Chapter 3

Research Questions

3.1 Possible Research Areas

As discussed in the introduction to this thesis (Chapter 1), the range of possible
Computer Science research questions that arise from the idea of automating space
syntax is very wide. These research questions fall into a number of areas:

e using image processing techniques to separate space from non-space in the
town plan or aerial photograph and then using polygon approximation algo-
rithms to “accurately” and “efficiently” represent each area by a bounding

polygon,

e studying ways to find the convex map (the minimum number of non-overlapping
convex polygons that cover the area of the spaces in the deformed grid) of the
area under consideration,

e studying ways to find the axial map (the smallest number of axial lines that
will cross all of the shared boundaries between the convex spaces in the con-
vex map) of the area, and

e studying the graph theory and other algorithms used in the final stages of
applying space syntax.

This breadth of possible research meant that it was thus necessary to concentrate
on a subset of the problems. For this reason, the problems of separating space
from non-space, determining the convex map and the final analysis stage with its
associated algorithms were not considered as part of this research. The decision was
made to focus the research for this PhD on the problem of finding the axial lines
that cross all of the shared boundaries between the convex polygons in the convex
map, that is finding the axial map for a given layout. This problem has not been
previously studied although it is a variation on a number of guarding and visibility
problems that have been well studied in the literature (see Chapter 2).

63

CHAPTER 3. RESEARCH QUESTIONS 64

The problem which is the focus of this thesis can then be stated as
Axial Line Placement (ALP): Given a convex map of an urban area determine the
axial map required to cover the convex map.

This can be restated as
Axial Line Placement (ALP): Given a collection of adjacent convex polygons rep-
resenting the convex map of an urban area, find the minimum number of maximum
length straight line segments contained wholly inside the convex polygons (axial
lines) that will cross every adjacency (shared edge) between the polygons.

This problem has two variations

multiple crossings where each adjacency must be crossed by at least one axial
line.

single crossing where each adjacency must be crossed by exactly one axial line.

Neither of these two variations of ALP have been previously studied and both
were thus candidates for the research in this thesis. The fact that many of the guard-
ing and covering or partitioning problems that appear in the literature have been
shown to be NP-Complete or NP-Hard indicates that these problems might also be.
The focus of research on the problems should thus be on determining if they are also
NP-Complete or NP-Hard. If the problems turn out to be NP-Complete or NP-Hard
then later research effort could be focussed finding good heuristics. If they can be
solved in polynomial time then later research effort could be focussed on finding
good algorithms to solve the problems.

The literature also shows that it is worthwhile studying restrictions of the more
general problems because even if the more general problem is NP-Complete or
NP-Hard a restriction may not be. A number of restrictions of ALP could thus be
considered as potential research areas. In addition, the problem as stated above
assumes that the configuration of adjacent convex polygons represents the convex
map of some urban layout. If the configuration of convex polygons does not have
to represent an urban layout then a slightly different problem results.

A list of some restrictions or generalisations of the original problem that would
be interesting areas of research is given below.

1. Restricting the problem to dealing with orthogonally aligned rectangles rather
than general convex polygons and restricting the axial lines to be parallel to
the edges of the rectangles. In this case there are two subproblems (see Figure
3.1

(a) where each adjacency must be crossed by at least one axial line.

(b) where each adjacency can be crossed by only one axial line.

CHAPTER 3. RESEARCH QUESTIONS 65

A requirement here is that each axial line is maximal in length. In this work
maximal is taken as meaning that the axial line crosses as many adjacencies
as possible.

2. Restricting the problem to dealing with orthogonally aligned rectangles where
the adjacencies between rectangles are cut by axial lines that are not neces-
sarily orthogonal.

(a) where each adjacency must be crossed by at least one axial line.

(b) where each adjacency can be crossed by only one axial line.
Again a requirement is that each axial line is maximal.

3. Considering the problem of general convex polygons (not restricted to the
form that would occur in the town planning domain) where the adjacencies
between polygons are crossed by axial lines that are not necessarily orthogo-
nal.

(a) where each adjacency must be crossed by at least one axial line.

(b) where each adjacency can be crossed by only one axial line.
Again each axial line must be maximal.

Each of these variations of ALP poses some interesting questions. Is the gen-
eral problem solvable in polynomial time? Are only specific instances solvable in
polynomial time? Is the problem NP-Complete? If so, are there heuristics that offer
acceptable solutions?

The actual problems tackled in the research reported in this thesis are discussed
in the next section of the document.

3.2 Scope of this thesis

As discussed above there are many problems in this area that could be addressed
but tackling all of them would be too much for a single PhD thesis. Thus, this re-
search only considered some of the problems listed in Section 3.1. In this thesis
only the variations of the problems where adjacencies may be crossed by more than
one axial line (multiple crossings above) was studied. The decision to restrict the
study to this case was based on the fact that the original urban design problem al-
lows multiple crossings of adjacencies. The problems actually tackled are discussed
below.

Problem 1b

.

=

.

Problem 1a

he two different problems

ingt

A simple configuration show

Figure 3.1

CHAPTER 3. RESEARCH QUESTIONS 67

1. Restricting the problem to dealing with orthogonally aligned rectangles where
the adjacencies between rectangles are crossed by axial lines that are re-
stricted to being parallel to the edges of the rectangles (orthogonal) and where
each adjacency must be crossed by at least one axial line (1a above).

2. Restricting the problem to dealing with orthogonally aligned rectangles where
the adjacencies between rectangles are crossed by lines with arbitrary orien-
tation and where each adjacency must be crossed by at least one axial line (2a
above).

3. Considering the problem of general convex polygons (not restricted to the
form that would occur in the town planning domain) where the adjacencies
between polygons are crossed by axial lines with arbitrary orientation and
where each adjacency must be crossed by at least one axial line (3a above).

4. Given a convex map of an urban area determine the minimum number of axial
lines required to cover the convex map.

The major emphasis of this thesis is on the first of these problems — orthogonal
axial lines crossing the adjacencies between rectangles in configurations of adjacent
orthogonal rectangles (see point 1 above). Chapter 4 presents an NP-Completeness
proof based on a transformation from vertex cover for planar graphs to show that
the problem is NP-Complete and then presents a heuristic algorithm to give a “rea-
sonable” approximation to the exact solution. The chapter concludes by discussing
some special cases of the problem that can be solved in polynomial time.

In Chapter 5 the problem of point 2 is considered. Again the problem is shown
to be NP-Complete. Future work here would be to develop heuristic algorithms to
produce good approximations to the solution. Some heuristics are suggested but
they are not fully developed in this research.

Chapter 6 considers the problem in point 3. This problem is a generalisation of
2a and is easily shown to be NP-Complete. Again, future work would be to develop
heuristic algorithms to produce good approximations to the solution.

The original ALP problem (point 4) is a constrained version of that discussed
above (point 3) and is considered in Chapter 7 of this thesis.

Chapter 4

Placing orthogonal axial lines to
cross adjacencies between orthogonal
rectangles

4.1 Introduction

This thesis is concerned with the computational issues that result from attempting
to automate the placing of axial lines through the convex spaces in a town plan in
the space syntax method [Hillier ez al., 1983]. This chapter and chapter 5 concern
simplifications of the original problem — the placing of straight lines through collec-
tions of orthogonal rectangles. In this chapter the problem is simplified even more,
only the problem of placing orthogonal axial lines — axial lines parallel to the Eu-
clidean axis — through a collection of orthogonal rectangles is considered (problem
1a of Chapter 3).

As mentioned earlier (Chapter 2), the problem is similar to many guarding and
visibility problems [Bjorling-Sachs and Souvaine, 1991, 1995; Czyzowicz et al.,
1994; Gewali and Ntafos, 1993] since axial lines coincide with visibility between
two points. The situation can also be envisaged as an art gallery made up of a
number of adjacent rooms where the designers wish to position doorways between
the rooms in such a way that the minimum number of guards who can only see
along a straight line (or laser beams, video cameras, etc.) is required to guard all of
the doorways between rooms. To allow easy access between rooms extra doors can
be added if a guard’s line of sight is blocked by an interior wall. This is equivalent
to making the axial lines as long as possible. Another application of this problem
is in the design of integrated circuits. Here the problem is the siting of the fewest
connecting strips to join all of the components on the chip.

The next section of this chapter presents a formal statement of the problem
which is considered. In subsequent sections this problem is shown to be NP-

68

Chapter 4: ALP-OLOR 69

Complete (Section 4.4) and then a heuristic algorithm that produces a non-redundant
solution is presented along with some results of testing this heuristic algorithm on
some synthetic test data. The chapter ends with a discussion of some special cases
where an exact solution can be found in polynomial time.

4.2 Statement of the Problem

Given a number of adjacent, orthogonally-aligned rectangles, find the fewest or-
thogonal line segments, contained wholly inside the rectangles, required to cross
all of the adjacencies between adjacent rectangles. An additional requirement is
that each line segment should cut as many of the adjacencies as possible — the line
should be maximal.

The solutions for horizontal line segments (and vertical adjacencies) and vertical
line segments (and horizontal adjacencies) are independent and the remainder of this
chapter will only discuss the former. The latter problem can be solved by a rotation
through 90 degrees.

Depending on how the problem is considered there are 2 similar but distinct
problems that can be addressed.

1. The adjacencies between adjacent rectangles can be crossed more than once
but every shared boundary must be crossed at least once.

2. Any adjacency between adjacent rectangles has exactly one orthogonal line
segment passing through it.

Figure 4.1 shows the difference between these two specifications for a simple
configuration of adjacent rectangles. In problem 1 the leftmost adjacency is cut
by lines a, c and d. In problem 2, any of a’, ¢’ or d’ could have cut the leftmost
adjacency but only d’ actually does. In this thesis only problem 1 is addressed.

In the remainder of this chapter (and thesis) this problem is referred to as ALP-
OLOR Axial Line Placement — Orthogonal Lines and Orthogonal Rectangles.

4.3 Addressing the problem

At first glance this problem would appear to be easy to solve. Given n rectangles,
the upper bound on the number of possible adjacencies is O(n) and a simple lower
bound for finding the adjacencies can be shown to be Q(n logn).

The upper bound can be easily shown by reducing the rectangles and their adja-
cencies to the form of a graph where the nodes in the graph represent the rectangles
and the edges of the graph represent adjacencies between two rectangles. The graph
generated in this way must be planar, thus the maximum number of edges (adjacen-
cies) can be determined from Euler’s formula that gives e < 3v — 6 (e the number

Problem 1

i

a

Problem 2

Figure 4.1: A simple configuration showing the two different problems

+ 191dey)

JOTOd1V

oL

Chapter 4: ALP-OLOR 71

Figure 4.2: A configuration where the solution is not unique

of edges and v the number of vertices). This implies that the number of adjacencies
must be O(n).

The lower bound follows by a transformation from element uniqueness. This
proof is similar to that by Preparata and Shamos [1985] for intersecting rectan-
gles. Element uniqueness is defined as: Given n real numbers, decide if any
two are equal. Element uniqueness has an (n log n) lower bound [Preparata and
Shamos, 1985]. The transformation can be done as follows. Given n real numbers
{z,...,2,} and an interval [b,¢] then for each z; construct a (degenerate) rectan-
gle defined by bottom left corner (b, 2;) and top right corner (%, z;). Determining
whether any two rectangles are adjacent is now the same as determining whether
any two numbers are equal.

The question is then: How easy is it to find the minimum number of axial lines
that cross all of the adjacencies in the collection of adjacent rectangles?

