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Synopsis

The control of batch pulp digesters is hampered by insufficient measurements as well as

nonlinearity and weak correlation between consecutive cooks. This makes a model-based

approach to control attractive. Due to the age of the industry, many legacy controllers

are in place on digesters around the world.

The theoretical variance obtained by Monte Carlo modelling of a new controller is used

as a benchmark for performance comparison between an old control system (S-factor) and

a new model based controller developed by the University of Pretoria (the UP controller).

This study covers the development of the controller, Monte Carlo modelling of the old

and new controllers and in-situ testing of the UP controller on an operating digester.

During Monte Carlo simulation, the UP controller outperformed the legacy controller,

obtaining a theoretical overall variance of 3,07 (which will be used as the baseline for

performance measurement) while also showing larger responses to tuning factors. The

S-factor performed at 6,8 times the theoretical optimum variance during in situ testing,

while the UP controller performed at 3,9 times the theoretical optimum (43% better than

the S-factor controller). An average error 90% lower than that of the S-factor controller

was obtained when using the UP controller.

Additional benefits of the new controller include easy inclusion of new measurements

and clear relations between the tuning parameters used and the conditions in the digester.

KEYWORDS: batch control, performance analysis, Monte Carlo, model based control,

pulping, sulphite process
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Sinopsis

Die beheer van enkellading pulpverteerders word belemmer deur ’n tekort aan voldoende

metings sowel as nie-lineariteite en swak korrelasie tussen opeenvolgende koke. Hierdie

probleme kan oorkom word deur van modelgebaseerde beheer gebruik te maak.

Monte Carlo modellering is gebruik om ’n teoretiese skatting van die variansie van ’n

nuwe beheerder te verkry. Hierdie resultate is gebruik om ’n bestaande beheerder wat

gebruik word op ’n aanleg (die S-faktor beheerder) en ’n nuwe beheerder wat ontwikkel

is by die Universiteit van Pretoria (die UP beheerder) te vergelyk. Die studie wat in

hierdie verhandeling gedokumenteer is dek die ontwikkeling van ’n nuwe modelgebaseerde

beheerder, Monte Carlo modellering van beide die ou en nuwe beheerders en in situ toetse

van die UP beheerder op ’n verteerder in bedryf op die aanleg.

Die Monte Carlo simulasie toon ’n teoretiese standaard afwyking van 3,07 (wat as

’n basis gebruik word vir metings van beheerderdoeltreffendheid) en wys dat die nuwe

beheerder die teiken vinniger nader as gevolg van aanpassing van die modelparameters.

Tydens in-situ toetse loop die S-faktor beheerder teen 6,8 keer die teoretiese optimum

variansie, terwyl die UP beheerder teen 3,9 keer die teoretiese waarde loop (43% beter).

Gedurende die toetsfase was die gemiddelde fout behaal met die UP-beheerder 90% laer

as dié behaal met die S-faktor beheerder.

Bo en behalwe die duidelike verbetering in variansie kan addisionele metings maklik

ingesluit word in die beheeralgoritme van die nuwe beheerder en bestaan daar ’n duidelike

korrelasie tussen die beheerderparameters en die toestande op die verteerder.

SLEUTELWOORDE: enkellading beheer, Monte Carlo, modelgebaseerde beheer, ver-

pulping, sulfietproses
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CHAPTER 1

Introduction

1.1 Background

During the pulping of wood, the chain length of the cellulose in the wood is reduced.

This chain length – expressed as a degree of polymerisation (DP) – is the most important

controlled variable in pulping. The DP is commonly inferred from the viscosity of the

pulp, as it is difficult to measure DP directly.

At the Sappi Saiccor Umkomaas pulp plant, pulping is done in a batch process in

batch pulp digesters. Several factors make the control of the pulp DP uniquely difficult.

• There are relatively few online measurements of digester inputs.

• These measured variables are not directly representative of the inherent state of the

digester.

• DP is measured only at the end of a batch, not during the batch.

• There is a large delay between the end of one batch and the time when the DP

reached during that batch becomes known.

• The results from one cook are only loosely connected to the results of the next cook.

These problems preclude the use of a high sampling rate control strategy in this study,

as the important variables are not measured continuously. Instead, the most important

control action will take place at a lower sampling rate, corresponding to the sampling of

the DP.

A model of the reactions (the UP model) that take place during the pulping process

was developed as part of a project to develop an improved control strategy for controlling

the DP (Kilian, 1999). In this dissertation the UP model is used to develop and implement

1
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a model-based controller (the UP controller). The performance of this controller is also

evaluated.

1.2 Problem statement

The problem is to develop and implement an improved controller on the Sappi Saiccor

plant and evaluate its performance. A good performance measure should be devised to

evaluate controller performance fairly. The controller should also be implemented on a

running digester to ensure that it is functioning correctly. Special attention should be

given to the aggravating factors mentioned earlier.

1.3 Method

In order to define a valid baseline for control, the UP model for the reactions in the

digester is to be used to simulate the effects of input variability on the output (DP). The

performance of the UP controller is to be measured against the current controller in place

on the digester using this baseline.

1.3.1 Distribution modelling

The distributions of the input variables measured on the plant will be simulated using a

Monte Carlo method. The outputs recorded during these runs will then be characterised

to obtain an estimate of the distribution of the output due to the measured input variabil-

ity. This will provide a best-case comparison between the controllers, as the modelling

will neglect unmeasured disturbances.

1.3.2 Performance measure

The performance measure chosen will relate the performance of a specific batch controller

to the performance of a simulated optimal controller. The results of a series of cooks will

be analysed and compared with a base case evaluated during the simulation step. The

performance measure will show how close to the expected maximum level of control the

plant is running.

1.4 Deliverables

The deliverables from this project are

• Results of Monte Carlo simulation of the legacy and UP controllers
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• Determination of a baseline variability for control using the Monte Carlo results

• Comparative study of performance of the UP model and S-Factor controllers against

the theoretical baseline.

1.5 Structure

Chapter 2 gives an overview of relevant literature in the field of batch control, Monte

Carlo methods and performance measures. Chapter 3 gives a general background of the

company, the product (dissolving pulp) it produces and the process employed. The control

problem is formalised in chapter 4, identifying controlled, manipulated and disturbance

variables. In this chapter, the problem is also reduced to three time frames (subsystems

where system inputs and outputs have the same sampling rates), and the time frame

where the focus should be is isolated. The work that has already been done on the

control problem is presented in chapter 5.

The UP controller design is presented formally in chapter 6. The Monte Carlo simu-

lation whereby the UP controller is to be compared to the current controllers is explained

in chapter 7. The programming analysis for implementation of the controller on the plant

is done in chapter 8. Chapter 9 contains a discussion of the results obtained in the study,

and chapter 10 draws conclusions based on the results of the study and recommends

further courses of action.



CHAPTER 2

Theoretical background

This chapter explores existing developments in controller implementation. It cov-

ers literature dealing with the following subjects:

• Control hierarchy and time scales on which control take place.

• Classic, advanced, model based control and adaptive control structures.

• Batch implementations of these control structures and batch specific control

concepts.

• Implementation of control structures on existing plants.

• Planning and programming to create software controllers.

• Documentation standards for all the design and implementation stages.

• Testing and performance analysis of controllers.

The study is structured to represent the decision process that led to the final

choice of controller.

Due to the difficulties inherent in the process, advanced control and state esti-

mation methods were only briefly considered. The low sampling rate as well as

measurements which are not directly related to the state of the reactions inside

the reactor were the main factors influencing this choice.

2.1 Decisions

In the course of this project, several avenues were considered for controlling the viscosity

and for evaluating the control performance. The decisions are shown graphically in

figure 2.1.

4
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Model Based

Slow sampling rate

Dynamic Statistic

Fast sampling rate

Control

Discrete Continuous

Figure 2.1: Decision tree for control. The solid line represents the control choices made, while
dashed lines indicate performance measure choices.

The control problem indicates a clear decision line to the final controller choice based

on the following aspects of the process and control problem:

• Low sampling rate of the controlled variable. The controlled variable is sampled

once – after the control action has taken place.

• Lack of continuity in the process output. The process output during one cook is

only loosely correlated to the cook before and after that cook.

• Nonlinear relationship between measured inputs and process outputs. The inputs

and the outputs of the process are related by a system of nonlinear equations that

are not analytically solvable.

• The continuously measured variables are not indicative of the state of the system.

This makes state estimation difficult.

The lack of continuity and nonlinearity implies that a high level of process knowledge

must be built into the controller. A model of the process will therefore be an attractive

feature in a controller installed to control this process.

When choosing a measure of performance the same choices have to be made. The

dashed line in figure 2.1 thus indicates a statistically based performance measure. In

reality, the performance measure is based on the model of the process and then measured

statistically in terms of variance (the second moment of distribution about the mean).

For problems of this kind it is important to understand that the lack of measurements

and low sampling rate rule out many of the more advanced control strategies associated

with nonlinear control problems. This chapter explores some basic control structures

in addition to more complex techniques in order to highlight the features that can be

extracted from the simple controllers to form an effective control strategy for this problem.
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2.2 Time frame

Chemical processes are controlled on several time frames. The relationship of different

levels of control that is often represented as a control hierarchy as shown in figure 2.2.

The lowest part of this hierarchy (measuring devices and actuators) are usually sampled

Measurement devices and actuators

Decreasing sampling rate

Information

Technology

Production planning

Supervisory control

Regulatory control

Figure 2.2: The control hierarchy (after Maciejowski (2002: 27))

very frequently. As one moves to more complex control structures and loops, the sampling

rate goes down.

Different control strategies must be used for each level of this hierarchy. For instance,

low-level control might require very fast response times when controlling fluid flow or

critical temperatures. This rules out the use of slow optimising control algorithms which

are often used in higher level control.

Throughout this dissertation, the thickness of connecting lines on block diagrams will

correspond to the sampling frequency – a high sampling frequency will be represented by

a thick line.

2.3 Classical control

Classical or traditional control is based on linear systems, analysed using frequency re-

sponses. Lurie & Enright (2000) use the definition “best frequency-domain design meth-

ods developed before 1960, and their extentions”. Usually, the controllers stemming from

classical control design incorporate feedback measures. Classical control is used in the

continuous time scale. The distinction between classical control or base layer control and

advanced control is difficult to define.
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Due to the nature of the control problem presented in this dissertation, several con-

cepts from classical control are useful in understanding the applicability (or lack thereof)

of a control solution. In particular, it is important to understand the philosophy behind

feedforward control, the shortcomings of frequency based control design techniques, and

the problematic nature of infrequently sampled systems. The concepts are presented here

to solidify these concepts before developing a solution.

2.3.1 Frequency response

One of the core aspects of classical control is frequency response analysis. Frequency

responses can be used to describe: (Skogestad, 1996: 15)

1. A system’s response to sinusoids of varying frequency,

2. the frequency content of a deterministic signal via a Fourier transform, and

3. the frequency distribution of a stochastic signal via the power spectral density

function.

Most of the work done on frequency response analysis focuses on the first of the above

interpretations (Skogestad, 1996). The first two points require either a continuous signal

or a high sampling rate for discrete systems. The third point can be applied to stochastic

systems, even with low sampling rates.

It is however important to remember that ‘When process output variables are mea-

sured at a sampling interval that is considered large relative to the natural response time

of the process, the natural dynamics of the process are less likely to be manifested in the

observations. . . ’ (Ogunnaike & Ray, 1994: 1049). This applies to the third point, as the

statistical characteristics of a process do not reveal the dynamics of the process.

2.3.2 System representation

As linear systems are often analysed using frequency responses, the Laplace transform

domain is often preferred above the time domain to represent systems. Laplace transfer

functions can then be defined as

G(s) =
y(s)

u(s)
(2.1)

where y(s) and u(s) represent the input and output of the system respectively. In practise,

the functions are shortened to G, y and u if there is no risk of ambiguity (Skogestad,

1996).

It is also useful to represent systems graphically in the form of a block diagram. In such

a diagram, the relationship between inputs and outputs via transfer functions is shown

graphically by arrows entering and exiting the system. Summing outputs of multiple
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transfer functions is represented by a circle showing the applicable sign. The system

shown in equation 2.2

y(s) = Gp(s)u(s) + Gd(s)d(s) (2.2)

can then be represented as shown in figure 2.3

u
- GP

-+ e -
y

?
d

Gd

?+

Figure 2.3: Block diagram representation of the system y(s) = Gp(s)u(s) + Gd(s)d(s)

2.3.3 Feedback

The general control structure for a feedback control loop is shown in figure 2.4. The basic

principle of the controller is to modify the input to the controlled system (the action of

the controller) based on the error measured from the output of the controlled system.

