University of Pretoria etd — Scheffer C 2003

DEVELOPMENT OF A WEAR MONITORING SYSTEM FOR
TURNING TOOLS USING ARTIFICIAL INTELLIGENCE

CORNELIUS SCHEFFER

Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor (Ph.D.) in the
Faculty of Engineering, Built-Environment and Information Technology, University of Pretoria, Preto-
ria, South Africa.

2002

Supervisor: Prof. P. S. Heyns

Co-supervisor: Prof. Z. Katz



B
University of Pretoria etd — Scheffer C 2003
Development of a wear monitoring system for turning tools using artificial intelligence
Comnelius Scheffer
Supervisor: Prof. P. S. Heyns
Co-supervisor: Prof. Z. Katz
Department: Mechanical and Aeronautical Engineering
Degree: Ph.D.

SUMMARY

Tool wear during metal cutting operations is a continuous source of economic loss for the
manufacturing industry. Complete tool failure after a certain degree of wear has occurred, can also
have catastrophic consquences. One problem with monitoring tool wear is that the rate of wear and its
geometric growth is always unique. This in effect means that a statistical approach for optimising the
use of tool inserts cannot be realised, because too much losses will still occur together with the
possibility of catastrophic failure. An alternative approach to achieve optimal tool use and prevent
costly failures is on-line sensor-based monitoring of the tool inserts. In this research, a method is
proposed for cost-effective on-line monitoring for turning tool inserts, based on Artificial Intelligence
(AI) modelling, with the focus on turning operations.

To establish Tool Condition Monitoring (TCM) methods in industry, a generic method is required that
can be applied to different types of operations. In this study, hard turning and interrupted cutting of
Aluminium are investigated. A method is proposed that can effectively monitor the wear of the tool
inserts used in these operations. It was shown that more than one wear mode can monitored in this
way. Cutting conditions (e.g. speed, feed rate and depth of cut) can be included to ensure that the
accuracy of the system is not affected if these conditions vary or change. A sensor-integrated tool
holder was developed during the course of this work and it was shown how this tool can be used to
reconstruct the cutting forces of a machining operation. A calibration procedure for the sensor-
integrated tool was also developed.

The specific Al methods used in this research is Neural Networks (NNs). It was shown that using a
novel fomulation of NNs, accurate monitoring can be achieved under shop floor conditions. This is
achieved by training a combination of static and dynamic NNs. The new method is compared with
other formulations and methods for further improvement are also investigated. Furthermore, an
innovative training algorithm for on-line training of the NN is also presented, after investigating many
conventional and new optimisation algorithms. Achieving reliable and accurate wear monitoring under
shop floor conditions is very significant since this has never been achieved to satisfaction up to date. In
this case, using cost-effective custom developed hardware, advanced signal processing techniques and
a novel formulation of NNs, the degree and rate of wear can be predicted at any given time.
Comprehensive reviews of metal cutting, tool wear, modelling techniques, TCM and commercial TCM
systems form part of this study as relevant background information.

Keywords: condition monitoring, wear, neural networks, machine tool, vibration, machining, lathe,

artificial intelligence.
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OPSOMMING

Slytasie van beitels wat gebruik word vir metaal sny operasies is 'n voortuderende bron van
ekonomiese verliese in die vervaardigingsbedryf. 'n Katastrofiese faling van die beitel as gevolg van
slytasie het ook ernstige gevolge. Die feit dat die geometrie en die tempo van die slytasie altyd uniek
is, maak 'm statistiese benadering om die gebruik van die beitels te optimeer problematies. So 'n
metode sal nie die moontlikheid van 'n katastrofiese faling uitskakel nie en sal steeds ekonomiese
verliese meebring. 'n Alternatiewe metode om optimale gebruik van snybeitels aan te help en falings te
voorkom is sensorgebaseerde monitering. Hierdie navorsing stel 'n koste-effektiewe metode voor vir
intydse monitering van draaibeitels deur die gebruik van kunsmatige intelligensie. Om
Masjiengereedskap ToestandsMonitering (MTM) metodes in die bedryf te vestig, word 'n generiese
metode benodig wat op verskillende operasies toegepas kan word. In hierdie werk is die draai van
verharde staal en die onderbroke draai van Aluminium ondersoek. 'n Metode word voorgestel wat die
slytasie van beitels gedurende hierdie operasies betroubaar kan monitor. Daar word ook aangetoon hoe
meer as een slytasiemodus op n beitel gemonitor kan word. Die masjineringsparameters kan ook in ag
geneem word om te verseker dat die stelsel nie deur snytoestand variases beinvloed word nie.

'n Sensor-geintegreerde beitelhouer is ook ontwikkel en daar word aangetoon hoe die kragkomponente
van 'n draai operasie daarmee bepaal kan word. Kalibrasieprosedures vir die sensor-geintegreerde
beitelhouer is ook ontwikkel. Die spesifieke kunsmatige intelligensie metode wat in hierdie navorsing
aangewend word, is Neurale Netwerke (NNe). Daar word aangetoon hoe akkurate monitering van
beitelslytasie op die fabrieksvloer moontlik is deur middel van 'n unicke formulering van NNe. 'n
Kombinasie van statiese en dinamise NNe word opgelei om die slytasie intyds te voorspel. Die nuwe
metode word vergelyk met ander formulerings, en metodes vir verdere verbetering word ook
ondersoek. 'n Innoverende opleidingsalgoritme vir intydse opleiding van die dinamiese NNe word ook
voorgestel na ondersoek van verskeie konvensionele en nuwe optimeringsalgoritmes. Die feit dat
betroubare en akkurate slytasiemonitering op die fabrieksvloer berwerkstellig is, is ‘'n belangrike
bydrae van hierdie werk omdat so iets nie voorheen geimplementeer is nie. In hierdie werk is koste-
effektiewe hardeware ontwikkel en gebruik saam met gevorderde seinprosessering en m unieke NN
formulering om die waarde en tempo van die slytasie op engige gegewe tydstip te voorspel.
Omvattende studies in metaalsny, beitelslytasie, modelleringstegnicke, MTM en kommersiéle MTM

stelsels word as relevante agtergrondmateriaal vir hierdie navorsing ingesluit.

Sleutelwoorde: toestandsmonitering, slytasie, neurale netwerke, masjiengereedskap, vibrasie,

masjinering, draaibank, kunsmatige intelligensie.
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CHAPTER 1

1. Introduction

1.1 Preface

In the modern age millions of products are manufactured on a daily basis by a variety of processes.
Many products or components of products are manufactured from metal and metal alloys. One of the
most basic methods to form bulk metal into a desired final shape is through the process of metal cut-
ting, also referred to as machining. Metal cutting is essentially the removal of excess material from a
workpiece by moving a working tool over the surface of the workpiece. Through this, a certain shape
is attained together with a desired surface quality of the final product. Machining is usually the final
step in the manufacturing process of a metal component, following other bulk deformation processes
such as casting, forging and rolling. Conventional machining operations are turning, milling and drill-
ing. A turning operation is pictured in Figure 1.1.

Figure 1.1: Turning operation [1]

Due to the increasing demands for faster and more accurate machining, Computer Numerically Con-
trolled (CNC) machines are commonly used for the above-mentioned processes. These machines are
often unmanned and components are moved to and from the machines with component feed devices. A
modern CNC machine for turning operations (CNC lathe) is shown in Figure 1.2. Despite the high
level of technology built into every aspect of machining, there is still one factor present that hampers
the reliability and complete automation of the processes. This factor is the tool wear. Tool wear is the
loss of material on the edges of the cutting tool. Although tool wear can be minimised by selecting
proper machining conditions, it cannot be completely eliminated. Unfortunately, even a small quantity
of tool wear may cause a defect in a machined component. Furthermore, secondary damage due to tool
wear can be extreme and even catastrophic [2]. For this reason, many approaches to Tool Condition
Monitoring (TCM) have been developed through the years. However, none of the methods developed
up to date seem to fulfil the requirements for TCM in industry.
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Figure 1.2: Modern CNC lathe

The aim of this thesis is to develop a system that can predict the severity of wear on the edge of turn-
ing tool inserts without a direct measurement on the tool tip. A typical turning tool holder with an in-
sert is shown in Figure 1.3. A photo of a worn tool insert is shown in Figure 1.4.

tool holder

tool insert

Figure 1.3: Turning tool holder with insert

In this thesis, indirect measurement methods are used in conjunction with Artificial Intelligence (Al)
schemes to assist in an accurate estimation of the tool wear. Different turning operations are investi-
gated to determine if the Al approach can be treated as a generic approach for TCM in turning. Due to
the complexity of the TCM problem, many aspects of machining, signal measurement, signal analysis
and Al modelling are covered in this text. The general theme of the thesis can best be described as a
condition monitoring methodology with application in the field of machining.

Figure 1.4: Worn turning tool insert
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1.2 Industrial need

The use of fast and accurate manufacturing equipment has gained more ground in recent years due to
the high demands of the fast growing manufacturing industry. In order to justify the investment associ-
ated with the purchase of such equipment, it is necessary to achieve the maximum possible utilisation
of each machine. Monitoring of the manufacturing process plays a very important role to avoid down
time of the machine, or to prevent unwanted conditions such as chatter vibration, excessive tool wear
or tool breakage. This is also very important in the unmanned machining environment, where the ma-

chine must be able to operate non-stop without an operator checking for errors.

Tool wear is one important factor that should be monitored if reliable machining is required. The
manufacturing industry requires tool wear monitoring systems that are reliable, accurate and cost-
effective. Systems that are currently available do not fulfil these requirements. Generally, wear moni-
toring systems is required for milling, drilling and turning operations. In the South African industry,
the requirement is more focused on turning operations. Consequently it was decided to start the devel-
opment of the monitoring system with turning operations. However, it is suggested that the proposed
methodology can later be extended to more complex machining operations.

1.3 Economic aspects

Tool wear has considerable economic impacts. Therefore, intensive research are carried out in the fol-
lowing areas:
e development of sophisticated tool materials and tool coatings to minimise tool wear
e development of adaptive control strategies to minimise tool wear during machining
e development of Tool Condition Monitoring Systems (TCMS) to predict the tool life and opti-
mise the use of machine tools
e optimisation strategies are used to optimise the machining parameters, mostly to maximise
metal removal with minimum tool wear
e development of wear mechanism maps to optimise the use of tools and to compare different
tool materials
e development of mathematical models (theoretical, numerical and empirical) to model cutting
forces, tool wear, chip formation, surface finish ezc.

The focus of this work is on TCM, which plays a significant role in the complete economic optimisa-
tion of production. The exact economic losses due to tool wear occurs due to scrapping of expensive
parts, production down time and the non-optimal use of cutting inserts. Without TCM, a conservative
approach is taken and the insert is recycled long before it should have been. This is done because the
wear rate is very unpredictable. Sometimes the tool will wear quickly and sometimes slower, even
when used with the same machining parameters. The economic impact of cutting tools on total produc-
tion costs is reported in various studies, such as [3,4]. It is stated that a considerable amount of money
can be saved through better use of cutting inserts themselves. Shop floor managers agree that a reliable

TCMS will bring about significant cost savings and will thus justify its capital cost. Compared to the

3
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overall cost of CNC machines, installing a TCMS will only cause a slight price increase. The possibil-
ity should also exist to retrofit old machines with a TCMS at low cost. Typical savings for a
manufacturing plant with effective TCM could be more than 50% less scrap, tool inserts and down
time. It should be mentioned here that production facilities could also be economically optimised
through research in the other areas listed above, and that savings could be more than that achieved with
TCM. Nevertheless, effective TCM should be part of the production process if a manufacturer wishes
to stay competitive in the global economic environment.

The automotive industry is the principal user of TCMSs. A survey of more than 1000 TCMSs installed
in industry is described in [5], and shows that the emphasis is mainly on turning and drilling, as de-
picted in Figure 1.5.

Turning
38% )
~ Drilling
N T 45%
. Grinding
Milling .~ . Others 3%
8% T 6%

Figure 1.5: Survey of TCMSs by area of application [5]
1.4 Engineering aspects

A number of specialist engineering disciplines are combined in this work. The main focus areas are:
- Condition monitoring
- Artificial intelligence
- Signal processing
- Production / manufacturing
- Structural dynamics
- Data acquisition

- Mathematical optimisation

Tt will be shown that combining state-of-the-art technology from the different engineering disciplines
is vital to achieve success in Tool Condition Monitoring (TCM). Many previous attempts at imple-
menting TCM in industry failed due to a lack of knowledge in one of the key disciplines listed above.
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1.5 Scope of research
1.5.1 Contribution

Despite the industrial need and many research papers a TCMS using Al has never successfully been
implemented in a real production environment. The following list of quotes from recent literature suf-
fice as proof that this has not yet been achieved [6]:
e “Although many unique characteristics of neural networks appeal to the researchers..., the
physical realisation of a neural network monitoring system has not been seen in industries yet.
The gap between academic enthusiasm for the neural network approach and industrial needs
for a practical and reliable monitoring system tends to be caused by the simple adoption of ex-
isting neural network methodology without consideration of some critical issues in implemen-
tation of the tool-wear monitoring systems™ — [7]
e “A reliable on-line wear measurement system does not exist yet and research in this area is
continuing.” — [8]
e “The process of metal cutting is a complex phenomenon that has been researched for many
years but the aim of practical tool condition monitoring has yet to be achieved.” —[9]

This list could easily be continued with remarks from other researchers active in the area of TCM. The
proposed contribution of this research is to achieve practical tool wear monitoring using AL This
should be achieved with an AI methodology that is unique in terms of formulation and application.

