73.995 73.992 74.001 74.011 74.004 74.001 0.019 0.0075 0.0000563 

3 73.988 74.024 74.021 74.005 74.002 74.008 0.036 0.0147 0.0002175 

4 74.002 73.996 73.993 74.015 74.009 74.003 0.022 0.0091 0.0000825 

5 73.992 74.007 74.015 73.989 74.014 74.003 0.026 0.0122 0.0001493 

6 74.009 73.994 73.997 73.985 73.993 73.996 0.024 0.0087 0.0000758 

7 73.995 74.006 73.994 74.000 74.005 74.000 0.012 0.0055 0.0000305 

8 73.985 74.003 73.993 74.015 73.988 73.997 0.030 0.0123 0.0001502 

9 74.008 73.995 74.009 74.005 74.004 74.004 0.014 0.0055 0.0000307 

10 73.998 74.000 73.990 74.007 73.995 73.998 0.017 0.0063 0.0000395 

11 73.994 73.998 73.994 73.995 73.990 73.994 0.008 0.0029 0.0000082 

12 74.004 74.000 74.007 74.000 73.996 74.001 0.011 0.0042 0.0000178 

13 73.983 74.002 73.998 73.997 74.012 73.998 0.029 0.0105 0.0001093 

14 74.006 73.967 73.994 74.000 73.984 73.990 0.039 0.0153 0.0002342 

15 74.012 74.014 73.998 73.999 74.007 74.006 0.016 0.0073 0.0000535 

16 74.000 73.984 74.005 73.998 73.996 73.997 0.021 0.0078 0.0000608 

17 73.994 74.012 73.986 74.005 74.007 74.001 0.026 0.0106 0.0001117 

18 74.006 74.010 74.018 74.003 74.000 74.007 0.018 0.0070 0.0000488 

19 73.984 74.002 74.003 74.005 73.997 73.998 0.021 0.0085 0.0000717 

20 74.000 74.010 74.013 74.020 74.003 74.009 0.020 0.0080 0.0000637 

21 73.982 74.001 74.015 74.005 73.996 74.000 0.033 0.0122 0.0001477 

22 74.004 73.999 73.990 74.006 74.009 74.002 0.019 0.0074 0.0000553 

23 74.010 73.989 73.990 74.009 74.014 74.002 0.025 0.0119 0.0001423 

24 74.015 74.008 73.993 74.000 74.010 74.005 0.022 0.0087 0.0000757 

25 73.982 73.984 73.995 74.017 74.013 73.998 0.035 0.0162 0.0002617 
*Note: Table 2.16 is a modified version of Table 5.3 in Montgomery (2005). 
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To illustrate how to construct the Phase I charts for a small number of samples (which is often the 

case in practice) we use only the first 10 samples. Afterwards all 25 samples are used to illustrate the 

construction of the charts for a larger number of samples. 

 

Using only the first 10=m  samples the unbiased point estimates for the process standard 

deviation, calculated using (2-13) and (2-14), are found to be 
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respectively. 

 

The values of Rσ̂  and Sσ̂  are displayed in the first panel (labeled 10=m ) of Table 2.17 along 

with the charting constants Lk  and Uk  for the Phase I S  chart and the Phase I R  chart which ensures 

that the false alarm probability of these charts is at most 0.05; these charting constants were obtained 

from Tables 2.9 and 2.13, respectively. The estimated lower control limit, the estimated centerline and 

the estimated upper control limit (which are also shown in Table 2.17) are calculated from (2-36) and 

(2-44), respectively. 

 

The unbiased point estimate of the process variance (based on the first 10 samples only) is 

calculated using (2-15) i.e. 
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and is listed in the first panel (labeled 10=m ) of Table 2.18. Also shown in Table 2.18 are the values 

for the charting constants â  and b̂ , obtained from Table 2.2, so that the false alarm probability of the 

Phase I 2S  chart is less than or equal to 0.05. The estimated control limits and estimated centerline 

were computed according to (2-22). 

 

For all 25=m  samples similar calculations were carried out. The unbiased point estimates, the 

charting constants, the estimated control limits and the estimated centerlines are given in the second 

panel (labeled 25=m ) of each of Tables 2.17 and 2.18, respectively. 

 

For large m  the 0.001025th and the 0.998975th percentiles of the univariate type I or standard 

beta distribution with parameters 2 and 48 was used to approximate the charting constants a  and b in 

case of the 2S  chart. These percentiles and the ensuing estimated control limits are also shown in the 

third panel of Table 2.18. A Phase I 2S  chart designed with these limits has a false alarm probability 
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approximately equal to 0.05.  It is seen that for 25=m , the univariate beta approximation is 

reasonably good compared to the simulation results. 

 

The resultant Shewhart-type Phase I R , S  and 2S  charts for 10=m  and 25=m  are shown in 

panels (a), (b) and (c) of Figures 2.2 and 2.3, respectively. It appears that the process standard 

deviation is in control and it would be safe to use 0.00999, which is the centerline of the Phase I R  

chart, as an unbiased estimate of the process standard deviation to calculate the Phase I mean control 

chart proposed by Champ and Jones (2004) and to check to see if the process mean is in-control.  

The Shewhart-type Phase I 2S , assuming independence of the of the charting statistics, is shown 

in Figure 2.4; it is seen to be almost identical to the Shewhart-type Phase I 2S  for 25=m . 