The problem is interesting and difficult to solve efficiently because of the issue
of choice. The simplest case of choice is illustrated in Figure 4.2. In this case
there are seven rectangles and seven adjacencies (0|3, 1|3, 2|3, 3|4, 3|5, 4|6 and
5|6) that must be crossed by axial lines. All but one of the adjacencies can be
crossed by the axial lines marked @ and b (0-3-4-6 and 2-3-5-6) but the adjacency
between rectangles 1 and 3 can be crossed by axial lines ¢ (1-3-4-6) and d (1-3-5-
6). Only one of these “choice” axial lines is actually necessary. More complicated
choice situations can arise as the number of rectangles to be considered grows. An
algorithm to solve the problem must be able to resolve conflicts of this type.

Chapter 4: ALP-OLOR 72

4.4 Proving NP-Completeness of the problem of re-
solving choice

This section shows ALP-OLOR is NP-Complete. The proof of this will be accom-
plished through a transformation from vertex cover for a planar graph [Garey and
Johnson, 1979; Lichtenstein, 1982], to a restricted instance of the problem under
consideration, i.e. the problem of choosing the fewest maximal axial lines to cross
all the adjacencies in a collection of orthogonal rectangles.

Planar vertex cover is defined as

planar vertex cover

Instance: Planar graph G = (V, E), positive integer K < |V/|.

Question: Is there a vertex cover of size K or less for G, i.e. a subset V' C V' with
|V'| < K such that for each edge {u,v} € E at least one of u and v belongs to V'?

and ALP-OLOR can be stated as

ALP-OLOR

Instance: A collection of orthogonal rectangles R; ... R,, where each R; is adja-
cent to at least one other rectangle, and a positive integer O < 4n.

Question: Is there a set P of orthogonal axial lines where each axial line is max-

imal, each vertical adjacency is crossed at least once by the axial lines in P and
|P| < 0?

The transformation from planar vertex cover [Garey and Johnson, 1979; Lichten-
stein, 1982] will be done by mapping vertices in a planar graph to choice axial lines
in the problem being considered. Edges in the planar graph will be mapped to adja-
cencies that are crossed by the choice axial lines. In this mapping an edge between
two vertices represents an adjacency that is crossed by two choice axial lines.

This transformation will be done in two steps. First, a planar graph is trans-
formed to a ‘stick diagram’. In this ‘stick diagram’ each vertex in the original graph
is mapped to a horizontal line representing a choice axial line and each edge in the
original graph is mapped to a vertical line that is cut by the two horizontal lines that
represent the two vertices to which the edge is incident. The problem then becomes
that of choosing the minimum number of horizontal lines to cut all of the vertical
lines.

stick diagram
Instance: A collection H of horizontal lines and U of vertical lines such that each
vertical line is cut by exactly two horizontal lines, and a positive integer S < |H|.

Chapter 4: ALP-OLOR 73

Question: Is there a set of horizontal lines, H’ C H, such that every vertical line in
U is cut at least once and |H'| < S?

The reader should note that the idea of converting planar graphs to horizontal and
vertical lines has been published elsewhere [Tamassia and Tollis, 1986]. At the
time of developing this proof the author of the thesis was not aware of the work
of Tamassia and Tollis [1986] whose results are quite similar to those developed in
this proof. The transformation below is presented as originally developed because
it guarantees that the ‘stick diagram’ developed by the transformation is in the right
form for the second part of the proof. This comment is expanded upon after the
transformation process has been presented.

In the second step of the transformation from a planar graph to a configuration
of adjacent rectangles, the stick diagram is represented as a collection of adjacent
rectangles and horizontal axial lines crossing all of the adjacencies in the collection
of rectangles. These axial lines will be of two types “essential lines” which are
the only lines to cross a particular adjacency and “choice lines” where a number
of lines (none of which are essential) cross some adjacency. Not all of the choice
lines are necessary to cross all of the adjacencies in the collection of rectangles. If
it is possible to determine in polynomial time a minimal subset of choice lines to
cross all of the adjacencies not crossed by essential lines in the diagram then it is
possible to solve planar vertex cover in polynomial time — finding the minimum
set of choice axial lines is equivalent to finding the minimum vertex cover of the
original graph.

Proving that ALP-OLOR is NP-Complete is accomplished by means of two the-
orems — 4.4.1 that shows that stick diagram is NP-Complete using a transformation
from planar vertex cover and 4.4.2 that shows that ALP-OLOR is NP-Complete
using a transformation from stick diagram.

It is, however, easier to perform the transformation from a planar graph to a
stick diagram for a somewhat more restricted form of planar graph — a biconnected
planar graph has properties which can be used in the transformation. Therefore it
is desirable to prove one other result — vertex cover for a biconnected planar graph
is NP-complete. Once it has been shown that this result holds the transformation
from biconnected planar vertex cover to stick diagram and hence to ALP-OLOR
can be done more easily. This result is addressed in Lemma 4.4.1. The construction
presented here is an improvement of a construction first published in Sanders et al.
[1995] and Sanders et al. [1997]. This version of the construction first appeared
in Sanders et al. [1999] and is similar to that developed by Biedl et al. [1997] in
proving that vertex cover in cubic triconnected planar graphs is NP-Hard.

biconnected planar vertex cover
Instance: Biconnected planar graph G = (V, E), positive integer B <| V' |.

Chapter 4: ALP-OLOR 74

00 GG

01 j«1

02 WHILE there exists a cut vertex v; in G’

03 Let X; and Y; be any two components created by removing
v; from G’

04 Let z; € X;, y; €Y, be such that z;, y; and v; lie on a
face

05 Add a triangle graph, T;, to the face in G’ containing
z;, Y; and v;

06 Add the edges (a;,z;) and (b;,y;) to G’

07 jeg+1

Figure 4.3: Creating a biconnected planar graph

Question: Is there a vertex cover of size B or less for G, i.e. a subset V' C V with
|V’| < B such that for each edge {u,v} € E at least one of u and v belongs to V'?

Lemma 4.4.1 biconnected planar vertex cover is NP-Complete

Proof
Clearly biconnected planar vertex cover is in NP. Given a set of vertices V' such
that |V’| < B it is possible to check in polynomial time that |V is a vertex cover.
Now transform planar vertex cover to biconnected planar vertex cover. Given
a planar graph G(E, V), G can be converted to a biconnected planar graph G’ using
the algorithm given in Figure 4.3. This is accomplished by appropriate addition of
instantiations of “triangle graphs” T; where each T} is defined as the vertices a;, b;
and c; and the edges (a;, b;), (bj, ¢;) and (¢;, a;). Clearly G is a biconnected planar
graph since

1. after each iteration of the algorithm the vertex v; is no longer a cut vertex with
respect to X; and Y; and

2. no new cut vertex is ever added during an iteration of the algorithm.

Thus the algorithm terminates with G’ free of all cut vertices. In addition, the
triangle graphs T that are added during each iteration are added to the face con-
taining the vertices to which they are connected thus maintaining the planarity of
the graph. Refer to Figure 4.4 for an example of a triangle graph and to Figure 4.5
for an example of how triangle graphs can be added to a planar graph using the
algorithm in Figure 4.3 in order to derive a biconnected planar graph.

Chapter 4: ALP-OLOR 75

Figure 4.4: An example of a “triangle graph”, T}

To determine the vertex cover for G, the original graph G plus the new edges
and vertices must be considered. The structure of the triangle graphs means that for
each triangle graph, T, exactly two of a;, b; and ¢; must be in the vertex cover of
G'. If k triangle graphs are added then it is trivial to show that planar vertex cover
for graph G with cover size K is true if and only if biconnected planar vertex cover
is true for G’ with cover size B = K + 2k.

The transformation from G to G’ can clearly be accomplished in polynomial
time. A cut vertex (articulation point) can be found in polynomial time [Brassard
and Bratley, 1996] and there are at most O(n) cuts (n is the number of vertices in
G").

Therefore biconnected planar vertex cover is NP-Complete.

O

biconnected planar vertex cover can now be used to show that ALP-OLOR is NP-
Complete. The proof is accomplished by means of the following two theorems —
Theorem 4.4.1 and Theorem 4.4.2.

Theorem 4.4.1 stick diagram is NP-Complete.

Proof
Clearly stick diagram is in NP — given a set of horizontal lines H’ such that |H'| <
S, it is possible to check in polynomial time that every vertical line in U is cut at
least once.

Now transform biconnected planar vertex cover to stick diagram. If G(V, E) is
a biconnected planar graph then G can be embedded in the plane (G is planar) and

Chapter 4: ALP-OLOR 76

U1

()

U1

V2

()

Figure 4.5: An example of adding triangle graphs to a graph to make it biconnected
[(a) The original graph, v; and v, are cut vertices. (b) Graph with T} added, v; is
still a cut vertex. (c) Final biconnected graph]

Chapter 4: ALP-OLOR 77

for every two vertices in G an elementary cycle can be found which contains these
vertices (G is biconnected) [Berge, 1962; Harary, 1969]. This implies that there are
no vertices of degree 1 in G (other than the case where G is a trivial graph with 2
vertices and 1 edge) and thus that all the faces in G are bounded by cycles [Harary,
1969].

Let Fy be the exterior face of G and Fy,..., F, be the interior faces of the
graph. The biconnected planar graph G can be transformed to a stick diagram by
the following process.

1. Choose C; as being the cycle bounding any face, F; of G, that is adjacent to
the exterior face Fj of G.

2. Choose any two vertices x and y joined by an edge A that form part of C, and
are adjacent to the exterior. Represent = and y by horizontal lines in the stick
diagram that cut the vertical line representing edge A (see Figure 4.6 (a)).

3. Consider the path from z to y, B, formed by removing edge A from C,. For
the moment, treat B as if it were a simple edge i.e. insert its corresponding
vertical line into the stick diagram. This then gives the horizontal lines = and
y cutting the vertical lines A and B. The stick diagram is then as shown in
Figure 4.6 (b).

4. Break the path B (which was treated as a virtual edge) into its component
edges. Let the path B be the sequence of vertices z, vg, v1, . . ., Uk, y. On the
path B from z to y whenever a vertex v; is encountered a new horizontal line
must be added to the stick diagram. A new vertical line must also be added
for each edge encountered. This is done in the following way. Suppose C' is
the edge joining z to v, along the path B. The stick diagram is now altered to
include a vertical line for edge C' and a horizontal line for vertex vo. This is
shown in Figure 4.6(c).

In this case, B’ represents the original path B minus the edge C' which has
been included in the stick diagram. A similar operation is applied for all the
edges on the path B. Each vertex v; maps to a horizontal line in the stick
diagram and the edge joining it to the previous vertex is a vertical line cut by
the two horizontal lines v;_, and v;. After all the vertices on the path B have
been visited, the stick diagram will have the form shown in Figure 4.6 (d). A
stick diagram which represents the originally selected closed region F; of the
original graph has now been created.

5. If G only had one interior face then the transformation is complete, otherwise
continue with the next step.

Chapter 4: ALP-OLOR

Vo

Y
A B
T
(b)
y
Vg
A
(]
J|_ Vo
(d)
Vg
Vo

A
(a)
BI
A
©
A
©)

Figure 4.6: Creating a “stick” diagram

78

Chapter 4: ALP-OLOR 79

6. Let CF (which is used later in the process to store the composite of all the
faces considered so far) be F,. At this stage it will be the first face considered.
That is CF = F, is the face made up of the vertices z, y, vo, . . . v and the
edges connecting these vertices

7. While there are still faces in G to consider, repeat the following

(a) Choose a face F,,,1 < m < n that is adjacent to C'F'. F,, must share
a path with CF. C,,, the cycle enclosing Fi, is thus made up of two
sets of vertices — those that are on the shared path and have already been
“visited” (included in the stick diagram) and those that have not yet been
visited. The vertices in the latter set make up the path D.