This ‘feedback’ action is the defining characteristic of feedback control.

-
SP + e - GC

- GP
-+ e q -

CV

6−

?
d

Gd

?+

Figure 2.4: Feedback control structure (adapted from Marlin (2000: 17)). GP , GC and Gd

are the controller, process and disturbance transfer functions respectively

The algorithms used in feedback control vary, but the most basic (and most per-

vasive) of the formulae used to calculate a response to the measured error is the PID

(Proportional, Integral, Derivative) algorithm. In principle, the action of the controller

is calculated by multiplying a constant factor with the error, the integral of the error and

the derivative of the error (Luyben, 1990).

Feedback loops are generally capable of acceptable performance even when no knowl-

edge of the system other than its response under control is available. The use of the

controlled variable as a controller input via feedback enables controllers built on this
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principle to perform in the face of changing system parameters. The tuning parameters

may change, but the controller architecture can remain constant. (Marlin, 2000)

2.3.4 Feed Forward

One drawback to feedback control structures is that certain processes might only show a

reaction to disturbances after a considerable time. When the controller then takes action

to correct the error, the effect of this correction will also be measured late. If one has

a model of the system and a measurement of the inputs, corrective action can be taken

before the disturbance reaches the system. Applying this principle results in a control

structure as shown in figure 2.5

p q -+ e - GP
-+ e -

CV

- GC

6−

?
d

Gd

?+

Figure 2.5: Feed forward control structure (adapted from Marlin (2000: 18))

Note that the disturbances (d) shown entering the system are not measured. The

feedforward structure explained here does not compensate for these disturbances.

If the structure shown in the figure is approached with transfer functions in the Laplace

domain, the ideal controller would cause the transfer function between the setpoints and

the final outputs be equal to unity. For a SISO system, this gives GC = GP−1
GP

. It is clear

that the inverse of the plant would be required in order to apply this controller. This

of course implies that the plant is invertable. In many cases, this it not true, leading to

the use of a partial inverse (using only the part of the model for which an inverse can be

calculated) for control calculations.

2.3.5 Combined structures

Hybrid systems containing both feedforward and feedback structures are often employed

where the feedback controller compensates for mismatches between the feedforward con-

troller and the model (Skogestad, 1996). This structure is shown in figure 2.6.

It can be seen that this controller structure uses a feedforward controller (GFF ) to

react to disturbances before they enter the system, while the feedback controller (GC) is
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SP q

?+e - GC
-+ e - Gf

- GP
-+ e q -

CV

6−

- GFF,SP
-+ e

?

GFF

?+

dq
?

Gd

?+

�GFF,d
�
−

Figure 2.6: A unified control structure with feedback and feed forward action (Marlin, 2000:
20). Gf is a filter transfer function

used to correct for model-controller mismatch, in effect compensating for the uncertainty

inherent in any model of a process.

2.4 Discrete control

Discrete controllers were developed in response to the advent of digital computers, which

could not handle analog signals (Ogunnaike & Ray, 1994).

The use of the computer for data acquisition introduces a new perception

of the process: a quantized[sic] view, in which the system is no longer seen

as giving out continuous information, continuously in time; process informa-

tion now appears to be available only in discrete form, at discrete points in

time.(Ogunnaike & Ray, 1994)

These signals have to be sampled to convert them from analog to digital signals. The

digital signals have a fixed interval between them (the sampling interval). Many of the

classic continuous controllers can be converted to discrete forms (Marlin, 2000), but there

are discrete controllers which operate on a control logic instead of pure mathematical

relationships.

According to Marlin, discrete controllers can be implemented on the continuous time

scale as well as on higher level time scales. Discrete analysis does not require the strong

relationship to frequency response that classical control analysis requires (Marlin, 2000),

even though some frequency response related analysis can be done on discrete systems.
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2.5 Model based control

Model based control is a generic term for all controllers that make explicit use of a model

of the process to be controlled in order to derive both controller structure and parame-

ters (Ogunnaike & Ray, 1994: 645). Feedforward control as explained in paragraph 2.3.4

can therefore be seen as a model based control technique, as it requires an explicit inverse

of the process model.

Marlin (2000: 584) explains the use of a model in control processes as a natural

extension of human control logic. His argument is that humans attempt to model the

process they are controlling and react to the difference between the predicted response

of the system and the true response.

When defined in this way, model based control is a very large field, and only a few of

the most popular techniques are discussed here.

2.5.1 Predictive control structure

In 1982, Garcia & Morari introduced the Internal Model Control (IMC) structure, show-

ing how this structure could represent many of the control structures that were popular

at the time. In the same article, the authors extend the control structure to predictive

control action. This scheme involves predicting the process’ response to control action

and basing control action on these predictions.

Figure 2.7 shows the generalised IMC structure using a predictive controller and offset

compensators (GOC1 and GOC2). This structure has been proposed by many sources, but

-SP
GOC1

- GSP
-+ d - GC

q - GP
-+ d q -CV

?+d
�GOC2

6−

- Gm
-−

?
d

Gd

?+

Figure 2.7: IMC structure with predictive controller and offset compensator (Garcia & Morari,
1982)

has become known as the general predictive control structure. It can be seen that the

model Gm is used to approximate the response of the system to the control actions from

the controller. The difference between the modelled response and the true response of

the system GP is then fed back into the system to accommodate modelling error and the

effect of the unmeasured disturbances d.
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2.6 Adaptive control

The control techniques discussed above are all based on assumptions of static models, or

at least that the controllers will be able to maintain control even though the model of

the process and the process itself are not in accordance. However, when the controlled

process changes with time, the control performance of these controllers degrades. One

method of improving controller performance in the face of changing conditions is to adapt

the model parameters based on the response of the model under controlled conditions or

some other criterion (Hang et al., 1986).

To summarise: ‘In the adaptive control scheme, the controller parameters are adjusted

(in an automatic fashion) to keep up with the changes in the process characteristics. We

know intuitively that, if properly designed, this scheme will be a significant improvement

over the classical scheme.’ (Ogunnaike & Ray, 1994: 628)

Several adaptive control structures exist, three of which are discussed here:

2.6.1 Scheduled adaptive control

If the process to be controlled is well understood, preprogrammed areas of operation can

be used in an adaptive structure. This type of adaptive control is also sometimes known

as gain scheduling (Ogunnaike & Ray, 1994: 628). A typical example of gain scheduling

can be found in level controllers which are set up so that they have low gain near setpoint

and high gain near upper and lower limits.

2.6.2 Model reference adaptive control

A different adaptive control structure is shown in figure 2.8. In this structure, a reference

SP

Adjust

GpGc
�� ��

�� ��
Gref

6

?

�

-- --

?

-

6

Model output

Updated parameters

-

+

-

+

CV

Figure 2.8: Model reference adaptive control (MRAC) structure (Narendra & Valavani, 1979)

model (Gref ) is used to estimate the modelling error. The controller parameters are then

adjusted in response to this error.
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2.6.3 Self-tuning adaptive control

Figure 2.9 shows the self-tuning adaptive control structure. In this structure a reference

model is not explicitly involved (Ogunnaike & Ray, 1994). Instead, an estimate of the

SP

Estimate

Design

Gc Gp
�� �� ?

�

- �

-- --

6-

+
CV

Figure 2.9: Self tuning adaptive control structure (Ogunnaike & Ray, 1994: 630)

process is built by measuring the inputs and outputs of the prosess. This estimate of the

process is then used to design the controller.

2.6.4 Iterative learning

During a batch, startup or shutdown procedure, a process may move into regions where

the original controller models are not valid any more. If the desired trajectory of the

process is known and constant, adjustments can be made to the controller output to

improve control(Xu et al., 2001). For a vector of adjustments a at regular intervals

during a procedure, the controller output is then calculated as m + a where m is the

controller output.

Figure 2.10 shows an example of a desired and actual trajectory for such a process.

If there is an error vector (ε) at the adjustment points, this can be used to update

the adjustments at each run. A commonly used update algorithm uses an adjustment

constant ∆, where the new updates are calculated using equation 2.3 (Amann et al.,

1996).

ai+1 = ai + ∆ · εi (2.3)

In this way, the desired trajectory can be attained by adjusting the inputs as shown

in equation 2.3 repeatedly. This strategy may be combined with control methods such as

model predictive control (Lee et al., 1999) and traditional feedback or feedforward control

(Amann et al., 1996). It should be noted that these adjustments are only useful when the

controlled variable can be measured at the points at which adjustments are to be made.
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O
u
tp

u
t

εi

Desired trajectory

ti

Actual trajectory

Time

Figure 2.10: Iterative learning control action

2.6.5 Intelligent control

Intelligence has been a buzzword in the control industry since the advent of ‘thinking

algorithms’ such as neural networks, expert systems and fuzzy logic. This word is however

grossly overused (Gupta & Sinha, 1996). Several adaptive structures make use of one of

these thinking algorithms to update the model parameters or to supply corrections to

simpler control algorithms.

2.7 State estimation

When modelling an unknown process it is often desirable to obtain an estimate of the

states of the system based on noisy measurements or on measurements which are only

functions of the true states (Dochain, 2003). Popular methods to address this problem

include the Kalman observer and extended Kalman observer (EKO), also known and

implemented as a Kalman filter and Luenberger observers.

2.7.1 Kalman observers

In 1960 Kalman et al. (1960) proposed an iterative solution to the Wiener problem (of

finding the optimal fit of a predicted true signal to a noisy signal) which leads itself

very well to state estimation based on noisy measurements. The method described in

this seminal article has been implemented widely, with implementations of the algorithm

often known as Kalman filters.

The method is based upon the assumption that the true dynamics of the system to

be observed can be modelled by a discrete linear function and that the measurements

are perturbed by an unknown amount of white noise. In the procedure, the probabilities

of error based on the measurement and the model predictions are minimised (which also
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solves the Wiener problem).

Implementations where the model is re-linearised about the current operating point

are known as extended Kalman observers and are more robust when used to observe

nonlinear processes.

2.7.2 Luenberger observers

Luenberger (1964) introduced a state observer which addresses the problem of obtaining

estimates of true states by measuring another set of variables.

The method is based upon a linear model of the process, with dynamic parameters

closely resembling those of the true process. The measured outputs from the true process

are compared to the outputs estimated by the model, and parameters relating the process

states and outputs are adjusted to minimise the model error. This approach works well

in the absence of measurement noise (Tarantino et al., 1999).

2.7.3 Application to per-batch control

There are several applications where the use of state estimators is beneficial in batch

control purposes. The most important aspect of state estimators is however that they

require measurements which are closely related to the states they are to estimate. These

measurements are either assumed to be equal to the states with the addition of noise, or

functionally related to the states by an unknown function. For the control problem that

this dissertation is concerned with, the use of state estimators is precluded by the lack of

measurements which satisfy these criteria.

2.8 Statistical control

When the variables being controlled are sampled infrequently, when the measurements

contain a large amount of uncertainty and when control adjustments are costly, the goals

of process control are subtly shifted toward a more stochastic view. Ogunnaike & Ray

(1994: 1033) state that effective process control within such a framework can be broken

down into two parts:

1. An objective analysis of the observed deviation of the process variable from its

desired value.

2. A rational decision regarding what to do to minimize[sic] such deviation.

The field of statistical control was approached from two different fields. One was

the field of quality control, the other traditional process control using stochastic models

(Juba & Hamer, 1986).
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2.8.1 Quality control

When control manipulations are costly, it is important to assess whether a current devia-

tion from setpoint is due to normal noise or whether action should be taken. The quality

control school of thought implemented a series of charts from which certain ‘in control’

checks could be implemented.

• Shewart charts plot an error divided by the expected standard deviation. In this

way, a value of the controlled variable which deviates by more than a certain mul-

tiple of the standard deviation can easily be seen. Lim (2002), referencing Shewart

(1931), obseverves that these charts are designed to detect large but transient shifts

in the process mean.

• CUSUM (cumulative sum) charts, can easily highlight small persistent shifts in

process mean but are more difficult to apply. (Alberto Luceño, 2002)

2.8.2 Standard process control

When control manipulations are relatively cheap, the advantages of not reacting to spu-

rious control situations become less. In situations like these, and when the sampling

interval is large relative to the natural response time, standard process control is more

appropriate (Ogunnaike & Ray, 1994: 1050).

2.9 Batch control applications

Rippin (1989) uses the term ‘ill-definedness’ to describe the change, variability and uncer-

tainty that batch processes involve. These factors necessitate the use of advanced control

structures. Several advanced control structures have been implemented on batch plants.

Berber (1995) gives an overview of the control techniques commonly adapted for

service in batch reactor control. He cites several of the control structures already discussed

in this chapter, but focuses on applications which are more relevant to the continuous

time frame.