 

Table 2.17: Parameter estimates and chart constants for the R chart and the S chart 

m = 10 m = 25 
 

S chart R chart S chart R chart 

Unbiased  
Point Estimate 

0.010280 0.010232  0.010000 0.009991 

Lk  2.1656 2.1187 2.3075 2.2614 

Uk  3.0004 3.0502 3.4646 3.5671 

LCL ˆ  0.002068 0.005069 0.001527 0.003718 

LĈ  0.009663 0.023800 0.009400 0.023240 

LCU ˆ  0.020187 0.050766 0.021219 0.054033 

 
 
 

Table 2.18: Parameter estimates and chart constants for the S2 chart 

 m = 10 m = 25 
Univariate beta distribution 

assuming independence 
(m ≥  25) 

Unbiased  
Point Estimate 

0.000105 0.000101  

â  0.0039 0.0009 a = 0.001025th percentile  = 0.0009 

b̂  0.3599 0.1734 b = 0.998975th percentile  = 0.1729 

LCL ˆ  0.000004 0.000002 0.000002 

LĈ  0.000105 0.000101 0.000101 

LCU ˆ  0.000378 0.000436 0.000434 
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Figure 2.2: Shewhart-type Phase I R , S  and 2S  charts for 10=m  
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Figure 2.3: Shewhart-type Phase I R , S  and 2S  charts for 25=m  
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Figure 2.4: Shewhart-type Phase I 2S  assuming independence of the charting statistics 
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2.3    Literature review: Univariate parametric Shewhart-type Phase I 

variables charts for location and spread 
 

 

Phase I control charts form an integral part of SPC, but only a few authors make a clear distinction 

between Phases I and II, and no more than one of the popular SPC textbooks (e.g. Montgomery, 

(2005) p. 199 and p. 204) briefly talks about this important topic. 

 

By giving an overview of the literature on univariate parametric Shewhart-type Phase I variables 

control charts for the mean, standard deviation and variance this gap would be filled. The overview 

would be particularly helpful to researchers, instructors and practitioners as they would get to know 

what the issues related to Phase I are, what the present state of the art is and what challenges and future 

research still remain. 
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2.3.1  Phase I charts for the normal distribution 
 

 

Introduction 
 

First we review Shewhart-type Phase I control charts for the mean, standard deviation and variance 

when the underlying distribution is normally distributed. 

 

 

Assumptions 
 

Let ),(~ 2σµiidNX ij  represent the Phase I data where ijX  for mi ,...,2,1=  and nj ,...,2,1=   

denotes thej th observation from the i th subgroup, µ  denotes the unknown mean and 2σ  denotes the 

unknown variance. 
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(a)  King (1954): “Probability Limits for the Average Chart When Process Standards Are  

                               Unspecified” 
 

One of the first authors to consider the Phase I problem was King (1954) who studied the Phase I 

X  chart for Case U.  

 

Using the overall average 
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and the average of the subgroup ranges 

∑
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i
iR

m
R

1

1
, 

(where iX  is the i th sample mean and iR  is the i th sample range) to estimate the unknown mean µ  

and the unknown standard deviation σ , respectively, he suggests replacing the traditional estimated  

3-sigma control limits 

RAXLCLLCU 2
ˆ/ˆ ±=  

where
nd

A
2

2

3=  is a function of the sample size n  only, with the limits  

RCXLCLLCU ±=ˆ/ˆ  

where the charting constant 
nd

k
C m

2

=  is a function of the number of rational subgroups m  and the 

sample size n . 

 

Essentially, King proposes to replace the number “3” in the expression for 2A  by a factor mk  

which depends on and is a function of m . So to calculate the limits proposed by King one has to find 

mk  and then substitute it in C  , which is then used to calculate the limits. 

 

King graphically provides approximate values of C  for 25)1(3=m  and 10,5,4,3,2=n  so that the 

false alarm probability of the Phase I X  chart is approximately 0.05.  

 

The values of 3k  and 4k  are (apparently) obtained from theoretical considerations, whereas the 

values of  mk  for 5≥m  are obtained using the fact that the false alarm probability for the Phase I X  

chart can be written as 
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where σ  denotes the unknown (but constant) process standard deviation. 

 

King constructs the 95th percentile of the sampling distribution of 
n

XX i

/

||max

σ
−

 for mi ,...,2,1=   

(for values of 5≥m ) to find mk  and then approximates the multiplier C  by taking 
nd

k
C m

2

=  . 

 

King observes that the proposed charting constant C approaches 2A  rather rapidly as m increases, 

but he also notes that his approximation is based on ignoring the sampling fluctuations of R  and that 

some of his C  values are obtained from simulations.  

 

 

Remark 11 
 

Despite the shortcomings in the approach used by King, his idea to design a Phase I control 

chart using a nominal (specified) false alarm probability turned out to be the correct 

approach. 
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(b)  Hillier (1969): “ X - and R-Chart Control Limits Based on A Small Number of Subgroups” 
 

Hillier (1969) proposes a method for finding the control limits for the Phase I X  chart and the 

Phase I R  chart that can be reliably used regardless of how few Phase I subgroups are available.    

 

Hillier acknowledges the fact that the Phase I signaling events are dependent and suggests that the 

conventional factors 2A , 3D  and 4D  usually given in SPC textbooks and used in setting-up the control 

limits at  

RAXLCLLCU
XX 2

ˆ/ˆ ±=  

for the X  chart and 

RDLCL R 3
ˆ =   and  RDLCU R 4

ˆ =  

for the R  chart, be replaced by more appropriate charting constants **
2A , **

3D  and **
4D  so that the false 

alarm rates of the X  and theR  charts are controlled at  

2α=
X

FAR         and         43 αα +=RFAR , 

respectively; where 2α  is the 
X

FAR  for the X  chart and 3α  and 4α  are the probabilities that a Phase 

I sample range iR  for each mi ,...,2,1=  plots below or above the estimated lower and upper control 

limits of the R  chart, respectively. 

 

The factor **
2A  is derived by studying the probability expression of the false alarm rate for the 

Phase I X  chart, which is given by 
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If the false alarm rate of the X  chart should be controlled at 2α , it implies that  

miICA
R
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A i ,...,2,1for       )|Pr(1 **

2
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22 =<
−

<−−=α  

and that one has to solve for**
2A ; for this one requires the distribution of 

R

XX i −
. 