This research aims to make a significant contribution towards more reliable, accurate and cost-
effective tool wear monitoring for turning.

1.5.2 Summary of scope

The scope of the research can be summarised as:
e To investigate the use of sensor signals to develop a wear monitoring system for turning tools.
e The wear monitoring system should utilise the advantages given by Al modelling.

e Sophisticated signal processing and Al methods must be investigated to improve the accuracy
and reliability of the system.

e The proposed methods must be shown to apply to two different types of turning operations, and
also be able to monitor more than one wear mode.

e An industrial implementation of the complete Al monitoring system must be achieved, and

must be unique in terms of its formulation and application. It should be the first implementation
of AI for TCM in a production environment.

o The research will provide significant new knowledge to the research community of how to ap-
proach the problem of TCM.

e The system must be a robust and cost-effective solution to TCM on a shop floor, providing a
useful product to industry.

These are the main aspects of the research. There are also a number of detail factors that must be in-

5
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vestigated, and these are divided into three subsections, listed below:

1.5.3 Signal measurement

e Investigate force, acoustic emission and acceleration measurements for TCM.

o Interpret the signals with respect to the particular machining operation.

o Identify the best signal collection approach for robust and cost-effective TCM.
e Install the selected sensor approach on a shop floor for TCM.

e Characterise the new sensor approach appropriately.

e Collect data under normal shop floor conditions with an automated data logger.

e Show that the proposed technique can be used for continuous wear estimation under shop floor
conditions.

1.5.4 Signal processing

e Investigate various signal processing techniques with respect to the machining operation.

e Time, frequency, time-frequency as well as statistical analyses must be investigated for feasi-
bility towards TCM.

e Conclude towards signal feature sensitivity and machining conditions.

e Compare wavelet analysis with digital filtering.

e Attempt to identify and filter the effect of disturbances from signals.

e Investigate and conclude towards the best feature selection and reduction methods for TCM.

e Suggest appropriate rules for feature selection for practical TCM.

1.5.5 Modelling and monitoring

» Investigate the feasibility of analytical, empirical and numerical modelling with respect to
TCM.

e Show that an Al approach for TCM is the most advantageous for practical TCM.

e Conclude towards the feasibility of sensorless approaches (tool life equations).

e Suggest an Al approach for TCM that can estimate tool wear on-line using dynamic NNs.

o The AI method should be applicable to more than one turning operation, insensitive to noise,

must be able to handle the effects of machining parameters, monitoring more than one wear
mode and must be able to follow any geometrical development of tool wear.

e Compare the proposed method with other conventional NN paradigms.
e Attempt to improve the method and investigate the repeatability of the method.

e Investigate proper training algorithms for on-line NN training and implement the best algo-
rithm.

1.5.6 Research steps

To achieve these objectives, the following studies / steps were undertaken:
e Review of machining (kinematics, processes efc.)

e Exhaustive review of commercially available TCMSs and related patents
6
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e Exhaustive review of literature in the area of machining and TCM

e Various industrial visits to identify industrial and economic requirements

e Various academic visits to identify the state-of-the-art in relevant technology and identify limi-
tations of previous work

e Review of methods for modelling machining kinematics and tool wear

e Review, design and development of custom hardware

e Planning and conduction of experiments and processing results

e Design, analysis and proposal of monitoring strategy

e Comparison with other approaches

e Proving and improving monitoring strategy

e Documentation
1.6 Structure

Taking the research objectives into account, two turning operations were investigated:
- Hard turning (in a research laboratory)
- Aluminium turning (on a real shop floor)

The reasons for these particular choices are discussed in Chapters 4 and 5 respectively. The hard turn-
ing experiments were conducted at the Laboratory of Machine Tools and Manufacture (WZL) at the
Aachen University of Technology, Germany. The Aluminium turning experiments were conducted at
Kolbenco Pty (Ltd) in Alrode, South Africa. In Chapter 6, there is a discussion with respect to the re-
sults of both sets of experiments. A review of relevant literature, and a short review of the mechanics
of metal cutting and tool wear are documented in Chapters 2 and 3. The Conclusion and Future Out-
look are included in Chapter 7. Many of the technical details are described in Appendices A — L.
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CHAPTER 2

2. Background to machining and tool wear

2.1 Introduction

In this chapter, the basics of metal cutting and tool failure are explored. Tool failure refers to the wear
and / or the catastrophic breakage of tools. Selecting proper operating conditions can prevent catastro-
phic tool failure. With present technology, tool wear cannot be prevented. At some stage the tool will
wear out and will require replacement. For the purpose of this study, the failure of single point turning
tools are discussed, although the failure of tools used for processes like milling and drilling are similar.
These tool types are called defined cutting edges because the exact geometry of the tool is known. A
grinding wheel is an example of a non-defined cutting edge, because the geometry of the cutting edge
was randomly generated. The mechanics of cutting with defined cutting edges are often similar. It is
believed that many of the concepts proposed in this research can possibly be extended to other machin-
ing processes with defined cutting edges, even if these are not single point tools.

Machine tool failure is described in terms of failure mechanisms and modes. The failure mechanism is
the underlying cause of the tool failure, whereas the failure modes are used to describe the nature or
the appearance of the failure. The wear mechanisms and wear modes are covered in detail in this chap-
ter. Some other relevant aspects like tool wear maps and mathematical models for tool life are also dis-
cussed as relevant background material.

2.2 Mechanics of the cutting process
2.2.1 Introduction

This section will cover an introduction to the mechanics of turning, starting with the basic principles of
orthogonal and oblique cutting (refer to the textbook by Altintas [14] from which some information
presented in this section was sourced). Although most common cutting operations are three-
dimensional, the simple two-dimensional case of orthogonal cutting is useful to introduce the mechan-
ics of metal cutting. The mechanics of more complex three-dimensional cutting operations are usually
determined by applying a transformation model to orthogonal or oblique models.

2.2.2 Orthogonal cutting

A schematic representation of orthogonal cutting is depicted in Figure 2.1 (adopted from [14]). Or-
thogonal cutting is a process where metal is removed with a straight tool with the cutting edge perpen-
dicular to the cutting velocity V. A metal chip with width b and depth h is sheared away from the
workpiece with speed V.. The cutting is assumed to be uniform and therefore it is modelled as a plane
strain deformation process. In the case of orthogonal cutting the forces are exerted only in the direction
of velocity and uncut chip thickness, called the tangential F, and the feed force Fr.
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[ ]

tool

workpiece

Figure 2.1: Orthogonal cutting geometry (adopted from [14])

2.2.3 Oblique cutting

In oblique cutting the cutting edge is orientated with an inclination angle and an additional third force,
the radial force F,, act in the radial direction. The geometry of oblique cutting is depicted in Figure 2.2
(adopted from [14]). During oblique cutting, the chip is sheared away from the workpiece with an an-
gle m, called the chip-flow angle. The angle i between the workpiece and the cutting edge, is referred
to as the cutting edge inclination angle.

Ee ¥, 1N chip-flow angle

F i
cutting edge
inclination angle

Figure 2.2: Oblique cutting geometry (adopted from [14])

There are three basic deformation zones formed during metal cutting, as shown in the cross-sectional
view in Figure 2.3 (adopted from [14]). Stabler [10] found that the orthogonal angle is the same as the

chip flow angle for orthogonal cutting (hence 1 = i). This is called Stabler’s empirical chip flow rule
and applies to many machining operations.
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workpiece

Jv

primary zone

secondary zone

V = cutting speed
¢, = shear angle
a, =rake angle

Figure 2.3: Deformation zones (adopted from [14])

When the tool tip penetrates the workpiece, workpiece material is sheared over the primary shear zone
to form the chip. The sheared material partially deforms as the chip moves over the rake face of the
tool in the secondary shear zone. The area where the flank face of the tool rubs along the newly ma-
chined surface is the tertiary shear zone. This is also referred to as the friction zone because the flank
of the tool rubs against the newly machined surface. The chip initially sticks to the rake face of the tool
in the sticking zone. A number of theoretical equations exist that describe the mechanics in the three
deformation zones. See also for example the descriptions in reference [14].

The friction stress is approximately equal to the yield shear stress of the material at the sticking zone
where the chip moves across the material stuck on the rake face of the tool. The chip will then stop
sticking and start sliding with a constant sliding friction coefficient. The length of the contact zone de-
pends on the machining conditions and material properties. There are two approaches for analysing the
primary shear zone:

¢ Assuming the shear zone to be a thin plane, by Merchant [11]

e Predicting a shear angle through the laws of plasticity for a thick shear zone, by Lee and
Shaffer [12] and Palmer and Oxley [13]

These are the fundamental assumptions that are used to develop theoretical models of the cutting
forces. In many cases, the theoretical models that describe these mechanics still require experiments to
determine certain empirical constants. These constants are taken up in an orthogonal cutting database
for different tool and workpiece combinations. The orthogonal cutting database can then be used in
extended models that apply to oblique machining without the need for further experiments. A descrip-
tion of these methods and equations is not within the scope of this text, but can be found in references
such as [14,15]. The main problem with this approach is the infinite number of tool and workpiece
combinations, and also the somewhat complex nature of the formulations. As a result, the methods are

not often implemented to verify cutting force measurements and are of limited to use to industry.

Another approach is mechanistic modelling, which can assist to determine the 3-D cutting forces for
any practical tool and workpiece combination. With this method, a specific cutting pressure constant
(K) and a feed pressure constant (K¢) must be determined experimentally. The underlying assumption

10
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of this approach is that the cutting and feed forces are directly proportional to these constants. Hence,

the cutting forces can be expressed in terms of the machining parameters and the pressure constants.
The pressure constants are also a function of the shear angle. Unfortunately, an accurate analytical
method of predicting the shear angle remains subject to continuous research. There are two fundamen-
tal approaches for predicting the shear angle, namely:

e The maximum shear stress principle, by Krystof [16]

e Minimum energy principle, by Merchant [17]

The equations derived by these methods do not yield very accurate values for the shear angle, but pro-
vide a meaningful insight into the relationship between the shear angle, rake angle (refer Figure 2.3)
and the friction coefficient of a tool and workpiece combination. The aim of tool design would be to
keep the shear angle as small as possible to keep power consumption and cutting forces low. The rake
angle must be at a maximum and a cutting fluid must be used to decrease the friction coefficient. By
applying one of the assumptions stated above, the oblique cutting parameters can be solved and will
provide a model to determine cutting forces.

There are also a number of empirical models, and the one proposed by Armarego is probably the most
famous [14]. This approach assumes that the shear velocity is collinear with the shear force, and that
the chip length ratio in oblique cutting is the same as for orthogonal cutting. If the Stabler rule is ap-
plied, the chip flow, shear and the normal friction angle can be used in an empirical or mechanistic
model to solve cutting forces.

2.3 Turning

Turning is one of the oldest and simplest machining processes, and is used to machine cylindrical
parts. During turning, a workpiece is clamped in a chuck that is fixed to a spindle. Long workpieces
are held in the chuck and the centre of a tailstock. A single point tool is clamped on a tool post, and the
tool post can move between the spindle and the tailstock. Conventional lathes have only one motor at a
constant speed, and the speed is transmitted to the spindle and feed drive gearboxes with belts. The
feed and speed can be changed with marked shift handles that are connected to the respective gear-
boxes. In modern CNC lathes the speed and feed can programmed numerically, because these have
stepless computer controlled drives.

CNC lathes generally have a turret containing multiple tools, and the turret can often move along two
axes. If the tool moves along the axis of the spindle, it will reduce the diameter of the workpiece and
this is referred to as turning. If it moves perpendicular to the main axis, it will remove material along
the flat face of the workpiece, in what is called a facing or parting operation. These are external turning
operations. When metal is removed from the inside of a cylindrical workpiece, it is called internal turn-
ing or boring. With this combination of movements, a lathe can be used to machine many complex cy-
lindrical parts, and can also be used to produce a screw thread. Often, roughing and finishing opera-
tions are performed to achieve a certain surface quality. A sketch of a typical turning operation is
shown in Figure 2.4. The most important machining parameters are the:
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e cutting speed [V] usually expressed in m/min

e feed [f] rate usually expressed in mm/rev

e depth of cut [doc] usually expressed in mm

workpiece

A

cutting speed
[V]

depth of cut [doc]

feed [{]

fodl Fx = cutting / tangential force

Fy = feed force
Fz = thrust / radial force

Figure 2.4: Diagrammatical turning operation

The cutting speed is defined by:

V =7 D n [m/min] (2.1)
The feed rate is defined by:
f= I% [mm/rev] (2.2)
A total cutting time can also be determined, expressed as:
L
T = min 2.3
nxf [min] (2-3)

where:

D = workpiece diameter [mm]

n = rotational speed of spindle [rpm]

Im = cutting length per minute [mm/min]
L = length of cut along shaft [mm)]

The force response on the tool tip as a result of the turning operation is the three component cutting
force, as shown in Figure 2.4. Turning is an oblique machining operation and hence these forces can be
predicted by transforming the orthogonal cutting parameters to an oblique turning geometry using a
conversion of the operational angles. Turning causes varying chip thickness and thus the angle trans-
formation is applied separately to a region of uniform thickness and a region of varying thickness. The

12
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mechanistic method discussed before is a frequently used to model the cutting forces for turning. It

should be kept in mind that such a model will only apply to the static cutting forces.