(b) Treat path D as a single (simple) edge and add it to the stick diagram by
extending the horizontal lines representing the start vertex and the end
vertex of the shared path to cut a new vertical line representing the path
D.

See Figure 4.6 (e) for an example — in this figure, a new path between
vo and vy, is being added.

The path D can then be broken up into its constituent edges in the same
fashion as before.

(c) Grow CF by combining it with F}, and removing the shared path be-
tween the faces. In the stage of the process as shown in Figure 4.6 (e),
C F would consist of the vertex z, the edge (z,vo) connecting x to the
first vertex in the path D, all of the vertices and edges on the path D,
the edge (vk, y) connecting the last vertex in the path D to y, the vertex
y and the edge (y,). The path from v, to v, through the vertices v, to
vi—1 would have been removed.

This completes the construction of the stick diagram from a biconnected planar
graph. A complete example of this is shown in Figure 4.7. First the face represented
by £ — y — z — w is converted into a stick diagram. Then the face represented
by w — z — p is added to the stick diagram and finally the face represented by
w — p — z — y — qis added. This gives the complete stick diagram for the original
biconnected graph.

Thus it can be seen that if a vertex cover, V’, can be found for GG then a set of
horizontal lines, H’, can be found for H — each vertex in G is a horizontal line in
H and each edge in G is a vertical line in U. Conversely if a set of horizontal lines
H', such that |H’'| < S, could be found to cut each vertical line in U, then a vertex
cover, V', for G could be found.

The transformation from biconnected planar vertex cover to stick diagram can
be accomplished in polynomial time. Each face in the graph G is considered in turn

(@)

(b)

Figure 4.7: An example of the transformation of a biconnected planar graph to a
stick diagram

Chapter 4: ALP-OLOR 81

and once only. As the face is considered each edge is added in turn to the stick
diagram as a vertical line — this happens once per edge. Horizontal lines are either
added to the stick diagram to represent vertices or the horizontal line representing
a vertex is extended as necessary. Each vertex can only occur in as many faces as
there are in the graph and each vertex in each cycle is only visited once per cycle.
Thus the number of operations on vertices is limited by a polynomial expression.

Therefore stick diagram is NP-Complete.
O

As mentioned earlier Tamassia and Tollis [1986] presented an approach for trans-
forming a planar graph into a configuration of horizontal and vertical line segments
— vertices are mapped to horizontal segments and edges to vertical segments. They
call this a visibility representation of the planar graph where two parallel segments
of a set are visible if they can be joined by a segment orthogonal to them. They also
define weak-visibility representation or w-visibility representation as a representa-
tion where vertices are represented by horizontal segments and edges by vertical
segments having only points in common with the pair of horizontal segments rep-
resenting the vertices they connect. The transformation above produces a represen-
tation which is a w-visibility representation of the planar graph with the additional
property that a left-to-right ordering is imposed on the edges as they are encountered
in the faces of the original planar graph (see Figure 4.7). This ordering is impor-
tant in the second transformation — converting a stick diagram into a collection of
adjacent rectangles.

Theorem 4.4.1 shows that a stick diagram can be constructed for any bicon-
nected planar graph. It is now necessary to show that any stick diagram can be
represented by a collection of adjacent rectangles whose adjacencies are crossed
by essential and choice axial lines. This must be done in a manner that ensures
consistency between a minimal selection of choice axial lines crossing rectangle
adjacencies and a minimal selection of horizontal lines in the stick diagram. This is
considered in Theorem 4.4.2 below. This theorem uses a construction from a stick
diagram to produce a collection of adjacent rectangles in which the adjacencies be-
tween rectangles are crossed by essential axial lines and choice axial lines. The
choice axial lines are directly related to the horizontal lines in the stick diagram.
Not all of the choice axial lines are necessary and Theorem 4.4.2 also shows that
the problem of choosing the minimum number of such choice axial lines (solving
ALP-OLOR) is NP-Complete.

Theorem 4.4.2 ALP-OLOR is NP-Complete

Proof
Clearly ALP-OLOR is in NP. Given a set of axial lines it is possible to check in
polynomial time that each adjacency has been crossed by at least one axial line.

Chapter 4: ALP-OLOR 86

axial lines is NP-Complete in general. A heuristic algorithm to find a non-redundant
set of orthogonal axial lines to cross all the adjacencies (a set of lines such that none
can be removed without leaving an adjacency uncrossed) is presented in this sec-
tion. The algorithm has two phases. First the adjacencies among the rectangles are
determined (section 4.5.1), and then the axial lines crossing all of the adjacencies
are determined (section 4.5.2).

It should be noted that if two rectangles are adjacent then there is an infinite
number of orthogonal line segments that could be placed to cross that adjacency.
These line segments are all equivalent in the sense that they cross that particular
adjacency. Thus in this phase of the research an axial line is defined by a range
of y-values through which a line segment parallel to the z-axis could be drawn.
The convention used here is that an axial line crossing a given adjacency would be
defined by the y-value range of that adjacency and the two rectangles involved. An
axial line crossing the adjacencies between a number of rectangles would be given
by the common y-value range of the adjacencies between the rectangles and a list
of the rectangles concerned.

4.5.1 Determining the adjacencies between the rectangles

In determining the adjacencies between the orthogonal rectangles, horizontal and
vertical adjacencies are treated as separate cases. Only the case of vertical adjacen-
cies (and horizontal lines) will be discussed here. Horizontal adjacencies can be
treated analogously. An algorithm to determine the adjacencies in a configuration
of adjacent orthogonal rectangles is given in Figure 4.12 and discussed below.

Any rectangle R can be defined by the coordinates of its bottom-left and top-
right corners. The algorithm thus requires a data structure which contains the rect-
angle number and these coordinates as well as the ability to keep track of other
information calculated in the algorithm. This other information is the number of
rectangles which are adjacent to the right hand side of the rectangle being consid-
ered and a list of these rectangles. These lists of adjacencies (one list per rectangle)
are in fact the required output from this algorithm and are used later in determining
the axial lines that must be placed to cross all of the adjacencies. In the algo-
rithm to determine the adjacencies between the rectangles, an array of records is the
data structure used. Thus each element of the array, Rect[i], is a record defining a
particular rectangle of the configuration and has fields Rect[:].left, Rect[7].bottom,
Rect[i].right, Rect[i].top, Rect[i].numadj and Rect[i].adjlist to define the bottom-
left and top-right corners of the rectangle and to maintain a list of the rectangles
which are adjacent to this rectangle on the right.

Left and Right are essentially copies of the array Rect, but are sorted based on
the coordinates of the left and right edges of the rectangles respectively (lines 09 to
12 of the algorithm). These arrays are used to implement a “line sweep” strategy

Chapter 4: ALP-OLOR 87

00

01
02
03
04
05
06
07
08
09
10

11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

{Get input}
create array Rect[| for the rectangles
{n is the number of rectangles}
FOR 7 from 1 to n
Input Rect[i].number
Input Rect[i].left
Input Rect[:].right
Input Rect[i].top
Input Rect[i].bottom
Set Rect[i].numadj to be 0 {will be calculated}
Set Rect[i].adjlist to be Nil {will be calculated}
Create an array Left] | of all the rectangles {a copy of Rect[|}
Sort Left[| in ascending order of Left[i].left
{break ties based on increasing Left[i].bottom}
Create a list Right[] of all the rectangles {a copy of Rect[]}
Sort Right[| in ascending order of the Right[j].right
{break ties based on increasing Right[j].bottom}
Set i+ j«1
WHILE i <=n AND j <=n
CASE
Left[i].left < Right[j].right
increment ¢
Left[i].left > Right[j].right
increment j
Left[i].left = Right[j].right
WHILE Left[i].top <= Right[j].bottom
AND Left[i].left = Right[j].right
increment
IF Left[i].left = Right[j].right
THEN
IF Left[i].bottom < Right[j].top
THEN
add Right[j].number to Left[i].adjlist
Left[i].numadj < Left[i].numadj + 1
IF Left[i].top <= Right[j].top
THEN
increment :
ELSE
increment j

Figure 4.12: The algorithm for determining the adjacencies between the rectangles

Chapter 4: ALP-OLOR 88

[Manber, 1988; Cormen et al., 1990] for determining which rectangles are adjacent
to which other rectangles.

The line sweep (lines 13 to 33) works by comparing the coordinates of the right
edges (using Right) with the coordinates of the left edges of the other rectangles
(using Left). Three cases can arise:

1. The left edge of the rectangle being considered in list Left is to the left of the
right edge of the rectangle being considered in Right (lines 16 and 17), in this
case these two rectangles cannot be adjacent and so the next rectangle in Left
must be considered for a potential adjacency. This rectangle’s left edge must
be further to the right so there is potential for an adjacency to occur.

2. The left edge of the rectangle being considered in list Left is to the right of
the right edge of the rectangle being considered in Right (lines 18 and 19).
Again these two rectangles cannot be adjacent and so the next rectangle in
Right must be considered for a potential adjacency.

3. The left edge of the rectangle being considered in list Left and the right edge
of the rectangle being considered in Right have the same z-coordinate (lines
20 to 33). Thus these two rectangles could be adjacent and it is necessary
to determine if they do in fact share a range of y values. This is done by
traversing the list Left until a rectangle with a top y-value greater than the
bottom of the current rectangle from Right is found or until the rectangles
being considered have different z-values and thus cannot be adjacent (lines
21 and 22).

In the former case more work needs to be done to test for the adjacency (lines
23 to 33).

In the latter case no more work will be done in this pass through the loop and
the outer WHILE will be continued.

In lines 23 to 33, a test is made to see if the bottom of the left rectangle is
below the top of the right rectangle (line 25). If it is, then the right rectangle
is adjacent to the left rectangle and this information must be recorded (lines
27 and 28).

Lines 30 to 33 are then used to determine whether to move along in list Left
or list Right.

The configuration of adjacent rectangles in Figure 4.13 illustrates the work-
ing of the algorithm. After input and sorting, the rectangles in the list Left would
be {1,2,3,4,5,6,7,8,9,10,11} and the rectangles in the corresponding list Right
would be {1,2,3,5,7,6,8,4,9,10,11}. The WHILE loop would begin with { = 1
and 5 = 1 and thus would be comparing Left[1].left and Right[1].right. Here

Chapter 4: ALP-OLOR 89

Figure 4.13: A configuration of adjacent orthogonal rectangles

case 1 above holds, the left z-coordinate of rectangle 1 is clearly less than the
right z-coordinate of the same rectangle, and 7 would be incremented. Left[2].left
and Right[1].right would then be compared (the left z-coordinate of rectangle 2
is clearly less than the right z-coordinate of rectangle 1) and again : would again
be incremented. Next Left[3].left and Right[1].right would be compared. Here
the left z-coordinate of rectangle 3 is equal to the right z-coordinate of rectan-
gle 1 and case 3 would be executed. The WHILE loop in line 21 would not be
executed (Left[3].top is greater than Right[1].bottom) and line 23 would be exe-
cuted next. Left[3].left = Right[1].right and so line 25 would be executed. Here
Left[3].bottom < Right[1].top which means that the two rectangles are adjacent
and the adjacency list for rectangle 1 must be updated. Lines 30 to 33 determine
whether to increment : or 7, in this case there is another rectangle, 4, which has the
same left z-coordinate as rectangle 3 and in order to consider it : must be incre-
mented to traverse the list Left. The algorithm performs in a similar fashion on the
remainder of the two lists.