The theory of optimal control can be used to generate recipes for batch processes

and Juba & Hamer (1986) show that, when controlling the composition inside a batch

chemical reactor, the open loop temperature trajectory required could be expressed as

an optimal control problem.

Also, using a feedforward-feedback structure including an iteratively determined in-

verse, Balakrishnan & Edgar (2000) implemented a model-based controller with PID

feedback to control the temperature profile of a silicon wafer during rapid thermal pro-

cessing. This structure is most promising as a control structure for the batch control

problem under investigation.
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2.10 Monte Carlo Simulation

Monte Carlo simulation offers an alternative to analytical mathematics for understand-

ing a statistic’s1 sampling distribution and evaluating its behaviour in random samples.

Monte Carlo simulation does this empirically using random samples from known popu-

lations of simulated data to track a statistic’s behaviour. (Mooney, 1997)

2.10.1 The Monte Carlo Principle

The principle behind Monte Carlo simulation is that the behaviour of a statistic in random

samples can be assessed by the empirical process of actually drawing a number of random

samples and observing this behaviour. The strategy for doing this is to create an artificial

‘world’ or pseudo-population, which resembles the real world in all relevant respects.

In order to simulate the real world, virtual processes must be generated that will

respond on the inputs provided just as a real process would. This virtual process can

then be used to conduct multiple trials of the statistical procedure of interest to investigate

the behaviour of a statistic across samples.

The process can be visualised as shown in figure 2.11, with input variability propa-

gating through the process to produce measurable output variability.

Output variances

Process

Input variances

Figure 2.11: Variability propagation explained: Input variability propagates through the sys-
tem to cause output variability

1A statistic is any quantity under scrutiny in a statistical study
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2.10.2 Procedure

Mooney (1997) describes the Monte Carlo procedure as follows:

1. Specify the pseudo-population in symbolic terms in such a way that it can be used to

generate samples. This usually means developing a computer algorithm to generate

data in a specified manner.

2. Sample from the pseudo-population (a pseudo-sample) in ways reflective of the

statistical situation of interest, for example with the sample sampling strategy,

sample size and so forth

3. Calculate the statistic in question for the pseudo-sample and store it in a vector θ.

4. Repeat steps 2 and 3 t times where t is the number of trials

5. Construct a relative frequency distribution of the resulting values for all the trials,

which is the Monte Carlo estimate of the sampling distribution under the conditions

specified by the pseudo-population and the sampling process.

2.10.3 Confirmation of results

In order to confirm that the distributions fitted to the data obtained from a Monte Carlo

simulation are indeed normally distributed, several tests have been proposed. A brief

summary of these tests is given here.

Skewness and kurtosis

Skewness is a measure of how far the median value (peak of the distribution graph) is

away from the mean of the data. Kurtosis is a measure of the ‘slimness’ of the data, in

other words how closely the distribution is spread around the mean value.

The skewness estimator is given by Mooney (1997) as:

√
β1 =

t∑
i=1

(
θi − θ̄

)3
/t

[
t∑

i=1

(
θi − θ̄

)2
/t

] 3
2

(2.4)

This is usually combined with a kurtosis estimator

β2 =

t∑
i=1

(
θi − θ̄

)4
/t

[
t∑

i=1

(
θi − θ̄

)3
/t

]2 (2.5)
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. In both these equations, θ̄ is the arithmetic mean of the samples (ie, the sum of the

elements divided by t). Values of 0 and 3 for the skewness and kurtosis respectively are

expected for a normal distribution (Kleijnen, 1975).

Shapiro-Wilk test for normality

The Shapiro-Wilk test (Shapiro & Wilk, 1965), calculates a W statistic that tests whether

a random sample, θ1, θ2, . . . , θn comes from (specifically) a normal distribution. Small

values of W are evidence of departure from normality. This test has done very well in

comparison studies with other goodness of fit tests.

The W statistic is calculated as follows:

W =

(
n∑

i=1

ai × θi

)2

n∑
i=1

(
θi − θ̄

)2
(2.6)

where the θi are the ordered sample values (θ1 is the smallest) and the ai are constants

generated from the means, variances and covariances of the order statistics of a sample

of size n from a normal distribution.

Kolmogorov-Smirnov test

Further checking of normality can be done by using the Kolmogorov-Smirnov

test (Chakravarti et al., 1967: 392–394) to compare the distribution to a normal dis-

tribution with the same mean and standard deviation. This is not a specific test of

normality, but rather a general goodness-of-fit test for any probability distribution.

The cumulative probability distribution curves for both distributions are plotted,

and the maximum distance between them determined. This distance (the Kolmogorov-

Smirnov distance or the KS statistic) is then compared to tables for the number of

samples in the test distribution to determine the goodness of fit. The critical distance is

also affected by the level of confidence, α. It is customary to set α = 0,05, corresponding

to a 5% chance of mistakenly discarding the assumption that the test distribution is

indeed normally distributed.

For samples larger than 20, the critical distance is found by calculating an asymptotic

solution to an nth order polynomial. This task is usually handled by computer software.

The Kolmogorov-Smirnov test was favoured for confirming normality of the test results

as it lends itself well to graphical interpretation, enabling the tester to interpret the

normality results more meaningfully than a simple number.
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2.11 Control system implementation

Implementing a new controller on an existing plant with a control system in place has

many pitfalls. It is imperative that the correct procedure is followed as the control

problem is approached.

2.11.1 Analysis

Even with an existing controller in place, it is important to start at the beginning and

do a proper control analysis. Gupta & Sinha (1996) state:

ad hoc implementations of . . . control systems must be avoided because

1. it is bad engineering practise,

2. most likely such implementations will not be reliable, and

3. ultimately they will not be trusted.

Control system analysis proceeds in a number of well-defined steps as shown below

(Stephanopoulos, 1984):

1. Classify the variables. Identify input and output variables.

2. Define control objectives.

3. Select measurements.

2.11.2 Implementation

When the control problem has been properly analysed, additional steps are required

before the implementation of the controller. These steps are (Skogestad, 1996):

1. Select performance criteria for adequate control

2. Select a control strategy

3. Evaluate control strategy theoretically

2.12 Programming

Many problems encountered by the control engineer involve the creation of computer

software. This may be to model a control problem, to evaluate the performance of

controllers or to process data acquired from a process. In any event, the program must be

written in a sound way to ensure that both the originator of the program and other users

who will use the program may do so easily and repeatably, with the least reproduction

of effort (Kim & Carlson, 2001).
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2.12.1 Program design

The broad goal of program design is to convert a set of requirements from specification

to computer code.

Two main schools of thought exist in the design of programs. The top-down approach

sees the program in terms of large goals first and then refines these goals into smaller sub-

tasks that are eventually small enough to correspond with computer language commands.

The bottom-up school approaches a problem by constructing small procedures that will

be required first, then integrating all of these into a whole. Both of these approaches are

often used in the same project.

2.12.2 Documentation

When creating a program or developing any design for industry, documentation is crucial

to ensure that the hand-over of information pertaining to a project can be done efficiently.

The following standards specifically related to programming can be applied:

• Code documentation should be legible and ample Deitel & Deitel (2001).

• Documentation of equations and algorithms used should exist separate from the

program code, and should use the same nomenclature as used in the program, or

have a simple table defining the corresponding program and documentation vari-

ables (Chapman & Bates, 2000).

• The program should be as simple as possible to ensure that engineers who use the

program do not need above normal computer programming skills to operate and

change the program.

2.13 Controller performance assessment

It is crucial to assess the performance of controllers. This assessment should preferably

be made during the design stage as well as after implementation. In order to obtain a

measure of this performance, many methods have been proposed.

2.13.1 Control objectives

Controllers are implemented with various design objectives, including setpoint tracking,

disturbance rejection, constraint handling and surge attenuation (Harris et al., 1999).

Controller performance measures will clearly have to be related to these design objectives.
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2.13.2 Continuous performance measures

Skogestad (1996) (as well as several others) notes that there are several time-domain

performance measures. These include rise time, settling time, overshoot and decay ratio.

All these methods rely on a continually changing controlled variable which is continuous

in the time domain. Furthermore, these methods expect an oscillation in the response

of the system to control. The application of these measures to batch controllers is not

reliable due to the low sampling rate and poor continuity of these processes.

Several time-integral performance measures are available in Stephanopoulos (1984),

Luyben (1990) and Skogestad (1996). These use the integral of the error of the control

response to supply an objective function for controller optimisation. The errors discussed

are the Integral of the Square of the Error (ISE), the Integral of the Absolute value of

the Error (IAE) and the Integral of the time-weighted Absolute Error (ITAE). These are

all in the form E =
∫∞
0 f(t)dt, where the function f(t) is often also a function of ε(t) =

ySP (t) − y(t). These performance measures are more applicable to batch control, but

still have the disadvantage that these functions assume some continuity of the controlled

variable.

2.13.3 Statistical performance measures

In the field of statistical control, assessment of the performance of the controller is an

integral part of the control action (Ogunnaike & Ray, 1994: 1036). Paragraph 2.8 dealt

with the methods employed to determine the performance of statistical controllers.

2.13.4 Minimum variance

Harris et al. (1996) essentially propose that the plant be considered as a stochastic pro-

cess and that, for known distributions of the input variables and measurements of the

corresponding outputs, a minimum variance controller can be synthesised by using a

least-squares fitting approach of a prototypical model.

Once the minimum variance controller has been synthesised, the Harris Performance

Index can be expressed as shown in equation 2.7

HPI = 1− θ

θMV

(2.7)

where θ is the performance of the control system under scrutiny expressed as a fraction

between one and zero and θMV is the performance of the minimum variance controller.

A performance index close to zero is nearer to ideal control performance.

Patwardhan & Shah (2002), commenting on Harris et al. (1996) explain the benefits

of the Harris performance index as well as possible causes of variability:
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‘An important property of the Harris performance index is its invariance to

the magnitude of the disturbances. A poor performance index can be the

outcome of one or more of the following:

1. limitations on achievable performance arising due to a combination of

process and controller design

2. changes in plant dynamics

3. varying disturbances

4. sensor faults and

5. process nonlinearity.’

A procedure for synthesising the minimum variance controller from plant data col-

lected during normal operation is explained in Venkatesan (2002), but requires that the

system to be analysed be discretely coincident and continuous, meaning that the system

must be sampled at the same interval as the controller and that signals must be contin-

uous on this interval. This rules out any process where the outputs are not continuous

for the procedure.

There are also problems with the standard minimum variance controller, highlighted

by Grimble (2002): ‘The main difficulty with this approach is that the minimum variance

control law often gives high gain, wide bandwidth and unrealistically large control signal

variations.’

The requirements of a coincident and continuous system, combined with the large con-

trol signal variations which would not be absorbed by a batch system with no continuous

movement disqualifies the minimum variance controller as a valid control baseline.



CHAPTER 3

Background

In this chapter, general background is given about Sappi Saiccor and the plant on

which the controller is to be implemented. The process and related measurements

are described in enough detail that the reader can understand what the controller

must be able to do.

3.1 Company details

Sappi Saiccor is currently the world’s single largest and lowest cost producer of dissolving

pulp and exports almost 100% of its product, mainly to China, India, Japan, the United

Kingdom, North America and Europe. The company produces approximately 600 thou-

sand tons of dissolving pulp per year (SAPPI web site, 2002), which represents a 11%

share of the 5,5 million ton world market (Durbak, 1993).

3.2 Pulping process

The Sappi Saiccor Umkomaas plant uses the acid sulpite process of chemical pulping to

produce dissolving pulp. This process works well for the production of pulp from the

typical wood species used at the plant (Kilian, 1999).

3.3 Materials

3.3.1 Wood

Sappi Saiccor uses approximately 1,8 million tons of timber to produce the indicated

production of dissolving pulp per annum. Nine different wood species are used at the

24
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mill, with the majority of the wood being eucalyptus and wattle. The normal distribution

of the wood fed to the digesters are approximately 85% eucalyptus (mostly Eucalyptus

Grandis and Eucalyptus Saligna) and 15% wattle (Acacia Molissima) (Kilian, 1999).

3.3.2 Cooking Liquor

The liquor consists of a calcium or a magnesium base and approximately 6 to 7% dissolved

SO2 gas and 1,2% combined SO2. The combined SO2 corresponds to the base content of

the cooking liquor and is present in the form of disulphide.

3.3.3 Dissolving pulp

Dissolving pulp produced on the plant is used in the manufacture of a variety of cellulose

based products and by-products for the textile, chemical and plastics industries. In the

textile industry the dissolving pulp is used in the manufacture of viscose fibre used for

woven and non-woven fabrics. Other products produced from pulp are shown in table 3.1.