 

To this end, Hillier notes that, under the assumption of normality, 
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(which is an exact result) and approximates the distribution of 
22

2

σc

Rv
 by that of a 2

vχ  distribution 

where c  (which is a constant) and v  are functions of m  and n (see Patnaik, (1950)). Hillier then uses 

the fact that the numerator )( XX i −  for mi ,...,2,1=  and the denominator R  are independent, to write 

the probability expression of the false alarm rate of the Phase I X  chart as 
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has approximately a Student’s t-distribution with v  degrees of freedom when the process is in-control. 
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Approximate values for **
2A  can therefore  be obtained by setting 

v
tA

m

mn
c

,
2

**
2 21 α=

−
 

and solving for **
2A i.e. 

v
t

mn

m

c
A

,
2

**
2 2

11
α

−=   

where 
v

t
,

2
2α  denotes the value such that, if the random variable vT  has a t-distribution with v  degrees 

of freedom, then  2
,

2
,

2

1)|Pr(
22

ααα −=<<− ICtTt
v

v
v

 where 2α  is the desired false alarm rate. 

The constants **
3D  and **

4D  for the Phase I R  chart are obtained in a similar manner by studying 

an expression for the false alarm rate of the R chart. The details can be found in Hillier, (1969). 

Tables with values of **
2A , **

3D  and **
4D  are provided by Hillier (1969) for subgroups of size 5=n  

when ∞= ,100,50,25,20,15,10)1(2m  and 2α  and/or 3α  and/or 4α  are equal to 0.001, 0.0027, 0.01, 

0.025 and 0.05, respectively. 

The implementation of Hillier’s procedure is straightforward. First one chooses the desired values 

of 2α , 3α  and 4α  and calculate the recommended control limits using the appropriate values of **
2A , 

**
3D  and **

4D . Then, for each Phase I subgroup, one checks if both its average iX  and its range iR  fall 

inside the control limits for the X  chart and between those of the R chart. If they do not, the particular 

subgroup(s) are discarded (only if an assignable cause was found) and the overall mean X , the mean 

range R  and the control limits are re-calculated using the remaining subgroups where the factors **
2A , 

**
3D  and **

4D  are based on the updated value of m  i.e. the number of Phase I subgroups still being 

used to calculate X  and R . This iterative procedure is continued until all the remaining subgroup 

means and subgroup ranges fall between the control limits of both the charts. Once this state is reached 

one may calculate the appropriate control limits for prospective monitoring of the process in Phase II. 

Note that, if at any stage during Phase I control charting it happens that some of the Phase I 

charting statistics plot outside the estimated control limits but no assignable cause(s) can be found that 

justify their removal, the process may be considered in-control and the observations from these 

samples are then included in the reference data.  
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(c)  Yang and Hillier (1970): “Mean and Variance Control Chart Limits Based on a Small  

                                                    Number of Subgroups” 

 

Yang and Hillier (1970) extend and improve the method proposed by  Hillier (1969) to find 

probability limits for the Phase I X  chart using the average (pooled) sample variance ∑
=

=
m

i
iS

m
V

1

21
 

(instead of the mean range R )  where 2
iS  for mi ,...,2,1=  is the thi  subgroup variance; they also 

develop Phase I limits for a variance chart and a standard deviation chart based on V .  

 

Phase I X  chart 

 

In particular, Yang and Hillier (1970) recommend that instead of calculating the estimated control 

limits of the Phase I X  chart in the usual way i.e.  

                                                RAXLCLLCU 2
ˆ/ˆ ±=  

 

one should replace R  with V  and substitute **
4A  for 2A  and calculate the control limits as 

                                               VAXLCLLCU **
4

ˆ/ˆ ±= . 

 

The charting constant **
4A  comes from studying the false alarm rate of the Phase I X  chart, which 

is given by 
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To control the 
X

FAR  at a level of α  implies that one has to find that value of  **
4A  such that 

miICA
V

XX
A i ,...,2,1for       )|Pr(1 **

4
**

4 =<
−

<−−=α ; 

this requires one to find the distribution of 
V

XX i −
. 

 

In this regard, the authors note that, under the assumption of normality, the numerator 
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−−    for    mi ,...,2,1=  
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; 

they then write  the false alarm rate of the Phase I X  chart as  
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where )1( −nmT  is a random variable which has a Student’s t-distribution with )1( −nm  degrees of 

freedom; this is an exact result. 

 

The charting constant  can thus be calculated by solving for **
4A  from   

miICA
m

mn
TA

m

mn
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This is done by setting  

)1(,
2
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41 −

=
− nm

tA
m

mn
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and solving for **
4A  i.e. 

)1(,
2

**
4

1
−

−=
nm

t
mn

m
A α  

where 
)1(,

2
−nm

tα  denotes the value such that  

ααα −=<<−
−−

1)|Pr(
)1(,

2
)1(,

2

ICtTt
nm

v
nm

 

and α=
X

FAR  is the desired false alarm rate.  

 

The authors provide a table with values of **
4A  for subgroups of size 5=n  when 

∞= ,100,50,25,20,15,10)1(2m  and α  equal to 0.001, 0.002, 0.01 and 0.05, respectively. 

 

Phase I variance chart 

 

For the variance chart based on ∑
=

=
m

i
iS

m
V

1

21
 Yang and Hillier (1970) propose that one uses 2

iS  

for mi ,...,2,1=  as charting statistics and that the estimated control limits be calculated as 

VBLCL
S
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72

ˆ =   and  VBLCU
S

**
82

ˆ =  

where **
7B  and **

8B  are the charting constants. 

 

The charting constants **
7B  and **

8B   are found using the fact that the random variable 
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has an F -distribution with degrees of freedom equal to )1(−n  and )1)(1( −− nm  i.e. 
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                                             )1)(1(,12

2)1(
−−−=

−
−

nmn

d

i

i F
SVm

Sm
  for mi ,...,2,1= . 