The sorting phase of this portion of the algorithm is clearly O(n lg n), where n
is the number of rectangles. Determining the adjacencies from the sorted lists is
O(n) as each list is simply traversed from beginning to end with no backtracking
being necessary. The whole algorithm is then O(n lgn).

Chapter 4: ALP-OLOR 90

4.5.2 Determining the axial lines

The next step in the process is to determine a non-redundant set of axial lines to
cross all of the adjacencies in a configuration of adjacent orthogonal rectangles.
The algorithm which generates this non-redundant set uses a number of functions.
These functions are given in Figure 4.14. The functions are also used by other algo-
rithms discussed in this chapter. The algorithm itself is given in Figures 4.15, 4.16,
4.17, 4.19 and 4.20. The algorithm generates all the possible orthogonal axial lines
which cross the adjacencies between rectangles (Figures 4.15, 4.16), determines
which lines are essential (are the only lines which cross a particular adjacency)
(Figures 4.17), removes any lines which only cross adjacencies crossed by the es-
sential lines (redundant lines) (Figures 4.19) and then resolves the choice conflict
(Figures 4.20). The resolving of the choice is done by repeatedly choosing the
choice line which crosses the highest number of previously uncrossed adjacencies.
In this algorithm, lines are represented as a list of rectangles. For example, the line
1,2,3 means a line which crosses the adjacency between rectangles 1 and 2 and
the adjacency between rectangles 2 and 3. Any line, say /, in this algorithm will
be represented a data structure with four fields — [.line which is a list of rectangle
numbers, [.bottom which is the bottom y-coordinate of the range of y-coordinates
that define the line (the bottom of the common y-coordinate range of the adjacencies
between the rectangles) and [.top which is the top y-coordinate of the range of y-
coordinates that define the line. The fourth field . extended is used in the algorithm
to record whether a line has been extended.

The algorithm uses the adjacency lists for each rectangle created above (Figure
4.12) and visits the rectangles based on the order in the list Left used in Figure
4.12. The algorithm also uses a modified adjacency matrix A. Here A[7, j] indicates
whether adjacency i[5 (where j is any rectangle which is adjacent to 7 on the right)
exists in the configuration of rectangles. A[z, 7] also keeps the track of the first line
to cross the adjacency (useful for identifying essential lines), the number of lines
crossing the adjacency and also a list of these lines. In addition, a set L, the set of
candidate lines at any stage of the execution of the algorithm, must be maintained.
A set T' of temporary candidate lines is created when lines are extended backwards.
The algorithm generates as output a set £ of non-redundant orthogonal lines which
cover all of the adjacencies between rectangles.

The first phase of the algorithm starts by setting the list of candidate lines L to
be empty (line 34 of the algorithm in Figure 4.15 and Figure 4.16). The algorithm
then generates every possible longest line which crosses the adjacencies between
the adjacent rectangles (lines 35 to 75).

This is done by considering each rectangle, Rect|[r], in turn from the leftmost
to the rightmost (in the order defined by the list Left[] — see line 35) to find the
axial lines which cross the adjacencies between that rectangle and each of its right

Chapter 4: ALP-OLOR 91

|| is used to denote concatenation of two strings or lists

minimum and mazimum are functions which return the smaller of two
numbers and the greater of two numbers respectively

interval(a, b) defines a range of y values between the two arguments

a and b

overlap(intervall , interval2) returns true if the two intervals have an
overlapping range of y-values, and returns false otherwise

Figure 4.14: Functions used in the algorithms in this chapter

34 Set L to be empty {L is the set of all possible lines}
35 FOR each rectangle i in Left[]

36 p « Left[i].number

37 find r such that Rect[r].number =p
38 FOR each rectangle j in Left[i].adjlist
39 q + Right[j].number

40 find s such that Rect[s].number = ¢
41 extended + false

42 FOR each line [in L

43 IF (overlap(interval(l.low,l.high),

interval(Rect[s).bottom, Rect[s].top)) = true) AND
(rightmost rectangle in l.line = Rect[r].number
44 THEN

45 l.extended + true

46 Inew.line + l.line || Rect[s].number

47 Inew.low + mazimum(l.low, Rect[s].bottom)
48 Inew.high < minimum(l.high, Rect[s].top)
49 Add Inew to L

50 eztended + true

Figure 4.15: Determining all possible orthogonal axial lines — Phase 1 part a

Chapter 4: ALP-OLOR 92

51

52
53

54
b5
56
b7
58
59
60
61
62
63

64

65
66
67
68
69
70
71
72
73
74
75

IF extended = false
{no candidate line / can be extended into Rect[s]}
THEN
Set T to be empty
{T is the set of lines which can be extended
backwards, the longest such line will be chosen}
Set t.line to be Rect[r].number| | Rect[s].number
Set t.low + mazimum(Rect[r].bottom, Rect[s].bottom)
Set t.high + minimum(Rect[r].top, Rect[s].top)
Add t to T
For each line k in L which ends in Rect{r]
Set u to be equal to ¢
Set eztending to true
Set m to point to the second last rectangle in line k
WHILE eztending AND m > 1
find d such that Rect[d].number = mth
rectangle in line k&
IF overlap(interval(u.low, u.high),
interval(Rect[d].bottom, Rect[d].top)) = true
THEN
Set u.line to be Rect[d].number||u.line
Set u.low « mazimum(Rect[d].bottom, u.low)
Set u.high < minimum(Rect[d].top, u.high)
Decrement m
ELSE
Set eztending to false
Add u to T
Add the longest line, long in T to L
FOR each [in L
IF l.extended = true THEN remove ! from L

Figure 4.16: Determining all possible orthogonal axial lines — Phase 1 part b

Chapter 4: ALP-OLOR 93

neighbours, Rect[s], in turn (see line 38). The algorithm determines whether each
of the lines coming into Rect|r] from the left can be extended to cross the adjacency
between Rect[r] and Rect[s]|. This is done by testing if there is an overlap of the
y-coordinate range of the adjacency and the line being considered and that the line
being considered crosses some adjacency into Rect[r] (line 43). Extending the line
(lines 44 to 50) involves appending the rectangle number, Rect(s].number, to the
line and recalculating the y-coordinate range of the line. Figure 4.13 can be used
as an example of how lines can be extended. Suppose that the rectangle being
considered is the rectangle labeled 5. This rectangle will have two lines coming
into it from the left, the line 1-5 and the line 2-5. It also has two right neighbours
6 and 7. The algorithm will attempt to extend each of these lines into each of these
neighbours. The result after considering both neighbours will be to have two new
lines in L, 1-5-6 and 2-5-7 with the appropriate ranges of y-coordinates.

If no line can be extended into Rect[s] (line 51) then a new line must be started
in order to cross the adjacency between Rect[r]| and Rect(s]. To make sure that
this new line is as long as possible it must also be extended as far to the left (back-
wards) as possible (lines 51 to 73). This extending backwards of the new line is
accomplished by considering all lines which cross into Rect[r] in turn (line 58) and
looking at these lines an adjacency at a time (lines 58 to 72) to see whether the
new line could cross some of the adjacencies crossed by the line being considered.
In this fashion a new line is potentially created for each incoming line. Only the
longest line which crosses the adjacency under consideration (between Rect[r] and
Rect[s]) is chosen (line 73). An example of where no line can be extended can be
seen in Figure 4.13 when rectangle 10 is being considered. It has the line 1-4-9-10
coming into it from the left and has rectangle 11 as its right neighbour. The line
cannot be extended to cross the adjacency between 10 and 11 so a new line must
be created to cross this adjacency. This new line must then be extended backwards
to cross the adjacency between 9 and 10. If this was not done then the new line
crossing the adjacency between 10 and 11 would not be as long as possible. After
this phase of extending backwards the line 9-10-11 is added to L.

The last two lines of the algorithm (lines 74 and 75) remove any lines that have
been extended forwards during the calculation of the set of lines as these lines are
no longer necessary — every adjacency crossed by one of these lines is also crossed
by at least one longer line that was generated when the line was extended.

Figure 4.17 gives the algorithm for finding the essential lines from the set of
lines calculated by the algorithm in Figures 4.15 and 4.16. This algorithm works
by considering each line in L in turn and marking off in an adjacency matrix C the
adjacencies that this line crosses (lines 77 to 79). If any adjacency is only crossed
by one line from L then that line must be essential and is added to the set E of
essential lines (lines 80 to 84). As an example consider the configuration of rectan-
gles in Figure 4.18. The algorithm in Figures 4.15 and 4.16 would have generated

Chapter 4: ALP-OLOR 94

76

77
78
79
80
81
82
83
84

Set E to be empty
{F is the set of essential lines}

FOR each line !/ in L
FOR each pair of adjacent rectangles i and j in l.line
Mark in A[i,j] that [crosses the adjacency between i and j
FOR each adjacency i|j in A
IF i|j is only crossed by one candidate line e
THEN
Add e to F
Remove e from L

Figure 4.17: Finding the essential lines — Phase 2

Figure 4.18: A configuration of adjacent orthogonal rectangles

Chapter 4: ALP-OLOR 95

85 FOR each line e in F

86 FOR each pair of adjacent rectangles ¢ and j in e.line

87 Mark in A that e crosses the adjacency between i and j
88 FOR each line / in L

89 FOR each pair of adjacent rectangles ¢ and j in l.line

920 Check if adjacency i|j is crossed by an essential line
91 IF all adjacencies in !/ are crossed by lines in F

92 THEN Remove [from L

Figure 4.19: Removing Redundant lines — Phase 3

3 lines (1-2—4, 3—4-5 and 2—4-5). The line 2—4-5 would have been created when
considering rectangle 4 and attempting to extend the line 1-2—4 into rectangle 5
— this would not be possible and the line 2—4-5 would have been created by first
creating a new line 4-5 and then extending that line backwards. In this situation
the adjacency between rectangle 1 and rectangle 2 (C|[1, 2]) is only crossed by the
line 1-2—4 so this line must be an essential line. A similar observation applies for
line 3—4-5 and the adjacency between rectangles 3 and 4. The line 2—4-5 is in fact
redundant and the algorithm in Figure 4.19 describes how this line is identified and
removed.

The algorithm considers each essential line in turn and marks off the adjacencies
crossed by that line (lines 85 to 87). It then considers each line in L (the set of all
possible lines) in turn and determines if all the adjacencies in a given line have been
crossed by one or other of the essential lines (lines 88 to 90). If this is the case then
the line is redundant. This can be seen in Figure 4.18. The line 2—4-5 crosses the
adjacency between 2 and 4 which is also crossed by the essential line 1-2—4 and the
adjacency between 4 and 5 which is also crossed by the line 3—4-5. Thus the line
2—4-5 is redundant and is removed from L (lines 91 and 92).

Once the essential lines have been identified and the redundant lines have been
removed then there could still be some lines L which are choice lines (see the dis-
cussion in Section 4.3 and the Figures 4.2 and 4.11) and only some of these lines
are necessary. Phase 4 of the algorithm (Figure 4.20) resolves this choice.