Basic terminologies for turning tools are shown in Figure 2.5. Turning tools often consist of a standard
tool holder equipped with a tool insert clamping device. Consequently the holder always remains in the
machine and only the inserts are changed when they are worn. This saves a lot of time in setting up
machines. The tool holder itself will normally determine the working angles of the machining process.
There are many different angles and geometries defined for machining, and are defined by the ISO

3002/1 [18]. A labelling and numbering code for tool holders and tool inserts is also in use worldwide.

tool holder

tool

major cutting
edge

end clearance

face
clearance

(flank) face

minor

cutting edge

rake

face

nose radius

Figure 2.5: Turning tool terminologies

The basic geometries for a turning tool are depicted in Figure 2.6. The important parameters are the
tool nose radius, rake and side cutting edge angles. It was noted that different terms are sometimes
used for the same angles in the literature. In this document, the terms defined in Figure 2.6 will be
used, which also corresponds to ISO 3002/1.

Frant flank angle V_E":_ide flank angle
iy

7 |
*True rake angle
(=)yL_ L3
Cutting edge inclination ih £
. —, End cutting edge angle

Main cutting edge !

N .
“Nose radius
~
Side cutting edge angle

Figure 2.6: Basic angles for turning [19]

The ISO also separates between working angles and tool angles, the working angles being those that
are used when the tool is in operation, and the tool angles being those of the tool entity itself. It is im-
portant to understand the influences of the main geometries on the turning operation with relevance to

tool wear.
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The chip lands and slides on the rake face of the tool, and the rake angles will determine the direction

of the chip flow. Instead of the normal rake angle, a definition of a side and a back rake angle is often
used. In orthogonal cutting, there is no back rake angle, and only a side rake angle is considered. De-
pending on the rake angles, tools are called positive, neutral or negative. Positive inserts produce
higher shear angles and reduce cutting forces. Negative inserts produce higher forces but is useful in
interrupted cutting due to their higher shock resistance, since the initial contact with the workpiece ma-
terial is away from the weak cutting edge. The chip flow will be more towards the workpiece. This is
depicted in Figure 2.7.

Positive Negative
rake angle ‘= rake angle \&
{+) (-)
G Positive insert \

Negative insert

Figure 2.7: Positive and negative rake angles [19]

Tool tips have a small radius to minimise sharp feed marks on the workpiece surface. Increased radius
also increases the strength of the cutting edge and decrease the rate of tool wear. However, a too large
nose radius is also not advisable because it makes the tool susceptible to self-excited vibrations and
also causes poor chip control. The theoretical surface roughness (/Ry) is expressed as (also refer to Ap-
pendix I):

2

f
R, = 100 2.4
= igp 1000 (] 24)

where:
f = feed rate [mm/rev]

 =nose radius [mm]

The chips produced during continuous turning can be of a ribbon, tangled, corkscrew, spiral or comma
type. Tangled and corkscrew chips are unfavourable because they rub against the finished workpiece
and can become entangled around the tool. Furthermore they also pose a danger to the operator and
can cause tool breakage. The form of the chip is determined by the machining parameters, cutting
fluid, material combination and other properties of the machine tool. Examples of different chips are
shown in Figure 2.8, where the D type chips would be more favourable. Chip breakers can be clamped
on tool holders or formed on tool inserts to assist in breaking long chips. They force the chip to curl

toward the workpiece or tool, thus creating a large tensile stress that leads to breakage of the chip.

Jawahir et al. [20] investigated the effects of chip flow on tool wear with chip breaker type tools. It
was found that the failure of these tools is generally due to improper groove utilisation, and hence the
tool, machine and work material must be taken into account to evaluate the performance of these tools.
A knowledge-based approach for designing chip breakers is suggested by Jawahir and Fang [21], tak-
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ing the above-mentioned considerations into account. Other studies related to modelling the chip for-
mation with analytical and numerical methods can be found in [22-29].

sedris sy

Figure 2.8: Different chip forms [19]

Turning tool inserts are made from carbide, ceramic, diamond or Cubic Boron Nitride (CBN). Many

other variants are also available with or without a tool coating. The coating assists to increase tool life.

Another important phenomenon to turning operations is chatter vibrations. Chatter is self-excited vi-
bration resulting from the generation of different chip thickness during machining. Initially, cutting
forces excites a structural mode of the machine-workpiece system. This will leave a wavy surface fin-
ish on the workpiece. During the next revolution another wavy surface will be made in the same way.
Depending on the phase shift between these two waves, the maximum chip thickness can grow and
oscillate at a particular frequency that is close to a structural mode. This is called the regenerative chat-
ter frequency [14]. Chatter cause a poor surface finish and can also lead to tool breakage. The analysis
and prediction of chatter has been the subject of research for many years. Morimoto et al. [30] devel-
oped a piezoelectric shaker / actuator to regenerate the vibrations of the cutting process. In this way,
unwanted vibrations such as chatter can be attenuated. The system is also helpful to determine the dy-
namic properties of the machine tool. Koizumi et al. [31] used a very interesting approach called the
correlation integral in the time domain to identify chatter onset. Lago et al. [32] designed a sensor and
actuator integrated tool for turning and boring to control chatter. The tool holder shank vibrations are
supplied to the actuator via a digital controller. An adaptive feedback control system is used to perform
broadband vibration attenuation up to 40dB at different frequencies simultaneously.

2.3 Tool wear
2.3.1 Tool failure mechanisms

It is important to identify tool failure mechanisms in order to select appropriate machining parameters,
and also for interpretation of the sensor signals during wear monitoring. If the underlying mechanisms
are understood, phenomena in the sensor data can be attributed to certain tool failure mechanisms and
modes. Mechanical loads, thermal loads, chemical reactions and abrasive loads, cause tool wear. The
cutting conditions and the tool and workpiece materials influence these loads. The different loads can
cause certain wear mechanisms, and depending on the loads, they may occur in combination. These
mechanisms have either a physical or chemical characteristic that cause loss or deformation of tool ma-
terial. Tool wear mechanisms can be classified into several types, summarised as follows [33]:
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e abrasive wear resulting from hard particles cutting action

o adhesive wear associated with shear plane deformation
e diffusion wear occurring at high temperatures

e fracture wear due to fatigue

Other wear mechanisms are plastic deformation and oxidation, which are not very common in indus-
try. It is estimated that 50% of all tool wear is caused by abrasion, 20% by adhesion, and the other
10% by other the mechanisms [3]. Abrasion is basically the grinding of cutting tool material. The vol-
ume of abrasive wear increases linearly with the cutting forces. Higher hardness of the tool material
can reduce abrasive wear. During adhesion the high pressures and temperatures on the roughness
peaks on the tool and the workpiece cause welding. These welding points are broken many times
every second and cause removal of the tool material. Diffusion wear occurs at even higher cutting

speeds where very high temperatures are present (especially when using hard metal tools).

2.3.2 Tool failure modes

Tool wear will generally occur as a combination of a number of wear modes, with one mode pre-
dominant. The dominant mode will depend on the dominant wear mechanism. For a given tool and
workpiece combination, the dominant wear mode can be determined at different cutting speeds using

the product of the cutting speed and the undeformed chip thickness [34]. The common wear modes
are:

o flank wear ® nose wear

e crater wear e plastic deformation
e chipping e cracking

e Dbreakage e notch wear

The basic interpretations of causes, mechanisms, types and consequences of tool wear are summarised
in Figure 2.9 (adapted from [34]). The consequences of tool wear are deviations in shape and rough-
ness of the machined part, which cause the part to be discarded because it is out of the allowable tol-
erance. Figure 2.10 is a graphical representation of the different tool failure modes. Although they are
shown separately in the figure, they can also occur in combinations, e.g. flank wear and notching. The
most widely researched tool failure modes for turning with single point tools are flank wear, breakage
and crater wear. Flank and crater wear are generally accepted as the normal tool failure modes, be-
cause the other failure modes can be avoided by selecting the proper machining parameters. In fact, it
has also been shown that crater wear can also be avoided by selecting sufficiently low feed rate and
cutting speed [35]. The growth of flank and crater wear is directly related to the cutting time (or length
of cut), unlike some of the other failure modes, which can occur unexpectedly, even with a new tool.
It is already well established that flank wear generally has the greatest influence on the workpiece di-
mensions and surface quality [36]. For this reason ways to predict flank wear has been the pursuit of
researchers for many years. However, hard metal tools such (e.g. synthetic diamond) sometimes ex-
hibit other dominant failure modes that affect workpiece quality [37], and it is thus of importance to
comprehend the mechanics of the different failure modes.
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Figure 2.9: Causes, mechanisms, types and consequences of tool wear (adapted from [34])
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Figure 2.10: Tool failure modes

A. Nose wear (low speed)

Nose wear or edge rounding occurs through the abrasion wear mechanism on the major edges of the

tool. Nose wear is caused by the selection of inappropriate cutting conditions and occurs on the tool tip

at low cutting speeds.

B. Flank wear (medium speed)

Flank wear is the volumetric loss at the top of the tool edge, and is mainly caused by abrasion. Some

authors affirm that the flank wear in coated tools first occurs due to abrasion, and at a later stage of

tool life adhesion and diffusion also occurs [38]. Flank wear normally occurs at medium to low operat-
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ing speeds. The growth of flank wear is generally reported to be rapid at the beginning of the tool life,
then steady for most of its useful life and then accelerating again at the end of the tool life. Flank wear
is often described by the Taylor tool life equation, which is:

VIit=6 (2.5)
where V is the cutting speed, T is the tool life and n and C are constants that can be determined for a

given tool and workpiece combination. It was found from experiments that the basic Taylor equation
could yield estimates within + 35% of the actual tool life.

C. Notching (medium speed)
Wear notches form at the depth of cut line, where the tool rubs against the shoulder of the workpiece.
It is reported to occur together with flank wear, also at low to medium cutting speeds with adhesion

and abrasion the responsible wear mechanisms. Notch wear is also sometimes referred to as ‘groove
wear’ or ‘outer diameter wear’.

D. Crater wear (high speed)
Crater wear is a mode of failure predominantly caused by diffusion of tool material into the chip when
operating at high speeds. The tool-chip interface temperature governs this mode of failure, influenced
by the speed and feed rate. It generally occurs at high cutting speeds. The crater is quantified by depth
and cross-sectional area. The underlying mechanisms for crater wear are adhesion, abrasion, diffusion

and plastic deformation. Mathematical models for the prevention of crater wear can be found in
[39.40].

E. Chipping and cracking (high cutting speed)
Edge chipping occurs during periodic breaks of the built-up edge in interrupted cuts. This is common
with brittle tools such as ceramics and cemented carbide. Micro chipping also occurs with diamond
tools under certain conditions. Cracking can also occur in conjunction with chipping near the end of
the tool life. However, cracking may also occur due to inappropriate machining conditions. The under-
lying wear mechanism of for both these failure modes is fatigue. The thermal load due to high cutting
speeds has a strong influence on this mode of failure.

F. Plastic deformation (very high speed)
Plastic deformation is both a failure mechanism and failure mode. Plastic deformation starts when the
temperature of the tool tip reaches a certain value. This implies that the tool yield strength is lowered
below the existent normal stress. Further plastic deformation results in a temperature increase that

causes complete failure. Mathematical models for the prevention of plastic deformation wear can be
found in [39,40].

G. Breakage (very high speed)
Tool breakage or fracture is a mode of failure characterised by breakaway of material on the tool tip.
Breakage occurs when the feed-rate is too high, or when a tool is used with too low fracture strength.
Either plastic deformation and / or fatigue can be responsible for this mode of failure. It may also oc-

cur if a considerable degree of nose wear or severe depths of crater wear is present. Breakage is com-
18
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mon with brittle tools such as ceramics and CBN. Breakage will normally occur at very high cutting
speeds, but may also occur at lower speeds if an inappropriate tool material is selected for a certain
task. Mathematical models for the prevention of tool breakage can be found in [39,40].

