Chapter 1

Introduction

1.1 Background to the problem

The advent of computers has changed how people work and how jobs are done in
many professions. This is because in many circumstances computers can be used to
handle the routine (and often boring) aspects of some jobs, fréeing the professional
to devote her/his time to the more mentally stimulating/challenging aspects of the
work. Baase [1997] discusses many of the benefits and problems of the computer
revolution in her book A Gift of Fire.

The general area of architecture (designing houses or office buildings, town
planning, etc.) is an area where computers could offer benefits to the professional.
In some other areas of design this is already happening. For example, shape gram-
mars can be used to understand designs and to create new designs [Koning and
Eizenberg, 1981; Mitchell, 1990; Herbert et al., 1994] and computers have been
used to automatically generate floor plans for houses [Eastman, 1972; Rinsma et
al., 1990]. Town planning or urban design is an area where the professional uses
large data sets in order to be able to understand existing town plans and also to
be able to improve existing layouts and to design new layouts. Using computers
to assist the town planners could free the town planner from some aspects of the
routine jobs and thus allow her/him to concentrate on the design phase. This au-
tomation raises a number of societal and ethical issues, which will not be discussed
here (see Baase [1997] for more detail), but also raises a number of problems that
are of interest to computer scientists. This thesis considers some of the interesting
computational problems that arise from the possible automation of a design task —
that of understanding and designing urban layouts.

Hillier ez al. [1983] proposed a method, which they called space syntax, to de-
scribe and analyse patterns of architectural space both at the building and urban
level. Hillier [1996] discusses the use of the method in more detail (see particu-
larly pages 153 to 181). The idea is that with an objective and precise method of



CHAPTER 1. INTRODUCTION 2

description it is possible to investigate how well environments work, rigorously re-
lating social variables to architectural forms. They believe that space syntax can
help architects to understand the interaction between space and society and thus can
be used as a tool to understand why urban areas have developed as they have and
also to design new urban layouts.

An architect or town planner would apply the space syntax method ([Mills,
1992]) to a town or city in 4 main steps.

1. Studying the town plans or an aerial photograph of the town and separat-
ing out the “space” (roads, parks, etc.) from the “non-space” (buildings, car
parks, schools, etc.). The result of this step would be a “deformed grid”
which is the town plan reduced to a number of polygons representing the
“non-space” separated by “space” — it is the space that is the real object of
interest.

2. Creating a convex map of the area. This convex map is made up of the small-
est number of “largest” convex spaces that cover all of the space in the area
being analysed. It is a partition of the space into the minimum number of con-
vex polygons. A convex space gives some local information about the area in
the sense that every point in the convex space is directly visible and directly
accessible to every other point in that convex space.

3. Creating an axial map of the area from the convex map. The axial map is made
up of the fewest and longest straight line segments (axial lines) that cover the
town, crossing through the convex polygons that make up the convex map,
and offers a globalising perspective that takes into account how far one can
see (or walk) in the town.

4. Combining the information from the convex map and the axial map to pro-
duce an integration factor for the town/city. The integration factor, which is
the final result of the analysis, gives an idea of how easy it is to move about
in the town.

At present most of this work is done manually by the architect/town planner
using pencil and tracing paper over the aerial photograph or map. This seems to
be an application where computers can be used to assist, or (in some aspects of the
work) replace, the architect in performing the routine tasks required to prepare the
data for interpretation. Some tasks are boring and can be more efficiently solved
by computers. Some tasks are computationally difficult and are unlikely to be per-
formed optimally by humans so computers could be utilised to provide improved
solutions. In order to determine whether the processing can be done automatically
it is important to consider the tasks that are performed by the architect where there
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is potential for automation. The next section of this thesis considers the tasks per-
formed in applying the space syntax analysis method, identifies where there is the
possibility for automation and also highlights some of the areas of current and pos-
sible future research interest for computer scientists. Note that the focus of this
thesis is on the computational problems that could arise with automation. The issue
of whether space syntax is a good way of understanding and doing design is not
within the scope of the research.

1.2 The scope for automation

The first stage in the process of applying space syntax is the separating of space
from non-space in the town plan or aerial photograph. This problem has already
been the subject of much research in the field of image processing over a number
of years. The general approach here would be to take an aerial photograph, landsat
image, or any other image (in digital form) over the inhabited areas and to auto-
matically separate space (roads, parks, etc.) from non-space (buildings, etc.) using
image segmentation techniques. Gonzalez and Wintz [1987], Gonzalez and Woods
[1992], Castleman [1996], Jdhne [1997] or Russ [1999] offer good introductions
into the field of image processing and more specifically, general image segmenta-
tion techniques. Various authors [Huertas and Nevatia, 1988; Liow and Pavlidis,
1990; Ton et al., 1991; Stilla et al., 1996; Geman and Jedynak, 1996; Barzohar and
Cooper, 1996; Levitt and Dwolatzky, 1999] have considered the issues of separating
roads or buildings from the background in digital images.

An additional problem that could occur after the separation/segmentation phase
is that the segmented areas are unlikely to have smooth boundaries. In order to make
these areas suitable for further processing it is necessary to be able to “accurately”
and “efficiently” represent each area by a bounding polygon. In essence the area
should be described by a bounding polygon that matches the boundary as closely
as possible while minimising the number of vertices and edges required to define
the polygon. Research into this problem has been going on for a number of years
([Ramer, 1972; Pavlidis and Horowitz, 1974; Sarkar, 1993; Perez and Vidal, 1994;
Ruskin, 1997; Zhu and Seneviratne, 1997]). The result of applying segmentation
and polygon approximation to instances of the problem would be the “deformed
grid” — a number of polygons representing the non-space in the area with the space
between as the real area of interest. A bounding polygon can then be put around
this area of interest. This deformed grid would then be represented in an appropriate
fashion for future processing — finding the convex map and the axial map.

It does, therefore, seem that the initial phase of the space syntax method — sepa-
rating space and non-space — can benefit from automation. Computer programs can
be used to generate a deformed grid from an aerial photograph or town plan. If the
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town planner feels this automatically deformed grid is acceptable then he/she can
use it as is in the next phase of the process. Alternatively he/she could use it as a
starting point for generating a deformed grid that they feel is acceptable to use in
the next phase of the process. Although many of the problems in this area are well
understood there are still some open questions and unresolved issues and there is
thus still scope for further research in this area.

Once the deformed grid has been found, the next phase of the work is to find
the convex map of the area. The convex map is defined as being the minimum
number of non-overlapping convex spaces (convex polygons) that cover the space
in the deformed grid. Figure 1.1 shows a section extracted from a map of the Jo-
hannesburg region. This is essentially the deformed grid of the region — the space
(light coloured) and non-space (darker coloured) in the urban layout represented by
polygons. Note that the polygons representing non-space (darker coloured) are not
of direct interest in applying space syntax. These non-space polygons can be of ar-
bitrary shape. The polygon[s] representing the space in the deformed grid must be
partitioned into convex polygons. Figure 1.2 shows a close up of part of the original
region that will be used to give an idea of the application of space syntax. Essen-
tially the problem is that of covering or partitioning a general polygon (the boundary
of the area under consideration) with holes (the non-space parts of the area under
consideration) by the minimum number of convex polygons. The general covering
problem (where polygons are allowed to overlap) and the general partitioning prob-
lem (where polygons may not overlap) have been quite well researched. In addition
partitioning and covering of special classes of polygons has also received a lot of
interest. Many of the problems in this category have been shown to be computation-
ally intensive and some have been shown to be NP-Hard. Chapter 2 discusses these
problems in more detail. The special case of covering or partitioning a polygon
with holes, that represents a town plan, and therefore has special constraints, has
not been studied but the complexity of some town plans (as shown in Figure 1.1)
would seem to indicate that this problem is also inherently hard. However, even
if the problem itself is inherently hard — it takes a long time to find the minimum
solution — it is likely that approximations to the optimal solution would be sufficient
for the town planner to continue meaningfully with the later phases of the analysis.
It might also be the case that some town plans can be modeled by simplifications to
the general problem and that these could be solved exactly in a reasonable time. It
thus seems likely that this phase of the process could also benefit from automation.
Interesting areas of research related to this phase of the process are to study approx-
imation algorithms and special cases of the problem that can be solved exactly in a
reasonable time.

From the convex map a town planner can generate the axial map over the area.
This axial map is defined as the smallest number of axial lines that will cross all of
the shared boundaries between the convex spaces in the convex map. Figures 1.3
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and 1.4 show how the enlarged portion of the urban layout from Figure 1.1 could be
covered by convex polygons and the shared boundaries between the convex poly-
gons crossed by axial lines. It is interesting to note that in the two figures the same
number of convex polygons are required to cover the spaces in the layout but that
the convex polygons are different. An effect of the different sets of convex polygons
in the two partitions is that different numbers of axial lines are required to cross the
shared boundaries in the two figures (6 axial lines are required in Figure 1.3 and 7
in Figure 1.4). This example illustrates the inherent difficulty of the problem. It is
known to be difficult to find the minimum number of convex polygons to partition
a polygon and it seems that is it also difficult to partition the space in a town plan.
Then to find the minimum number of axial lines to cross all of the shared bound-
aries it is necessary to consider all of the combinations of the minimum number of
convex polygons and to find the minimum number of axial lines for each of those
configurations.