The algorithm first considers each of the remaining lines in L — these are the
choice lines — and counts how many adjacencies, which have not already been
crossed by essential lines, each line crosses (lines 93 and 94). In Figure 4.2 lines ¢
and d each cross one such adjacency (the adjacency 1|3). In Figure 4.11 two of the
choice lines cross 6 previously uncrossed adjacencies and the other two lines cross
4 each. The algorithm then repeatedly applies the heuristic of choosing the line that

Chapter 4: ALP-OLOR 96

93 FOR each remaining line z in L {These are the choice lines}

94 Determine how many adjacencies not crossed by essential
lines that this line crosses

95 REPEAT

96 Choose the line y which crosses the most previously uncrossed
adjacencies

97 Add y to F

98 FOR each adjacency a|b crossed by y

99 FOR each line ¢ which crosses alb

100 Decrement the number of adjacencies crossed by ¢

101 IF the number of adjacencies crossed by ¢ is equal to O

102 THEN Remove ¢ from L

103 Remove y from L
104 UNTIL all of the adjacencies have been crossed.

Figure 4.20: Resolving the issue of choice — Phase 4

crosses the most previously uncrossed adjacencies and making that an “essential
line” (actually adds it to the set of non-redundant lines) (lines 96 and 97). Any
lines that cross previously uncrossed adjacencies crossed by the chosen line have
their counts reduced appropriately and the process is repeated (lines 98 to 103).
When all the previously uncrossed adjacencies have been crossed by lines chosen
in this fashion then a non-redundant set of lines has been generated and the algo-
rithm terminates. The heuristic applied means that a minimal set of axial lines is not
guaranteed by this algorithm but it seems that the heuristic does produce reasonable
approximations in some cases (see Section 4.6.4).

4.5.3 The Correctness of the method

The algorithm in Figures 4.15, 4.16, 4.17, 4.19 and 4.20 generates all the possible
orthogonal axial lines that cross the adjacencies. It also extends all lines as far
as possible to the left and right. Clearly any line that is the only line to cross a
particular adjacency must be in the final set of lines otherwise there would be at least
one adjacency that has not been crossed. Also any line that only crosses adjacencies
which are crossed by lines which are essential should not be in the final set of lines.

It remains to show that the method for dealing with choice lines does give a non-
redundant set of lines. The algorithm repeatedly chooses the choice line that crosses
the highest number of adjacencies which are previously uncrossed. This means that
the selected line can be treated as essential provided no line selected previously

Chapter 4: ALP-OLOR 97

crosses any of those adjacencies. This is clearly the case. In addition, no line
selected later can cross only those adjacencies and adjacencies already crossed by
the essential lines. A line chosen later has to cross at least one previously uncrossed
adjacency. Thus each line selected from the set of choice lines crosses at least one
previously uncrossed adjacency and is thus necessary.

It should be noted that this algorithm is not guaranteed to give an optimal solu-
tion to the problem. It does, however, give a non-redundant solution from the point
of view that removing any line from the final set of lines would leave at least one
adjacency uncrossed. Figure 4.21 shows a configuration of rectangles where the
heuristic would pick line « first as it crosses the most adjacencies not crossed by
essential lines. The algorithm would then pick one of lines b and e, one of lines c
and f and one of lines d and g. Thus a solution with four lines would be returned.
The optimal solution would be lines b, ¢ and d — only three lines.

4.6 Complexity Argument

4.6.1 Time

If all the rectangles were arranged such that one line could cross all the adjacencies
between them then it is clear that this instance of the problem can be solved in linear
time. Each rectangle has one adjacent rectangle and one candidate line passes from
the rectangle to its neighbour.

The worst case for the algorithm could potentially occur when each rectangle
(assuming n rectangles) in the configuration has O(n) neighbours on its right-hand
side and also has O(n) lines coming into it from its left-hand side. In this case, if
each incoming line could be extended into every right neighbour then O(n3) work
would be required. If none of the incoming lines can be extended into a right neigh-
bour and if for every right neighbour all of the lines have to be extended backwards
to find the maximal line then potentially O(n*) work would be required. It is, how-
ever, not possible to construct configurations of rectangles which correspond to
these cases.

A configuration of rectangles which would force a lot of work to be done in
extending lines forward is shown in Figure 4.22. In this case the rectangles on
the left edge of the collection will give rise to n/2 lines that must be extended
through another n /2 rectangles. This means that the portion of the algorithm which
generates the lines (lines 35 to 50) is O(n?) — order O(n) rectangles have O(n)
incoming lines which can be extended into 1 neighbour on the right.

The configuration of rectangles in Figure 4.23 shows a situation where O(n)
lines would have to be extended forwards and then extended backwards. This con-
figuration would force the algorithm to do a similar amount of work to the case
above for generating the lines going into the last large vertical rectangle. This rect-

Chapter 4: ALP-OLOR 99

Figure 4.22: A configuration in which there are O(n?) adjacency crossings

angle then has O(n) incoming lines (the lines originating from the small rectangles
on the left of the configuration) and O(n) right neighbours. None of these lines can
be extended into any of the small rectangles on the right-hand side of the configura-
tion and so lines must be extended backwards from each of the adjacencies between
the right-hand side small rectangles and the rightmost tall rectangle. An additional
O(n?) work would have to be done. Overall the work done is still O(n?) .

The adjacencies which are crossed by only a single line can be found in O(n?)
time by traversing each line and marking off in the adjacency matrix each adjacency
as it is crossed. The first time it is crossed it is marked with the identity of the line
that crosses it and subsequent crossings are marked as such (setting the first line
field to some flag value). As the number of lines must be less than or equal to the
number of adjacencies and the number of adjacencies crossed by any line must be
less than or equal to the number of adjacencies, this is clearly O(n?). Having done
this it is easy, O(n?), to determine which adjacencies are only crossed once and thus
to determine the essential lines.

Removing redundant lines can also be done in O(n?) time — by first marking the
adjacencies crossed by the essential lines and then determining which lines in the
set of candidate lines only cross adjacencies already crossed by essential lines.

The issue of resolving the choice lines is potentially the most expensive part
of the algorithm but, in fact, is also O(n?). The first step in this phase is to cal-
culate how many adjacencies which are not crossed by essential lines are crossed
by each choice line. This is clearly O(n?) — each adjacency (O(n)) in each line
(O(n)) is considered. On each pass through the loop (lines 94 to 104) a number of
steps are performed — the line which crosses the highest number of these previously
uncrossed adjacencies is selected (O(n)); this line is added to £ (O(1)); each adja-
cency of the selected line is considered and other lines crossing this adjacency have

Chapter 4: ALP-OLOR 100

Figure 4.23: A configuration which forces the algorithm to extend O(n) lines back-
wards

their counts decremented and are removed from L if they no longer cross uncrossed
adjacencies (this could be as expensive as O(n?) if the line selected has O(n) ad-
jacencies and each adjacency is crossed by O(n) lines); finally the selected line is
removed from L (O(1)). The work done inside the loop could potentially be as ex-
pensive as O(n?) (lines 98 to 102). This would mean that resolving choice could be
as expensive as O(n®). Again it seems unlikely that a configuration of rectangles
which forces this amount of work could be created.

The overall time complexity of the algorithm to produce a non-redundant set
of orthogonal axial lines is thus potentially as bad as O(n*) but this situation is
unlikely to occur because of the geometry of the problem.

4.6.2 Space

For each candidate line we store the list of rectangles which are crossed by the line,
the list of top and bottom coordinates for each of the rectangles in the line and the
final interval for the whole candidate line to date. The final interval can be used each
time the line is tested for extending but recalculation must be done when the line is
extended backwards. This is O(n?) space (O(n) lines by O(n) possible crossings
of adjacencies). In addition the adjacency matrix could require O(n?) space.

4.6.3 Bounding the heuristic

The greedy heuristic of choosing the line with the most previously uncrossed ad-
jacencies is analogous to the heuristic of choosing the vertex with the most edges

Chapter 4: ALP-OLOR 101

in the original vertex cover problem. This algorithm has been shown not to be an
e-approximation [Papadimitriou, 1994] (for any ¢ < 1 the error ratio grows as log n
and thus no € smaller than 1 is valid). The best known approximation algorithm for
this problem is based on choosing any edge, say (u,v), in the set of edges, adding
both u and v to the set of vertices and repeating until all edges are covered [Pa-
padimitriou, 1994). This algorithm has an approximation threshold of at most 1/2
— a solution which is at most twice the optimum solution. Hochbaum [1982] also
discusses a heuristic that gives a value that does not exceed twice the optimal value.
For unweighted graphs he guarantees a bound strictly less than 2 — a solution strictly
less than twice an optimal solution.

4.6.4 Experimental Results

Three algorithms were implemented and tested: the greedy algorithm (most un-
crossed adjacencies heuristic); an algorithm based on the random selection of lines
and an algorithm that produces the minimum number of orthogonal axial lines re-
quired. The algorithm that produces the minimum solution to the problem did an
exhaustive search of all the possible ways of selecting subsets of choice lines to
find a minimum sized subset. This algorithm was made as efficient as possible by
partitioning the choice axial lines into subsets which have in common adjacencies
not crossed by essential lines. The solutions for these subsets can then be found
independently. This solution works well on average but it is still possible that all
the choice lines are in one subset — there are uncrossed adjacencies that are common
to all of the choice axial lines.

The test data were generated by first randomly generating a number of rectan-
gles — typically about 30 — placed one on top of another. This configuration was then
grown from left to right by randomly generating rectangles which are adjacent to
the right hand edges of those that had already been placed in the configuration. The
advantage of generating the data in this fashion was that a large number of adjacen-
cies between rectangles in the horizontal direction was guaranteed. All rectangles in
the configuration had breadth and height randomly chosen in the range from 5 to 15
units. The final configuration of rectangles was tightly packed and each rectangle
could have as many as 4 rectangles adjacent to its right hand edge.

Fifty cases of configurations of 1000 rectangles each were tested, as were 20
cases of configurations of 1500 and 2000 rectangles. In the tests performed the
greedy algorithm performs as well as the exact solution in most cases but there were
instances of the greedy algorithm requiring an extra line to cross all the adjacencies.
The random algorithm ranged in accuracy from producing the same result as the
exact solution to requiring six extra lines to cross all adjacencies. Table 4.1 shows
the results of the testing of the heuristics on configurations of rectangles of this
form.

Chapter 4: ALP-OLOR 102

Number of rectangles 1000 | 1500 | 2000
Number of tests 50 20 20
Minimum number of lines 321 477 655
Maximum number of lines 365 527 703
Average number of lines 341 510} 680
Standard deviation 10.86 | 10.81 | 13.44
Minimum number of essential lines 277 426 569
Maximum number of essential lines 322 | 476 | 616
Average number of essential lines 300 | 450 | 592
Standard deviation 9.69 | 14.19 | 14.24
Minimum number of choice lines 4 4 18
Maximum number of choice lines 27 36 52
Average number of choice lines 14 20 32
Standard deviation 5.83 | 844 871
Minimum error for most uncrossed adjacencies heuristic 0 0 0
Maximum error for most uncrossed adjacencies heuristic 1 1 1
Average error for most uncrossed adjacencies heuristic 002 | 0.10| 0.05
Standard deviation 0.14 | 031 022
Minimum error for random choice heuristic 0 0 0
Maximum error for random choice heuristic 4 6 5
Average error for random choice heuristic 1.26 | 130 1.90
Standard deviation 094 | 166 1.55

Table 4.1: Experimental results

Chapter 4: ALP-OLOR 103

Figure 4.24: A “chequerboard” collection of rectangles

From these results it can be seen that the heuristic of choosing the choice axial
line that crosses the most previously uncrossed adjacencies at any stage resulted in
a good approximation for the configurations tested. For much larger numbers of
rectangles or a different packing method the heuristic might not work as well but
configurations of this form were chosen as a reasonable approximation to the type
of collections of rectangles that could occur in the problem being studied.

This experimental work showed that although ALP-OLOR is in general NP-
Complete it is possible to get good approximations to the exact solution — at least
in the cases tested. The next section of this thesis considers special cases of ALP-
OLOR where exact solutions can be found in polynomial time.

4.7 Special Cases that can be solved exactly in poly-
nomial time

4.7.1 Mapping to interval graphs

ALP-OLOR is in general NP-Complete but there are some cases for which polyno-
mial time algorithms can be obtained. In this section some of these special cases
are discussed.