Solving algebraically for 2
iS  in terms of the random variables V  and )1)(1(,1 −−− nmnF  one finds that 

                                          V
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mF
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nmn

nmn
d

i
)1)(1(,1

)1)(1(,12

1 −−−

−−−

+−
=  for each mi ,...,2,1=  

which is a strictly increasing and monotone function of )1)(1(,1 −−− nmnF  for 1>m . 

 

The proposed control limits of Yang and Hillier for their Phase I variance chart to retrospectively 

test the initial subgroups (using V ) are thus obtained by setting 
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where )1)(1(,1, −−− nmnFβ  is the fractile such that, if the random variable 
21,nnF  has an F -distribution with 

1n  and 2n  degrees of freedom, then ββ => −−− )Pr( )1)(1(,1,, 21 nmnnn FF  and Lα  ( Uα ) is the desired 

probability that a Phase I sample variance 2
iS  for mi ,...,2,1=  plots below (above) the estimated 

control limit. 

 

Phase I standard deviation chart 

 

Because 2
iS  is expressed in terms of a strictly increasing and monotone function of )1)(1(,1 −−− nmnF  for 

1>m , the authors proposed that the adjusted control limits of their Phase I standard deviation chart be 

calculated as  

 VBLCL **
7

ˆ =   and  VBLCU **
8

ˆ = . 

One would then compare each sample standard deviation iS  for mi ,...,2,1=  with the estimated limits 

VB **
7  and VB **

8 , respectively. 
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Tables with values of **
7B  and **

8B  are provided for subgroups of size 5=n  when 

∞= ,100,50,25,20,15,10)1(1m  and Lα  and/or Uα  are equal to 0.001, 0.005, 0.025, respectively. 

 

 

Remark 12 

 

It is important to note that, unlike King (1954), neither Hillier (1969) nor Yang and Hillier 

(1970) consider the correlation (i.e. dependency) between the signaling events that result 

from the use of estimated process parameters, and they control the false alarm rate of each 

subgroup and not the false alarm probability (like King, (1954)). 

 

 

 

The control limits by Hillier (1969) and Yang and Hillier (1970) are referred to as the “standard 

limits”. Yang and Hillier (1970) also suggest a second method for constructing Phase I charts referred 

to as “individual limits”. In the latter approach each subgroup is tested one at a time while treating the 

other 1−m  subgroups as in-control.  The control limits for the plotted charting statistic at time i  are 

therefore functions of the other 1−m  samples and require recalculating m  different sets of control 

limits.  
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(d)  Chou and Champ (1995): “A comparison of two Phase I control charts”, and  

       Champ and Chou (2003): “Comparison of Standard and Individual Limits Phase I Shewhart     

                                                     X , R, and S Charts” 
 

The standard limits and the individual limits are studied in detail by Chou and Champ (1995) and 

Champ and Chou (2003).  These authors discuss, evaluate and compare the standard limits and the 

individual limits Shewhart-type Phase I X  charts assuming normality when the process parameters are 

unknown. 

 

Champ and Chou (2003) also show that the individual limits and the standard limits Shewhart-type 

Phase I R  charts can be designed to be equivalent; a result that they show also holds for the individual 

limits and the standard limits Shewhart-type Phase I S  charts. 

 

Standard limits Phase I X  chart 

In particular, Champ and Chou (2003) define the estimated control limits of the standard limits 

Shewhart-type Phase I X  chart as 

nc

V
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m
XXX
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where 
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i
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1
  and  ∑
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i
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are the overall mean and the pooled variance (which includes all m  the Phase I samples), 
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)2/)1)1(((2
,4 −Γ−

+−Γ=
nmnm

nm
c m  

 

is the unbiasing constant and the charting constant 

 

)2/(,0),1(,4/)1( mnmmX
tcmmk α−−=  

was chosen using Boole’s inequality such that, if the process is in-control, the probability that at least 

one sample mean iX  for mi ,...,2,1=  is outside the control limits is at most α , 10 << α  and where 

)2/(,0),1( mnmt α−  is the 100)]2/(1[ mα− th percentage point of the univariate central Student’s t -distribution 

with )1( −nm  degrees of freedom. 
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Individual limits Phase I X  chart 

The estimated control limits of the standard limits Shewhart-type Phase I X  chart are re-expressed 

as 

VAXLCLLCU XX
***

4
ˆ/ˆ ±=  

where 

)2/(,0),1(
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4 )/()1( mnmtmnmA α−−= , 

and then, Champ and Chou (2003) define the estimated control limits of the individual limits 

Shewhart-type Phase I X  chart as 
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are the overall mean and the pooled variance when only the i th  sample is removed, respectively and  

)2/(,0),1)(1(
***
][,4 ))1/(( mnmi tnmmA α−−−= . 

Tables with values of ***
4A  and ***

][,4 iA  when 25)10(5=m  and 10)1(2=n  for 05.0=α  are provided. 

 

Performance comparison 

In the performance comparison of the standard limits versus the individual limits of the Shewhart-

type Phase I X  chart, the authors evaluate the effectiveness of the two charts in identifying an out-of-

control process. A simple out-of-control scenario is chosen where one of the samples is assumed to be 

out-of-control and the other 1−m  samples are in-control. Without any loss of generality they take the 

first sample to be out-of-control and assume that  

),(~
2

11 n
NX

σµ           and          ),(~
2

n
NX i

σµ  for  mi ,...,3,2=  

where 
n

σδµµ +=1  so that the first sample is out-of-control and reflected only in its mean. 
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The probabilities that the first and the second (without loss of generality) sample means fall outside the 

standard limits are shown to be 


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respectively, whereas the probabilities that the first and the second sample means fall outside the 

individual limits are shown to be  
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respectively, where 

δθθ mm /)1(1]1[ −== , 

 

δθθ )]1(/[12]2[ −−=−= mm  

and θ,
~

vT  denotes the c.d.f of a univariate non-central Student’s t -distribution with v  degrees of 

freedom and non-centrality parameter θ . 

