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Summary

Visibility, guarding and polygon decomposition are problems in the field of compu-
tational geometry which have roots in real world applications. These problems have
been the focus of much research over a number of years. This thesis introduces a
new problem in the field — The Axial line Placement Problem — which has some
commonalities with these other problems. The problem arises from a consideration
of the computational issues that result from attempting to automate the space syntax
method. Space syntax is used for describing, quantifying and interpreting the spatial
patterns in urban designs by analysing the relationship between the space through
which one can move (roads, parks, etc.) and the buildings in the urban layout. In
particular, this thesis considers the problem of the placing the axial lines, defining
paths along which someone can move, to cross the shared boundaries between the
convex polygons which represent the space through which someone can move in
the town.

A number of simplifications of the original problem are considered in this thesis.
The first of these is the problem of placing the smallest number of orthogonal line
segments (orthogonal axial lines) to cross the shared boundaries (adjacencies) in
a collection of adjacent orthogonal rectangles. This problem is shown to be NP-
Complete by a transformation from the vertex cover problem for planar graphs. A
heuristic algorithm which produces an approximation to the general solution is then
presented. In addition, special cases of collections of orthogonal rectangles which
allow polynomial time solutions are described and algorithms to solve some of these
special cases are presented.

The problem where the axial lines, that pass through the adjacencies between or-
thogonal rectangles, can have arbitrary orientation is then considered. This problem
is also shown to be NP-Complete and once again heuristic approaches to solving the
problem are considered. The problem of placing axial lines to cross the adjacencies
between adjacent convex polygons is a more general case of the problem of placing
axial lines of arbitrary orientation in orthogonal rectangles. The NP-Completeness
proof can be extended to this problem as well.

The final stage of the thesis considers real world urban layouts. Many urban
layouts are regular grids of roads. Such layouts can be modelled as general urban
grids and this thesis shows that it is possible to find the minimal axial line cover in
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SUMMARY v

general urban grids in polynomial time. Some urban layouts are less regular and
the idea of a deformed urban grid is introduced to model some of these layouts.
A heuristic algorithm that finds a partition of a deformed urban grid in polynomial
time is presented and it is conjectured that the axial map of a deformed urban grid
can be found in polynomial time. The problem is still open for more general urban
layouts which cannot be modelled by deformed urban grids.

The contribution of this thesis is that a number of new NP-Complete problems
were identified and some new and interesting problems in the area of computational
geometry have been introduced.



Opsomming

Sigbaarheid, waghou en veelhoek-dekomposisie is probleme in berekeningsmeet-
kunde wat hulle oorsprong in reéle toepassings het. Die probleme is sedert jare die
onderwerp van vele navorsing. Hierdie tesis voeg 'n nuwe probleem by die navors-
ingsgebied — die Asselyn Plasingsprobleem — wat sekere gemeenskaplikhede met
bogenoemde probleme het. Laasgenoemde probleem vloei voort uit 'n beskouing
van die berekeningskwessies wat ontstaan wanneer pogings aangewend word om
die ruimte-sintaksis metode te outomatiseer. Ruimte-sintaksis word gebruik vir die
beskrywing, kwantifisering en interpretasie van ruimtelike patrone in stedelike ont-
werpe en wel deur die verwantskap tussen die ruimte waardeur 'n mens kan beweeg
(paaie, parke, ens.) en die geboue in die stedelike uitleg te ontleed. Hierdie tesis
beskou, in die besonder, die probleem van die plasing van asselyne op sodanig wyse
dat hulle gedeelde grense tussen konvekse veelhoeke kruis, waarby the lyne paaie
waarlang mens kan beweeg en die veelhoeke die ruimte waardeur mens deur die
stad kan beweeg, verteenwoordig.

’n Aantal vereenvoudigings van die oorspronklike probleem word in hierdie
tesis beskou. Die eerste hiervan is die probleem om die kleinste moontlike aan-
tal ortogonale lynsegmente (ortogonale asselyne) op so 'n wyse te plaas dat hulle
die gedeelde grense in *n versameling van aangrensende ortogonale reghoeke kruis.
Daar word gewys dat hierdie probleem NP-volledig is, deur *n transformasie van die
nodus-dekkingsprobleem (“vertex cover problem”) vir planére (“planar”) grafieke
na die problem uit te voer. 'n Heuristiese algoritme wat *n benaderde oplossing
tot die algemene probleem bied, word dan voorgestel. Addisioneel word spesiale
gevalle van versamelings van ortogonale reghoeke wat polinomiese tyd oplossings
toelaat beskryf. Algoritmes wat sekere van hierdie spesiale gevalle oplos word
aangebied.

Daarna word die probleem beskou waarvolgens asselyne wat deur aangrensende
ortogonale reghoeke gaan, arbitrére orientasie mag hé. Hierdie probleem word ook
as NP-volledig bewys en weereens word heuristieke benaderings om die probleem
op te los, beskou. Die probleem om asselyne te plaas sodanig dat hulle grense tussen
aangrensende konvekse veelhoeke te kruis is *n veralgemening van die probleem om
asselyne van arbitrére orientasie in reghoeke te plaas. Die NP-volledigheidsbewys
kan ook na die meer algemene probleem uitgebrei word.
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Die finale fase van die tesis beskou die uitleg van reéle stede. In die geval
van baie stede is die uitleg ’n re€lmatige rooster van paaie. So 'n uitleg kan as
'n algemene stedelike rooster gemodeleer word en hierdie tesis toon aan dat dit
moontlik is om die minimum asselyn dekking van sulke roosters in polinomiese tyd
te bepaal. Sekere stede se uitleg is minder reélmatig en die konsep van 'n verwronge
stedelike rooster word voorgestel om sommige daarvan te modeleer. *n Heuristiese
algoritme wat in polinomiese tyd 'n partisie van 'n verwronge stedelike rooster
vind, word aangebied. Daar word gepostuleer dat die assekaart van 'n verwronge
stedelike rooster in polinomiese tyd gevind kan word. Die probleem vir stedelike
uitlegte wat nie deur verwronge stedelike roosters gemodeleer kan word nie, bly
egter steeds onopgelos.

Die bydrae van hierdie tesis is dat 'n aantal nuwe NP-volledige probleme ge-
identifiseer is, en sommige nuwe en interessante probleme tot die gebied van be-
rekeningsmeetkunde toegevoeg is.
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Chapter 1

Introduction

1.1 Background to the problem

The advent of computers has changed how people work and how jobs are done in
many professions. This is because in many circumstances computers can be used to
handle the routine (and often boring) aspects of some jobs, fréeing the professional
to devote her/his time to the more mentally stimulating/challenging aspects of the
work. Baase [1997] discusses many of the benefits and problems of the computer
revolution in her book A Gift of Fire.

The general area of architecture (designing houses or office buildings, town
planning, etc.) is an area where computers could offer benefits to the professional.
In some other areas of design this is already happening. For example, shape gram-
mars can be used to understand designs and to create new designs [Koning and
Eizenberg, 1981; Mitchell, 1990; Herbert et al., 1994] and computers have been
used to automatically generate floor plans for houses [Eastman, 1972; Rinsma et
al., 1990]. Town planning or urban design is an area where the professional uses
large data sets in order to be able to understand existing town plans and also to
be able to improve existing layouts and to design new layouts. Using computers
to assist the town planners could free the town planner from some aspects of the
routine jobs and thus allow her/him to concentrate on the design phase. This au-
tomation raises a number of societal and ethical issues, which will not be discussed
here (see Baase [1997] for more detail), but also raises a number of problems that
are of interest to computer scientists. This thesis considers some of the interesting
computational problems that arise from the possible automation of a design task —
that of understanding and designing urban layouts.

Hillier ez al. [1983] proposed a method, which they called space syntax, to de-
scribe and analyse patterns of architectural space both at the building and urban
level. Hillier [1996] discusses the use of the method in more detail (see particu-
larly pages 153 to 181). The idea is that with an objective and precise method of
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description it is possible to investigate how well environments work, rigorously re-
lating social variables to architectural forms. They believe that space syntax can
help architects to understand the interaction between space and society and thus can
be used as a tool to understand why urban areas have developed as they have and
also to design new urban layouts.

An architect or town planner would apply the space syntax method ([Mills,
1992]) to a town or city in 4 main steps.

1. Studying the town plans or an aerial photograph of the town and separat-
ing out the “space” (roads, parks, etc.) from the “non-space” (buildings, car
parks, schools, etc.). The result of this step would be a “deformed grid”
which is the town plan reduced to a number of polygons representing the
“non-space” separated by “space” — it is the space that is the real object of
interest.

2. Creating a convex map of the area. This convex map is made up of the small-
est number of “largest” convex spaces that cover all of the space in the area
being analysed. It is a partition of the space into the minimum number of con-
vex polygons. A convex space gives some local information about the area in
the sense that every point in the convex space is directly visible and directly
accessible to every other point in that convex space.

3. Creating an axial map of the area from the convex map. The axial map is made
up of the fewest and longest straight line segments (axial lines) that cover the
town, crossing through the convex polygons that make up the convex map,
and offers a globalising perspective that takes into account how far one can
see (or walk) in the town.

4. Combining the information from the convex map and the axial map to pro-
duce an integration factor for the town/city. The integration factor, which is
the final result of the analysis, gives an idea of how easy it is to move about
in the town.

At present most of this work is done manually by the architect/town planner
using pencil and tracing paper over the aerial photograph or map. This seems to
be an application where computers can be used to assist, or (in some aspects of the
work) replace, the architect in performing the routine tasks required to prepare the
data for interpretation. Some tasks are boring and can be more efficiently solved
by computers. Some tasks are computationally difficult and are unlikely to be per-
formed optimally by humans so computers could be utilised to provide improved
solutions. In order to determine whether the processing can be done automatically
it is important to consider the tasks that are performed by the architect where there



CHAPTER 1. INTRODUCTION 3

is potential for automation. The next section of this thesis considers the tasks per-
formed in applying the space syntax analysis method, identifies where there is the
possibility for automation and also highlights some of the areas of current and pos-
sible future research interest for computer scientists. Note that the focus of this
thesis is on the computational problems that could arise with automation. The issue
of whether space syntax is a good way of understanding and doing design is not
within the scope of the research.

1.2 The scope for automation

The first stage in the process of applying space syntax is the separating of space
from non-space in the town plan or aerial photograph. This problem has already
been the subject of much research in the field of image processing over a number
of years. The general approach here would be to take an aerial photograph, landsat
image, or any other image (in digital form) over the inhabited areas and to auto-
matically separate space (roads, parks, etc.) from non-space (buildings, etc.) using
image segmentation techniques. Gonzalez and Wintz [1987], Gonzalez and Woods
[1992], Castleman [1996], Jdhne [1997] or Russ [1999] offer good introductions
into the field of image processing and more specifically, general image segmenta-
tion techniques. Various authors [Huertas and Nevatia, 1988; Liow and Pavlidis,
1990; Ton et al., 1991; Stilla et al., 1996; Geman and Jedynak, 1996; Barzohar and
Cooper, 1996; Levitt and Dwolatzky, 1999] have considered the issues of separating
roads or buildings from the background in digital images.

An additional problem that could occur after the separation/segmentation phase
is that the segmented areas are unlikely to have smooth boundaries. In order to make
these areas suitable for further processing it is necessary to be able to “accurately”
and “efficiently” represent each area by a bounding polygon. In essence the area
should be described by a bounding polygon that matches the boundary as closely
as possible while minimising the number of vertices and edges required to define
the polygon. Research into this problem has been going on for a number of years
([Ramer, 1972; Pavlidis and Horowitz, 1974; Sarkar, 1993; Perez and Vidal, 1994;
Ruskin, 1997; Zhu and Seneviratne, 1997]). The result of applying segmentation
and polygon approximation to instances of the problem would be the “deformed
grid” — a number of polygons representing the non-space in the area with the space
between as the real area of interest. A bounding polygon can then be put around
this area of interest. This deformed grid would then be represented in an appropriate
fashion for future processing — finding the convex map and the axial map.

It does, therefore, seem that the initial phase of the space syntax method — sepa-
rating space and non-space — can benefit from automation. Computer programs can
be used to generate a deformed grid from an aerial photograph or town plan. If the
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town planner feels this automatically deformed grid is acceptable then he/she can
use it as is in the next phase of the process. Alternatively he/she could use it as a
starting point for generating a deformed grid that they feel is acceptable to use in
the next phase of the process. Although many of the problems in this area are well
understood there are still some open questions and unresolved issues and there is
thus still scope for further research in this area.

Once the deformed grid has been found, the next phase of the work is to find
the convex map of the area. The convex map is defined as being the minimum
number of non-overlapping convex spaces (convex polygons) that cover the space
in the deformed grid. Figure 1.1 shows a section extracted from a map of the Jo-
hannesburg region. This is essentially the deformed grid of the region — the space
(light coloured) and non-space (darker coloured) in the urban layout represented by
polygons. Note that the polygons representing non-space (darker coloured) are not
of direct interest in applying space syntax. These non-space polygons can be of ar-
bitrary shape. The polygon[s] representing the space in the deformed grid must be
partitioned into convex polygons. Figure 1.2 shows a close up of part of the original
region that will be used to give an idea of the application of space syntax. Essen-
tially the problem is that of covering or partitioning a general polygon (the boundary
of the area under consideration) with holes (the non-space parts of the area under
consideration) by the minimum number of convex polygons. The general covering
problem (where polygons are allowed to overlap) and the general partitioning prob-
lem (where polygons may not overlap) have been quite well researched. In addition
partitioning and covering of special classes of polygons has also received a lot of
interest. Many of the problems in this category have been shown to be computation-
ally intensive and some have been shown to be NP-Hard. Chapter 2 discusses these
problems in more detail. The special case of covering or partitioning a polygon
with holes, that represents a town plan, and therefore has special constraints, has
not been studied but the complexity of some town plans (as shown in Figure 1.1)
would seem to indicate that this problem is also inherently hard. However, even
if the problem itself is inherently hard — it takes a long time to find the minimum
solution — it is likely that approximations to the optimal solution would be sufficient
for the town planner to continue meaningfully with the later phases of the analysis.
It might also be the case that some town plans can be modeled by simplifications to
the general problem and that these could be solved exactly in a reasonable time. It
thus seems likely that this phase of the process could also benefit from automation.
Interesting areas of research related to this phase of the process are to study approx-
imation algorithms and special cases of the problem that can be solved exactly in a
reasonable time.

From the convex map a town planner can generate the axial map over the area.
This axial map is defined as the smallest number of axial lines that will cross all of
the shared boundaries between the convex spaces in the convex map. Figures 1.3
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and 1.4 show how the enlarged portion of the urban layout from Figure 1.1 could be
covered by convex polygons and the shared boundaries between the convex poly-
gons crossed by axial lines. It is interesting to note that in the two figures the same
number of convex polygons are required to cover the spaces in the layout but that
the convex polygons are different. An effect of the different sets of convex polygons
in the two partitions is that different numbers of axial lines are required to cross the
shared boundaries in the two figures (6 axial lines are required in Figure 1.3 and 7
in Figure 1.4). This example illustrates the inherent difficulty of the problem. It is
known to be difficult to find the minimum number of convex polygons to partition
a polygon and it seems that is it also difficult to partition the space in a town plan.
Then to find the minimum number of axial lines to cross all of the shared bound-
aries it is necessary to consider all of the combinations of the minimum number of
convex polygons and to find the minimum number of axial lines for each of those
configurations.

The problem of placing the minimum number of axial lines for any configu-
ration of convex polygons is an area that has not been directly researched in the
past. In fact, it was first studied by the author of this thesis. There is, however, an
abundance of research in closely related areas — guarding and visibility problems.
In guarding problems the aim is to place the minimum number of guards (with dif-
ferent attributes) so that the guards can see the entire area of polygons of different
forms. Visibility problems are very similar but focus on determining how much of
a polygon can be seen from some point or points inside the polygon. These prob-
lems are discussed in detail in Chapter 2. The literature in these areas indicates that
finding the minimum number of axial lines could itself be an inherently difficult
problem. The problem of finding the axial map from some urban layout (given the
convex map) is the major emphasis of this thesis. A number of variations the prob-
lem are studied and even more questions are raised. The results presented in this
thesis do, however, indicate that this problem can be solved sufficiently well to be
of use to the town planner or urban designer.

Having determined the convex map and the axial map the architect would per-
form the space syntax analysis based on these parameters. This phase of the process
is already automated [Hillier, 1996]. This is done essentially using graph algo-
rithms. An area of interest is in determining whether the graph algorithms used
here — for example, shortest path algorithms — could be modified for the specific
application. In addition, issues related to space usage and representation could be
attractive areas for research.

The discussion above makes it clear that the aim of automatically applying space
syntax to a town plan or aerial photograph of a town poses many interesting research
areas for computer scientists. The range of research areas is too broad to be covered
as a single Ph.D. thesis and thus this thesis concentrates on a small part of the
overall problem. The next section gives an overview of the research undertaken for
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the thesis.

1.3 The research focus of the thesis

As discussed in the previous section of this thesis the potential automation of space
syntax gives rise to many areas of research. These areas include image processing,
computational geometry and algorithms. The range of research questions that could
be addressed is very wide and it was thus necessary to concentrate on a subset of the
problems. For this reason, the problems of separating space from non-space, deter-
mining the convex map and the final analysis stage with its associated algorithms
were not considered as part of this research. The decision was made to focus the
research for this Ph.D. on the problem of finding the axial lines that cross all of the
shared boundaries between the convex polygons in the convex map, that is finding
the axial map for a given layout. In the remainder of this thesis the problem will
be called the Axial Line Placement problem or ALP. This problem on its own is
still very big and could not be solved entirely. The research considered a number of
simplifications to and variations on ALP — using simpler types of convex polygons
and introducing constraints aimed at making the problems easier to solved. Some
new contributions have been made as a result of this research and some progress has
been made towards finding solutions to the general problem. There are, however,
still a number of unsolved problems and open questions. The next section gives an
overview of the thesis, in particular indicating some of the variations of the Axial
Line Placement Problem that have been considered as part of the research for this
thesis.

1.4 Overview of the remainder of the thesis

Many researchers over the years have concentrated on the problems of guarding
and visibility in polygons of various shapes. Much attention has also been focussed
on the problems of decomposing polygons into smaller more easily handled com-
ponents. As mentioned in Section 1.3 above these problems have relevance to the
current research because they can provide insight into solving ALP . Chapter 2 of
this thesis presents a detailed literature survey of the work in these areas.

Chapter 3 expands somewhat on the range of research possibilities that arise
from the problem of finding the convex and axial maps for town plans (urban lay-
outs). This chapter also presents some simplifications or generalisations of the
problem that are in themselves interesting problems for further study. The chap-
ter concludes by discussing the specific problems that were tackled as part of this
thesis.

The new results, in the form of proofs, algorithms, etc. that arise from tackling
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these problems constitute the research contribution of the thesis and are discussed
in ensuing chapters of the document.

Chapter 4 discusses one of the “simplifications” presented in Chapter 3 in depth
— the placement of orthogonal axial lines to cross the shared boundaries between
rectangles in a configuration of orthogonal rectangles. The problem is presented and
shown to be NP-Complete. A heuristic algorithm that appears to give “acceptable”
approximations is tested and compared to a heuristic algorithm that is known to
give a solution no worse than twice an optimal solution. Special cases where the
problem can be solved exactly in polynomial time are also discussed.

In Chapter 5 the problem discussed in Chapter 4 is changed slightly to allow the
axial lines that cross the shared boundaries between rectangles in a configuration of
orthogonal rectangles to have arbitrary orientation. This problem is also shown to
be NP-Complete. The chapter also introduces some ideas for heuristics for finding
acceptable approximations to the exact solution in this case.

The restrictions on problem are relaxed even further in Chapter 6 that consid-
ers the axial line placement problem for arbitrary convex polygons (dropping the
requirement of orthogonal rectangles). This problem is a generalisation of the prob-
lem described in Chapter 5 and thus the NP-Completeness of this problem can be
easily proved. The variation of the problem discussed in this chapter is the most
general case of ALP and thus ALP is NP-Complete.

In Chapter 7 of the thesis, the original problem — placing axial lines to cross the
shared boundaries of the convex polygons in the convex map of an urban layout or
town plan — is considered. In this thesis the problem of finding the convex map of
the area under consideration is not studied in great depth because it has already been
shown to be NP-Hard. However in this chapter it is studied as a side issue in the
matter of finding the axial map of the area. Here it is shown that although the general
problem of partitioning a polygon with holes is NP-hard, there are some instances
of the problem that can be solved in polynomial time. In particular it is shown that
if the town plan is regular then the convex map can be found in polynomial time
and so can the axial map. The chapter also addresses the matter of town plans that
are not regular and argues that finding the convex map of such layouts is likely to
be NP-Hard but that finding the axial map of such layouts might not be as difficult.

The final chapters of this thesis are devoted to future work and concluding re-
marks. Chapter 8 discusses some of the problems that have not been tackled in this
thesis and Chapter 9 restates the results and conclusions drawn in this thesis. There
are still many open questions and unproven conjectures but this thesis has made
a significant contribution in tackling some new problems and obtaining some new
results.



Chapter 2

Background

2.1 Introduction

As discussed in the introduction to this thesis (Chapter 1) the potential automation
of space syntax gives rise to a wide range of research questions and it was thus nec-
essary to concentrate on a subset of the problems. For this reason, the problems of
separating space from non-space, determining the convex map and the final analy-
sis stage with its associated algorithms were not considered as part of this research.
The decision was made to focus the research for this PhD on ALP, the problem of
finding the axial lines that cross all of the shared boundaries between the convex
polygons in the convex map. This problem has much in common with other well
studied problems in the field of computational geometry.

The most obvious commonality is in the idea of visibility. The intent of the axial
map of some urban layout is that it offers a globalising perspective that takes into
account how far one can see (or walk) in the town. In particular placing an axial
line to cross the adjacencies between a number of adjacent convex polygons can
be thought of as determining a line of sight from some point to another in a given
polygon. Visibility in polygons is an area of computational geometry which has
received much attention in the last two decades [Asano et al., 1999]. The essential
question is this work is: “Can some point in the polygon ‘see’ some other point in
the polygon?” However, other visibility questions can also be posed. Included in
these are vertex-vertex visibility, vertex-edge visibility, edge-edge visibility, etc.

The problem of guarding a polygon is very closely related to visibility in poly-
gons. In fact, all guarding problems are essentially visibility problems. The first
“guarding problem” came about as a problem posed by Victor Klee in response to
a request by Vasek Chvital [O’Rourke, 1987]. The original problem was to deter-
mine the minimum number of guards necessary to cover the interior of an n-wall
art gallery. Many variations on this problem can now be found in the literature.
(See the monograph by O’Rourke [1987], the survey papers by Shermer [1992] and

12
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Urrutia [1999], and the summaries of results by O’Rourke [1997] and Suri [1997].)
These variations include vertex guards, edge guards, point guards, periscope guards
and prison guards.

Another area of computational geometry which in some ways is similar to both
visibility and guarding problems is polygon decomposition [Keil, 1999]. The focus
here is in decomposing given polygons into smaller more easily manageable parts.
Polygon decomposition problems occur frequently in such areas as pattern recog-
nition, image processing, computer graphics and VLSI. In polygon decomposition
problems the aim is to break the polygon down into constituent parts which can be
more easily processed. Polygon decomposition is categorised in two different ways
— covering and partitioning. The basic covering problem is to find the minimum
number of polygons, with some predefined characteristics, to cover the complete
area of an enclosing polygon. This problem has some commonality with the guard-
ing problem — covering a polygon with the minimum number of polygons of some
specified type is equivalent to the placement of the minimum number of guards of
some specified type so that each point inside the polygon is visible to some guard.
The partitioning problem is the same as the covering problem except that the poly-
gons into which the enclosing polygon is decomposed are not permitted to overlap.
The phase of the space syntax analysis method which produces a convex map of a
given urban layout is clearly a polygon decomposition problem. The town plan is a
polygon with holes and the convex map is a minimum partition of that polygon.

The focus of this chapter is to explore the commonalties (and some cases the dif-
ferences) between ALP and the work which has been done in the areas of visibility,
guarding and polygon decomposition. This is accomplished by looking at the re-
sults which have been published in the other areas and relating these to ALP. Before
discussing the previous results, however, it is worthwhile introducing some general
terms which are used in the literature. Section 2.2 introduces terms which are im-
portant for understanding the research in these areas which is discussed. Other more
specific terms are introduced only when required.

In addition, a number of problems which are discussed in this chapter have
been proved to be NP-Complete or NP-Hard. In addition, the new results which
are presented in this thesis rely on a number of NP-Completeness proofs. It thus
seems appropriate that the results concerning NP-Complete and NP-Hard problems
are summarised here (Section 2.3). Because of the size and the complexity of the
topic the presentation here focusses on the more practical aspects of the use and
application of the theory.

Once this general background has been covered, the chapter addresses the more
directly related background literature and discusses its relevance to ALP (Section
2.4). The chapter concludes (Section 2.5) by reiterating that ALP is different from
the other problems discussed. ALP is thus a previously unstudied problem and is
worth being investigated. This discussion leads on to the posing of the research
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questions in Chapter 3.

2.2 Terminology

The general definitions in the fields of computational geometry and graph theory
appear below to make the material covered in this chapter more understandable. In
addition, many of these definitions are also used in later chapters of the thesis. Most
of the definitions come from Manber [1988], O’Rourke [1987], and Shermer [1992]
but can be found in other sources as well. A reader who is familiar with the area
could skip this section of the thesis.

e A point p is represented by a pair of coordinates (z, y) in euclidean space.

e A line is represented by two points p and ¢ (which can be any two distinct
points on the line) and is denoted —pg—.

e A line is orthogonal, or orthogonally aligned, if it is parallel to one of the
Cartesian axes.

e A line segment is represented by a pair of points p and g where the points are
the endpoints of the line segment and is denoted by pg.

e A line segment is orthogonal, or orthogonally aligned, if it is parallel to one
of the Cartesian axes.

e A ray is represented by a pair of points p and g where one point is the endpoint
of the ray and the other point is any other distinct point on the ray.

e A ray is orthogonal, or orthogonally aligned, if it is parallel to one of the
Cartesian axes.

e A path is a sequence of points p;,pq,...,p, and the line segments joining
them.

o The line segments in a path are called edges.

e A closed path is a path whose last point is the same as its first point.

e A closed path is also called a polygon.

e The points defining the polygon are called the vertices of the polygon.

e A polygon P can also be defined as a collection of n vertices, v, vz, ..., Vn,
and n edges, v1vV2, VU3, . . ., Un—1Un, UnVi.
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Figure 2.1: A simple polygon (Shermer [1992])
e A simple polygon is a polygon where no two non-consecutive edges intersect.
Figure 2.1 shows an example of a simple polygon.

e The set of points in the plane enclosed by a simple polygon forms the interior
of the polygon.

e The set of points on the polygon itself forms the boundary of the polygon.
e The set of points surrounding the polygon forms its exterior.

e A holein a simple polygon P is another polygon H enclosed by the boundary
of P.

e If a simple polygon P contains holes then P is said to be multiply connected,
if P contains no holes then it is said to be simply connected.

e A simple polygon is convex if, given any two points on its boundary or in
its interior, all points on the line segment joining them are contained in the
polygon’s boundary or interior.

e A polygon P is a star or star-shaped if there is some point z in the polygon
from which every other point in the polygon can be seen.

e A kernel in a star polygon is a point z in the polygon from which every other
point in the polygon can be seen.

e A comb polygon is as shown in Figure 2.3. Comb polygons exist for any
number of vertices which is a multiple of 3.
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“rectilinear” (as was pointed out to him by Grunbaum) has a well estab-
lished meaning: “characterised by straight lines”. Orthogonal polygons have
also been called isothetic polygons [Wood, 1985]. In this thesis O’Rourke’s
nomenclature is used.

e A trapezoid or trapezium is a quadrilateral that has one pair of opposite sides
parallel, the other pair being nonparallel.

e A vertex v is a reflex vertex if it has interior angle > 180 degrees.

e A polygon P is orthogonally convex if it is orthogonal and any horizontal or
vertical line (that is not co-linear with an edge) intersects the boundary of P
in at most two points. Figure 2.4 shows two orthogonally convex polygons.
The second polygon is an orthogonally convex star.

Figure 2.4: An orthogonally convex polygon and orthogonally convex star (Shermer
[1992])

e A polygon P is horizontally (vertically) convex if any horizontal (vertical)
line that is not co-linear with an edge intersects P in at most two points.

e A path inside a polygon P is orthogonally convex if it consists of orthogo-
nal segments and any horizontal or vertical line that is not co-linear with a
segment intersects the path in at most one point.

e An orthogonal comb polygon is as shown in Figure 2.5.

e A polygon P is said to be covered by a collection of subpolygons of P if the
union of these subpolygons is exactly P. The collection of subpolygons is
called a cover of P.

e A cover of a polygon P is said to be a partition of P if the intersection of each
pair of subpolygons in the cover has zero area. (Note, in some work a partition
is also called a decomposition but this is misleading terminology and is not
used here. In this work decomposition includes covering and partitioning.)
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UL [UULL)

Figure 2.5: Orthogonal comb polygons (Shermer [1992])

e A triangulation of a polygon P is a decomposition of the polygon into trian-
gles without adding vertices. This is accomplished by chopping the polygon
with diagonals (line segments between nonadjacent vertices). See Figure 2.6
for an example of triangulating a simple polygon.

Figure 2.6: A simple polygon and one of its triangulations (Shermer [1992])

e A Steiner point is a vertex which is not one of the original points in the poly-
gon. Steiner points are often used in covering and partitioning.

e A chainis a sequence py, ..., pi of vertices.
o A reflex chain of a polygon is a sequence of consecutive reflex vertices.

e A polygon P is spiral if it has at most one reflex chain, see Figure 2.7 for an
example.






Figure 2.9: A pair of L3 (or link-3) visible points (Shermer [1992])

e A visibility polygon of a point y in some polygon P contains all the points of
P visible to y. Figure 2.10 shows the visibility polygon of the point y in the
star polygon of Figure 2.2

Figure 2.10: The visibility polygon of the point y (shown as the darker shaded
subpolygon) — y is the kernel of the visibility polygon but not of the original polygon

¢ In some contexts, a point in a polygon is identified with a guard. A set of
such points is called a guard set. If all of the elements in a guard set GG are
vertices of P then G is called a vertex guard set and the elements of G are
called vertex guards. Otherwise ( is called a point guard set and its elements
are called point guards.
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e A staircase path is an orthogonal path such that the path is monotone with
respect to the coordinate axes [Wood and Yamamoto, 1993].

o A staircase polygon is an orthogonal polygon, a subset of whose vertices
constitute a staircase path (see Figure 2.13).

Figure 2.13: A staircase polygon

e The maximum visibility problem asks for locating a point inside the polygon
from which the visible area is maximised [Gewali, 1993]. The minimum
visibility problem is similarly defined.

e A simple polygon P is said to be an LR-visibility polygon if there exist two
points s and ¢ on the boundary of P such that every point of the clockwise
boundary of P from s to ¢ (denoted as L) is visible from some point of the
counterclockwise boundary of P from s to ¢ (denoted as ) and vice versa
[Bhattacharya and Ghosh, 1998].

e A planar graph is a graph which can be drawn or embedded in the plane in
such a way that the edges of the embedding intersect only at the vertices of
the graph.

e A cut vertex is a vertex whose removal increases the number of components
in a graph.

e A biconnected graph is a graph which contains no cut vertices.
e A biconnected planar graph is a planar graph which contains no cut vertices.

e A face in a planar representation of a graph is a planar region bounded by
edges and vertices of the representation and containing no edges or vertices
in its interior.
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This list of terms is not complete. Many of the articles cited in the remainder of
the chapter introduce more specific terminology or definitions, in addition to using
many of those presented here, to discuss new problems or special cases of existing
problems. The terms presented here should, however, be enough to give the reader
an understanding of the discussion of the related literature in Section 2.4. Before
this discussion of the related literature Section 2.3 presents a brief overview of com-
plexity theory, particularly approaches using in proving problems NP-Complete.
This material is presented to help the reader understand related literature presented
in Section 2.4. A reader who is familiar with the material is encouraged to skip to
Section 2.4

2.3 NP-Complete problems

2.3.1 Introduction

The following sections of the literature review chapter of this thesis discuss a num-
ber of problems which have been proved to be NP-Complete or NP-Hard. This
section of the chapter is thus aimed at giving the reader an overview of the theory.
More detail and more rigorous presentations can be found in Garey and Johnson
[1979] and Papadimitriou [1994] and a more accessible discussion appears in Harel
[1992]. Section 2.3.2 presents the theory of NP-Completeness and Section 2.3.3
discusses how a new problem can be shown to be NP-Complete. Section 2.3.4
discusses the relationship between NP-Complete and NP-Hard problems.

2.3.2 NP-Complete Problems

The theory of NP-Completeness is designed to be applied to decision problems —
problems which only have “yes” or “no” answers. Abstractly a decision problem II
consists simply of a set Dy of instances and a subset Y1 C Dp of yes-instances.
These decision problems are studied because they have a natural, formal counterpart
— “languages” which can be studied in a mathematically precise theory of compu-
tation. The correspondence of decision problems and languages is brought about
by encoding schemes which can be used to specify problem instances for study.
The relationship between recognising languages and solving decision problems is
straightforward. A deterministic Turing machine (DTM) program M solves a de-
cision problem II under an encoding scheme e if M halts for all input strings over
its input alphabet, 3, and Lys = L[II, e]. Lps is the language recognised by the
program M, thatis Ly = {z € X* | M accepts z} and L[II, €] is an encoding of
an instance of II under encoding scheme e. Refer to Garey and Johnson [1979] and
Papadimitriou [1994] for more detail on the application of this theory.
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The class P is defined as follows:

P = {L | there is a polynomial time DTM program M for which L = L}

Then a decision problem II belongs to P if there is a polynomial time DTM
program that “solves” II. More informally we could say that II € P if there is
a polynomial time algorithm which solves II. The class NP can be defined (see
Garey and Johnson [1979], page 28 for more detail) in terms of a nondeterministic
algorithm. Such an algorithm is viewed as being composed of two stages — a guess-
ing stage and a checking stage. Given a problem instance I, the first stage merely
guesses some structure S. The structure is, of course, algorithm-dependent and rep-
resents, more or less explicitly, a possible answer to the problem. For example, in
the travelling salesperson problem, the structure is a route through the cities to be
visited. The checking stage then uses I and S as inputs and proceeds to compute in
a normal deterministic manner either eventually halting with an answer “yes”, even-
tually halting with an answer “no” or computing forever without halting. (The last
two cases do not always need to be distinguished). A nondeterministic algorithm
“solves” a decision problem II if the following two properties hold for all instances
I € Dn:

1. If I € Yy then there exists some structure S that when guessed for input [
will lead the checking stage to respond “yes” for I and S.

2. If I ¢ Yq then there exists no structure S that when guessed for input / will
lead the checking stage to respond “yes” for / and S.

The class NP is then defined informally to be the class of all decision prob-
lems II that, under reasonable encoding schemes, can be solved by polynomial time
nondeterministic algorithms.

The relationship between P and NP is fundamental in the theory of NP-Completeness.
It is clear that P C NP — every problem solvable by a polynomial time deterministic
algorithm is also solvable by a polynomial time nondeterministic algorithm. Thus
if II € P then II € NP. The current conjecture is that P C NP but this is still an
open problem. If P is different from NP then all problems in P can be solved with
polynomial time algorithms and the problems in NP—P are termed intractable. The
theory of NP-Completeness focuses on proving results of a weaker form — if P#NP
then there are problems in NP which are neither solvable in polynomial time nor
NP-Complete. The class P can be viewed as consisting of the “easiest” problems in
NP and the class of NP-Complete problems contains the hardest problems in NP.