The problem of placing the minimum number of axial lines for any configu-
ration of convex polygons is an area that has not been directly researched in the
past. In fact, it was first studied by the author of this thesis. There is, however, an
abundance of research in closely related areas — guarding and visibility problems.
In guarding problems the aim is to place the minimum number of guards (with dif-
ferent attributes) so that the guards can see the entire area of polygons of different
forms. Visibility problems are very similar but focus on determining how much of
a polygon can be seen from some point or points inside the polygon. These prob-
lems are discussed in detail in Chapter 2. The literature in these areas indicates that
finding the minimum number of axial lines could itself be an inherently difficult
problem. The problem of finding the axial map from some urban layout (given the
convex map) is the major emphasis of this thesis. A number of variations the prob-
lem are studied and even more questions are raised. The results presented in this
thesis do, however, indicate that this problem can be solved sufficiently well to be
of use to the town planner or urban designer.

Having determined the convex map and the axial map the architect would per-
form the space syntax analysis based on these parameters. This phase of the process
is already automated [Hillier, 1996]. This is done essentially using graph algo-
rithms. An area of interest is in determining whether the graph algorithms used
here — for example, shortest path algorithms — could be modified for the specific
application. In addition, issues related to space usage and representation could be
attractive areas for research.

The discussion above makes it clear that the aim of automatically applying space
syntax to a town plan or aerial photograph of a town poses many interesting research
areas for computer scientists. The range of research areas is too broad to be covered
as a single Ph.D. thesis and thus this thesis concentrates on a small part of the
overall problem. The next section gives an overview of the research undertaken for
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the thesis.

1.3 The research focus of the thesis

As discussed in the previous section of this thesis the potential automation of space
syntax gives rise to many areas of research. These areas include image processing,
computational geometry and algorithms. The range of research questions that could
be addressed is very wide and it was thus necessary to concentrate on a subset of the
problems. For this reason, the problems of separating space from non-space, deter-
mining the convex map and the final analysis stage with its associated algorithms
were not considered as part of this research. The decision was made to focus the
research for this Ph.D. on the problem of finding the axial lines that cross all of the
shared boundaries between the convex polygons in the convex map, that is finding
the axial map for a given layout. In the remainder of this thesis the problem will
be called the Axial Line Placement problem or ALP. This problem on its own is
still very big and could not be solved entirely. The research considered a number of
simplifications to and variations on ALP — using simpler types of convex polygons
and introducing constraints aimed at making the problems easier to solved. Some
new contributions have been made as a result of this research and some progress has
been made towards finding solutions to the general problem. There are, however,
still a number of unsolved problems and open questions. The next section gives an
overview of the thesis, in particular indicating some of the variations of the Axial
Line Placement Problem that have been considered as part of the research for this
thesis.

1.4 Overview of the remainder of the thesis

Many researchers over the years have concentrated on the problems of guarding
and visibility in polygons of various shapes. Much attention has also been focussed
on the problems of decomposing polygons into smaller more easily handled com-
ponents. As mentioned in Section 1.3 above these problems have relevance to the
current research because they can provide insight into solving ALP . Chapter 2 of
this thesis presents a detailed literature survey of the work in these areas.

Chapter 3 expands somewhat on the range of research possibilities that arise
from the problem of finding the convex and axial maps for town plans (urban lay-
outs). This chapter also presents some simplifications or generalisations of the
problem that are in themselves interesting problems for further study. The chap-
ter concludes by discussing the specific problems that were tackled as part of this
thesis.

The new results, in the form of proofs, algorithms, etc. that arise from tackling
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these problems constitute the research contribution of the thesis and are discussed
in ensuing chapters of the document.

Chapter 4 discusses one of the “simplifications” presented in Chapter 3 in depth
— the placement of orthogonal axial lines to cross the shared boundaries between
rectangles in a configuration of orthogonal rectangles. The problem is presented and
shown to be NP-Complete. A heuristic algorithm that appears to give “acceptable”
approximations is tested and compared to a heuristic algorithm that is known to
give a solution no worse than twice an optimal solution. Special cases where the
problem can be solved exactly in polynomial time are also discussed.

In Chapter 5 the problem discussed in Chapter 4 is changed slightly to allow the
axial lines that cross the shared boundaries between rectangles in a configuration of
orthogonal rectangles to have arbitrary orientation. This problem is also shown to
be NP-Complete. The chapter also introduces some ideas for heuristics for finding
acceptable approximations to the exact solution in this case.

The restrictions on problem are relaxed even further in Chapter 6 that consid-
ers the axial line placement problem for arbitrary convex polygons (dropping the
requirement of orthogonal rectangles). This problem is a generalisation of the prob-
lem described in Chapter 5 and thus the NP-Completeness of this problem can be
easily proved. The variation of the problem discussed in this chapter is the most
general case of ALP and thus ALP is NP-Complete.

In Chapter 7 of the thesis, the original problem — placing axial lines to cross the
shared boundaries of the convex polygons in the convex map of an urban layout or
town plan — is considered. In this thesis the problem of finding the convex map of
the area under consideration is not studied in great depth because it has already been
shown to be NP-Hard. However in this chapter it is studied as a side issue in the
matter of finding the axial map of the area. Here it is shown that although the general
problem of partitioning a polygon with holes is NP-hard, there are some instances
of the problem that can be solved in polynomial time. In particular it is shown that
if the town plan is regular then the convex map can be found in polynomial time
and so can the axial map. The chapter also addresses the matter of town plans that
are not regular and argues that finding the convex map of such layouts is likely to
be NP-Hard but that finding the axial map of such layouts might not be as difficult.

The final chapters of this thesis are devoted to future work and concluding re-
marks. Chapter 8 discusses some of the problems that have not been tackled in this
thesis and Chapter 9 restates the results and conclusions drawn in this thesis. There
are still many open questions and unproven conjectures but this thesis has made
a significant contribution in tackling some new problems and obtaining some new
results.



Chapter 2

Background

2.1 Introduction

As discussed in the introduction to this thesis (Chapter 1) the potential automation
of space syntax gives rise to a wide range of research questions and it was thus nec-
essary to concentrate on a subset of the problems. For this reason, the problems of
separating space from non-space, determining the convex map and the final analy-
sis stage with its associated algorithms were not considered as part of this research.
The decision was made to focus the research for this PhD on ALP, the problem of
finding the axial lines that cross all of the shared boundaries between the convex
polygons in the convex map. This problem has much in common with other well
studied problems in the field of computational geometry.

The most obvious commonality is in the idea of visibility. The intent of the axial
map of some urban layout is that it offers a globalising perspective that takes into
account how far one can see (or walk) in the town. In particular placing an axial
line to cross the adjacencies between a number of adjacent convex polygons can
be thought of as determining a line of sight from some point to another in a given
polygon. Visibility in polygons is an area of computational geometry which has
received much attention in the last two decades [Asano et al., 1999]. The essential
question is this work is: “Can some point in the polygon ‘see’ some other point in
the polygon?” However, other visibility questions can also be posed. Included in
these are vertex-vertex visibility, vertex-edge visibility, edge-edge visibility, etc.

The problem of guarding a polygon is very closely related to visibility in poly-
gons. In fact, all guarding problems are essentially visibility problems. The first
“guarding problem” came about as a problem posed by Victor Klee in response to
a request by Vasek Chvital [O’Rourke, 1987]. The original problem was to deter-
mine the minimum number of guards necessary to cover the interior of an n-wall
art gallery. Many variations on this problem can now be found in the literature.
(See the monograph by O’Rourke [1987], the survey papers by Shermer [1992] and

12
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Urrutia [1999], and the summaries of results by O’Rourke [1997] and Suri [1997].)
These variations include vertex guards, edge guards, point guards, periscope guards
and prison guards.

Another area of computational geometry which in some ways is similar to both
visibility and guarding problems is polygon decomposition [Keil, 1999]. The focus
here is in decomposing given polygons into smaller more easily manageable parts.
Polygon decomposition problems occur frequently in such areas as pattern recog-
nition, image processing, computer graphics and VLSI. In polygon decomposition
problems the aim is to break the polygon down into constituent parts which can be
more easily processed. Polygon decomposition is categorised in two different ways
— covering and partitioning. The basic covering problem is to find the minimum
number of polygons, with some predefined characteristics, to cover the complete
area of an enclosing polygon. This problem has some commonality with the guard-
ing problem — covering a polygon with the minimum number of polygons of some
specified type is equivalent to the placement of the minimum number of guards of
some specified type so that each point inside the polygon is visible to some guard.
The partitioning problem is the same as the covering problem except that the poly-
gons into which the enclosing polygon is decomposed are not permitted to overlap.
The phase of the space syntax analysis method which produces a convex map of a
given urban layout is clearly a polygon decomposition problem. The town plan is a
polygon with holes and the convex map is a minimum partition of that polygon.

The focus of this chapter is to explore the commonalties (and some cases the dif-
ferences) between ALP and the work which has been done in the areas of visibility,
guarding and polygon decomposition. This is accomplished by looking at the re-
sults which have been published in the other areas and relating these to ALP. Before
discussing the previous results, however, it is worthwhile introducing some general
terms which are used in the literature. Section 2.2 introduces terms which are im-
portant for understanding the research in these areas which is discussed. Other more
specific terms are introduced only when required.

In addition, a number of problems which are discussed in this chapter have
been proved to be NP-Complete or NP-Hard. In addition, the new results which
are presented in this thesis rely on a number of NP-Completeness proofs. It thus
seems appropriate that the results concerning NP-Complete and NP-Hard problems
are summarised here (Section 2.3). Because of the size and the complexity of the
topic the presentation here focusses on the more practical aspects of the use and
application of the theory.