Table 3.1: Products produced from dissolving pulps (Durbak, 1993)

Product Use

Medical wipes and swabs Medicine
Tyre cord Rubber tyres
Cellophane Wrapping material
Yarns Textiles
Plastics Knobs, handles, etc.
Cellulose film Photography
Lacquer Ornamental
Membranes Dialysis, water purification

During the manufacture of these products the pulp is dissolved in a number of steps

which involve the addition of alkali and carbon bisulphite. When this solution is passed

through small diameter nozzles while being neutralised, it forms the fibres that are used

to manufacture these various products. This dissolving/precipitation process leads to the

name of dissolving pulps. The purity of these pulps is usually more than 92% α-Cellulose.

3.4 Equipment

Newly acquired wood is stored in a wood yard to await further processing. It is chipped

and stored on a chip pile, from where it is conveyed to chip silos. The silos supply wood to

wood loaders that load the wood chips into the digesters. Although there are 23 digesters,
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there are only two sets of wood loading equipment. The pulp exiting from the digesters

is discharged into two wash pits where it is prepared for bleaching.

The digesters are grouped by the process they use. Eight newer digesters use a

magnesium based process and are referred to as the ‘magnesium side’, while the remaining

fifteen digesters called the ‘calcium side’ uses a calcium based process. The loading and

discharging equipment is shared by all the digesters on a side.

The magnesium side is used to cook all the wattle and some eucalyptus wood. The

calcium side is used to cook the remaining eucalyptus wood. The pulp from both woods

is blended to increase product uniformity.

Each digester is 16,5m high and has a volume of 285m3. When full, each digester

holds about 100 tons of wood chips and 200m3 of cooking liquor. A circulation line

extracts liquor from the bottom of the digester, where chips are retained by a grid. An

external heat exchanger heats this liquor before it is returned to the top of the digester.

This external heat exchanger uses superheated steam at a temperature of 165℃ and a

pressure of 550 kPa to heat the circulating cooking liquor. A schematic diagram of a

batch pulp digester is shown in figure 3.1.

Two temperature sensors are installed on the digester. On the diagram in figure 3.1,

these temperatures are shown as Tm, top and Tm, bot. The temperature of the liquor

entering the heat exchanger from the bottom of the digester is measured in the first section

of the circulation line, while the temperature of the liquor at the top of the digester is

taken as the temperature of the liquor at the end of the circulation line.

A flow sensor installed on the circulation line measures the flowrate of the liquor being

circulated through the heat exchanger.

Each digester is fitted with a Svensson steam packer, which uses steam to pack the

chips tightly into the digester. This ensures that the chips are uniformly packed, that any

trapped air is removed and that the chips are charged with an initial amount of water.

Each of the digesters is also fitted with a gamma ray level sensor to measure the level

of the material inside.

3.5 Measurements

3.5.1 Degree of polymerisation

One of the important pulp quality measures is the chain length of the cellulose in the

pulp. Kilian (1999) gives a range of methods that are used to determine this chain

length, including methods based on osmotic potential, light scattering and viscosity. In

the industry, this is usually expressed as a Degree of Polymerisation (DP)(Watson, 1992).



CHAPTER 3. BACKGROUND 27

R

TC

FC

Grid

Tset

Tm,top

Tm,bot

Figure 3.1: Schematic of a batch digester
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3.5.2 Viscosity

According to Rydholm (1965), the intrinsic viscosity η, of a solution can be determined

by measuring its specific viscosity at several low concentrations and extrapolating to zero

concentration. The average molecular weight is then calculated by using the equation

M = Km ·Ma (3.1)

and values for the constants Km and a obtainable in literature.

The solvents used in measuring cellulose DP are powerful swelling agents that disrupt

the crystal lattice of the cellulose, forming a gel-type solution with a viscosity which can

be related to the average DP value of the cellulose molecules (Watson, 1992).

3.5.3 Cuprammonium test

According to Watson (1992), the solvent used on the Sappi Saiccor plant is cuprammo-

nium. A direct correlation with DP has been found to be given by

DP = 285,4µ0,345 (3.2)

which is valid for 20 cP < µ < 150 cP.

3.6 Process overview

The fact that there is shared service equipment on the plant necessitates scheduling of

operations to avoid more than one digester at a time being in one of the following phases:

1. Wood loading

2. Liquor loading

3. Pressurisation

4. Side relief

5. High pressure gas release

6. Low pressure gas release

7. Pulp discharge

The time for each phase is fixed to facilitate scheduling. The following sections detail

the procedure for the phases enumerated above.
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3.6.1 Wood loading

Chips are pneumatically conveyed to the top of the digester. A cyclone separates trapped

air from the chips, and extraction fans at the bottom of the digester remove air during

loading. The chips are packed into the digester by the Svensson steam packer connected

to the bottom of a cyclone which removes wood dust from the chips coming from the silo.

Loading is stopped when the chip level is 2m from the top of the digester. This phase

is roughly 20 minutes long.

3.6.2 Liquor loading

On completion of the loading of the wood, the cooking liquor is loaded. The loading of

the liquor continues until the liquor level rises above 14,5m in the calcium digesters and

13,5m in the magnesium digesters. Circulation of the liquor through the heat exchanger

starts at the same time as the liquor loading. Liquor loading takes about 30 minutes to

complete.

3.6.3 Pressurisation

When liquor loading is complete, the digester is pressurised to a pressure of 900 kPag.

During this phase, steam flow to the heat exchanger is initialised, increasing the temper-

ature of the digester contents. This increase in temperature also leads to an increase in

pressure.

Pressurisation only supplies initial pressure. After pressurisation the digester pressure

drops sharply before continuing to rise due to temperature increase.

The median pressure profile measured in the digester over time for 300 cooks during

2003 is shown in figure 3.2. The shaded area represents the area between the 5th and

95th percentile. It can be seen that the pressure varies significantly with regards to the

time of certain features and the rate of pressure increase. This is because the pressure

is not directly controlled, but is rather a function of the pressurisation stage and the

temperature increases that are prescribed by the temperature profile. The only feature

of the pressure curve that is guaranteed to be repeatable is the maximum pressure, as

this is limited to 8,2 barg (Pmax) by a pressure relief valve.

The variability of the pressure profile in early stages of the cook is not cause for

concern, as reactions take place mainly at temperatures above 130℃. In the following

section, it will become clear that this occurs only in the later stages of a cook when the

pressure is constant.

Figure 3.3 shows an idealised version of this pressure profile, highlighting significant

features.
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3.6.4 Heating

After loading and pressurisation, the liquor is heated using steam fed to the external heat

exchanger. Figure 3.4 shows the median temperature profile for 300 cooks in 2003. The

shaded band represents the area between the 5th and 95th percentile.
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Figure 3.4: Empirical temperature profile. The shaded area represents the area between the
5th and 95th percentile

Several phases of heating of the digester can be distinguished. To clarify the signifi-

cance of each stage, figure 3.5 shows an idealised temperature profile, similar in shape to

the empirical profile in figure 3.4. Slopes and time intervals have been exaggerated for

clarity. The heating phases are described below:

Smooth steam ramp The steam valve is opened in a ramp to a set valve position. The

first 40 minutes of heating is known as the smooth steam ramp. During this time,

the steam valve is ramped to a set valve position in a pre-set time, irrespective of the

starting cook temperature. This ramp time is 40 minutes on the calcium digesters

and 30 minutes in the magnesium digesters. The steam flow during this time is

variable, since all of the digesters draw steam from a common steam line. The

steam demand of the other digesters will influence the amount of steam available

to a specific digester. The steam flow can be up to 15 tons per hour, but is usually

closer to 10 tons per hour.

Rise to TA The next heating phase heats the liquor to a temperature of TA. A fixed rate
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Figure 3.5: Idealised temperature profile. Slopes and time intervals have been exaggerated for
clarity

for the rise in temperature is calculated from the temperature at the start of the

cook and the time allowed for this phase. From the slope of this temperature line,

a continuous setpoint temperature can be calculated in order to control the steam

supply to the heat exchanger. The control of the temperature is based on the top

temperature, measured at the end of the circulation line. Normal feedback control

on the rate of steam addition is used, based on the measured top temperature and

the calculated setpoint temperature (see figure 3.1).

The set time for this phase is approximately 90 minutes.

Rise to TB As soon as the temperature reaches TA, the temperature is ramped up to

TB similar to the previous ramp.

Rise to Tmax The control algorithm calculates the desired top temperature in order

to reach the setpoint value for the degree of polymerisation. A similar control

formula to the one used for the TA temperature rise is used to calculate the setpoint

temperature during this phase. Once the desired maximum temperature has been

reached, the setpoint temperature is fixed at this maximum temperature for the

rest of the cook.

When the temperature of the liquor in the top of the digester has reached TA, some

of the liquor in the digester will be let out. This is known as side relief. The side relief

will drop the level in the digesters to 10,5m for the calcium-based digesters and 8,9m for

the magnesium-based digesters. This will also cause the pressure to drop significantly.
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However, the pressure isn’t raised to the maximum temperature, but is allowed to climb

gradually as temperature increases. Once the pressure has reached its maximum value of

8,2 bar, it will be controlled again at this value.

When the specified cook time has been reached, the liquor circulation will be stopped.

Some of the liquor will be discharged and the pressure will drop to about 600 kPag. When

the pressure has reached 600 kPag, the high-pressure gas release will start. During this

phase, the pressure in the digester is relieved in a controlled manner by opening the

high-pressure gas release valve from fully closed to fully opened in a set time. When

the pressure reaches 350 kPag, the low-pressure gas release phase will be started and

the pressure will be dropped to atmospheric pressure. The pulp is then discharged and

conveyed to the next phase of the total operation.

3.7 Control System

An ABB DCS system is installed on the plant and controls several of the variables dis-

cussed in section 3.6. The exact working of the control system is complex and will not

be discussed here. However, several points of control system operation are important

in understanding the problem addressed in this dissertation and will be discussed in

chapter 4.



CHAPTER 4

Control analysis

This chapter analyses the control problem. The problem is divided into relevant

time frames and the per-cook frame is shown to be relevant to the design. From

this, the controlled variable and possible manipulated variables are isolated. Other

pertinent variables which influence the process are also identified and explained.

4.1 Control time frames

Control time frames are an important aspect of layered control systems. Paragraph 2.2

and the control triangle in figure 2.2 cover this concept in more detail.

Control of the digester takes place in three different time frames. The first is the con-

tinuous time frame. Control on this level involves keeping the top temperature (Tm, top)

on a temperature setpoint. Control of the final DP takes place per cook, representing

the second time frame, while the final DP must be kept on target through a number of

cooks (N cooks), taking into account long-term changes in the process. This long-term

optimisation takes place in the third time frame. The second and third time frames both

encapsulate discrete control problems with small sampling rates.

To illustrate the time frames in question, they will be discussed separately in the

following sections. In the diagrams to follow, increased sampling frequency is indicated

by thicker lines connecting units.

4.1.1 Continuous temperature control

Figure 4.1 shows the temperature control loop on the digester. This control configuration

is also indicated in the digester schematic in figure 3.1 and corresponds to the normal

feedback controller setup as shown in figure 2.4.

34
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Digester

Tm,topFSTset

Temp control

Figure 4.1: Continuous time frame: Low level temperature control loop

The temperature in the digester is controlled by manipulating the steam flow rate to

the external digester. This first level of control is already handled satisfactorily by the

feedback controllers on each digester (Meneghel, 1998b).

4.1.2 Per cook DP control

The temperature setpoint for the low level temperature control system is supplied by

a profile generator which ensures that the predefined temperature profile (as shown in

figure 3.5) is followed. The profile generator requires the value of Ttop, the constant top

temperate for the cook, in order for it to generate a complete profile. Figure 4.2 shows

how the value of Ttop influences the final DP of a cook.

DigesterProfile control

Tm,topFS

DP

Tset

Continuous

Ttop

Temp control

Figure 4.2: Per cook time frame: DP control. Notice that the continuous time frame shown
in figure 4.1 is included below the dashed line.

As can be seen from figure 4.2, the final DP of the cook is determined by the tem-

perature profile that the digester is taken through. Even though the profile generator

determines this profile, the value of Ttop is specified externally. It should be clear that

the value of Ttop therefore determines the value of the final DP to a great extent.

4.1.3 N cook time frame

The results of a number of cooks are collected using a historian system. These stored

results can be analysed to check the performance of the system over time. New model
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parameters can also be passed to the DP controller so that long-term changes in plant

behaviour can be accommodated. The diagram shown in figure 4.3 shows the inputs and

outputs of the N cook time frame.