 

Tables with values of  ***
1,Xp , ***

2,X
p , ***

]1[,X
p  and ***

]2[,X
p  are provided for 0.2)1.0(0.0=δ , 25)5(5=m  

and 05.0=α  and used in the performance comparison. 

 

Champ and Chou (2003) notes that, in general, ***
]1[,

***
1, XX

pp >  for all size shifts δ  in the mean, 

number of samples m , and the sample size n . They also point out that although ***
]2[,

***
2, XX pp ≈ , in 

general,  ***
2,X

p  is slightly larger than ***
]2[,X

p . 

Based on these results, they conclude that the standard limits X  chart slightly outperforms the 

corresponding individual limits X  chart and highlight the fact that there is more work involved in 

setting up the individual limits chart. 
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Standard limits and Individual limits Phase I R and S  charts 

Lastly, Champ and Chou (2003) consider the Shewhart-type Phase I R  and S  charts. Specifically, 

they show that if the standard limits and the individual limits Phase I R  charts are defined as  
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is the mean range excluding only the i th sample.  

 

 

Similarly, the authors show that if the standard limits and the individual limits Phase I S  charts are 

defined as  
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respectively, the standard limits and the individual limits Phase I S  charts are equivalent if one takes 
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is the average standard deviation excluding only the i th sample. 
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(e)  Champ and Jones (2004): “Designing Phase I X  Charts with Small Sample Sizes” 
 

One of the problems with the approach by Chou and Champ (1995) and Champ and Chou (2003) 

in developing their Phase I X  chart is that they use Boole’s inequality and do not explicitly take 

account of the large number of simultaneous comparisons inherent in Phase I.  Champ and Jones 

(2004) recognized this by setting up FAP-based probability limits for the Shewhart-type Phase I X  

chart in Case U, when the mean and the standard deviation are both unknown.   They use three 

unbiased estimators σ̂  of σ  in the calculations of the control limits, which are defined as 

n
kXLCLLCU

σ̂ˆ/ˆ ±= . 

The estimators σ̂  are (i) the average sample range 
2d

R
, (ii) the  average sample standard deviation 
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S
, and (iii) the square root of the pooled sample variance 
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The authors show that the joint distribution of the m  standardized subgroups means 
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follows either an exact or an approximate (depending on the estimator used for σ ) equi-correlated 

central multivariate t -distribution with correlation )1/(1 −− m , where the degrees of freedom v  and 

the unbiasing constant c  (which varies depending on the particular estimator (i), (ii) or (iii) used for 

σ ,  see Champ and Jones (2004) for details) are both functions of m  and n . 

 

The exact false alarm probability of the Phase I X  chart is shown to be  
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where ),...,,( ,2,1,,...,, ,2,1, mvvvTTT tttf
mvvv

 is the joint density of mvvv TTT ,2,1, ,...,,  , 
1−

=
m

m
kcd  and k  equals 

either Rk  or Sk  or Vk  depending on which unbiased estimator of σ  was used.  

 

 

Using a modified version of a program by Nelson (1982) for the equi-correlated multivariate t-

distribution, Champ and Jones (2004) provide tables for the charting constants Rk , Sk  and Vk  for 

15,10)1(4=m  and 10)1(3=n  for a nominal false alarm probability of  0.1, 0.05 and 0.01, respectively. 

Note that, although Champ and Jones (2004) followed an exact approach, the accuracy of the values of 

the charting constants Rk , Sk  and Vk  that they obtained, depend on the accuracy of the program by 

Nelson (1982). 

 

 

Champ and Jones (2004) use simulations to compare the performance of their control limits of the 

X chart when 20≥m  with: (i) approximate limits using univariate Student’s t  critical values, and (ii) 

approximate limits assuming that each ivT ,  approximately follows a standard normal distribution.  

Although both of these approximate procedures are easy to use, the latter is not recommended unless 

the number of subgroups m  is at least 30. 
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(f)  Neduraman and Pignatiello (2005): “On Constructing Retrospective X  Control Chart  

                                                                     Limits” 
 

Neduraman and Pignatiello (2005) adopted the analysis of means (ANOM) approach (see e.g. the 

book by Nelson, Wludyka and Copeland, (2005)) to construct a Shewhart-type Phase I X  chart for the 

mean while maintaining the false alarm probability at a desired level. They also compare the 

performance of their ANOM based control limits with that of Bonferroni-adjusted control limits 

through computer simulation experiments and make recommendations as to when each of the 

approaches may be used.  

 

 Their chart is based on the result that if 
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then the standardized charting statistics ),...,,( 21 mTTT  has an equi-correlated multivariate t -

distribution with common correlation )1/(1 −− m . Using this result they find critical values, denoted 

by vmFAPh ,,0
, such that 
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where  )1( −= nmv  represents the degrees of freedom of the variance estimator V  and 0FAP  is the 

nominal false alarm probability.  The Phase I ANOM based control limits are given by  

 

mnVmhXLCLLCU vmFAP /)1(ˆ/ˆ
,,0

−±=  

 

 where the plotting statistics are the usual sample means iX  for  mi ,...,2,1= . 

 

The authors provide tables for the critical values vmFAPh ,,0
 for 100,75,50)10(30)5(5=m , 10,7,5=n  

and 05.0,01.0,0027.00 =FAP .  

 

Finally, Neduraman and Pignatiello (2005) compare the performance of their ANOM based control 

limits with those obtained by a Bonferroni-type adjustment via computer simulation. 
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The Bonferroni-adjusted control limits are obtained by setting the false alarm rate for each 

subgroup equal to mFAP /0  so that the estimated Bonferroni-adjusted control limits are given by 

 

 ncSzXLCLLCU mFAP /)/(ˆ/ˆ
4)2/(0

±=  

 

where S  denotes the average of the m sample standard deviations, 4c  is the unbiasing constant and 

mFAPz 2/0
 is the 100)2/1( 0 mFAP− th percentage point of the standard normal distribution.   