Once this general background has been covered, the chapter addresses the more
directly related background literature and discusses its relevance to ALP (Section
2.4). The chapter concludes (Section 2.5) by reiterating that ALP is different from
the other problems discussed. ALP is thus a previously unstudied problem and is
worth being investigated. This discussion leads on to the posing of the research
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questions in Chapter 3.

2.2 Terminology

The general definitions in the fields of computational geometry and graph theory
appear below to make the material covered in this chapter more understandable. In
addition, many of these definitions are also used in later chapters of the thesis. Most
of the definitions come from Manber [1988], O’Rourke [1987], and Shermer [1992]
but can be found in other sources as well. A reader who is familiar with the area
could skip this section of the thesis.

e A point p is represented by a pair of coordinates (z, y) in euclidean space.

e A line is represented by two points p and ¢ (which can be any two distinct
points on the line) and is denoted —pg—.

e A line is orthogonal, or orthogonally aligned, if it is parallel to one of the
Cartesian axes.

e A line segment is represented by a pair of points p and g where the points are
the endpoints of the line segment and is denoted by pg.

e A line segment is orthogonal, or orthogonally aligned, if it is parallel to one
of the Cartesian axes.

e A ray is represented by a pair of points p and g where one point is the endpoint
of the ray and the other point is any other distinct point on the ray.

e A ray is orthogonal, or orthogonally aligned, if it is parallel to one of the
Cartesian axes.

e A path is a sequence of points p;,pq,...,p, and the line segments joining
them.

o The line segments in a path are called edges.

e A closed path is a path whose last point is the same as its first point.

e A closed path is also called a polygon.

e The points defining the polygon are called the vertices of the polygon.

e A polygon P can also be defined as a collection of n vertices, v, vz, ..., Vn,
and n edges, v1vV2, VU3, . . ., Un—1Un, UnVi.
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Figure 2.1: A simple polygon (Shermer [1992])
e A simple polygon is a polygon where no two non-consecutive edges intersect.
Figure 2.1 shows an example of a simple polygon.

e The set of points in the plane enclosed by a simple polygon forms the interior
of the polygon.

e The set of points on the polygon itself forms the boundary of the polygon.
e The set of points surrounding the polygon forms its exterior.

e A holein a simple polygon P is another polygon H enclosed by the boundary
of P.

e If a simple polygon P contains holes then P is said to be multiply connected,
if P contains no holes then it is said to be simply connected.

e A simple polygon is convex if, given any two points on its boundary or in
its interior, all points on the line segment joining them are contained in the
polygon’s boundary or interior.

e A polygon P is a star or star-shaped if there is some point z in the polygon
from which every other point in the polygon can be seen.

e A kernel in a star polygon is a point z in the polygon from which every other
point in the polygon can be seen.

e A comb polygon is as shown in Figure 2.3. Comb polygons exist for any
number of vertices which is a multiple of 3.
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“rectilinear” (as was pointed out to him by Grunbaum) has a well estab-
lished meaning: “characterised by straight lines”. Orthogonal polygons have
also been called isothetic polygons [Wood, 1985]. In this thesis O’Rourke’s
nomenclature is used.

e A trapezoid or trapezium is a quadrilateral that has one pair of opposite sides
parallel, the other pair being nonparallel.

e A vertex v is a reflex vertex if it has interior angle > 180 degrees.

e A polygon P is orthogonally convex if it is orthogonal and any horizontal or
vertical line (that is not co-linear with an edge) intersects the boundary of P
in at most two points. Figure 2.4 shows two orthogonally convex polygons.
The second polygon is an orthogonally convex star.

Figure 2.4: An orthogonally convex polygon and orthogonally convex star (Shermer
[1992])

e A polygon P is horizontally (vertically) convex if any horizontal (vertical)
line that is not co-linear with an edge intersects P in at most two points.

e A path inside a polygon P is orthogonally convex if it consists of orthogo-
nal segments and any horizontal or vertical line that is not co-linear with a
segment intersects the path in at most one point.

e An orthogonal comb polygon is as shown in Figure 2.5.

e A polygon P is said to be covered by a collection of subpolygons of P if the
union of these subpolygons is exactly P. The collection of subpolygons is
called a cover of P.

e A cover of a polygon P is said to be a partition of P if the intersection of each
pair of subpolygons in the cover has zero area. (Note, in some work a partition
is also called a decomposition but this is misleading terminology and is not
used here. In this work decomposition includes covering and partitioning.)
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Figure 2.5: Orthogonal comb polygons (Shermer [1992])

e A triangulation of a polygon P is a decomposition of the polygon into trian-
gles without adding vertices. This is accomplished by chopping the polygon
with diagonals (line segments between nonadjacent vertices). See Figure 2.6
for an example of triangulating a simple polygon.

Figure 2.6: A simple polygon and one of its triangulations (Shermer [1992])

e A Steiner point is a vertex which is not one of the original points in the poly-
gon. Steiner points are often used in covering and partitioning.

e A chainis a sequence py, ..., pi of vertices.
o A reflex chain of a polygon is a sequence of consecutive reflex vertices.

e A polygon P is spiral if it has at most one reflex chain, see Figure 2.7 for an
example.






Figure 2.9: A pair of L3 (or link-3) visible points (Shermer [1992])

e A visibility polygon of a point y in some polygon P contains all the points of
P visible to y. Figure 2.10 shows the visibility polygon of the point y in the
star polygon of Figure 2.2

Figure 2.10: The visibility polygon of the point y (shown as the darker shaded
subpolygon) — y is the kernel of the visibility polygon but not of the original polygon

¢ In some contexts, a point in a polygon is identified with a guard. A set of
such points is called a guard set. If all of the elements in a guard set GG are
vertices of P then G is called a vertex guard set and the elements of G are
called vertex guards. Otherwise ( is called a point guard set and its elements
are called point guards.









CHAPTER 2. BACKGROUND 23

e A staircase path is an orthogonal path such that the path is monotone with
respect to the coordinate axes [Wood and Yamamoto, 1993].

o A staircase polygon is an orthogonal polygon, a subset of whose vertices
constitute a staircase path (see Figure 2.13).

Figure 2.13: A staircase polygon

e The maximum visibility problem asks for locating a point inside the polygon
from which the visible area is maximised [Gewali, 1993]. The minimum
visibility problem is similarly defined.

e A simple polygon P is said to be an LR-visibility polygon if there exist two
points s and ¢ on the boundary of P such that every point of the clockwise
boundary of P from s to ¢ (denoted as L) is visible from some point of the
counterclockwise boundary of P from s to ¢ (denoted as ) and vice versa
[Bhattacharya and Ghosh, 1998].

e A planar graph is a graph which can be drawn or embedded in the plane in
such a way that the edges of the embedding intersect only at the vertices of
the graph.

e A cut vertex is a vertex whose removal increases the number of components
in a graph.

e A biconnected graph is a graph which contains no cut vertices.
e A biconnected planar graph is a planar graph which contains no cut vertices.

e A face in a planar representation of a graph is a planar region bounded by
edges and vertices of the representation and containing no edges or vertices
in its interior.
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This list of terms is not complete. Many of the articles cited in the remainder of
the chapter introduce more specific terminology or definitions, in addition to using
many of those presented here, to discuss new problems or special cases of existing
problems. The terms presented here should, however, be enough to give the reader
an understanding of the discussion of the related literature in Section 2.4. Before
this discussion of the related literature Section 2.3 presents a brief overview of com-
plexity theory, particularly approaches using in proving problems NP-Complete.
This material is presented to help the reader understand related literature presented
in Section 2.4. A reader who is familiar with the material is encouraged to skip to
Section 2.4

2.3 NP-Complete problems

2.3.1 Introduction

The following sections of the literature review chapter of this thesis discuss a num-
ber of problems which have been proved to be NP-Complete or NP-Hard. This
section of the chapter is thus aimed at giving the reader an overview of the theory.
More detail and more rigorous presentations can be found in Garey and Johnson
[1979] and Papadimitriou [1994] and a more accessible discussion appears in Harel
[1992]. Section 2.3.2 presents the theory of NP-Completeness and Section 2.3.3
discusses how a new problem can be shown to be NP-Complete. Section 2.3.4
discusses the relationship between NP-Complete and NP-Hard problems.

2.3.2 NP-Complete Problems

The theory of NP-Completeness is designed to be applied to decision problems —
problems which only have “yes” or “no” answers. Abstractly a decision problem II
consists simply of a set Dy of instances and a subset Y1 C Dp of yes-instances.
These decision problems are studied because they have a natural, formal counterpart
— “languages” which can be studied in a mathematically precise theory of compu-
tation. The correspondence of decision problems and languages is brought about
by encoding schemes which can be used to specify problem instances for study.
The relationship between recognising languages and solving decision problems is
straightforward. A deterministic Turing machine (DTM) program M solves a de-
cision problem II under an encoding scheme e if M halts for all input strings over
its input alphabet, 3, and Lys = L[II, e]. Lps is the language recognised by the
program M, thatis Ly = {z € X* | M accepts z} and L[II, €] is an encoding of
an instance of II under encoding scheme e. Refer to Garey and Johnson [1979] and
Papadimitriou [1994] for more detail on the application of this theory.
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The class P is defined as follows:

P = {L | there is a polynomial time DTM program M for which L = L}

Then a decision problem II belongs to P if there is a polynomial time DTM
program that “solves” II. More informally we could say that II € P if there is
a polynomial time algorithm which solves II. The class NP can be defined (see
Garey and Johnson [1979], page 28 for more detail) in terms of a nondeterministic
algorithm. Such an algorithm is viewed as being composed of two stages — a guess-
ing stage and a checking stage. Given a problem instance I, the first stage merely
guesses some structure S. The structure is, of course, algorithm-dependent and rep-
resents, more or less explicitly, a possible answer to the problem. For example, in
the travelling salesperson problem, the structure is a route through the cities to be
visited. The checking stage then uses I and S as inputs and proceeds to compute in
a normal deterministic manner either eventually halting with an answer “yes”, even-
tually halting with an answer “no” or computing forever without halting. (The last
two cases do not always need to be distinguished). A nondeterministic algorithm
“solves” a decision problem II if the following two properties hold for all instances
I € Dn:

1. If I € Yy then there exists some structure S that when guessed for input [
will lead the checking stage to respond “yes” for I and S.