UP Controller

Profile control

DP Historian

DigesterTemp control

Ttop

Per cook

Continuous

Tset

DP

FS
Tm,top

DPset

N Cooks

Historical DPsNew Parameters

Figure 4.3: All time frames, including N cook optimisation. Note that the normal operation
of each cook as shown in figure 4.2 is included below the upper dashed line.

In this time frame, the controller responsible for outputting the correct value of Ttop

to the profile generator is shown. This is the UP controller. The model parameters used

in the controllers are changed every N cooks, placing this update in the N cooks time

frame. It should be borne in mind that the controller reads process variables from the

plant with other sampling frequencies as well. Figure 4.3 is intended to show the position

of the controller in the time frames, but this is by no means a unique representation.

4.2 Controlled variable

The main controlled variable is the DP, as described in paragraph 3.5.1. On-line measure-

ment of the DP on the plant is not currently an option. The DP of the pulp sampled after

a cook is measured off-line using the cuprammonium test as described in paragraph 3.5.3.

Measurement of the DP takes approximately 2 hours, at which time this value is entered

on the site database and can be accessed by the control program.

From this information and with reference to figure 4.2, it is clear that the DP is a per

cook variable. The controller will therefore operate in the per cook time frame.
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4.3 Controller output

The only variables on the digester that can be manipulated continuously are the steam

flow to the digester and the pressure release valve position. However, the temperature

profile is specified by the heating procedure as described in paragraph 3.6.4 and the

pressure is determined predominantly by the temperature of the digester.

Referring to figure 3.1 as well as figure 4.1, the low-level control system can be seen

to mask the steam flow rate as a variable in a cascade control system.

This means that the desired controller output is Ttop, the temperature reached dur-

ing the constant top temperature phase. Refer to the temperature profile presented in

figure 3.5 for more details. Ttop is input per cook, and therefore is the controller output

of the controller shown in figure 4.2.

4.4 Disturbance variables

The following possible disturbance variables were identified by Kilian (1999):

Wood load Historical data collected over a one and a half year period show that the

wood load per batch varied between 90 and 120 tons and that the standard deviation

of the wood load was 6 tons (Pellow-Jarman, 1997). This could be due to several

factors including:

• The wood density

• The chip dimensions: The average chip size is difficult to control, since no

continuous measurement of the chip size is possible. Various factors during

chipping can lead to varying chip sizes.

• The packing of the chips and the amount of steam flow to the Svensson packers:

The efficiency of the packing of the wood chips will depend largely on the steam

pressure and thus the amount of steam flow to the packers.

Liquor load Internal investigations at Sappi Saiccor showed that the liquor level usually

drops between zero to two meters after the loading has been completed (Meneghel,

1998b). The historical data show that the liquor load has varied between 172m3

and 263m3. The standard deviation was 10m3 over this period. This variability is

dependent on channelling and air pockets in the digester after wood loading. It was

also indicated that the method of measuring the liquor level wasn’t very accurate.

The reason for this is that the bottom impulse line for the level measurement is

situated at the bottom of the digester in the same area as the entry of the liquor

loading line. When liquor loading is started, the impulse line is falsely pressurised
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and the level indicator gives a level reading that is higher than the actual level.

(Meneghel, 1999)

Starting temperature The initial temperature of the liquor will depend largely on

the ambient temperature. The effect of this will be that a fixed temperature ramp

cannot be used, but that the rate of the temperature rise must be variable to obtain

a specified temperature at a certain time.

Liquor strength Variations in the liquor composition at the start of the cook will in-

fluence the pH of the liquor. The variability in the starting liquor composition is

apparently largely due to operator error during liquor analysis and a dilution sys-

tem based on flow and not composition (Meneghel, 1999). The CaO content of the

liquor loaded into the digester can vary between 0,7% and 1,28%. The amount of

wood loaded into the digester also depends on the liquor strength. Therefore, the

variability of the liquor strength will cause great uncertainty about the initial con-

ditions and will necessitate a model that can be changed to represent the starting

conditions.

Circulation flow The flowrate of the circulation stream is not controlled and is governed

by the resistance to flow in the line. Long-term scaling of the circulation return

line, as well as clogging of the extraction line during a cook, cause changes in the

flow that are difficult to predict and which cannot be controlled. The temperature

profile through the digester is determined by the circulation flow and deviations

in the flowrate can influence the product quality if the control strategy does not

compensate for it.

4.5 Constraints

4.5.1 Safety

For safety reasons, the pressure in the vessel has to be kept below 8,4[barg]. The controller

does not have to make provision for this limit, as the pressure profile is dependent on the

temperature profile and kept on the safe limit by a pressure release valve.

4.5.2 Product quality

The rate of change of temperature over time must be controlled during the first stages

of the cook. When the temperature is raised too fast, SO2 penetrates the chips rapidly,

leading to condensation inside the chips. This in turn causes areas of high acidity, which

leads to a ‘burned’ cook.
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4.5.3 Hard constraints

The rate of heating of the digester is constrained by the heat transfer possible in the heat

exchanger. Due to the design of the exchanger and the steam available, the temperature

increase is limited to roughly 3,75℃/hr.

There is also a maximum temperature of 145℃ set for the digester.

4.6 Summary

An initial guess of the control structure is shown in figure 4.4. This figure is intended to

Optimiser

DP Historian

Profile control

UP Controller

Digester

New Parameters Historical DPsN Cooks

DPset

Tm,topFS

DP

Tset

Continuous

Per cook

Ttop

Temp control

Figure 4.4: Initial guess of the complete control structure

show the components necessary for the control of DP in an initial structure.

The controlled variable is the final DP of the discharged pulp. The controller should

will output a value for Ttop to the profile controller which will output a temperature

setpoint to the temperature controller and control the digester along the predetermined

profiles.

Ultimately all control action is implemented by manipulation of the steam flow rate,

but the low level control systems in place to control the temperature profiles are working

well enough so that the controller just has to concern itself with determining the optimal

top temperature that will result in the correct DP being obtained. Detailed development

of the controller is covered in chapter 6.



CHAPTER 5

Current development

This chapter describes the current control structure in place on the plant, as well

as progress that had been made before the new controller implementation was

started. It involves the derivation of a valid model of the reactor and preliminary

analysis of the control problem as proposed by Kilian (1999). The current con-

troller is based on a model called the S-Factor, using an empirical ‘target factor’,

which is set equal to an integral of the lignin reaction rate during the cook. The

UP model uses a more involved set of equations with less simplifying assumptions

combined with a direct numerical solution of the optimal maximum temperature

which will reach the DP setpoint.

The current performance measures in use on the plant are also discussed critically,

and a change in this, as suggested by Kilian (1999), is mentioned as a partial

solution.

5.1 S-factor model

5.1.1 Description

The description of the S-factor model is taken largely from Kilian (1999). The model

is derived from a delignification rate equation first proposed by Yorston & Liebergott

(1965) based on an assumed correlation between the lignin content of the solid phase in

the reaction and the pulp viscosity. The delignification rate equation in the form also

later reported by Hagberg & Schöön (1973) is given here:

− d[L]

dt
= KL(T ) · [L]a ·

{[
HSO−

3

]
[H+]

}n
(5.1)

40
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Yorston & Liebergott determined that this equation could be expressed in terms of more

easily measured qualities. n was also found to be equal to 0,75. The restated rate equation

is

− d[L]

dt
= KL(T ) · [L]a · {PSO2}

0,75 (5.2)

The partial pressure of the SO2 is determined by assuming equilibrium between the dis-

solved SO2 and the SO2 in the space above the reaction mixture. Further, it is known that

the temperature dependence of the rate KL(T ) is described by the Arrhenius equation in

the form shown in equation 5.3

KL(T ) = A0e
{B−( E0

RT )} (5.3)

The factor B is known as the normalisation factor. It is used to normalise the equation

to 100℃. Integrating the rate equation in equation 5.2 and assuming that the order of

the reaction is unity (a = 1) gives the “S-factor” equation:

SF = −
∫ Lf

L0

1

A0[L]
d[L] = −

∫ tf

t0
exp

{
B −

(
E0

RT

)}
dt (5.4)

Integration of the left-hand side of this equation yields:

[Lf ] = k1e
{−A0·SF} (5.5)

By assuming that the viscosity is proportional to the lignin content of, viscosity can be

calculated in the same way, with a different proportionality constant:

µ = k2e
{−A0·SF} (5.6)

The assumption of linear dependence of viscosity to lignin content is the main weakness

of the model and many mills have adapted this basic formula to fit the data gathered

from their plants.

5.1.2 Local modifications

Sappi Saiccor came to the conclusion from their own studies that it would be more

accurate to use the actual SO2 concentration of the liquor instead of the partial pressure

of the SO2 (Meneghel, 1999). Equation 5.4 was adapted as follows:

SF = −
∫ Lf

L0

1

A0[L]
d[L] = −

∫ tf

t0
exp

{
B −

(
E0

RT

)}(
SOfree

2

)n
dt (5.7)

As can be seen from the above equation, the model was initially based on the free SO2

concentration. However, SO2 can also be present as combined SO2 in the form of bisul-
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phite, which complicated the measurements.

The use of the direct measurement of the SO2 concentration instead of the partial

pressure made the S-factor directly dependent on the base concentration in the liquor.

The relationship between the base concentration and the target S-factor was determined

to be non-linear. This lead to the development of the following model, which is currently

in use:

SFtarget = A× [SOfree
2 ]2 + B × [SOfree

2 ] + C × (%Base) + D (5.8)

where A, B and C are all constants determined from plant data and D is a constant

which is updated continuously by means of a feedback system. The constants A to C

were calculated for different wood species and can be changed when new wood species

are used. The feedback system compares the target final degree of polymerisation after

each cook with the actual value obtained when the cook was controlled using the S-factor

model. Some adjustments are then made to the constant D to try and make the model

more accurate.

5.2 Current control structure

5.2.1 Continuous control

To ensure that Tm, top is kept on the profile shown in figure 3.5, a simple feedback structure

is used to manipulate the steam flow rate to the external heat exchanger. Temperature

control has been shown to be quite efficient except under circumstances where the other

digesters’ steam requirements are high and cause the temperature to lag behind setpoint

during the high temperature part of the profile.

5.2.2 Per-cook control

The setpoint for the temperature controller is output by a higher level control system,

following a profile which changes with every cook. The basic shape of this profile is as

shown in figure 3.5.

The S-factor model discussed above is used to determine the process path, based on

the measurement of the initial conditions, that must be followed in order to achieve the

desired final specifications of the pulp. Due to process constraints, the profiles used for

the temperature and pressure are quite rigid (as shown in paragraph 3.6), with the only

true variable being the maximum temperature in the final temperature ramp.

Control strategy

The following control strategy is used to implement the S-factor controller. (ABB, 1994):
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1. Equation 5.8 is used to calculate a target S-factor based on a liquor sample taken

one hour after the start of the cook. This test is known as the one-hour test , and

provides the concentrations of SO2 and CaO in the liquor at the time of the test.

2. To find the temperature that will satisfy equation 5.4, the right hand side is inte-

grated numerically. Assuming that no reaction takes place below TB, the system

waits until the temperature reaches this point before starting to sum the rate given

by equation 5.7. Internal investigations resulted in the value of n in this equation

being set to zero and thus effectively removing the dependence of the model on the

free SO2 concentration. The following rate equation resulted (ABB, 1994):

r = exp
{
B −

(
E0

RT

)}
(5.9)

The system checks at each time step whether if the target S-factor would be reached

if the current temperature were maintained for the rest of the cook stages. In other

words, the current temperature will be the highest temperature reached (Ttop), if the

calculations show that the target will be reached. The temperature is not allowed

to go above Tmax.

3. A sample of the discharged pulp is taken to the plant laboratory for analysis. The

actual DP reported by this analysis is entered into a database to allow trending

and quality control. This measurement takes place once for each cook.

4. Using a local technique, plant personnel change the value of D in equation 5.8 in

an attempt to achieve better control. Additionally, operators may choose to modify

the target as the cook is progressing in order to provide quick response to perceived

trends due to wood composition and other factors not modelled by the S-factor

equation.

5.2.3 Problems

Studies done on historical data show that the performance of the S-factor model is not

satisfactory (Meneghel, 1998a). Several issues have been identified concerning the use of

the S-factor model for control. The model itself poses the following problems:

• The assumptions regarding the reaction rate render the model linear with respect

to many of the inputs. This affects the ability of the model to perform adequately

when the process conditions change.

• Assumptions about the SO2 concentration are not very accurate. The dissolution

of the dissolved SO2 is not modelled.
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The inadequacies of the model lead to inadequate control. In practise, the controller

based on the S-factor model will also be less efficient due to the parameters used in

determining the S-factor target.