 

Neduraman and Pignatiello (2005) found that: (i) for small subgroup sizes the ANOM based 

control limits perform better than the Bonferroni-adjusted limits in that it maintains the false alarm 

probability at the desired level for all subgroup sizes considered, (ii) that the estimated (or empirical) 

false alarm probability of the ANOM approach is relatively close to the desired level, whereas it is 

higher than the desired level when the Bonferroni-adjusted limits are used for small sample sizes, but 

(iii) for large n , the two sets of limits perform relatively similarly. 

 

The authors recommend that the exact ANOM control limits be used for small subgroup sizes and 

that either approach may be used for larger subgroup sizes to control the overall probability of a false 

alarm (i.e. theFAP ). Note, however, that these authors incorrectly base the two-sided Bonferroni-

adjusted control limits on mFAPz /0
 and not on mFAPz 2/0

. 
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Remark 13 
 

 

(i) The ANOM based control limits of Neduraman and Pignatiello (2005) are derived using V  

whereas the Bonferroni-adjusted limits, to which they compare their ANOM based limits, 

are based on S . 

 

(ii)  It is apparent that the ANOM based approach of Neduraman and Pignatiello (2005) is 

similar in spirit to that of Champ and Jones (2004), particularly when using V  as an 

estimator of 2σ . It should be noted that while Champ and Jones (2004) used the unbiased 

estimator 4/ cV  of σ , Nedumaran and Pignatiello (2005) did not; they simply used V . 

 

(iii)  In the approach by Neduraman and Pignatiello (2005) and that of Champ and Jones (2004) 

we are working with a singular multivariate t-distribution (since 1
1

,∑
=

=
m

i
ivT  and 1

1
∑

=

=
m

i
iT ) 

with a negative and common correlation of )1/(1−− m . So, the computer programs used to 

find the critical values must take account of the singularity of the joint distribution. 
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2.3.2  Phase I charts for other settings 
 

 

Control charts for rational subgroups of size 1>n  from a normal distribution is important, but 

there are situations where (a) the assumption of normality is not valid, for example, when the time 

between some events (such as failures) is monitored and it is well-known that the exponential 

distribution is a better model, and (b) in some cases it is more natural to analyze the individual 

observations as they are collected so that the sample size 1=n  (see e.g. Montgomery, (2005)) .  Two 

methods that are useful in these situations are considered next. 

 

 

(a)   Jones and Champ (2002): “Phase I control chart for times between events” 
 

Phase I charts have been considered for distributions other than the normal that is useful in SPC 

applications.  Jones and Champ (2002) proposed Phase I charts to monitor the time between events for 

the standards known and unknown cases. These charts are referred to as Phase I exponential charts. 

 

Assuming that the occurrence of defects in a continuous process variable can be well modelled by 

a Poisson process and denoting the time of occurrence of the thi  defect by iT ,  with the time between 

successive defects denoted by 1−−= iii TTX , it is well-known that )(~ ii iidEXPX µ  for mi ,...,2,1= .  

 

Standard known: Case K 

In the standards known case 0µµ =i  for all mi ,...,2,1= , the charting statistics are the iX ’s and 

the control limits for the Phase I exponential chart are given by 

0
ˆ µLkLCL =          and        0

ˆ µUkLCU =  

where 0µ  is the known (specified) value of µ  and  the charting constants Lk  and Uk   are selected 

such that UL kk <<0 .  

 

Jones and Champ (2002) show that the Phase I exponential chart in Case K can be designed by 

choosing values for Lk  and Uk  such that the probability of an alarm in case of an out-of-control 

process is greater than the desired false alarm probability 0FAP   i.e. choosing Lk  and Uk  such that 

0
1

000 ), oneleast at |}{Pr(1 FAPikXk
m

i
iUiL ≥∀≠<<−

=
I µµµµ . 
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Because the above equation  is satisfied when 0µLk  and 0µUk  are taken to be the τ th and the 

)1( τα +− th percentage points of the exponential distribution with mean 0µ , it follows that 

 )1ln( τ−−=Lk      and  )ln( τα −−=Uk  

with mFAP 1
0 )1(1 −−=α  , ατ <<0 , and where τ  is determined such that 

0)ln()()1ln()1( =−−−−− ταταττ . 

 

Tables with values of τ , Lk  and Uk  for various values of 0FAP  and m  are provided that can be 

used to easily calculate the control limits. 

 

Standard unknown: Case U 

For the standards unknown case the authors design exact lower one-sided charts (details omitted) 

as well as approximate two-sided Phase I exponential charts so that the false alarm probability is at 

most α . This is done using the fact that µ̂iX  is related to the univariate F -distribution, when the 

process is in-control, through  

2),1(2)1(1ˆ −−+
=

m

i

Fm

mX

µ
 

where the random variable 2),1(2 −mF  follows an F - distribution with )1(2 −m  and 2  degrees of 

freedom. 

 

Using this result together with Boole’s inequality it is shown that  

αµµ
ττα

−≥














−+
<<

−+= −−−−

1|}
)1(1

ˆ

)1(1

ˆ
{Pr

1 ,2),1(21,2),1(2
I
m

i m
i

m

IC
Fm

m
X

Fm

m
 

where mFAP0=α , ατ <<0 , and τα +−− 1,2),1(2 mF  and τ,2),1(2 −mF  are the )1( τα +− th and τ th 

percentage points of the F -distribution with )1(2 −m  and 2  degrees of freedom, respectively.  

 

Consequently, the estimated control limits for the approximate two-sided Phase I exponential chart 

are given by  

τα

µ
−−−−+

=
mmFm

m
LCL

/1,2),1(2)1(1

ˆˆ        and       
τ

µ
,2),1(2)1(1

ˆˆ
−−+

=
mFm

m
LCU  

with ∑
=

=
m

i
iX

m 1

1µ̂  and mατ <<0 , respectively. 
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The performance of the Phase I exponential charts are evaluated by Jones and Champ (2002) using 

computer simulation experiments and assuming that n  of the m  iX ’s ~ )( µµ cEXP +  are out-of-

control while the remaining nm −  iX ’s ~ )(µEXP  are in-control. 