2.3.3 Tool wear measurement

The quantification of tool wear can be a very subjective matter due to human interpretation of a mi-
croscopic picture. In order to be consistent, it is suggested by machine tool developers that the same
person perform all the wear measurements during experiments. Wear measurement of tools is done
through the implementation of ISO 3685, summarised in Figure 2.11 for turning (after Dimla [41]).
Flank wear is quantified in terms of VB, which is the mean of the wear height on the tool flank. The
length of flank wear is also measured in terms of b. The maximum flank wear is VBpay. The notch
wear can also be measured (if notch wear is present), in terms of VBt Crater wear is quantified in
terms of the crater depth Kr, and sometimes also the distance between the cutting edge and crater cen-
tre, quantified in terms of K.

notching

notch

Figure 2.11: Convention for tool wear quantification (ISO 3685 after [41])

Sometimes other wear parameters are used. Recently, a method for measuring the wear for grooved
tools was suggested by Jawahir ef al. [42,43]. The suggested method has become standard practise in
research for assessing wear with coated grooved tools. These parameters are shown in Figure 2.12. It
should also be mentioned here that Jawahir et al. [44] extended their work with grooved tools in de-
veloping an equivalent toolface model. In essence, an equivalent flat toolface can be determined for
grooved tools. The equivalent toolface can then be used to predict certain wear and failure modes of
the grooved tools. Parakkal et al. [45] also proposed a mechanistic model for modelling the cutting
forces during turning with grooved tools.
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VB  flank wear N nose wear

BW  width of groove backwall wear NL; notch wear length on main cutting edge

BL  length of groove backwall wear NW; notch wear width on main cutting edge

KT  depth of groove backwall wear NL; notch wear length on secondary cutting edge
SW  width of secondary face wear NW, notch wear width on secondary cutting edge

SD  depth of secondary face wear

Figure 2.12: Tool wear parameters for grooved tools [42]

2.3.4 Machining conditions and tool life

The various machining parameters and geometries mentioned before all have an effect on tool life, and
a short discussion is presented here. Temperature effects in the cutting zone and in the tool itself gov-
ern tool life. To enable a maximum metal removal rate, it will be necessary to use the highest cutting
speed and feed rates possible. However, increasing the cutting speed will cause increasing tempera-
tures in the cutting zone and will result in a shortened tool life. An appropriate cutting speed should be
selected according to the hardness of the workpiece material. When this selection is made, a certain

grade of tool insert must be selected that will function properly at the particular cutting speed.

In contrast to popular belief, applying a coolant to the cutting operation does not necessarily reduce the
rate of tool wear. In fact, it was found by Seah et al. [46] that the rate of tool wear increases when a
coolant is applied for certain operations. In view of this the circumstances must be evaluated properly
before a coolant is applied by default. Feed rate does not have a large influence on tool life, but there is
a certain feed rate for optimal tool life for each operation.

Depth of cut also does not have such a large influence on the tool life compared to cutting speed. The
depth of cut must be determined according to the required stock removal, shape of the workpiece and
also rigidity of the machine and workpiece. A very small depth of cut causes friction and will shorten
tool life. The rake angle also influences tool life. Positive rake angles can increase tool life but can
only be used in certain applications. The side cutting edge angle (lead angle) can lower the impact on
the tool and has an effect on the cutting forces. Increasing the side cutting edge angle increases chip
contact length and decreases chip thickness. The result in that the cutting force is dispersed over a lar-
ger area and the tool life is prolonged. However, chip control and breakage is more difficult to achieve
with increasing side cutting edge angle. Furthermore, it will increase the thrust forces and as a result
cannot be used with long or slender workpieces.
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2.3.5 Tool wear stages

It is assumed by most authors that tool wear consists of an initial, regular and fast wear stage [47,48].
Some authors divide tool wear into five distinct stages, namely [38]:

1. Initial stage of wear.

2. Regular stage of wear.

3. Micro-breakage stage of wear.

4. Fast wear stage.

5. Tool breakage.

It has been established by various researchers that the initial and fast (before tool breakage) stages
wear occur more rapidly than the regular stage. A reason for this behaviour is very seldom given.
Bonifacio and Diniz [38] explained that during the fast wear stage with coated carbide tools, the tool
loses its coating and the tool substrate (which has less resistance) begins to perform the cut. During the
initial stage, the tool edge loses its radius quickly and after which the process stabilise for a given
amount of time. Lim [49] found that with a tungsten carbide tool the initial wear rate is also faster due
to the breakage of the sharp cutting edge after which a finite wear land forms. Flank wear in relation to
time or length of cut will typically appear as depicted in Figure 2.13. From the literature it is unclear if
failure modes other than flank wear display this kind of behaviour.

]
~) : ~

! 1

initial | regular i fast
1 "
! }

flank wear

Y

cutting time

Figure 2.13: Flank wear in relation to cutting time

The wear rate is in fact a function of the wear mechanisms, and therefore any increase or decrease in
the wear rate must be accounted for by investigating the wear mechanisms. The abrasion and adhesion
mechanisms cause flank wear, and the cutting temperature influences the mechanisms. Increasing tool
wear also cause an increase in the cutting temperature. This in its turn can cause increased activity of
the abrasive and adhesive wear mechanisms, and could be the reason for increased wear rates near the
end of tool life.
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2.4 Tool wear mapping

2.4.1 Introduction

In order to optimise a metal removal process with a tool wear constraint, engineers must have ready
access to information pertaining to the wear process of interest. User-friendly databases must be estab-
lished to provide appropriate information for the choice of optimal operating conditions for a given set
of materials. The best approach to present complex wear data is through a wear map. Such a map can
provide a multi-dimensional graphical presentation of wear data. Different types of wear maps exist,
such as wear-mode, wear-transition, wear-regime and wear-mechanism maps. The wear-mode map is
the most common, where regions of the dominant wear mode are given for a range of operating condi-
tions. Of course, wear-mode maps are not only useful for TCM. Wear maps are commonly used for the
optimisation of a machining process and during the development of adaptive control systems for ma-

chine tools. This section will discuss a few examples of tool wear mapping.

An operating conditions map given by Lundholm [50] is reconstructed in Figure 2.14. The figure maps
the different regions of operating conditions for ranges of feed rate and speed. The Technical Machin-
ing Conditions (TMC) is bounded only by the technical performance of the machine tool. The supplier
of the tool will also state the Recommended Machining Conditions (RMC), which is in a conservative
safety zone. If the process is economically optimised without taking the technical constraints into ac-
count, the Global Economical Optimal Machining Conditions (GEOMC) are found. However, in this
region, excessive tool wear or tool breakage may occur. The Optimal Machining Conditions (OMC)
can be computed when all the constraints are taken into account and will be safer than the GEOMC
and more economical than the RMC.

technical limitations

TMC = Technical Machining Conditions
RMC = Recommended Machining Conditions
OMC = Optimal Machining Conditions
GEOMC = Global Economical Optimal
Machining Conditions

feed rate

cutting speed

Figure 2.14: Classification of machining conditions [50]

The operating conditions map and wear mode maps are related, because both establish ‘safety zones’
where no excessive tool wear or catastrophic tool failure will occur. Furthermore, the dominant failure
mechanisms and modes for a given range of operating conditions can also be determined. This infor-
mation is very useful for:

e development of TCMS

e optimising of the cutting process
2
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e adaptive control

e prevention of certain failure modes

However, to construct such a map demands a lot of experimental work, and the outcome of the map is
very dependant on the tool and workpiece material combination. Especially due to the rapid develop-
ment of new metals and advancements in machine tool technology, there will probably never be wear-
mechanism maps for each and every tool and workpiece combination.

2.4.2 Wear map examples

The originator of graphical representation of tool wear data can be traced to Trent who produced a se-
ries of machining charts in the late 1950s [51]. The concept of these diagrams did not capture any fur-
ther attention until Yen and Wright [40] proposed a map for turning tools. Yen and Wright constructed
wear maps based on mathematical models. A reconstructed example of a tool wear map by them is
shown in Figure 2.15. Lever et al. [39] produced very similar graphs to determine operational zones
for the development of a machine learning system. The same types of analytical equations were used
to construct the operational zones.

fracture .
plastic

h
X /Meformation

‘/
/ crater wear

feed rate

safety

Zone

cutting speed

Figure 2.15: Operating space bounded by wear modes [40]

Researchers developed several wear maps for groups of uncoated and coated tools [52]. In both in-
stances the characteristics of flank and crater wear are mapped over the range of suggested machining
conditions. When the maps for coated and uncoated tools are compared, a significant enlargement of
the safety zone is visible for coated tools. Such a map can help the end-user of the tool to employ the
tool in the most cost-effective manner. Obikawa et al. [53] mapped the tool flank wear of a carbide
tool in a 3-D graph to estimate the optimum cutting conditions and monitor the tool wear. In this case,
experimental data were used to construct the map. Da et al. [54] also constructed tool wear maps for
machining process optimisation, using analytical equations for tool wear and process constraints. The
models were proved with experimental data. Recent work Li et al. [55] proposed a predictive mapping
system for tool wear based on a modified tool wear model. The mapping system can predict wear rate
maps accurately with cutting speed, feed rate and flank wear as parameters. The limitation of the sys-
tem is the fact that the diffusion and adhesion constants for the two materials must be known. In order
to establish the accuracy of the model, more work on a wider range of materials will be required.
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2.5 Mathematical modelling

Mathematical models are very useful to study tool wear. Most models attempt to predict variables such
as the cutting forces, temperatures, pressures, chip flow angles efc. Another mathematical approach is
tool life equations that attempt to predict the life of the tool under certain machining conditions. With
respect to TCM, these are referred to as a sensorless approach. The model is thus used without help
from on-line sensors.

Three types of models are used, namely analytical (theoretical), computational (numerical) and empiri-
cal (experimental) models. Analytical models are useful to study the effects of tool geometry on the
various machining parameters, but are too complex to be of any value in a real-time TCMS. The non-
linear, stochastic and time invariant nature of machining processes makes theoretical modelling of ma-
chining processes very difficult [56]. Due to the complexity, modelling of the physical law represent-
ing the metal removal process cannot be performed for most cases.

Empirical models are models generated from experimental data. The output from empirical models is
usually one or more empirical constants. These constants are different for every tool and workpiece
combination, but are available in the literature for common combinations. Empirical modelling can be
performed parametrically or non-parametrically. Parametric modelling usually represents an adaptation
of the analytical model and is of limited use. This method also requires the inputs of an expert familiar
with the relational mechanisms and an ability to translate these into simple rules [39]. Non-parametric
modelling methods are based on a statistical description of natural phenomena. Empirical models have

been used with great success for describing many manufacturing processes.

Grabec ef al. [57] used empirical modelling for estimating turning tool sharpness, for the determination
of surface roughness in a grinding process, and for classifying surface quality of paper. Ruiz et al. [58]
used a multi-sensor empirical approach to estimate tool wear, and identified tool wear with three dif-
ferent empirical identification methods. The use of an analytical model for force reconstruction for
wear identification was proposed by Braun et al. [59]. The model can also be used for the prediction of
chatter onset. Ravindra et al. [60] proposed a mathematical model based on multiple regression analy-
sis. The model describes the wear-time and wear-force relationships for turning operations. Good cor-
relation was found between the cutting force and progressive tool wear. Lin et al. [61] describe the use
of an abductive network for modelling surface roughness and cutting forces for turning. Abductive
networks consist of several polynomial functions organised in layers. One advantage of this method is

that the optimal network architecture is determined automatically, and requires less iterative work than
Neural Networks (NNs).

Jawahir et al. [20] reviewed the most common tool-life relationships in 1995. A modified version of

this review is presented in Table 2.1. Some problems were identified with these approaches [20]:

e The methods are not adaptable to all the different tool designs and chip-groove configurations that
are used in industry, which have a large influence on the tool life.

e The influence of all the machining parameters on the tool life cannot be described in a systematic
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manner.

e The methods do not incorporate the knowledge of human experts.

Table 2.1: Tool-life equations (T = tool life in minutes)

CHAPTER 2: Review

no. Tool life equation Comments Ref
1.  Basic Taylor equation: Most widely used equation, how- [36,49,
VTa=C ever, constants C and n only apply 62]
where for specific tool and workpiece
V = cutting speed combinations.
n = Taylor’s tool life exponent
C = empirical constant
2. Taylor’s reference-speed equation: n only applies to particular tool and [62]
V T & workpiece combinations.
)3
where Vj is the reference cutting speed for ref-
erence tool-life To=1 min.
3. Modified reference-speed equation with coating | Same as reference speed equation, [54,63]
and groove effects taken into account: but more accurate and adaptable to
v, Wc% coating and chip-groove effects.
_—
where
W, = coating effect factor
W, = chip-groove effect factor
4.  Extended Taylor equation: Better accuracy than basic Taylor [64]
LS o equation, but requires several tool-
ViFid" life experiments.
where
f=feed
d = cut depth
C,= empirical constant
5.  Temperature-based equation: Equation is not feasible for use on [20]

=G,
where
&= tool temperature

C, = empirical constant

the shop floor.
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Colding’s equation based on ECT (Equivalent | Many empirical constants, and ma- [20]
Chip Thickness): chining parameters are integrated
—HY into single ECT parameter. How-
y=K- % n (NU ) LX)Z ever, tocﬁ life predli)ctions are incon-
where sistent.
x =In (ECT)
y=In(V)
z=In(T)
7.  Basic Taylor equation including rake and clear- | A complicated relationship between [20]
ance angle: tool-life and rake / clearance an-
1771 gles.
Cx [(cot S —tana) F(a, ,6’)2}
where F(a,/4)is a function of:
a=rake angle
/? =clearance angle
8. Extended Taylor equation including cutting | Require many tool-life tests to de- [20,65,
conditions and tool geometry: termine all the empirical constants.  66]
T=CM"f"d°risi" |*
9. Extended Taylor equation including cutting |It is claimed to be a good [20]
conditions and workpiece hardness: approximation for tool-life ranges
Ve C, of 10-60 min.
T™f*d*(BHN / 200)"
BHN = Brinell Hardness Number

Numerical approaches are methods like the Finite Element Method (FEM) and other types of computa-
tional simulations. These models are used to predict variables such as temperatures, forces, pressures
and stresses in the cutting zone. Lately, many FEM approaches have been developed dedicated to cer-
tain machining operations. The FEM has many advantages, such as the fact that it can handle many
different machining conditions, materials and geometries. Athavale and Strenkowski [67] recently
published an overview of FEM modelling of machining. It is stated that there is a basic disagreement
between researchers in the area of FEM modelling of machining. These unresolved issues are:

1. the failure mechanism at work of the workpiece material at the tool cutting edge

2. the stress distribution and frictional relationship at the tool-chip interface

3. the material flow past a rounded cutting edge, tools with wiper inserts or worn cutting tools

As a result simulation results vary close to the cutting edge and tool-chip interface. Further away, there

is a good correlation among the results of the various researchers. There are three types of FEM formu-
lations of machining operations:
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1. Langranian (mesh is attached to the workpiece)
2. Eulerian (workpiece material is assumed to flow through a meshed control volume)
3. Arbitrary Langranian-Eulerian (utilise both formulations during iteration)

Thermal behaviour and material models are also required for accurate simulations of the cutting me-
chanics. To model tool wear with a FEM remains subject to continuous research. This is because the
wear mechanics are very complex to model. Hence, FEM models are of limited usefulness for TCM.
Despite this, FEM models provide the most comprehensive and accurate results compared to other ex-
isting techniques. There are many other applications for FEM modelling. Sandstrom [68] proposed a
FEM for modelling the physics of high-speed machining. The model can assist in planning manufac-
turing processes on a sound technical foundation. Lovell et al. [69] proposed a FEM model for variable
tool-chip interface and tool coatings. This can be used to assist to evaluate optimal tool coating pa-
rameters and wear rates. A picture of an explicit dynamic FEM model of the machining process from
Lovell ef al. [69] is pictured in Figure 2.16.