The value of the tuning parameter D has only the qualitative relationship that lower-

ing the D value will increase the viscosity of the pulp and vice versa. There is difficulty

in determining the value of D preemptively given a change in wood composition, liquor

strength and many other factors unmodelled by the S-factor model.

5.3 UP model

Kilian (1999), in the initial work of the controller project, derived a more complete

model of the reactions in the digester. This model can be summarised by the following

assumptions:

1. The reactions in the digester can be accounted for by modelling the rate of cellulose

degradation, lignin dissolution and strong acid equilibria in the digester.

2. The temperature and pressure of the vessel are known.

3. The initial composition of the reaction mixture is known from a test of the liquor.

5.3.1 Variables

Table 5.1 shows the variables used in the equations that make up the UP model. There

are a total of 15 variables. The next section shows that there are enough equations to

solve for all the variables.

5.3.2 Equations

To model the rates of the chemical reactions inside the digester, the following reaction

rates are used:

− d[L]

dt
= kL[L]a · [HSO−

3 ]α · [H+]β (5.10)

−d[SA]

dt
=

kSA

ν
· [SA−]n · ([L]0 − [L])m · [HSO−

3 ]b · [H+] (5.11)

−d[C]

dt
= kC [H+]δ (5.12)

The temperature dependence of all the k factors above can be described by the Ar-

rhenius relationship k = k0 exp(−E/T ), with E and k0 known for each of these reactions.
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Table 5.1: Variables used by the UP model (Kilian, 1999)

Typical range

Variable Symbol Units Low High

Wood constituents (2)
Residual Lignin Concentration [L] mass % 0 30
Cellulose Concentration [C] kmol/m3 300 2 100

Liquor Composition (3)
Sulfite concentration [HSO−

3 ] kmol/m3

Hydrogen ion concentration [H+] kmol/m3

Strong acid concentration [SA−] kmol/m3

Digester conditions (2)
Temperature T K 288 423
Pressure P Paa 103 940

Equilibrium variables (4)
Partial pressure of SO2 pSO2 Pa 700 940
Partial pressure of water pH2O Pa 0 240
Dilution constant of SO2 KSO2 kmol/m3

Vapour-liquid equilibrium constant KP (kmol/m3)2/Pa

Per-cook variables (4)
Combined SO2 combined SO2 kmol/m3

Free SO2 SOfree
2 kmol/m3

Total positive charge [M+] kmol/m3

Specific volume of liquor ν m3/kg 0,9 1
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Liquor composition is modelled by equilibrium equations for the SO2 concentration

in the liquor and vapour pressure in the space above the reaction liquid.

KSO2 =
[H+][HSO−

3 ]

[SO2]
(5.13)

KP =
[H+][HSO+

3 ]

pSO2

(5.14)

Both of these factors are temperature dependent. The temperature dependence can be

calculated by substituting known values of B and C in the Antoine equation shown in

equation 5.15 and solving for A:

log10 A = B +
C

T
(5.15)

In addition, the metal ion concentration can be modelled using electron-neutrality argu-

ments as shown in the following two equations

[
M+

]
+
[
H+

]
= [HSO−

3 ] + [SA−] (5.16)[
M+

]
= 2 · [combined SO2] (5.17)

The total pressure in the space above the reaction liquid is calculated as the sum of the

partial pressures of the SO2 and the water as shown in equation 5.18

P = pSO2 + pH2O (5.18)

The three rate equations, two equilibrium equations, two electron-neutrality equations

and one total pressure add up to eight equations. Two temperature dependent equilibrium

constants can be calculated from parameters in the shape of the Antoine equation shown

in 5.15, giving ten equations. As there are 15 variables, this leaves five variables to be

specified.

The temperature and pressure are read from the environment during a cook and

specified by approximations during the simulation. At the start of a cook, the liquor-to-

wood ratio is known and the free and combined SO2 concentrations are read during the

one-hour test. Specifying these five variables completely specifies the problem.

5.4 Current performance measures

5.4.1 Coefficient of variance

The coefficient of variance is the current measure of performance on the Sappi Saiccor.

The COV is calculated for a subset if cook data. The formula used is given in equation 5.19
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COV = 100×

√√√√ 1
n−1

n∑
i=0

(µi − µ̄)2

1
n

n∑
i=0

µi

(5.19)

This equation has a disadvantage as a long-term performance measure, as it does not

take into account that the target viscosity changes with time. This is analogous to ‘aim’

and ‘grouping’ in target shooting. The COV only checks grouping. All the cooks might

have good grouping, but they would still not be on target.

A modified COV was therefore proposed by Kilian (1999) that would take this into

account. The target viscosity instead of the average is used, leading to equation 5.20.

COVtarget = 100×

√√√√ 1
n−1

n∑
i=0

(µi − µtarget)
2

1
n

n∑
i=0

µi

(5.20)

It can easily be seen that this makes comparison of performance possible over a larger

period of time – not only where the target remained equal to the average of the viscosities

obtained.



CHAPTER 6

Controller design

This chapter explains the design of an improved controller for the pulp digester.

It covers conceptual design work and theoretical justification of this design as a

variation on well-documented designs from literature. Included in the design are

methods to provide feedback using on-line tuning.

6.1 Conceptual design

6.1.1 Controller

From chapter 4, it should be clear that it is not possible to use the final DP for normal

feedback control during the same cook, as the measured value only becomes available

after the cook has finished. The problem is the discontinuous nature of the digester

output. In fact, any control scheme that relies on the DP to be roughly continuous will

be at a disadvantage.

The DP changes due to many factors which can only be properly evaluated with

the help of an accurate model of the system. Knowing that the outcome of a cook can

only be reliably evaluated using the inputs for that specific cook leads to the choice of a

feedforward type controller for the per-cook time scale (refer to figure 4.2 to see how the

plant is defined for this time frame).

6.1.2 Feedback

Even though the controller can not respond purely on the measured DP for a certain cook,

this information is obviously important. Ideally, some mechanism should be incorporated

which ensures that the measured DP is indeed on target. The information obtained from

the results of several cooks should be used to avoid the problem of discontinuous outputs

48
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and once-off problems. Ideally, the model used by the feedforward controller should

be conditioned so that the best accordance between the model and the real process

is obtained. This conditioning can be obtained by periodically modifying the model

parameters.

6.1.3 Concept summary

An overview of the controller structure that is required is shown in figure 6.1. Note that

this figure does not indicate sampling rates of the signals, but that the model parameter

adaption mechanism operates in the N cooks time frame.

Controller

Ttop

Plant

Adaption
algorithm

-

-

-

-

-

DPset

p

-d

DP

�

?

Figure 6.1: Overview of controller structure

The controller reads several process variables p and predicts the top temperature,

Ttop, for the cook that will result in the correct DP. Clearly, some disturbance variables,

d, enter the process that affect the result of the cook but are not measured.

6.2 Theoretical justification

6.2.1 Controller

The controller shown in figure 6.1 reads process variables and a DP setpoint and is

required to return Ttop, which is input into the digester system. The relation between DP

and Ttop in the controller is clearly the inverse of the relation in the digester. In other

words, the controller should use the process variables it reads to construct an inverse

of the digester process. This corresponds well to the classical feedback controller in

section 2.3.4, except that the inverse is constructed using additional information about

the process variables.
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6.2.2 Adaption

The adaption mechanism just described in section 6.1.2 resembles the self tuning adaptive

control structures described in section 2.6.3. The synthesis of the controller described in

that section corresponds to the production of new controller parameters in the proposed

scheme. It is however important to note that the time frame proposed for the parameter

adaption is different from that of the control action.

6.2.3 Summary

The proposed structure conforms well to existing theory, especially the self tuning adap-

tive controller discussed in section 2.6.3, generating a feedforward type controller as

discussed in section 2.3.4. Similar control structures have been employed successfully in

many instances. This indicates that the controller structure is a valid proposal.

6.3 Algorithm

The controller described in the above sections is implemented using the following algo-

rithm:

• Initial model parameters are loaded from a file. The model parameters stored in

file are listed in appendix A.

• The program reads status information from the plant, waiting for a cook to start.

The database system stores a state tag which is read to determine whether a cook

has started.

• As soon as the start of a cook has been detected, the controller reads plant data and

stores the information internally. Note that no simulation is done in this phase, as

the initial conditions for the integration of the model equations are only available

after roughly an hour, once the analysis of the liquor sample as been done (see

section 5.2.2).

• As the program reads data from the plant, it checks whether the results of the

one-hour test have become available. This test supplies the liquor composition at

the time of the test.

• When the one-hour test results are available, the controller program simulates the

cook up to the current point in time using the stored process variables and initial

values calculated from the test results. The simulation is done by integrating the

three differential equations mentioned in section 5.3.2 and solving the remaining

equations to yield all the variables listed in table 5.1.
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• The program then simulates reactions inside the digester in real time using the same

equations, incorporating real time values of the process variables (temperature,

pressure and the flow through the heat exchanger) that are available from the plant

database system.

• When the temperature reaches TC , the program starts an optimisation routine that

simulates the remainder of the cook using the current states as the initial conditions

for each trial cook. The optimisation finds a value for Ttop that will minimise the

viscosity error at the end of the cook.

• This temperature is displayed on the screen for entry by an operator into the plant

control system. The plant control system uses this value to ensure that the tem-

perature is ramped up to Ttop in the required time.

• The previous two steps are repeated 5 minutes after the first prediction to verify

the correct operation of the predictor.

• The model equations are integrated up to the end of the cook.

• In intervals of ten cooks, the data for the last ten cooks are read from the plant

database, and a separate optimisation process is initiated to reduce the error be-

tween the measured DP and the DP predicted by the model for each of these cooks.

This control strategy is shown in a flow diagram in figure 6.2.
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Figure 6.2: Control strategy flow diagram



CHAPTER 7

Monte Carlo Modelling

The S-factor controller is to be compared with the UP controller by modelling

the control action of both on a modelled digester described by a valid model as

proposed by Kilian (1999). This digester is subjected to random inputs generated

to conform to predetermined distributions and the control performance of both

algorithms is evaluated. The methods described in this chapter will yield the

theoretical results that are to be used as a measure of the theoretical performance

of the different control strategies and the benefits realisable by implementing the

UP controller.

7.1 System overview

As discussed in section 2.10, Monte Carlo simulation requires known input distributions

and a system model to be used in the simulation. Building on the analysis of chapter 4, the

system that is to be modelled can be described. The model must be built to incorporate

all three of the time frames identified in the analysis.

It can be seen from figure 7.1 that the system model consists of the digester model

and the controller. The physical digester is modelled using the equations discussed in

section 5.3. In the real world, the physical digester is controlled by a DCS system installed

on it. This DCS system is responsible for the control of the digester temperature as well

as ensuring that the digester goes through all the phases required by the cooking recipe.

These phases were discussed in detail in section 3.6. For the simulation to be an accurate

portrayal of reality, action of the DCS has to be simulated as well. The combination

of the DCS and the reaction model is referred to as the ‘digester model’. The digester

model corresponds to the plant used in the controller design discussed in chapter 6, also

corresponding to the per cook time frame discussed in section 4.1.2.
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Figure 7.1: Schematic representation of the system modelled during Monte Carlo simulation

The controller that specifies the value of Tm,top for the digester model as well as the

adaption mechanism that adapts the model parameters to reflect changes on the plant is

referred to simply as the ‘controller’.

In addition to the variables already discussed in detail in other sections (the DP and

temperatures), the model used for the Monte Carlo simulations has to take into account

the many variables that affect the final DP on the real digester. These variables are

grouped into a vector of process variables, p, on the diagram in figure 7.1 and are the

same as p mentioned in section 6.1.3. How the values of these variables are determined

will be discussed shortly.

7.2 Input model

In order to model a complete cook, the conditions experienced by a real digester must be

simulated. The simulation uses two classes of input variables: those that stay constant

for the duration of the cook, and those that vary during the entire cook.

7.2.1 Constant inputs

The values of these parameters stay constant during the cook, but may vary from cook

to cook. The digester model parameters were kept constant during a cook using the

parameters obtained by (Kilian, 1999). The parameters that were used are listed in

appendix A.
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7.2.2 Continually variable inputs

Three continually variable inputs are modelled: the temperature and pressure profiles

and the side circulation flowrate. Because the UP controller and the S-factor controllers

have different ways of specifying their control output, the S-factor controller algorithm

was modified slightly to allow the temperature profile to be modelled in the same way

for both controllers.

The S-factor controller uses a value for Ttop specified along the slope that goes to Tmax.

Refer to figure 3.5 to see this temperature profile. The UP controller algorithm does not

have the same slope constraint, but it was introduced to ease the implementation of the

controller on the plant.