2. If I ¢ Yq then there exists no structure S that when guessed for input / will
lead the checking stage to respond “yes” for / and S.

The class NP is then defined informally to be the class of all decision prob-
lems II that, under reasonable encoding schemes, can be solved by polynomial time
nondeterministic algorithms.

The relationship between P and NP is fundamental in the theory of NP-Completeness.
It is clear that P C NP — every problem solvable by a polynomial time deterministic
algorithm is also solvable by a polynomial time nondeterministic algorithm. Thus
if II € P then II € NP. The current conjecture is that P C NP but this is still an
open problem. If P is different from NP then all problems in P can be solved with
polynomial time algorithms and the problems in NP—P are termed intractable. The
theory of NP-Completeness focuses on proving results of a weaker form — if P#NP
then there are problems in NP which are neither solvable in polynomial time nor
NP-Complete. The class P can be viewed as consisting of the “easiest” problems in
NP and the class of NP-Complete problems contains the hardest problems in NP.

A language L is defined to be NP-Complete if L € NP and for all other lan-
guages L' € NP, L' < L (where L; « L, implies a polynomial transformation
from a language L, to a language L,). Following from this, a decision problem
II is said to be NP-Complete if II € NP and for all other decision préblems I e
NP, I o« II. This implies “the common fate phenomenon” of NP-Complete prob-
lems — every NP-Complete problem is polynomially transformable to every other
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one. If a single NP-Complete problem can be solved in polynomial time, then all
problems in NP can be so solved. If any problem in NP is intractable, then so
are all NP-Complete problems. At this stage it has not been proven that any NP-
Complete problem is inherently intractable. In addition, no one has yet found a
polynomial time solution for any NP-Complete problem. Even without a proof that
NP-Complete problems are intractable, we know that any new problem which can
be proved to be NP-Complete is at least as hard as the other NP-Complete prob-
lems and that a major breakthrough will be needed to solve such a problem with a
polynomial time algorithm.

2.3.3 Proving the NP-Completeness of a new problem

From the above it seems that in order to prove a new problem II NP-Complete, one
must show that every problem in NP transforms to the new problem. A priori, it is
not even clear that any NP-Complete problem need exist. It turns out that if ar leas?
one NP-Complete problem is known to exist that it is only necessary to show that

1. I e NP

2. some known NP-Complete problem II’ transforms polynomially to II.

This result arises because if L; belongs to NP and L, is NP-Complete then
every other L' € NP transforms to L;. Now if L, is also in NP and there exists
a polynomial time transformation from L; to L, then there exists a transformation
from every other L' € NP to L.

Harel [1992] presents the argument in a slightly different form. He states that to
prove that IT is NP-Complete it is not necessary to find polynomial transformations
from all of the other NP-Complete problems. It is only necessary to transform II to
some problem IT” which is known to be NP-Complete (I o II”) and to transform
another (or the same) problem II’ already known to be NP-Complete to IT (I o II).
The first transformation shows that in terms of tractability II cannot be worse than
I1”, that is that II is in fact in NP (as required above). Then the second transfor-
mation shows that in terms of tractability II cannot be better than II'. Since II’ and
I1” are both NP-Complete and stand or fall together then II must be NP-Complete
too. Thus if one problem is known to be NP-Complete then other problems can be
proved to be NP-Complete too by using the transformation approach twice for each
new problem. Harel [1992] notes that in practice only the second of these transfor-
mations is carried out in an NP-Completeness proof. To show that II cannot be any
worse than the NP-Complete problems, that is that it is in fact in NP, can often be
done more easily directly — by showing that IT can be solved by a polynomial time
nondeterministic algorithm.
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The “first” NP-Complete problem is the satisfiability problem and Cook’s The-
orem is used to prove that this problem is in fact NP-Complete. Now that a sin-
gle problem has been shown to be NP-Complete the process of devising an NP-
Completeness proof for any decision problem IT consists of the following four steps

1. showing that II is in NP,

2. selecting a known NP-Complete problem II’

3. constructing a transformation f from II to II, and
4. proving that f is a polynomial transformation.

This approach is taken in the NP-Completeness proofs in this thesis.

Determining whether the decision problem, II, is in NP is a matter of showing
that given any solution for an instance I it is possible to verify in polynomial time
whether or not that solution “proves” that the answer for [ is “yes”. For example, a
nondeterministic algorithm for travelling salesperson could be constructed by using
a guessing stage that simply guesses an arbitrary sequence of cities and a checking
stage that checks whether the guessed solution would result in a tour of the desired
length. The existence of such a polynomial time nondeterministic algorithm shows
that IT is in NP.

Once the new problem has been shown to be in NP, then a known NP-Complete
problem must be selected and a transformation must be constructed from the known
problem to the new problem. There are three general transformation approaches that
are used in NP-Completeness proofs and that can provide some ideas about how to
tackle a specific NP-Completeness proof. Note that these approaches cannot be
applied to all NP-Completeness proofs. They just give some ideas about how one
might approach the task of proving a new problem to be NP-Complete.

These approaches are called [Garey and Johnson, 1979]

1. restriction
2. local replacement
3. component design

Restriction This is the easiest and perhaps most frequently applied of the three
types of NP-Completeness proofs. An NP-Completeness proof by restriction for
a given problem II € NP consists simply of showing that II contains a known
NP-Complete problem II' as a special case. The heart of such a proof lies in the
specification of the additional restrictions to be placed on the instances of II so
that the resulting restricted problem will be identical to II'. There should be an
obvious one-to-one correspondence between their instances that preserves “yes”
and “no” answers. This one-to-one correspondence, which provides the required
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transformation from II’ to II (see point (3)) above is usually so apparent that it
need not even be given explicitly. The approach taken in this kind of proof is often
to focus on the target problem itself and attempt to restrict away its “inessential”
aspects until a known problem appears.

Local replacement In this type of proof the transformations are sufficiently
non-trivial to warrant spelling out in the standard proof format but they are still
relatively uncomplicated. Proofs of this type rely on picking some aspect of the
known NP-Complete problem instance to make up a collection of basic units and
then obtaining an instance of the target problem by replacing each basic unit in a
uniform way with a different structure.

Component design Proofs of this type tend to be the most complicated. The
basic idea is to use the constituents of the target problem instance to design certain
“components*“ (also called gadgets and widgets) that can be combined to realise an
instance of the known NP-Complete problem.

Garey and Johnson [1979] discuss these transformations in more detail and give
examples of the application of each approach.

2.3.4 NP-Hard problems

The techniques for proving NP-Completeness can also be used for proving that
problems outside of NP are hard. Any decision problem II, whether a member of NP
or not, to which we can transform an NP-Complete problem will have the property
that it cannot be solved in polynomial time unless P=NP. Such a problem could
be said to be “NP-Hard” since it is at least as hard as the NP-Complete problems.
The idea of NP-Hardness can be generalised in such a way that not only decision
problems can be proved to be “at least as hard” as the NP-Complete problems.

In this thesis only the notion of decision problems will be used. The reader is
referred to Garey and Johnson [1979] and Papadimitriou [1994] for more detail on
NP-Hardness.

2.3.5 Summary

In summary, the approach taken to prove a new problem, say R, to be NP-Complete
isto

1. show R is in NP — this involves showing that R can be solved by a nondeter-
ministic polynomial algorithm,

2. selecting a known NP-Complete problem, say 7',
3. constructing a transformation f from 7" to R, and

4. proving that f is a polynomial transformation.
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To show that a problem is NP-Hard only steps 2 to 4 are required.

Many of the problems raised in the areas of guarding, covering, partitioning and
visibility have been proved to be “hard” in the sense discussed above so the theory
presented in this section is useful in understanding many of the papers presented
in the literature and in the section below (Sections 2.4. This theory is also a use-
ful starting point for some of the new results proved in the body of this thesis —
Chapters 4 to 7.

2.4 Relation of previous work to ALP

2.4.1 Overview

In Section 2.1 above the commonalities between ALP and visibility, guarding and
polygon decomposition were briefly introduced. These problems, which all have
their roots in real world problems, can in some sense be thought of as different cast-
ings of the same problem and results presented in one area often apply elsewhere as
well. Problems of this type have been studied extensively over the last 30 years and
the results of these studies have been collected in a number of very comprehensive
surveys. The survey article by Wood [1985] discusses (amongst other problems) re-
search in visibility in orthogonal (he calls them isothetic) polygons. The monograph
by O’Rourke [1987] “Art Gallery Theorems and Algorithms” provides an excellent
overview of the current state of knowledge of Art Gallery Guarding problems at the
time it was written. The survey paper by Shermer [1992] “Recent Results in Art
Galleries” extended O’Rourke’s work. O’Rourke [1993] also discusses many of
these problems in his textbook. The survey papers by Urrutia [1999] “Art Gallery
and Illumination Problems”, Asano et al. [1999] “Visibility in the plane” , and Keil
[1999] “Polygon Decomposition™ are all published in the Handbook of Computa-
tional Geometry and give a very thorough coverage of the material. In addition the
summaries of results by Suri [1997] “Polygons” and O’Rourke [1997] “Visibility”
published in the “Handbook of Discrete and Computational Geometry” are excel-
lent sources of reference for results in these areas. There is thus little point in trying
to repeat these surveys and the reader is encouraged to consult them to get an overall
feeling of the current state of research in these areas.