Figure 2.16: Explicit dynamic FEM model of the machining process [69]

Marty et al. [70] implemented a numerical simulation of machining that includes workpiece vibrations.
The inclusion of vibration is very important because it has a very significant influence on the surface
roughness of the machined workpiece. Lee et al. [71] used the FEM to determine the effect of a larger
nose radius on the stress distribution in a tool insert. The areas where chipping and tool breakage will
occur can be identified in this way. Marusich and Askari [72] used a numerical method to model resid-
ual stresses in machined surfaces, which is very important especially for components subject to fa-
tigue. Very promising results were obtained.

The research works mentioned here are only a fraction of the activities in the area of FEM modelling
of machining operations. In fact, Mackerle [73] presents a bibliography of FEM analysis and simula-
tion of machining operations which covers the work from 1986-1996, and 675 research papers are in-
cluded! Today, most researchers take the computational / numerical approach for research applica-
tions. Much less work is being done in the area of analytical modelling. Experimental / empirical mod-
els have the best practical application for industry. Artificial Intelligence (AI) models are also of the
experimental type but are more often implemented as sensor-assisted models, and will be discussed in
the next chapter. Jawahir et al. [74] reviewed methods for modelling turning operations at the Univer-
sity of Kentucky, one of most active groups in the U.S.A. The activities at the University of British
Columbia are more focused on modelling of milling operations, and Altintas [75] presented an over-
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view of their approaches. The reader is referred to these excellent overviews for more information on
modelling of machining operations.

2.6 Optimisation of machining operations
2.6.1 Introduction

Tool wear studies are regularly included in manufacturing process optimisation studies. For this reason
some of the basic concepts regarding machining process optimisation are discussed in this section.
This will assist in comprehending some of the economic aspects with respect to tool wear. During the
optimisation of most machining and manufacturing operations, the objective functions are related to
economic criteria. Previous attempts to determine the optimal machining parameters can be divided
into three main categories [65]:

e Computer Aided Design (CAD) approaches.

e Operations Research (OR) approaches.

e Artificial Intelligence (AI) approaches.
These approaches could be based on an off-line adjustment system, or an on-line Adaptive Control
(AC) system.

2.6.2 Machining optimisation survey

The obvious optimisation problem for a turning operation will have feed and speed as variables, with
the objective function linked to economic criteria. Ermer [76] developed a geometric programming
technique to optimise the control variables for minimum cost, subject to constraints such as available
horsepower, surface finish and available feeds and speeds. This very early work did not account for
tool wear constraints. Da, Sadler and Jawahir [54] presented a computer aided methodology for pre-
dicting optimum cutting conditions in process planning of turning operations. This also involved the
effect of the progressive tool wear on the performance of the machine.

Da et al. [54] also state that in an industrial machining process, machining performance varies due to
tool wear. Empirical equations based on earlier research, were used to describe the behaviour of the
different variables as well as their dependence on one another. Non-linear programming techniques
were used to determine the constrained optimum cutting conditions for a certain tool wear state. Sev-
eral papers are presented by the group of the University of Kentucky dealing with predictive modelling
and optimisation of machining, mainly for turning operations [77-79].

Choudhury et al. [80] utilised an adapted version of the Taylor tool life equation (using force meas-
urements as input) to predict the optimum cutting conditions in a turning process. This approach en-
abled them to predict the optimum conditions with the minimum number of experiments, given a data-
base of the various material properties. A computer program reads the current machining conditions,
determines the tool life from the Taylor equation, and then supplies the optimum parameters using a
pre-established optimisation model. Zhou and Wysk [81] proposed a methodology for probabilistic
optimisation in batch production, also using the Taylor equation.
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Yen and Wright [40] proposed an optimisation procedure for adaptive control in machining. A safe

working space is determined by the constraints of three different modes of failure. Control variables
such as speed and feed rate are optimised for maximum metal removal rate. The gradual development
of flank wear was also taken into account to update the optimisation dynamically. An important con-
tribution was the establishment of a model that links the tool failure constraints with the control and
state variables. Obikawa ef al. [53] proposed a tool wear monitoring system integrated with an optimi-
sation system for cutting conditions. The tool wear is estimated by monitoring the AR coefficients rep-
resenting the power spectrum of the cutting force, and feeding it into two NNs. The machining pa-
rameters are optimised to ensure that a certain number of components can be manufactured reliably
before the end of the tool life is reached. Jang and Seireg [35] proposed an optimisation procedure by
which the machining parameters are optimised for specified surface conditions. Tool failure, tool wear,
dimensional accuracy and chip formation are taken into account as constraints with a penalty function
formulation. Maximum metal removal rate is achieved in conjunction with specified surface condi-

tions.
2.6.3 Adaptive Control (AC)

Adaptive Control (AC) involves continuous changing in machining conditions by means of an on-line
strategy, like the fuzzy-based AC system proposed by Tarng et al. [82]. Running an AC system based
on one objective might cause an infraction on other constraints. This is why an AC system must be
based on different control objectives, in order to optimise the process for the current machining condi-
tions. Combining a range of sensors to interpret measured data can also extend the possibilities of an
AC system. This is referred to as intelligent manufacturing [83,84]. The following monitoring and con-
trol functions are considered to be significant for such systems [50]:

e Advanced process monitoring, to protect from fatal events

e Adaptive Control Optimisation (ACO)

e Adaptive Control Constraint (ACC)
ACO attempts to adjust machining parameters in a direction that will optimise a predefined perform-
ance index. The aim of ACC systems is to adjust the machining parameters to their maximum possible
values given the constraints of the process.

2.6.4 Approaches for Optimising Machining Operations

The conventional methods for selecting CNC machining parameters are based on textbooks or the ex-
perience of the operator. In most instances, the parameters are selected in a conservative manner in or-
der to prevent failures such as tool breakage. As a result, the Metal Removal Rate (MRR) is low [65].
An optimisation strategy may consist of one or more of the following approaches:

A. Computer Aided Design (CAD) approaches
This off-line approach uses process, tool wear and cutting force models based on prior knowledge
gathered from experiments. Based on these models, a computer simulation, using the Numerical Con-
trol (NC) code, can estimate the cutting force and tool wear. With these results, the MRR can be opti-

mised without violating the machining constraints. The advantage of this approach is that it is easy to
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implement and effective for most applications. A disadvantage is the fact that the approach can only be
used off-line.

B. Operations Research (OR) approaches
The objective of Operations Research (OR) approaches is to minimise global machining cost by con-
sidering multiple criteria related to machining, for example the policies developed by Jeang [85] and
Akturk and Avci [86]. These methods are used for off-line adjustment due to their computational diffi-
culty. An advantage is the establishment of a reference model that can adjust to changes in the machin-
ing parameters. Gopalakrishnan and Al-Khayyal [87] demonstrated a machine parameter selection
scheme based on geometric programming for turning, which is a typical OR approach.

C. Artificial Intelligence (Al) approaches
Artificial Intelligence (AI) based methods can be used to optimise a CNC machining process. Al
methods can be either ACO or ACC based, or may even be an off-line system. Al based methods at-
tempt to automatically optimise machining parameters based on sensor information. Reaction of the
control system due to changes in process must be carried out within milliseconds to ensure the reliabil-
ity of the process. There have been a number of studies on the application of Al techniques in on-line
control [88,89]. These can be divided into three categories:

e Neural networks

e Probabilistic inference

o Knowledge-Based Expert Systems (KBES) [90]

2.6 Conclusion

In this chapter an introduction to the mechanics of metal cutting was given. Furthermore, an overview
of the turning process in general together with the main variables concermned was described. An in-
depth discussion on tool wear described wear mechanisms, modes, as well as methods for wear as-
sessment and mapping. Lastly brief discussions on modelling and optimisation techniques of machin-
ing processes were given. The amount of literature in the area of metal cutting is enormous, and the
brief background reviews presented here is relevant with respect to the research that follows in the fur-
ther chapters.

The recent report on “Present Situation and Future Trends in Modelling of Machining Operations™ [91]
reviews the many different research activities in metal cutting. Many issues connected to metal cutting
have not been resolved yet. In conclusion, it could be stated that numerical methods seem to be the

best way to model machining operations. However, these methods are currently of limited use in on-
line TCMSs.
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CHAPTER 3

3. Tool Condition Monitoring

3.1 Introduction

A wide variety of techniques for machining process monitoring have been developed through the years
in industrial and academic projects. Due to the wide variety of manufacturing processes, it is not pos-
sible to apply a single technique to all operations. It is not uncommon for a monitoring system to be
reliable for one process, but unsatisfactory for the next. However, a number of techniques exist that

can be used for different processes, if the necessary adjustments are made to them.

In this chapter the various approaches to TCM are discussed. As an introduction to TCM, a brief over-
view of process monitoring in the area of manufacturing is given. There exist sensorless and sensor-
based approaches to the problem of TCM. Sensorless approaches are not monitoring methods but are
of relevance to this work. Basic sensorless approaches were discussed in Chapter 2. This chapter is
concerned with sensor-based methods. It is widely accepted that intelligent, sensor based manufactur-
ing is vital to achieve reliable operation of a manufacturing process. Sensor signals supply information
about the manufacturing conditions that enables optimisation, control and decision-making. The in-
formation from sensors can be treated in numerous ways and research is aimed towards developing the
best techniques to extract the relevant information from the signals. One way to utilise sensor informa-
tion is through the use of Artificial Intelligence (AI) models. The use of Al in TCM will be discussed
in more detail because it is the most relevant to this research. As a general case, designing a TCMS

consists of the steps depicted in Figure 3.1. Various methods that could be used for each step will be
discussed.

model features
£ and wear
relationship

sensor selection p| Signal recording » generate signal » select wear
and deployment and conditioning features sensitive features

Figure 3.1: TCM steps

The reader is also referred to other overviews of sensor-assisted TCM, published by Dan and Mathew
[92], Byme et al. [5], Scheffer and Heyns [93] and Dimla [41]. A TCM database was also published by
Teti [94]. This database includes more than 500 research papers focusing on TCM. The overview in
this chapter is mainly concerned with developments in the literature. However, the commercial appli-
cability of TCMSs is very important and as a result Appendices A and B were compiled that deals spe-
cifically with commercial systems. These two Appendices are the result of an exhaustive overview of
commercial equipment and their application in industry. It is also important to compare the abnormal
gap between research and industrial practice in this case, as it was an objective of this research to over-
come this gap by developing a reliable TCMS for industry.
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3.2 Sensors for general process monitoring

A wide variety of sensors for process monitoring are available. The most common sensors found in
industry are force, power, vibration and acoustic emission sensors. Others include [5,95]:

e flame detector e ph sensor e smoke sensor

e sound level sensor e level meter e image sensor

e lubrication oil detector e accelerometer (vibration) e temperature sensor

e touch sensor e seismic sensor e tool wear sensor

e edge position sensor e humidity sensor e tool damage sensor

e limit sensor ® gas sensor e current sensor

e clamping force sensor e chip monitoring sensor ® pressure sensor

e speed sensor e dust sensor e torque sensor

e thermal deformation sensor e temperature distribution sensor e acoustic emission (AE) sensor
e coolant temperature sensor e surface roughness sensor

These sensors and many more have found their rightful place in the manufacturing industry. Most of
them are only used for a specific monitoring objective. The focus of monitoring may fall on one or
more of the following areas [5,96]:

i The machine (diagnostics and performance).