The pressure profile on a real digester is dependent on the temperature of the digester

and the pressure added during the pressurisation stage. The equations to model this

dependence were not used. Instead, a fixed pressure profile very similar to the one shown

in figure 3.3 was obtained by averaging the pressure profile for several cooks.

This simplification can be justified when considering that the pressure is affected most

at high temperatures. The high temperature phases of the cook correspond to the times

when the pressure is being kept at the maximum pressure by the pressure release system.

Therefore, there is very little variation in the pressure profile from cook to cook. The

assumption reduces computational complexity of the Monte Carlo problem, and allows

the same models used for the in-situ controller to be used without modification.

All values are assumed to interpolate linearly between the given turning points on the

profiles.

7.3 Input distributions

Table 7.1 shows the means and standard deviations chosen to model the variable inputs in

the Monte Carlo simulation. All these inputs were found to be normally distributed. The

parameter values were obtained from plant data from July to October 2002. Figures 7.2

to 7.5 show the actual values of these variables over the time period. These variables

Table 7.1: Input distributions used in Monte Carlo modelling. All inputs are modelled with
normal distributions.

Variable Mean Standard deviation Units

Initial temperature 35 2,8 ℃
Wood load 112 6,9 ton
Liquor load 188 6,4 m3

CaO test value 1,074 0,039 weight % CaO

were chosen to be modelled due to the availability of data. It is important to realise that
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these variables are by no means the only inputs that affect the final result of the cook.
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Figure 7.2: Initial temperature for cooks between July and October 2002

7.4 Methodology

Having broken up the model into its parts, each had to be implemented in a combination

of Matlab and Simulink. The distributions of the input variables were modelled as

normal distributions based on data collected on the plant. The UP controller model

is the same as the UP controller implemented on the real digester, while the S-factor

controller was simulated based on documentation of the original implementation on the

plant, as described in section 5.2.2.

Together, these models form a controlled system that can be subjected to known

inputs and yield one output – the DP calculated at the end of the cook.

7.4.1 Monte Carlo model

Figure 7.6 shows the Simulink model that was created to model the digester and con-

trollers. The shaded blocks represent the controller, the continuous variable generator

(profile generator) and the digester itself. The profiles are simply output correctly by

interpolating linearly between the turning points discussed in the previous sections. The

digester and controller models are more involved and will be discussed below.
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Figure 7.3: Wood load for cooks between July and October 2002
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Figure 7.4: Liquor load for cooks between July and October 2002
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Figure 7.5: CaO test results for cooks between July and October 2002
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Figure 7.6: Simulink model for Monte Carlo simulation of the complete controller-digester
system
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7.4.2 Digester model

The digester model used in the simulation is based on the parameter values that Kilian

(1999) arrived at during the model development. The controller uses this model to

determine its control action as well. Therefore, the model used in the controller and in

the digester are the same. This similarity will clearly cause the controller to perform well

on the digester model.

The parameter values for the digester model were kept as they were reported by

Kilian (1999) and the initial parameters used in the controller model were based on

more recent cook data. The parameters used in the controller model differed from the

digester model parameters sufficiently to ensure that the controller would not have an

unrealistic advantage. The controller performance on the model without time to adjust

its parameters was not perfect. Additionally, if the model of the process is good, it would

correspond well to the conditions on the plant. A controller based on the same model

would also have an advantage on this plant by design.

The exact model parameters used during simulation are shown in appendix A.

The Simulink implementation of the digester model is shown in figure 7.7

1
DP

modelsfun

S−Function

−C−

Initial temp

Tset

R/V

Tbot

T avg

T bot

General Heat Exchanger

Demux

Demux

2
Fixed
Inputs

1
Variable
inputs

Figure 7.7: Simulink digester model for Monte Carlo simulation

7.4.3 Controller models

S-factor model

The S-factor algorithm described in paragraph 5.2.2 was modified slightly to enable ef-

ficient modelling of the controller. Instead of using a numeric summation for each time

step, the rate equation (expressed by equation 5.2) was integrated numerically using a

temperature profile generated as shown in figure 3.5, and the temperature that satisfied

equation 5.8 found by numeric methods.

The calculation procedure can therefore be summed up as

• Calculate the target S-factor using equation 5.8 (SFtarget = A × [SOfree
2 ]2 + B ×

[SOfree
2 ] + C × (%Base) + D)

• Integrate the rate equation for the known temperature part (this is for time t0 to

time tC). This is the part up to the final ramp to Ttop. Set this integral equal to A1
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• Find Ttop such that the remaining area (set equal to A2) added to A1 is equal to

SFtarget

• Use the value of Tm,top in the temperature profile as shown in figure 3.5.

The parameter values used as a starting point for the S-factor controller are shown in

table 7.2.

Parameter Value

A 300
B −3 200
C 4 000
D 7 000

Table 7.2: S-factor parameter values used in Monte Carlo modelling

To create a good baseline for worst-case performance of the S-factor controller, two

different controllers were simulated. The first acts as a worst-case controller, and does

not include the parameter update step described in paragraph 5.2.2. The second S-factor

controller acts as described.

UP model

The UP model was initially loaded with parameters different from the model parameters

used for the digester model. The parameters used as a starting point can be found in

appendix A. The parameters were obtained by tuning the controller for optimal viscosity

prediction on 20 cooks that took place during October 2002, before the Monte Carlo test

was initiated.

7.5 Monte Carlo procedure

The result of a Monte Carlo simulation is inevitably a large number of data points. The

determination of the response of a system in an instant in time is prescribed by looking

at the distribution of many possible outcomes for that instant. The exact course the

process will take given any one set of inputs is less important in such a study than the

most probable route given the most probable inputs. It should be clear that the Monte

Carlo simulation should have as many data points as possible to make a good estimate

of the output distribution.

In order to simulate the training action of the UP controller and the adaptive action

of the S-factor model, it was decided to model a run of 80 sequential cooks. This would

give the controllers enough time to show the action of the adaption algorithms.
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Here it is again important to bear in mind that the simulation involves many runs

of 80 cooks for each controller. For each run, the controller will respond to randomly

generated inputs conforming to the distributions described in the preceding sections, but

will retain its parameters for that run. At the beginning of the next run, the parameters

will be returned to their original state. The results for the simulation will be distributions

obtained for the DP on each of the 80 cooks in sequence, showing the most likely action

of the controller in light of the most likely inputs.

The simulation of so many cooks takes a significant amount of computer time. Even

though one cook can be simulated in about 45 seconds on a Pentium III 800 (which is

more than 600 times faster than real time), this simulation has to be repeated 3 times

(one for each controller), and then 80 times for the sequential cooks. Simulating one run

for all three controllers therefore takes 2 hours. Monte Carlo modelling dictates that the

response of the system be measured for many different inputs conforming to the input

model. It is clear that to generate any significant number of points quickly becomes a

time consuming task.

In order to decrease the wall time that the simulation would take, it was executed on

many computers at once, with the results combined after simulation. This is of course

possible due to the way in which results are analysed – the order of simulations do

not matter, since the inputs are randomly generated anyway. The only thing that is

important in this study is that the 80 cooks be done in sequence, allowing the controllers

to modify their parameters according to their algorithms, so that their adaptabiity can

be evaluated.

The full source code of the program required to do the simulation once the models

had been set up can be seen in the source code supplied on the CD.

The results of the Monte Carlo simulation are shown and discussed in chapter 9.



CHAPTER 8

Programming

The control strategy discussed so far has been implemented in a computer program

running in the Matlab environment. Before implementation of the program,

a thorough analysis of the functionality required was made. The program was

written using a modular strategy, ensuring the easy re-use of components in later

developments. This chapter highlights the functional analysis and components

created to implement the controller, as well as the Monte Carlo modeller.

8.1 Functional analysis

The program consists of parts with clearly defined roles. The functionality required from

the program can be divided into four parts, namely

• Database interfacing

• User interfacing

• Modelling

• Optimisation

The two interfacing sections have been split as they are quite different – the database

interface is on a computer-to-computer basis, while user interface is between the user and

the computer.

The modelling of the reactions inside the reactor is done by a group of Simulink

models similar to those created by Kilian (1999). These models can be used to simulate

a complete cook and are used to predict a setpoint during control or the DP during

optimisation.

62
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It should be noted that there are two optimisation stages in the normal operation

of the controller. In the short term (per cook), there is an optimisation used to deter-

mine the correct value of Tm,top for a target DP value. In the N cooks time frame, the

model parameters are changed to match historical values. The optimisation of the model

parameters is done by minimising the error (given as a COV) of the model predictions

of cooks for which DP results are available compared to the true DP as obtained from

laboratory results.

8.2 Data flow

To facilitate control, data have to be transfered between the different components. Fig-

ure 8.1 shows the major dataflows between systems.

UP Control

DP

T, P, R

Per Batch

Historical values Queryhist Offline model

Optimiser

OperatorPlant DCST, P, R

Continuous Once per cook Every N cooks

Ttop

Historian

Continuous

Digester

Predictor

Figure 8.1: Data flow in the UP control program

Two main data cycles can be identified in figure 8.1. One cycle is on a continuous time

scale, reading continuous plant data from the historian system and using these data as

inputs for the running model. The second cycle used by the offline optimisation routines,

reading stored plant data from the historian in bulk and using these data to optimise the

model parameters.

It should also be noted that the connection shown between the control program and the

online system controlling the temperature on the digester is not electronic, but involves
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displaying the desired value on the computer screen and allowing plant personnel to enter

the maximum temperature.

8.2.1 Continuous time frame

The data read continuously are used directly in the process model. They are not stored

during the cook process, as this was found to be too slow to allow real time processing.

During the control simulation, feedback is given to the personnel using the software by

updating graphics on the user interface showing the current temperatures, side circulation

flow rate and pressure read from the plant, as well as the values of the calculated pH and

estimated DP.

The different phases of the control problem require separate action. The initial phase,

until the one hour test becomes available, simply stores data during this phase. Once the

data becomes available, it is used to deduce the starting conditions of the digester.

8.2.2 Per cook time frame

Before and after each cook, parameters must be loaded into the controller variables,

the graphical display must be updated to show that no cook is in progress, and data

pertaining to the cook that has just been run must be stored for later analysis. Also,

after each cook, a decision has to be made on whether to optimise parameters or not. At

the moment, the program uses a 10 cook interval for parameter tuning.

8.2.3 N cook time frame

After N cooks have passed (at the moment N = 10), the parameters have to be optimised

to ensure the best fit between the model predictions and the real results of the previous

N cooks. This is done using Matlab’s built in optimisation routines which are based on

the Simplex method.

8.3 Functional dependence

Figure 8.2 shows the functional dependence diagram for the program. This file is also

available on the CD-ROM accompanying the dissertation. This diagram proved invalu-

able in the debugging of the program and in building new functions. It should also be of

use during porting of the program to other platforms. The Graphviz program produced

by the AT&T computer laboratories was used to generate the diagram using data ob-

tained by a separate Matlab program written by the author of this dissertation that

scans the a Matlab program directory for functional dependencies.
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Figure 8.2: Functional dependance of modules in the program
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8.4 Matlab programs

The Matlab programs used to implement the controller and the Monte Carlo simulation

are available on the CD that accompanies this dissertation due to space constraints.

When perusing the programs, it should be noted that uniform style and documentation

was used. This is to ensure that the program is legible and easily portable to other

platforms if the need should arise.

8.5 Simulink models

Several Simulink models were developed as part of the programming effort. The descrip-

tion here is included as the precise functioning of Simulink models are often hard to

fathom without some comments.

8.5.1 Database read block

The database read block shown in figure 8.3 allows access of offline or online data in a

manner that is transparent to the rest of the Simulink models. This means that the same

1
Out1

Switch

Out1

Online Digester

Out1

Offline Digester

NOT

onlinedigester

Figure 8.3: Database read block

models can be used to simulate both online and offline conditions. This is achieved by

using two blocks which are enabled and disabled using a flag (onlinedigester) which is

true when digester is online. This flag not only enables the correct block, but switches

the system output to be connected to the correct block as well.
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8.5.2 Heat exchanger block

The heat exchanger block shown in figure 8.4 is used to model the temperature of the

digester by assuming the digester can be modelled by several well mixed stages. The
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Figure 8.4: Heat exchanger model

model has been constructed so that the number of subdivisions can be entered by the

user during the setup of the model. The integrator then models the temperature of all

the subdivisions. The model requires the current ratio of the recycle to the initial volume

in the digester (R/V), the current temperature setpoint (Tset) and the initial bottom

temperature (Tbot on the left). It returns the current average and bottom temperatures

predicted for the digester (Tavg and T bot on the right).