The next section gives a very brief overview of some of the important general
results in the areas of guarding, visibility and polygon decomposition. A reader
who is very familiar with these areas could skip this section of the thesis. The fol-
lowing section puts ALP into context with the previous and related research work.
The subsequent section focusses in greater depth on results, problems or techniques
which give special insight into ways of dealing with ALP.
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2.4.2 Short historical perspective
2.4.2.1 Guarding problems

The original art gallery guarding problem, posed by Klee in 1973, asks for the
number of guards required to survey an art gallery with n walls and no interior
obstructions [O’Rourke, 1987]. The problem was first solved by Chvatal [1975]
who showed that there exist polygons where |n/3| vertex guards are both necessary
and sufficient to guard the entire area of the polygon. He first showed using comb
polygons that any guard set for such a polygon with n vertices, g(n), must have
at least |n/3| guards and then by an inductive argument on triangulation graphs
of polygons showed that the size of the guard set is less than or equal to |n/3].
Thus g(n) = |n/3]. A different and very simple sufficiency proof, using three-
colouring on triangulation graphs, of the same result was given in 1978 by Fisk
[1978]. O’Rourke [1987] presents very lucid discussion on both of these proofs.
Avis and Toussaint [1981] used Fisk’s proof to implement an O(n log n) algorithm
to assign positions to the guards. Algorithms such as this for finding guard sets are
often called “guard placement algorithms”. Most guard placement algorithms work
by imitating upper-bound art gallery proofs. The algorithm by Avis and Toussaint
[1981] is in fact an algorithmic imitation of Fisk’s proof.

Later Lee and Lin {1986] tackled the issue of the computational complexity of
the art gallery guarding problem. Their work was aimed at the problem of finding
the minimum number of guards to cover a given polygon. They proved that the
problem for a simply connected simple polygon is NP-Hard for the minimum vertex
guard problem (where guards must be located at the vertices of the polygon), mini-
mum point guard problem (where guards can be placed anywhere in the interior of
the polygon or on its boundary) and minimum edge guard problem (where guards
can only be placed on the edges which make up the polygon boundary and are al-
lowed to move along the edge on which they are placed). Their proof is based on
a transformation from Boolean Three Satisfiability (3SAT). (Note: Shermer [1992]
credits Aggarwal with first proving the result for the minimum point guard problem
but the author of this thesis was unable to obtain a copy of Aggarwal’s Ph.D. thesis.)

Lee and Lin’s results imply that it is in general impractical to find a minimum set
of guards for a given polygon. Some polygons can be guarded by a single guard and
there exist polygons where {n /3| are required. Finding the exact number of guards
required for a given polygon cannot always be done in reasonable time. Algorithms
such as that by Avis and Toussaint [1981] do not guarantee a minimum solution for
a given polygon but will place a guard set which is always sufficient (and sometimes
necessary) to guard the polygon.

If the art gallery is allowed to have obstructions (pillars etc.) in its interior, the
corresponding floor plan is a simple polygon with other simple disjoint polygons,
called holes, inside it. In such a polygon, |n/3] guards are no longer sufficient.



CHAPTER 2. BACKGROUND 31

O’Rourke showed that |(n 4 2k)/3| point or vertex guards are always sufficient to
guard any polygon with n vertices and & holes. Shermer showed that |(n + &)/3]
guards are necessary for some polygons with n vertices and h holes and conjectured
that this number of guards was also sufficient for any polygon with A holes. In
1984 Shermer showed that |(n + 1)/3| guards are always sufficient and sometimes
necessary for any polygon with one hole. All of these results appear in O’Rourke
[1987].

In 1991 two independent and dramatically different proofs were generated for
the fact that | (n + h)/3] point guards are also sufficient ([Bjorling-Sachs and Sou-
vaine, 1991; Hoffmann et al., 1991]). Neither paper gave details of algorithms for
placing the guards but the algorithm derived from the Hoffmann ez al. [1991] proof
has complexity O(n?log ). In 1995 Bjorling-Sachs and Souvaine [1995] presented
an O(n?) algorithm to place the guards. This algorithm is based on a constructive
proof. The proof and the algorithm work by first connecting each hole in the poly-
gon to the exterior of the polygon and then triangulating the new hole-free version
of the polygon. The channels are constructed in such a way that only one new vertex
is added for each channel. In addition, there is always a triangle in the new hole free
polygon that “sees” all of the channel — any vertex of this triangle sees the whole
channel. These special triangles are included so that a guard placement based on
three-colouring in the hole free polygon will automatically cover the channels and
so the original polygon would have been guarded.

Other variations of the classic problem arise when specified subsets of the poly-
gon, rather than just points, are allowed as elements of guard sets. The first of these
variations is the edge guard problem. An edge guard is a guard who is allowed to
patrol individual edges of a polygon rather than being restricted to one point. The
edge guard problem then asks for the minimum number of edge guards necessary
to cover any polygon of n vertices. Toussaint (as cited in Shermer [1992]) conjec-
tured that (if a small number of polygons are excluded) gZ(n) = |n/4] guards are
necessary. Figure 2.14 shows the type of polygons where [n/4| edge guards are
required. Two types of polygons are known which require | (n + 1)/4| guards (see
Figure 2.15) but these are thought to be exceptions. O’Rourke [1983] made some
progress on Toussaint’s conjecture. He was unable to establish an upper bound on
the number of edge guards required but was able to place a bound on the number of
mobile guards necessary. A mobile guard is a guard that can patrol an edge or di-
agonal of a polygon. Every edge guard is thus a mobile guard and the upper bound
on the number of mobile guards thus gives the least upper bound on the number of
edge guards g™ (n) < ¢%(n). O’Rourke [1983] showed that g™ (n) = |n/4| mo-
bile guards are necessary. Shermer [1992] investigated diagonal guards and showed
that [ (2n+2)/7]| < gP(n) < |(n—1)/3]. He also showed that, aside from a small
number of exceptions, [n/4| < gF(n) < [3n/10]. Sack and Suri [1990] have
given an O(n) algorithm to detect if a given polygon can be guarded by one edge
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guard and Ke [1989] (as cited in Shermer [1992] — the original reference could not
be obtained) gave an O(n log n) algorithm for the related problem of detecting if a
given polygon can be guarded by one line-segment guard.

Figure 2.14: Polygons requiring |n /4| edge guards (Shermer [1992])

Figure 2.15: The two polygons requiring | (n+1)/4| edge guards (Shermer [1992])

Other variations of the general problem are the orthogonal art gallery theorem
[Kahn et al., 1983] (which is discussed in more detail below); guarding rectangular
art galleries [Czyzowicz et al., 1994]; generalised guarding of rectilinear polygons
[Gyéri et al., 1996]; the prison guard problem [Kooshesh et al., 1990; Fiiredi and
Kleitman, 1994]; the treasury guard problem [Deene and Joshi, 1992; Carlsson and
Jonsson, 1993]; edge guards [Viswanathan, 1993]; edge guards in star polygons
[Subramaniyam and Diwan, 1991]; diagonal and chord guards [Lu et al., 1998];
guard edges [Park et al., 1993]; optimally placing k guards in a polygon to maximise
the area or portion of boundary visible [Ntafos and Tsoukalas, 1994]; floodlight
guards [Bose et al., 1993; Czyzowicz et al., 1993; Contreras et al., 1998b,a]; the
searchlight scheduling problem [Sugihara ez al., 1990]; hidden guard sets [Shermer,
1989]; watchman paths [Carlsson and Jonsson, 1995]; watchmen in grids [Ntafos,
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1986]; periscope guards in grids [Gewali and Ntafos, 1993] and other problems
[Liaw et al., 1993; Venkatasubramanian and Cullum, 1993]. Methods for develop-
ing approximations [Avis and Toussaint, 1981; Ntafos and Tsoukalas, 1994] or for
bounding approximations have also been studied [Eidenbenz et al., 1998].

2.4.2.2 Visibility Problems

Visibility problems have been studied from at least the early part of the twentieth
century and a number of different topics have been studied [Asano et al., 1999].
This section gives a brief overview of some of the main topics. More detail can be
found in O’Rourke [1987], Asano et al. [1999] and the original papers.

The basic question in visibility can be stated as

Given a polygon P and two points z,y € P, are = and y visible?

In this case = and y are visible if the line segment zy contains no points of the
exterior of P [Asano et al., 1999]. In a polygon with holes, the holes are taken to
be part of the exterior of the polygon and so the same idea of visibility applies.

This idea leads naturally to the problem of determining what part of some poly-
gon P can be seen from a given point a. The visibility polygon V (a) of a point a in
a polygon P is the set of all points visible to a (V(a) = {q € Pla sees q}). Any
visibility polygon V(a) is star shaped — a is its kernel. The problem of determining
the visibility polygon for some point a in a polygon has been well studied (see for
example ElGindy and Avis [1981]; Heffernan and Mitchell {1995]).