A language L is defined to be NP-Complete if L € NP and for all other lan-
guages L' € NP, L' < L (where L; « L, implies a polynomial transformation
from a language L, to a language L,). Following from this, a decision problem
II is said to be NP-Complete if II € NP and for all other decision préblems I e
NP, I o« II. This implies “the common fate phenomenon” of NP-Complete prob-
lems — every NP-Complete problem is polynomially transformable to every other
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one. If a single NP-Complete problem can be solved in polynomial time, then all
problems in NP can be so solved. If any problem in NP is intractable, then so
are all NP-Complete problems. At this stage it has not been proven that any NP-
Complete problem is inherently intractable. In addition, no one has yet found a
polynomial time solution for any NP-Complete problem. Even without a proof that
NP-Complete problems are intractable, we know that any new problem which can
be proved to be NP-Complete is at least as hard as the other NP-Complete prob-
lems and that a major breakthrough will be needed to solve such a problem with a
polynomial time algorithm.

2.3.3 Proving the NP-Completeness of a new problem

From the above it seems that in order to prove a new problem II NP-Complete, one
must show that every problem in NP transforms to the new problem. A priori, it is
not even clear that any NP-Complete problem need exist. It turns out that if ar leas?
one NP-Complete problem is known to exist that it is only necessary to show that

1. I e NP

2. some known NP-Complete problem II’ transforms polynomially to II.

This result arises because if L; belongs to NP and L, is NP-Complete then
every other L' € NP transforms to L;. Now if L, is also in NP and there exists
a polynomial time transformation from L; to L, then there exists a transformation
from every other L' € NP to L.

Harel [1992] presents the argument in a slightly different form. He states that to
prove that IT is NP-Complete it is not necessary to find polynomial transformations
from all of the other NP-Complete problems. It is only necessary to transform II to
some problem IT” which is known to be NP-Complete (I o II”) and to transform
another (or the same) problem II’ already known to be NP-Complete to IT (I o II).
The first transformation shows that in terms of tractability II cannot be worse than
I1”, that is that II is in fact in NP (as required above). Then the second transfor-
mation shows that in terms of tractability II cannot be better than II'. Since II’ and
I1” are both NP-Complete and stand or fall together then II must be NP-Complete
too. Thus if one problem is known to be NP-Complete then other problems can be
proved to be NP-Complete too by using the transformation approach twice for each
new problem. Harel [1992] notes that in practice only the second of these transfor-
mations is carried out in an NP-Completeness proof. To show that II cannot be any
worse than the NP-Complete problems, that is that it is in fact in NP, can often be
done more easily directly — by showing that IT can be solved by a polynomial time
nondeterministic algorithm.
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The “first” NP-Complete problem is the satisfiability problem and Cook’s The-
orem is used to prove that this problem is in fact NP-Complete. Now that a sin-
gle problem has been shown to be NP-Complete the process of devising an NP-
Completeness proof for any decision problem IT consists of the following four steps

1. showing that II is in NP,

2. selecting a known NP-Complete problem II’

3. constructing a transformation f from II to II, and
4. proving that f is a polynomial transformation.

This approach is taken in the NP-Completeness proofs in this thesis.

Determining whether the decision problem, II, is in NP is a matter of showing
that given any solution for an instance I it is possible to verify in polynomial time
whether or not that solution “proves” that the answer for [ is “yes”. For example, a
nondeterministic algorithm for travelling salesperson could be constructed by using
a guessing stage that simply guesses an arbitrary sequence of cities and a checking
stage that checks whether the guessed solution would result in a tour of the desired
length. The existence of such a polynomial time nondeterministic algorithm shows
that IT is in NP.

Once the new problem has been shown to be in NP, then a known NP-Complete
problem must be selected and a transformation must be constructed from the known
problem to the new problem. There are three general transformation approaches that
are used in NP-Completeness proofs and that can provide some ideas about how to
tackle a specific NP-Completeness proof. Note that these approaches cannot be
applied to all NP-Completeness proofs. They just give some ideas about how one
might approach the task of proving a new problem to be NP-Complete.

These approaches are called [Garey and Johnson, 1979]

1. restriction
2. local replacement
3. component design

Restriction This is the easiest and perhaps most frequently applied of the three
types of NP-Completeness proofs. An NP-Completeness proof by restriction for
a given problem II € NP consists simply of showing that II contains a known
NP-Complete problem II' as a special case. The heart of such a proof lies in the
specification of the additional restrictions to be placed on the instances of II so
that the resulting restricted problem will be identical to II'. There should be an
obvious one-to-one correspondence between their instances that preserves “yes”
and “no” answers. This one-to-one correspondence, which provides the required
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transformation from II’ to II (see point (3)) above is usually so apparent that it
need not even be given explicitly. The approach taken in this kind of proof is often
to focus on the target problem itself and attempt to restrict away its “inessential”
aspects until a known problem appears.

Local replacement In this type of proof the transformations are sufficiently
non-trivial to warrant spelling out in the standard proof format but they are still
relatively uncomplicated. Proofs of this type rely on picking some aspect of the
known NP-Complete problem instance to make up a collection of basic units and
then obtaining an instance of the target problem by replacing each basic unit in a
uniform way with a different structure.

Component design Proofs of this type tend to be the most complicated. The
basic idea is to use the constituents of the target problem instance to design certain
“components*“ (also called gadgets and widgets) that can be combined to realise an
instance of the known NP-Complete problem.

Garey and Johnson [1979] discuss these transformations in more detail and give
examples of the application of each approach.

2.3.4 NP-Hard problems

The techniques for proving NP-Completeness can also be used for proving that
problems outside of NP are hard. Any decision problem II, whether a member of NP
or not, to which we can transform an NP-Complete problem will have the property
that it cannot be solved in polynomial time unless P=NP. Such a problem could
be said to be “NP-Hard” since it is at least as hard as the NP-Complete problems.
The idea of NP-Hardness can be generalised in such a way that not only decision
problems can be proved to be “at least as hard” as the NP-Complete problems.

In this thesis only the notion of decision problems will be used. The reader is
referred to Garey and Johnson [1979] and Papadimitriou [1994] for more detail on
NP-Hardness.

2.3.5 Summary

In summary, the approach taken to prove a new problem, say R, to be NP-Complete
isto

1. show R is in NP — this involves showing that R can be solved by a nondeter-
ministic polynomial algorithm,

2. selecting a known NP-Complete problem, say 7',
3. constructing a transformation f from 7" to R, and

4. proving that f is a polynomial transformation.
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To show that a problem is NP-Hard only steps 2 to 4 are required.

Many of the problems raised in the areas of guarding, covering, partitioning and
visibility have been proved to be “hard” in the sense discussed above so the theory
presented in this section is useful in understanding many of the papers presented
in the literature and in the section below (Sections 2.4. This theory is also a use-
ful starting point for some of the new results proved in the body of this thesis —
Chapters 4 to 7.

2.4 Relation of previous work to ALP

2.4.1 Overview

In Section 2.1 above the commonalities between ALP and visibility, guarding and
polygon decomposition were briefly introduced. These problems, which all have
their roots in real world problems, can in some sense be thought of as different cast-
ings of the same problem and results presented in one area often apply elsewhere as
well. Problems of this type have been studied extensively over the last 30 years and
the results of these studies have been collected in a number of very comprehensive
surveys. The survey article by Wood [1985] discusses (amongst other problems) re-
search in visibility in orthogonal (he calls them isothetic) polygons. The monograph
by O’Rourke [1987] “Art Gallery Theorems and Algorithms” provides an excellent
overview of the current state of knowledge of Art Gallery Guarding problems at the
time it was written. The survey paper by Shermer [1992] “Recent Results in Art
Galleries” extended O’Rourke’s work. O’Rourke [1993] also discusses many of
these problems in his textbook. The survey papers by Urrutia [1999] “Art Gallery
and Illumination Problems”, Asano et al. [1999] “Visibility in the plane” , and Keil
[1999] “Polygon Decomposition™ are all published in the Handbook of Computa-
tional Geometry and give a very thorough coverage of the material. In addition the
summaries of results by Suri [1997] “Polygons” and O’Rourke [1997] “Visibility”
published in the “Handbook of Discrete and Computational Geometry” are excel-
lent sources of reference for results in these areas. There is thus little point in trying
to repeat these surveys and the reader is encouraged to consult them to get an overall
feeling of the current state of research in these areas.

The next section gives a very brief overview of some of the important general
results in the areas of guarding, visibility and polygon decomposition. A reader
who is very familiar with these areas could skip this section of the thesis. The fol-
lowing section puts ALP into context with the previous and related research work.
The subsequent section focusses in greater depth on results, problems or techniques
which give special insight into ways of dealing with ALP.
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2.4.2 Short historical perspective
2.4.2.1 Guarding problems

The original art gallery guarding problem, posed by Klee in 1973, asks for the
number of guards required to survey an art gallery with n walls and no interior
obstructions [O’Rourke, 1987]. The problem was first solved by Chvatal [1975]
who showed that there exist polygons where |n/3| vertex guards are both necessary
and sufficient to guard the entire area of the polygon. He first showed using comb
polygons that any guard set for such a polygon with n vertices, g(n), must have
at least |n/3| guards and then by an inductive argument on triangulation graphs
of polygons showed that the size of the guard set is less than or equal to |n/3].
Thus g(n) = |n/3]. A different and very simple sufficiency proof, using three-
colouring on triangulation graphs, of the same result was given in 1978 by Fisk
[1978]. O’Rourke [1987] presents very lucid discussion on both of these proofs.
Avis and Toussaint [1981] used Fisk’s proof to implement an O(n log n) algorithm
to assign positions to the guards. Algorithms such as this for finding guard sets are
often called “guard placement algorithms”. Most guard placement algorithms work
by imitating upper-bound art gallery proofs. The algorithm by Avis and Toussaint
[1981] is in fact an algorithmic imitation of Fisk’s proof.

Later Lee and Lin {1986] tackled the issue of the computational complexity of
the art gallery guarding problem. Their work was aimed at the problem of finding
the minimum number of guards to cover a given polygon. They proved that the
problem for a simply connected simple polygon is NP-Hard for the minimum vertex
guard problem (where guards must be located at the vertices of the polygon), mini-
mum point guard problem (where guards can be placed anywhere in the interior of
the polygon or on its boundary) and minimum edge guard problem (where guards
can only be placed on the edges which make up the polygon boundary and are al-
lowed to move along the edge on which they are placed). Their proof is based on
a transformation from Boolean Three Satisfiability (3SAT). (Note: Shermer [1992]
credits Aggarwal with first proving the result for the minimum point guard problem
but the author of this thesis was unable to obtain a copy of Aggarwal’s Ph.D. thesis.)

Lee and Lin’s results imply that it is in general impractical to find a minimum set
of guards for a given polygon. Some polygons can be guarded by a single guard and
there exist polygons where {n /3| are required. Finding the exact number of guards
required for a given polygon cannot always be done in reasonable time. Algorithms
such as that by Avis and Toussaint [1981] do not guarantee a minimum solution for
a given polygon but will place a guard set which is always sufficient (and sometimes
necessary) to guard the polygon.

If the art gallery is allowed to have obstructions (pillars etc.) in its interior, the
corresponding floor plan is a simple polygon with other simple disjoint polygons,
called holes, inside it. In such a polygon, |n/3] guards are no longer sufficient.
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O’Rourke showed that |(n 4 2k)/3| point or vertex guards are always sufficient to
guard any polygon with n vertices and & holes. Shermer showed that |(n + &)/3]
guards are necessary for some polygons with n vertices and h holes and conjectured
that this number of guards was also sufficient for any polygon with A holes. In
1984 Shermer showed that |(n + 1)/3| guards are always sufficient and sometimes
necessary for any polygon with one hole. All of these results appear in O’Rourke
[1987].

In 1991 two independent and dramatically different proofs were generated for
the fact that | (n + h)/3] point guards are also sufficient ([Bjorling-Sachs and Sou-
vaine, 1991; Hoffmann et al., 1991]). Neither paper gave details of algorithms for
placing the guards but the algorithm derived from the Hoffmann ez al. [1991] proof
has complexity O(n?log ). In 1995 Bjorling-Sachs and Souvaine [1995] presented
an O(n?) algorithm to place the guards. This algorithm is based on a constructive
proof. The proof and the algorithm work by first connecting each hole in the poly-
gon to the exterior of the polygon and then triangulating the new hole-free version
of the polygon. The channels are constructed in such a way that only one new vertex
is added for each channel. In addition, there is always a triangle in the new hole free
polygon that “sees” all of the channel — any vertex of this triangle sees the whole
channel. These special triangles are included so that a guard placement based on
three-colouring in the hole free polygon will automatically cover the channels and
so the original polygon would have been guarded.

Other variations of the classic problem arise when specified subsets of the poly-
gon, rather than just points, are allowed as elements of guard sets. The first of these
variations is the edge guard problem. An edge guard is a guard who is allowed to
patrol individual edges of a polygon rather than being restricted to one point. The
edge guard problem then asks for the minimum number of edge guards necessary
to cover any polygon of n vertices. Toussaint (as cited in Shermer [1992]) conjec-
tured that (if a small number of polygons are excluded) gZ(n) = |n/4] guards are
necessary. Figure 2.14 shows the type of polygons where [n/4| edge guards are
required. Two types of polygons are known which require | (n + 1)/4| guards (see
Figure 2.15) but these are thought to be exceptions. O’Rourke [1983] made some
progress on Toussaint’s conjecture. He was unable to establish an upper bound on
the number of edge guards required but was able to place a bound on the number of
mobile guards necessary. A mobile guard is a guard that can patrol an edge or di-
agonal of a polygon. Every edge guard is thus a mobile guard and the upper bound
on the number of mobile guards thus gives the least upper bound on the number of
edge guards g™ (n) < ¢%(n). O’Rourke [1983] showed that g™ (n) = |n/4| mo-
bile guards are necessary. Shermer [1992] investigated diagonal guards and showed
that [ (2n+2)/7]| < gP(n) < |(n—1)/3]. He also showed that, aside from a small
number of exceptions, [n/4| < gF(n) < [3n/10]. Sack and Suri [1990] have
given an O(n) algorithm to detect if a given polygon can be guarded by one edge
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guard and Ke [1989] (as cited in Shermer [1992] — the original reference could not
be obtained) gave an O(n log n) algorithm for the related problem of detecting if a
given polygon can be guarded by one line-segment guard.

Figure 2.14: Polygons requiring |n /4| edge guards (Shermer [1992])

Figure 2.15: The two polygons requiring | (n+1)/4| edge guards (Shermer [1992])

Other variations of the general problem are the orthogonal art gallery theorem
[Kahn et al., 1983] (which is discussed in more detail below); guarding rectangular
art galleries [Czyzowicz et al., 1994]; generalised guarding of rectilinear polygons
[Gyéri et al., 1996]; the prison guard problem [Kooshesh et al., 1990; Fiiredi and
Kleitman, 1994]; the treasury guard problem [Deene and Joshi, 1992; Carlsson and
Jonsson, 1993]; edge guards [Viswanathan, 1993]; edge guards in star polygons
[Subramaniyam and Diwan, 1991]; diagonal and chord guards [Lu et al., 1998];
guard edges [Park et al., 1993]; optimally placing k guards in a polygon to maximise
the area or portion of boundary visible [Ntafos and Tsoukalas, 1994]; floodlight
guards [Bose et al., 1993; Czyzowicz et al., 1993; Contreras et al., 1998b,a]; the
searchlight scheduling problem [Sugihara ez al., 1990]; hidden guard sets [Shermer,
1989]; watchman paths [Carlsson and Jonsson, 1995]; watchmen in grids [Ntafos,
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1986]; periscope guards in grids [Gewali and Ntafos, 1993] and other problems
[Liaw et al., 1993; Venkatasubramanian and Cullum, 1993]. Methods for develop-
ing approximations [Avis and Toussaint, 1981; Ntafos and Tsoukalas, 1994] or for
bounding approximations have also been studied [Eidenbenz et al., 1998].

2.4.2.2 Visibility Problems

Visibility problems have been studied from at least the early part of the twentieth
century and a number of different topics have been studied [Asano et al., 1999].
This section gives a brief overview of some of the main topics. More detail can be
found in O’Rourke [1987], Asano et al. [1999] and the original papers.

The basic question in visibility can be stated as

Given a polygon P and two points z,y € P, are = and y visible?

In this case = and y are visible if the line segment zy contains no points of the
exterior of P [Asano et al., 1999]. In a polygon with holes, the holes are taken to
be part of the exterior of the polygon and so the same idea of visibility applies.

This idea leads naturally to the problem of determining what part of some poly-
gon P can be seen from a given point a. The visibility polygon V (a) of a point a in
a polygon P is the set of all points visible to a (V(a) = {q € Pla sees q}). Any
visibility polygon V(a) is star shaped — a is its kernel. The problem of determining
the visibility polygon for some point a in a polygon has been well studied (see for
example ElGindy and Avis [1981]; Heffernan and Mitchell {1995]).

Avis and Toussaint [1981] extended this work by defining the concepts of com-
plete visibility, strong visibility and weak visibility from some fixed edge uv of P.

1. P is said to be completely visible from an edge wv if for every z € P and
every w € uv, w and z are visible.

2. P is said to be strongly visible from an edge uv if there exists a w € uv, such
that for every z € P, w and z are visible.

3. P is said to be weakly visible from an edge uv if for each z € P there exists
aw € wuv such that w and z are visible.

Avis and Toussaint [1981] then presented an O(n) algorithm to determine whether
a given polygon P is completely visible, strongly visible or weakly visible from a
particular edge in P. Some related work on weak visibility of polygons is due to
Sack and Suri [1990], Ghosh et al. [1993] and Doh and Chwa [1993].

An area which is related to the above is edge-to-edge visibility in polygons.
Here again there are degrees of visibility between the edges concerned [Avis et al.,
1986].
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1. Edge uw is said to be completely visible from edge zy if for all points on z on
edge zy and all points w on edge uv, w and z are visible.

2. Edge uwv is said to be strongly visible from edge zy if there exists a point z on
edge zy such that for all points w on edge uv, w and z are visible.

3. Edge uv is said to be weakly visible from edge xy if for each point w on edge
uv there exists a point z on edge zy such that w and z are visible.

4. Edge uv is said to be partially visible from edge zy if there exists a point w
on edge uv and a point z on edge zy such that w and z are visible.

Avis et al. [1986] presents a linear algorithm to compute these four edge-to-edge
visibilities. This algorithm is discussed is more detail in Section 2.4.4.3.1 because
it has some direct relevance to ALP.

The problem of computing the first intersection of the boundary of some poly-
gon P with a light ray from some edge or point in P is also of interest in the field
of visibility [Chazelle and Guibas, 1989].

Link visibility is another area that has been the subject of research [Asano et al.,
1999]. The link distance between two points p and ¢ in a polygon P is the minimum
number of line segments (links) in a polygonal path from p to g that stays in P. Two
points are called link-j visible if the link distance between them is at most 7. Letting
g = 1 gives the standard visibility. Note that this form of visibility is also referred
to as L; visibility.

Another important area of research is in computing visibility graphs of polygons
[Asano et al., 1999]. A visibility graph of a polygon is a graph whose vertices
are the vertices of the polygon and whose edges are the pairs of visible vertices
(see Figure 2.16 for an example). Related to the computing of visibility graphs
is the problem of determining for a given graph G if there exist some polygon P
that has GG as its visibility graph. This is called the visibility graph recognition
problem. The problem of actually constructing such a P is called the visibility
graph reconstruction problem. In this area see for example Ghosh [1991], Andreae
[1992], Srinivasaraghavan and Mukhopadhyay [1993], Ghosh [1996] and Ghosh
[1997].

Other types of visibility have also been studied (see Asano et al. [1999] for more
information) — minimum and maximum visibility [Gewali, 1993]; clear visibility;
dent and staircase visibility [Wood and Yamamoto, 1993]; O-visibility; rectangular
visibility; circular visibility; visibility with reflection; X-ray visibility; LR-visibility
[Das et al., 1993; Bhattacharya and Ghosh, 1998]; etc.
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the minimum point guard problem was NP-Hard — star covering and point guard
are different castings of the same problem. They also showed that vertex guarding
and edge guarding are NP-Hard and thus that the corresponding cover problems
are NP-Hard as well. Later Culberson and Reckhow [1988, 1994] established the
NP-Hardness for convex cover and similar problems using a transformation from
SAT.

One approach to dealing with the difficulty of covering problems is to consider
restrictions of the general problem. For instance, the problem of covering orthogo-
nal polygons with many types of subpolygons has received a lot of attention. Some
examples are given below but the reader is referred to the survey articles mentioned
above for more complete coverage. Masek has shown that finding the minimum
cover of a orthogonal (or rectilinear) polygon with rectangles is NP-Hard (the prob-
lem at that stage was termed rectilinear picture compression). This result at the
time was only known to apply to orthogonal polygons with holes. Franzblau and
Kleitman [1984] then showed that the problem can be solved in polynomial time if
the orthogonal polygon is vertically convex. Franzblau [1989] presents an approx-
imation algorithm for this problem which gives a solution which is at worst twice
the minimum solution if the polygon has no holes. Lubiw [1990] has also worked
on this problem — showing it is a special case of the boolean basis problem.

In orthogonal polygons with holes, Conn and O’Rourke [1987] (as cited in Sher-
mer [1992]) have shown that covering either the boundary or the reflex vertices 18
NP-Complete but they found an O(n??) time algorithm for covering the convex
vertices. Culberson and Reckhow [1988] have shown that covering an arbitrary or-
thogonal polygon with rectangles is NP-Complete even if only the boundary of the
orthogonal polygon is to be covered. They have also done similar work with Dent
diagrams in orthogonal polygons [Culberson and Reckhow, 1989b,a]. Motwani et
al. [1990b] showed that a polynomial time algorithm can be found for orthogonally
convex polygon coverings of orthogonal polygons with three dent orientations but
not for four dent orientations. Motwani et al. [1990a] showed that covering or-
thogonal polygons with star polygons can be accomplished in polynomial time and
Gewali et al. [1992] showed that a minimum orthogonal star polygon cover for a
horizontally convex orthogonal polygon can also be found in polynomial time.

2.4.2.3.3 Partitioning In the previous section (Section 2.4.2.3.2) many of the
polygon covering problems are shown to be NP-Hard. The partitioning problem,
however, has been shown to be solvable in polynomial time in many cases.

The early work in partitioning polygons without holes into the minimum num-
ber of convex polygons [Feng and Pavlidis, 1975; Schachter, 1978] produced al-
gorithms which could not guarantee a minimum of components. Then Chazelle
and Dobkin [1985] were able to show that finding a minimum convex partition
of a simple simply connected polygon (a cover by nonoverlapping convex pieces)
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has polynomial-time complexity and presented a polynomial-time algorithm for this
problem. Their algorithm is O(n + ¢*) where n is the number of vertices in the poly-
gon and c is the number of reflex angles. The algorithm allows for the introduction
of Steiner points. It begins by producing a naive decomposition of the polygon
by removing each notch (reflex angle) in turn by means of a simple line segment
drawn from the notch until it encounters a line already in the decomposition. This
naive decomposition is then “improved” until an optimal convex decomposition is
achieved. The process for doing the improvement is based on the idea of X -patterns
(and Y -patterns) which describe particular interactions of notches. The reader is re-
ferred to the original paper for details. Keil [1985] considered partitioning which
does not allow Steiner points and presented polynomial-time dynamic programming
algorithms for partitioning a simple simply connected polygon into the minimum
number of convex polygons, spiral polygons, star polygons and monotone poly-
gons. Recently Keil and Snoeyink [1998] presented an improved algorithm for the
same problem.

The convex polygon partitioning problem is NP-Hard in polygons with holes —
simple multiply connected polygons [Lingas, 1982]. The proof by Lingas [1982] is
based on a transformation from a planar version of 3SAT. Lingas’s 1982 paper is a
revision of an earlier paper and in the revision he uses some insights from O’Rourke
and Supowit [1983] about the truth setting components of the transformation to
simplify his paper. Lingas [1982] credits O’ Rourke and Supowit [1983] with having
proved the same result independently of him.

Partitioning problems where the original polygon is to be partitioned into dif-
ferent types of subpolygons (spiral polygons, star-shaped polygons, etc.) have also
been studied (see [Keil, 1999] for an overview of these).

As is the case with guarding, visibility and covering, work has been done on
considering approximations to the solution for the general problems and in studying
restrictions on the general problems. Some examples of this work are given below.
(More detail can be found in the survey articles mentioned earlier).

In studying restrictions of the general problem to partition a orthogonal poly-
gon with the minimum number of rectangles, Imai and Asano [1986] present an
O(n!* log n) algorithm if the polygon has holes; Liou ez al. [1989] (as cited in Sher-
mer [1992]) present an O(n) algorithm for this problem if there are no holes; and
Soltan and Gorpinevich [1993] showed that this problem can be solved in polyno-
mial time even if the original polygon contains degenerate (point) holes. In addition,
Ku and Leong [1995] have studied optimal partitions of rectilinear layouts used in
VLSI design.

Other types of restrictions have also been studied. Asano et al. [1986] discuss
the problem of partitioning a polygon into a minimum number of trapezoids with
two horizontal sides. The problem is shown to be NP-Complete for polygons with
holes but solvable in polynomial time for polygons without holes. Lingas and Soltan
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Figure 2.17: A multiply connected simple polygon (a simple polygon with holes)

[1996] prove that the problem of partitioning a polygon with holes into a minimum
number of convex polygons by cuts in a family of directions F' is NP-Hard if | F'| >
3 and polynomial time for |F'| < 2. Keil [1999] gives additional examples.

2.4.3 Putting ALP into context with other research

In Section 2.1 above the fact that there are some commonalities and some differ-
ences between ALP and visibility, guarding and polygon decomposition problems
is briefly discussed. The aim of this section is to highlight these commonalities and
differences in the context of the previous and related research (see Section 2.4.2).
Consider the polygon with holes shown in Figure 2.17. This polygon is the
basis for much of the discussion that follows in this section. This polygon is chosen
to be representative of a class of polygons which research in visibility, guarding
and decomposition focusses on — a multiply connected simple polygon or a simple
polygon with holes. It is a relatively uncomplicated example but is still complicated
enough to illustrate the complexity of these problems. It can also be considered as
an example of the types of polygons which are used in space syntax and so is of
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Figure 2.25: An example of stabbing boxes in two-dimensions — no stabbing line
exists in this case
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Figure 2.26: A subset of the minimum partition where it is necessary to determine
if an axial line can be placed to cross the adjacencies between the convex polygons

point in the process to determine if an axial line can be placed to cross the adjacen-
cies between any subset of the polygons in the partition. Consider the situation
where it is necessary to determine whether a single axial line can be placed to cross
all of the adjacencies in the subset of convex polygons as shown in Figure 2.26.
The convex polygons in this configuration can be said to form a “chain” of poly-
gons. ALP requires that any axial line to cross the adjacencies in this chain would
have to remain inside the union of the convex polygons concerned. Clearly this
problem could be solved by determining if there exists a new line segment which
intersects all four of the line segments representing the adjacencies and is always
inside the union of the five convex polygons concerned. Solving this problem can
also be posed as a visibility problem. Can some part of the edge labeled first in the
heavily outlined polygon of Figure 2.27 see some part of the edge labeled last in
this same polygon? The visibility problem would give the answer “yes” if there is
a line of sight from some point (or points) on edge first to some point (or points)
on edge last. The definition of visibility means that any line of sight must not leave
the polygon. If there is this type of visibility then an axial line could be placed from
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Figure 2.29: A traditional art gallery

et al. [1994] prove that any rectangular art gallery with n rooms can be guarded by
exactly [n/2] guards.

The early work on the axial line placement problem was in some sense quite
similar to the idea of guarding a traditional art gallery. This early work in ALP also
focussed on a restriction of the original problem. Instead of attempting to place
axial lines to cross the adjacencies between the convex polygons of some minimum
partition of a polygon with holes the work focussed on placing axial lines in con-
figurations of adjacent orthogonal rectangles. In the first instance the problem was
further restricted by insisting that the axial lines were also orthogonal (see Chapter
4). This restriction was later relaxed and lines of arbitrary orientation were allowed
(see Chapter 5). These two problems were originally termed “ray guarding”. The
idea was that one would place “guards” who could see along some “ray”. Each
ray guard could be thought of as placing a video camera (or some other monitoring
device) which is fixed to point in a certain direction. In an art gallery situation,
one could consider this as guarding the flow between the rooms which make up the
gallery by monitoring each doorway. ALP requires that the minimum number of ax-
ial lines must be placed to cross the adjacencies between the room rectangles. The
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Figure 2.30: “Ray guarding” a traditional art gallery with orthogonal ray guards
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Figure 2.31: A placement of axial lines of arbitrary orientation in a traditional art
gallery
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point where an axial lines crosses an adjacency can be considered as an appropriate
place to position a door between the two adjacent rooms. The doorway can then be
guarded by a ray guard placed at the beginning or end of the axial line which crosses
the adjacency. As few of these ray guards as possible are required. Placing as few
axial lines as possible to cross the adjacencies is then equivalent to determining
where to place the doorways between the rooms such that each doorway is guarded
by a ray guard. ALP also requires that each axial line should be as long as possi-
ble. This means that any axial lines which is placed to cross a particular adjacency
should be extended to cross any other adjacencies that it can even if these adjacen-
cies have already been crossed by other axial lines. In the art gallery scenario this
is equivalent to placing additional doors anywhere that a ray guard’s vision is ob-
structed by an interior wall. These additional doorways would still be guarded by
at least one ray guard. Figure 2.30 shows the traditional art gallery of Figure 2.29
guarded by ray guards whose lines of sight are restricted to being orthogonal. Note
that the wall between rooms 1 and 3 has two doorways in it rather than only one.
This arises because an axial line is required to cross the adjacency between rect-
anges 3 and 4 and an axial line is required to cross the adjacency between rooms 3
and 7. When these axial lines are extended to cross as many adjacencies as possible
they both cross the adjacency between rectangles 1 and 3.

If the ray guards’ lines of sight are not restricted to being parallel to the coordi-
nate axes then a different positioning of guards results. This would correspond to a
placement of not necessarily orthogonal axial lines. A placement of axial lines of
arbitrary orientation is shown in Figure 2.31. This placement of axial lines could be
converted to a ray guarding situation by placing a door at each point where an axial
line crosses an adjacency (a wall between two rooms). Again some of the walls
would have more than one doorway.

The discussion in this section has been focussed on some of the similarities
and differences between ALP and the research which has been done in visibility
in polygons; guarding of polygons; and decomposition of polygons. ALP has not
been studied before but clearly because the problem areas are not that far removed
research into solving ALP should be informed by work in the other areas. The next
section discusses in more detail some specific research which has relevance to ALP.

2.4.4 Results that informed the research on ALP
24.4.1 Overview

As discussed above there are some commonalities and some differences between
ALP and other research areas in the field of computational geometry. There also
general approaches taken and specific techniques used in this other research which
informed the research undertaken in this thesis. These ideas are discussed in this
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section. First some of the general approaches are discussed and then some specific
techniques are focussed on.

24.4.2 General Approaches

2.44.2.1 NP-Hardness results Many of the problems studied in guarding, de-
composition or visibility have been shown to be NP-Hard or NP-Complete (see for
example the work of Lee and Lin [1986]). As ALP seems to be a very similar
type of problem to these other problems it seemed likely that ALP too could be
NP-Hard. This insight informed the way that the research questions to be tackled
in this research were posed. See Chapter 3 for more detail on this. It also meant
that the work on ALP progressed on two fronts — attempting to find a polynomial
time algorithm to solve the problem and attempting to prove that the problem was
NP-Hard/NP-Complete. In the NP-Completeness proofs the same standard NP-
Complete problems used in these other problems were considered (3SAT [Lee and
Lin, 1986] and vertex cover [Ntafos, 1986]). Garey et al. [1976], Garey and Johnson
[1979] and Lichtenstein [1982] were also consulted.

A specific result that has direct relevance to the possible automation of the space
syntax method is the fact that partitioning a simple multiply connected polygon (a
polygon with holes) is NP-Hard [Lingas, 1982; O’Rourke and Supowit, 1983]. An
urban layout would be modelled as a polygon with holes and this result means that
a convex map for the urban layout cannot, in general, be found in polynomial time.
There might be cases (urban layouts) where the convex map could be found in poly-
nomial time and determining and describing these cases would be a useful research
area. Another interesting research area would be in finding good approximations to
the exact solution in reasonable time. However, since it was known that partitioning
a polygon with holes is NP-Hard and less was known about the problem of placing
axial lines in the urban layout, a decision was made to focus this research on the
new problem rather than to extend the research on the known domain. Chapter 3
expands on this decision. Chapter 7 dicusses some work which was done in looking
at special cases of urban layouts where the partition can be found in polynomial
time but much more work in this area can still be done.

2.4.4.2.2 Restrictions and approximations As mentioned earlier many of the
problems which are similar to ALP have been proven to be NP-Hard (or NP-Complete).
This has meant that subsequent work on these problems has taken one of two routes

— considering restrictions of the general problem in the hope that these problems
can be solved in polynomial time or devising algorithms to find solutions which
approximate the optimal ones. Both of these approaches are discussed below.
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Restricting the problem A common restriction is to consider orthogonal poly-
gons rather than general poygons. In the area of guarding, the orthogonal art gallery
theorem was first formulated and proved by Kahn et al. [1983]. It states that [n /4]
guards are always sufficient to see the interior of an orthogonal art gallery room and
that in some circumstances this number of guards is necessary. Their proof is sim-
ilar to that of Fisk [1978] using orthogonal comb polygons. The main idea of their
proof was to partition an orthogonal polygon into convex quadrilaterals, add the
internal diagonals of these quadrilaterals and then four-vertex colour the resulting
graph. For orthogonal polygons with holes Shermer conjectured that [Z‘I—hj vertex
guards are sufficient to guard any orthogonal polygon with holes [O’Rourke, 1987].
This conjecture is still open [Urrutia, 1999].

The traditional art gallery problem — placing guards to cover rectangular rooms
in a rectangular building — is another restriction of the general problem. Restrict-
ing the problem in this way has enabled researchers to prove a tight bound on the
problem and to determine how to place the guards [Czyzowicz et al., 1994].

The partitioning of orthogonal polygons, with and without holes, has also been
studied. Much of the work done in this area is to partition orthogonal polygons
into the minimum number of rectangles which generally means that Steiner points
are required [Keil, 1999]. If Steiner points are disallowed (which is the case in the
space syntax method) then the attention is focussed on partitioning the orthogonal
polygon into quadrilaterals. Other work has focussed on partitioning orthogonally
convex polygons.

In the area of visibility, work has also focussed on orthogonal polygons particu-
larly with respect to staircase and dent visibility [Asano et al., 1999].

The results in guarding, partitioning and visibility with regard to orthogonal
polygons and rectangles show that in some cases these problems are easier to solve
than the general problems. This indicated that studying similar restrictions in ALP
would be reasonable approach to take. In particular, a configuration of adjacenct
rectangles could be considered as a rectangular partition of some orthogonal poly-
gon representing an urban layout. In ALP the shared edges between the rectangles
must be crossed by the minimum number of axial lines. These axial lines could
be orthogonal or have arbitrary orientation. Chapter 3 discusses these restrictions
of the general problem in more detail and they are addressed in Chapters 4 and 5
respectively.

Approximations A number of the general problems in guarding, partitioning
and visibility, and even a number of the restrictions of these general problems, have
been shown to be NP-Hard (or NP-Complete). It is, however, still worthwhile in
many instances to have an approximation to the exact solution.