 

For the standards known case a table containing values of  the probability of at least one signal for 

various values of 0FAP , n  and c , and samples of size 30=m , is provided. For the standards 

unknown case similar tables are provided which contain values of the proportion of charts with at least 

one signal for various values of 0FAP , n  and c , and samples of size 30=m . 

 

The authors point out that the sensitivity of the Phase I exponential charts is inversely related to 

the 0FAP  value and it should therefore not be set too low or the charts may not achieve the desired 

level of sensitivity. 
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(b)  Change-point modeling and other control charting methods 
 

In some applications it is natural to collect and record the data as they are observed individually.  

In this setting, some authors have suggested formulating the question of whether or not a process is in-

control as a change-point problem.  This formulation typically assumes that the observations up to and 

including a point in time (called the change-point) are i.i.d. (with the same mean and variance) with 

some known distribution (such as the normal) while the observations after the change-point are also 

i.i.d. with the same distribution but with a different mean and/or variance. 

 

For example, when the common distribution is normal, one writes 

 







+=

=

niiidN

iiidN
X i

,...,1for    ),(

,...,1for     ),(
~

2
22

2
11

τσµ

τσµ
 

 

where iX  for mi ,...,2,1=  denotes an individual observation and n<≤ τ0  is the unknown change-

point (in time).   The goal is to be able to detect and/or locate the change-point as well as measure the 

magnitude of the change as quickly as possible.  

 

The change-point problem has a rich history in the statistics literature.  In the SPC context, there 

are several papers, including Hawkins (1977), Sullivan and Woodall (1996), Hawkins, Qiu and Kang 

(2003) as well as Hawkins and Zamba (2005). Because the majority of these methods are based on the 

likelihood ratio testing procedure and because only the typical Phase I setting (i.e. checking whether 

one or more Phase I plotting statistics plot outside the control limits) is the focus here, a detailed 

discussion is not given. 

 

Other control charting methods for Case U include, for example 

(i) Q-charts (Quesenberry, (1991)), 

(ii)  control charts using sequential sampling schemes (see e.g. Zhang, Xie and Goh, (2006)), 

and  

(iii)  the model-based control charts (Koning, (2006)).  

 

The Q-charts and charts based on sequential sampling schemes can be used in situations where 

self-starting techniques are needed, for example, in low-volume, job-shop (short-run) processes and/or 

in start-up situations.   While these charts are useful in these situations, they are not applied in a typical 

Phase I setting. 
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2.4    Concluding remarks: Summary and recommendations 
 

 

The focus in this chapter was primarily univariate variables Shewhart-type Phase I control charts. 

 

In particular, we  

(i) looked at what a Shewhart-type Phase I control chart is and how it is typically designed,  

(ii)  studied the design of Phase I control charts for process spread, and 

(iii)  gave an overview on the literature of univariate parametric Shewhart-type Phase I control 

chart for location and spread. 

 

Section 2.1 gave a general discussion on Shewhart-type Phase I control charts in which the goals of 

Phase I control charting and the methods for designing and implementing Shewhart-type Phase I charts 

were described. 

It turned out that the FAP-based control limits are the best to use when designing a Phase I chart 

because they correctly account for the fact that the Phase I signaling events are dependent and that 

multiple signaling events have to be dealt with simultaneously to make an in-control or not in-control 

decision; as a result it is recommended that the exact joint probability distribution of the charting 

statistics should be used (where possible) to control the false alarm probability when designing a Phase 

I chart. 

The approximate FAR-based limits and the Bonferroni control limits were both shown to be close 

competitors of the FAP-based control limits; however, these two sets of control limits are both slightly 

wider than the FAP-based control limits and might lead to fewer alarms. In situations where the exact 

joint probability distribution is not available either of these two simpler (approximate) sets of control 

limits may be used; in such scenarios the marginal in-control distribution of each charting statistic is 

required. 

Lastly, it was shown that the FAR-based control limits ignore the dependency of the Phase I 

charting statistics and overlooks the fact that multiple charting statistics are to be dealt with 

simultaneously; as a result, it is likely that one my observe more false alarms that what is typically 

expected and this approach should therefore not be used in designing a Shewhart-type Phase I control 

chart. 
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The techniques used in designing the Phase I 2S , S and R  charts of section 2.2 recognized that 

multiple signaling events are involved and that the comparisons of the charting statistics with the 

estimated control limits are not independent.  The design of the 2S  chart for 25<m  needs to be based 

on a multivariate singular beta distribution, also known as the type I or standard Dirichlet distribution, 

with common correlation )1/(1 −− m ; whereas for 25≥m , percentiles of the univariate type I or 

standard beta distribution may be used as an approximation.  For the R  and the S  charts, the design of 

the charts depends on some joint probability distribution(s) that are currently unknown. 

Using computer simulations, the necessary charting constants for each chart were calculated so that 

the false alarm probabilities of the charts do not exceed 0.01, 0.05 and 0.10, respectively.  For other 

desirable nominal false alarm probabilities the methods given in section 2.2 can be used to find the 

appropriate charting constants.  

It is recommended that practitioners use the charting constants provided in Tables 2.1, 2.2, 2.3, 2.5, 

2.6, 2.7, 2.8, 2.9, 2.10, 2.12, 2.13, 2.14 when computing the control limits of the Phase I 2S , S and R  

charts.  The connection between the false alarm rate and the false alarm probability in a number of 

selective cases was also examined in order to provide some guidance to the user.   

 

 

Finally, In section 2.3 we gave an overview on univariate parametric Shewhart-type Phase I control 

charts for location and spread. It is believed that this would be to the benefit of all users of control 

charts in that it informs them what the present state of the art is and what future research still remains. 