Avis and Toussaint [1981] extended this work by defining the concepts of com-
plete visibility, strong visibility and weak visibility from some fixed edge uv of P.

1. P is said to be completely visible from an edge wv if for every z € P and
every w € uv, w and z are visible.

2. P is said to be strongly visible from an edge uv if there exists a w € uv, such
that for every z € P, w and z are visible.

3. P is said to be weakly visible from an edge uv if for each z € P there exists
aw € wuv such that w and z are visible.

Avis and Toussaint [1981] then presented an O(n) algorithm to determine whether
a given polygon P is completely visible, strongly visible or weakly visible from a
particular edge in P. Some related work on weak visibility of polygons is due to
Sack and Suri [1990], Ghosh et al. [1993] and Doh and Chwa [1993].

An area which is related to the above is edge-to-edge visibility in polygons.
Here again there are degrees of visibility between the edges concerned [Avis et al.,
1986].
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1. Edge uw is said to be completely visible from edge zy if for all points on z on
edge zy and all points w on edge uv, w and z are visible.

2. Edge uwv is said to be strongly visible from edge zy if there exists a point z on
edge zy such that for all points w on edge uv, w and z are visible.

3. Edge uv is said to be weakly visible from edge xy if for each point w on edge
uv there exists a point z on edge zy such that w and z are visible.

4. Edge uv is said to be partially visible from edge zy if there exists a point w
on edge uv and a point z on edge zy such that w and z are visible.

Avis et al. [1986] presents a linear algorithm to compute these four edge-to-edge
visibilities. This algorithm is discussed is more detail in Section 2.4.4.3.1 because
it has some direct relevance to ALP.

The problem of computing the first intersection of the boundary of some poly-
gon P with a light ray from some edge or point in P is also of interest in the field
of visibility [Chazelle and Guibas, 1989].

Link visibility is another area that has been the subject of research [Asano et al.,
1999]. The link distance between two points p and ¢ in a polygon P is the minimum
number of line segments (links) in a polygonal path from p to g that stays in P. Two
points are called link-j visible if the link distance between them is at most 7. Letting
g = 1 gives the standard visibility. Note that this form of visibility is also referred
to as L; visibility.

Another important area of research is in computing visibility graphs of polygons
[Asano et al., 1999]. A visibility graph of a polygon is a graph whose vertices
are the vertices of the polygon and whose edges are the pairs of visible vertices
(see Figure 2.16 for an example). Related to the computing of visibility graphs
is the problem of determining for a given graph G if there exist some polygon P
that has GG as its visibility graph. This is called the visibility graph recognition
problem. The problem of actually constructing such a P is called the visibility
graph reconstruction problem. In this area see for example Ghosh [1991], Andreae
[1992], Srinivasaraghavan and Mukhopadhyay [1993], Ghosh [1996] and Ghosh
[1997].

Other types of visibility have also been studied (see Asano et al. [1999] for more
information) — minimum and maximum visibility [Gewali, 1993]; clear visibility;
dent and staircase visibility [Wood and Yamamoto, 1993]; O-visibility; rectangular
visibility; circular visibility; visibility with reflection; X-ray visibility; LR-visibility
[Das et al., 1993; Bhattacharya and Ghosh, 1998]; etc.
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the minimum point guard problem was NP-Hard — star covering and point guard
are different castings of the same problem. They also showed that vertex guarding
and edge guarding are NP-Hard and thus that the corresponding cover problems
are NP-Hard as well. Later Culberson and Reckhow [1988, 1994] established the
NP-Hardness for convex cover and similar problems using a transformation from
SAT.

One approach to dealing with the difficulty of covering problems is to consider
restrictions of the general problem. For instance, the problem of covering orthogo-
nal polygons with many types of subpolygons has received a lot of attention. Some
examples are given below but the reader is referred to the survey articles mentioned
above for more complete coverage. Masek has shown that finding the minimum
cover of a orthogonal (or rectilinear) polygon with rectangles is NP-Hard (the prob-
lem at that stage was termed rectilinear picture compression). This result at the
time was only known to apply to orthogonal polygons with holes. Franzblau and
Kleitman [1984] then showed that the problem can be solved in polynomial time if
the orthogonal polygon is vertically convex. Franzblau [1989] presents an approx-
imation algorithm for this problem which gives a solution which is at worst twice
the minimum solution if the polygon has no holes. Lubiw [1990] has also worked
on this problem — showing it is a special case of the boolean basis problem.

In orthogonal polygons with holes, Conn and O’Rourke [1987] (as cited in Sher-
mer [1992]) have shown that covering either the boundary or the reflex vertices 18
NP-Complete but they found an O(n??) time algorithm for covering the convex
vertices. Culberson and Reckhow [1988] have shown that covering an arbitrary or-
thogonal polygon with rectangles is NP-Complete even if only the boundary of the
orthogonal polygon is to be covered. They have also done similar work with Dent
diagrams in orthogonal polygons [Culberson and Reckhow, 1989b,a]. Motwani et
al. [1990b] showed that a polynomial time algorithm can be found for orthogonally
convex polygon coverings of orthogonal polygons with three dent orientations but
not for four dent orientations. Motwani et al. [1990a] showed that covering or-
thogonal polygons with star polygons can be accomplished in polynomial time and
Gewali et al. [1992] showed that a minimum orthogonal star polygon cover for a
horizontally convex orthogonal polygon can also be found in polynomial time.

2.4.2.3.3 Partitioning In the previous section (Section 2.4.2.3.2) many of the
polygon covering problems are shown to be NP-Hard. The partitioning problem,
however, has been shown to be solvable in polynomial time in many cases.

The early work in partitioning polygons without holes into the minimum num-
ber of convex polygons [Feng and Pavlidis, 1975; Schachter, 1978] produced al-
gorithms which could not guarantee a minimum of components. Then Chazelle
and Dobkin [1985] were able to show that finding a minimum convex partition
of a simple simply connected polygon (a cover by nonoverlapping convex pieces)
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has polynomial-time complexity and presented a polynomial-time algorithm for this
problem. Their algorithm is O(n + ¢*) where n is the number of vertices in the poly-
gon and c is the number of reflex angles. The algorithm allows for the introduction
of Steiner points. It begins by producing a naive decomposition of the polygon
by removing each notch (reflex angle) in turn by means of a simple line segment
drawn from the notch until it encounters a line already in the decomposition. This
naive decomposition is then “improved” until an optimal convex decomposition is
achieved. The process for doing the improvement is based on the idea of X -patterns
(and Y -patterns) which describe particular interactions of notches. The reader is re-
ferred to the original paper for details. Keil [1985] considered partitioning which
does not allow Steiner points and presented polynomial-time dynamic programming
algorithms for partitioning a simple simply connected polygon into the minimum
number of convex polygons, spiral polygons, star polygons and monotone poly-
gons. Recently Keil and Snoeyink [1998] presented an improved algorithm for the
same problem.

The convex polygon partitioning problem is NP-Hard in polygons with holes —
simple multiply connected polygons [Lingas, 1982]. The proof by Lingas [1982] is
based on a transformation from a planar version of 3SAT. Lingas’s 1982 paper is a
revision of an earlier paper and in the revision he uses some insights from O’Rourke
and Supowit [1983] about the truth setting components of the transformation to
simplify his paper. Lingas [1982] credits O’ Rourke and Supowit [1983] with having
proved the same result independently of him.

Partitioning problems where the original polygon is to be partitioned into dif-
ferent types of subpolygons (spiral polygons, star-shaped polygons, etc.) have also
been studied (see [Keil, 1999] for an overview of these).

As is the case with guarding, visibility and covering, work has been done on
considering approximations to the solution for the general problems and in studying
restrictions on the general problems. Some examples of this work are given below.
(More detail can be found in the survey articles mentioned earlier).

In studying restrictions of the general problem to partition a orthogonal poly-
gon with the minimum number of rectangles, Imai and Asano [1986] present an
O(n!* log n) algorithm if the polygon has holes; Liou ez al. [1989] (as cited in Sher-
mer [1992]) present an O(n) algorithm for this problem if there are no holes; and
Soltan and Gorpinevich [1993] showed that this problem can be solved in polyno-
mial time even if the original polygon contains degenerate (point) holes. In addition,
Ku and Leong [1995] have studied optimal partitions of rectilinear layouts used in
VLSI design.

Other types of restrictions have also been studied. Asano et al. [1986] discuss
the problem of partitioning a polygon into a minimum number of trapezoids with
two horizontal sides. The problem is shown to be NP-Complete for polygons with
holes but solvable in polynomial time for polygons without holes. Lingas and Soltan
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Figure 2.17: A multiply connected simple polygon (a simple polygon with holes)

[1996] prove that the problem of partitioning a polygon with holes into a minimum
number of convex polygons by cuts in a family of directions F' is NP-Hard if | F'| >
3 and polynomial time for |F'| < 2. Keil [1999] gives additional examples.