In the problem of guarding an general art gallery Avis and Toussaint [1981] used
Fisk’s proof as the basis for implementing an O(rn log n) algorithm to assign posi-
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tions to the guards. Algorithms such this do not guarantee a minimum solution for a
given polygon but will place a guard set which is always sufficient (and sometimes
necessary) to guard the polygon. Bjorling-Sachs and Souvaine [1995] also used an
upper bound proof as the basis of their algorithm to place ["—?] guards in a polygon
with n vertices and h holes. Other such results can be found in Urrutia [1999].

In partioning polygon without holes many of the early results were approxima-
tions to the exact solution (see Schachter [1978]) and it was only later that exact
solutions where found [Keil, 1985]. When the polygon contains holes the prob-
lem is NP-Hard [Lingas, 1982], and so approximations are required. Keil [1999]
discusses some approximation algorithms for various versions of the problem of
partitioning a polygon with holes.

This thesis considers the computational geometry problems which arise out of
a possible automation of the space syntax method. If ALP is NP-Hard or NP-
Complete (or if variations/restrictions of ALP are NP-Hard or NP-Complete) then
an automated process would not be able to generate the exact axial map of an urban
area in a reasonable time and so approaches to find approximate solutions which
would be acceptable to someone who wishes to apply the method would have to be
found. Chapters 4 and 5 discuss some approaches for finding approximate solutions
to some variations of ALP.

In addition, the fact that partitioning a polygon with holes is NP-Hard means
that it cannot be guaranteed that the convex map of an urban area could be found in
reasonable time. Thus research into finding efficient approximations to the convex
map would be a worthwhile research endeavour. This thesis does not focus on
the problem of finding the convex map of an urban area but Chapter 7 introduces
the idea of a “deformed urban grid” and discusses an algorithm which finds a not
necessarily minimum partition of such a polygon with holes.

2.4.4.3 Specific results of importance

2.4.4.3.1 Partial edge visibility ALP is the problem of creating the axial map
of an urban layout given the convex map of the layout. This involves finding the
minimum number of axial lines to cross the adjacencies between the convex spaces
(convex polygons) which partition an urban area (a polygon with holes). As stated
previously, the placing of an axial line to cross the adjacencies in a chain of adjacent
convex poloygons can be thought of as determining edge to edge visibility between
the adjacency between the first two polygons in the chain and the adjacency between
the last two polygons in the chain. In this case, all that is required is that some point
on the first adjacency can see some point on the last adjacency. This is partial
visibility — edge uv is said to be partially visible from edge zy if there exists a point
w on edge uv and a point z on edge zy such that w and z are visible.
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Figure 2.32: The edge to edge visibility algorithm [Avis ef al., 1986] — totally facing
edges

Avis et al. [1986] give a linear time algorithm for determining edge to edge
visibility in a simple polygon. This algorithm is important to this work as it can be
used in determining whether axial lines can be placed in chains of convex polygons.
The algorithm is used in developing the heuristics discussed in Chapter 5.

The algorithm (actually two algorithms) is described in detail by Avis et al.
[1986]. The approach is quite complicated and so a greatly simplified overview is
given below. The reader is referred to the original article for more details.

The input to the algorithm would be a simple polygon P = (p1,p2, .- .,pn) and
two edges in P, uv and zy. For the sake of this explanation assume that the two
edges, uv and zy, are as shown in Figure 2.32. The dashed lines connecting the two
edges of interest indicate that the boundary of the polygon could have any shape
between the two points connected by the dashed lines. Avis et al. [1986] define
this situation as two edges that rotally face each other. This is the simplest situation
which could occur.

The algorithm works as follows.

1. Construct the quadrilateral Q)(u, v, z,y)

2. Construct the chains C'(v, z) and C(y, u) of the vertices on the path from v to
z and y to u respectively.

3. If C(v, ) or C(y,u) cuts through Q(u, v, z, y) then there can be no visibility.
Figure 2.33 shows an example of C(y, u) cutting through Q(u,v,z,y) .

4. If neither C'(v, z) nor C(y, u) cuts through Q(u, v, z, y) then there can be vis-
ibility. In this case, find the reduced chains R(v, z) and R(y, u) by determin-
ing which parts of the chains C(v,z) and C(y,u) would be in Q(u,v,z,y).
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Figure 2.33: The edge to edge visibility algorithm — chain C(y, u) cutting through
quadrilateral Q(u, v, , y), no visibility is possible

Figure 2.34: An example of the edge to edge visibility algorithm — the input polygon
and Q(u,v,z,y)
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Figure 2.35: An example of the edge to edge visibility algorithm — the reduced
chains '

Figure 2.36: An example of the edge to edge visibility algorithm — the inner convex
hulls
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Figure 2.34 shows an example of an input polygon and Figure 2.35 shows the
corresponding reduced chains.

5. Calculate the inner convex hulls /CH(v,x) and ICH(y,u) of R(v,z) and
R(y, u). Figure 2.36 shows the inner convex hulls for the example polygon.

6. Construct the polygon H = ICH(v, z), zy, ICH(y, u), uv

7. If H is a simple polygon then edge uv is partially visible from edge zy and
vice versa. In the example (Figure 2.36), H is a simple polygon so there is
partial visibility between the edges uv and zy.

The algorithm also identifies complete visibility, strong visibility and weak vis-
ibility in the input polygon but these are not of interest here. More important is that,
in the case of partial visibility, the algorithm determines which region of edge uv is
visible to edge zy and vice versa. This gives the information about where an axial
line could be placed in ALP.

24.4.3.2 Guarding in grids Ntafos [1986] and Gewali and Ntafos [1993] de-
fine the complete two-dimensional grid of size n as the graph with vertex set V =
{1,2,...,n} x {1,2,...,n} and the edge set £ = {{(:,7),(k,m)} : |i — k| +
|7 — m| = 1} where all edges are parallel to the major axes — see Figure 2.37. In a
geometric setting, the grid edges can be thought of as corridors and the grid vertices
as intersections of corridors. A (partial) grid is any subgraph of the complete grid.
Gewali and Ntafos [1993] also define a grid segment as a succession of grid edges
along a straight line bounded at either end by a missing edge. A simple grid is a
grid where all of the endpoints of the grid segments lie on the outer face of the pla-
nar subdivision formed by the grid. A general grid is a grid which can have holes
— some of the endpoints of the segments may lie on the inner face of the planar
subdivision.

The star cover or star guard problem in a grid is then to find the minimum num-
ber of guards that need to be stationed in the grid so that each point in the grid is
visible to some guard [Ntafos, 1986]. If the grid is complete then n guards are nec-
essary and sufficient for a two-dimensional grid of size n. If the grid has obstacles
in it — there are missing portions of the grid — then the problem becomes more in-
teresting. Ntafos [1986] shows that a minimum cover for a grid with obstacles can
be found in polynomial time by reducing the problem to that of finding a maximum
mapping in a bipartite graph.

The idea of a grid is useful in ALP because part of many cities can be considered
as grid-like structures. The result that the star cover can be found in polynomial time
suggested that ALP might also be solvable in polynomial time. Any guard in the
star cover guards at most two grid segments — one vertical and one horizontal. It
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Figure 2.37: A complete grid of size 4

thus seems as though two axial lines could be placed to cover the lines of sight of
each star guard. This idea is further developed in Chapter 7.

2.5 Conclusion

In Chapter 1 the idea of space syntax is introduced and the broad areas of computer
science research which would arise from attempting to automate the approach are
discussed. The range of research questions that could have been addressed is very
wide and so it was necessary to choose a smaller area of research for this thesis. The
decision was made to focus the research on the problem of finding the axial lines that
cross all of the shared boundaries between the convex polygons in the convex map,
that is finding the axial map for a given layout — ALP. The problems of separating
space from non-space, determining the convex map and the final analysis stage with
its associated algorithms were not considered as part of this research.

This chapter begins by introducing some terminology in the fields of compu-
ational geometry and graph theory and giving an overview of NP-Completeness.
This is done to provide the reader with a framework for understanding the sum-
mary of the research which is related to automating the space syntax method and
in particular ALP. This related research can be loosely categorised into three areas
— guarding of polygons, visibility in polygons and polygon decomposition. This
chapter gives an overview of the research in each of these related areas before ad-
dressing the commonalities and differences between ALP and guarding, visibility
and polygon decomposition problems. From the dicussion above, it should be clear
that ALP is a new area of research (there are significant differences between ALP
and the related research). A detailed investigation of ALP is thus warranted. In
addition, the fact that many of the related problems are computationally hard indi-
cates that solving this problem or making progress to solving this problem would
be a significant research contribution.
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The last section of the chapter identifies some related research that informed
that research into ALP. First, the fact that many of the problems are NP-Hard or
NP-Complete seemed to have relevance for the research in ALP. The fact that these
problems are hard means that finding ways of restricting the general problem or of
producing reasonable approximate solutions are viable areas of research. This might
apply in the case of ALP as well. Second, some specific results were identified as
having direct relevance to this research. The section concludes by discussing two
such specific results — partial edge visibility and guarding in grids.

Chapter 3 considers the possible research questions which arise from the deci-
sion to focus the work for this research on ALP. The approach taken in posing these
questions is based on the related work presented in this chapter.



Chapter 3

Research Questions

3.1 Possible Research Areas

As discussed in the introduction to this thesis (Chapter 1), the range of possible
Computer Science research questions that arise from the idea of automating space
syntax is very wide. These research questions fall into a number of areas:

e using image processing techniques to separate space from non-space in the
town plan or aerial photograph and then using polygon approximation algo-
rithms to “accurately” and “efficiently” represent each area by a bounding

polygon,

e studying ways to find the convex map (the minimum number of non-overlapping
convex polygons that cover the area of the spaces in the deformed grid) of the
area under consideration,

e studying ways to find the axial map (the smallest number of axial lines that
will cross all of the shared boundaries between the convex spaces in the con-
vex map) of the area, and

e studying the graph theory and other algorithms used in the final stages of
applying space syntax.

This breadth of possible research meant that it was thus necessary to concentrate
on a subset of the problems. For this reason, the problems of separating space
from non-space, determining the convex map and the final analysis stage with its
associated algorithms were not considered as part of this research. The decision was
made to focus the research for this PhD on the problem of finding the axial lines
that cross all of the shared boundaries between the convex polygons in the convex
map, that is finding the axial map for a given layout. This problem has not been
previously studied although it is a variation on a number of guarding and visibility
problems that have been well studied in the literature (see Chapter 2).

63
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The problem which is the focus of this thesis can then be stated as
Axial Line Placement (ALP): Given a convex map of an urban area determine the
axial map required to cover the convex map.

This can be restated as
Axial Line Placement (ALP): Given a collection of adjacent convex polygons rep-
resenting the convex map of an urban area, find the minimum number of maximum
length straight line segments contained wholly inside the convex polygons (axial
lines) that will cross every adjacency (shared edge) between the polygons.

This problem has two variations

multiple crossings where each adjacency must be crossed by at least one axial
line.

single crossing where each adjacency must be crossed by exactly one axial line.

Neither of these two variations of ALP have been previously studied and both
were thus candidates for the research in this thesis. The fact that many of the guard-
ing and covering or partitioning problems that appear in the literature have been
shown to be NP-Complete or NP-Hard indicates that these problems might also be.
The focus of research on the problems should thus be on determining if they are also
NP-Complete or NP-Hard. If the problems turn out to be NP-Complete or NP-Hard
then later research effort could be focussed finding good heuristics. If they can be
solved in polynomial time then later research effort could be focussed on finding
good algorithms to solve the problems.

The literature also shows that it is worthwhile studying restrictions of the more
general problems because even if the more general problem is NP-Complete or
NP-Hard a restriction may not be. A number of restrictions of ALP could thus be
considered as potential research areas. In addition, the problem as stated above
assumes that the configuration of adjacent convex polygons represents the convex
map of some urban layout. If the configuration of convex polygons does not have
to represent an urban layout then a slightly different problem results.

A list of some restrictions or generalisations of the original problem that would
be interesting areas of research is given below.

1. Restricting the problem to dealing with orthogonally aligned rectangles rather
than general convex polygons and restricting the axial lines to be parallel to
the edges of the rectangles. In this case there are two subproblems (see Figure
3.1

(a) where each adjacency must be crossed by at least one axial line.

(b) where each adjacency can be crossed by only one axial line.
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A requirement here is that each axial line is maximal in length. In this work
maximal is taken as meaning that the axial line crosses as many adjacencies
as possible.

2. Restricting the problem to dealing with orthogonally aligned rectangles where
the adjacencies between rectangles are cut by axial lines that are not neces-
sarily orthogonal.

(a) where each adjacency must be crossed by at least one axial line.

(b) where each adjacency can be crossed by only one axial line.
Again a requirement is that each axial line is maximal.

3. Considering the problem of general convex polygons (not restricted to the
form that would occur in the town planning domain) where the adjacencies
between polygons are crossed by axial lines that are not necessarily orthogo-
nal.

(a) where each adjacency must be crossed by at least one axial line.

(b) where each adjacency can be crossed by only one axial line.
Again each axial line must be maximal.

Each of these variations of ALP poses some interesting questions. Is the gen-
eral problem solvable in polynomial time? Are only specific instances solvable in
polynomial time? Is the problem NP-Complete? If so, are there heuristics that offer
acceptable solutions?

The actual problems tackled in the research reported in this thesis are discussed
in the next section of the document.

3.2 Scope of this thesis

As discussed above there are many problems in this area that could be addressed
but tackling all of them would be too much for a single PhD thesis. Thus, this re-
search only considered some of the problems listed in Section 3.1. In this thesis
only the variations of the problems where adjacencies may be crossed by more than
one axial line (multiple crossings above) was studied. The decision to restrict the
study to this case was based on the fact that the original urban design problem al-
lows multiple crossings of adjacencies. The problems actually tackled are discussed
below.
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1. Restricting the problem to dealing with orthogonally aligned rectangles where
the adjacencies between rectangles are crossed by axial lines that are re-
stricted to being parallel to the edges of the rectangles (orthogonal) and where
each adjacency must be crossed by at least one axial line (1a above).

2. Restricting the problem to dealing with orthogonally aligned rectangles where
the adjacencies between rectangles are crossed by lines with arbitrary orien-
tation and where each adjacency must be crossed by at least one axial line (2a
above).

3. Considering the problem of general convex polygons (not restricted to the
form that would occur in the town planning domain) where the adjacencies
between polygons are crossed by axial lines with arbitrary orientation and
where each adjacency must be crossed by at least one axial line (3a above).

4. Given a convex map of an urban area determine the minimum number of axial
lines required to cover the convex map.

The major emphasis of this thesis is on the first of these problems — orthogonal
axial lines crossing the adjacencies between rectangles in configurations of adjacent
orthogonal rectangles (see point 1 above). Chapter 4 presents an NP-Completeness
proof based on a transformation from vertex cover for planar graphs to show that
the problem is NP-Complete and then presents a heuristic algorithm to give a “rea-
sonable” approximation to the exact solution. The chapter concludes by discussing
some special cases of the problem that can be solved in polynomial time.

In Chapter 5 the problem of point 2 is considered. Again the problem is shown
to be NP-Complete. Future work here would be to develop heuristic algorithms to
produce good approximations to the solution. Some heuristics are suggested but
they are not fully developed in this research.

Chapter 6 considers the problem in point 3. This problem is a generalisation of
2a and is easily shown to be NP-Complete. Again, future work would be to develop
heuristic algorithms to produce good approximations to the solution.

The original ALP problem (point 4) is a constrained version of that discussed
above (point 3) and is considered in Chapter 7 of this thesis.



Chapter 4

Placing orthogonal axial lines to
cross adjacencies between orthogonal
rectangles

4.1 Introduction

This thesis is concerned with the computational issues that result from attempting
to automate the placing of axial lines through the convex spaces in a town plan in
the space syntax method [Hillier ez al., 1983]. This chapter and chapter 5 concern
simplifications of the original problem — the placing of straight lines through collec-
tions of orthogonal rectangles. In this chapter the problem is simplified even more,
only the problem of placing orthogonal axial lines — axial lines parallel to the Eu-
clidean axis — through a collection of orthogonal rectangles is considered (problem
1a of Chapter 3).

As mentioned earlier (Chapter 2), the problem is similar to many guarding and
visibility problems [Bjorling-Sachs and Souvaine, 1991, 1995; Czyzowicz et al.,
1994; Gewali and Ntafos, 1993] since axial lines coincide with visibility between
two points. The situation can also be envisaged as an art gallery made up of a
number of adjacent rooms where the designers wish to position doorways between
the rooms in such a way that the minimum number of guards who can only see
along a straight line (or laser beams, video cameras, etc.) is required to guard all of
the doorways between rooms. To allow easy access between rooms extra doors can
be added if a guard’s line of sight is blocked by an interior wall. This is equivalent
to making the axial lines as long as possible. Another application of this problem
is in the design of integrated circuits. Here the problem is the siting of the fewest
connecting strips to join all of the components on the chip.

The next section of this chapter presents a formal statement of the problem
which is considered. In subsequent sections this problem is shown to be NP-
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Complete (Section 4.4) and then a heuristic algorithm that produces a non-redundant
solution is presented along with some results of testing this heuristic algorithm on
some synthetic test data. The chapter ends with a discussion of some special cases
where an exact solution can be found in polynomial time.

4.2 Statement of the Problem

Given a number of adjacent, orthogonally-aligned rectangles, find the fewest or-
thogonal line segments, contained wholly inside the rectangles, required to cross
all of the adjacencies between adjacent rectangles. An additional requirement is
that each line segment should cut as many of the adjacencies as possible — the line
should be maximal.

The solutions for horizontal line segments (and vertical adjacencies) and vertical
line segments (and horizontal adjacencies) are independent and the remainder of this
chapter will only discuss the former. The latter problem can be solved by a rotation
through 90 degrees.

Depending on how the problem is considered there are 2 similar but distinct
problems that can be addressed.

1. The adjacencies between adjacent rectangles can be crossed more than once
but every shared boundary must be crossed at least once.

2. Any adjacency between adjacent rectangles has exactly one orthogonal line
segment passing through it.

Figure 4.1 shows the difference between these two specifications for a simple
configuration of adjacent rectangles. In problem 1 the leftmost adjacency is cut
by lines a, c and d. In problem 2, any of a’, ¢’ or d’ could have cut the leftmost
adjacency but only d’ actually does. In this thesis only problem 1 is addressed.

In the remainder of this chapter (and thesis) this problem is referred to as ALP-
OLOR Axial Line Placement — Orthogonal Lines and Orthogonal Rectangles.

4.3 Addressing the problem

At first glance this problem would appear to be easy to solve. Given n rectangles,
the upper bound on the number of possible adjacencies is O(n) and a simple lower
bound for finding the adjacencies can be shown to be Q(n logn).

The upper bound can be easily shown by reducing the rectangles and their adja-
cencies to the form of a graph where the nodes in the graph represent the rectangles
and the edges of the graph represent adjacencies between two rectangles. The graph
generated in this way must be planar, thus the maximum number of edges (adjacen-
cies) can be determined from Euler’s formula that gives e < 3v — 6 (e the number
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Figure 4.2: A configuration where the solution is not unique

of edges and v the number of vertices). This implies that the number of adjacencies
must be O(n).

The lower bound follows by a transformation from element uniqueness. This
proof is similar to that by Preparata and Shamos [1985] for intersecting rectan-
gles. Element uniqueness is defined as: Given n real numbers, decide if any
two are equal. Element uniqueness has an (n log n) lower bound [Preparata and
Shamos, 1985]. The transformation can be done as follows. Given n real numbers
{z,...,2,} and an interval [b,¢] then for each z; construct a (degenerate) rectan-
gle defined by bottom left corner (b, 2;) and top right corner (%, z;). Determining
whether any two rectangles are adjacent is now the same as determining whether
any two numbers are equal.

The question is then: How easy is it to find the minimum number of axial lines
that cross all of the adjacencies in the collection of adjacent rectangles?

The problem is interesting and difficult to solve efficiently because of the issue
of choice. The simplest case of choice is illustrated in Figure 4.2. In this case
there are seven rectangles and seven adjacencies (0|3, 1|3, 2|3, 3|4, 3|5, 4|6 and
5|6) that must be crossed by axial lines. All but one of the adjacencies can be
crossed by the axial lines marked @ and b (0-3-4-6 and 2-3-5-6) but the adjacency
between rectangles 1 and 3 can be crossed by axial lines ¢ (1-3-4-6) and d (1-3-5-
6). Only one of these “choice” axial lines is actually necessary. More complicated
choice situations can arise as the number of rectangles to be considered grows. An
algorithm to solve the problem must be able to resolve conflicts of this type.
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4.4 Proving NP-Completeness of the problem of re-
solving choice

This section shows ALP-OLOR is NP-Complete. The proof of this will be accom-
plished through a transformation from vertex cover for a planar graph [Garey and
Johnson, 1979; Lichtenstein, 1982], to a restricted instance of the problem under
consideration, i.e. the problem of choosing the fewest maximal axial lines to cross
all the adjacencies in a collection of orthogonal rectangles.

Planar vertex cover is defined as

planar vertex cover

Instance: Planar graph G = (V, E), positive integer K < |V/|.

Question: Is there a vertex cover of size K or less for G, i.e. a subset V' C V' with
|V'| < K such that for each edge {u,v} € E at least one of u and v belongs to V'?

and ALP-OLOR can be stated as

ALP-OLOR

Instance: A collection of orthogonal rectangles R; ... R,, where each R; is adja-
cent to at least one other rectangle, and a positive integer O < 4n.

Question: Is there a set P of orthogonal axial lines where each axial line is max-

imal, each vertical adjacency is crossed at least once by the axial lines in P and
|P| < 0?

The transformation from planar vertex cover [Garey and Johnson, 1979; Lichten-
stein, 1982] will be done by mapping vertices in a planar graph to choice axial lines
in the problem being considered. Edges in the planar graph will be mapped to adja-
cencies that are crossed by the choice axial lines. In this mapping an edge between
two vertices represents an adjacency that is crossed by two choice axial lines.

This transformation will be done in two steps. First, a planar graph is trans-
formed to a ‘stick diagram’. In this ‘stick diagram’ each vertex in the original graph
is mapped to a horizontal line representing a choice axial line and each edge in the
original graph is mapped to a vertical line that is cut by the two horizontal lines that
represent the two vertices to which the edge is incident. The problem then becomes
that of choosing the minimum number of horizontal lines to cut all of the vertical
lines.

stick diagram
Instance: A collection H of horizontal lines and U of vertical lines such that each
vertical line is cut by exactly two horizontal lines, and a positive integer S < |H|.
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Question: Is there a set of horizontal lines, H’ C H, such that every vertical line in
U is cut at least once and |H'| < S?

The reader should note that the idea of converting planar graphs to horizontal and
vertical lines has been published elsewhere [Tamassia and Tollis, 1986]. At the
time of developing this proof the author of the thesis was not aware of the work
of Tamassia and Tollis [1986] whose results are quite similar to those developed in
this proof. The transformation below is presented as originally developed because
it guarantees that the ‘stick diagram’ developed by the transformation is in the right
form for the second part of the proof. This comment is expanded upon after the
transformation process has been presented.

In the second step of the transformation from a planar graph to a configuration
of adjacent rectangles, the stick diagram is represented as a collection of adjacent
rectangles and horizontal axial lines crossing all of the adjacencies in the collection
of rectangles. These axial lines will be of two types “essential lines” which are
the only lines to cross a particular adjacency and “choice lines” where a number
of lines (none of which are essential) cross some adjacency. Not all of the choice
lines are necessary to cross all of the adjacencies in the collection of rectangles. If
it is possible to determine in polynomial time a minimal subset of choice lines to
cross all of the adjacencies not crossed by essential lines in the diagram then it is
possible to solve planar vertex cover in polynomial time — finding the minimum
set of choice axial lines is equivalent to finding the minimum vertex cover of the
original graph.

Proving that ALP-OLOR is NP-Complete is accomplished by means of two the-
orems — 4.4.1 that shows that stick diagram is NP-Complete using a transformation
from planar vertex cover and 4.4.2 that shows that ALP-OLOR is NP-Complete
using a transformation from stick diagram.

It is, however, easier to perform the transformation from a planar graph to a
stick diagram for a somewhat more restricted form of planar graph — a biconnected
planar graph has properties which can be used in the transformation. Therefore it
is desirable to prove one other result — vertex cover for a biconnected planar graph
is NP-complete. Once it has been shown that this result holds the transformation
from biconnected planar vertex cover to stick diagram and hence to ALP-OLOR
can be done more easily. This result is addressed in Lemma 4.4.1. The construction
presented here is an improvement of a construction first published in Sanders et al.
[1995] and Sanders et al. [1997]. This version of the construction first appeared
in Sanders et al. [1999] and is similar to that developed by Biedl et al. [1997] in
proving that vertex cover in cubic triconnected planar graphs is NP-Hard.

biconnected planar vertex cover
Instance: Biconnected planar graph G = (V, E), positive integer B <| V' |.
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00 GG

01 j«1

02 WHILE there exists a cut vertex v; in G’

03 Let X; and Y; be any two components created by removing
v; from G’

04 Let z; € X;, y; €Y, be such that z;, y; and v; lie on a
face

05 Add a triangle graph, T;, to the face in G’ containing
z;, Y; and v;

06 Add the edges (a;,z;) and (b;,y;) to G’

07 jeg+1

Figure 4.3: Creating a biconnected planar graph

Question: Is there a vertex cover of size B or less for G, i.e. a subset V' C V with
|V’| < B such that for each edge {u,v} € E at least one of u and v belongs to V'?

Lemma 4.4.1 biconnected planar vertex cover is NP-Complete

Proof
Clearly biconnected planar vertex cover is in NP. Given a set of vertices V' such
that |V’| < B it is possible to check in polynomial time that |V is a vertex cover.
Now transform planar vertex cover to biconnected planar vertex cover. Given
a planar graph G(E, V), G can be converted to a biconnected planar graph G’ using
the algorithm given in Figure 4.3. This is accomplished by appropriate addition of
instantiations of “triangle graphs” T; where each T} is defined as the vertices a;, b;
and c; and the edges (a;, b;), (bj, ¢;) and (¢;, a;). Clearly G is a biconnected planar
graph since

1. after each iteration of the algorithm the vertex v; is no longer a cut vertex with
respect to X; and Y; and

2. no new cut vertex is ever added during an iteration of the algorithm.

Thus the algorithm terminates with G’ free of all cut vertices. In addition, the
triangle graphs T that are added during each iteration are added to the face con-
taining the vertices to which they are connected thus maintaining the planarity of
the graph. Refer to Figure 4.4 for an example of a triangle graph and to Figure 4.5
for an example of how triangle graphs can be added to a planar graph using the
algorithm in Figure 4.3 in order to derive a biconnected planar graph.
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Figure 4.4: An example of a “triangle graph”, T}

To determine the vertex cover for G, the original graph G plus the new edges
and vertices must be considered. The structure of the triangle graphs means that for
each triangle graph, T, exactly two of a;, b; and ¢; must be in the vertex cover of
G'. If k triangle graphs are added then it is trivial to show that planar vertex cover
for graph G with cover size K is true if and only if biconnected planar vertex cover
is true for G’ with cover size B = K + 2k.

The transformation from G to G’ can clearly be accomplished in polynomial
time. A cut vertex (articulation point) can be found in polynomial time [Brassard
and Bratley, 1996] and there are at most O(n) cuts (n is the number of vertices in
G").

Therefore biconnected planar vertex cover is NP-Complete.

O

biconnected planar vertex cover can now be used to show that ALP-OLOR is NP-
Complete. The proof is accomplished by means of the following two theorems —
Theorem 4.4.1 and Theorem 4.4.2.

Theorem 4.4.1 stick diagram is NP-Complete.

Proof
Clearly stick diagram is in NP — given a set of horizontal lines H’ such that |H'| <
S, it is possible to check in polynomial time that every vertical line in U is cut at
least once.

Now transform biconnected planar vertex cover to stick diagram. If G(V, E) is
a biconnected planar graph then G can be embedded in the plane (G is planar) and
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U1

()

U1

V2

()

Figure 4.5: An example of adding triangle graphs to a graph to make it biconnected
[(a) The original graph, v; and v, are cut vertices. (b) Graph with T} added, v; is
still a cut vertex. (c) Final biconnected graph]
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for every two vertices in G an elementary cycle can be found which contains these
vertices (G is biconnected) [Berge, 1962; Harary, 1969]. This implies that there are
no vertices of degree 1 in G (other than the case where G is a trivial graph with 2
vertices and 1 edge) and thus that all the faces in G are bounded by cycles [Harary,
1969].

Let Fy be the exterior face of G and Fy,..., F, be the interior faces of the
graph. The biconnected planar graph G can be transformed to a stick diagram by
the following process.

1. Choose C; as being the cycle bounding any face, F; of G, that is adjacent to
the exterior face Fj of G.

2. Choose any two vertices x and y joined by an edge A that form part of C, and
are adjacent to the exterior. Represent = and y by horizontal lines in the stick
diagram that cut the vertical line representing edge A (see Figure 4.6 (a)).

3. Consider the path from z to y, B, formed by removing edge A from C,. For
the moment, treat B as if it were a simple edge i.e. insert its corresponding
vertical line into the stick diagram. This then gives the horizontal lines = and
y cutting the vertical lines A and B. The stick diagram is then as shown in
Figure 4.6 (b).

4. Break the path B (which was treated as a virtual edge) into its component
edges. Let the path B be the sequence of vertices z, vg, v1, . . ., Uk, y. On the
path B from z to y whenever a vertex v; is encountered a new horizontal line
must be added to the stick diagram. A new vertical line must also be added
for each edge encountered. This is done in the following way. Suppose C' is
the edge joining z to v, along the path B. The stick diagram is now altered to
include a vertical line for edge C' and a horizontal line for vertex vo. This is
shown in Figure 4.6(c).

In this case, B’ represents the original path B minus the edge C' which has
been included in the stick diagram. A similar operation is applied for all the
edges on the path B. Each vertex v; maps to a horizontal line in the stick
diagram and the edge joining it to the previous vertex is a vertical line cut by
the two horizontal lines v;_, and v;. After all the vertices on the path B have
been visited, the stick diagram will have the form shown in Figure 4.6 (d). A
stick diagram which represents the originally selected closed region F; of the
original graph has now been created.

5. If G only had one interior face then the transformation is complete, otherwise
continue with the next step.
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Figure 4.6: Creating a “stick” diagram
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6. Let CF (which is used later in the process to store the composite of all the
faces considered so far) be F,. At this stage it will be the first face considered.
That is CF = F, is the face made up of the vertices z, y, vo, . . . v and the
edges connecting these vertices

7. While there are still faces in G to consider, repeat the following

(a) Choose a face F,,,1 < m < n that is adjacent to C'F'. F,, must share
a path with CF. C,,, the cycle enclosing Fi, is thus made up of two
sets of vertices — those that are on the shared path and have already been
“visited” (included in the stick diagram) and those that have not yet been
visited. The vertices in the latter set make up the path D.

(b) Treat path D as a single (simple) edge and add it to the stick diagram by
extending the horizontal lines representing the start vertex and the end
vertex of the shared path to cut a new vertical line representing the path
D.

See Figure 4.6 (e) for an example — in this figure, a new path between
vo and vy, is being added.

The path D can then be broken up into its constituent edges in the same
fashion as before.

(c) Grow CF by combining it with F}, and removing the shared path be-
tween the faces. In the stage of the process as shown in Figure 4.6 (e),
C F would consist of the vertex z, the edge (z,vo) connecting x to the
first vertex in the path D, all of the vertices and edges on the path D,
the edge (vk, y) connecting the last vertex in the path D to y, the vertex
y and the edge (y, ). The path from v, to v, through the vertices v, to
vi—1 would have been removed.

This completes the construction of the stick diagram from a biconnected planar
graph. A complete example of this is shown in Figure 4.7. First the face represented
by £ — y — z — w is converted into a stick diagram. Then the face represented
by w — z — p is added to the stick diagram and finally the face represented by
w — p — z — y — qis added. This gives the complete stick diagram for the original
biconnected graph.

Thus it can be seen that if a vertex cover, V’, can be found for GG then a set of
horizontal lines, H’, can be found for H — each vertex in G is a horizontal line in
H and each edge in G is a vertical line in U. Conversely if a set of horizontal lines
H', such that |H’'| < S, could be found to cut each vertical line in U, then a vertex
cover, V', for G could be found.

The transformation from biconnected planar vertex cover to stick diagram can
be accomplished in polynomial time. Each face in the graph G is considered in turn
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Figure 4.7: An example of the transformation of a biconnected planar graph to a
stick diagram
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and once only. As the face is considered each edge is added in turn to the stick
diagram as a vertical line — this happens once per edge. Horizontal lines are either
added to the stick diagram to represent vertices or the horizontal line representing
a vertex is extended as necessary. Each vertex can only occur in as many faces as
there are in the graph and each vertex in each cycle is only visited once per cycle.
Thus the number of operations on vertices is limited by a polynomial expression.

Therefore stick diagram is NP-Complete.
O

As mentioned earlier Tamassia and Tollis [1986] presented an approach for trans-
forming a planar graph into a configuration of horizontal and vertical line segments
— vertices are mapped to horizontal segments and edges to vertical segments. They
call this a visibility representation of the planar graph where two parallel segments
of a set are visible if they can be joined by a segment orthogonal to them. They also
define weak-visibility representation or w-visibility representation as a representa-
tion where vertices are represented by horizontal segments and edges by vertical
segments having only points in common with the pair of horizontal segments rep-
resenting the vertices they connect. The transformation above produces a represen-
tation which is a w-visibility representation of the planar graph with the additional
property that a left-to-right ordering is imposed on the edges as they are encountered
in the faces of the original planar graph (see Figure 4.7). This ordering is impor-
tant in the second transformation — converting a stick diagram into a collection of
adjacent rectangles.

Theorem 4.4.1 shows that a stick diagram can be constructed for any bicon-
nected planar graph. It is now necessary to show that any stick diagram can be
represented by a collection of adjacent rectangles whose adjacencies are crossed
by essential and choice axial lines. This must be done in a manner that ensures
consistency between a minimal selection of choice axial lines crossing rectangle
adjacencies and a minimal selection of horizontal lines in the stick diagram. This is
considered in Theorem 4.4.2 below. This theorem uses a construction from a stick
diagram to produce a collection of adjacent rectangles in which the adjacencies be-
tween rectangles are crossed by essential axial lines and choice axial lines. The
choice axial lines are directly related to the horizontal lines in the stick diagram.
Not all of the choice axial lines are necessary and Theorem 4.4.2 also shows that
the problem of choosing the minimum number of such choice axial lines (solving
ALP-OLOR) is NP-Complete.

Theorem 4.4.2 ALP-OLOR is NP-Complete

Proof
Clearly ALP-OLOR is in NP. Given a set of axial lines it is possible to check in
polynomial time that each adjacency has been crossed by at least one axial line.
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axial lines is NP-Complete in general. A heuristic algorithm to find a non-redundant
set of orthogonal axial lines to cross all the adjacencies (a set of lines such that none
can be removed without leaving an adjacency uncrossed) is presented in this sec-
tion. The algorithm has two phases. First the adjacencies among the rectangles are
determined (section 4.5.1), and then the axial lines crossing all of the adjacencies
are determined (section 4.5.2).

It should be noted that if two rectangles are adjacent then there is an infinite
number of orthogonal line segments that could be placed to cross that adjacency.
These line segments are all equivalent in the sense that they cross that particular
adjacency. Thus in this phase of the research an axial line is defined by a range
of y-values through which a line segment parallel to the z-axis could be drawn.
The convention used here is that an axial line crossing a given adjacency would be
defined by the y-value range of that adjacency and the two rectangles involved. An
axial line crossing the adjacencies between a number of rectangles would be given
by the common y-value range of the adjacencies between the rectangles and a list
of the rectangles concerned.

4.5.1 Determining the adjacencies between the rectangles

In determining the adjacencies between the orthogonal rectangles, horizontal and
vertical adjacencies are treated as separate cases. Only the case of vertical adjacen-
cies (and horizontal lines) will be discussed here. Horizontal adjacencies can be
treated analogously. An algorithm to determine the adjacencies in a configuration
of adjacent orthogonal rectangles is given in Figure 4.12 and discussed below.