It is clear that any “chequerboard” collections of rectangles (Figure 4.24) can
be solved exactly in polynomial time even if there are holes in the chequerboard

Chapter 4: ALP-OLOR 104

Figure 4.25: A “chequerboard” with holes

(Figure 4.25) [Hedetniemi, 1996]. In fact, this condition can be extended to a more
general collection of rectangles.

Suppose that the union of the adjacent rectangles is itself a rectangle as in Fig-
ure 4.2 (of Section 4.3), Figure 4.22, Figure 4.24 and Figure 4.26, then the axial
line placement problem for orthogonal axial lines and orthogonal rectangles can be
solved in polynomial time. This can be shown as follows. First, project each ver-
tical adjacency to a corresponding interval on the vertical line L (see Figure 4.27).
Then the problem of finding the minimum number of horizontal lines that intersect
the vertical adjacencies (ALP-OLOR) is equivalent to that of finding the minimum
number of points on L needed such that each interval contains at least one point.
This is the problem of finding the independent set of an interval graph which can
be solved in linear time [Gavril, 1972; Golumbic, 1980]. The mapping from ALP-
OLOR to vertex cover for interval graphs is also possible for other configurations of
adjacent rectangles provided that any vertical adjacencies that produce overlapping
intervals when projected onto L can be crossed by a horizontal line that does not
leave the union of the rectangles. For example for the configuration of rectangles in
Figure 4.28 the mapping would produce a correct answer but for the configuration
in Figure 4.29 (and in fact in Figure 4.25) it would not.

There are other configurations of rectangles where solutions to ALP-OLOR can
be found in polynomial time. Some of these are discussed below.

Chapter 4: ALP-OLOR 105

Figure 4.26: A simple configuration of rectangles with a rectangular union

Figure 4.27: Projecting Adjacencies onto Intervals on the line L

Chapter 4: ALP-OLOR 106

Figure 4.28: A simple configuration of rectangles that can be used in the production
of an interval graph

Figure 4.29: A simple configuration of rectangles that cannot be used in the pro-
duction of an interval graph

Chapter 4: ALP-OLOR 107

Figure 4.30: An example of a chain

4.7.2 Chains and trees of orthogonal rectangles

This section of the thesis considers algorithms to solve two restricted cases of ALP-
OLOR - chains and trees of rectangles (see Section 4.7.2.1 for definitions of these).
These problems cannot be solved by a mapping to an interval graph because the
layout of the rectangles could lead to adjacencies that cannot be crossed by a single
axial line which remains inside the union of the rectangles being mapped to the
same interval. These problems can, in fact, be solved using the heuristic algorithm
discussed in Section 4.5 (and discussed briefly in Section 4.7.2.2 below) but this
algorithm does a lot of unnecessary work in these cases so better ways of solving
these problems are required. In this section of the thesis an O(n) algorithm for
orthogonal axial line placement in chains of orthogonal rectangles is given (Section
4.7.2.3) and an O(n?) algorithm for trees of rectangles is presented (Section 4.7.2.4.

4.7.2.1 Terminology

Definition 4.7.1 A chain of orthogonal rectangles is any collection of orthogonal
rectangles where every rectangle is horizontally (vertically) adjacent to at most one
other rectangle at each end.

An example of a chain is shown in Figure 4.30.

Definition 4.7.2 A tree of orthogonal rectangles is a collection of adjacent orthog-
onally aligned rectangles, where each rectangle is joined on the left (right) end to
at most one rectangle and on the right (left) to zero or more rectangles.

Chapter 4: ALP-OLOR 108

Figure 4.31: An example of a tree of rectangles

A tree is thus a generalisation of a chain — each branch of the tree can be considered
as a chain of rectangles. An example of a tree of rectangles is shown in Figure 4.31.

4.7.2.2 The naive algorithm

An O(n?) algorithm to return a non-redundant set of maximal orthogonal axial
lines for ALP-OLOR was presented in Section 4.5 above. This algorithm has four
phases (after determining which rectangles are adjacent). It generates all the pos-
sible straight lines which cross the adjacencies between rectangles; it determines
which lines are essential (i.e. are the only lines which cross a particular adjacency);
it removes any lines which only cross adjacencies crossed by the essential lines (re-
dundant lines); and then it resolves the choice conflict. The resolving of the choice
is done by repeatedly choosing the choice line that crosses the highest number of
previously uncrossed adjacencies. Each phase is O(n?) in the worst case.

This algorithm can be applied directly to place the minimal number of axial
lines in chains and trees of orthogonal rectangles but it does more work than is
necessary — it generates lines which are redundant and then have to be removed to
get a minimal set of maximal lines. This is shown in Figure 4.32 where 5 lines
are generated in the first part of the algorithm but only 2 lines are actually needed
— the lines a—b—c—d—e—f and e—f—g—h—i—j. The reason that these extra lines are

Chapter 4: ALP-OLOR 110

{Stage 0}
{Get input}

00 create array Rect[| of all given rectangles
{n is the number of rectangles}

01 FOR ¢ from 1 to n

02 Input Rect[i].left
03 Input Rect[i].right
04 Input Rect[i].top
05 Input Rect[i].bottom
06 Set Rect[i].adjbottom to be undefined {will be calculated}
07 Set Rect[i].adjtop to be undefined
{Stage 1:}

{Define order of rectangles in the chain}
08 sort Rect[| according to left value of each rectangle
{i.e. based on Rect[].left}

{Stage 2:}
{Determine the extent of the adjacency between each rectangle
and its right neighbour.}

09 FOR ¢ from 1 to n—1

10 Rect[i].adjtop + minimum(Rect[i].top, Rect[i+ 1].top)

11 Rect[i).adjbottom < maximum(Rect[i].bottom, Rect[i + 1].bottom)

Figure 4.33: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stages 0 to 2

4.7.2.3 Orthogonal axial line placement in chains of rectangles

In this section of the thesis an algorithm is presented to solve the orthogonal axial
line placement problem in a chain of orthogonal rectangles. The algorithm is shown
in Figures 4.33, 4.34, 4.35 and 4.36.

The algorithm takes as input a set of rectangles that are known to represent a
chain. Each rectangle is defined by the coordinates of its bottom left and top right
comner. The data structure used is an array of records Rect[]. Here each record has
fields for left, right, top and bottom to represent the rectangle’s coordinates (min-
imum z-coordinate, maximum z-coordinate, minimum y-coordinate, maximum y-
coordinate) and adjtop and adjbottom to represent the lowest and highest y-values
of the range of y-values that defines the adjacency with the next rectangle in the

Chapter 4: ALP-OLOR 111

{Stage 3:}

{Determining the set of forward lines}

{ForwardLines is a list of the lines that have been found in
this stage}

{The forward sweep is started by initialising the smallest
common adjacency}

{This is called CurrentAd;}

{Initially this is the adjacency between rectangles 1 and 2}
{Currentline is a list of adjacencies that are crossed by the

line being worked on}
12 CurrentAdj.top + Rect[1].adjtop
13 CurrentAdj.bottom < Rect[1].adjbottom
14 Add adjacency 1|2 to the list CurrentLine

15 FOR : from 2 to n

16 IF (Rect[i].adjtop < CurrentAdj.bottom) OR
(Rect[i].adjbottom > CurrentAdj.top)
17 THEN
18 Add the list CurrentLine to the end of list ForwardLines
19 CurrentAdj.top < Rect[i].adjtop
20 CurrentAdj.bottom < Rect[i].adjbottom
21 Set CurrentLine to be empty
22 ELSE
23 IF (Rect[i].adjtop < CurrentAdj.top)
THEN CurrentAdj.top < Rect[i].adjtop
24 IF (Rect[i].adjbottom > CurrentAdj.bottom)
THEN CurrentAdj.bottom < Rect[i].adjbottom
25 Add the adjacency ili+1 to the end of list CurrentLine
26 IF CurrentLine is not empty
27 THEN
28 Add the list CurrentLine to the end of list ForwardLines

Figure 4.34: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stage 3

Chapter 4: ALP-OLOR 112

{Stage 4:}
{Determining the set of reverse lines to be stored in list
ReverseLines}

29 Set CurrentLine to be empty

30 CurrentAdj.top < Rect[n — 1].adjtop

31 CurrentAdj.bottom « Rect[n — I].adjbottom

32 Add the adjacency n-1|n to the end of list CurrentLine

33 FOR 7 from n — 2 downto 1

34 IF (Rect[i].adjtop < CurrentAdj.bottom) OR
(Rect[i].adjbottom > CurrentAdj.top)
35 THEN
36 Add the list CurrentLine to the front of list ReverseLines
37 CurrentAdj.top < Rect[i].adjtop
38 CurrentAdj.bottom < Rect[i].adjbottom
39 Set CurrentLine to be empty
40 ELSE
41 IF (Rect[i].adjtop < CurrentAdj.top)
THEN CurrentAdj.top < Rect[i].adjtop
42 IF (Rect[i].adjbottom > CurrentAdj.bottom)
THEN CurrentAdj.bottom <« Rect[i].adjbottom
43 Add the adjacency ili+1 to the front of list CurrentLine
44 IF CurrentLine is not empty
45 THEN
46 Add the list CurrentLine to the front of list ReverseLines

Figure 4.35: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stage 4

Chapter 4: ALP-OLOR 113

{Stage 5:}
{Merge the lines to get the final set of lines}

47 Set m to the number of lines in ForwardLines or ReverseLines
{these will be equal}

48 FOR ¢ from 1 to m

49 set FinalLines[i] to be empty
50 WHILE ForwardLines[i] is not empty AND
ReverseLines[i] is not empty
51 IF (the first adjacency in ForwardLines[i] is to the left
of the first adjacency in ReverseLines[i])
52 THEN
53 remove first adjacency from ForwardLines|i]
54 add this adjacency to end of FinalLines[i]
55 ELSE
56 IF the adjacencies are the same
57 THEN
58 remove first adjacency from ForwardLines[i)
59 remove first adjacency from ReverseLines|i]
60 add this adjacency to end of FinalLines[i]
61 IF ForwardLines[i] is not empty
THEN add all remaining adjacencies to FinalLines[i]
62 IF ReverseLines[i] is not empty

THEN add all remaining adjacencies to FinalLines|[:]

Figure 4.36: The algorithm for placing orthogonal axial lines in chains of orthogo-
nal rectangles — Stage 5

Chapter 4: ALP-OLOR 114

chain. The algorithm sorts these rectangles according to the z-coordinate of the left
edge of each rectangle. This first stage is dominated by the sorting and thus has
a complexity of O(nlgn). Clearly this stage is unnecessary if the rectangles are
given in sorted order as a chain of rectangles.

From this sorted list of rectangles the right adjacencies of each rectangle are
found — lines 9 to 11 of the algorithm — by comparing the y-coordinate range of
any rectangle with the y-coordinate range of its neighbour on the right — the largest
bottom y-value and the smallest top y-value define this adjacency. This information
is stored in Rect[i].adjtop and Rect[i].adjbottom for rectangle i. This process takes
linear time and forms the second stage of the algorithm.