2.4.3 Putting ALP into context with other research

In Section 2.1 above the fact that there are some commonalities and some differ-
ences between ALP and visibility, guarding and polygon decomposition problems
is briefly discussed. The aim of this section is to highlight these commonalities and
differences in the context of the previous and related research (see Section 2.4.2).
Consider the polygon with holes shown in Figure 2.17. This polygon is the
basis for much of the discussion that follows in this section. This polygon is chosen
to be representative of a class of polygons which research in visibility, guarding
and decomposition focusses on — a multiply connected simple polygon or a simple
polygon with holes. It is a relatively uncomplicated example but is still complicated
enough to illustrate the complexity of these problems. It can also be considered as
an example of the types of polygons which are used in space syntax and so is of
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Figure 2.25: An example of stabbing boxes in two-dimensions — no stabbing line
exists in this case
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Figure 2.26: A subset of the minimum partition where it is necessary to determine
if an axial line can be placed to cross the adjacencies between the convex polygons

point in the process to determine if an axial line can be placed to cross the adjacen-
cies between any subset of the polygons in the partition. Consider the situation
where it is necessary to determine whether a single axial line can be placed to cross
all of the adjacencies in the subset of convex polygons as shown in Figure 2.26.
The convex polygons in this configuration can be said to form a “chain” of poly-
gons. ALP requires that any axial line to cross the adjacencies in this chain would
have to remain inside the union of the convex polygons concerned. Clearly this
problem could be solved by determining if there exists a new line segment which
intersects all four of the line segments representing the adjacencies and is always
inside the union of the five convex polygons concerned. Solving this problem can
also be posed as a visibility problem. Can some part of the edge labeled first in the
heavily outlined polygon of Figure 2.27 see some part of the edge labeled last in
this same polygon? The visibility problem would give the answer “yes” if there is
a line of sight from some point (or points) on edge first to some point (or points)
on edge last. The definition of visibility means that any line of sight must not leave
the polygon. If there is this type of visibility then an axial line could be placed from
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Figure 2.29: A traditional art gallery

et al. [1994] prove that any rectangular art gallery with n rooms can be guarded by
exactly [n/2] guards.

The early work on the axial line placement problem was in some sense quite
similar to the idea of guarding a traditional art gallery. This early work in ALP also
focussed on a restriction of the original problem. Instead of attempting to place
axial lines to cross the adjacencies between the convex polygons of some minimum
partition of a polygon with holes the work focussed on placing axial lines in con-
figurations of adjacent orthogonal rectangles. In the first instance the problem was
further restricted by insisting that the axial lines were also orthogonal (see Chapter
4). This restriction was later relaxed and lines of arbitrary orientation were allowed
(see Chapter 5). These two problems were originally termed “ray guarding”. The
idea was that one would place “guards” who could see along some “ray”. Each
ray guard could be thought of as placing a video camera (or some other monitoring
device) which is fixed to point in a certain direction. In an art gallery situation,
one could consider this as guarding the flow between the rooms which make up the
gallery by monitoring each doorway. ALP requires that the minimum number of ax-
ial lines must be placed to cross the adjacencies between the room rectangles. The
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Figure 2.30: “Ray guarding” a traditional art gallery with orthogonal ray guards
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Figure 2.31: A placement of axial lines of arbitrary orientation in a traditional art
gallery
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point where an axial lines crosses an adjacency can be considered as an appropriate
place to position a door between the two adjacent rooms. The doorway can then be
guarded by a ray guard placed at the beginning or end of the axial line which crosses
the adjacency. As few of these ray guards as possible are required. Placing as few
axial lines as possible to cross the adjacencies is then equivalent to determining
where to place the doorways between the rooms such that each doorway is guarded
by a ray guard. ALP also requires that each axial line should be as long as possi-
ble. This means that any axial lines which is placed to cross a particular adjacency
should be extended to cross any other adjacencies that it can even if these adjacen-
cies have already been crossed by other axial lines. In the art gallery scenario this
is equivalent to placing additional doors anywhere that a ray guard’s vision is ob-
structed by an interior wall. These additional doorways would still be guarded by
at least one ray guard. Figure 2.30 shows the traditional art gallery of Figure 2.29
guarded by ray guards whose lines of sight are restricted to being orthogonal. Note
that the wall between rooms 1 and 3 has two doorways in it rather than only one.
This arises because an axial line is required to cross the adjacency between rect-
anges 3 and 4 and an axial line is required to cross the adjacency between rooms 3
and 7. When these axial lines are extended to cross as many adjacencies as possible
they both cross the adjacency between rectangles 1 and 3.

If the ray guards’ lines of sight are not restricted to being parallel to the coordi-
nate axes then a different positioning of guards results. This would correspond to a
placement of not necessarily orthogonal axial lines. A placement of axial lines of
arbitrary orientation is shown in Figure 2.31. This placement of axial lines could be
converted to a ray guarding situation by placing a door at each point where an axial
line crosses an adjacency (a wall between two rooms). Again some of the walls
would have more than one doorway.

The discussion in this section has been focussed on some of the similarities
and differences between ALP and the research which has been done in visibility
in polygons; guarding of polygons; and decomposition of polygons. ALP has not
been studied before but clearly because the problem areas are not that far removed
research into solving ALP should be informed by work in the other areas. The next
section discusses in more detail some specific research which has relevance to ALP.

2.4.4 Results that informed the research on ALP
24.4.1 Overview

As discussed above there are some commonalities and some differences between
ALP and other research areas in the field of computational geometry. There also
general approaches taken and specific techniques used in this other research which
informed the research undertaken in this thesis. These ideas are discussed in this
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section. First some of the general approaches are discussed and then some specific
techniques are focussed on.

24.4.2 General Approaches

2.44.2.1 NP-Hardness results Many of the problems studied in guarding, de-
composition or visibility have been shown to be NP-Hard or NP-Complete (see for
example the work of Lee and Lin [1986]). As ALP seems to be a very similar
type of problem to these other problems it seemed likely that ALP too could be
NP-Hard. This insight informed the way that the research questions to be tackled
in this research were posed. See Chapter 3 for more detail on this. It also meant
that the work on ALP progressed on two fronts — attempting to find a polynomial
time algorithm to solve the problem and attempting to prove that the problem was
NP-Hard/NP-Complete. In the NP-Completeness proofs the same standard NP-
Complete problems used in these other problems were considered (3SAT [Lee and
Lin, 1986] and vertex cover [Ntafos, 1986]). Garey et al. [1976], Garey and Johnson
[1979] and Lichtenstein [1982] were also consulted.

A specific result that has direct relevance to the possible automation of the space
syntax method is the fact that partitioning a simple multiply connected polygon (a
polygon with holes) is NP-Hard [Lingas, 1982; O’Rourke and Supowit, 1983]. An
urban layout would be modelled as a polygon with holes and this result means that
a convex map for the urban layout cannot, in general, be found in polynomial time.
There might be cases (urban layouts) where the convex map could be found in poly-
nomial time and determining and describing these cases would be a useful research
area. Another interesting research area would be in finding good approximations to
the exact solution in reasonable time. However, since it was known that partitioning
a polygon with holes is NP-Hard and less was known about the problem of placing
axial lines in the urban layout, a decision was made to focus this research on the
new problem rather than to extend the research on the known domain. Chapter 3
expands on this decision. Chapter 7 dicusses some work which was done in looking
at special cases of urban layouts where the partition can be found in polynomial
time but much more work in this area can still be done.

2.4.4.2.2 Restrictions and approximations As mentioned earlier many of the
problems which are similar to ALP have been proven to be NP-Hard (or NP-Complete).
This has meant that subsequent work on these problems has taken one of two routes

— considering restrictions of the general problem in the hope that these problems
can be solved in polynomial time or devising algorithms to find solutions which
approximate the optimal ones. Both of these approaches are discussed below.
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Restricting the problem A common restriction is to consider orthogonal poly-
gons rather than general poygons. In the area of guarding, the orthogonal art gallery
theorem was first formulated and proved by Kahn et al. [1983]. It states that [n /4]
guards are always sufficient to see the interior of an orthogonal art gallery room and
that in some circumstances this number of guards is necessary. Their proof is sim-
ilar to that of Fisk [1978] using orthogonal comb polygons. The main idea of their
proof was to partition an orthogonal polygon into convex quadrilaterals, add the
internal diagonals of these quadrilaterals and then four-vertex colour the resulting
graph. For orthogonal polygons with holes Shermer conjectured that [Z‘I—hj vertex
guards are sufficient to guard any orthogonal polygon with holes [O’Rourke, 1987].
This conjecture is still open [Urrutia, 1999].

The traditional art gallery problem — placing guards to cover rectangular rooms
in a rectangular building — is another restriction of the general problem. Restrict-
ing the problem in this way has enabled researchers to prove a tight bound on the
problem and to determine how to place the guards [Czyzowicz et al., 1994].

The partitioning of orthogonal polygons, with and without holes, has also been
studied. Much of the work done in this area is to partition orthogonal polygons
into the minimum number of rectangles which generally means that Steiner points
are required [Keil, 1999]. If Steiner points are disallowed (which is the case in the
space syntax method) then the attention is focussed on partitioning the orthogonal
polygon into quadrilaterals. Other work has focussed on partitioning orthogonally
convex polygons.

In the area of visibility, work has also focussed on orthogonal polygons particu-
larly with respect to staircase and dent visibility [Asano et al., 1999].

The results in guarding, partitioning and visibility with regard to orthogonal
polygons and rectangles show that in some cases these problems are easier to solve
than the general problems. This indicated that studying similar restrictions in ALP
would be reasonable approach to take. In particular, a configuration of adjacenct
rectangles could be considered as a rectangular partition of some orthogonal poly-
gon representing an urban layout. In ALP the shared edges between the rectangles
must be crossed by the minimum number of axial lines. These axial lines could
be orthogonal or have arbitrary orientation. Chapter 3 discusses these restrictions
of the general problem in more detail and they are addressed in Chapters 4 and 5
respectively.