Any rectangle R can be defined by the coordinates of its bottom-left and top-
right corners. The algorithm thus requires a data structure which contains the rect-
angle number and these coordinates as well as the ability to keep track of other
information calculated in the algorithm. This other information is the number of
rectangles which are adjacent to the right hand side of the rectangle being consid-
ered and a list of these rectangles. These lists of adjacencies (one list per rectangle)
are in fact the required output from this algorithm and are used later in determining
the axial lines that must be placed to cross all of the adjacencies. In the algo-
rithm to determine the adjacencies between the rectangles, an array of records is the
data structure used. Thus each element of the array, Rect[i], is a record defining a
particular rectangle of the configuration and has fields Rect[:].left, Rect[7].bottom,
Rect[i].right, Rect[i].top, Rect[i].numadj and Rect[i].adjlist to define the bottom-
left and top-right corners of the rectangle and to maintain a list of the rectangles
which are adjacent to this rectangle on the right.

Left and Right are essentially copies of the array Rect, but are sorted based on
the coordinates of the left and right edges of the rectangles respectively (lines 09 to
12 of the algorithm). These arrays are used to implement a “line sweep” strategy
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00

01
02
03
04
05
06
07
08
09
10

11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

{Get input}
create array Rect[ | for the rectangles
{n is the number of rectangles}
FOR 7 from 1 to n
Input Rect[i].number
Input Rect[i].left
Input Rect[:].right
Input Rect[i].top
Input Rect[i].bottom
Set Rect[i].numadj to be 0 {will be calculated}
Set Rect[i].adjlist to be Nil {will be calculated}
Create an array Left] | of all the rectangles {a copy of Rect[ |}
Sort Left[ | in ascending order of Left[i].left
{break ties based on increasing Left[i].bottom}
Create a list Right[ ] of all the rectangles {a copy of Rect[ ]}
Sort Right[ | in ascending order of the Right[j].right
{break ties based on increasing Right[j].bottom}
Set i+ j«1
WHILE i <=n AND j <=n
CASE
Left[i].left < Right[j].right
increment ¢
Left[i].left > Right[j].right
increment j
Left[i].left = Right[j].right
WHILE Left[i].top <= Right[j].bottom
AND Left[i].left = Right[j].right
increment
IF Left[i].left = Right[j].right
THEN
IF Left[i].bottom < Right[j].top
THEN
add Right[j].number to Left[i].adjlist
Left[i].numadj < Left[i].numadj + 1
IF Left[i].top <= Right[j].top
THEN
increment :
ELSE
increment j

Figure 4.12: The algorithm for determining the adjacencies between the rectangles
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[Manber, 1988; Cormen et al., 1990] for determining which rectangles are adjacent
to which other rectangles.

The line sweep (lines 13 to 33) works by comparing the coordinates of the right
edges (using Right) with the coordinates of the left edges of the other rectangles
(using Left). Three cases can arise:

1. The left edge of the rectangle being considered in list Left is to the left of the
right edge of the rectangle being considered in Right (lines 16 and 17), in this
case these two rectangles cannot be adjacent and so the next rectangle in Left
must be considered for a potential adjacency. This rectangle’s left edge must
be further to the right so there is potential for an adjacency to occur.

2. The left edge of the rectangle being considered in list Left is to the right of
the right edge of the rectangle being considered in Right (lines 18 and 19).
Again these two rectangles cannot be adjacent and so the next rectangle in
Right must be considered for a potential adjacency.

3. The left edge of the rectangle being considered in list Left and the right edge
of the rectangle being considered in Right have the same z-coordinate (lines
20 to 33). Thus these two rectangles could be adjacent and it is necessary
to determine if they do in fact share a range of y values. This is done by
traversing the list Left until a rectangle with a top y-value greater than the
bottom of the current rectangle from Right is found or until the rectangles
being considered have different z-values and thus cannot be adjacent (lines
21 and 22).

In the former case more work needs to be done to test for the adjacency (lines
23 to 33).

In the latter case no more work will be done in this pass through the loop and
the outer WHILE will be continued.

In lines 23 to 33, a test is made to see if the bottom of the left rectangle is
below the top of the right rectangle (line 25). If it is, then the right rectangle
is adjacent to the left rectangle and this information must be recorded (lines
27 and 28).

Lines 30 to 33 are then used to determine whether to move along in list Left
or list Right.

The configuration of adjacent rectangles in Figure 4.13 illustrates the work-
ing of the algorithm. After input and sorting, the rectangles in the list Left would
be {1,2,3,4,5,6,7,8,9,10,11} and the rectangles in the corresponding list Right
would be {1,2,3,5,7,6,8,4,9,10,11}. The WHILE loop would begin with { = 1
and 5 = 1 and thus would be comparing Left[1].left and Right[1].right. Here
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Figure 4.13: A configuration of adjacent orthogonal rectangles

case 1 above holds, the left z-coordinate of rectangle 1 is clearly less than the
right z-coordinate of the same rectangle, and 7 would be incremented. Left[2].left
and Right[1].right would then be compared (the left z-coordinate of rectangle 2
is clearly less than the right z-coordinate of rectangle 1) and again : would again
be incremented. Next Left[3].left and Right[1].right would be compared. Here
the left z-coordinate of rectangle 3 is equal to the right z-coordinate of rectan-
gle 1 and case 3 would be executed. The WHILE loop in line 21 would not be
executed (Left[3].top is greater than Right[1].bottom) and line 23 would be exe-
cuted next. Left[3].left = Right[1].right and so line 25 would be executed. Here
Left[3].bottom < Right[1].top which means that the two rectangles are adjacent
and the adjacency list for rectangle 1 must be updated. Lines 30 to 33 determine
whether to increment : or 7, in this case there is another rectangle, 4, which has the
same left z-coordinate as rectangle 3 and in order to consider it : must be incre-
mented to traverse the list Left. The algorithm performs in a similar fashion on the
remainder of the two lists.

The sorting phase of this portion of the algorithm is clearly O(n lg n), where n
is the number of rectangles. Determining the adjacencies from the sorted lists is
O(n) as each list is simply traversed from beginning to end with no backtracking
being necessary. The whole algorithm is then O(n lgn).
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4.5.2 Determining the axial lines

The next step in the process is to determine a non-redundant set of axial lines to
cross all of the adjacencies in a configuration of adjacent orthogonal rectangles.
The algorithm which generates this non-redundant set uses a number of functions.
These functions are given in Figure 4.14. The functions are also used by other algo-
rithms discussed in this chapter. The algorithm itself is given in Figures 4.15, 4.16,
4.17, 4.19 and 4.20. The algorithm generates all the possible orthogonal axial lines
which cross the adjacencies between rectangles (Figures 4.15, 4.16), determines
which lines are essential (are the only lines which cross a particular adjacency)
(Figures 4.17), removes any lines which only cross adjacencies crossed by the es-
sential lines (redundant lines) (Figures 4.19) and then resolves the choice conflict
(Figures 4.20). The resolving of the choice is done by repeatedly choosing the
choice line which crosses the highest number of previously uncrossed adjacencies.
In this algorithm, lines are represented as a list of rectangles. For example, the line
1,2,3 means a line which crosses the adjacency between rectangles 1 and 2 and
the adjacency between rectangles 2 and 3. Any line, say /, in this algorithm will
be represented a data structure with four fields — [.line which is a list of rectangle
numbers, [.bottom which is the bottom y-coordinate of the range of y-coordinates
that define the line (the bottom of the common y-coordinate range of the adjacencies
between the rectangles) and [.top which is the top y-coordinate of the range of y-
coordinates that define the line. The fourth field . extended is used in the algorithm
to record whether a line has been extended.

The algorithm uses the adjacency lists for each rectangle created above (Figure
4.12) and visits the rectangles based on the order in the list Left used in Figure
4.12. The algorithm also uses a modified adjacency matrix A. Here A[7, j] indicates
whether adjacency i[5 (where j is any rectangle which is adjacent to 7 on the right)
exists in the configuration of rectangles. A[z, 7] also keeps the track of the first line
to cross the adjacency (useful for identifying essential lines), the number of lines
crossing the adjacency and also a list of these lines. In addition, a set L, the set of
candidate lines at any stage of the execution of the algorithm, must be maintained.
A set T' of temporary candidate lines is created when lines are extended backwards.
The algorithm generates as output a set £ of non-redundant orthogonal lines which
cover all of the adjacencies between rectangles.

The first phase of the algorithm starts by setting the list of candidate lines L to
be empty (line 34 of the algorithm in Figure 4.15 and Figure 4.16). The algorithm
then generates every possible longest line which crosses the adjacencies between
the adjacent rectangles (lines 35 to 75).

This is done by considering each rectangle, Rect|[r], in turn from the leftmost
to the rightmost (in the order defined by the list Left[ ] — see line 35) to find the
axial lines which cross the adjacencies between that rectangle and each of its right
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|| is used to denote concatenation of two strings or lists

minimum and mazimum are functions which return the smaller of two
numbers and the greater of two numbers respectively

interval(a, b) defines a range of y values between the two arguments

a and b

overlap(intervall , interval2) returns true if the two intervals have an
overlapping range of y-values, and returns false otherwise

Figure 4.14: Functions used in the algorithms in this chapter

34 Set L to be empty {L is the set of all possible lines}
35 FOR each rectangle i in Left[ ]

36 p « Left[i].number

37 find r such that Rect[r].number =p
38 FOR each rectangle j in Left[i].adjlist
39 q + Right[j].number

40 find s such that Rect[s].number = ¢
41 extended + false

42 FOR each line [ in L

43 IF (overlap(interval(l.low,l.high),

interval(Rect[s).bottom, Rect[s].top)) = true) AND
(rightmost rectangle in l.line = Rect[r].number
44 THEN

45 l.extended + true

46 Inew.line + l.line || Rect[s].number

47 Inew.low + mazimum(l.low, Rect[s].bottom)
48 Inew.high < minimum(l.high, Rect[s].top)
49 Add Inew to L

50 eztended + true

Figure 4.15: Determining all possible orthogonal axial lines — Phase 1 part a
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51

52
53

54
b5
56
b7
58
59
60
61
62
63

64

65
66
67
68
69
70
71
72
73
74
75

IF extended = false
{no candidate line / can be extended into Rect[s]}
THEN
Set T to be empty
{T is the set of lines which can be extended
backwards, the longest such line will be chosen}
Set t.line to be Rect[r].number| | Rect[s].number
Set t.low + mazimum(Rect[r].bottom, Rect[s].bottom)
Set t.high + minimum(Rect[r].top, Rect[s].top)
Add t to T
For each line k in L which ends in Rect{r]
Set u to be equal to ¢
Set eztending to true
Set m to point to the second last rectangle in line k
WHILE eztending AND m > 1
find d such that Rect[d].number = mth
rectangle in line k&
IF overlap(interval(u.low, u.high),
interval( Rect[d].bottom, Rect[d].top)) = true
THEN
Set u.line to be Rect[d].number||u.line
Set u.low « mazimum(Rect[d].bottom, u.low)
Set u.high < minimum(Rect[d].top, u.high)
Decrement m
ELSE
Set eztending to false
Add u to T
Add the longest line, long in T to L
FOR each [ in L
IF l.extended = true THEN remove ! from L

Figure 4.16: Determining all possible orthogonal axial lines — Phase 1 part b
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neighbours, Rect[s], in turn (see line 38). The algorithm determines whether each
of the lines coming into Rect|r] from the left can be extended to cross the adjacency
between Rect[r] and Rect[s]|. This is done by testing if there is an overlap of the
y-coordinate range of the adjacency and the line being considered and that the line
being considered crosses some adjacency into Rect[r] (line 43). Extending the line
(lines 44 to 50) involves appending the rectangle number, Rect(s].number, to the
line and recalculating the y-coordinate range of the line. Figure 4.13 can be used
as an example of how lines can be extended. Suppose that the rectangle being
considered is the rectangle labeled 5. This rectangle will have two lines coming
into it from the left, the line 1-5 and the line 2-5. It also has two right neighbours
6 and 7. The algorithm will attempt to extend each of these lines into each of these
neighbours. The result after considering both neighbours will be to have two new
lines in L, 1-5-6 and 2-5-7 with the appropriate ranges of y-coordinates.

If no line can be extended into Rect[s] (line 51) then a new line must be started
in order to cross the adjacency between Rect[r]| and Rect(s]. To make sure that
this new line is as long as possible it must also be extended as far to the left (back-
wards) as possible (lines 51 to 73). This extending backwards of the new line is
accomplished by considering all lines which cross into Rect[r] in turn (line 58) and
looking at these lines an adjacency at a time (lines 58 to 72) to see whether the
new line could cross some of the adjacencies crossed by the line being considered.
In this fashion a new line is potentially created for each incoming line. Only the
longest line which crosses the adjacency under consideration (between Rect[r] and
Rect[s]) is chosen (line 73). An example of where no line can be extended can be
seen in Figure 4.13 when rectangle 10 is being considered. It has the line 1-4-9-10
coming into it from the left and has rectangle 11 as its right neighbour. The line
cannot be extended to cross the adjacency between 10 and 11 so a new line must
be created to cross this adjacency. This new line must then be extended backwards
to cross the adjacency between 9 and 10. If this was not done then the new line
crossing the adjacency between 10 and 11 would not be as long as possible. After
this phase of extending backwards the line 9-10-11 is added to L.

The last two lines of the algorithm (lines 74 and 75) remove any lines that have
been extended forwards during the calculation of the set of lines as these lines are
no longer necessary — every adjacency crossed by one of these lines is also crossed
by at least one longer line that was generated when the line was extended.

Figure 4.17 gives the algorithm for finding the essential lines from the set of
lines calculated by the algorithm in Figures 4.15 and 4.16. This algorithm works
by considering each line in L in turn and marking off in an adjacency matrix C the
adjacencies that this line crosses (lines 77 to 79). If any adjacency is only crossed
by one line from L then that line must be essential and is added to the set E of
essential lines (lines 80 to 84). As an example consider the configuration of rectan-
gles in Figure 4.18. The algorithm in Figures 4.15 and 4.16 would have generated
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76

77
78
79
80
81
82
83
84

Set E to be empty
{F is the set of essential lines}

FOR each line !/ in L
FOR each pair of adjacent rectangles i and j in l.line
Mark in A[i,j] that [ crosses the adjacency between i and j
FOR each adjacency i|j in A
IF i|j is only crossed by one candidate line e
THEN
Add e to F
Remove e from L

Figure 4.17: Finding the essential lines — Phase 2

Figure 4.18: A configuration of adjacent orthogonal rectangles
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85 FOR each line e in F

86 FOR each pair of adjacent rectangles ¢ and j in e.line

87 Mark in A that e crosses the adjacency between i and j
88 FOR each line / in L

89 FOR each pair of adjacent rectangles ¢ and j in l.line

920 Check if adjacency i|j is crossed by an essential line
91 IF all adjacencies in !/ are crossed by lines in F

92 THEN Remove [ from L

Figure 4.19: Removing Redundant lines — Phase 3

3 lines (1-2—4, 3—4-5 and 2—4-5). The line 2—4-5 would have been created when
considering rectangle 4 and attempting to extend the line 1-2—4 into rectangle 5
— this would not be possible and the line 2—4-5 would have been created by first
creating a new line 4-5 and then extending that line backwards. In this situation
the adjacency between rectangle 1 and rectangle 2 (C|[1, 2]) is only crossed by the
line 1-2—4 so this line must be an essential line. A similar observation applies for
line 3—4-5 and the adjacency between rectangles 3 and 4. The line 2—4-5 is in fact
redundant and the algorithm in Figure 4.19 describes how this line is identified and
removed.

The algorithm considers each essential line in turn and marks off the adjacencies
crossed by that line (lines 85 to 87). It then considers each line in L (the set of all
possible lines) in turn and determines if all the adjacencies in a given line have been
crossed by one or other of the essential lines (lines 88 to 90). If this is the case then
the line is redundant. This can be seen in Figure 4.18. The line 2—4-5 crosses the
adjacency between 2 and 4 which is also crossed by the essential line 1-2—4 and the
adjacency between 4 and 5 which is also crossed by the line 3—4-5. Thus the line
2—4-5 is redundant and is removed from L (lines 91 and 92).

Once the essential lines have been identified and the redundant lines have been
removed then there could still be some lines L which are choice lines (see the dis-
cussion in Section 4.3 and the Figures 4.2 and 4.11) and only some of these lines
are necessary. Phase 4 of the algorithm (Figure 4.20) resolves this choice.

The algorithm first considers each of the remaining lines in L — these are the
choice lines — and counts how many adjacencies, which have not already been
crossed by essential lines, each line crosses (lines 93 and 94). In Figure 4.2 lines ¢
and d each cross one such adjacency (the adjacency 1|3). In Figure 4.11 two of the
choice lines cross 6 previously uncrossed adjacencies and the other two lines cross
4 each. The algorithm then repeatedly applies the heuristic of choosing the line that
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93 FOR each remaining line z in L {These are the choice lines}

94 Determine how many adjacencies not crossed by essential
lines that this line crosses

95 REPEAT

96 Choose the line y which crosses the most previously uncrossed
adjacencies

97 Add y to F

98 FOR each adjacency a|b crossed by y

99 FOR each line ¢ which crosses alb

100 Decrement the number of adjacencies crossed by ¢

101 IF the number of adjacencies crossed by ¢ is equal to O

102 THEN Remove ¢ from L

103 Remove y from L
104 UNTIL all of the adjacencies have been crossed.

Figure 4.20: Resolving the issue of choice — Phase 4

crosses the most previously uncrossed adjacencies and making that an “essential
line” (actually adds it to the set of non-redundant lines) (lines 96 and 97). Any
lines that cross previously uncrossed adjacencies crossed by the chosen line have
their counts reduced appropriately and the process is repeated (lines 98 to 103).
When all the previously uncrossed adjacencies have been crossed by lines chosen
in this fashion then a non-redundant set of lines has been generated and the algo-
rithm terminates. The heuristic applied means that a minimal set of axial lines is not
guaranteed by this algorithm but it seems that the heuristic does produce reasonable
approximations in some cases (see Section 4.6.4).

4.5.3 The Correctness of the method

The algorithm in Figures 4.15, 4.16, 4.17, 4.19 and 4.20 generates all the possible
orthogonal axial lines that cross the adjacencies. It also extends all lines as far
as possible to the left and right. Clearly any line that is the only line to cross a
particular adjacency must be in the final set of lines otherwise there would be at least
one adjacency that has not been crossed. Also any line that only crosses adjacencies
which are crossed by lines which are essential should not be in the final set of lines.

It remains to show that the method for dealing with choice lines does give a non-
redundant set of lines. The algorithm repeatedly chooses the choice line that crosses
the highest number of adjacencies which are previously uncrossed. This means that
the selected line can be treated as essential provided no line selected previously
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crosses any of those adjacencies. This is clearly the case. In addition, no line
selected later can cross only those adjacencies and adjacencies already crossed by
the essential lines. A line chosen later has to cross at least one previously uncrossed
adjacency. Thus each line selected from the set of choice lines crosses at least one
previously uncrossed adjacency and is thus necessary.

It should be noted that this algorithm is not guaranteed to give an optimal solu-
tion to the problem. It does, however, give a non-redundant solution from the point
of view that removing any line from the final set of lines would leave at least one
adjacency uncrossed. Figure 4.21 shows a configuration of rectangles where the
heuristic would pick line « first as it crosses the most adjacencies not crossed by
essential lines. The algorithm would then pick one of lines b and e, one of lines c
and f and one of lines d and g. Thus a solution with four lines would be returned.
The optimal solution would be lines b, ¢ and d — only three lines.

4.6 Complexity Argument

4.6.1 Time

If all the rectangles were arranged such that one line could cross all the adjacencies
between them then it is clear that this instance of the problem can be solved in linear
time. Each rectangle has one adjacent rectangle and one candidate line passes from
the rectangle to its neighbour.

The worst case for the algorithm could potentially occur when each rectangle
(assuming n rectangles) in the configuration has O(n) neighbours on its right-hand
side and also has O(n) lines coming into it from its left-hand side. In this case, if
each incoming line could be extended into every right neighbour then O(n3) work
would be required. If none of the incoming lines can be extended into a right neigh-
bour and if for every right neighbour all of the lines have to be extended backwards
to find the maximal line then potentially O(n*) work would be required. It is, how-
ever, not possible to construct configurations of rectangles which correspond to
these cases.

A configuration of rectangles which would force a lot of work to be done in
extending lines forward is shown in Figure 4.22. In this case the rectangles on
the left edge of the collection will give rise to n/2 lines that must be extended
through another n /2 rectangles. This means that the portion of the algorithm which
generates the lines (lines 35 to 50) is O(n?) — order O(n) rectangles have O(n)
incoming lines which can be extended into 1 neighbour on the right.

The configuration of rectangles in Figure 4.23 shows a situation where O(n)
lines would have to be extended forwards and then extended backwards. This con-
figuration would force the algorithm to do a similar amount of work to the case
above for generating the lines going into the last large vertical rectangle. This rect-
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Figure 4.22: A configuration in which there are O(n?) adjacency crossings

angle then has O(n) incoming lines (the lines originating from the small rectangles
on the left of the configuration) and O(n) right neighbours. None of these lines can
be extended into any of the small rectangles on the right-hand side of the configura-
tion and so lines must be extended backwards from each of the adjacencies between
the right-hand side small rectangles and the rightmost tall rectangle. An additional
O(n?) work would have to be done. Overall the work done is still O(n?) .

The adjacencies which are crossed by only a single line can be found in O(n?)
time by traversing each line and marking off in the adjacency matrix each adjacency
as it is crossed. The first time it is crossed it is marked with the identity of the line
that crosses it and subsequent crossings are marked as such (setting the first line
field to some flag value). As the number of lines must be less than or equal to the
number of adjacencies and the number of adjacencies crossed by any line must be
less than or equal to the number of adjacencies, this is clearly O(n?). Having done
this it is easy, O(n?), to determine which adjacencies are only crossed once and thus
to determine the essential lines.

Removing redundant lines can also be done in O(n?) time — by first marking the
adjacencies crossed by the essential lines and then determining which lines in the
set of candidate lines only cross adjacencies already crossed by essential lines.

The issue of resolving the choice lines is potentially the most expensive part
of the algorithm but, in fact, is also O(n?). The first step in this phase is to cal-
culate how many adjacencies which are not crossed by essential lines are crossed
by each choice line. This is clearly O(n?) — each adjacency (O(n)) in each line
(O(n)) is considered. On each pass through the loop (lines 94 to 104) a number of
steps are performed — the line which crosses the highest number of these previously
uncrossed adjacencies is selected (O(n)); this line is added to £ (O(1)); each adja-
cency of the selected line is considered and other lines crossing this adjacency have
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Figure 4.23: A configuration which forces the algorithm to extend O(n) lines back-
wards

their counts decremented and are removed from L if they no longer cross uncrossed
adjacencies (this could be as expensive as O(n?) if the line selected has O(n) ad-
jacencies and each adjacency is crossed by O(n) lines); finally the selected line is
removed from L (O(1)). The work done inside the loop could potentially be as ex-
pensive as O(n?) (lines 98 to 102). This would mean that resolving choice could be
as expensive as O(n®). Again it seems unlikely that a configuration of rectangles
which forces this amount of work could be created.

The overall time complexity of the algorithm to produce a non-redundant set
of orthogonal axial lines is thus potentially as bad as O(n*) but this situation is
unlikely to occur because of the geometry of the problem.

4.6.2 Space

For each candidate line we store the list of rectangles which are crossed by the line,
the list of top and bottom coordinates for each of the rectangles in the line and the
final interval for the whole candidate line to date. The final interval can be used each
time the line is tested for extending but recalculation must be done when the line is
extended backwards. This is O(n?) space (O(n) lines by O(n) possible crossings
of adjacencies). In addition the adjacency matrix could require O(n?) space.

4.6.3 Bounding the heuristic

The greedy heuristic of choosing the line with the most previously uncrossed ad-
jacencies is analogous to the heuristic of choosing the vertex with the most edges
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in the original vertex cover problem. This algorithm has been shown not to be an
e-approximation [Papadimitriou, 1994] (for any ¢ < 1 the error ratio grows as log n
and thus no € smaller than 1 is valid). The best known approximation algorithm for
this problem is based on choosing any edge, say (u,v), in the set of edges, adding
both u and v to the set of vertices and repeating until all edges are covered [Pa-
padimitriou, 1994). This algorithm has an approximation threshold of at most 1/2
— a solution which is at most twice the optimum solution. Hochbaum [1982] also
discusses a heuristic that gives a value that does not exceed twice the optimal value.
For unweighted graphs he guarantees a bound strictly less than 2 — a solution strictly
less than twice an optimal solution.

4.6.4 Experimental Results

Three algorithms were implemented and tested: the greedy algorithm (most un-
crossed adjacencies heuristic); an algorithm based on the random selection of lines
and an algorithm that produces the minimum number of orthogonal axial lines re-
quired. The algorithm that produces the minimum solution to the problem did an
exhaustive search of all the possible ways of selecting subsets of choice lines to
find a minimum sized subset. This algorithm was made as efficient as possible by
partitioning the choice axial lines into subsets which have in common adjacencies
not crossed by essential lines. The solutions for these subsets can then be found
independently. This solution works well on average but it is still possible that all
the choice lines are in one subset — there are uncrossed adjacencies that are common
to all of the choice axial lines.

The test data were generated by first randomly generating a number of rectan-
gles — typically about 30 — placed one on top of another. This configuration was then
grown from left to right by randomly generating rectangles which are adjacent to
the right hand edges of those that had already been placed in the configuration. The
advantage of generating the data in this fashion was that a large number of adjacen-
cies between rectangles in the horizontal direction was guaranteed. All rectangles in
the configuration had breadth and height randomly chosen in the range from 5 to 15
units. The final configuration of rectangles was tightly packed and each rectangle
could have as many as 4 rectangles adjacent to its right hand edge.

Fifty cases of configurations of 1000 rectangles each were tested, as were 20
cases of configurations of 1500 and 2000 rectangles. In the tests performed the
greedy algorithm performs as well as the exact solution in most cases but there were
instances of the greedy algorithm requiring an extra line to cross all the adjacencies.
The random algorithm ranged in accuracy from producing the same result as the
exact solution to requiring six extra lines to cross all adjacencies. Table 4.1 shows
the results of the testing of the heuristics on configurations of rectangles of this
form.
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Number of rectangles 1000 | 1500 | 2000
Number of tests 50 20 20
Minimum number of lines 321 477 655
Maximum number of lines 365 527 703
Average number of lines 341 510} 680
Standard deviation 10.86 | 10.81 | 13.44
Minimum number of essential lines 277 426 569
Maximum number of essential lines 322 | 476 | 616
Average number of essential lines 300 | 450 | 592
Standard deviation 9.69 | 14.19 | 14.24
Minimum number of choice lines 4 4 18
Maximum number of choice lines 27 36 52
Average number of choice lines 14 20 32
Standard deviation 5.83 | 844 871
Minimum error for most uncrossed adjacencies heuristic 0 0 0
Maximum error for most uncrossed adjacencies heuristic 1 1 1
Average error for most uncrossed adjacencies heuristic 002 | 0.10| 0.05
Standard deviation 0.14 | 031 022
Minimum error for random choice heuristic 0 0 0
Maximum error for random choice heuristic 4 6 5
Average error for random choice heuristic 1.26 | 130 1.90
Standard deviation 094 | 166 1.55

Table 4.1: Experimental results
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Figure 4.24: A “chequerboard” collection of rectangles

From these results it can be seen that the heuristic of choosing the choice axial
line that crosses the most previously uncrossed adjacencies at any stage resulted in
a good approximation for the configurations tested. For much larger numbers of
rectangles or a different packing method the heuristic might not work as well but
configurations of this form were chosen as a reasonable approximation to the type
of collections of rectangles that could occur in the problem being studied.

This experimental work showed that although ALP-OLOR is in general NP-
Complete it is possible to get good approximations to the exact solution — at least
in the cases tested. The next section of this thesis considers special cases of ALP-
OLOR where exact solutions can be found in polynomial time.

4.7 Special Cases that can be solved exactly in poly-
nomial time

4.7.1 Mapping to interval graphs

ALP-OLOR is in general NP-Complete but there are some cases for which polyno-
mial time algorithms can be obtained. In this section some of these special cases
are discussed.

It is clear that any “chequerboard” collections of rectangles (Figure 4.24) can
be solved exactly in polynomial time even if there are holes in the chequerboard
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Figure 4.25: A “chequerboard” with holes

(Figure 4.25) [Hedetniemi, 1996]. In fact, this condition can be extended to a more
general collection of rectangles.

Suppose that the union of the adjacent rectangles is itself a rectangle as in Fig-
ure 4.2 (of Section 4.3), Figure 4.22, Figure 4.24 and Figure 4.26, then the axial
line placement problem for orthogonal axial lines and orthogonal rectangles can be
solved in polynomial time. This can be shown as follows. First, project each ver-
tical adjacency to a corresponding interval on the vertical line L (see Figure 4.27).
Then the problem of finding the minimum number of horizontal lines that intersect
the vertical adjacencies (ALP-OLOR) is equivalent to that of finding the minimum
number of points on L needed such that each interval contains at least one point.
This is the problem of finding the independent set of an interval graph which can
be solved in linear time [Gavril, 1972; Golumbic, 1980]. The mapping from ALP-
OLOR to vertex cover for interval graphs is also possible for other configurations of
adjacent rectangles provided that any vertical adjacencies that produce overlapping
intervals when projected onto L can be crossed by a horizontal line that does not
leave the union of the rectangles. For example for the configuration of rectangles in
Figure 4.28 the mapping would produce a correct answer but for the configuration
in Figure 4.29 (and in fact in Figure 4.25) it would not.

There are other configurations of rectangles where solutions to ALP-OLOR can
be found in polynomial time. Some of these are discussed below.
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Figure 4.26: A simple configuration of rectangles with a rectangular union

Figure 4.27: Projecting Adjacencies onto Intervals on the line L
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Figure 4.28: A simple configuration of rectangles that can be used in the production
of an interval graph

Figure 4.29: A simple configuration of rectangles that cannot be used in the pro-
duction of an interval graph
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Figure 4.30: An example of a chain

4.7.2 Chains and trees of orthogonal rectangles

This section of the thesis considers algorithms to solve two restricted cases of ALP-
OLOR - chains and trees of rectangles (see Section 4.7.2.1 for definitions of these).
These problems cannot be solved by a mapping to an interval graph because the
layout of the rectangles could lead to adjacencies that cannot be crossed by a single
axial line which remains inside the union of the rectangles being mapped to the
same interval. These problems can, in fact, be solved using the heuristic algorithm
discussed in Section 4.5 (and discussed briefly in Section 4.7.2.2 below) but this
algorithm does a lot of unnecessary work in these cases so better ways of solving
these problems are required. In this section of the thesis an O(n) algorithm for
orthogonal axial line placement in chains of orthogonal rectangles is given (Section
4.7.2.3) and an O(n?) algorithm for trees of rectangles is presented (Section 4.7.2.4.

4.7.2.1 Terminology

Definition 4.7.1 A chain of orthogonal rectangles is any collection of orthogonal
rectangles where every rectangle is horizontally (vertically) adjacent to at most one
other rectangle at each end.

An example of a chain is shown in Figure 4.30.

Definition 4.7.2 A tree of orthogonal rectangles is a collection of adjacent orthog-
onally aligned rectangles, where each rectangle is joined on the left (right) end to
at most one rectangle and on the right (left) to zero or more rectangles.
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Figure 4.31: An example of a tree of rectangles

A tree is thus a generalisation of a chain — each branch of the tree can be considered
as a chain of rectangles. An example of a tree of rectangles is shown in Figure 4.31.

4.7.2.2 The naive algorithm

An O(n?) algorithm to return a non-redundant set of maximal orthogonal axial
lines for ALP-OLOR was presented in Section 4.5 above. This algorithm has four
phases (after determining which rectangles are adjacent). It generates all the pos-
sible straight lines which cross the adjacencies between rectangles; it determines
which lines are essential (i.e. are the only lines which cross a particular adjacency);
it removes any lines which only cross adjacencies crossed by the essential lines (re-
dundant lines); and then it resolves the choice conflict. The resolving of the choice
is done by repeatedly choosing the choice line that crosses the highest number of
previously uncrossed adjacencies. Each phase is O(n?) in the worst case.

This algorithm can be applied directly to place the minimal number of axial
lines in chains and trees of orthogonal rectangles but it does more work than is
necessary — it generates lines which are redundant and then have to be removed to
get a minimal set of maximal lines. This is shown in Figure 4.32 where 5 lines
are generated in the first part of the algorithm but only 2 lines are actually needed
— the lines a—b—c—d—e—f and e—f—g—h—i—j. The reason that these extra lines are
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{Stage 0}
{Get input}

00 create array Rect[ | of all given rectangles
{n is the number of rectangles}

01 FOR ¢ from 1 to n

02 Input Rect[i].left
03 Input Rect[i].right
04 Input Rect[i].top
05 Input Rect[i].bottom
06 Set Rect[i].adjbottom to be undefined {will be calculated}
07 Set Rect[i].adjtop to be undefined
{Stage 1:}

{Define order of rectangles in the chain}
08 sort Rect[ | according to left value of each rectangle
{i.e. based on Rect[ ].left}

{Stage 2:}
{Determine the extent of the adjacency between each rectangle
and its right neighbour.}

09 FOR ¢ from 1 to n—1

10 Rect[i].adjtop + minimum(Rect[i].top, Rect[i+ 1].top)

11 Rect[i).adjbottom < maximum(Rect[i].bottom, Rect[i + 1].bottom)

Figure 4.33: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stages 0 to 2

4.7.2.3 Orthogonal axial line placement in chains of rectangles

In this section of the thesis an algorithm is presented to solve the orthogonal axial
line placement problem in a chain of orthogonal rectangles. The algorithm is shown
in Figures 4.33, 4.34, 4.35 and 4.36.