The third stage involves determining the lines that move forward through the
chain. This stage of the algorithm proceeds by traversing the chain of rectangles
from left to right keeping track of any common range of y-values (CurrentAdj) of
the adjacencies that have been considered so far. The existence of such a range im-
plies that an axial line could be placed to cross the adjacencies that share this range.
The algorithm also keeps track of which adjacencies between rectangles could be
crossed by such a line by maintaining a list of these adjacencies (CurrentLine is
the list of adjacencies that share a common range of y-values and each adjacency is
given by the rectangles in it in the form left|right). The common range starts out
as the range of y-values of the adjacency between the first and second rectangles
(see lines 12 and 13 of the algorithm). CurrentLine is initialised to 1|2 (line 14)
as rectangle I is adjacent to rectangle 2 and a line could be drawn crossing the
adjacency between them. This range and the current line are then updated when the
next adjacency is encountered (see lines 15-25). If there is an overlap in y-values
between the common range and the next adjacency then the current line can be ex-
tended (lines 23-25). If there is no overlap then a new line must be started (18 to
21). In this case the common range is reset as the range of the adjacency being con-
sidered. Lines 16 to 25 are repeated until the end of the chain is reached i.e. until
all the adjacencies have been crossed by a line in the set of forward lines. Lines 26
to 28 make sure that the last line is also added to the set of forward lines. Since
each rectangle is visited once by a single line, this stage of the algorithm also takes
linear time.

The fourth stage is the same the third stage, except one finds the reverse lines
by moving from right to left, instead of left to right (see lines 29 to 46 which are
very similar to lines 12 to 28). Note that the set of reverse lines are still arranged
so that the leftmost lines come first in the ordering. The adjacencies in any line are
also arranged in order from left to right. Clearly the complexity for this stage is the
same as the previous stage.

Lastly the forward lines and the reverse lines are merged together to obtain the
maximal lines that cross every adjacency. This merging is accomplish by noting that
any forward line crosses each adjacency that it can exactly once and extends as far

Chapter 4: ALP-OLOR 116

(line 51). The leftmost of these adjacencies (found by looking at the z-coordinates
of the rectangles concerned) gives the leftmost adjacency in the new final line. This
adjacency is removed from the list that it occurred in (both if this was the case) and
added to final line which is being created (lines 53 and 54 or lines 56 to 60). The
process is the repeated with the first adjacencies of the two new lists. If either list
becomes empty then the remaining adjacencies in the non-empty list are copied to
the final line which is being built up (lines 61 and 62). This new line is then the first
line in the final set of lines — it is maximal because it extends as far as it can to the
left and to the right. The other lines in the forward and reverse sets are handled in
a similar fashion to produce final lines. An example of a chain of rectangles with
forward lines, reverse lines and the resulting final lines is shown in Figure 4.37. This
final stage of merging the forward and reverse lines takes O(n) time to complete —~
each adjacency can appear once in a forward line and once in a reverse line so at
most 2n adjacencies will be considered for addition into one of the final lines.

The complexity of the entire algorithm is thus O(n).

Empirical tests were done on some different configurations of chains of rect-
angles [Watts and Sanders, 1997]. The data for the running time of the algorithm,
excluding the sorting done in the first stage, verified the theoretical analysis — that
is, the data confirmed that the last four stages of the algorithm are indeed linear.

This restricted instance of the problem is, in fact, a special case of the problem
to be considered in the next section but it was presented as a separate problem in
order to make the algorithm presented in the next section easier to understand.

4.7.24 Orthogonal axial line placement in trees of rectangles

The algorithm to find the minimal set of orthogonal axial lines to cross the adja-
cencies in a tree of orthogonal rectangles is presented in Figures 4.38, 4.39, 4.40
and 4.41. The algorithm takes as input a list of rectangles that represents a tree
of orthogonal rectangles and produces a minimal set of maximal orthogonal axial
lines.

The algorithm is split into six stages: inputting the rectangle data, finding the
adjacencies between the rectangles; defining the order in which the rectangles will
be visited; finding the forward lines; finding the leaf lines; and merging the forward
lines and leaf lines into the final lines.

The main data structure in the algorithm (as given in Figure 4.38) is an array
Rect of records to represent the rectangles. Each rectangle is represented by a
record with 8 fields — left, right, top and bottom to define the rectangle, parent to
keep track of the rectangle to the left of the current rectangle, numadj to keep track
of the number of rectangles adjacent to the right end of any rectangle, adjlist which
is a list of these rectangles and finally LeafLineNo which is used in stages 4 and 5
to keep track of which leaf line crosses the rectangle.

Chapter 4: ALP-OLOR 117

00

01
02
03
04
05
06
07
08
09

10

11

{Stage 0:}
{Get input}
create array Rect[| of all given rectangles
{n is the number of rectangles}
FOR ¢ from 1 to n
Input Rect[i].left
Input Rect[i].right
Input Rect[i].top
Input Rect[i].bottom
Set Rect[i].parent to be undefined {will be calculated}
Set Rect[i].numadj to be undefined {will be calculated}
Set Rect[i].adjlist to be Nil {will be calculated}
Set Rect[i].LeafLineNo to be undefined
{will be used in stages 4 and 5}

{Stage 1:}
Find adjacencies {using algorithm discussed before}
{Rect[i].parent, Rect[i].numadj and Rect[i].adjlist are calculated here}

{Stage 2:}

{Define the order in which the rectangles will be visited}
create array RightList[| sorted according to right value of
each rectangle {i.e. based on Rect[].right}

{This will be an array of the numbers of the rectangles in
the order in which they will be visited.}

Figure 4.38: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stages 0 to 2

Chapter 4: ALP-OLOR 118

{Stage 3:}
{Find forward lines}

{Set values in root vertex of Interval tree}
12 high < Rect[RightList[1]].top
13 low <« Rect[RightList[1]].bottom
14 line < RightList[1]
15 FOR p from 2 to n do {traverse rectangles in order of right edge}

16 k < RightList[p]

17 IF Rect[k].numadj = 0

18 THEN

19 add k to LeafList

20 ELSE

21 find vertex z in interval tree such that

overlap(interval (z.low, z.high),
interval (Rect[k].bottom, Rect[k].top)) = true
AND last rectangle in z.line = k

22 set eztended to be false
23 FOR each rectangle r in Rect[k].adjlist do
24 IF overlap(interval(z.low, z.high),
interval (Rect[r].bottom, Rect[r].top)) = true

25 THEN

{Extend an existing line}
26 Insert a child of z in interval tree with
27 high « top of overlap
28 low < bottom of overlap
29 line « z.line || r
30 set eztended to be true
31 ELSE

{Start a new line}
32 Insert a child of zin interval tree with
33 high < Rect[r].top
34 low + Rect[r].bottom
35 line « r
36 IF extended = true THEN delete vertex 2z

{traverse interval tree to produce a list of forward lines}
37 i+ 0
38 FOR each vertex z in the interval tree

39 1 1+1

40 ForwardLines[i].rects + z.line
41 ForwardLines[i].top « z.high
42 ForwardLines[i].bottom < z.low

Figure 4.39: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stage 3

Chapter 4: ALP-OLOR

119

43
44
45
46
a7
48
49
50
51

52

53
54
55
56
57
58

59
60
61

62
63
64
65
66
67
68
69
70

{Stage 4:}
{Find leaf lines}

FOR each leaf do
k < RectNo of current leaf
CurrentT ¢ Rect[k).top
CurrentB <« Rect[k].bottom
p < Rect[k].parent
currentline.rects k
1+ 1
WHILE p is still defined
IF overlap(interval(Rect[p].top, Rect[p].bottom),
interval(CurrentT, CurrentB)) = true
THEN
{extend an existing leaf line}
currentline.rects « p || currentline.rects
currentline.top < top of overlap
currentline.bottom ¢« bottom of overlap
CurrentT + top of overlap
CurrentB « bottom of overlap
ELSE
{add current line to set of leaf lines}
LeafLines[i).rects « currentline.rects
LeafLines[i].top < currentline.top
LeafLines[i].bottom < currentline.bottom
{start a new leaf line}
¢ 1+1
currentline.rects < p
currentline.top < Rect[p].top
currentline.bottom < Rect[p)].bottom
CurrentT « Rect[p].top
CurrentB < Rect[p].bottom
Rect[k].LeafLineNo « ¢
k«p
p < Rect[k].parent

Figure 4.40: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stage 4

Chapter 4: ALP-OLOR 120

71
72
73
74
75
76

77
78
79

80
81
82
83

84

{Stage 5:}
{Merge forward lines and leaf lines to produce final lines}

Set m to the number of lines in ForwardLines
FOR : from 1 to m
FinalLines[i].top < ForwardLines[i].top
FinalLines[i).bottom < ForwardLines[i].bottom
set FinalLines[i].line to be empty
FOR each rectangle j in ForwardLines[i].line from right end
to left end
FinalLines[i].line < j || FinalLines[i].line
k < Rect[j].LeafLineNo
IF overlap(interval (ForwardLines[i].top, ForwardLines[i].bottom),
interval (LeafLines[k].top, LeafLines[k].bottom)) = true
THEN
FinalLines[i].top < top of overlap
FinalLines[i].bottom ¢« bottom of overlap
Add all rectangles in LeafLines[k].line to
FinalLines[i].line
Break out of for loop

Figure 4.41: The algorithm for placing orthogonal axial lines in trees of orthogonal
rectangles — Stage 5

Chapter 4: ALP-OLOR 121

The adjacencies between the rectangles are found using the algorithm presented
in Section 4.5.1. In this stage of the algorithm parent, numadj and adyjlist are given
values.

In stage 2 of the algorithm an additional array, RightList[], is created which
stores a list of the indices of the array Rect|] arranged according to the z-coordinate
of the right end of the rectangles. This list defines the order in which the rectangles
will be visited in stage 3 — finding the forward lines. Stages 0 to 2 are essentially
preprocessing to define a tree of orthogonal rectangles.

Stage 3 of the algorithm (as given in Figure 4.39) finds the Jorward lines. These
are the lines found by starting at the root rectangle (in this case the leftmost rectangle
— with the smallest z-coordinate of its right edge) and working towards the leaf
rectangles of the tree (these are rectangles with no right neighbours) considering
each rectangle in turn. An interval tree [Cormen er al., 1990] is used to maintain the
y-value ranges that can be considered at any stage. An interval tree is a red-black
tree where each vertex = contains an (open or closed) interval defined by its low
and high endpoints and where the key of the vertex is the low endpoint. Insertions
into the tree are based on the low endpoint of the interval to be inserted. Thus an
inorder traversal of an interval tree would return the intervals in sorted order by
low endpoint. In the algorithm above every vertex in the interval tree stores an
interval defined by the variables low to high and, in addition, a candidate line (line)
represented by a list of the rectangles such a line could cross. Each vertex in the
interval tree thus represents a line that might need to be considered when attempting
to extend lines from the root to the leaf rectangles. Lines 12 to 14 initialise the root
vertex of the interval tree to contain the interval represented by the y-value range of
the root rectangle and a line that crosses only that rectangle but could be extended
into the root rectangle’s right neighbours.

After the initialisation each rectangle is considered in turn (lines 15 to 36 of
Figure 4.39). Each such rectangle can have at most one rectangle adjacent to it on
the left and could have a number of other rectangles adjacent to it on the right. If it
has no rectangles adjacent to it on the right then it is a leaf rectangle and its number
is added to a list of such leaf rectangles (line 17 to 19). If it has adjacent rectangles
on the right then the forward line coming into the rectangle could potentially be
extended into these adjacent rectangles (lines 21 to 36). The algorithm searches the
interval tree for the line which comes into the rectangle from the left — it will have
an interval which has some overlap with the y-value range of the rectangle and the
last rectangle through which the line passes will be the current rectangle (line 21).
The algorithm then considers each right neighbour of the current rectangle in turn
(lines 22 to 35) and determines which adjacencies can be crossed by extensions of
this line. There could be more than one possible extension of the line depending on
the y-coordinates of the adjacencies being considered and thus the one line coming
into a rectangle from the left could become more than one line (see lines 26 to 30) -

Chapter 4: ALP-OLOR 122

one line going into each adjacent rectangle where there is an overlap of the interval
covered by the line and bottom and top y-values of the adjacent rectangle. Each of
these new lines would result in a new vertex being inserted into the interval tree to
store the new interval and detail which rectangles are crossed by the new line. The
algorithm also determines for which adjacencies (if any) new forward lines have to
be started (lines 32 to 35), i.e. the existing line cannot be extended to cross the new
adjacencies (there is no overlap of y-coordinates). Again new vertices are created
in the interval tree.

