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Summary

Visibility, guarding and polygon decomposition are problems in the field of compu-
tational geometry which have roots in real world applications. These problems have
been the focus of much research over a number of years. This thesis introduces a
new problem in the field — The Axial line Placement Problem — which has some
commonalities with these other problems. The problem arises from a consideration
of the computational issues that result from attempting to automate the space syntax
method. Space syntax is used for describing, quantifying and interpreting the spatial
patterns in urban designs by analysing the relationship between the space through
which one can move (roads, parks, etc.) and the buildings in the urban layout. In
particular, this thesis considers the problem of the placing the axial lines, defining
paths along which someone can move, to cross the shared boundaries between the
convex polygons which represent the space through which someone can move in
the town.

A number of simplifications of the original problem are considered in this thesis.
The first of these is the problem of placing the smallest number of orthogonal line
segments (orthogonal axial lines) to cross the shared boundaries (adjacencies) in
a collection of adjacent orthogonal rectangles. This problem is shown to be NP-
Complete by a transformation from the vertex cover problem for planar graphs. A
heuristic algorithm which produces an approximation to the general solution is then
presented. In addition, special cases of collections of orthogonal rectangles which
allow polynomial time solutions are described and algorithms to solve some of these
special cases are presented.

The problem where the axial lines, that pass through the adjacencies between or-
thogonal rectangles, can have arbitrary orientation is then considered. This problem
is also shown to be NP-Complete and once again heuristic approaches to solving the
problem are considered. The problem of placing axial lines to cross the adjacencies
between adjacent convex polygons is a more general case of the problem of placing
axial lines of arbitrary orientation in orthogonal rectangles. The NP-Completeness
proof can be extended to this problem as well.

The final stage of the thesis considers real world urban layouts. Many urban
layouts are regular grids of roads. Such layouts can be modelled as general urban
grids and this thesis shows that it is possible to find the minimal axial line cover in

v



SUMMARY v

general urban grids in polynomial time. Some urban layouts are less regular and
the idea of a deformed urban grid is introduced to model some of these layouts.
A heuristic algorithm that finds a partition of a deformed urban grid in polynomial
time is presented and it is conjectured that the axial map of a deformed urban grid
can be found in polynomial time. The problem is still open for more general urban
layouts which cannot be modelled by deformed urban grids.

The contribution of this thesis is that a number of new NP-Complete problems
were identified and some new and interesting problems in the area of computational
geometry have been introduced.



Opsomming

Sigbaarheid, waghou en veelhoek-dekomposisie is probleme in berekeningsmeet-
kunde wat hulle oorsprong in reéle toepassings het. Die probleme is sedert jare die
onderwerp van vele navorsing. Hierdie tesis voeg 'n nuwe probleem by die navors-
ingsgebied — die Asselyn Plasingsprobleem — wat sekere gemeenskaplikhede met
bogenoemde probleme het. Laasgenoemde probleem vloei voort uit 'n beskouing
van die berekeningskwessies wat ontstaan wanneer pogings aangewend word om
die ruimte-sintaksis metode te outomatiseer. Ruimte-sintaksis word gebruik vir die
beskrywing, kwantifisering en interpretasie van ruimtelike patrone in stedelike ont-
werpe en wel deur die verwantskap tussen die ruimte waardeur 'n mens kan beweeg
(paaie, parke, ens.) en die geboue in die stedelike uitleg te ontleed. Hierdie tesis
beskou, in die besonder, die probleem van die plasing van asselyne op sodanig wyse
dat hulle gedeelde grense tussen konvekse veelhoeke kruis, waarby the lyne paaie
waarlang mens kan beweeg en die veelhoeke die ruimte waardeur mens deur die
stad kan beweeg, verteenwoordig.

’n Aantal vereenvoudigings van die oorspronklike probleem word in hierdie
tesis beskou. Die eerste hiervan is die probleem om die kleinste moontlike aan-
tal ortogonale lynsegmente (ortogonale asselyne) op so 'n wyse te plaas dat hulle
die gedeelde grense in *n versameling van aangrensende ortogonale reghoeke kruis.
Daar word gewys dat hierdie probleem NP-volledig is, deur *n transformasie van die
nodus-dekkingsprobleem (“vertex cover problem”) vir planére (“planar”) grafieke
na die problem uit te voer. 'n Heuristiese algoritme wat *n benaderde oplossing
tot die algemene probleem bied, word dan voorgestel. Addisioneel word spesiale
gevalle van versamelings van ortogonale reghoeke wat polinomiese tyd oplossings
toelaat beskryf. Algoritmes wat sekere van hierdie spesiale gevalle oplos word
aangebied.

Daarna word die probleem beskou waarvolgens asselyne wat deur aangrensende
ortogonale reghoeke gaan, arbitrére orientasie mag hé. Hierdie probleem word ook
as NP-volledig bewys en weereens word heuristieke benaderings om die probleem
op te los, beskou. Die probleem om asselyne te plaas sodanig dat hulle grense tussen
aangrensende konvekse veelhoeke te kruis is *n veralgemening van die probleem om
asselyne van arbitrére orientasie in reghoeke te plaas. Die NP-volledigheidsbewys
kan ook na die meer algemene probleem uitgebrei word.
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Die finale fase van die tesis beskou die uitleg van reéle stede. In die geval
van baie stede is die uitleg ’n re€lmatige rooster van paaie. So 'n uitleg kan as
'n algemene stedelike rooster gemodeleer word en hierdie tesis toon aan dat dit
moontlik is om die minimum asselyn dekking van sulke roosters in polinomiese tyd
te bepaal. Sekere stede se uitleg is minder reélmatig en die konsep van 'n verwronge
stedelike rooster word voorgestel om sommige daarvan te modeleer. *n Heuristiese
algoritme wat in polinomiese tyd 'n partisie van 'n verwronge stedelike rooster
vind, word aangebied. Daar word gepostuleer dat die assekaart van 'n verwronge
stedelike rooster in polinomiese tyd gevind kan word. Die probleem vir stedelike
uitlegte wat nie deur verwronge stedelike roosters gemodeleer kan word nie, bly
egter steeds onopgelos.

Die bydrae van hierdie tesis is dat 'n aantal nuwe NP-volledige probleme ge-
identifiseer is, en sommige nuwe en interessante probleme tot die gebied van be-
rekeningsmeetkunde toegevoeg is.
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