The algorithm takes as input a set of rectangles that are known to represent a
chain. Each rectangle is defined by the coordinates of its bottom left and top right
comner. The data structure used is an array of records Rect[]. Here each record has
fields for left, right, top and bottom to represent the rectangle’s coordinates (min-
imum z-coordinate, maximum z-coordinate, minimum y-coordinate, maximum y-
coordinate) and adjtop and adjbottom to represent the lowest and highest y-values
of the range of y-values that defines the adjacency with the next rectangle in the
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{Stage 3:}

{Determining the set of forward lines}

{ForwardLines is a list of the lines that have been found in
this stage}

{The forward sweep is started by initialising the smallest
common adjacency}

{This is called CurrentAd;}

{Initially this is the adjacency between rectangles 1 and 2}
{Currentline is a list of adjacencies that are crossed by the

line being worked on}
12 CurrentAdj.top + Rect[1].adjtop
13 CurrentAdj.bottom < Rect[1].adjbottom
14 Add adjacency 1|2 to the list CurrentLine

15 FOR : from 2 to n

16 IF (Rect[i].adjtop < CurrentAdj.bottom) OR
(Rect[i].adjbottom > CurrentAdj.top)
17 THEN
18 Add the list CurrentLine to the end of list ForwardLines
19 CurrentAdj.top < Rect[i].adjtop
20 CurrentAdj.bottom < Rect[i].adjbottom
21 Set CurrentLine to be empty
22 ELSE
23 IF (Rect[i].adjtop < CurrentAdj.top)
THEN CurrentAdj.top < Rect[i].adjtop
24 IF (Rect[i].adjbottom > CurrentAdj.bottom)
THEN CurrentAdj.bottom < Rect[i].adjbottom
25 Add the adjacency ili+1 to the end of list CurrentLine
26 IF CurrentLine is not empty
27 THEN
28 Add the list CurrentLine to the end of list ForwardLines

Figure 4.34: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stage 3
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{Stage 4:}
{Determining the set of reverse lines to be stored in list
ReverseLines}

29 Set CurrentLine to be empty

30 CurrentAdj.top < Rect[n — 1].adjtop

31  CurrentAdj.bottom « Rect[n — I].adjbottom

32 Add the adjacency n-1|n to the end of list CurrentLine

33 FOR 7 from n — 2 downto 1

34 IF (Rect[i].adjtop < CurrentAdj.bottom) OR
(Rect[i].adjbottom > CurrentAdj.top)
35 THEN
36 Add the list CurrentLine to the front of list ReverseLines
37 CurrentAdj.top < Rect[i].adjtop
38 CurrentAdj.bottom < Rect[i].adjbottom
39 Set CurrentLine to be empty
40 ELSE
41 IF (Rect[i].adjtop < CurrentAdj.top)
THEN CurrentAdj.top < Rect[i].adjtop
42 IF (Rect[i].adjbottom > CurrentAdj.bottom)
THEN CurrentAdj.bottom <« Rect[i].adjbottom
43 Add the adjacency ili+1 to the front of list CurrentLine
44 IF CurrentLine is not empty
45 THEN
46 Add the list CurrentLine to the front of list ReverseLines

Figure 4.35: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stage 4
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{Stage 5:}
{Merge the lines to get the final set of lines}

47 Set m to the number of lines in ForwardLines or ReverseLines
{these will be equal}

48 FOR ¢ from 1 to m

49 set FinalLines[i] to be empty
50 WHILE ForwardLines[i] is not empty AND
ReverseLines[i] is not empty
51 IF (the first adjacency in ForwardLines[i] is to the left
of the first adjacency in ReverseLines[i])
52 THEN
53 remove first adjacency from ForwardLines|i]
54 add this adjacency to end of FinalLines[i]
55 ELSE
56 IF the adjacencies are the same
57 THEN
58 remove first adjacency from ForwardLines[i)
59 remove first adjacency from ReverseLines|i]
60 add this adjacency to end of FinalLines[i]
61 IF ForwardLines[i] is not empty
THEN add all remaining adjacencies to FinalLines[i]
62 IF ReverseLines[i] is not empty

THEN add all remaining adjacencies to FinalLines|[:]

Figure 4.36: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stage 5
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chain. The algorithm sorts these rectangles according to the z-coordinate of the left
edge of each rectangle. This first stage is dominated by the sorting and thus has
a complexity of O(nlgn). Clearly this stage is unnecessary if the rectangles are
given in sorted order as a chain of rectangles.

From this sorted list of rectangles the right adjacencies of each rectangle are
found — lines 9 to 11 of the algorithm — by comparing the y-coordinate range of
any rectangle with the y-coordinate range of its neighbour on the right — the largest
bottom y-value and the smallest top y-value define this adjacency. This information
is stored in Rect[i].adjtop and Rect[i].adjbottom for rectangle i. This process takes
linear time and forms the second stage of the algorithm.

The third stage involves determining the lines that move forward through the
chain. This stage of the algorithm proceeds by traversing the chain of rectangles
from left to right keeping track of any common range of y-values (CurrentAdj) of
the adjacencies that have been considered so far. The existence of such a range im-
plies that an axial line could be placed to cross the adjacencies that share this range.
The algorithm also keeps track of which adjacencies between rectangles could be
crossed by such a line by maintaining a list of these adjacencies (CurrentLine is
the list of adjacencies that share a common range of y-values and each adjacency is
given by the rectangles in it in the form left|right). The common range starts out
as the range of y-values of the adjacency between the first and second rectangles
(see lines 12 and 13 of the algorithm). CurrentLine is initialised to 1|2 (line 14)
as rectangle I is adjacent to rectangle 2 and a line could be drawn crossing the
adjacency between them. This range and the current line are then updated when the
next adjacency is encountered (see lines 15-25). If there is an overlap in y-values
between the common range and the next adjacency then the current line can be ex-
tended (lines 23-25). If there is no overlap then a new line must be started (18 to
21). In this case the common range is reset as the range of the adjacency being con-
sidered. Lines 16 to 25 are repeated until the end of the chain is reached i.e. until
all the adjacencies have been crossed by a line in the set of forward lines. Lines 26
to 28 make sure that the last line is also added to the set of forward lines. Since
each rectangle is visited once by a single line, this stage of the algorithm also takes
linear time.

The fourth stage is the same the third stage, except one finds the reverse lines
by moving from right to left, instead of left to right (see lines 29 to 46 which are
very similar to lines 12 to 28). Note that the set of reverse lines are still arranged
so that the leftmost lines come first in the ordering. The adjacencies in any line are
also arranged in order from left to right. Clearly the complexity for this stage is the
same as the previous stage.

Lastly the forward lines and the reverse lines are merged together to obtain the
maximal lines that cross every adjacency. This merging is accomplish by noting that
any forward line crosses each adjacency that it can exactly once and extends as far
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(line 51). The leftmost of these adjacencies (found by looking at the z-coordinates
of the rectangles concerned) gives the leftmost adjacency in the new final line. This
adjacency is removed from the list that it occurred in (both if this was the case) and
added to final line which is being created (lines 53 and 54 or lines 56 to 60). The
process is the repeated with the first adjacencies of the two new lists. If either list
becomes empty then the remaining adjacencies in the non-empty list are copied to
the final line which is being built up (lines 61 and 62). This new line is then the first
line in the final set of lines — it is maximal because it extends as far as it can to the
left and to the right. The other lines in the forward and reverse sets are handled in
a similar fashion to produce final lines. An example of a chain of rectangles with
forward lines, reverse lines and the resulting final lines is shown in Figure 4.37. This
final stage of merging the forward and reverse lines takes O(n) time to complete —~
each adjacency can appear once in a forward line and once in a reverse line so at
most 2n adjacencies will be considered for addition into one of the final lines.

The complexity of the entire algorithm is thus O(n).

Empirical tests were done on some different configurations of chains of rect-
angles [Watts and Sanders, 1997]. The data for the running time of the algorithm,
excluding the sorting done in the first stage, verified the theoretical analysis — that
is, the data confirmed that the last four stages of the algorithm are indeed linear.

This restricted instance of the problem is, in fact, a special case of the problem
to be considered in the next section but it was presented as a separate problem in
order to make the algorithm presented in the next section easier to understand.

4.7.24 Orthogonal axial line placement in trees of rectangles

The algorithm to find the minimal set of orthogonal axial lines to cross the adja-
cencies in a tree of orthogonal rectangles is presented in Figures 4.38, 4.39, 4.40
and 4.41. The algorithm takes as input a list of rectangles that represents a tree
of orthogonal rectangles and produces a minimal set of maximal orthogonal axial
lines.

The algorithm is split into six stages: inputting the rectangle data, finding the
adjacencies between the rectangles; defining the order in which the rectangles will
be visited; finding the forward lines; finding the leaf lines; and merging the forward
lines and leaf lines into the final lines.

The main data structure in the algorithm (as given in Figure 4.38) is an array
Rect of records to represent the rectangles. Each rectangle is represented by a
record with 8 fields — left, right, top and bottom to define the rectangle, parent to
keep track of the rectangle to the left of the current rectangle, numadj to keep track
of the number of rectangles adjacent to the right end of any rectangle, adjlist which
is a list of these rectangles and finally LeafLineNo which is used in stages 4 and 5
to keep track of which leaf line crosses the rectangle.
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00

01
02
03
04
05
06
07
08
09

10

11

{Stage 0:}
{Get input}
create array Rect[ | of all given rectangles
{n is the number of rectangles}
FOR ¢ from 1 to n
Input Rect[i].left
Input Rect[i].right
Input Rect[i].top
Input Rect[i].bottom
Set Rect[i].parent to be undefined {will be calculated}
Set Rect[i].numadj to be undefined {will be calculated}
Set Rect[i].adjlist to be Nil {will be calculated}
Set Rect[i].LeafLineNo to be undefined
{will be used in stages 4 and 5}

{Stage 1:}
Find adjacencies {using algorithm discussed before}
{Rect[i].parent, Rect[i].numadj and Rect[i].adjlist are calculated here}

{Stage 2:}

{Define the order in which the rectangles will be visited}
create array RightList[ | sorted according to right value of
each rectangle {i.e. based on Rect[ ].right}

{This will be an array of the numbers of the rectangles in
the order in which they will be visited.}

Figure 4.38: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stages 0 to 2
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{Stage 3:}
{Find forward lines}

{Set values in root vertex of Interval tree}
12 high < Rect[RightList[1]].top
13 low <« Rect[RightList[1]].bottom
14 line < RightList[1]
15 FOR p from 2 to n do {traverse rectangles in order of right edge}

16 k < RightList[p]

17 IF Rect[k].numadj = 0

18 THEN

19 add k to LeafList

20 ELSE

21 find vertex z in interval tree such that

overlap(interval (z.low, z.high),
interval ( Rect[k].bottom, Rect[k].top)) = true
AND last rectangle in z.line = k

22 set eztended to be false
23 FOR each rectangle r in Rect[k].adjlist do
24 IF overlap(interval(z.low, z.high),
interval (Rect[r].bottom, Rect[r].top)) = true

25 THEN

{Extend an existing line}
26 Insert a child of z in interval tree with
27 high « top of overlap
28 low < bottom of overlap
29 line « z.line || r
30 set eztended to be true
31 ELSE

{Start a new line}
32 Insert a child of zin interval tree with
33 high < Rect[r].top
34 low + Rect[r].bottom
35 line « r
36 IF extended = true THEN delete vertex 2z

{traverse interval tree to produce a list of forward lines}
37 i+ 0
38 FOR each vertex z in the interval tree

39 1 1+1

40 ForwardLines[i].rects + z.line
41 ForwardLines[i].top « z.high
42 ForwardLines[i].bottom < z.low

Figure 4.39: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stage 3
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43
44
45
46
a7
48
49
50
51

52

53
54
55
56
57
58

59
60
61

62
63
64
65
66
67
68
69
70

{Stage 4:}
{Find leaf lines}

FOR each leaf do
k < RectNo of current leaf
CurrentT ¢ Rect[k).top
CurrentB <« Rect[k].bottom
p < Rect[k].parent
currentline.rects  k
1+ 1
WHILE p is still defined
IF overlap(interval(Rect[p].top, Rect[p].bottom),
interval(CurrentT, CurrentB)) = true
THEN
{extend an existing leaf line}
currentline.rects « p || currentline.rects
currentline.top < top of overlap
currentline.bottom ¢« bottom of overlap
CurrentT + top of overlap
CurrentB « bottom of overlap
ELSE
{add current line to set of leaf lines}
LeafLines[i).rects « currentline.rects
LeafLines[i].top < currentline.top
LeafLines[i].bottom < currentline.bottom
{start a new leaf line}
¢ 1+1
currentline.rects < p
currentline.top < Rect[p].top
currentline.bottom < Rect[p)].bottom
CurrentT « Rect[p].top
CurrentB < Rect[p].bottom
Rect[k].LeafLineNo « ¢
k«p
p < Rect[k].parent

Figure 4.40: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stage 4
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80
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84

{Stage 5:}
{Merge forward lines and leaf lines to produce final lines}

Set m to the number of lines in ForwardLines
FOR : from 1 to m
FinalLines[i].top < ForwardLines[i].top
FinalLines[i).bottom < ForwardLines[i].bottom
set FinalLines[i].line to be empty
FOR each rectangle j in ForwardLines[i].line from right end
to left end
FinalLines[i].line < j || FinalLines[i].line
k < Rect[j].LeafLineNo
IF overlap(interval (ForwardLines[i].top, ForwardLines[i].bottom),
interval ( LeafLines[k].top, LeafLines[k].bottom)) = true
THEN
FinalLines[i].top < top of overlap
FinalLines[i].bottom ¢« bottom of overlap
Add all rectangles in LeafLines[k].line to
FinalLines[i].line
Break out of for loop

Figure 4.41: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stage 5
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The adjacencies between the rectangles are found using the algorithm presented
in Section 4.5.1. In this stage of the algorithm parent, numadj and adyjlist are given
values.

In stage 2 of the algorithm an additional array, RightList[], is created which
stores a list of the indices of the array Rect|] arranged according to the z-coordinate
of the right end of the rectangles. This list defines the order in which the rectangles
will be visited in stage 3 — finding the forward lines. Stages 0 to 2 are essentially
preprocessing to define a tree of orthogonal rectangles.

Stage 3 of the algorithm (as given in Figure 4.39) finds the Jorward lines. These
are the lines found by starting at the root rectangle (in this case the leftmost rectangle
— with the smallest z-coordinate of its right edge) and working towards the leaf
rectangles of the tree (these are rectangles with no right neighbours) considering
each rectangle in turn. An interval tree [Cormen er al., 1990] is used to maintain the
y-value ranges that can be considered at any stage. An interval tree is a red-black
tree where each vertex = contains an (open or closed) interval defined by its low
and high endpoints and where the key of the vertex is the low endpoint. Insertions
into the tree are based on the low endpoint of the interval to be inserted. Thus an
inorder traversal of an interval tree would return the intervals in sorted order by
low endpoint. In the algorithm above every vertex in the interval tree stores an
interval defined by the variables low to high and, in addition, a candidate line (line)
represented by a list of the rectangles such a line could cross. Each vertex in the
interval tree thus represents a line that might need to be considered when attempting
to extend lines from the root to the leaf rectangles. Lines 12 to 14 initialise the root
vertex of the interval tree to contain the interval represented by the y-value range of
the root rectangle and a line that crosses only that rectangle but could be extended
into the root rectangle’s right neighbours.

After the initialisation each rectangle is considered in turn (lines 15 to 36 of
Figure 4.39). Each such rectangle can have at most one rectangle adjacent to it on
the left and could have a number of other rectangles adjacent to it on the right. If it
has no rectangles adjacent to it on the right then it is a leaf rectangle and its number
is added to a list of such leaf rectangles (line 17 to 19). If it has adjacent rectangles
on the right then the forward line coming into the rectangle could potentially be
extended into these adjacent rectangles (lines 21 to 36). The algorithm searches the
interval tree for the line which comes into the rectangle from the left — it will have
an interval which has some overlap with the y-value range of the rectangle and the
last rectangle through which the line passes will be the current rectangle (line 21).
The algorithm then considers each right neighbour of the current rectangle in turn
(lines 22 to 35) and determines which adjacencies can be crossed by extensions of
this line. There could be more than one possible extension of the line depending on
the y-coordinates of the adjacencies being considered and thus the one line coming
into a rectangle from the left could become more than one line (see lines 26 to 30) -
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one line going into each adjacent rectangle where there is an overlap of the interval
covered by the line and bottom and top y-values of the adjacent rectangle. Each of
these new lines would result in a new vertex being inserted into the interval tree to
store the new interval and detail which rectangles are crossed by the new line. The
algorithm also determines for which adjacencies (if any) new forward lines have to
be started (lines 32 to 35), i.e. the existing line cannot be extended to cross the new
adjacencies (there is no overlap of y-coordinates). Again new vertices are created
in the interval tree.

After all the right neighbours have been considered then the vertex in the interval
tree representing the line coming into the current rectangle is deleted if the line has
been extended (it is no longer needed in this case). If the line has not been extended
then it is one of the forward lines and is thus not deleted. The last step in this stage
of the algorithm (lines 37 to 42) is to traverse the interval tree and produce a list of
the forward lines, represented by a range of y values and a list of rectangles crossed,
to cross all of the adjacencies in the tree of rectangles.

Figure 4.42 shows the forward lines generated for part of the tree of Figure 4.31.
Note that the line that crosses the adjacencies between rectangles ¢ and b and b and
c can be extended in d but not into e. A new forward line is created to cross the
adjacency between rectangles c and e. This line can be extended into f but not into
g.

Stage 4 of the algorithm (as given in Figure 4.40) works from the leaves of
the tree to the root rectangle, hence finding the leaf lines. This case is easier than
that of finding the forward lines. It is only necessary to check if one of the lines
coming into any rectangle from the right can be extended to cross the one adjacency
on the left or whether a new leaf line must be created. The algorithm considers
each leaf rectangle (from line 19 in stage 3) in turn (lines 43 to 70). The leaf line
for any leaf rectangle is first initialised (lines 44 to 48) — this involves finding the
interval to be considered, finding the parent of that rectangle and setting the first
rectangle in the current line. The algorithm then works up the rectangle tree until
the root rectangle is reached (lines 48 to 68). For each rectangle on the path from
leaf rectangle to root rectangle it determines if the leaf line coming into a rectangle
can be extended into the current rectangle’s parent (lines 53 to 57) or if the current
leaf line must be terminated and a new leaf line started (lines 59 to 67). This stage
of the algorithm also records the number of the last leaf line that crosses from the
current rectangle into its parent rectangle (LeafLineNo — line 68) — this could be
a new leaf line (starts in that rectangle) or one which crosses the rectangle from
right to left. This information is used in stage 5 of the algorithm which is described
below. Figure 4.42 shows the leaf lines generated for part of the tree of Figure 4.31.
Note that the leaf line from rectangle g cannot be extended from e into ¢ and a new
“leaf” line has to be created here.

The final stage of the algorithm (stage 5 as given in Figure 4.41) merges the
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range so rectangle e is considered. Here the leaf line which was stored in stage 4 of
the algorithm is the line that starts in e and crosses into c. This line does have an
overlap so the final line can be generated using the forward line and this leaf line.

This example also illustrates why it is sufficient in stage 4 (line 68) of the al-
gorithm to record only the last leaf line which either starts in or crosses a given
rectangle. Leaf lines define the left extent of any final line. If two or more leaf lines
start in or cross a given rectangle then the associating of a leaf line and a forward
line will not be done when that rectangle is considered. In Figure 4.42, rectangle
¢ has 2 leaf lines which cross it — the line a—b—c—d and the line b—c—e. These leaf
lines are paired with their forward lines when rectangle d of forward line a~b—c—d
and rectangle e of forward line c—e—f respectively are being considered. Similar
arguments apply for other combinations of more than one leaf line either crossing
or starting in a given rectangle.

Sanders et al. [2000a] show another example of the applying the algorithm to a
specific tree.

The algorithm essentially consists of four parts: finding the adjacencies and
defining the order of processing, finding the forward lines, finding the leaf lines,
and merging the forward lines and leaf lines. To analyse the algorithm each of these
stages are considered in turn.

Stage 1 and 2: Find adjacencies and define order The algorithm used to find the
adjacencies of the rectangles in stage 1 of the algorithm is as in Section 4.5.1.
The algorithm also determines the array RightList. This algorithm is domi-
nated by sorting and thus has a complexity of O(nlgn) where n represents
the number of rectangles in the tree.

Stage 3: Find forward lines In essence this phase of the algorithm determines which
adjacencies overlap with intervals that have already been inserted into the in-
terval tree — an interval in the interval tree means that there is a forward line
which can be considered. There are » — 1 adjacencies in a tree of n rectangles
and each adjacency only needs to be considered once — only one forward line
can cross any adjacency. Also each interval tree operation (adding or delet-
ing here) takes O(Ign) time [Cormen et al., 1990]. Therefore stage 3 of the
algorithm has a complexity of O(nlgn).

This stage of the algorithm could be done more efficiently as regards time by
noting that each rectangle can only have one line coming into it from the left
and using a matrix of size n — 1 to store the y intervals of these lines. This
has the advantage of direct lookup but the disadvantage of always requiring
O(n) space — the best case for the interval tree could be much less.

Stage 4: Find leaf lines In this phase of the algorithm the lines starting in the
leaves of the tree are extended back towards the root of the tree. Here testing
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Figure 4.43: A tree with n/2 leaves and height also n/2

whether the line can be extended is O(1) (a simple test for overlap) but it is
possible that there are O(n) leaves and that for each of these leaves it is nec-
essary to extend the line through O(n) rectangles (a tree with approximately
n/2 leaves and of height also approximately n /2 — see Figure 4.43 for a sim-
ple example of this case). So the complexity for this part of the algorithm is
O(n?) in the worst case.

Stage 5: Merge forward lines and leaf lines For a forward line to exist, it must
cross at least one adjacency between two rectangles in the tree, and each
adjacency is crossed exactly once by the definition of the axial line placement
problem. Therefore since there are n rectangles, there are exactly n — 1 of
these adjacencies and there can be a maximum of O(n) forward lines.

The merging phase of the algorithm considers each forward line in turn and
in the worst case works from the rightmost rectangle of the line until a leaf
line with overlap is encountered. The algorithm then merges these two lines.
Effectively this is merging two lines in a chain of rectangles which is O(n)
(as shown in Section 4.7.2.3).

So since there are a maximum of O(n) forward lines and merging a forward
line with its associated leaf line is O(n), this part of the algorithm is O(r?) in
the worst case.

The complexity of the entire algorithm is thus O(n?) in the worst case but better
performance can be expected from some configurations of input rectangles.

The algorithm was implemented and tested on various configurations of trees.
The results of this empirical analysis confirmed the theoretical analysis and also
demonstrated that different shapes of the trees of rectangles affect the complexity
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quite dramatically. In some cases the sorting and finding the forward lines dominate
and in other cases finding the leaf lines and merging the forward and leaf lines are
the more costly operations. Sanders et al. [2000a] presents detailed results of the
empirical analysis.

Section 4.7.1 presented some variations of the orthogonal axial line placement
problem that can be solved in polynomial time. In this section polynomial time al-
gorithms for the orthogonal axial line placement problem for chains of orthogonal
rectangles and trees of orthogonal rectangles have been presented. It is now inter-
esting to consider finding other arrangements of rectangles that are more general
than a tree of rectangles that can be solved in polynomial time. This is discussed in
the next section of this thesis. .

4.7.3 More general cases

The issue to be considered now is whether the results above can be extended to
cover the case where each rectangle is joined to at most two rectangles at its left
end and two rectangles at its right end (analogously for two rectangles above and
two rectangles below). It turns out that this is not the case. This can be seen if
the configuration of rectangles shown in Figure 4.44 is considered. This is a con-
figuration which meets the restrictions — each rectangle is adjacent to at most two
neighbours to the left and two to the right. Also this configuration of rectangles
produces choice — the adjacency between rectangles 4 and 6 can be crossed by the
line through 1 — 3 — 4 — 6 or the line through1 —2 —4 — 6. Lines0 -1 -3 —4
and 1 — 2 — 4 — 5 are essential lines.

If this configuration of rectangles is treated as a basic building block it is clear
that a configuration of rectangles that meets the restriction of at most two adjacent
rectangles at each end can be generated and this configuration of rectangles could
offer global choice. See for example Figure 4.45. A proof similar to that shown
in Theorems 4.4.1 and 4.4.2 can be used to show that this restricted case of the
problem is also NP-Complete in the general case.

4.8 Future research

There are a number of interesting research questions that arise from the research
discussed in this chapter. Tackling all of these problems is outside the scope of this
research. This section of the thesis highlights some of these questions. A more
complete coverage can be found Chapter 8 of this document.

As extensions to the work done in this research and discussed in this chapter the
following problems are interesting areas of research.

e Reducing the amount of work required by the heuristic algorithm to calculate
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Figure 4.44: Choice introduced where each rectangle has at most 2 left and 2 right
neighbours

the non-redundant set of orthogonal axial lines that covers all of the adja-
cencies in a configuration of adjacent orthogonal rectangles. In particular,
attempting to address the issue of redundant calculations which are made for
the collection of rectangles shown in Figure 4.22 or similar configurations.

e Developing other heuristics to produce approximate solutions to the exact
solution.

e Considering other special cases of the problem that can be solved in polyno-
mial time.

An interesting, but not directly related, area of further research is in the gen-
eration of test data. An efficient algorithm for generating configurations of non-
overlapping adjacent orthogonal rectangles would be useful in order to test any
heuristics that are developed. In addition, generating non-trivial trees of adjacent
but non-overlapping orthogonal rectangles proved to be relatively complex in this
research and a more efficient way of doing so could be useful for any work at im-
proving the algorithm.

4.9 Conclusion

This chapter addresses the problem of finding the fewest longest orthogonal ax-
ial lines that pass through all of the shared adjacencies between adjacent orthogo-
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nal rectangles — ALP-OLOR. The problem is made NP-Complete by the fact that
various instances of choice can arise. This chapter of the thesis presents an NP-
Completeness proof based on a reduction from biconnected planar vertex cover to
stick diagram and hence to ALP-OLOR. An O(n?) algorithm is presented that finds
a non-redundant set of lines to cross all of the adjacencies of a collection of adja-
cent orthogonal rectangles. The algorithm has been shown to produce a very good
approximation to the exact solution in all cases tested.

This chapter also presents some restrictions of the orthogonal axial line place-
ment problem for which polynomial time solutions can be obtained — configurations
that are mappable to interval graphs, chains of orthogonal rectangles (O(n)) and
trees of orthogonal rectangles (O(n?)). It is likely that other restrictions exist that
are solvable in polynomial time and future research will investigate this area.

The next chapter of this thesis considers the case where the lines which pass
through the shared adjacencies between adjacent orthogonal rectangles are no longer
restricted to being parallel to the axes — axial lines with arbitrary orientation are ac-
ceptable. This problem is also shown to be NP-Complete and once again the use of
a heuristic approach to solving the problem is discussed.



Chapter 5

Placing axial lines with arbitrary
orientation to cross the adjacencies
between orthogonal rectangles

5.1 Introduction

In Chapter 3 the aim and focus of this thesis are discussed. This chapter addresses
one of the questions raised in Chapter 3 — the problem of finding the minimum
number of longest axial lines with arbitrary orientation which cross all of the adja-
cencies of a collection of adjacent orthogonal rectangles (ALP-ALOR Axial Line
Placement — Arbitrary Lines and Orthogonal Rectangles). In Chapter 4 ALP-OLOR
(Axial Line Placement — Orthogonal Lines and Orthogonal Rectangles) was shown
to be NP-Complete by a transformation from biconnected planar vertex cover to
stick diagram and then to ALP-OLOR. In this chapter, a similar process is used to
show that ALP-ALOR is NP-Complete. In the next chapter of this thesis (Chap-
ter 6) the NP-Completeness proof is extended to show that ALP-ALCP (Axial Line
Placement — Arbitrary Lines and Convex Polygons) is also NP-Complete.

In the remainder of this chapter (ALP-ALOR) is discussed in more detail. The
problem is restated in detail in Section 5.2 below. In Section 5.3 ALP-ALOR is
shown to be NP-Complete using a similar transformation to that discussed in Chap-
ter 4 for ALP-OLOR. Then, because ALP-ALOR is NP-Complete, some ideas for
heuristics to find approximate axial maps are discussed in Section 5.5. In Section
5.7 some ideas for future research are briefly discussed.

5.2 Statement of the Problem

ALP-ALOR can be formally stated as follows:
Given a number of adjacent, orthogonally-aligned rectangles find the fewest axial

130
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Figure 5.1: An example of the problem

lines (line segments), contained wholly inside the rectangles, required to cross all
of the boundaries shared between adjacent rectangles. An additional requirement is
that each axial line should cross as many of the shared boundaries as possible — a
maximal axial line.

As in Chapter 4 for ALP-OLOR, depending on how the problem is considered
there are two similar but distinct problems which can be addressed — adjacencies can
be crossed more than once but every adjacency must be crossed at least once; and
any adjacency must be crossed exactly once. In this thesis only the first variation is
addressed. Figure 5.1 shows an example of this.

The decision problem can then be stated as below.

ALP-ALOR

Instance: A collection of orthogonal rectangles R; . .. R,,, where each R; is adjacent
to at least one other rectangle, and a positive integer O < 4n.

Question: Ts there a set P of (possibly non-orthogonal) axial lines where each axial
line is maximal in length, each axial line is contained wholly within the rectangles,
each adjacency is crossed at least once by the axial lines in P and |P| < O?

In section 5.3 ALP-ALOR is shown to be NP-Complete.
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5.3 Proving the problem is NP-Complete

In Chapter 4 it is shown that the problem of finding the minimum number of max-
imal orthogonal axial lines to cross all of the adjacencies in a configuration of
adjacent orthogonal rectangles (ALP-OLOR) is NP-Complete. The proof is ac-
complished through a transformation from biconnected planar vertex cover. This
transformation is accomplished by mapping vertices in a biconnected planar graph
to choice axial lines. In this mapping an edge between two vertices represents an
adjacency which is crossed by two choice axial lines.

The transformation is done in two steps. First, a biconnected planar graph is
transformed to a stick diagram where each vertex in the original graph is mapped
to a horizontal line and each edge in the original graph is mapped to a vertical line
which is crossed by the two horizontal lines which represent the two vertices to
which the edge is incident. The problem then becomes that of choosing the mini-
mum number of horizontal lines to cross all of the vertical lines. Stick diagram is
thus NP-Complete — if it is possible to determine in polynomial time which of the
set of horizontal lines cross all of the vertical lines in the stick diagram then it is
possible to solve biconnected planar vertex cover in polynomial time. Finding the
minimum set of horizontal lines is equivalent to finding the minimum vertex cover
of the original graph. Second, the stick diagram is represented as a collection of
adjacent orthogonal rectangles and horizontal axial lines crossing all of the adja-
cencies in the collection of rectangles. These horizontal axial lines are of two types
“essential axial lines” which are the only axial lines to cross a particular adjacency
and “choice axial lines” where a number of axial lines (none of which are essential)
cross some adjacency. Not all of the choice axial lines are necessary to cross all
of the adjacencies in the collection of rectangles. If it is possible to determine in
polynomial time which of the set of choice axial lines cross all of the adjacencies in
the diagram then it is possible to solve stick diagram in polynomial time — finding
the minimum set of choice axial lines is equivalent to finding the minimum set of
horizontal lines. Thus ALP-OLOR has been shown to be NP-Complete.

In this chapter the fact that stick diagram is NP-Complete is used to show that
ALP-ALOR is also NP-Complete. This is done by transforming an instance of stick
diagram to an instance of ALP-ALOR. Once again this is accomplished by using
“choice units” although the units used here are somewhat different to those used in
Chapter 4 and different choice axial lines with arbitrary orientation are generated.
Note that, in the remainder of this chapter any reference to an axial line should be
taken to mean an axial line which is not necessarily orthogonal.

Theorem 5.3.1 ALP-ALOR is NP-Complete

Proof
Clearly ALP-ALOR is in NP. Given a set of axial lines with arbitrary orientation it
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Figure 5.2: The Canonical Choice Unit which produces choice axial lines with
arbitrary orientation

is possible to check in polynomial time that each adjacency has been crossed by at
least one axial line.

Now transform stick diagram to ALP-ALOR.

A collection of rectangles which create choice axial lines with arbitrary orienta-
tion can be represented by a canonical choice unit, ccu, shown in Figure 5.2. In this
ccu, the adjacencies between the middle rectangle a and the rectangles b and ¢ can
be crossed by four “sets” of axial lines with arbitrary orientation (the upper, lower
and two diagonal sets). Figure 5.2 shows as a dashed line a representative axial line
from each of the four sets. Only one of these axial lines is actually necessary to
cross the adjacencies between rectangles a, b and c. All the other adjacencies are
crossed by the axial lines which originate in the “horns” of the ccu. These axial lines
do not have to be horizontal but the size and position of the rectangles in the horns
means that the axial lines are restricted to a small range of different slopes. Scaling
of the canonical choice unit does not change the fact that it can/does produce choice
axial lines.

The transformation proceeds by replacing each vertical line in the stick diagram
by a ccu of an appropriate size. The horizontal lines which cross through the ver-
tical line are represented by a subset of the choice axial lines of the ccu. It is then
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a, b and c in each ccu but there are longer axial lines which cross the same
adjacencies so axial lines from these sets will not be in the final set of axial
lines for the collection of rectangles. The axial lines from the horns in the left
ccu cannot be extended to cross the adjacencies between a, b and ¢ in the right
ccu. The only axial line which could be extended into the right ccu in this case
is the upper choice axial line from the lefthand ccu. After connecting the two
ccu’s, the adjacencies in both ccu’s which were only crossed by choice lines
are still only crossed by choice lines. All other adjacencies are crossed by
essential axial lines. In this sense, choice is maintained.

o lower to upper
This is a mirror image of the case above about the z-axis, see Figure 5.3.

® upper to upper
In this case no connecting rectangles are required, it is enough to simply
merge the appropriate connector rectangles. This is shown in Figure 5.4.
Again the adjacencies previously crossed only by choice lines are still only
crossed by choice lines and the essential axial lines cross all other adjacencies.

o lower to lower
Again this case is a mirror image of the case above, see Figure 5.4.

A potential problem could arise when a number of ccu’s are joined together to
make up a collection of adjacent rectangles which represents a stick diagram. This
could happen because it is possible for the axial line through the rectangles in one
of the horns to cross one of the adjacencies previously crossed only by choice axial
lines. This can be seen in Figure 5.5 where the range of axial lines from the horn in
the left ccu includes axial lines which cross an adjacency which was previously only
crossed by choice axial lines. This problem can be overcome by some very simple
changes to the structure of the ccu. The horn could be made longer — this would be
accomplished by keeping the two smaller rectangles in the horn the same size and
making the longer rectangle still longer. This would have the effect of reducing the
angle at which axial lines could leave the horn and thus no essential axial lines could
cross the adjacency previously crossed only by choice axial lines. The horn could
also be made narrower by changing the vertical extent of the rectangles in the horn.
This would have the same effect of reducing the angles at which axial lines could
leave the horn. Other ways of addressing the problems could be to increase the
height of the b and ¢ type rectangles and move the horns higher up these rectangles.
In this case the range of angles at which axial lines could leave the horn is kept
constant but the required range is increased. A similar approach would be to make
the connector rectangle shorter.

The transformation from stick diagram to ALP-ALOR is thus accomplished by
inserting an appropriately sized ccu for each vertical line and then joining these up
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by using the appropriate connecting rectangles working from the leftmost to the
rightmost ccu. ccu’s should also be scaled as necessary to ensure that the axial lines
from the horns (which are essential) cannot interfere which the issue of choice.
Figure 5.6 shows the final result after taking an instance of stick diagram and con-
verting it to an instance of ALP-ALOR. Note that in this diagram some ccu’s have
been scaled to ensure that the essential axial lines from the horns do not interfere
with the choice.

It is now necessary to show that there is a solution to stick diagram if and only
if there is a solution to ALP-ALOR. The construction of the collection of adjacent
rectangles from the stick diagram changes the horizontal lines in the stick diagram
to choice axial lines in the collection of rectangles. It also introduces 4 essential
axial lines for every ccu added (note, some of these axial lines could be shared
across ccu’s — see Figure 5.6 for an example of this). These essential axial lines
must be in the final solution to ALP-ALOR. Suppose there is a solution for stick
diagram, i.e. there exists a set of lines H’ such that |[H'| < S. Then there must be
a solution P to ALP-ALOR with |P| = |H'| + 4|U| — p, where U is the number
of ccu’s and p is the number of shared essential axial lines. This is because the
essential axial lines must be in P and the choice axial lines which correspond to the
selected horizontal lines in .S must also be in P. Conversely if there is a solution P
to ALP-ALOR then there must be a solution S = P — {e | e is an essential line in
P}.

This transformation can clearly be done in polynomial time — each vertical line
is visited twice, once when it is replaced by a ccu and a second time when it is
connected to the ccu(s) to its right in the stick diagram. If the stick diagram can
be drawn then a configuration of ccu’s can be drawn by scaling the ccu’s to be the
same size as the vertical lines that they represent. The ccu’s (and their connecting
rectangles) can thus be drawn as a non-overlapping collection of adjacent rectangles
— an instance of ALP-ALOR.

ALP-ALOR is thus NP-Complete.
O

The result which has been proved above can be extended to axial lines with arbitrary
orientation crossing the adjacent edges between convex polygons ALP-NLCP —
rectangles are a special case of convex polygons. This is discussed in more detail in
Chapter 6.