Approximations A number of the general problems in guarding, partitioning
and visibility, and even a number of the restrictions of these general problems, have
been shown to be NP-Hard (or NP-Complete). It is, however, still worthwhile in
many instances to have an approximation to the exact solution.

In the problem of guarding an general art gallery Avis and Toussaint [1981] used
Fisk’s proof as the basis for implementing an O(rn log n) algorithm to assign posi-
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tions to the guards. Algorithms such this do not guarantee a minimum solution for a
given polygon but will place a guard set which is always sufficient (and sometimes
necessary) to guard the polygon. Bjorling-Sachs and Souvaine [1995] also used an
upper bound proof as the basis of their algorithm to place ["—?] guards in a polygon
with n vertices and h holes. Other such results can be found in Urrutia [1999].

In partioning polygon without holes many of the early results were approxima-
tions to the exact solution (see Schachter [1978]) and it was only later that exact
solutions where found [Keil, 1985]. When the polygon contains holes the prob-
lem is NP-Hard [Lingas, 1982], and so approximations are required. Keil [1999]
discusses some approximation algorithms for various versions of the problem of
partitioning a polygon with holes.

This thesis considers the computational geometry problems which arise out of
a possible automation of the space syntax method. If ALP is NP-Hard or NP-
Complete (or if variations/restrictions of ALP are NP-Hard or NP-Complete) then
an automated process would not be able to generate the exact axial map of an urban
area in a reasonable time and so approaches to find approximate solutions which
would be acceptable to someone who wishes to apply the method would have to be
found. Chapters 4 and 5 discuss some approaches for finding approximate solutions
to some variations of ALP.

In addition, the fact that partitioning a polygon with holes is NP-Hard means
that it cannot be guaranteed that the convex map of an urban area could be found in
reasonable time. Thus research into finding efficient approximations to the convex
map would be a worthwhile research endeavour. This thesis does not focus on
the problem of finding the convex map of an urban area but Chapter 7 introduces
the idea of a “deformed urban grid” and discusses an algorithm which finds a not
necessarily minimum partition of such a polygon with holes.

2.4.4.3 Specific results of importance

2.4.4.3.1 Partial edge visibility ALP is the problem of creating the axial map
of an urban layout given the convex map of the layout. This involves finding the
minimum number of axial lines to cross the adjacencies between the convex spaces
(convex polygons) which partition an urban area (a polygon with holes). As stated
previously, the placing of an axial line to cross the adjacencies in a chain of adjacent
convex poloygons can be thought of as determining edge to edge visibility between
the adjacency between the first two polygons in the chain and the adjacency between
the last two polygons in the chain. In this case, all that is required is that some point
on the first adjacency can see some point on the last adjacency. This is partial
visibility — edge uv is said to be partially visible from edge zy if there exists a point
w on edge uv and a point z on edge zy such that w and z are visible.
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Figure 2.32: The edge to edge visibility algorithm [Avis ef al., 1986] — totally facing
edges

Avis et al. [1986] give a linear time algorithm for determining edge to edge
visibility in a simple polygon. This algorithm is important to this work as it can be
used in determining whether axial lines can be placed in chains of convex polygons.
The algorithm is used in developing the heuristics discussed in Chapter 5.

The algorithm (actually two algorithms) is described in detail by Avis et al.
[1986]. The approach is quite complicated and so a greatly simplified overview is
given below. The reader is referred to the original article for more details.

The input to the algorithm would be a simple polygon P = (p1,p2, .- .,pn) and
two edges in P, uv and zy. For the sake of this explanation assume that the two
edges, uv and zy, are as shown in Figure 2.32. The dashed lines connecting the two
edges of interest indicate that the boundary of the polygon could have any shape
between the two points connected by the dashed lines. Avis et al. [1986] define
this situation as two edges that rotally face each other. This is the simplest situation
which could occur.

The algorithm works as follows.

1. Construct the quadrilateral Q)(u, v, z,y)

2. Construct the chains C'(v, z) and C(y, u) of the vertices on the path from v to
z and y to u respectively.

3. If C(v, ) or C(y,u) cuts through Q(u, v, z, y) then there can be no visibility.
Figure 2.33 shows an example of C(y, u) cutting through Q(u,v,z,y) .

4. If neither C'(v, z) nor C(y, u) cuts through Q(u, v, z, y) then there can be vis-
ibility. In this case, find the reduced chains R(v, z) and R(y, u) by determin-
ing which parts of the chains C(v,z) and C(y,u) would be in Q(u,v,z,y).



CHAPTER 2. BACKGROUND 58

13
p<

Figure 2.33: The edge to edge visibility algorithm — chain C(y, u) cutting through
quadrilateral Q(u, v, , y), no visibility is possible

Figure 2.34: An example of the edge to edge visibility algorithm — the input polygon
and Q(u,v,z,y)
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Figure 2.35: An example of the edge to edge visibility algorithm — the reduced
chains '

Figure 2.36: An example of the edge to edge visibility algorithm — the inner convex
hulls
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Figure 2.34 shows an example of an input polygon and Figure 2.35 shows the
corresponding reduced chains.

5. Calculate the inner convex hulls /CH(v,x) and ICH(y,u) of R(v,z) and
R(y, u). Figure 2.36 shows the inner convex hulls for the example polygon.

6. Construct the polygon H = ICH(v, z), zy, ICH(y, u), uv

7. If H is a simple polygon then edge uv is partially visible from edge zy and
vice versa. In the example (Figure 2.36), H is a simple polygon so there is
partial visibility between the edges uv and zy.

The algorithm also identifies complete visibility, strong visibility and weak vis-
ibility in the input polygon but these are not of interest here. More important is that,
in the case of partial visibility, the algorithm determines which region of edge uv is
visible to edge zy and vice versa. This gives the information about where an axial
line could be placed in ALP.

24.4.3.2 Guarding in grids Ntafos [1986] and Gewali and Ntafos [1993] de-
fine the complete two-dimensional grid of size n as the graph with vertex set V =
{1,2,...,n} x {1,2,...,n} and the edge set £ = {{(:,7),(k,m)} : |i — k| +
|7 — m| = 1} where all edges are parallel to the major axes — see Figure 2.37. In a
geometric setting, the grid edges can be thought of as corridors and the grid vertices
as intersections of corridors. A (partial) grid is any subgraph of the complete grid.
Gewali and Ntafos [1993] also define a grid segment as a succession of grid edges
along a straight line bounded at either end by a missing edge. A simple grid is a
grid where all of the endpoints of the grid segments lie on the outer face of the pla-
nar subdivision formed by the grid. A general grid is a grid which can have holes
— some of the endpoints of the segments may lie on the inner face of the planar
subdivision.

The star cover or star guard problem in a grid is then to find the minimum num-
ber of guards that need to be stationed in the grid so that each point in the grid is
visible to some guard [Ntafos, 1986]. If the grid is complete then n guards are nec-
essary and sufficient for a two-dimensional grid of size n. If the grid has obstacles
in it — there are missing portions of the grid — then the problem becomes more in-
teresting. Ntafos [1986] shows that a minimum cover for a grid with obstacles can
be found in polynomial time by reducing the problem to that of finding a maximum
mapping in a bipartite graph.

The idea of a grid is useful in ALP because part of many cities can be considered
as grid-like structures. The result that the star cover can be found in polynomial time
suggested that ALP might also be solvable in polynomial time. Any guard in the
star cover guards at most two grid segments — one vertical and one horizontal. It
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Figure 2.37: A complete grid of size 4

thus seems as though two axial lines could be placed to cover the lines of sight of
each star guard. This idea is further developed in Chapter 7.

2.5 Conclusion

In Chapter 1 the idea of space syntax is introduced and the broad areas of computer
science research which would arise from attempting to automate the approach are
discussed. The range of research questions that could have been addressed is very
wide and so it was necessary to choose a smaller area of research for this thesis. The
decision was made to focus the research on the problem of finding the axial lines that
cross all of the shared boundaries between the convex polygons in the convex map,
that is finding the axial map for a given layout — ALP. The problems of separating
space from non-space, determining the convex map and the final analysis stage with
its associated algorithms were not considered as part of this research.

This chapter begins by introducing some terminology in the fields of compu-
ational geometry and graph theory and giving an overview of NP-Completeness.
This is done to provide the reader with a framework for understanding the sum-
mary of the research which is related to automating the space syntax method and
in particular ALP. This related research can be loosely categorised into three areas
— guarding of polygons, visibility in polygons and polygon decomposition. This
chapter gives an overview of the research in each of these related areas before ad-
dressing the commonalities and differences between ALP and guarding, visibility
and polygon decomposition problems. From the dicussion above, it should be clear
that ALP is a new area of research (there are significant differences between ALP
and the related research). A detailed investigation of ALP is thus warranted. In
addition, the fact that many of the related problems are computationally hard indi-
cates that solving this problem or making progress to solving this problem would
be a significant research contribution.
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The last section of the chapter identifies some related research that informed
that research into ALP. First, the fact that many of the problems are NP-Hard or
NP-Complete seemed to have relevance for the research in ALP. The fact that these
problems are hard means that finding ways of restricting the general problem or of
producing reasonable approximate solutions are viable areas of research. This might
apply in the case of ALP as well. Second, some specific results were identified as
having direct relevance to this research. The section concludes by discussing two
such specific results — partial edge visibility and guarding in grids.

Chapter 3 considers the possible research questions which arise from the deci-
sion to focus the work for this research on ALP. The approach taken in posing these
questions is based on the related work presented in this chapter.
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