8.5.3 Phase models

During the various phases of a cook, different models are called, each terminating on

preset conditions. They are set up differently to accommodate the differences in operating

conditions and the data available to the program at that stage of the cook.

Figure 8.5 shows the model which is run to collect data until the sample results

become available. It reads from the database, recording all the variables that are read

every minute (in the file presamplesigdat). It also checks whether the test result is

available by comparing the current database entry to the default value for the test result.

Once the data becomes available, the result will be higher than the default and the model

will terminate.

After the sample data becomes available and the presample model has completed

running, the prerun model shown in figure 8.6 is called to simulate the cook up to the

point where the data became available.

This model reads stored data (digdat) from the workspace and simulates faster than

real time to catch the simulation up past the time where the sample was taken, so that

the simulation time corresponds to real time.
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Now that the simulation is up to date, the Accumulator model shown in figure 8.7 is

called to run real-time simulation and call the prediction routine when the temperature

reaches the final ramp stage.
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Figure 8.7: Accumulator model

The accumulator model runs until the temperature reaches the target and the pressure

is in the final high pressure zone. At this point the High pressure phase model shown in

figure 8.8 is called to simulate the final stages of the cook.
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Figure 8.8: High pressure phase model

All of these models use the same output function, outputdisplay to update the

graphics on the user interface and keep the user informed of the actions of the program

and the controller.
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8.6 CD-ROM

The typeset version of the source code as well as the Matlab executable source code for

the program is available on the CD-ROM which accompanies this dissertation. The pro-

gramming language used is Matlab, but some functions (like SQL calls to the database

and compression of log files) were performed using external programs. The SQL query

program was provided by Saiccor and the compression tool used was 7-zip, a free program

distributed under the GPL.



CHAPTER 9

Results

The results of both the Monte Carlo modelling and the in-situ controller trials are

discussed in this chapter. The basis for the performance coefficient is calculated

and performance of the current controller as well as the in-situ UP controller are

calculated.

9.1 Monte Carlo

9.1.1 Statistical validity

Table 9.1 shows the details of the simulation results gathered. The total computer time

spent on the simulation was more than 25 days. This was split over 5 computers, resulting

in more than 5 days being spent on the simulation, as not all the computers were equally

fast.

Using the Kolmogorov-Smirnov test (as described in section 2.10.3), the outputs can

be shown to be normally distributed within reasonable limits for areas where the controller

tuning remains constant. Figure 9.1 shows the KS distance and the critical distance for

α = 5% for the individual time steps in the Monte Carlo simulation results. It can be seen

from this graph that the KS distance is below the critical distance in all cases. Space does

Table 9.1: Details of Monte Carlo simulation

Parameter Value

Cooks per run 80
Runs 200
Input variables 4
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Figure 9.1: Kolmogorof-Smirnov test results for Monte Carlo simulation. The critical distance
for α = 5% is shown.

not permit showing the graphical representation of the Kolmogorov-Smirnov test for all

the cooks in the Monte Carlo simulation, as this would involve 80 graphs per controller.

Figure 9.2 shows the cumulative distribution function (CDF) for DP resulting from

cooks between January and February 2003, as well as the fitted true normal CDF. The

Kolmogorov-Smirnov test result (KS distance) is the largest distance between these two

curves. The critical distance for α = 5% is 0,134, while the KS distance for this distribu-

tion is 0,088, allowing us to assume that the distribution is indeed normal.

The good normality results make it possible to assume normally distributed results

will be the norm. The standard deviation and means of results obtained will therefore

be justifiable, even for a small number of data points.

9.1.2 Output distribution

Figure 9.3 shows the distributions obtained for the different controllers. It is clear from

the figure that the UP controller gives an overall output variance which is less than that of

the S-factor controllers. It should however be noted that the distributions shown here are

for the controlled variable over all 80 of the cooks in a run and are not perfectly normal.

This is because of the control action that changes the variance and mean with time.

Note that the UP controller ‘leans’ more toward the target than the self-tuning S-factor

controller and that the S-factor controller which does not have its parameters adapted is
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Figure 9.2: Kolmogorov-Smirnov test graph for DP of cooks between January and February
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perfectly symmetric, as is to be expected. The peak in the UP controller’s distribution is

due to the size of the bins used to draw the distribution. Due to the number of datapoints,

the number of bins could not be made less without losing smoothness elsewhere in the

graph.

In order to see the performance of the online tuning of the UP controller and the

self-tuning S-factor controller, it is necessary to visualise the results over time. Figure 9.4

shows the results of the simulation versus the cook number. In this figure the reduction
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Figure 9.4: Monte Carlo results over time

of both variance and error over time brought about by the adaptive algorithms can be

seen. The constant parameter S-factor controller does not exhibit any time-dependent

behaviour.

9.2 Performance criteria

Based on the Monte Carlo results, it can be seen that the simulated UP controller shows

the smallest output variance. The standard deviation obtained over all the cooks was

calculated as 3,07. It was decided to use the standard deviation of the viscosity error as

the performance measure for the controller, combined with the mean of the error (which

should be zero), this gives a good picture of the controller performance. Therefore, control

performance is expressed by using the measured variance divided by 3,07 as well as the

mean of the error.
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9.3 In situ control results

9.3.1 Results

The UP controller was used to control 13 cooks during the period from May 2003 to

June 2003. Figure 9.5 shows the performance of the S-factor controller during the same

period. The horizontal dashed line shows an average deviation from target slightly above

10. Note that the DP cycles dramatically between high and low extremes during this

time period. This is typical of the overall operation of the controller.

Several reasons for this cyclic behaviour can be suggested. The most likely explanation

is aggressive modification of the controller parameters by plant personnel, without waiting

for the effects of these modifications.

Figure 9.6 shows the performance of the UP controller during the same time period.

The vertical line shows the point at which new model parameters were obtained using

the automatic tuning facility. When comparing the two controllers, it should be noted

that the S-factor controller parameters are changed for almost every cook. This makes it

difficult to identify contiguous regions where the same parameters are used, as was done

in the figure showing UP controller performance.

The figures show clear evidence of the superiority of the UP controller. After pa-

rameter tuning, the deviation from target was significantly lowered, and the variance is

consistently lower than that of the S-factor controller during the same time period.

It should be noted that the variances measured on the plant are consistently higher

than those obtained using Monte Carlo simulation. This is because the Monte Carlo

model only introduces variability in the variables that are measurable on the plant. Many

more unmeasured variables play a part in determining the final viscosity, and will add

cause the final output to have larger variance. In addition, there is variability in the

plant model which was not taken into account. Varying the values of the plant model

parameters will add an addition measure of reality. Unfortunately, there was not enough

data to develop an estimate of the plant model parameter distributions.

9.3.2 Variance reduction

The variance of S-factor controller during the test was measured as 21, 7 times the value

obtained by Monte Carlo analysis. The UP controller variance was at 18 before parameter

tuning and at 12 after parameter tuning, 6 and 4 times the theoretical values respectively.

The Monte Carlo results suggest that this figure can be expected to drop further when

the parameters are tuned again. Even if the variance does not improve, the UP controller

shows a 43% lower variance.
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Figure 9.5: Deviation from target for S-factor controller May to June 2003
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Figure 9.6: Deviation from target for UP controller May to June 2003
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9.3.3 Error reduction

The UP controller showed an average error of only 1 unit after parameter tuning, and

Monte Carlo modelling suggests that this value may decrease if the plant conditions stay

constant. The S-Factor controller showed an average error of 10 units. The high average

error can be explained by the fact that personnel are loathe to obtain low viscosities.

Given that the S-factor controller exhibits a high variance, average viscosities are consis-

tently high to avoid low viscosity results.



CHAPTER 10

Conclusion and recommendations

This chapter summarises the findings of this study and makes recommendations

for further research and investigation.

10.1 Monte Carlo modelling

The results of the Monte Carlo experiment show that the UP controller performs better

than the current controller on the plant. The study also shows evidence of variability in

unmeasured variables when compared to the real plant data, as the real plant data shows

higher output variance than the simulation. In addition to the effects of unmeasured

process variables and variable process parameters on the variance, the mismatch in vari-

ability between simulation and reality could be that current parameter tuning technique

used to adjust the S-factor controller parameters to maintain control on the plant.

10.2 In-situ controller

The UP controller program has been shown to correctly predict temperatures in an on-

line plant environment. The controller showed a significantly (42%) lower variance than

the current (S-factor) controller during the same period, and also showed a 64% reduction

in average error. The effect of parameter tuning was also observed to be significant and

correlated well with the Monte Carlo results.

10.3 Controller structure

The UP controller structure is based on a simple concept – that of feedforward control

with adaptable parameters. Many different concepts were evaluated during the design.

78
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It has been mentioned (chapter 1) that state estimation techniques are not directly ap-

plicable to this specific problem.

Other control structures which might seem attractive include Neural Networks or

more automated model based techniques such as MRAC. These techniques all have the

disadvantage of not being based on a rigorous model, but rather being reliant on historic

data to predict the behaviour of the plant. Due to the fact that the digester does not

exhibit continuous change and the extremely low sampling rate of the controlled variable,

these techniques can only approach a model based on knowledge of the internal reactions

and adjusted periodically.

10.4 Recommendations

A number of issues were identified during the course of this investigation, which took

place over a total of five years.

• Further study into sources of variability has to be done, as it is clear that the model

used by the UP controller does not account for all the variability observed on the

plant. If these sources of variability can be identified, they might provide valuable

clues as to further ways of reducing the output variance.

• The possibility of adding additional measurements is also an interesting field for fur-

ther study. One additional measurement such as near-infra-red spectrum analysis or

moisture content measurements of wood entering the digester could improve control

by allowing the model to use correct initial values for the model rate equations.

• If the controller can obtain optimised parameters for different species of wood, these

parameters could be stored for recall when switching wood species.

• Control can be improved considerably by removing the constraint that the cook time

needs to be constant. The control algorithm can be easily adapted to supply an

optimal time for a constant temperature profile instead of an optimal temperature

for a constant time cook.

• In order for variable time cooks to be possible, scheduling on the plant has to be

reworked. The current constant time constraint is due to the difficulty of manually

scheduling the digesters taking into account shared equipment and utilities. If the

scheduling could be automated, the constant time constraint could be relaxed.

• The model of the reactions used in this study are rigorous enough that they may

be incorporated into training simulations.
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• The Monte Carlo modelling structure can be used to evaluate any control struc-

ture and will aid in the evaluation of the impact of process changes or any of the

opportunities mentioned above.



APPENDIX A

Parameter values

These values are the original values for the model parameters as published by

Kilian (1999), together with the modified values used as a starting point in the

UP controller during Monte Carlo testing and the parameters obtained through

parameter optimisation using gathered plant data.
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Table A.1: Lignin reaction kinetics

Literature
(Kilian, 1999) Monte Carlo Plant

Parameter [L] > 12 [L] < 12 [L] > 12 [L] < 12 [L] > 12 [L] < 12

KL0 1,415× 1012 4,278× 1011 1,414 8× 1012 4,278 2× 1011

EL 12 300 12 300 1,233 4× 104 1,232 6× 104 12 300 12 300
a 0,646 1,621 1,028 5 2,536 6 0,646 1,621
α 0,819 0,765 0,718 6 0,425 1 0,819 0,765
β 0,705 0,778 0,428 3 0,552 9 0,705 0,778

Table A.2: Hemicellulose reaction kinetics

Parameter
Literature

(Kilian, 1999) Monte Carlo Plant

K0
HC 1,236× 1011 1,238× 1011 1,226× 1011

EHC 14 200 14 370 14 300
d 2,542 2,322 2,741
γ 0,707 0,710 0,723

Table A.3: Cellulose reaction kinetics

Parameter
Literature

(Kilian, 1999) Monte Carlo Plant

K0
C 7,68× 1012 1,543× 1013 4,32× 1012

EC 17 100 1,724× 104 2,34× 104

δ 1 1,643 1,434

Table A.4: Interpolation tables for B and C

Literature
(Kilian, 1999) Monte Carlo Plant

Parameter
Temp
(℃) B C B C B C

K0
SO2

80 −5,077 1 045 −5,077 0 1 045 −5,077 1 045
120 −6,16 −6,916 0 1 700 1 700 −6,16 1 700
150 −7,71 2 133 −7,971 0 2 113 −7,71 2 133

KP 80 −10,212 2 392 −10,241 2 392 −10,212 2 392
120 −10,125 2 669 −10,130 2 665 −10,125 2 665
150 −11,348 2 960 −11,230 2 960 −11,348 2 960

KH2O 20-150 5,648 −2 198 5,648 −2 198 5,648 −2 198
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