The fact that ALP-ALOR is NP-Complete means that in general only exact so-
lutions for small problem instances can be found and that investigating heuristics is
a worthwhile area of research. In Section 5.5 of this thesis some ideas for possible
heuristics to be used in finding approximate solutions for ALP-ALOR are discussed.
Fully investigating these heuristics is outside of the scope of this thesis but they are
presented to give the reader some idea of approaches which could be taken.
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A problem which arises, whether an exact solution is being calculated or a
heuristic is being applied to find an approximate solution, is to be able to efficiently
decide whether an axial line can be placed to cross a given set of adjacencies. The
next section of this thesis (Section 5.4) addresses this problem before heuristics
which are assumed to use the idea proposed here are presented.

5.4 Determining whether axial lines can be placed in
chains of adjacent rectangles

In Chapter 4 which deals with placing orthogonal lines to cross the adjacencies
between orthogonal rectangles, it is very easy to determine whether an axial line
crosses a number of adjacencies. If the adjacent rectangles which give rise to the
adjacencies are treated as a chain of rectangles (i.e. the rectangles are adjacent and
each rectangle has at most one left neighbour and one right neighbour) and if there
is an overlap in the y-values of the adjacencies then an axial line can be placed to
cross those adjacencies. Note that, as discussed before, an axial line is actually a
representative of a set of lines all of which fall within the same range of y-values
and cross the same adjacencies between rectangles. In the algorithms discussed in
Chapter 4 (Sections 4.5, 4.7.2.3 and 4.7.2.4) each time a line is extended forwards
or backwards in effect an axial line is being extended through a chain of rectangles.

In the case of arbitrary lines and orthogonal rectangles, a single axial line could
cross both vertical and horizontal adjacencies and these thus have to be considered
at the same time. This makes determining whether an axial line can be placed to
cross all of the adjacencies in a “chain” of adjacent rectangles more complicated.
Here a chain of rectangles is defined as a sequence of adjacent rectangles where
each rectangle has at most one “incoming” neighbour (left, top or bottom) and one
“outgoing” neighbour (right, top or bottom). In Figure 5.7 the rectangles 1, 2, 4, 5
and 7 can be said to make up a chain of rectangles. As can the rectangles 1, 2, 4, 6
and 8. At some stage of an algorithm which finds the axial lines for the configuration
of rectangles in Figure 5.7 it might be necessary to determine whether an axial
line can be placed to cross the adjacencies 1-2, 2—4, 4-5 and 57 in the chain of
rectangles 1, 2, 4, 5 and 7. As can be seen in this example such a line can, in fact,
be found - the difficulty is in deciding how to place the line or how to determine
the range of possible lines. Clearly this could be accomplished by solving sets of
simultaneous equations to find the lines with the minimum and maximum slopes
which intersect the adjacencies. Another approach is to use the idea of visibility in
polygons (as discussed in Chapter 2, Section 2.4.4.3.1).

The idea behind this approach is to convert the problem of determining whether
an axial line can be placed to cross the adjacencies in a given chain of rectangles to
the problem of determining partial visibility of two edges.
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Figure 5.7: Placing a arbitrary axial line in a chain of rectangles

The process is as follows. Given a chain of rectangles, convert the chain into
an adjacency polygon — an adjacency polygon is a polygon which uses the first
and last adjacency in the chain of rectangles as two of the edges of the resultant
polygon and remaining edges of the adjacency polygon are the edges or the parts
of the edges in the remaining rectangles in the chain. Figure 5.8 shows the chain
of rectangles discussed previously and its associated adjacency polygon. If it were
possible for an axial line to be placed to cross all of the adjacencies in the chain
of rectangles then there will be partial edge visibility between the two edges of the
adjacency polygon which were the first and last adjacencies in the chain (edges ay
and a; in Figure 5.8). Bilbrough and Sanders [1998] discusses an expected time
linear algorithm for determining this partial visibility.

The algorithm can be converted to a linear algorithm by making use of an ap-
proach suggested by Avis et al. [1986] of generating the “Inner Convex Hull” of
the adjacency polygon. This is done by finding the inner convex hulls of the top
chain and the bottom chain respectively and using these to create the “reduced” top
and bottom chains. See Figure 5.9 for an example of how this is accomplished. du
Plessis and Sanders [2000] discuss in detail how the reduced adjacency polygon can
be calculated and from that how partial edge visibility can be determined. Again,
if it were possible for an axial line to be placed to cross all of the adjacencies in
the chain of rectangles then there will be partial edge visibility between the two
edges of the reduced adjacency polygon which were the first and last adjacencies
in the chain (edges a; and q; in Figure 5.9). This approach is used in the heuristics



Chapter 5: ALP-ALOR 141

Figure 5.8: Converting a chain of rectangles into an adjacency polygon
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discussed below.

5.5 Heuristics to find approximate solutions for ALP-
ALOR

5.5.1 Overview

ALP-ALOR has been shown to be NP-Complete (Section 5.3) and thus in the gen-
eral case finding a minimal solution could take an unreasonable amount of time. It
is thus necessary to consider heuristics to find approximate solutions in reasonable
time. In this section some ideas for heuristics are presented but the actual testing of
the heuristics is beyond the scope of this thesis and thus will be future work which
arises from this thesis.

5.5.2 Extending lines into all neighbours

In Section 4.5 an O(n?) algorithm to return a non-redundant set of maximal or-
thogonal axial lines for the problem of placing orthogonal axial lines to cross the
adjacencies between orthogonal rectangles (ALP-OLOR) was presented. This algo-
rithm has four phases (after determining which rectangles are adjacent). It generates
all the possible orthogonal axial lines which cross the adjacencies between rectan-
gles; it determines which axial lines are essential (i.e. are the only lines which
cross a particular adjacency); it removes any lines which only cross adjacencies
crossed by the essential lines (redundant lines); and then it resolves the choice con-
flict. The resolving of the choice is done by repeatedly choosing the choice line
which crosses the highest number of previously uncrossed adjacencies. One pos-
sible approaching to finding an approximation to ALP-ALOR is to adopt a similar
approach to that used before. The main difference would be that the restriction on
the axial lines being orthogonal would be removed — lines with arbitrary orienta-
tion would be allowed. This would mean that the algorithm would need to consider
all neighbours rather than just the right neighbours of a particular rectangle. All
of these adjacencies would have to be determined and thus the algorithm for cal-
culating the adjacencies between the rectangles would be more complicated — the
algorithm developed in Chapter 4 will no longer suffice. In addition, there seem to
be two potential problems with adapting this algorithm to work in this case.

First, the algorithm for ALP-OLOR works by considering each rectangle in turn
from left to right at each step attempting to extend any lines which cross into a
rectangle from the left into its right neighbours. In the arbitrary case it would be
necessary to determine if the incoming lines could be extended into all the current
rectangle’s neighbours. The effect of this change could mean that many more lines
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Figure 5.9: Converting an adjacency polygon into a reduced adjacency polygon
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Figure 5.10: An example of using the algorithm extend lines into all neighbours

than are actually necessary are generated in the first phase of the algorithm and
many of these lines would have to be removed later — either as redundant lines or
in the phase of resolving choice. Figure 5.10 shows an example of the axial lines
which would be generated by extending any axial lines coming into a rectangle into
all of its neighbours.

Second, it seems that the lines which are generated are very dependent on the
initial configuration of the rectangles and some lines which could be part of a min-
imal set of axial lines would not be generated by this slightly modified algorithm.
Figure 5.11 shows some lines which would not be generated by this changed al-
gorithm. This happens because, in this particular example, as each rectangle is
considered it is possible to extend one (or more) of the incoming lines into each of
its neighbours. There is never the necessity to start a new line.

Some way of addressing these problems would be required if this approach was
to be used. Alternatively a different approach should be considered. Some other
approaches are suggested in the following sections of this thesis.

5.5.3 Separating top-bottom and left-right lines

Another heuristic for finding an approximate solution for ALP-ALOR would be to
calculate a solution in two passes — a horizontal sweep followed by a vertical sweep.
In the horizontal sweep the algorithm works from the leftmost rectangle to the right-
most rectangle in the configuration. For each rectangle, any line which enters the
rectangle from the left is checked to see if it can be extended into one or more of
the rectangle’s right neighbours. If any line can be extended, this new line is added
to the set of lines and the line which was extended is removed. This is analogous
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Figure 5.11: An example showing some lines which would not be generated

to the solution for ALP-OLOR except here the lines need not be orthogonal. The
vertical sweep works from the highest rectangle (based on the y-value of the top
edges of the rectangles) to the lowest rectangle (the rectangle which has the lowest
y-value for its top edge). This second pass extends lines which enter the rectan-
gle being considered from the top into its lower neighbours (if this can be done).
Each of these passes would (as before) generate all possible lines (while obeying
the left-right or top-bottom constraint); determine essential lines; remove redundant
lines; and resolve any choice. These two passes then generate two sets of lines —
a set which crosses the vertical adjacencies and a set which crosses the horizontal
adjacencies. Combining the final two sets of lines would give an approximation to
ALP-ALOR. Figure 5.12 shows an example of the lines which would be generated
when extending lines from left to right and top to bottom.

This approach seems unlikely to give an approximation which is close to the
exact solution but at least it is more efficient in terms of the number of unnecessary
lines than the approach of extending all possible lines (see Section 5.5.2).

An advantage of this approach is that the left-right and top-bottom neighbours
can be determined separately and thus the algorithm from Chapter 4 can be used
directly.

5.5.4 Longest Chains

A slightly different approach for finding an approximate solution for ALP-ALOR
could be to attempt to find the longest possible axial line at any stage of the al-
gorithm. Clearly to do this would require first generating all possible lines which
is inefficient (see the argument in Section 5.5.2). An approach which goes some



Chapter 5: ALP-ALOR 146

Figure 5.12: An example showing the lines which would be generated in a top-
bottom and left-right manner

way towards using this idea is to identify “extreme” rectangles, generate the chains
which include these rectangles and then successively choose the longest of such
chains until all of the adjacencies have been crossed. The motivation for doing this
is that lines which cross the adjacencies of these extreme rectangles could poten-
tially cross a number of other adjacencies as well and so might be a good “greedy”
choice. An algorithm to find an approximation based on this idea is sketched below.

1. Determine all of the adjacencies between the orthogonal rectangles. Store
this information in an adjacency matrix.

2. Determine all of the extreme rectangles — those which do not have neighbours
on both of the top and bottom and the left and right sides. In Figure 5.13 rect-
angles 1, 2, 5 and 6 are extreme rectangles (the extreme rectangles are more
lightly shaded than the rectangles which are not characterised as extreme).
Rectangle 3 has left and right neighbours and is thus not extreme. Rectangle
4 has left and right and top and bottom neighbours and is thus not extreme.

3. As long as there are still some unvisited extreme rectangles.

(a) Pick the next extreme rectangle

(b) For each adjacency of the extreme rectangle which has not yet been
crossed
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Figure 5.13: Longest chains — identifying “extreme” rectangles

1.

it.

iii.

using the information stored in the adjacency matrix determine all
of the chains of rectangles starting from the extreme rectangle se-
lected in 3a, crossing the current adjacency and ending in another
extreme rectangle.
select the longest chain — the chain with the most rectangles in it —
that includes that adjacency
determine whether all of the adjacencies in this longest chain can
be crossed by one line. To answer this question the approach of
determining partial visibility between two edges in a polygon (see
Section 5.4) can be used.
If all of the adjacencies in this chain can be crossed by one axial
line

e include that line as one of the final set of lines

¢ mark all of the adjacencies in that chain as crossed

Or else if all of the adjacencies in this chain cannot be crossed by
one axial line then

e sclect the next longest chain of rectangles and repeat the pro-
cess until an axial line can be placed or there are no more chains

(c) Repeat this process until all the extreme rectangles have been consid-
ered.

4. If there are still uncrossed adjacencies then place an axial line to cross each
of those adjacencies.
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a) Lines from the first extreme b) A solution after considering all
rectangle extreme rectangles

Figure 5.14: The longest chain heuristic

5. The resulting set of lines is an approximation to the solution for ALP-ALOR

If this heuristic was applied to the configuration of rectangles in Figure 5.13 then
the first extreme rectangle to be considered would be rectangle 1. This gives rise
to the chains 1-2, 1-3-2, 1-3-5, 1-3—4-2, 1-3—4-5 and 1-3—4-6. These chains all
start and end with one of the extreme rectangles. A chain like 1-2-3—4-5 would not
be generated as it has an extreme rectangle 2 which is not at the beginning or end of
the chain. The algorithm would stop generating a chain as soon as rectangle 2 was
encountered. In the list of valid chains originating from rectangle 1, the chain 1-2
is the only chain that includes adjacency 1|2 so this chain is selected and the line
1-2 can be placed. There are three longest chains which include the adjacency 1|3
and any could be chosen. If the chain 1-3—4-6 was chosen then the line 1-3—4-6
could be placed. Figure 5.14.a shows the lines placed for the first extreme rectangle.
Figure 5.14.b shows a possible solution once all of the extreme rectangles have been
visited. This figure also demonstrates a problem with the longest line heuristic — the
line crossing adjacency 1|2 is not “as long as possible” — the line should have been
extended to cross adjacencies 2|3, 3|4 and 4/6.

Clearly other solutions could occur if different chains are selected when there is
a choice of “longest chains”. This local choice can, in fact, lead to another problem
with this heuristic. This is shown in Figure 5.15. In this case the line chosen to
cross the adjacency 1|3 was the line 1-3—4—5. This would leave the adjacency 4|6
uncrossed until the extreme rectangle 6 was considered. Then the line 1-3—4-6
would be placed. This would result in a solution with one more line than if 1-3—4-6
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a) Lines from the first extreme bf The lines placed after considering
rectangle all extreme rectangles

Figure 5.15: The longest chain heuristic: A problem with the heuristic — there are
redundant lines in the final set of lines

had been chosen when the adjacency 1|3 was being considered.

Another problem with this “longest chains” heuristic (related to a problem dis-
cussed earlier) could occur if the configuration of rectangles is as shown in Fig-
ure 5.16.a. Here the configuration has only two extreme rectangles 1 and 7. There
are two chains from 1 to 7 (and from 7 to 1) but in neither chain can one line cross all
of the adjacencies between the rectangles in the chain. Thus no line will be placed
while considering each extreme rectangle in turn. Thereafter all the adjacencies are
still uncrossed and lines will be placed to cross each adjacency — see the example in
Figure 5.16.b. Clearly this results in far more lines than are actually necessary and
each line is not “as long as possible”.

This problem could possibly be solved by pre-processing to determine that the
configuration of adjacent rectangles is of this form but more complicated config-
urations of rectangles could display similar behaviour. A heuristic should not be
as susceptible to the actual configurations of input rectangles as this one is. The
heuristic in Section 5.5.5 goes some way to addressing the problems which could
arise with the heuristic discussed here.

5.5.5 Crossing one adjacency at a time

Another idea for a heuristic to find an approximation to ALP-ALOR is to consider
crossing each as yet uncrossed adjacency in turn with a line which is “as long as
possible”. The detail of this idea is expanded upon below.
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a) A configuration with two  b) The lines after visiting all
extreme rectangles extreme rectangles

Figure 5.16: The longest chain heuristic: A second problem with the heuristic - all
the adjacencies are uncrossed after all the extreme rectangles have been considered

1. Determine all of the adjacencies between the orthogonal rectangles. Store
this information in an adjacency matrix.

2. Sort the adjacencies based on their minimum z-coordinate, break ties based
on minimum y-coordinate.

3. As long as there are still some uncrossed adjacencies.

(a) Pick the next adjacency.

(b) Using the information stored in the adjacency matrix and starting with
the two rectangles which define the adjacency selected in point (3a)
successively add rectangles to this chain until adding another rectangle
would cause the chain to “kink’.

The sweep works from left to right — so any rectangle to be added to the
chain would have to be added to the right side or the top or bottom of
the last rectangle in the chain. Kinking then occurs if

Case 1 if the rectangle which is being considered for adding to the
chain is adjacent to the left side of the last rectangle in the chain

Case 2 if the rectangle which is being considered for adding to the
chain is adjacent to the bottom of the last rectangle in the chain and
the last rectangle in the chain was added to the top of the penulti-
mate rectangle in the chain
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Case 1

Case 2

Figure 5.17: Crossing one adjacency at a time: Cases which cause “kinking ”ina
chain of rectangles
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Case 3 if the rectangle which is being considered for adding to the
chain is adjacent to the top of the last rectangle in the chain and
the last rectangle in the chain was added to the bottom of the penul-
timate rectangle in the chain

Figure 5.17 shows examples of these three cases.

(c) Determine if a line can be placed to cross the adjacencies in the chain,
(This can be done using the idea of partial edge visibility discussed in
section 5.4.)

If a line can be placed then add this line to the final set of lines.

If a line cannot be placed then repeatedly

i. generate a different chain starting with the same adjacency and fol-
lowing the same constraints
ii. determine whether a line can be placed to cross all of the adjacen-
cies in that chain

until either a line is found or all the possible chains have been consid-
ered.

If a line cannot be placed through any chain starting at that adjacency
and generated as above then make a line which crosses just that adja-
cency.

(d) Mark off all the adjacencies crossed by the line generated above.

4. The resulting set of lines is an approximation to the solution for ALP-ALOR

The application of this idea is illustrated by considering the configuration of
rectangles in Figure 5.18. The first adjacency considered is 1|2. The chain thus
starts as being 1-2. Then suppose that rectangle 3 is considered, this rectangle can
be added to the chain which now becomes 1-2-3. This chain can be extended to
1-2-3-4-5. If an attempt is made to add rectangle 6 to the chain then kinking
occurs. Rectangles 4 and 6 are on the same side of rectangle 5 and it would thus
be impossible to put a straight line through the chain of rectangles 1-2-3-4-5-6.
It might however be possible to place a line through the chain 1-2-3—4-5. This is,
in fact, the case so the line 1-2-3—4-5 is created. This line crosses the adjacencies
1|2, 2|3, 3|4 and 4|5 - see Figure 5.19.a.

The next adjacency to be considered would be 1|3 — this is the leftmost as yet
uncrossed adjacency. A number of possible chains (without kinking) start with this
adjacency: 1-3-2, 1-3-5, 1-3—4-5 and 1-3-4-6. Suppose that 1-3—2 was the first
one considered. A line can be placed through the adjacencies in this chain and so
this line is added to the final set of lines — see Figure 5.19.b.

The next adjacency to be considered would then be 3|5 (1|2, 1|3, 2|3 and 3|4
have already been crossed) and the process would continue. A possible final set of
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Figure 5.18: Crossing one adjacency at a time — example input

a) Iteration 1 — placing the first line b) Iteration 2 — placing the second line

Figure 5.19: Crossing one adjacency at a time — the first two passes of the algorithm
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Figure 5.20: Crossing one adjacency at a time — a possible solution

lines is shown in Figure 5.20. This is in fact a minimal solution for this instance of
the problem.

There are, however, some problems with this algorithm. Suppose that a differ-
ent chain was selected when attempting to cross adjacency 1|2 and that after two
iterations the lines 1-2—4—6 and 1-3-2 had been placed — see Figure 5.21.a. The
next adjacency to be crossed would be 3|4. Three chains of rectangles are possible
3-4-2, 3-4-5 and 3—4—6. A line can be placed in each of these chains. Assume (for
the sake of the discussion) that the second chain was chosen (the argument applies
to the other two chains as well). Then the situation after placing this line (3—4-5)
would be as shown in Figure 5.21.b. This last line is clearly not “as long as possi-
ble” — it should cross the adjacency 1|3 as well. A second pass through the final set
of lines would be required to extend such lines backwards as far as possible.

Another problem which could occur with this heuristic is that it does not take
into account “curves” in chains — see Figure 5.22.a. In a case like this where the
adjacencies being considered is 1|2, the rectangles 1, 2, 3, 4, 5 and 6 form a chain
(1-2-3-4-5-6) and although there is no point at which the chain wraps around
(none of the cases identified above occur), no line can be placed through the whole
chain. The heuristic would thus generate the line 1-2 and move on to consider the
adjacency 2|3 where a similar situation would occur. The final set of lines (shown
in Figure 5.22.b) would thus not be minimal.

Again it is possible that this problem could be resolved by a “post-processing”
pass over the “final” set of lines to attempt to extend any lines which only cross a
single adjacency as far as possible.
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a) Placing the first two lines b) Placing the line to cross 3|4

Figure 5.21: Crossing one adjacency at a time: A problem with the heuristic — lines
that don’t extend far enough to the left

a) A “curved” chain b) The final set of lines

Figure 5.22: Crossing one adjacency at a time: A second problem with the heuristic
— lines which only cross a single adjacency
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5.5.6 Extending forwards and then backwards

This approach is similar to the heuristic suggested above and was developed by
Kenny [2000] working under the supervision of the author of the thesis. Again
for each adjacency that is still uncrossed a new chain working from left to right is
constructed. When the chain kinks the forward phase is complete and it is necessary
to determine whether a straight line can be placed in the chain. If a line can be
placed then the next stage of the process — extending the chain to the left — follows.
However, if a line cannot be placed then one rectangle at a time will be removed
from the right hand side of the chain until a line can be placed or until there are only
two rectangles in the chain. These two remaining rectangles are adjacent to each
other and clearly a line can be placed to cross the adjacency between them.

This first stage ensures that the lines extend as far as possible to the right. How-
ever, it is possible that they don’t extend as far to the left as possible. The second
stage of the heuristic addresses this.

The chain is now extended backwards (to the left) as far as possible by suc-
cessively adding rectangles to the chain until kinking would occur. Then a similar
process of testing for line placement and removing rectangles from the chain is
followed.

The resulting line is now also extends as far to the left as possible and so is “as
long as possible”. It is thus included in the final set of lines.

Parts a) to i) of Figure 5.23 show the application of this heuristic to a simple
configuration of adjacent rectangles. The first uncrossed adjacency to be considered
is adjacency A. The two rectangles comprising this adjacency, namely rectangles 1
and 2 form the start of the chain as shown in a) . Rectangle 3 is adjacent to 2 on the
right and is added to the chain. Similarly, rectangle 4 is adjacent to rectangle 3 and
is also added to the chain. Rectangle 5 is on the left of rectangle 4 and therefore
is not considered for inclusion in the chain since it would result in kinking of the
chain. The chain comprising rectangles 1, 2, 3, and 4 is now checked for visibility.
The chain clearly does not allow visibility so rectangle 4 is removed from the chain.
The new chain shown in d) consists of rectangles 1, 2 and 3. This chain is does
allow visibility so the forward part of the algorithm is complete and an attempt is
made to extend this possible line backwards. Rectangle 1 does not have any left
or bottom adjacencies so the chain cannot be extended backwards. Thus a line is
placed crossing adjacencies A and B. The next uncrossed adjacency is C. The
first two rectangles of the chain are 3 and 4 as shown in e). The chain cannot be
extended in the forward direction since this leads to kinking. However, we can
extend the chain backwards into rectangles 2 and 1, as shown in f) and g). The
chain in g) consisting of rectangles 1, 2, 3, and 4 does not allow visibility. Since the
chain is now being extended backwards, rectangle 1 is removed from the left hand
side of the chain. The resulting chain shown in h) does allow visibility and thus a
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Figure 5.24: Extending forwards and then backwards — redundant lines can be gen-
erated.

line can be placed that crosses adjacencies B and C. The only remaining uncrossed
adjacency is D. The start of the new chain comprises rectangles 4 and 5 as shown
in i). The chain cannot be extended forwards (there are no more rectangles) and
cannot be extended backwards into rectangle 3 since that would lead to kinking.
Therefore a line can be placed to cross adjacency D. All of the adjacencies have
now been crossed.

This heuristic has been implemented and tested on some configurations of ad-
jacent rectangles. The heuristic seems to offer a reasonable approximation to the
exact result in the cases tested. There are, however, some cases where the heuristic
produces redundant lines — lines which only cross adjacencies which are crossed by
other lines generated later in the process (see Figure 5.24 where lines A, B and C
are redundant). The removal of redundant lines could be achieved by a post pro-
cessing phase —identifying “essential lines” (axial lines that cross some ad] acencies
that are not crossed by any other axial lines) and then removing the redundant lines.

Another problem with the implementation of this heuristic is that it is biased
in favour of crossing vertical adjacencies (the first rectangle considered to extend
a chain of rectangles is a right neighbour) and this can affect the accuracy of the
approximation.
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5.5.7 Summing Up

This section of the thesis has considered some heuristics which could be used to
produce approximate solutions to ALP-ALOR. Clearly more work in this area is
required to clarify the ideas and find a good heuristic. This additional work is out-
side the scope of this thesis but some work is currently being undertaken (under the
author’s supervision) by an Honours student in the School of Computer Science at
the University of the Witwatersrand.

5.6 Special cases which can be solved in polynomial
time

ALP-OLOR is in general NP-Complete but it seems likely that there are some spe-
cial cases of the general problem for which polynomial time algorithms can be
obtained. In particular it seems likely that an exact solution for configurations of
rectangles which form chains, as defined in Section 4.7.2.3, could be found in poly-
nomial time. In this variation of the problem a more generalised form of chain
where any rectangle in the chain can have at most two neighbours (adjacent on
different sides) as shown in Figure 5.25 could also be considered. It seems likely
that exact solutions for this type of configuration could also be found in polynomial
time.

Whether exact polynomial-time solutions for more complicated configurations
of rectangles can be found is still an open question.

5.7 Future Research

Section 5.3 of this thesis has shown that ALP-ALOR is NP-Complete. This points
to two fruitful areas for future research — heuristic algorithms for approximate solu-
tions and special cases where the exact solution can be found in polynomial time.
A previous section of this thesis (Section 5.5) addressed the first of these ar-
eas to some extent and suggested some heuristics which could be used to produce
approximate solutions to ALP-ALOR but future work could be focussed on

e developing more, and hopefully better, heuristics to solve the problem,

e testing of the heuristics presented here and any new heuristics which are de-
veloped.

e looking at other approaches, for example genetic algorithms, for finding ap-
proximate solutions.
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Figure 5.25: A more general chain of rectangles

The area of special cases which can be solved in polynomial time is very briefly
addressed in this thesis. It is conjectured that simple chains of adjacent rectangles
and even more complicated chains could be solved exactly in polynomial time. At-
tention should be focussed on proving these claims and should also be focussed on
attempting to determine other, more complicated confi gurations of adjacent rectan-
gles for which the problem can be solved exactly in polynomial time.

5.8 Conclusion

The axial line placement problem for axial lines with arbitrary orientation and or-
thogonal rectangles (ALP-ALOR) has been shown to be an NP-Complete problem
as is ALP-OLOR. Also in this chapter some heuristics to find approximations for
ALP-ALOR have been suggested but these heuristics still have to be tested to de-
termine how good the approximations are likely to be. The idea of special cases
which can be solved in polynomial time has been briefly touched upon but this is
essentially left as future work.

The NP-Completeness result presented in this chapter can be extended to a
slightly more general problem — axial lines with arbitrary orientation crossing the
adjacent edges between convex polygons (ALP-ALCP). This extension of the result
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is discussed in the next chapter (Chapter 6) of this thesis.



Chapter 6

Placing axial lines with arbitrary
orientation to cross the adjacencies
between convex polygons

6.1 Introduction

The problem which is being considered in this thesis is that of placing the axial
lines through the convex spaces in an urban layout. Chapters 4 and 5 discuss sim-
plifications of this problem. In both cases the convex spaces (convex polygons) are
restricted to being rectangles and the problem is that of finding the minimum num-
ber of axial lines that cross all of the adjacencies between rectangles. In Chapter 4
the axial lines are restricted to being parallel to the Euclidean axes while in Chapter
5 this restriction no longer applies. This chapter discuss the generalisation of the
problem where the aim is to find the minimum number of axial lines to cross all of
the shared boundaries between adjacent convex polygons. Both of the simplifica-
tions, ALP-OLOR and ALP-ALOR, are NP-Complete. In this chapter ALP-ALCP
(Axial Line Placement — Arbitrary Lines and Convex Polygons) is also shown to be
NP-Complete.

In the remainder of this chapter (ALP-ALCP) is discussed in more detail. The
problem is restated in detail in Section 6.2 below. In Section 6.3 ALP-ALCP is
shown to be NP-Complete by demonstrating that ALP-ALOR is a restriction of
ALP-ALCP. Then, because ALP-ALCP is NP-Complete, some ideas for heuristics
to find approximate axial maps are discussed in Section 6.4 and some comments
are made about special cases which can be solved in polynomial time are made in
Section 6.5. In Section 6.6 some ideas for future research are briefly discussed.

162
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6.2 Statement of the Problem

Given a number of adjacent convex polygons find the fewest axial lines contained
wholly inside the polygons which will cross all of the shared boundaries (adjacen-
cies) between adjacent polygons. An additional requirement is that each axial line
should cross as many of the shared boundaries as possible —a maximal axial line.

As in Chapters 4 and 5, depending on how the problem is considered there are
2 similar but distinct problems which can be addressed.

1. Adjacencies can be crossed more than once but every adjacency must be
crossed at least once.

2. Any adjacency has exactly one line crossing it.

In this chapter and in this thesis only problem 1 is addressed. An example of the
problem is shown in Figure 6.2.

6.3 Proving the Problem is NP-Complete

The problem can be formally stated as

ALP-ALCP

Instance: A collection of convex polygons P; ... P,, where each polygon is adja-
cent to at least one other polygon, and a positive integer M.

Question: Ts there a set L of axial lines where each axial line is maximal in length,
each line is wholly contained in the collection of polygons, each shared boundary
between adjacent polygons is crossed at least once and | L |< M?

Theorem 6.3.1 ALP-ALCP is NP-Complete.

Proof
Clearly ALP-ALCP is in NP. Given a set of axial lines with arbitrary orientation it
is possible to check in polynomial time that each adjacency has been crossed by at
least one axial line.

The problem ALP-ALOR which was proved to be NP-Complete in Chapter 5
is a restricted instance of ALP-ALCP. 1t is a special case of ALP-ALCP where the
convex polygons are restricted to being orthogonal rectangles. Thus using the ap-

proach of proof by restriction (see Section 2.3) Theorem 6.3.1 has been proved.
0O
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6.4 Heuristics to find approximate solutions for ALP-
ALCP

ALP-ALCP has been shown to be NP-Complete (Section 6.3) and thus in the gen-
eral case finding a minimal solution could take an unreasonable amount of time. It
is thus necessary to consider heuristics to find approximate solutions in reasonable
time. Developing the heuristics is beyond the scope of this thesis and thus will be
future work which arises from this thesis. However some of the heuristics which
are suggested in Section 5.5 could possibly be modified to produce approximate
solutions to ALP-ALOR.

6.5 Special cases of ALP-ALCP which can be solved
in polynomial time

ALP-OLOR is in general NP-Complete but it seems likely that there are some spe-
cial cases of the general problem for which polynomial time algorithms can be
obtained. In particular it seems possible that an exact solution for configurations
of convex polygons which form chains (analogous to the more general chains pre-
sented in Section 5.6) could be found in polynomial time. See Figure 6.2 for an
example of such a chain.

Whether exact polynomial-time solutions for more complicated configurations
of convex polygons can be found is still an open question and is outside the scope
of this thesis.

6.6 Future Work

Section 6.3 of this thesis shows that ALP-ALCP is NP-Complete. This points to two
fruitful areas for future research — heuristic algorithms for approximate solutions
and special cases where the exact solution can be found in polynomial time. Neither
of these areas has been addressed in this thesis but both certainly warrant attention.

6.7 Finding the adjacencies in a configuration of ad-
jacent convex polygons

In order to develop heuristics to find reasonable approximations to the exact solution
for ALP-ALCP or to consider special cases for ALP-ALCP, it is necessary to be able
to efficiently find the adjacencies in a configuration of adjacent convex polygons.
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Recently Adler et al. [2001] produced a solution to this probleml.

6.8 Conclusion

In this chapter of the thesis the axial line placement problem for axial lines with ar-
bitrary orientation and convex polygons (ALP-ALCP) has been shown to be an NP-
Complete problem as are ALP-OLOR and ALP-ALOR. The result in this chapter
(ALP-ALCP) follows because ALP-ALOR is a restriction of ALP-ALCP - orthog-
onal rectangles are a subclass of convex polygons. This result raises that question
of whether or not the original axial line placement problem — placing the minimum
number of axial lines to cross the adjacencies in a convex map of a town or ur-
ban layout — is also NP-Complete. In the next chapter of the thesis this question is
addressed.

IThe author of this thesis set the problem as an assignment for the 2001 University of the Wit-
watersrand Computer Science Honours class in their Analysis of Algorithms course. The resulting
assignment solutions were then combined to produce a paper which was submitted to the SAICSIT
2001 Research Symposium and accepted as an “electronic publication™



Chapter 7

Placing Axial Lines in Town Plans

7.1 Introduction

The original problem from the town planning domain which is considered in this
thesis is to find the axial map for an urban area given the convex map of area. A con-
vex map is composed of the minimum number of convex spaces (convex polygons)
which partition the urban area (represented as a polygon with holes). In this thesis
only partitions which do not make use of Steiner points (see Section 2.2) are al-
lowed. An axial map consists of the minimum number of “axial lines” (straight line
segments) necessary to cross the adjacencies between the convex polygons which
make up the convex map. In this thesis only the problem where adjacencies can
be crossed more than once but must be crossed at least once is considered. An
additional requirement is that the axial lines should cross as many adjacencies as
possible. These constraints are chosen to reflect the constraints in the real world
problem as closely as possible.

As was seen in Chapter 2 the first of these problems — covering or partitioning
a general polygon by the smallest number of convex polygons (or other types of
polygons) — has been quite well studied in the general case. Many of these covering
and partitioning problems have been shown to be NP-Complete or NP-Hard. In par-
ticular O’Rourke and Supowit [1983] have shown that the problem of partitioning a
general polygon with holes into convex polygons is NP-Hard. This thesis concen-
trates on the second of these problems — crossing the adjacencies between convex
spaces by the minimum number of axial lines. In Chapter 4 the problem of crossing
the adjacencies between orthogonal rectangles by orthogonal lines is shown to be
NP-Complete. Likewise in Chapter 5 the problem of crossing the adjacencies be-
tween orthogonal rectangles by lines which are not necessarily orthogonal is shown
to be NP-Complete. The proof in Chapter 5 can be extended to show that the prob-
lem of crossing the adjacencies between general convex polygons by lines with
arbitrary orientation is NP-Complete (Chapter 6).

168
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(@)

Figure 7.1: (a) A complete grid of size 4, (b) The corresponding complete urban
grid of size 4

In this chapter the emphasis is on finding sets of lines to cross the adjacencies
between convex polygons in a situation which is representative of the real world
problem, i.e. covering the convex map of some town with an axial map. The chap-
ter begins by considering some special cases where it is possible to prove that the
minimal axial line cover can be found in polynomial time (Section 7.2). The prob-
lem in somewhat less restricted cases is then considered (Section 7.3) and finally
the more general cases are briefly considered.

7.2 Urban Grids

Gewali and Ntafos [1993] define the complete two-dimensional grid of size n as
the graph with vertex set V = {1,2,...,n} x {1,2,... ,n} and the edge set & =
{{G,7),(k,m)} : |i — k| + |j — m| = 1} where all edges are parallel to the major
axes. In a geometric setting, the grid edges can be thought of as corridors and the
grid vertices as intersections of corridors. A (partial) grid is any subgraph of the
complete grid.

In this thesis the grid definitions of Gewali and Ntafos [1993] are extended to
define the concept of urban grids.