2. The tools for machining (wear, lubrication and alignment).

3 Workpiece (surface roughness, tolerance, geometry).

4. Process (chip formation, energy consumption, temperature).

Cho et al. [97] surveyed the different sensor approaches and their application in industry for research
in Korea. A summary from [97] is shown in Figure 3.2. It is interesting to note that cutting force seems
be the most popular for most applications. The second most popular method is Acoustic Emission
(AE), which can also be used for different applications. Furthermore, it can be noted that the motor
current is not used for wear monitoring, but only tool breakage detection. The relative pie chart di-

ameters correlate with the number of applications for monitoring particular events.
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Figure 3.2: Sensor application in manufacturing process monitoring [97]
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Sensor systems can communicate with the CNC control through different standards. A number of

standard interfaces exist that can allow many sensor/ actuator systems to communicate with the CNC
control, as was demonstrated by Pfeifer and Thrum [95]. This is very helpful to streamline the installa-
tion of sensor technology into modern machine tools. The development of smart sensor technology
also presents new and exciting prospects for the manufacturing industry [5,98,99]. With smart sensors,
the time needed for signal processing is reduced significantly, thus enabling faster response for on-line
control. These sensors can also possess abilities such as self-calibration, self-diagnostics, signal condi-
tioning and decision-making. In the future Analogue to Digital (A/D) converters may become obsolete
for sensor systems, because this will be integrated within the sensor itself [100]. Smart sensors can also
have built-in filters to filter certain vibration modes with application in intelligent structures [99]. The
Transducer Electronic Data Sheet (TEDS) has also become an acceptable standard in sensor technol-
ogy. This development, together with sophisticated signal processing software, makes inexpensive,
fast and accurate measurements possible. The latest development in sensor technology is to develop
wireless systems that can achieve high sampling rates across multiple channels.

It will be shown in this chapter that the emphasis in recent research is to integrate sensor systems. This
enables more accurate and robust characterisation of a process. Integrated sensor systems can handle
noisy input data, which is caused by random disturbances in the machining process. The sensor inte-
gration systems include learning schemes such as NNs, and have the ability to handle complex proc-
esses that defy analytical mathematical modelling.

3.3 Sensor-based tool wear monitoring

3.3.1 Introduction

A. Direct and Indirect systems

Approaches to monitor tool wear can be divided in two categories, namely direct and indirect. Direct
methods are concerned with a measurement of volumetric loss at the tool tip, while indirect methods
seek a pattern in sensor data from the process to detect a failure mode [5]. Direct methods are of less
importance to this research. In general, direct methods are sensitive to dirt and chips, and are therefore
not commonly accepted in industry. Indirect methods will be discussed in more detail. Indirect meth-
ods are said to be less accurate than direct methods, but have found more acceptance in industry due to
the fact that they are easily interpreted, cost-effective, and reliable. Also, for some applications, it
might not be possible to use a direct monitoring method due to the nature of the process.

B. Continuous and Intermittent systems
The second important distinction to be made with TCMSs is between continuous and intermittent sys-
tems [5]. In the case of continuous systems, the measurement variable is available throughout the ma-
chining process. This enables the on-line classification of the process, and ensures that sudden changes
can be reacted upon in time. This research is focused on continuous systems. In the case of intermittent
systems, the variable is recorded off-line. This approach has many disadvantages, which includes time

losses and high costs. One practical application of an intermittent system can be a wear measurement
on a magazine of tools while the machine is using a different tool.
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C. Sensor requirements for tool wear monitoring

Monitoring usually takes place in very hostile environments. Subsequently, sensors used for tool wear
monitoring should be robust and easy to install. Sensors used for TCM must meet certain require-
ments, such as [5]:

e Measurement as close to the machining point as possible.

e No reduction in the static and dynamic stiffness of the machine tool.

e No restriction of working space and cutting parameters.

e Wear and maintenance free, easy to replace and cost-effective.

e Resistant to dirt, chips and mechanical, electromagnetic and thermal influences.

e Function independent of tool and workpiece.

e Adequate metrological characteristics.

e Reliable signal transmission, e.g. from rotating to fixed machine components.
3.3.2 Force-based monitoring

It is well established that worn tools cause an increase in the cutting force components [5,101,102].
The dynamic and static force components generally increase with increasing tool wear (due to fric-
tional effects). The difference between the static and dynamic components of the cutting force is
shown schematically in Figure 3.3.

A NANAN ﬁ\}ﬁr dynamic cutting
force

static cutting force

force [N]

time [s]

Figure 3.3: Static and dynamic forces

The different components of the cutting forces respond differently to machining parameters and tool
wear modes. Depending on the type of process that is investigated and specific experimental setup, re-
sults among researchers vary. This can be contributed to dynamic effects of the machine tool and
measurement equipment. Many types of sensors have been developed to measure cutting forces. These
include [5] (also refer to Appendix A):

A. Direct measurement dynamometers
These sensors are based on the piezoelectric effect and can measure dynamic cutting forces very accu-
rately. However, these sensors are expensive and in most cases not protected from overload, and there-
fore not used in industry. There is also some difficulty in protecting the sensors against cutting lubri-
cant. Force-measuring tool turrets have been developed that can measure three force components, but
are still very expensive.
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B. Plates and rings

Force-measuring plates can be fitted with relative ease on turning machines between the turret housing
and the cross slide, or between the turret disc and slide. These thin plates are fitted with piezoelectric
force measuring sensors. These sensors have some advantages, but are subject to many disturbing fac-
tors, such as thermal expansion.

C. Pins, extension sensors
These sensors are suitable for tool breakage monitoring in rough machining. They are fitted on force
carrying machine components to detect the cutting force indirectly. The identification of a suitable fit-
ting position can only be determined experimentally, which is a disadvantage.

D. Measurement of displacement
Non-contact sensors to detect the displacement or bending of tools can be mounted directly on the tool
[103]. However, these sensors are subjected to the high risk of damage and disturbances from chips,
dirt and cooling lubricant.

E. Force-measuring bearings
Bearings and bushes can be specially fitted with strain gauges in certain positions to measure cutting
forces. Force-measuring bearings require a low-pass filter due to disturbances from the ball contact

frequency, and as a result high frequency signal processing is not possible. Force-measuring bushes are
only accepted in special cases because they reduce the rigidity of the machine.

F. Force and torque at spindles
These systems can be very complex because they have to monitor the torque of the spindle with high
resolution, and within the entire range of the motor. Furthermore, the signal must be transmitted on a
non-contact basis. The installation of such a system is not possible on most machines because of a con-

straint on the available space for sensor mounting. The use of a torque sensor for TCM in drilling is
described in [104] and [105].

3.3.3 Measurement of motor current

The measurement of motor current is an easy alternative to other sensors and can be installed without
much difficulty. A wide range of sensors is available for this purpose. However, due to fluctuations in
the signal due to friction, the signal is not accurate enough for wear monitoring. Also, tool breakage
can only be detected after some damage has occurred. Spindle power is proportional to the cutting
force in the primary motion, and is not the most sensitive direction for tool wear monitoring. The cut-
ting process consumes only a small portion of the measured power of the spindle. However, monitor-
ing systems based on the principle of spindle current can be successful when used with the right opera-
tion [102]. Ni et al. [106] used the spindle motor current to identify faults such as misalignment, over-
size, undersize and wear for a tapping operation. A combination of wavelet analysis and Principal
Component Analysis (PCA) of the motor current signal is used to distinguish between the faults. Tseng
and Chou [107] use the reaction of the spindle motor’s workload to cutting conditions to detect abnor-

malities. When these abnormalities are accumulated to the warning limits, the tool must be replaced. A
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disadvantage is the appropriate selection of the warning level, which must be determined experimen-
tally for different cutting conditions.

3.3.4 Acceleration

Piezoelectric accelerometers can measure the machine vibration caused by oscillations of cutting
forces. Vibrations from a cutting process have components of free and forced vibration response. Fur-
thermore, random and periodic behaviour can be observed. It has been shown by previous authors that
the vibration levels change with tool wear (see references below). Industrial accelerometers fulfil the
environmental requirements for tool wear monitoring because they are resistant to the aggressive me-
dia present in machining operations. Accelerometers are less expensive than most force sensors, and
can measure vibration levels within a very wide frequency range. For these reasons, accelerometers are
often used for TCM [38,102, 108-112]. Kim and Klamecki [113] also reported the use of torsional vi-
bration (using a Laser-Doppler Vibrometer) for monitoring the wear of milling cutters.

One of the main difficulties of monitoring the tool life with acceleration is to identify the frequency
range that is influenced by tool wear, since machining processes comprise of many factors that pro-
duce vibrations that are not related to tool wear. Bonifacio and Diniz [38] suggest that the useful fre-
quency range falls between 0 — 8 kHz. It would seem that the frequency range sensitive to tool wear
depends on the specific machining operation, and must be determined experimentally. A ‘global’ range
that would satisfy all machining operations does not exist.

3.3.5 Acoustic emission

Cutting processes produce elastic stress waves that propagate through the machine structure. Different
sources in the cutting process generate these stress waves known as Acoustic Emission (AE). Sources
of AE in metal cutting are:

e Friction on the tool face and flank.

e Plastic deformation in the shear zone.

e Crack formation and propagation.

e Impact of the chip at the workpiece.

e Chip breakage.

The fact that crack formation generates AE, makes AE very useful for tool breakage detection. Gener-
ally, collection of the AE requires special hardware that can bandpass filter the signals to the AE range
(between approx. 50kHz — 250kHz). Amplification is also required and an analogue root mean square
(rms) circuit with a short time constant is often included to collect the rms AE level. The different
steps required to collect AE for are depicted in Figure 3.4 (adapted from [114]).

Araujo et al. [115] investigated the sliding friction as a possible source of AE during metal cutting.
The AErms in different frequency ranges was collected for different widths of cut and also with the
tool rubbing against the workpiece (without cutting). It was found that the level of AE remains almost

constant for all width of cut conditions, and hence it can be concluded that the main mechanism for AE
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during metal cutting is the sliding friction between the tool and workpiece. Consequently, an increase

or decrease of AE can be expected with tool wear depending on the effect on the sliding friction due to
tool wear. It is also believed that the cutting temperatures will affect the level of AE due to thermal
expansion effects. The effect of plastic deformation with other materials is currently under investiga-
tion. Chio and Liang [116] investigated AE with tool wear and chatter effects in turning. A model is
presented that can predict the chatter AErms amplitude with certain severities of flank wear. Good cor-
relation was found between the model and experimental results. Kim et al. [117] reports on the use of
AE to monitor the tool life during a gear shaping process. The AErms is collected and used in a soft-
ware program to predict the remaining tool life.

RMS
highpass lowpass T=1.2ms
AE sensor buffer S0kHz 250kHz amplifier
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| =

workpiece tool holder

Figure 3.4: Steps for collecting AE during turning

Although a wide range of AE sensors exist, only a few can withstand the hostile environments of ma-
chining processes. AE sensors specially designed for use on machine tools are available, and these can
be attached anywhere on the machine tool. A new concept is to use a coolant stream to transmit the AE
waves from the tool to the sensor, for example the system presented by Dollinsek and Kopac [118].
The advantage is that the distance between the cutting area and the sensor is reduced, and thereby
damping effects are minimised. Some problems with this approach are that bubble free coolant is re-
quired, and monitoring may be disturbed when chips pass through the coolant stream. Dollinsek and
Kopac compared different tool insert types and found that the AE is most sensitive to tool wear but is
also affected by the insert type. Another approach is to use non-contact transmission of the signal, al-
lowing measurement near the process.

One problem still lies with an appropriate interpretation of the AE frequency spectrum. In most stud-
ies, an explanation for the choice of certain frequencies and their advantages are not given or not
investigated. In fact, Jemielnaik [114] found that using the average value of AE (or AErms) is most
suitable for TCM. A similar result was found during the course of this research (refer Chapter 4). Li
[119] presents an overview of using AE for TCM in turning operations. It is stated the AE is heavily
dependant on cutting conditions, and as a result methods should be employed to handle this problem
effectively. Some methods are proposed that include advanced signal processing, sensor fusion and
modelling techniques for tool wear and breakage monitoring [102,114,120-126]. There are also
industrial implementations, and these are described in Appendix A.
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3.3.6 Temperature monitoring

The high temperatures around the cutting edge during machining have a direct influence.on the tool
wear. The cutting temperature also affects chip formation and surface quality. The high frictional
forces when cutting with worn tools cause higher temperatures. The heat is removed from the process
by the chip (approx. 90%) and the workpiece and tool itself (approx. 10%). If the temperature in the
cutting zone can modelled or measured, it will provide a complete solution to many problems encoun-
tered with machining. However, measuring the temperature directly is virtually impossible. Accurate

temperature modelling for some machining operations is now possible by numerical techniques such
as the FEM.

Lin [127] attempted to measure the cutting tool temperature using infrared pyrometry, but only
achieved partial success due to hardware limitations. Chow and Wright [128] used a standard thermo-
couple inserted at the bottom of the tool insert to estimate the tool-chip interface temperature. The
method could possibly be extended for on-line TCM. Wang et al. [129] report the use of an Infrared
(IR) camera for analysing chip formation. The method is mainly used to study the stress distribution in

cutting chips and can assist in developing chip breakers. However, the approach can also be considered
for TCM, but will be expensive.