After all the right neighbours have been considered then the vertex in the interval
tree representing the line coming into the current rectangle is deleted if the line has
been extended (it is no longer needed in this case). If the line has not been extended
then it is one of the forward lines and is thus not deleted. The last step in this stage
of the algorithm (lines 37 to 42) is to traverse the interval tree and produce a list of
the forward lines, represented by a range of y values and a list of rectangles crossed,
to cross all of the adjacencies in the tree of rectangles.

Figure 4.42 shows the forward lines generated for part of the tree of Figure 4.31.
Note that the line that crosses the adjacencies between rectangles ¢ and b and b and
c can be extended in d but not into e. A new forward line is created to cross the
adjacency between rectangles c and e. This line can be extended into f but not into
g.

Stage 4 of the algorithm (as given in Figure 4.40) works from the leaves of
the tree to the root rectangle, hence finding the leaf lines. This case is easier than
that of finding the forward lines. It is only necessary to check if one of the lines
coming into any rectangle from the right can be extended to cross the one adjacency
on the left or whether a new leaf line must be created. The algorithm considers
each leaf rectangle (from line 19 in stage 3) in turn (lines 43 to 70). The leaf line
for any leaf rectangle is first initialised (lines 44 to 48) — this involves finding the
interval to be considered, finding the parent of that rectangle and setting the first
rectangle in the current line. The algorithm then works up the rectangle tree until
the root rectangle is reached (lines 48 to 68). For each rectangle on the path from
leaf rectangle to root rectangle it determines if the leaf line coming into a rectangle
can be extended into the current rectangle’s parent (lines 53 to 57) or if the current
leaf line must be terminated and a new leaf line started (lines 59 to 67). This stage
of the algorithm also records the number of the last leaf line that crosses from the
current rectangle into its parent rectangle (LeafLineNo — line 68) — this could be
a new leaf line (starts in that rectangle) or one which crosses the rectangle from
right to left. This information is used in stage 5 of the algorithm which is described
below. Figure 4.42 shows the leaf lines generated for part of the tree of Figure 4.31.
Note that the leaf line from rectangle g cannot be extended from e into ¢ and a new
“leaf” line has to be created here.

The final stage of the algorithm (stage 5 as given in Figure 4.41) merges the

Chapter 4: ALP-OLOR 124

range so rectangle e is considered. Here the leaf line which was stored in stage 4 of
the algorithm is the line that starts in e and crosses into c. This line does have an
overlap so the final line can be generated using the forward line and this leaf line.

This example also illustrates why it is sufficient in stage 4 (line 68) of the al-
gorithm to record only the last leaf line which either starts in or crosses a given
rectangle. Leaf lines define the left extent of any final line. If two or more leaf lines
start in or cross a given rectangle then the associating of a leaf line and a forward
line will not be done when that rectangle is considered. In Figure 4.42, rectangle
¢ has 2 leaf lines which cross it — the line a—b—c—d and the line b—c—e. These leaf
lines are paired with their forward lines when rectangle d of forward line a~b—c—d
and rectangle e of forward line c—e—f respectively are being considered. Similar
arguments apply for other combinations of more than one leaf line either crossing
or starting in a given rectangle.

Sanders et al. [2000a] show another example of the applying the algorithm to a
specific tree.

The algorithm essentially consists of four parts: finding the adjacencies and
defining the order of processing, finding the forward lines, finding the leaf lines,
and merging the forward lines and leaf lines. To analyse the algorithm each of these
stages are considered in turn.

Stage 1 and 2: Find adjacencies and define order The algorithm used to find the
adjacencies of the rectangles in stage 1 of the algorithm is as in Section 4.5.1.
The algorithm also determines the array RightList. This algorithm is domi-
nated by sorting and thus has a complexity of O(nlgn) where n represents
the number of rectangles in the tree.

Stage 3: Find forward lines In essence this phase of the algorithm determines which
adjacencies overlap with intervals that have already been inserted into the in-
terval tree — an interval in the interval tree means that there is a forward line
which can be considered. There are » — 1 adjacencies in a tree of n rectangles
and each adjacency only needs to be considered once — only one forward line
can cross any adjacency. Also each interval tree operation (adding or delet-
ing here) takes O(Ign) time [Cormen et al., 1990]. Therefore stage 3 of the
algorithm has a complexity of O(nlgn).

This stage of the algorithm could be done more efficiently as regards time by
noting that each rectangle can only have one line coming into it from the left
and using a matrix of size n — 1 to store the y intervals of these lines. This
has the advantage of direct lookup but the disadvantage of always requiring
O(n) space — the best case for the interval tree could be much less.

Stage 4: Find leaf lines In this phase of the algorithm the lines starting in the
leaves of the tree are extended back towards the root of the tree. Here testing

Chapter 4: ALP-OLOR 125

Figure 4.43: A tree with n/2 leaves and height also n/2

whether the line can be extended is O(1) (a simple test for overlap) but it is
possible that there are O(n) leaves and that for each of these leaves it is nec-
essary to extend the line through O(n) rectangles (a tree with approximately
n/2 leaves and of height also approximately n /2 — see Figure 4.43 for a sim-
ple example of this case). So the complexity for this part of the algorithm is
O(n?) in the worst case.

Stage 5: Merge forward lines and leaf lines For a forward line to exist, it must
cross at least one adjacency between two rectangles in the tree, and each
adjacency is crossed exactly once by the definition of the axial line placement
problem. Therefore since there are n rectangles, there are exactly n — 1 of
these adjacencies and there can be a maximum of O(n) forward lines.

The merging phase of the algorithm considers each forward line in turn and
in the worst case works from the rightmost rectangle of the line until a leaf
line with overlap is encountered. The algorithm then merges these two lines.
Effectively this is merging two lines in a chain of rectangles which is O(n)
(as shown in Section 4.7.2.3).

So since there are a maximum of O(n) forward lines and merging a forward
line with its associated leaf line is O(n), this part of the algorithm is O(r?) in
the worst case.

The complexity of the entire algorithm is thus O(n?) in the worst case but better
performance can be expected from some configurations of input rectangles.

The algorithm was implemented and tested on various configurations of trees.
The results of this empirical analysis confirmed the theoretical analysis and also
demonstrated that different shapes of the trees of rectangles affect the complexity

Chapter 4: ALP-OLOR 126

quite dramatically. In some cases the sorting and finding the forward lines dominate
and in other cases finding the leaf lines and merging the forward and leaf lines are
the more costly operations. Sanders et al. [2000a] presents detailed results of the
empirical analysis.

Section 4.7.1 presented some variations of the orthogonal axial line placement
problem that can be solved in polynomial time. In this section polynomial time al-
gorithms for the orthogonal axial line placement problem for chains of orthogonal
rectangles and trees of orthogonal rectangles have been presented. It is now inter-
esting to consider finding other arrangements of rectangles that are more general
than a tree of rectangles that can be solved in polynomial time. This is discussed in
the next section of this thesis. .

4.7.3 More general cases

The issue to be considered now is whether the results above can be extended to
cover the case where each rectangle is joined to at most two rectangles at its left
end and two rectangles at its right end (analogously for two rectangles above and
two rectangles below). It turns out that this is not the case. This can be seen if
the configuration of rectangles shown in Figure 4.44 is considered. This is a con-
figuration which meets the restrictions — each rectangle is adjacent to at most two
neighbours to the left and two to the right. Also this configuration of rectangles
produces choice — the adjacency between rectangles 4 and 6 can be crossed by the
line through 1 — 3 — 4 — 6 or the line through1 —2 —4 — 6. Lines0 -1 -3 —4
and 1 — 2 — 4 — 5 are essential lines.

If this configuration of rectangles is treated as a basic building block it is clear
that a configuration of rectangles that meets the restriction of at most two adjacent
rectangles at each end can be generated and this configuration of rectangles could
offer global choice. See for example Figure 4.45. A proof similar to that shown
in Theorems 4.4.1 and 4.4.2 can be used to show that this restricted case of the
problem is also NP-Complete in the general case.

4.8 Future research

There are a number of interesting research questions that arise from the research
discussed in this chapter. Tackling all of these problems is outside the scope of this
research. This section of the thesis highlights some of these questions. A more
complete coverage can be found Chapter 8 of this document.

As extensions to the work done in this research and discussed in this chapter the
following problems are interesting areas of research.

e Reducing the amount of work required by the heuristic algorithm to calculate

Chapter 4: ALP-OLOR 127

Figure 4.44: Choice introduced where each rectangle has at most 2 left and 2 right
neighbours

the non-redundant set of orthogonal axial lines that covers all of the adja-
cencies in a configuration of adjacent orthogonal rectangles. In particular,
attempting to address the issue of redundant calculations which are made for
the collection of rectangles shown in Figure 4.22 or similar configurations.

e Developing other heuristics to produce approximate solutions to the exact
solution.

e Considering other special cases of the problem that can be solved in polyno-
mial time.

An interesting, but not directly related, area of further research is in the gen-
eration of test data. An efficient algorithm for generating configurations of non-
overlapping adjacent orthogonal rectangles would be useful in order to test any
heuristics that are developed. In addition, generating non-trivial trees of adjacent
but non-overlapping orthogonal rectangles proved to be relatively complex in this
research and a more efficient way of doing so could be useful for any work at im-
proving the algorithm.

4.9 Conclusion

This chapter addresses the problem of finding the fewest longest orthogonal ax-
ial lines that pass through all of the shared adjacencies between adjacent orthogo-

Chapter 4: ALP-OLOR 129

nal rectangles — ALP-OLOR. The problem is made NP-Complete by the fact that
various instances of choice can arise. This chapter of the thesis presents an NP-
Completeness proof based on a reduction from biconnected planar vertex cover to
stick diagram and hence to ALP-OLOR. An O(n?) algorithm is presented that finds
a non-redundant set of lines to cross all of the adjacencies of a collection of adja-
cent orthogonal rectangles. The algorithm has been shown to produce a very good
approximation to the exact solution in all cases tested.

This chapter also presents some restrictions of the orthogonal axial line place-
ment problem for which polynomial time solutions can be obtained — configurations
that are mappable to interval graphs, chains of orthogonal rectangles (O(n)) and
trees of orthogonal rectangles (O(n?)). It is likely that other restrictions exist that
are solvable in polynomial time and future research will investigate this area.

The next chapter of this thesis considers the case where the lines which pass
through the shared adjacencies between adjacent orthogonal rectangles are no longer
restricted to being parallel to the axes — axial lines with arbitrary orientation are ac-
ceptable. This problem is also shown to be NP-Complete and once again the use of
a heuristic approach to solving the problem is discussed.

	Front
	Chapters 1-2
	CHAPTER 3
	3.1 Possible research areas
	3.2 Scope of this thesis

	CHAPTER 4
	4.1 Introduction
	4.2 Statement of the problem
	4.3 Addressing the problem
	4.4 Proving NP-completeness of the problem of resolving choice
	4.5 Heuristic algorithm
	4.6 Complexity argument
	4.7 Special cases that can be solved exactly in poly-nomial time
	4.8 Future research
	4.9 Conclusion

	Chapters 5-9
	References