Definition 7.2.1 A complete urban grid of size n is a complete two-dimensional
grid of size n where each grid edge or corridor Ep,1 < p < 2n(n — 1) is an
orthogonal rectangle with length | and width w, | > w > 0, and each grid vertex or
intersection, I; ;,i,5 =1,2,...n, is an orthogonal square of size w x w. Each end
of any corridor rectangle must be a side of an intersection.
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Figure 7.1 shows in (a) an example of a complete grid of size 4 and in (b) a complete
urban grid of size 4.

Definition 7.2.2 An urban grid is any subgraph of the complete urban grid.

Gewali and Ntafos [1993] also define a grid segment as a succession of grid
edges along a straight line bounded at either end by a missing edge. A simple grid
is a grid where all of the endpoints of the grid segments lie on the outer face of
the planar subdivision formed by the grid. A general grid is a grid which can have
holes — some of the endpoints of the segments may lie on the inner face of the planar
subdivision.

Definition 7.2.3 A thoroughfare is a grid segment in an urban grid.

Definition 7.2.4 A simple urban grid is an urban grid where all of the endpoints of
the thoroughfares lie on the outer face of the planar subdivision formed by the grid.

Definition 7.2.5 A general urban grid is an urban grid which can have holes —
some of the endpoints of the thoroughfares may lie on the inner face of the planar
subdivision.

In order to place the axial lines in a complete urban grid it is necessary first to be
able to find the convex map of the urban grid, i.e. to be able to partition the complete
urban grid into the smallest number of convex polygons. The complete urban grid
of size n has n? intersections and 2n(n — 1) corridors. The number of corridors
is easily seen by observing that each of the n horizontal thoroughfares have n — 1
corridors, giving a total of n(n — 1) corridors lying horizontally. Similarly, there
are n(n — 1) corridors lying vertically. The convex map must have fewer convex
polygons than the sum of the corridors and intersections as the convex polygons
representing these can be merged into a smaller number of larger polygons.

The minimum partition for the corridors and intersections of corridors which
make up the four outer thoroughfares will be comprised of 4 convex polygons. Any
attempt to partition the urban grid by combining the partitioning of the inner and
outer regions would lead to more than 4 convex polygons in the outer region without
resolving the partitioning of the inner region. There are a number of partitions of
size 4 — see Figure 7.2 and Figure 7.3 for examples of the partitioning of the outer
region of a complete urban grid of size 4. In Figure 7.2 the partition is accomplished
by drawing a diagonal across each corner of the grid and closing off each corridor
leading into the interior of the grid. In Figure 7.3 the corner points of the corner
intersection are used to define the shared edges of the partition.

Partitioning the inner region will involve the placement of appropriately sized
rectangles. This is essentially accomplished by determining where the adjacencies
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between rectangles can occur. These adjacencies are essentially edges connecting
vertices on the boundary of the inner region. The geometry of the problem means
that the best place to put these edges will be at the intersections of corridors. There
are 4 cases which can occur — see Figure 7.4. Case 1 involves the fewest convex
polygons so it would make sense to use as many of these types of partitions as
possible. Clearly it is possible to place Case 1 adjacencies at each intersection. If
this is done so that these adjacencies are all parallel to the z-axis then the interior
region is partitioned into » — 2 long rectangles (1 for each horizontal thoroughfare
in the interior region) and (n — 2)(n — 1) short rectangles (n — 1 of them for each
~ vertical thoroughfare in the interior region). The total number of convex polygons
required is thus 4 + (n — 2) + (n — 2)(n — 1). The same number of convex polygons
would be required if the long rectangles were aligned with the y-axis. Figure 7.5
shows an example of a partition using Case 1 adjacencies for a complete urban grid
of size 4. In the case of an urban grid of size 4 the minimum number of convex
polygons required is 4 + 2 + (2)(3) = 12.

The question remains as to whether or not this is the minimum number of convex
polygons which can partition a complete urban grid. Theorem 7.2.1 below addresses
this question.

Theorem 7.2.1 A minimum of 4 + (n — 2) + (n — 2)(n — 1) convex polygons are
required to partition any complete urban grid of size n > 2

Proof

As has been shown above the outer region cannot be partitioned by fewer than 4
convex polygons. Thus it is necessary to show that no partition of the inner region
can have fewer than (n — 2) 4+ (n — 2)(n — 1) convex polygons.

Any solution can only be achieved by merging two or more of the short rect-
angles representing the corridors, plus the squares representing the intersections,
in the same thoroughfare (merging across thoroughfares will not result in convex
polygons). There are 2(n — 2)(n — 1) of these short rectangles and (n — 2)? in-
tersections in the inner region. The intersections must be merged with the short
rectangles to form longer rectangles or convex polygons. As argued above, the best
way to do this is to use Case 1 (from Figure 7.4) — using any of the other forms of
merging will result in more convex polygons in the final partition. Case 1 merging
involves 3 rectangles, Case 2 involves 4 rectangles and Cases 3 and 4 involve 4
convex polygons.

In Case 1, merging each intersection with the corridors around it forces the
closing of the ends of two rectangles — these two rectangles cannot now be further
merged. This result applies whether horizontal or vertical adjacencies are placed
to close off the rectangles. Each intersection must be addressed and so 2(n — 2)?
rectangle ends are closed when merging the intersections with the corridors around
them. The partitioning of the outer region forces the closing of the ends of 4(n — 2)
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Figure 7.5: A complete partitioning of a complete urban grid of size 4

rectangles — each of the short rectangles which are adjacent to the outer region. Thus
in total 4(n — 2) + 2(n — 2)? rectangle ends are closed. This means there must be
(4(n—2)4+2(n—2)?)/2 or (n—2)+(n—2)(n—1) rectangles or convex polygons in
any partition of the inner region ((4(n —2) +2(n—2)?)/2 = 2(n —2)+ (n—2)% =
Mm—d+n?—dntd=mn-2)+n*=3n+2)=(m—-2)+(n-2)(n—-1)
The result follows.

a

The next step in the process would be to determine the axial map for the com-
plete urban grid. This is considered in Theorem 7.2.2 below.

Theorem 7.2.2 The minimal set of axial lines to cross the adjacencies in a mini-
mally partitioned complete urban grid can be found in polynomial time.

Proof

A minimum partition (convex map) of a complete urban grid consists of 4 + (n —
2) 4+ (n — 2)(n — 1) convex polygons. Irrespective of the exact form of the convex
polygons which make up the partition the form of adjacencies which can occur in
any partition are limited. Adjacencies can be

1. diagonals across the intersections in the outer region
2. the edges of the corner intersections in the outer region

3. the shared edge between two rectangles in any thoroughfare (see case 1l in
Figure 7.4)

4. at the ends of rectangles between the inner and outer regions
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Figure 7.6: The axial map for a complete urban grid of size 4

All of these adjacencies can be crossed as below.

e By placing exactly 2 axial lines to cross the adjacencies in the outer region.
The axial lines do not have to be orthogonal and there are only 4 adjacencies
to be crossed in any minimally partitioned outer region. The axial map shown
in the size 4 version of the problem in Figure 7.6 is one example which shows
that only two axial lines are required to cross all of the adjacencies in the
outer region. The axial lines in this case could be orthogonal. Figure 7.7
shows an example where axial lines which are non-orthogonal are required.
The adjacencies in all other partitions of the outer region can be crossed with
similar arrangements of axial lines.

e By placing an axial line in each thoroughfare. These axial lines must cross
the adjacencies between the inner and outer regions and all the other adjacen-
cies (if there are any) in the thoroughfare. Note that these axial lines do not
necessarily have to be orthogonal.

Clearly this set of axial lines is the minimum to cross the adjacencies in the
convex map. Each line through an interior thoroughfare is required. Any such
thoroughfare will have at least two adjacencies which must be crossed by axial
lines — one at each end of the thoroughfare between the inner and outer regions.
One axial line will cross both of these adjacencies and any other adjacencies which
appear in that thoroughfare. However, that axial line cannot cross the adjacencies
in any other thoroughfare or in the outer region.

Clearly determining these axial lines can be done in polynomial time. If the
complete urban grid is of size n then the number of thoroughfares is 2n (this in-
cludes the thoroughfares in the outer region). There are 2(n — 2) interior thorough-
fares. Placing the axial lines in all of the interior thoroughfares can thus be done
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Figure 7.7: The axial map for a complete urban grid of size 4

in ©(n) time — placing each line can be done in constant time. Determining which
axial lines are necessary in the outer region can clearly be accomplished in O(1)
time — it is only necessary to determine what adjacencies are used at each corner

intersection of the outer region.
O

The importance of Theorem 7.2.2 is that, irrespective of the convex polygons
which make up the convex map of the complete urban grid, determining the axial
map of the grid can be done in polynomial time. This holds even though determining
the convex map is an NP-Hard problem in general. This theorem means that if the
space in town plan can be modelled as a complete urban grid then the axial map
for the town can be found in polynomial time. Clearly a central city area with a
grid arrangement of streets could be modelled in this fashion. Typically in such a
situation the ratio between the length and width of a corridor ! : w would be in the
range [2, 10]. The results above would, however, still hold as all that was required
by the definition of an urban grid was that/ > w.

A further important result follows from Theorem 7.2.2.

Corollary 7.2.1 The size of the axial map of a minimally partitioned complete ur-
ban grid of size n is equal to 2(n — 2) + 2.

In addition to this result a number of other results follow as well.

Corollary 7.2.2 The minimal set of axial lines to cross all of the adjacencies in a
minimally partitioned simple urban grid can be found in polynomial time.

Proof
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Figure 7.8: An example of minimally partitioning a simple urban grid

A minimally partitioned simple urban grid can be covered with convex polygons
which are of similar form to those that cover the complete urban grid. This means
that the adjacencies which have to be crossed will be orthogonal at all intersections
except where only two corridors meet at right angles at an intersection — a corner.
In this case the adjacency could be one of the interior edges of the intersection or
a diagonal through the intersection. See Figure 7.8 for an example of a possible
minimal partition of a simple urban grid.

The partitions which result from placing the different types of adjacencies at
corners are equivalent in terms of the size of the partition. Using the diagonals
rather than the orthogonal edges to construct the partitions is, however, preferable
for the next phase of the process — placing the axial lines. There are two reasons
for this. First, if orthogonal adjacencies are used then there are situations where
more axial lines are required to cover all of the adjacencies in the partition than if
diagonals are used. See Figure 7.9 where the partition using orthogonal adjacencies
(a) requires two axial lines and the partition using diagonal adjacencies (b) only re-
quires one axial line. A second, and subsidiary, reason is that the process of placing
the axial lines is simplified if only diagonal adjacencies are used in the corners. In
the remainder of this section diagonal adjacencies will be used at corners. Figure
7.10 shows a partition of Figure 7.8 under this constraint.

If any thoroughfare has orthogonal adjacencies in it then one axial line must be
placed to cross all of the adjacencies in this thoroughfare. Such a thoroughfare may
also have diagonal adjacencies in it. These will be crossed by the axial line placed
to cross the orthogonal adjacencies.

If any thoroughfare only has diagonal adjacencies in it then, because of the
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Figure 7.9:

Figure 7.10: An example of minimally partitioning a simple urban grid using only
diagonal adjacencies at corners
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Figure 7.11: An example of limited choice in placing axial lines in a simple urban
grid — only 3 of the dashed lines are necessary

geometry of the problem, it can have either one or two such adjacencies — more
diagonal adjacencies would result in a non-minimal partition. If a number of thor-
oughfares with only diagonal adjacencies in them are connected then limited cases
of choice can occur. See Figure 7.11 for an example of this. In these situations an
axial line through each thoroughfare is sufficient to cross all of the adjacencies but
fewer axial lines are actually necessary. In the example in Figure 7.11, 6 axial lines
cross all of the diagonal adjacencies but only 3 lines are necessary. In this situation
the lines through thoroughfares with only one diagonal adjacency will never be se-
lected and so the problem becomes choosing 3 lines out of 4. Other similar cases
could occur but they all have the common property that they would form a chain,
or in some cases disjoint chains, of convex polygons. In these chains an axial line
crosses the adjacency between a convex polygon and its predecessor in the chain
(if it is not the first polygon in the chain) and the adjacency between the convex
polygon and its successor (if it is not the last polygon).

It is also possible to get cycles and not just chains of thoroughfares with only
diagonal adjacencies. See Figure 7.12 for an example of this situation. Here 4
choice axial lines cross the four diagonal adjacencies but only two are necessary.

Any algorithm to place the minimum number of axial lines in a simple grid
would have to be able to determine which of the possible lines to include in the final
set of lines.

If choice such as that described above can be resolved in polynomial time, then
the problem of finding the axial map can be solved in polynomial time by the fol-
lowing process.
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Figure 7.12: An example of the limited choice in placing axial lines in a simple
urban grid resulting in a cycle of choice axial lines — only 2 of the dashed lines are
necessary

1. Placing an axial line through each thoroughfare which has orthogonal adja-
cencies.

2. Placing an axial line through each thoroughfare which has two diagonal adja-
cencies in it.

3. Placing an axial line to cross any diagonal adjacency which has not been
crossed in earlier phases of the process. In order to make such a line maximal
it should be placed to cross as many adjacencies as possible. In this situation
the only adjacencies it could cross would be adjacencies on the boundaries of
the two thoroughfares which make up the corner. An axial line which crosses
the diagonal adjacency cannot cross more than one such adjacency because of
the geometry of the problem. See Figure 7.13 for an example of this situation.

4. Resolving the choice.

Clearly steps 1, 2 and 3 can be done in polynomial time — there are a polynomial
number of thoroughfares to consider. To see that step 4 can also be done in polyno-
mial time, note that each axial line in one of these chains or cycles crosses exactly
two adjacencies. This means that it is simple to transform each chain or cycle of
convex polygons which are adjacent at the diagonals of corners o an instance of
edge cover by mapping adjacencies to vertices and axial lines to edges. Edge cover
gives the minimum number of edges to cover all the vertices in a graph. This maps
to the minimum number of axial lines to cross all of the adjacencies in any chain
or cycle. Edge cover can be solved in polynomial time [Garey and Johnson, 1979].

The result follows.
a
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Figure 7.13: An example of placing an axial line to cross a single diagonal adja-
cency in two thoroughfares in a simple urban grid

Corollary 7.2.3 The minimal set of axial lines to cross all of the adjacencies in a
minimally partitioned general urban grid can be found in polynomial time.

Proof
The proof in this instance follows from the proof of Corollary 7.2.2. Figure 7.14
shows an example of this version of the problem including an instance of choice.

The method of resolving the choice, as discussed above, applies in this case as well.
]

From the proofs of corollaries 7.2.2 and 7.2.3 it follows that in both simple and
general urban grids the number of axial lines in the axial map is less than or equal to
the number of thoroughfares in the grid. The results of these corollaries also mean
that if the space in town plan can be modelled as a simple or general urban grid then
the axial map for the town can be found in polynomial time. Clearly some towns
with grid-like arrangements of streets could be modelled in this fashion. '

7.3 Deformed Urban Grids

The results in the previous section show that axial maps can be found in polyno-
mial time for town layouts which can be modelled by urban grids. Unfortunately
all town plans cannot be modelled by urban grids — many town plans are not that
regular. More general polygons would be needed to model town plans which are not
regular grids. These more general polygons could make the problems of finding the
convex map and the axial map more difficult. In this section slightly less restricted
layouts than in Section 7.2 are considered. The aim here is attempt to determine
whether relaxing the restrictions in this manner means that the problems of finding
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Figure 7.14: An example of choice in placing axial lines in a general urban grid —
only 3 of the dashed lines are necessary

the convex and axial maps are still solvable in polynomial time or whether they are
more like the general cases — NP-Hard or NP-Complete.

Definition 7.3.1 A complete deformed urban grid of size n is a generalisation of a
complete urban grid of size n with the following properties.

o The intersections I, ;,1,7 = 1,2,...n and corridors E,,1 < p < 2n(n — 1)
in the grid may be convex quadrilaterals rather than orthogonal squares and
rectangles respectively.

e Each corridor E, must be adjacent to exactly two intersections on opposing
sides.

o Where a corridor E, is adjacent to an intersection I, ., they must share an
edge.

A deformed urban grid is any subset of a complete deformed urban grid.

In this definition the deformation could very small and the resulting deformed
urban grid would be quite regular — similar to an urban grid. The deformation
could also be quite large in which case the deformed urban grid could be something
more like a general configuration of adjacent rectangles. In the first instance finding
the convex map and from that finding the axial map would be similar to solving
the corresponding urban grid problems in Section 7.2. In the other extreme the
problems could become that of partitioning a general polygon with holes which
has been shown to be NP-Hard [Lingas, 1982; O’Rourke and Supowit, 1983] and
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then solving ALP-ALCP which is shown to be NP-Complete in Chapter 6. In the
remainder of this section deformed urban grids where the deformation is not very
great are considered. The interest here is in considering deformed urban grids which
could model real world urban layouts which are often grid-like but have to take into
account the geographical environment. Figure 1.1 in Chapter 1 gives an idea of
the type of layout which it would be useful to model using a deformed urban grid.
Another example of a deformed urban grid (which could be an urban layout) is
shown in Figure 7.15.

In the deformed urban grids which will be used to model these “grid-like” urban
layouts some additional restrictions will be added to the definition of deformed
urban grids given above. First, the length of each side, dij.,a =12 3,4, of an
intersection quadrilateral, I; ;, is such that 0 < d; ;, < 2w. Second, each corridor
E, must have two opposing sides which are long compared to the other two sides.
The ratio of the length of the shortest side to the longest side in any corridor should
be approximately 1 : 2. As stated previously, each of the two short sides of any
corridor will also be a side of some intersection.

In the remainder of the thesis any mention of a deformed urban grid should be
taken to mean a “grid-like” deformed urban grid. That is, a deformed urban grid
with the additional length constraints.

Conjecture 7.3.1 The problem of finding the minimal set of convex polygons to
partition a deformed urban grid is NP-Hard.

This conjecture is based on the results of Lingas [1982] and O’Rourke and
Supowit [1983] that partitioning a polygon with holes is NP-Hard. A deformed
urban grid seems to offer enough choice to make the problem difficult to solve
exactly. Figure 7.16 shows a possible partition of the deformed urban grid of Fig-
ure 7.15. This partition was created by merging corridors and intersections to form
larger convex polygons. If the merging allowed parts of intersections to be merged
with parts of corridors then there would be more scope for choice and the problem
would be harder to solve.

Clearly future work should be focussed on proving or disproving Conjecture
7.3.1.

The algorithm in Figures 7.17 and 7.18 calculates a partition of a deformed ur-
ban grid in polynomial time. The algorithm could return a minimal partition but is
not guaranteed to do so — this depends on the shapes of the intersections and corri-
dors. If Conjecture 7.3.1 is true then future research can be focussed on determining
configurations of intersections and corridors which will allow this algorithm to re-
turn minimal solutions. Future research in improving this algorithm or developing a
better algorithm is also worthwhile. If Conjecture 7.3.1 is not true then an algorithm
which is guaranteed to find a minimal solution in all cases should be sought.



Figure 7.15: An example of a deformed urban grid
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{This algorithm assumes that the deformed urban grid is input in
the form of the thoroughfares defined by the intersections and
corridors of which they are comprised.}

{Each thoroughfare is an array, where each element in the array
contains
information as to whether the polygon is an intersection or a
corridor and
the number of the intersection or corridor in the appropriate
list
Each element in the corridor or intersection lists contains
the coordinates of the vertices in that corridor or
intersection and
a flag to indicate its status as regards inclusion in the

final partition}

{Included(polygon) is a function which takes a polygon

determines if the polygon is an intersection or a corridor and
checks a flag to see if this polygon has been included in a
polygon which is already in the partition.

It returns True or False.}

{Combine(polygonl!, polygon?2) forms a new polygon which is a
merging of two convex polygons}

{Convez(polygon) is a function which determines whether a

given polygon is convex.

It returns True or False.}

Figure 7.17: Partitioning a deformed urban grid — The description of the input into
the algorithm and the functions used in the algorithm
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FOR i from 1 to number of thoroughfares
IF included(thoroughfare[i].polygon{1])
THEN
WorkingPolygon « thoroughfare[i].polygon[2]
j+«3
ELSE
WorkingPolygon < thoroughfare[i].polygon[1]
J—2
WHILE j < number of polygons in thoroughfare
IF NOT (included(thoroughfare[i].polygonlj]))
THEN
{It might be possible to merge some polygons}
TestPolygon < Combine( WorkingPolygon,
thoroughfare[i].polygon[j]))
IF Convez(Testpolygon)
THEN
WorkingPolygon + TestPolygon
Jeg+1
ELSE
IF WorkingPolygon is not a single intersection
THEN
Add WorkingPolygon to Partition
Mark all corridors and intersections in
WorkingPolygon as included
WorkingPolygon < thoroughfare[i].polygon[j)
Jeg+1
ELSE
WorkingPolygon < thoroughfare[i].polygon[j)
Jeg+1
ELSE
{The next polygon is an intersection which was already
included in a cross thoroughfare.
This intersection cannot be used again.}
Add WorkingPolygon to Partition
Mark all corridors and intersections in WorkingPolygon
as included
WorkingPolygon < thoroughfare[i].polygon(j]
jei+1
FOR k from 1 to Number of Intersections
IF NOT(Included(intersection[k]))
Add Intersection[k] to Partition

Figure 7.18: Partitioning a deformed urban grid
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To see how the algorithm works consider the portion of a deformed urban grid
shown in Figure 7.19. In this example only two thoroughfares are shown but this is
enough to illustrate how the algorithm computes a partition.

Assume that the horizontal thoroughfare is considered first. This thoroughfareis
made up of intersection a, corridor A, intersection b, corridor B and intersection c.
The first polygon in this thoroughfare is a. This polygon has not yet been included
in a polygon in the final partition (line 01) so the WorkingPolygon becomes that
polygon and j is initialised appropriately (lines 06 and 07). This is the beginning of
the phase of attempting to merge the polygons in that horizontal thoroughfare into
a smaller number of convex polygons.

The WHILE loop (lines 08 to 30) is then entered. In the WHILE loop the first
step is to test whether the next polygon in the thoroughfare has already been in-
cluded in a polygon in the final partition (line 09). In this case the next polygon
is A. A is a corridor and could not have been included in a polygon in the final
partition — this is the first and only time it is considered. The WorkingPolygon, a,
and A are then combined to form the TestPolygon (line 11). TestPolygon is then
tested to see if it is convex (line 12). It is convex, a and A make a convex polygon,
and so WorkingPolygon becomes this new polygon (line 14) and the pointer to the
next polygon to be considered is incremented (line 15). The WHILE loop will then
be re-entered to consider the next polygon in the thoroughfare.

This next polygon is the intersection b. b has not been included — this is the first
time it is being considered — and so is combined with WorkingPolygon to make a
new TestPolygon. As before TestPolygon is convex and so this polygon becomes
the new WorkingPolygon.

When the algorithm considers the next polygon in the thoroughfare, now B,
TestPolygon is not convex. This means that WorkingPolygon will be saved as
a component of the final partition (provided it is not made up of only a single
intersection (line 17)). Lines 19 to 22 save the current WorkingPolygon, mark
the appropriate intersection and corridor polygons as included and make the new
WorkingPolygon the next polygon in the thoroughfare. In this case WorkingPolygon
becomes B.

In the case where WorkingPolygon was a single intersection then lines 24 and
25 would be executed. Any WorkingPolygon which is only a single intersection
would not be immediately saved as part of the final partition as it could later be
considered for combining with other polygons when the vertical thoroughfares are
considered.

In this example the algorithm would continue and ¢ would be merged with B.
This first thoroughfare would thus be partitioned into two convex polygons.

The algorithm would proceed in a similar fashion for all other horizontal thor-
oughfares before considering the thoroughfare consisting of intersection a, corridor
C, intersection d, corridor D and intersection e. In this case the first intersection
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fares. The shapes of the corridors (deformed rectangles) and intersections (de-
formed squares) mean that each intersection can potentially be merged with the
corridors in one thoroughfare but it is unlikely that an intersection could be merged
with corridors from more than one thoroughfare to form a convex polygon. Thus
the number of axial lines needed to cover each thoroughfare can be found and the
final solution can be determined by removing any unnecessary lines from this set.
Figure 7.21 shows the axial lines which would be placed to cross the adjacencies in
the (not necessarily) minimal partition of Figure 7.16. This figure supports the idea
that there is little choice in placing the axial lines and that a solution in polynomial
time is likely.

Future research can be focussed on proving Conjecture 7.3.2 by finding a poly-
nomial time algorithm to place a minimal set of lines or on disproving the conjecture
by extending the NP-Completeness proofs presented above to cover this situation
as well.

The results presented in this section of the thesis are important because they
show that if the space in the original town plan can be modelled as a deformed
urban grid then it is likely (if Conjecture 7.3.2 is true) that an axial map can be
found in polynomial time.

7.4 More general urban polygons

In reality it is not likely to be possible to model all urban layouts (polygons with
holes) as deformed urban grids — the layouts are more irregular than this. Here the
results of Lingas [1982] and O’Rourke and Supowit [1983] show that the partition-
ing problem is NP-Hard. In Chapter 5 of this thesis it is shown that the axial line
placement problem restricted to rectangles and lines of arbitrary orientation is NP-
Complete and in Chapter 6 the axial line placement problem for convex polygons
and axial lines of arbitrary orientation is shown to be NP-Complete. These results
indicate strongly that finding the convex map of an urban layout and the placing of
the minimum number of axial lines to cross the adjacencies in the convex map of
some urban layout are likely to be NP-Complete. The first step in future research
in this regard would be to prove these claims. Subsequent research could then be
concentrated on approximation algorithms to give “reasonable” approximations to
the convex map and axial map for urban layouts of this form.

7.5 Conclusion

This chapter shows that the axial line placement problem can be solved exactly
in polynomial time for some restricted cases — a complete urban grid, a simple
urban grid and a general urban grid. It also seems (but is not proven here) that an
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exact solution is possible in polynomial time for a deformed urban grid. The more
general problem — placing a minimal set of axial lines to cross all of the adjacencies
between arbitrary convex polygons — was shown to be NP-Complete in Chapter 6
of this thesis and this suggests that finding polynomial time solutions in general
town plans could also be NP-Complete and heuristics will have to be used to find
acceptable approximations.

The next chapter of the thesis presents some ideas for further research to build
on the results of this work.



Chapter 8

Future Research

8.1 Introduction

This thesis addresses a number of computational problems which arise from the
potential automation of the space syntax method [Hillier ez al., 1983]. The research
focussed specifically on the problems associated with the placing of axial lines in
a convex map. It was, however, impossible to address all of the possible research
questions which were originally identified in this area. In addition, as the work for
this thesis progressed other problems were raised. The future research which stems
from the work discussed in this thesis is thus of two types

1. problems which were presented in Chapter 3 but were not tackled at all in this
research,

2. problems which arose in the course of pursuing this research but were not
addressed (or at least not fully addressed) at the time.

Sections 8.2 and 8.3 of this chapter discuss the problems which fall into these two
groups in more detail.

8.2 Open problems

This thesis considers a number of axial line placement problems which have derived
from the original idea of automating the Space Syntax Analysis method. In all
cases the problems which have been considered are where multiple crossings of
adjacencies are permitted. If the restriction is made that each adjacency is crossed
exactly once then the list of problems below are still open questions.

1. Restricting the problem to dealing with orthogonally aligned rectangles and
axial lines which are parallel to the edges of the rectangles and where each
adjacency must be crossed by exactly one axial line.

194
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2. Restricting the problem to dealing with orthogonally aligned rectangles but
where the axial lines are not necessarily orthogonal and where each adjacency
must be crossed by exactly one axial line.

3. Considering the problem of general convex polygons (not restricted to the
form which would occur in the town planning domain) where the adjacencies
between polygons are crossed by non-orthogonal axial lines and where each
adjacency must be crossed by exactly one axial line.

4. Considering the problem of convex polygons, which represent the deformed
grid in the town planning domain, where the adjacencies between polygons
are crossed by non-orthogonal lines and where each adjacency must be crossed
by exactly one axial line.

Based on the results given in Chapters 4, 5 and 6 there is evidence to suggest that
each of these problems is NP-Complete. Future research would have to substantiate
this claim. Once this has been done heuristics will have to be derived and tested to
produce approximations to the solutions to these problems.

Heuristics which are likely to work well in the case of (1) (and possibly (2), (3)
and (4)) above are

e choosing the longest line first.
e choosing the line with the highest number of single crossings first.
e choosing the line with the highest number of grouped single crossings first.

e choosing essential lines first (as was done for the heuristic discussed in Chap-
ter 4) then using one or all of the other approaches suggested here. This
makes sense as the adjacency which is crossed only by the essential line will
generate a line which must be in the final set of lines.

Again a profitable area of research could be to study special cases of these prob-
lems where exact solutions can be found in polynomial time.

8.3 Future research arising from this thesis

The problems here are related to the various problems which have been solved as
part of this work for this thesis. They are given below grouped according to the
variation of the axial line placement problem in which they occurred.

e ALP-OLOR
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— In Chapter 4 an algorithm which finds a non-redundant set of axial lines
for ALP-OLOR is discussed. In some instances this algorithm does ex-
tra work. Future work could focus on reducing the amount of work
done by this “most uncrossed adjacencies” heuristic algorithm. In par-
ticular, attempting to address the issue of redundant calculations which
are made for the collection of rectangles shown in Figure 4.22 or similar
configurations.

— Developing other heuristics to produce approximate solutions to the ex-
act solution could also be a fruitful area of research.

— Section 4.7.1 presents some variations of ALP-OLOR which can be
solved in polynomial time. Also polynomial time algorithms for the
orthogonal axial line placement problem for chains of orthogonal rect-
angles and trees of orthogonal rectangles are presented. Future research
can be focussed on finding other arrangements of rectangles which are
more general than a tree of rectangles which can be solved in polynomial
time.

— An interesting, but not directly related, area of further research is in the
generation of test data. Generating non-trivial trees of adjacent but non-
overlapping rectangles proved to be relatively complex in this research.

e ALP-ALOR

— In Chapter 5 some ideas for heuristics to produce approximate solutions
to the exact solution for ALP-ALOR are presented. These ideas need
to be more fully developed or better heuristics derived. Once this has
been done, any resulting heuristics should be implemented and tested
for some carefully selected test cases.

— A related area of further research would be looking at other approaches,
for example genetic algorithms, for finding approximate solutions.

— The idea of special cases of the problem which can be solved in poly-
nomial time was also very briefly raised in Chapter 5. This is an area in
which a lot of additional work could be done.

e ALP-ALCP

— In Chapter 6 ALP-ALCP is shown to be NP-Complete. This means that
finding reasonable approximations to the exact solution in polynomial
time becomes important. Thus heuristics for this problem should be
developed and tested.

— As part of the work in developing heuristics for this problem it would
be interesting to consider other approaches, for example genetic algo-
rithms, to generate approximate solutions.
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— The idea of special cases of the problem which can be solved in poly-
nomial time was also very briefly raised in Chapter 6. This is an area in
which a lot of additional work could be done.

¢ Placing Axial Lines in Town Plans

— Conjecture 7.3.1 of Chapter 7 states that “The problem of finding the
minimal set of convex polygons to partition a deformed urban grid is
NP-Hard.” This conjecture is based on the results of Lingas [1982] and
O’Rourke and Supowit [1983] that partitioning a polygon with holes is
NP-Hard. A deformed urban grid seems to offer enough choice to make
the problem difficult to solve exactly. Clearly future work should be
focussed on proving or disproving this conjecture.

— Conjecture 7.3.2 states that “The minimal set of axial lines to cross the
adjacencies in the convex map of a deformed urban grid can be found
in polynomial time.” Future research can be focussed on proving this
conjecture by finding a polynomial time algorithm or on disproving the
conjecture by extending the NP-Completeness proofs to cover this situ-
ation as well.

— Not all urban layouts can be modelled by deformed urban grids as de-
fined in Chapter 7. A fruitful area of research would be considering
more general configurations of polygons with holes which could repre-
sent urban layouts. The focus here should be on determining whether
the problem remains NP-Complete or whether the restriction to mod-
elling urban layouts is enough to remove the choice which complicates
the problem.

8.4 Conclusion

This thesis has considered a number of Axial Line Placement problems but the
area is still new and there are lots of other problems which should be of interest to
computer scientists. Some of these problems are discussed above but the list is not
complete and it is likely that the list will grow rather than shrink as more work is
done in this area.



Chapter 9

Conclusion

9.1 Introduction

Computers can be used to automate many mundane and boring tasks and can thus
free the professional to concentrate on the more intellectually demanding aspects
of many jobs. The original intent of this thesis was to consider the possibility of
automating some or all of the task of applying the Space Syntax method to an urban
layout. An architect or town planner would apply the space syntax method ([Mills,
1992]) to a town or city in 4 main steps.

1. Finding the “deformed grid” of the urban layout.
2. Creating the convex map of the area.
3. Creating the axial map of the area from the convex map.

4. Combining the information from the convex map and the axial map to pro-
duce an integration factor for the town/city.

Currently the town planner or architect does all but the final analysis phase by
hand. The initial aim of this thesis was thus to determine which phases of this
work could potentially be automated in order to free the architect or town planner
to concentrate on the more intellectually stimulating design phases.

In the introduction to this thesis it is shown that all of these phases could bene-
fit from automation and that the potential automation of space syntax gives rise to
many areas of research. These areas include image processing, computational ge-
ometry and algorithms. However, tackling all of these areas would be an immense
tasks. For this reason, the problems of separating space from non-space, determin-
ing the convex map and the final analysis stage with its associated algorithms were
not considered as part of this research. The decision was made to focus the research
for this PhD on the problem of finding the axial lines which cross all of the shared
boundaries between the convex polygons in the convex map, that is finding the axial
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map for a given layout — the Axial Line Placement problem or ALP. This problem
on its own is still very big and could not be solved entirely. This thesis only tackled
a small subset of the research questions proposed in Chapter 3 but the contributions
of this research (discussed in Section 9.2) can go some way towards answering the
original research question and are interesting problems in computational geometry
in their own right.

9.2 Contributions of this thesis

As discussed in Section 9.1 above, this thesis only considered a small subset of the
possible problems which arise in Axial Line Placement. The process which was
applied in the research was to start with simplifications of ALP and then to build
towards solving the general problem. The specific contributions that were made by
this research are presented below.

e This research proved that the axial line placement problem for orthogonal ax-
ial lines and collections of adjacent orthogonal rectangles (ALP-OLOR) is
NP-Complete. This proof was accomplished by a transformation from bicon-
nected planar vertex cover to stick diagram and hence to ALP-OLOR. As
ALP-OLOR is NP-Complete the research then focussed on approximations
and the thesis presents a heuristic algorithm which produces a non-redundant
set of maximal axial lines to cross all of the adjacencies in a collection of ad-
jacent orthogonal rectangles. This heuristic algorithm was implemented and
tested on a number of configurations of adjacent rectangles and was shown
to produce reasonable approximations in polynomial time. The research then
focussed on special cases of ALP-OLOR which can be solved in polynomial
time. Specifically it was shown that exact polynomial-time solutions can be
found for configurations of adjacent orthogonal rectangles which can be con-
verted to interval graphs; chains of adjacent orthogonal rectangles and trees
of adjacent orthogonal rectangles.

e The next phase of the research involved relaxing the restriction that the axial
lines had to be orthogonal. The research proved that the axial line placement
problem for axial lines with arbitrary orientation and collections of adjacent
orthogonal rectangles (ALP-ALOR) is NP-Complete. This proof was also
accomplished by a transformation from biconnected planar vertex cover to
stick diagram and hence to ALP-ALOR. Some heuristics for ALP-ALOR
were derived and are presented in this thesis.

e The next step in the research was to allow general convex polygons instead
of orthogonal rectangles. The research proved that the axial line placement
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problem for axial lines with arbitrary orientation and collections of adjacent
convex polygons (ALP-ALCP) is NP-Complete.

e After considering the simplifications discussed above, the research emphasis
was shifted to focus on finding axial lines to cross the adjacencies between
convex polygons in a situation which is representative of the real world prob-
lem, i.e. covering the convex map of some town with an axial map. In this
phase of the research it was proved that the minimum partition of complete,
simple and general urban grids can be found in polynomial time. It was also
proved that finding a minimal set of maximal axial lines for complete, simple
and general urban grids can be done in polynomial time. It was conjectured
that finding the convex map of a deformed urban grid is NP-Complete or NP-
Hard (based on the result of Culberson and Reckhow [1994]). Assuming that
this conjecture is true a polynomial-time heuristic algorithm to produce a par-
tition of a deformed urban grid was developed. It was further conjectured that
the axial map of a deformed urban grid can be found in polynomial time.