Using a remote thermocouple technique seems to be the only practical method for temperature moni-
toring for machining. This renders the temperature approach very ineffective. If an accurate and cost
effective method can be established to estimate the temperature in the cutting zone, the technique will
be very useful for TCM. Klocke and Hoppe [130] used a special fibre-optic pyrometer embedded into
the tool insert to measure the temperature directly in the secondary shear zone for high-speed machin-
ing. The result was correlated with a FEM model and a good agreement was found. It is unclear if this
approach could be used for TCM, but seems to be the best attempt up to date.

3.3.7 Ultrasonic methods

Abu-Zahra et al. [131,132] describe the use of an ultrasonic system for indirect tool wear measure-
ment. With this approach, an ultrasonic signal is transmitted through oil to the tool insert. The reflec-
tion / echo of the ultrasonic waves is then collected with the transceiver. When the tool wears, more
ultrasonic energy is reflected. The use of a calibration mark on the tool insert assists to quantify the
severity of flank wear and eliminates temperature effects on the ultrasonic signals. The ultrasonic
measurements are made when the tool is not engaged to the workpiece. The approach is very refresh-

ing but somewhat limited in application and not yet cost-effective enough for industrial implementa-
tion.

Cho et al. [97] also report on the use of an ultrasonic sensor in a very interesting overview paper deal-
ing with the research and developments in Korea. The methodology is similar to that of [131], but a

thermocouple for temperature measurements is also included. A diagrammatical layout of the ultra-
sonic approach is shown in Figure 3.5 [97].

38



——  University-of Pretoria-etd—Scheffer- c20B5ER 3: Tool Condition Monitoring

INSERT TIP ULTRASONIC SENSOR

)
T—— TOOL HOLDER
= ."-.9

£ SCREW

DELAY LINE
it

Figure 3.5: Ultrasonic TCM approach [97]

3.3.8 Vision systems

The use of vision systems for tool wear measurement is described by Kurada and Bradley [133] as
well as Novak et al. [134]. In these approaches, a special camera is installed on the machine tool to
assess the tool wear when the tool is not engaged in cutting. The digital picture taken by the camera is
processed with special techniques and can yield the sizes of the flank and nose wear. The vision sys-
tems are accurate but have some disadvantages. One difficulty is to determine the flank and crater wear
simultaneously with one camera. This problem was overcome by Karthik ef al. [135]. In this case, a 3-
D vision system was developed using only one camera that takes pictures from different angles. It was
shown that the system could determine the average crater depth for different wear geometries. Another
problem is the costs involved in installing and calibrating such a system on a CNC machine tool. Fur-
thermore, chips, cutting fluid or components of the machine tool can restrict the line of sight of the
camera.

3.3.9 Surface roughness monitoring

A. Introduction
Surface roughness is one of the most important factors in evaluating the quality of the machining op-
eration. Because it is sometimes easier to measure the surface roughness of the machined component
than to measure the tool wear, surface roughness estimation can be utilised to monitor the tool wear
[136]. Cutting conditions, such as cutting speed, feed rate, depth of cut, tool geometry and material
properties of the tool and workpiece, significantly influence the surface finish of the workpiece mate-

rial. If these factors are known and set correctly, an in-process surface roughness measurement system
can also indicate a worn tool [137,138].

Surface inspections in industry are typically done as a post-process operation, which is time consum-
ing and uneconomical since a number of non-conforming parts can be produced prior to inspection.
This underlines the importance of devices to monitor surface finish continuously without interrupting
the machining process. Several methods have been proposed to estimate surface roughness on-line in
flexible manufacturing systems. Some of these methods are [139]:

e Correlation between surface roughness and cutting vibration to develop an on-line roughness
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measuring technique.

e Image processing, stray light and laser focus methods [137].

e Roughness measurement with non-contacting inductance pick-up.

e Direct measurement with a stylus (contacting sensor or profilometer).
e Ultrasonic sensing approach [137].

e Sensing with a special air pressure transducer.

As with TCM systems, roughness-monitoring systems can also be divided into direct and indirect ap-
proaches. This section concentrates on tool wear and vibration monitoring with relevance to surface

roughness monitoring. The calculation of surface roughness parameters for machined parts is dis-
cussed in Appendix L.

B. Surface roughness analysis and tool wear
The surface roughness of machined components holds direct correlation with tool wear [138,140]. A
logical consequence is to use the roughness information to control the machining operation as the tool
wears. To maintain a certain roughness, the feed and cutting depth must either be increased or de-
creased to maintain the workpiece quality. For this, relatively simple geometric control systems can be
developed that measures the roughness, calculates an error value, and then changes certain machining
parameters accordingly. The ultimate goal is to develop an automated in-process monitoring system
that would counteract any troublesome external factors. Process parameters could be varied in process

with an adaptive or geometric control scheme, which would ensure consistent part quality [137].

Bonifacio and Diniz [38] found that vibration of the tool is a reliable way to monitor the growth of sur-
face roughness in finish turning, and can be used to establish the end of tool life for these operations.
Flank and groove wear mostly influence surface roughness. Some researchers found that there is in-

creased amplitude of roughness at the beginning stages of cut, a lesser tendency in the middle and
again an increasing tendency at the end of tool life.

C. Vibration monitoring and surface roughness analysis

The average surface roughness of a machined part can be assumed to be the result of the superposition-
ing of a theoretical profile computed from cutting kinematics, and of the oscillatory profile determined
by the relative vibration between the cutting edge and the workpiece [141]. The random resistance
against cutting (stick-slip process between the chip and the tool) causes the relative vibration between
the tool and workpiece. The ideal or theoretical surface profile can be easily calculated from the cut-
ting kinematics. The actual surface profile can be measured, or it can be estimated by measuring the
relative vibration between the tool and the workpiece. This makes it possible to determine the surface
roughness on-line without interrupting the machining process. However, there are a lot of practical
problems involved when working in a real manufacturing environment.

One problem is that chatter between the tool and workpiece causes large vibrations that cannot be su-
perimposed on the surface roughness. Another problem is that loose metal parts and other external fac-

tors easily distort signals from the sensors. However, the method has been successfully implemented in
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dry turning with ferrous metals by Jang et al. [139]. In this case the kinematics of the machine tool are

taken into account to estimate the roughness from vibration signals collected during cutting. They sug-
gested that further research be done in this field.

Bonifacio and Diniz [38] did experiments with coated carbide tools in finish turning, measuring in the
0 — 8 kHz range. The vibration was measured on two channels, one in the cutting direction and one in
the feed direction. The rms value was used to compare sets of measurements. They also varied the feed
and cutting speeds during different experiments. It was found that cutting speed had a much larger in-
fluence on the tool life than the feed, and that vibration and roughness measurements correspond to a
certain severity of tool wear at a given time.

3.3.10 Other methods

Some of the other methods for indirect / direct tool wear monitoring (excluding surface roughness ap-
proaches) are:

e Use of a non-contact capacitive sensor [142]

e Laser scatter methods [143]

e Fibre-optic sensor [144]

e Audible Emission [9]

Future research should be directed towards directly comparing different sensor methods for certain
machining processes. Choi ef al. [145] developed a single sensor for parallel measurement of force and
AE. A FEM analysis was carried out to determine the optimal position for the sensor away from the
tool holder. The reason for a more indirect measurement is because dynamometers sometimes restrict
the working space of the machine tool. The approach was successful for breakage detection but no
wear estimations are reported. Barrios et al. [102] compared AE, vibration and spindle current for
TCM during milling. It was found that the spindle current is the most sensitive sensor for detecting
tool wear, and found that AE is the least sensitive. However, contradictory results are reported in other
publications, and hence more research would be required to ultimately determine which method will
yield the best results for continuous estimation of tool wear. Govekar et al. [146] compared force and
AE methods for TCM, and concluded that the best result is achieved when the sensor information is
combined. Dimla and Lister [147] compared the use of force and vibration signals for TCM and also
combined the features obtained in a single decision making technique [148]. Similar comparative stud-
ies were conducted during this research and are reported in Chapter 4.

3.4 Decision making in sensor-assisted TCM

3.4.1 Introduction

With the sensor information from the different sensor systems described in the previous section, a de-
cision must be made regarding the tool condition. In complex problems it is advantageous to combine

knowledge from sensor data to achieve the best results. Sick [6] recently proposed a generic sensor fu-
sion architecture for TCM, shown in Figure 3.6.

41



— University-of Pretoria-etd—Seheffer-& SY9§3ER 3: Tool Condition Monitoring

. analog pre- digital pre-  featurs wear P
musms‘?g:fa’ processing processing extraction  model d?gfé?”
4 level level level level
reaction
disturbances

T AR N T RSN (T |
Yo WO ey By

v

o e signals of

super- plocess |t

- vised parameters || -
cutting output

_process

~ sensor fusion system

. — lv analog gt

information T

. about ut R

i e (] dgytgtbea%s_z.

* conditions . . hardware = i TR A: algorithms
[ S: sensors

Figure 3.6: Sensor fusion architecture for TCM by Sick [6]

Fusion of sensor information can occur at any of the levels. Analogue and digital pre-processing con-
sist of signal amplification, conditioning, filtering, calibration, temperature compensation etc. The fea-
ture extraction step is one of the most important steps, because here the sensor signals must be reduced
to only a few appropriate wear-sensitive values. Many different methods are available to achieve this
and will be discussed in further detail. The wear model level establishes a relationship between the
chosen features and the tool condition. In many cases NN are used in this step and sensor fusion also
occurs. A decision level can also be included where a final decision can be made with respect to the
tool condition, e.g. a “competing experts™ approach if a TCMS is used in conjunction with a tool-life
equation. In many cases the decision is made directly from the NN output. A discussion on the tech-
niques for feature extraction, wear model and decision-making for TCM follows.

3.4.2 Feature extraction

Most decision-making techniques for process monitoring are based on signal features. Through appro-
priate signal processing, features can be extracted from these signals that show effective and consistent
trends with respect to tool wear. Once these features are extracted through preliminary processing of
the signal, the tool condition can be predicted with pattern recognition or other classification tech-

niques [149]. Features are mainly derived through time, frequency, joint time-frequency domain signal
processing or statistical analysis.

A. Time domain
Features extracted from the time domain are mostly basic values such as the signal average, mean, or a
root mean square (rms) value. Other techniques include the shape of enveloping signals, threshold
crossings, ratios between time domain signals, peak values and polynomial approximations of time
domain signals. It has been found that some of the time domain features are very useful and they are
easy to implement. Bayramoglu and Dungel [150] investigated the use of several different force ratios

(calculated from the static cutting forces). It was found that certain force ratios can be used to monitor
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tool wear under a wide range of cutting conditions. The only parameter that has a significant influence
on the ratios (besides tool wear) was found to be the rake angle, and therefore two different force ratios
are required to distinguish between a rake angle and tool wear effect. Ruiz et al. [58] also report using
derivatives and integrals of the time waveforms to generate features. Most commercial systems rely on
the time domain information for TCM. The time domain features are somewhat susceptible to distur-

bances and should be complimented with features from another domain. Typical time domain features
are shown in Figure 3.7.
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Figure 3.7: Typical time domain features

B. Frequency domain
The most common frequency domain features are the power in certain frequency bands. It is often dif-
ficult to identify spectral bands that are sensitive to tool wear. It is even more difficult to determine
exactly why these frequencies are influenced by tool wear. Power in certain bands will generally in-
crease due to higher excitation forces because of the increase in friction when the tool wears. Some-
times a peak in the Fast Fourier Transform (FFT) will also shift due to changing process dynamics
when the tool wears. An early frequency domain approach is reported by Jiang et al. [110], in which a

frequency band energy is determined from the Power Spectral Density (PSD) function as a feature for
tool wear monitoring.

Some authors suggest that two frequency ranges must be identified from the original signal [38]. The
one range must be sensitive to tool wear, the other must be insensitive. For instance, if the measure-
ment was made from 0 — 8000 Hz, it must be split (using appropriate filters) into a 0 — 4000 Hz signal,
and a 4000 — 8000 Hz signal. If the lower range is more sensitive to tool wear, a ratio between the two
ranges can be calculated. If this ratio exceeds a certain pre-established value, it can be deducted that
the end of the tool life has been reached. This can also apply for a ratio between the signals recorded

from a fresh tool to that compared with a worn tool. Typical frequency domain features are shown in
Figure 3.8.
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Figure 3.8: Typical frequency domain features

One problem with frequency domain approaches is the fact that the dynamics of the measurement
hardware is not always fully understood. This not only applies to TCM applications but also to other
research topics in the area of machining that requires dynamic force measurements. This problem was
also identified by Warnecke and Siems [151]. The limitations and dynamics of measurement hardware
should always be kept in mind, and a Frequency Response Function (FRF) of the installed hardware
should preferably be available. The response of a force dynamometer is influenced by its clamping
condition, which cause it to experience non-linearities at relatively low frequencies. There also exist
some uncertainties when using these instruments, relating to their calibration and varying parameters.
A model for expressing the uncertainties when collecting cutting forces with a dynamometer was pro-
posed by Axinte et al. [152]. The identified properties might be responsible for the scatter of force
components often reported in the literature. An interesting study is also reported by Bahre ez al. [112]
to determine the natural frequencies of the machine tool components using the FEM. These are taken

into account for interpretation of the vibration / AE signal.