Although the Phase I control charts included in the overview are all based on the assumption that 

the observations are i.i.d., one can argue that autocorrelation can be present in a number of potential 

applications.  Thus further research on Phase I control charts for autocorrelated data (see e.g. Maragah 

and Woodall, (1992) and Boyles, (2000)) will be of great benefit to the SPC practitioner.  Also, even 

though the overview focused on variables data, attributes data are common in some applications and as 

a result Phase I charts for attributes data (see e.g. Borror and Champ (2001)) are also useful and more 

work needs to be done in this area. Moreover, since not much is typically known or can be assumed 

about the underlying process distribution in a Phase I setting, nonparametric Phase I control charts 

would be of practical benefit and should be investigated. 

It should be noted that, a clear consensus does not appear to exist as to how Phase I charts should 

be compared and contrasted.  In Phase II, control chart performance is typically measured in terms of 

some attribute of the run-length distribution. In Phase I, the preferred performance metric is the 

probability of at least one signal.  So for the in-control case, one can compare two or more charts by 

comparing their FAP’s.  In the out-of-control case, if there are two control charts with the same or 
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roughly the same FAP, one can examine the probability of at least one signal when there is a shift in 

the process parameter and the chart with a higher probability of a signal should be preferred.  This 

would be in line with comparing the power of two tests that are of the same size.  Champ and Jones 

(2004) undertook the in-control FAP comparison in a simulation study whereas Jones and Champ 

(2002) looked at the out-of-control comparison of Phase I control charts. 
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2.5   Appendix 2A: SAS® programs 
 
 
 
 

2.5.1   SAS® program to find the charting constants for the Phase I S2 chart 
 
 
 
proc iml; 
 
sim= 100000;   
m=5; 
dof= 4; 
x=j(sim,m, .); 
y=j(sim, 2, .);   
call  randgen(x, 'CHISQ' ,dof); 
 
do i= 1 to sim; 
sum=x[i,+]; 
y[i, 1]=max(x[i,])/sum; 
y[i, 2]=min(x[i,])/sum; 
end ; 
 
out=j( 2000, 2, .); 
 
do alpha= 0.0001 to 0.2 by 0.0001; 
a=cinv(alpha/ 2,dof)/(m*dof); 
b=cinv( 1-alpha/ 2,dof)/(m*dof); 
r= 10000*alpha; 
t=j(sim, 3, .); 
t[, 1] = y[, 1] > j(sim, 1,b);  
t[, 2] = y[, 2] < j(sim, 1,a); 
t[, 3] = t[, 1]|t[, 2];  
FAP   = t[+, 3]/sim; 
out[r, 1] = alpha; 
out[r, 2] = FAP; 
end ; 
 
create  FAP_Ssq from out[colname={alpha  FAP}]; 
append  from out; 
quit; 
 
proc export data =FAP_Ssq 
outfile ="c:\FAP_Ssq.xls"  replace ; 
run;  
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2.5.2   SAS® program to find the charting constants for the Phase I S chart 
 
 
 
proc iml; 
 
sim= 10; 
m=5; 
n=5; 
x=j(sim,m, 0); 
y=j(sim, 2, .); 
 
do i= 1 to sim; 
 do j= 1 to m; 
  z=j( 1,n, 0); 
  call  randgen(z, 'NORMAL' );   
  x[i,j]=sqrt((ssq(z)-sum(z)*sum(z)/n)/(n- 1)); 
 end ; 
end ; 
 
do i= 1 to sim; 
sum=x[i,+]; 
y[i, 1]=max(x[i,])/sum; 
y[i, 2]=min(x[i,])/sum; 
end ; 
 
out=j( 350, 2, .); 
do k= 0.01 to 3.5 by 0.01; 
lcl=( 1-k*sqrt( 1- 0.94* 0.94)/ 0.94)/m; 
ucl=( 1+k*sqrt( 1- 0.94* 0.94)/ 0.94)/m; 
r= 100*k; 
t=j(sim, 3, .); 
t[, 1] = y[, 1] > j(sim, 1,ucl);  
t[, 2] = y[, 2] < j(sim, 1,lcl);  
t[, 3] = t[, 1]|t[, 2]; 
FAP = t[+, 3]/sim; 
out[r, 1] = k; 
out[r, 2] = FAP; 
end ; 
 
create  FAP_S from out[colname={k FAP}]; 
append  from out; 
 
proc export data =FAP_S 
outfile ="c:\FAP_S.xls"  replace ;  
quit; 
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2.5.3   SAS® program to find the charting constants for the Phase I R chart 
 
 
 
proc iml; 
 
sim= 10; 
m=5; 
n=5; 
x=j(sim,m, 0); 
y=j(sim, 2, .); 
 
do i= 1 to sim; 
 do j= 1 to m; 
    z=j( 1,n, 0); 
    call  randgen(z, 'NORMAL' );  
 x[i,j]=max(z)-min(z); 
 end ; 
end ; 
 
do i= 1 to sim; 
sum=x[i,+]; 
y[i, 1]=max(x[i,])/sum; 
y[i, 2]=min(x[i,])/sum; 
end ; 
 
out=j( 350, 2, .); 
 
do k= 0.01 to 3.5 by 0.01; 
ucl=( 1+k* 0.864/ 2.326)/m; 
lcl=( 1-k* 0.864/ 2.326)/m; 
r= 100*k; 
t=j(sim, 3, .); 
t[, 1] = y[, 1] > j(sim, 1,ucl);  
t[, 2] = y[, 2] < j(sim, 1,lcl); 
t[, 3] = t[, 1]|t[, 2]; 
FAP   = t[+, 3]/sim; 
out[r, 1] = k; 
out[r, 2] = FAP; 
end ; 
 
create  FAP_R from out[colname={k FAP}]; 
append  from out; 
 
proc export data =FAP_R 
outfile ="c:\FAP_R.xls"  replace ;  
quit; 
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