In summary this research has shown that ALP-OLOR, ALP-ALOR and ALP-
ALCP are NP-Complete. It has also shown that placing axial lines in some simpli-
fied configurations of polygons can be done in polynomial-time. There are, how-
ever, still many open problems in this area. These are discussed in some detail in
Chapter 8 and discussed briefly below.

9.3 Future work

The results of the research discussed in this thesis do not answer all the questions
raised in ALP. In fact, as the research progressed more problems were raised than
were solved. Chapter 8 discusses in some detail the open problems which were not
tackled in this research and the subsidiary problems which arose out of the problems
which were tackled.

The biggest area of future research is in considering the groups of problems
(similar to those discussed in Section 9.2) where any adjacency must be crossed
by exactly one axial line — in contrast to this research where multiple crossings of
adjacencies were permitted. It has been conjectured [O’Rourke, 1999] that these
problems can be solved in polynomial time but as yet this has not been proved.

Another important area of research is in extending the results of this research
to address the original problem of finding the convex map and axial map of some
urban layout. The partitioning problem for polygons with holes is NP-Hard so
heuristic algorithms will have to be found to return acceptable approximations to the
exact solution. It seems that when the architect or urban designer applies the Space
Syntax Analysis technique that she/he uses heuristics in het/his solution for the
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convex map. This means that an approximate solution is likely to be acceptable to
the urban designer especially if the solution is similar to her/his own. This suggests
an artificial intelligence approach to designing the heuristic could be a fruitful area
of research. A similar comment applies for determining the axial map which covers
the convex map of some urban layout.

9.4 Overall Conclusions

The original aim of this thesis — automating the Space Syntax method — was clearly
too big a task to be undertaken in a single PhD. With this in mind the research was
focussed only on the computational problems which arise with the placing of axial
lines. Even with this scaling down, the research area was still very big and only
some of the problems which were identified were tackled. The work which was
completed is, however, important in that a number of new NP-Complete problems
(ALP-OLOR, ALP-ALOR and ALP-ALCP) were identified and also because some
new and interesting problems in the area of computational geometry have been in-
troduced.



References

[Adler et al. 2001] J. Adler, G. D. Christelis, J. A. Deneys, G. D. Konidaris,
G. Lewis, A. G. Lipson, R. L. Phillips, D. K. Scott-Dawkins, D. A. Shell,
B. V. Strydom, W. M. Trakman, and L. D. Van Gool. Finding adjacencies in
non-overlapping polygons. In Electronic Proceedings of South African Insti-
tute of Computer Scientists and Information Technologists Annual Research
Symposium, 2001.

[Andreae 1992] T. Andreae. Some results on visibility graphs. Discrete Applied
Mathematics, 40:5-17, 1992.

[Asano et al. 1986] T. Asano, T. Asano, and H. Imai. Partitioning a polygonal re-
gion into trapezoids. Journal of the ACM, 33(2):290-312, April 1986.

[Asano et al. 1999] T. Asano, S. K. Ghosh, and T.C. Shermer. Visibility in the
plane. In J.-R. Sack and J. Urrutia, editors, Handbook on Computational
Geometry, chapter 19. Elsevier Science, 1999.

[Ashman 1999] J. Ashman. The design of different input arrangements to achieve
predictable performance of a ray guarding heuristic. Honours Research Re-
port, School of Computer Science, University of the Witwatersrand, 1999.

[Avis and Toussaint 1981] D. Avis and G. T. Toussaint. An optimal algorithm for
determining the visibility of a polygon from an edge. IEEE Transactions on
Computers, C-30(12):910-914, December 1981.

[Avis et al. 1986] D. Avis, T. Gum, and G. Toussaint. Visibility between two edges
of a simple polygon. The Visual Computer, 2:342-357, 1986.

[Baase 1997] S. Baase. A Gift of Fire: Social, Legal, and Ethical Issues in Com-
puting. Prentice Hall, Upper Saddle River, New Jersey, 1997.

[Barzohar and Cooper 1996] M. Barzohar and D. B. Cooper. Automatic finding of
main roads in aerial images by using geometric-stochastic models and esti-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(7):707-721, 1996.

202



REFERENCES 203

[Berge 1962] C. Berge. The Theory of Graphs And Its Applications. Methuen &
Co, London, 1962. Translated by A. Doig.

[Bhattacharya and Ghosh 1998] B. K. Bhattacharya and S. K. Ghosh. Character-
izing LR-visibility polygons and related problems. In Mike Soss, editor,
Proceedings of the 10th Canadian Conference on Computational Geometry,
pages 48-49, Montréal, Québec, Canada, 1998. School of Computer Science,
McGill University.

[Biedl et al. 1997] T. Biedl, G. Kant, and M. Kaufmann. On triangulating pla-
nar graphs under the four-connectivity constraint. Algorithmica, 19:427-446,
1997.

[Bilbrough and Sanders 1998] J. Bilbrough and I. D. Sanders. A linear algorithm
for partial edge visibility. In Proceedings of the 1998 SAICSIT Research and
Development Symposium, pages 200-210. South African Institute of Com-
puter Scientists and Information Technologists, November 1998.

[Bilbrough 1998] J. Bilbrough. Partial edge visibility in chains of orthogonal rect-
angles. Honours Research Report, School of Computer Science, University
of the Witwatersrand, 1998.

[Bjorling-Sachs and Souvaine 1991] I. Bjorling-Sachs and D. L. Souvaine. A tight
bound for guarding general polygons with holes. Technical Report LCSR-
TR-165, Laboratory for Computer Science Research, Hill Centre for the
Mathematical Sciences, Busch Campus, Rutgers University, New Brunswick,
New Jersey, 1991.

[Bjorling-Sachs and Souvaine 1995] 1. Bjorling-Sachs and D. L. Souvaine. An ef-
ficient algorithm for guard placement in polygons with holes. Discrete &
Computational Geometry, 13:77-109, January 1995.

[Bose et al. 1993] P. Bose, L. Guibas, A. Lubiw, M. Overmars, D. Souvaine, and
J. Urrutia. The floodlight problem. In Proceedings of the 5th Canadian Con-
ference on Computational Geometry, pages 399-404, Waterloo, ON, Canada,
August 1993. University of Waterloo.

[Brassard and Bratley 1996] G. Brassard and P. Bratley. Fundamentals of Algorith-
mics. Prentice Hall, Englewood Cliffs, New Jersey, 1996.

[Bukovska 2000] D. Bukovska. Partitioning a deformed urban grid. Honours Re-
search Report, School of Computer Science, University of the Witwatersrand,
2000.



REFERENCES 204

[Carlsson and Jonsson 1993] S. Carlsson and H. Jonsson. Guarding a treasury. In
Proceedings of the 5th Canadian Conference on Computational Geometry,
pages 85-90, Waterloo, ON, Canada, August 1993. University of Waterloo.

[Carlsson and Jonsson 1995] S. Carlsson and H. Jonsson. Computing a shortest
watchman path in a simple polygon in polynomial-time. In Proceedings of
the 4th Workshop on Algorithms and Data Structures (WADS’95), volume
955 of Lecture Notes in Computer Science, pages 122—134. Springer-Verlag,
1995.

[Castleman 1996] K. R. Castleman. Digital Image Processing. Prentice Hall, Up-
per Saddle River, New Jersey, 1996.

[Chazelle and Dobkin 1985] B. Chazelle and D. P. Dobkin. Optimal convex de-
compositions. In G. T. Toussaint, editor, Computational Geometry, pages
63—133. North-Holland, 1985.

[Chazelle and Guibas 1989] B. Chazelle and L. J. Guibas. Visibility and inter-
section problems in plane geometry. Discrete & Computational Geometry,
4:551-581, 1989.

[Chvatal 1975] V Chvatal. A combinatorial theorem in plane geometry. Journal of
Combinatorial Theory, Series B, 18:39—41, 1975.

[Conn and O’Rourke 1987] H. Conn and J. O’'Rourke. Some restricted rectangle
covering problems. In Proceedings of the 1987 Allerton Conference, 1981.

[Contreras et al. 1998a] F. Contreras, J. Czyzowicz, N. Fraiji, and J. Urrutia. Illu-
minating triangles and quadrilaterals with vertex floodlights. In Proceedings
of the Tenth Canadian Conference on Computational Geometry, pages 58—
59, Montreal, Quebec, Canada, August 1998. School of Computer Science,
McGill University.

[Contreras et al. 1998b] F. Contreras, J. Czyzowicz, E. Rivera-Campo, and J. Ur-
rutia. Optimal floodlight illumination of stages. In Proceedings of the
Fourteenth Annual Symposium on Computational Geometry (SCG’98), pages
409-410, New York, June 1998. Association for Computing Machinery.

[Cormen et al. 1990] T. H. Cormen, C. E. Leierson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, Massachusetts, 1990. Sixteenth
Printing, 1996.

{Culberson and Reckhow 1988] J. Culberson and R. A. Reckhow. Covering poly-
gons is hard. Preliminary Abstract TR 88-6, Department of Computing Sci-
ence, The University of Alberta, 1988.



REFERENCES 205

[Culberson and Reckhow 1989a] J. Culberson and R. A. Reckhow. Othogonally
convex coverings of orthogonal polygons without holes. Journal of Computer
and System Sciences, 39(2):166-204, 1989.

[Culberson and Reckhow 1989b] J. Culberson and R. A. Reckhow. A unified ap-
proach to orthogonal polygon covering problems via Dent diagrams. Tech-
nical Report TR 89-6, Department of Computing Science, The University of
Alberta, 1989.

[Culberson and Reckhow 1994] J. Culberson and R. A. Reckhow. Covering poly-
gons is hard. Journal of Algorithms, 17:2-44, 1994.

[Czyzowicz et al. 1993] J. Czyzowicz, E. Rivera-Campo, and J. Urrutia. Optimal
floodlight illumination of stages. In Proceedings of the Fifth Canadian Con-
ference on Computational Geometry, pages 393-398, Waterloo, ON, Canada,
August 1993. University of Waterloo.

[Czyzowicz et al. 1994] J. Czyzowicz, E. Rivera-Campo, N. Santoro, J. Urrutia,
and J. Zaks. Guarding rectangular art galleries. Discrete Applied Mathemat-
ics, 50:149-157, 1994.

[Das et al. 1993] G. Das, P. J. Heffernan, and G. Narasimhan. LR-Visibility in
polygons. In Proceedings of the Fifth Canadian Conference on Computa-
tional Geometry, pages 303-307, Waterloo, ON, Canada, August 1993. Uni-
versity of Waterloo.

[Deene and Joshi 1992] L. L. Deene and S. Joshi. Treasures in an art gallery. In
Proceedings of the Fourth Canadian Conference on Computational Geome-
try), pages 17-22, 1992.

[Doh and Chwa 1993] J.-I. Doh and K.-Y. Chwa. An algorithm for determining
visibility of a simple polygon from an internal line segment. Journal of Algo-
rithms, 14(1):139-168, January 1993.

[du Plessis and Sanders 2000] N. du Plessis and I. D. Sanders. Partial Edge Vis-
ibility in Chains of Orthogonal Rectangles. Technical Report TR-Wits-CS-
2000-15, Department of Computer Science, University of the Witwatersrand,
September 2000.

[du Plessis 1999] N du Plessis. Partial edge visibility in chains of orthogonal rect-
angles. Honours Research Report, School of Computer Science, University
of the Witwatersrand, 1999.

[Eastman 1972] C. M. Eastman. Preliminary report on a system for general space
planning. Communications of the ACM, 15(2):76-87, February 1972.



REFERENCES 206

[Eidenbenz et al. 1998] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproxima-
bility of some art gallery problems. In Mike Soss, editor, Proceedings of
the 10th Canadian Conference on Computational Geometry, pages 64-65,
Montréal, Québec, Canada, 1998. School of Computer Science, McGill Uni-
versity.

[ElGindy and Avis 1981] H. A. ElGindy and D. Avis. A linear algorithm for com-
puting the visibility polygon from a point. Journal of Algorithms, 2:186-197,
1981.

[Feng and Pavlidis 1975] H.-Y. Feng and T. Pavlidis. Decomposition of polygons
into simpler components: Feature generation for syntatic pattern recognition.
IEEE Transactions on Computers, C-24:636—650, June 1975.

[Fisk 1978] S. Fisk. A short proof of Chvatal’s watchman theorem. Journal of
Combinatorial Theory, Series B, 24:374, 1978.

[Franzblau and Kleitman 1984] D. S. Franzblau and D. J. Kleitman. An algorithm
for covering polygons with rectangles. Information and Control,, 63:164—
189, 1984.

[Franzblau 1989] D.S. Franzblau. Performance guarantees on a sweep-line heuris-
tic for covering rectilinear polygons with rectangles. SIAM Journal on Dis-
crete Mathematics, 2(3):307-321, August 1989.

[Fiiredi and Kleitman 1994] Z. Fiiredi and D. J. Kleitman. The prison yard prob-
lem. Combinatorica, 14(3):287-300, 1994.

[Garey and Johnson 1979] M. R. Garey and D. S. Johnson. Computers and In-
tractability, A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, New York, 1979.

[Garey et al. 1976] M. R. Garey, D. S. Johnson, and Stockmeyer L. Some simpli-
fied NP-Complete graph problems. Theoretical Computer Science, 1:237—
267, 1976.

[Gavril 1972] F. Gavril. Algorithms for minimum colorings, maximum clique,
minimum coverings by cliques, and maximum independent set of a chordal
graph. SIAM Journal of Computing, 1:180-187, 1972.

[Geman and Jedynak 1996] D. Geman and B. Jedynak. An active testing model
for tracking roads in satellite images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18(1):1-14, 1996.



REFERENCES 207

[Gewali and Ntafos 1993] L. Gewali and S. Ntafos. Covering grids and orthogo-
nal polygons with periscope guards. Computational Geometry: Theory and
Applications, 2:309-334, 1993.

[Gewali et al. 1992] L. Gewali, M. Keil, and S. Ntafos. On covering orthogonal
polygons with star-shaped polygons. Information Sciences, 65:45-63, 1992.

[Gewali 1993] L. P. Gewali. On minimum and maximum visibility problem. In
Proceedings of the Fifth Canadian Conference on Computational Geometry,
pages 241-245, Waterloo, ON, Canada, August 1993. University of Waterloo.

[Ghosh et al. 1993] S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E.
Veni Madhavan. Characterizing and recognising weak visibility polygons.
Computational Geometry: Theory and Applications, 3:213-233, 1993.

[Ghosh 1991] S. K. Ghosh. Computing the visibility polygon from a convex set
and related problems. Journal of Algorithms, 12(1):75-95, March 1991.

[{Ghosh 1996] S. K. Ghosh. Corrigendum: A note on computing the visibility poly-
gon from a convex chain. Journal of Algorithms, 21(3):657-662, November
1996.

[Ghosh 1997] S. K. Ghosh. On recognizing and characterizing visibility graphs of
simple polygons. Discrete & Computational Geometry, 17:143-162, 1997.

[Golumbic 1980] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, New York, 1980.

[Gonzalez and Wintz 1987] R. C. Gonzalez and P. Wintz. Digital Image Process-
ing. Addison Wesley, Cambridge, Massachusetts, second edition, 1987.

{Gonzalez and Woods 1992] R. C. Gonzalez and R. E. Woods. Digital Image Pro-
cessing. Addison Wesley, Reading, Massachusetts, 1992. 1993 Printing.

[Gybri et al. 1996]) E. Gyéri, F. Hoffman, K. Kriegel, and T. Shermer. Generalized
guarding and partitioning for rectilinear polygons. Computational Geometry:
Theory and Applications, 6:21—44, 1996.

[Hagger 2001] L. Hagger. Partitioning of a deformed urban grid. Honours Re-
search Report, School of Computer Science, University of the Witwatersrand,
2001.

[Hall 1999] A. Hall. Ray guarding trees of rectangles. Honours Research Report,
School of Computer Science, University of the Witwatersrand, 1999.



REFERENCES 208

[Harary 1969] F. Harary. Graph Theory. Addison-Wesley, Reading, Mas-
sachusetts, 1969.

[Harel 1992] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley,
Reading, Massachusetts, 2nd edition, 1992. With technical assistance of Roni
Rosner.

[Hedetniemi 1996] S. T. Hedetniemi. Personal communication, 1996.

[Heffernan and Mitchell 1995] P. J. Heffernan and J. S. B. Mitchell. An optimal
algorithm for computing visibility in the plane. SIAM Journal of Computing,
24(1):184-201, February 1995.

[Herbert et al. 1994] T. S. Herbert, G. Mills, and I. D. Sanders. African shape
grammar: A language of linear Ndebele homesteads. Environment and Plan-
ning B: Planning and Design, 21(4):453-476, 1994.

[Hillier et al. 1983] B. Hillier, J. Hanson, J. Peponis, J. Hudson, and R. Burdett.
Space syntax, a different urban perspective. Architects’ Journal, 178:47-63,
1983.

[Hillier 1996] B. Hillier. Space is the machine: A configurational theory of archi-
tecture. Cambridge University Press, Cambridge, UK, 1996.

[Hochbaum 1982] D. S. Hochbaum. Approximation algorithms for the set covering
and vertex cover problems. SIAM Journal of Computing, 1982.

[Hoffmann et al. 1991] F. Hoffmann, M. Kaufmann, and K Kriegel. The art gallery
theorem for polygons with holes. In Proceedings of the 32nd Symposium of
Foundations of Computer Science, pages 39—48, 1991.

[Huertas and Nevatia 1988] A. Huertas and R. Nevatia. Detecting buildings in
aerial images. Computer Vision, Graphics, and Image Processing, 41(2):131-
152, February 1988.

[Imai and Asano 1986] H. Imai and T. Asano. Efficient algorithms for geometric
graph search problems. SIAM Journal of Computing, 15:478-494, 1986.

[Jihne 1997] B. Jihne. Digital Image Processing: Concepts, algorithms and sci-
entific applications. Springer-Verlag, Berlin, 1997.

[Kahn et al. 1983] J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries re-
quire fewer watchmen. SIAM Journal of Algebraic and Discrete Methods,
4:194-206, 1983.



REFERENCES 209

[Ke 1989] Y. Ke. Polygon visibility algorithms for weak visibility and link distance
problems. PhD thesis, Johns Hopkins University, Baltimore, 1989.

[Keil and Sack 1985] J. M. Keil and J.-R. Sack. Minimum decompositions of
polygonal objects. In G. T. Toussaint, editor, Computational Geometry, pages
197-216. North-Holland, 1985.

[Keil and Snoeyink 1998] J. M. Keil and J. Snoeyink. On the time bound for con-
vex decomposition of simple polygons. In Proceedings of the 10th Canadian
Conference on Computational Geometry, pages 53—54, Montréal, Québec,
Canada, August 1998. School of Computer Science, McGill University.

[Keil 1985] J. Mark Keil. Decomposing a polygon into simpler components. SIAM
Journal of Computing, 14(4):799-817, November 1985.

[Keil 1999] J. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, ed-
itors, Handbook on Computational Geometry, chapter 11. Elsevier Science,
1999.

[Kenny 2000] L.-A. Kenny. Non-orthogonal axial line placement in orthogonal
rectangles. Honours Research Report, School of Computer Science, Univer-
sity of the Witwatersrand, 2000.

[Konidaris 2001] G. D. Konidaris. Axial line placement in deformed urban grids.
Honours Research Report, School of Computer Science, University of the
Witwatersrand, 2001.

[Koning and Eizenberg 1981] H. Koning and J. Eizenberg. The language of the
prairie: Frank Lloyd Wright’s prairie houses. Environment and Planning B:
Planning and Design, 8:295-323, 1981.

[Kooshesh et al. 1990] A. A. Kooshesh, B. M. E. Moret, and L. A. Székely. Im-
proved bounds for the prison yard problem. In Congressus Numerantium 76,
pages 145-149, 1990.

[Ku and Leong 1995] L. Ku and H.W. Leong. Optimum partitioning of a rectilinear
layout. Technical Report TRC2/95, Department of Information Systems and
Computer Science, National University of Singapore, February 1995.

[Lee and Lin 1986] D. T. Lee and A. K. Lin. Computational complexity of art
gallery problems. IEEE Transactions on Information Theory, 1T-32(2):276—
282, March 1986.

[Levitt and Dwolatzky 1999] S. P. Levitt and B. Dwolatzky. BuRS: A building
recognition system. South African Computer Journal, (24):68-76, 1999.



REFERENCES 210

[Liaw et al. 1993] B.-C. Liaw, N. F. Huang, and R. C. T. Lee. The minimum co-
operative guards problem on k-spiral polygons. In Proceedings of the F ifth
Canadian Conference on Computational Geometry, pages 97-102, Waterloo,
ON, Canada, August 1993. University of Waterloo.

[Lichtenstein 1982] D. Lichtenstein. Planar formulae and their uses. SIAM Journal
of Computing, 11(2):329-393, May 1982. '

[Lingas and Soltan 1996] A. Lingas and V. Soltan. Minimum convex partition of
a polygon with holes by cuts in given directions. Lecture Notes in Computer
Science, 1178:315-325, 1996.

[Lingas 1982] A. Lingas. The power of non-rectilinear holes. In The 9th Interna-
tional Collogquim on Automata, Languages and Programming, number 140 in
Lecture Notes in Computer Science 140, pages 369-383, New York, 1982.
Springer-Verlag.

[Liou et al. 1989] W. Liou, J. Tan, and R. Lee. Minimum partitioning simple recti-
linear polygons in o(n log log n)-time. In Proceedings of the Fifth ACM Sym-
posium on Computational Geometry, pages 344353, Saarbruchen, 1989.

[Liow and Pavlidis 1990] Yuh-Tay Liow and Theo Pavlidis. Use of shadows for
extracting buildings in aerial images. Computer Vision, Graphics, and Image
Processing, 49(2).242-277, February 1990.

[Lu et al. 1998] B-K. Lu, F-R. Hsu, and C. Y. Tang. Guarding in a simple polygon.
In Mike Soss, editor, Proceedings of the 10th Canadian Conference on Com-
putational Geometry, pages 4647, Montréal, Québec, Canada, 1998. School
of Computer Science, McGill University.

[Lubiw 1990] Anna Lubiw. The Boolean basis problem and how to cover some
polygons by rectangles. SIAM Journal on Discrete Mathematics, 3(1):98—
115, February 1990.

[Manber 1988] U. Manber. Introduction to Algorithms: A Creative Approach. Ad-
dison Wesley, Reading, MA, 1988.

[Masek ] W. J. Masek. Some NP-Complete set covering problems. Referenced in
Garey and Johnson, 1979, p. 232.

[Mills 1992] G. Mills. The spatial structure of ideology in informal settlements: A
case study in southern africa. Building and Environment, 27(1):13-21, 1992.

[Mitchell 1990] W. J. Mitchell. The Logic of Architecture: Design, Computation
and Cognition. The MIT Press, Cambridge, Massachusetts, 1990.



REFERENCES 211

[Motwani et al. 1990a] R. Motwani, A. Raghunathan, and H. Saran. Covering or-
thogonal polygons with star polygons: The perfect graph approach. Journal
of Computer and System Sciences, 40(1):19—48, February 1990.

[Motwani et al. 1990b] R. Motwani, A. Raghunathan, and H. Saran. Perfect graphs
and orthogonally convex covers. Journal of Computer and System Sciences,
40(1):19-48, February 1990.

[Ntafos and Tsoukalas 1994] S. Ntafos and M. Tsoukalas. Optimum placement of
guards. Information sciences, 76:141-150, 1994.

[Ntafos 1986] S. Ntafos. On gallery watchman in grids. Information Processing
Letters, 23:99-102, 1986.

[O’Rourke and Supowit 1983] J. O’Rourke and K. J. Supowit. Some NP-Hard
polygon decomposition problems. IEEE Transactions on Information The-
ory, 29:181-190, 1983.

[O’Rourke 1983] J. O’Rourke. Galleries need fewer mobile guards: A variation on
Chvatal’s theorem. Geometriae Dedicata, 14:273-283, 1983.

[O’Rourke 1987] J. O’Rourke. Art Gallery Theorems and Algorithms. Number 3 in
The International Series of Monographs on Computer Science. Oxford Uni-
versity Press, New York, 1987.

[O’Rourke 1993] J. O’Rourke. Computational geometry in C. Cambridge Univer-
sity Press, Cambridge, 1993. 1995 printing.

[O’Rourke 1997] J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 467-479.
CRC Press, Boca Raton, 1997.

[O’Rourke 1999] J. O’Rourke. Personal communication, 1999. At the 11th Cana-
dian Conference on Computational Geometry.

[Papadimitriou 1994] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1994.

[Park et al. 1993] J-H. Park, S. Y. Shin, K-Y. Chwa, and T. C. Woo. On the number
of guard edges of a polygon. Discrete & Computational Geometry, 10:447—
462, 1993.

[Pavlidis and Horowitz 1974] T. Pavlidis and L. Horowitz. Segmentation of plane
curves. IEEE Transactions on Computers, C-23(8):860-869, August 1974.



REFERENCES 212

[Pellegrini and Shor 1992] M. Pellegrini and P. W. Shor. Finding stabbing lines in
3-space. Discrete & Computational Geometry, 8:191-208, 1992.

[Pellegrini 1993] M. Pellegrini. Lower bounds on stabbing lines in 3-space. Com-
putational Geometry: Theory and Applications, 3:53-58, 1993.

[Pellegrini 1997] M. Pellegrini. Ray shooting and lines in space. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geome-
try, pages 467—479. CRC Press, Boca Raton, 1997.

[Perez and Vidal 1994] J.-C. Perez and E. Vidal. Optimum polygonal approxima-
tion of digitized curves. Pattern Recognition Letters, 15:743-750, 1994.

[Phillips 2001] R. Phillips. Special cases for axial line placement in orthogonal
rectangles. Honours Research Report, School of Computer Science, Univer-
sity of the Witwatersrand, 2001.

[Preparata and Shamos 1985] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1985.

[Ramer 1972] U. Ramer. An iterative procedure for the polygonal approximation
of plane curves. Computer Graphics and Image processing, 1:244-256, 1972.

[Rinsma ef al. 1990] I. Rinsma, J. W. Giffin, and D. F. Robinson. Orthogonal floor-
plans from maximal planar graphs. Environment and Planning B: Planning
and Design, 17:57-71, 1990.

[Ruskin 1997] S. G. Ruskin. Polygonal approximation algorithms with application
to aerial photographs. Master’s thesis, Department of Computer Science,
University of the Witwatersrand, 1997.

[Russ 1999] J. C. Russ. The Image processing handbook. CRC Press, Boca Raton,
Florida, 1999.

[Sack and Suri 1990] J.-R. Sack and S Suri. An optimal algorithm for detecting
weak visibility of a polygon. IEEE Transactions on computers, 39(10):1213—
1219, October 1990.

[Sanders and Kenny 2001a] I. D. Sanders and L-A. Kenny. Heuristics for plac-
ing non-orthogonal axial lines to cross the adjacencies between orthogonal
rectangles. In Abstracts for the Thirteenth Canadian Conference on Compu-
tational Geometry, pages 153-156. University of Waterloo, August 2001.



REFERENCES 213

[Sanders and Kenny 2001b] I. D. Sanders and L-A. Kenny. Heuristics for placing
non-orthogonal axial lines to cross the adjacencies between orthogonal rect-
angles. Technical Report TR-Wits-CS-2001-6, School of Computer Science,
University of the Witwatersrand, August 2001.

[Sanders et al. 1995] 1. D. Sanders, D. J. Lubinsky, and M. Sears. Ray guarding
configurations of adjacent rectangles. In Proceedings of the 25th Annual
Southern African Computer Lecturers’ Association Conference, pages 104
116. Rhodes University, July 1995.

[Sanders et al. 1997] 1. D. Sanders, D. J. Lubinsky, and M. Sears. Ray guard-
ing configurations of adjacent rectangles. In Proceedings of The 1997 Na-
tional Research and Development Conference (SAICSIT 97), pages 221-238.
Potchefstroom University for Higher Christian Education, November 1997.
This paper was subsequently submitted to the South African Computer Jour-
nal.

[Sanders et al. 1999] 1. D. Sanders, D. J. Lubinsky, M. Sears, and D. Kourie. Or-
thogonal ray guarding of adjacencies between orthogonal rectangles. South
African Computer Journal, (23):18-29, 1999.

[Sanders et al. 2000a] 1. D. Sanders, D. C. Watts, and A. Hall. Orthogonal axial
line placement in chains and trees of orthogonal rectangles. Technical Re-
port TR-Wits-CS-2000-8, Department of Computer Science, University of
the Witwatersrand, June 2000.

[Sanders et al. 2000b] 1. D. Sanders, D. C. Watts, and A. D. Hall. Orthogonal axial
line placement in chains and trees of orthogonal rectangles. South African
Computer Journal, (25):56-67, 2000.

[Sanders 1998a] 1. D. Sanders. Non-orthogonal ray guarding. In Proceedings of
the 28th Annual SACLA Conference, pages 133-137. Stellenbosch University,
June 1998. Work in progress.

[Sanders 1998b] I. D. Sanders. Non-orthogonal ray guarding. In Proceedings of
the 1998 SAICSIT Research and Development Symposium, pages 230-235.
South African Institute of Computer Scientists and Information Technolo-
gists, November 1998. Work in progress.

[Sanders 1999] 1. D. Sanders. Non-orthogonal ray guarding. In J. Snoeyink,
editor, Abstracts for the Eleventh Canadian Conference on Com-
putational Geometry, pages 80-83. University of British Columbia,
Vancouver, August 1999. The full paper is available in the
electronic proceedings — http://www.cs.ubc.ca/conferences/CCCG/
elec_proc/elecproc.html.



REFERENCES 214

[Sanders 2000] I. D. Sanders. Placing axial lines in urban grids. South African
Computer Journal, (26):145-153, 2000. This issue of SAC]J is a Special
Issue which constitutes the Proceedings of the 2000 SAICSIT Research and
Development Symposium, Cape Town, 1-3 November 2000. Included in this
Special Issue are Research articles, Experience papers and New Ideas papers.
This is a Research article.

[Sarkar 1993] D. Sarkar. A simple algorithm for detection of significant vertices for
polygonal approximation of chain-coded curves. Pattern Recognition Letters,
14:959-964, 1993.

[Schachter 1978] B. Schachter. Decomposition of polygons into convex sets. IEEE
Transactions on computers, C-27(11):1079-1082, November 1978.

[Scott-Dawkins 2001] D. Scott-Dawkins. Genetic algorithm for the ALP-ALOR
problem. Honours Research Report, School of Computer Science, University
of the Witwatersrand, 2001.

[Shermer 1989] T. C. Shermer. Hiding people in polygons. Computing, 42(2-
3):109-131, 1989.

[Shermer 1992] T. C. Shermer. Recent results in art galleries. Proceedings of the
IEEE, 80(9):1384-1399, September 1992.

[Soares 1997] R. Soares. Guarding rectilinear polygons with holes using vertex
guards. Honours Research Report, School of Computer Science, University
of the Witwatersrand, 1997.

[Soltan and Gorpinevich 1993] V. Soltan and A. Gorpinevich. Minimum dissec-
tion of a rectilinear polygon with arbitrary holes into rectagles. Discrete and
Computational Geometry, 9:57-79, 1993.

[Soltész 2000] E. Soltész. The axial line placement problem in deformed urban
grids. Honours Research Report, School of Computer Science, University of
the Witwatersrand, 2000.

[Srinivasaraghavan and Mukhopadhyay 1993] G. Srinivasaraghavan and
A. Mukhopadhyay. On the notion of completeness for reconstruction
algorithms on visibility graphs. In Proceedings of the 5th Canadian Confer-
ence on Computational Geometry, pages 315-320, Waterloo, ON, Canada,
August 1993. University of Waterloo.

[Stilla e al. 1996] U. Stilla, E. Michaelsen, and K. Luetjen. Automatic extraction
of buildings from aerial images. In F. Leberl, R. Kalliany, and M. Gruber,
editors, Methods for extracting and mapping buildings, roads and other man-
made structures from images. Oldenburg, 1996.



REFERENCES 215

[Subramaniyam and Diwan 1991] R. V. Subramaniyam and A. A. Diwan. A coun-
terexample for the sufficiency of edge guards in star polygons. Information
Processing Letters, 40:97-99, 1991.

[Sugihara et al. 1990] K. Sugihara, I. Suzuki, and M. Yamashita. The searchlight
scheduling problem. SIAM Journal on Computing, 19(6):1024-1040, De-
cember 1990.

[Suri 1997] S. Suri. Polygons. In J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, pages 429-444. CRC Press,
Boca Raton, 1997.

[Tamassia and Tollis 1986] R. Tamassia and I. G. Tollis. A unified approach to
visibility representations of planar graphs. Discrete and Computational Ge-
ometry, 1:321-341, 1986.

[Ton et al. 1991] J. Ton, J. Sticklen, and A. K. Jain. Knowledge-based segmenta-
tion of landsat images. IEEE Transactions on Geoscience and Remote Sens-
ing, 29(2):222-232, March 1991.

[Urrutia 1999] J. Urrutia. Art gallery and illumination problems. In J.-R. Sack
and J. Urrutia, editors, Handbook on Computational Geometry, chapter 22.
Elsevier Science, 1999.

[Venkatasubramanian and Cullum 1993] R. Venkatasubramanian and A. Cullum.
Grazing inside a convex polygon. In Proceedings of the Fifth Canadian Con-
ference on Computational Geometry, pages 228-233, Waterloo, ON, Canada,
August 1993. University of Waterloo.

[Viswanathan 1993] S. Viswanathan. The edge guard problem for spiral polygons.
In Proceedings of the Fifth Canadian Conference on Computational Geome-
try, pages 103-108, Waterloo, ON, Canada, August 1993. University of Wa-
terloo.

[Watts and Sanders 1997] D. C. Watts and I. D. Sanders. Ray guarding a chain of
adjacent rectangles. Technical Report TR-Wits-CS-1997-02, University of
the Witwatersrand, 1997.

[Watts 1997] D. C. Watts. Ray guarding chains of rectangles. Honours Research
Report, School of Computer Science, University of the Witwatersrand, 1997.

[Wilson 1997] D. Wilson. Guard placement in orthogonal towns. Honours Re-
search Report, School of Computer Science, University of the Witwatersrand,
1997.



REFERENCES 216

[Wood and Yamamoto 1993] D. Wood and P. Yamamoto. Dent and staircase vis-
ibility. In Proceedings of the Fifth Canadian Conference on Computational
Geometry, pages 297-302, Waterloo, ON, Canada, August 1993. University
of Waterloo.

[Wood 1985] D. Wood. An isothetic view of computational geometry. InG. T
Toussaint, editor, Computational Geometry, pages 429-459. North-Holland,
1985.

[Zarganakis 1997] D. Zarganakis. Lowering the upper bound for guarding gen-
eral polygons with and without holes. Honours Research Report, School of
Computer Science, University of the Witwatersrand, 1997.

[Zhu and Seneviratne 19971 Y.Zhuand L. Seneviratne. Optimal polygonal approx-
imation of digitised curves. IEE Proceedings. Vision, Image and Signal Pro-
cessing, 144(1):8-14, 1997.