Choi and Kim [153] describe the use of the spectral energy from the PSD for both vibration and force
to identify different stages of wear in diamond tools. Lee et al. [154] investigated the correlation be-
tween the dynamic cutting force and tool wear. Two important frequencies are identified: The 1™ natu-
ral frequency of the tool holder and the frequency of chip formation. Normally, the tool holder natural
frequency will dominate the results of a dynamic analysis of the force signals. A rough estimation of
the frequency can be obtained by modelling it as a cantilever beam (refer to Chapter 5). This frequency
can be used as a feature for TCM and is unrelated to the chip formation frequency. The chip formation

frequency can be monitored if process stability problems are encountered.

C. Statistical processing
In the case of statistical features, signals are assumed to have a probabilistic distribution. Hence, the
signal is regarded as a random process. Generally, machining processes are non-stationary but are as-
sumed stationary for the short periods during which these features are calculated. Several statistical
features have been investigated for TCM and can be applied to machining operations. The main fea-
tures are those that describe the probability distribution of a random process (variance, standard devia-
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tion, skewness, kurtosis efc.), and coefficients of time series models. There are also various other mis-

cellaneous statistical features, such as cross-correlations, the coherence function and harmonic mean.

One useful approach is the use of Auto-Regressive (AR) and Auto-Regressive Moving Average
(ARMA) coefficients. AR coefficients computed for a signal represent the characteristic behaviour of
the signal. When the signal changes during the cutting operation as a result of tool wear, the model co-
efficients also change and can then be utilised to monitor the progressive tool wear. Hence, AR coeffi-
cients can also be used as features for pattern recognition [149]. Beak et al. [155] report the use of an
8-th order AR model for tool breakage detection in end milling. It was found that the AR approach is
somewhat more accurate than the frequency band energy method. Yao er al. [156,157] used the
ARMA method to decompose the dynamic cutting force signals and wear sensitive frequencies were

identified. This assisted to identify the importance of certain vibration modes with respect to tool wear
monitoring.

El-Wardany et al. [108] found that the instantaneous Ratio of Absolute Mean Value (RAMV) was use-
ful in eliminating false alarms that occur when monitoring drill wear and breakage in conjunction with
kurtosis and cepstrum analysis. They state that the kurtosis value is useful in identifying transients and
spontaneous events within vibration signals. Cepstrum analysis is used to identify a series of harmon-
ics or side bands in the power spectrum and to estimate their relative strength. Drill breakage consis-
tently caused a peak at the quefrency corresponding to one spindle revolution. The RAMV was used to
trigger the onset of kurtosis and cepstrum analysis.

Li et al. [109] found that the coherence function of two crossed accelerations can be used as an easy
and effective way to identify tool wear and chatter. They found that with progressive tool wear, the
autospectra of the two accelerations and their coherence function increase gradually in magnitude
around the first natural frequencies of the cross-bending vibration of the tool shank. As the tool ap-
proaches a severe wear stage, the peaks of the coherence function increase to values close to unity.
This was also proved in theory by the authors. However, there are two conditions to be fulfilled when
using this approach: The first is the careful selection of sensor locations on the tool shank. The second
is the high-speed computation required for real-time monitoring on the tool performance, as well as the
need for a fast FFT co-processor.

The use of Statistical Process Control (SPC) methods were also reported by some authors. Jun and Suh
[158] consider the X-bar and Exponentially Weighted Moving Average (EWMA) for tool breakage
detection in milling. Jennings and Drake [159] use statistical quality control charts for TCM. Different
statistical parameters are calculated and examples of one-, two- and three-variable control charts are
given.

D. Time-frequency domain
Several types of time-frequency domain analyses will be encountered in the literature. The most com-
mon time-frequency domain processing method in TCM applications is wavelet analysis. A compre-

hensive description of the advantages and disadvantages of wavelet analysis for TCM can be found in
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[6]. It is often stated that wavelets are used because they provide information about the localisation of

an event in the time as well as in the frequency domain. However, the time domain information is ei-
ther not used or is not important. Furthermore, a localisation of events in the time domain is rarely of
importance if the aim of the model is wear estimation. A breakage event, which will have a large local
effect in the time domain, can be better detected and reacted upon with pure time domain techniques.
Furthermore, wavelets are time variant and the exact contribution of a particular frequency at any
given time can never be determined accurately due to Heisenberg’s uncertainty principle.

The use of wavelet analysis is reported in several publications, such as [37,160-165]. A combination of
wavelet decomposition and NN is described by Hong et al. [161] as well as by Xiaoli et al. [162]. Lee
and Tarng [160] use the discrete wavelet transform for cutter breakage detection in milling and found
that the technique is reliable even under changing machining conditions. Scheffer [164] implemented
the approach suggested by Wu and Du [163] and showed how wavelets can be used as a digital filter to
enhance the reliability of features obtained from statistical analysis of the time waveform. It was found

that statistical processes of certain wavelet packets can yield features that correlate well with tool wear.

An advantage is that feature selection from wavelet packet analysis can be done automatically and
does not require a large amount of processing time. Luo [166] recently published results of a TCMS
using wavelet analysis of vibration signals. In this case the wavelet is used as a filter to enhance wear
sensitive features in the signals. However, the results are not compared with conventional digital filter-
ing. A comparative study was carried out during this research and is discussed in Chapter 6.

Another method of time-frequency analysis rarely found in the literature in the area of TCM is spec-
trograms. Spectrograms are more conventional time-frequency analysis methods and are very useful to
identify stationarity in the dynamic signal. They are also useful for detection of disturbances that may
be time-localised in signals. The use of the Choi-Williams time-frequency distribution for TCM during
multi-milling is described by Li and Tzeng [167]. Wear sensitive regions on the time-frequency distri-
bution are calculated and used as inputs to a NN for wear classification. Although not applied to TCM,
the use of the Choi-Williams time-frequency distribution for machining process monitoring is also de-
scribed by Gu ef al. [168]. It was shown that the method could be applied on-line for transient monitor-
ing and diagnosis, for example chatter detection. Several examples of spectrogram analysis will also be
found in Chapter 4. Although no features were derived from spectrograms, they should always be in-
cluded as an exploratory step before further processing can commence.

D. Other
There are also a few other techniques that cannot be categorised as either time or frequency domain.
One interesting technique is the use of entropy functions. An example is described by Fu et al. [169],
where the entropy of the frequency spectrum is calculated. The result is one value that is used for pat-
tern classification of different faults that may occur during machining. It is stated that the advantage is
the entropy function’s insensitivity towards new geometries of cutting. This might however be more
related to the characteristic of the FFT than the entropy function! Chungchoo and Saini [170] use the
total energy and total entropy of force signals in the frequency domain for TCM. It is stated that the
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entropy is more related to the distribution of energy in the spectrum, and is relatively insensitive to

changing machining parameters. However, the total energy was found to be the only parameter sensi-
tive to progressive tool wear. The entropy is often also used as a time domain feature, and also repre-
sents the energy contained within the wave, thus more or less the same as the signal rms.

3.4.3 Feature selection

It is often found in the literature that authors attempt to generate features that are sensitive to tool wear
but insensitive to changing machining parameters. The choice might depend on the particular applica-
tion, but the sensitivity of a feature towards machining conditions is not of utmost importance because
machining conditions can be included in a wear model. There are also other techniques for normalising
sensor data with respect to machining conditions, for instance the use of a theoretical model [171-174].
This is very useful if the machining conditions change so often that not enough data can be collected
for training or calibrating a model. Numerous techniques exist for selecting the most wear sensitive
features, or reducing the input feature matrix to a lower dimension. The main techniques (not necessar-
ily often applied in the area of TCM) are:

e Principal Component Analysis (PCA)

e Statistical Overlap Factor (SOF)

e QGenetic Algorithm (GA)

e Partial Least Squares (PLS)

e Automatic Relevance Determination (ARD)

e Analysis of Variance (ANOVA)

e Correlation Coefficient

e Simulation error calculations

Al-Habaibeh et al. [175] presented a TCMS for a parallel kinematics machine tool for high speed mill-
ing of titanium. An interesting approach to feature selection is employed, called Self-Learning Auto-
mated Sensors and Signal Processing Selection (ASPS). This approach is based on an on-line self-
learning methodology, whereby a certain feature will be selected automatically based on a correlation
with tool wear. A linear regression is performed on each feature in the sensory feature matrix to detect
the sensitivity of each feature with respect to tool wear. A very interesting cost analysis is then per-
formed to determine if the installation of a sensor justifies the costs involved.

Ruiz et al. [58] proposed the use of a discrimination power for feature selection in a TCM application.
The method is similar to that of the SOF. An automated version is proposed that also checks for linear
correlation between features. It is difficult to assess the success rate of the automated procedure be-
cause the experiments / simulations are not described in enough detail. Quan et al. [176] reported the
use of the correlation coefficient to assist in feature selection. Lee ef al. [177] describe the use of the
ANOVA to determine the best force ratio for TCM statistically. Several ratios between the three main
cutting forces are computed and the influence of controllable parameters (e.g. machining conditions)
on these ratios are investigated by means of the ANOVA technique. The use of ANOVA as well as the
correlation coefficient was also reported by Scheffer [164]. Du [33] describes the use of a blackboard
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system, which is a knowledge-based approach for feature selection and decision-making. An advan-

tage is the fact that a physical interpretation of feature can be linked to phenomena in the machining
operation. The method is also flexible, but suffers from the disadvantage of requiring a large amount of
data and expertise to establish the knowledge-based rules. Some of these techniques can also be auto-
mated for a faster implementation. In the opinion of the author, engineering judgement plays a vital
role in feature selection for TCM. Some of the techniques and their role in feature selection will be-
come apparent in the chapters that follow.

3.4.4 Wear model / Decision making

A. Time domain signature
The techniques used in commercial systems are often based on the time domain history (also called the
“part signature’ in industry). If the time domain history of a vibration sensor yields values outside the
limits from a reference cut, a decision is made with respect to the condition of the tool. Two methods

are used, namely static and dynamic limits. Examples of these methods can found in Appendix B.

B. Trending, threshold
Instead of investigating the complete time domain signal, a very simple decision making technique can
be based on trending features derived from the signals. When a certain feature, or a set of features,
reach certain pre-established set limits, an estimation of the tool condition is made. Threshold values
for the features can be established that can be related to a certain tool condition. Unfortunately, these
thresholds can only be determined through experiments, and problems are encountered under diverse
cutting conditions. Furthermore, the features typically exhibit high variance due to disturbance and

consequently cause false alarms. An example of trending and thresholds in shown in Figure 3.9.
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Figure 3.9: Thresholds

C. Neural networks

The use of NNs as a secondary, more sophisticated signal processing and decision making technique
have been investigated by many authors in various areas of manufacturing. This is also very true for
TCM [171-195]. A NN is usually used to model the input-output relationship between signal features
and tool wear. Due to the many complexities involved, NN modelling is ideal for TCM problems be-
cause it utilises a matrix of independent data simultaneously to make a classification. The extraction of

underlying information and the robustness towards distorted sensor signals are two of the most attrac-
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tive characteristics of NNs.

This also applies to sensor fusion schemes for TCM. Combining features from the vibration, AE, force
and current signals results in a model that can predict the tool condition with improved accuracy [56].
The successful implementation of NNs is dependent on the proper selection of the network structure,
as well as the availability of reliable training data. It is also important to make a distinction between
supervised and unsupervised network paradigms. Unsupervised NNs are trained with input data only
and are usually used for discrete classification of different stages of tool wear. Supervised NNs are

trained with input and output data and these are used for a continuous estimation of tool wear.

Because NNs form an integral part of this study, some comments on their formulation are necessary
here. A simple single neuron is shown in Figure 3.10 [196]. In this case, p is a scalar.
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Figure 3.10: Single neuron with bias

The value for a is determined by:
a=f(wp+b) (3.1)
where w is referred to as the weight value and b the bias value of the neuron. The function f is called

the activation function and many different activation functions for NNs exist. The most popular are the

linear, hardlimit, log-sigmoid, tan-sigmoid and radial basis function. Examples of activation functions
are shown in Figure 3.11.
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Figure 3.11: Common activation functions

The input to the neuron is normally a vector, and would then resemble the layout in Figure 3.12. The
weight would then also be a vector, and will be multiplied with the vector input. The neuron could now
be trained to reach a required value for a resulting from the input vector p. Adjusting the weight and
bias values with an unconstrained optimisation algorithm until the target is reached, will achieve neu-
ron training. Depending on the type of activation function, different optimisation algorithms are used.
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Figure 3.12: Vector input to a neuron [196]

For most NN modelling applications, more than one neuron are required to achieve proper training. An
example of a layer of neurons is shown Figure 3.13.
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Figure 3.13: A layer of neurons [196]

For simplicity, it is easier to refer to schematic figures representing a layer of neurons such as the illus-
tration in Figure 3.14. The dotted arrow depicts the layer of neurons that may consist of a number of
neurons. In this case, the network resembles a Single Layer Perceptron (SLP) network, due to the use
of the hardlimit activation function. SLPs are used for basic classification problems.

Figure 3.14: A layer of neurons with “hardlimit” activation functions
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Adaptive Linear Neuron Networks (ADELINES) are similar to perceptron networks, but these use the
linear activation function. ADELINEs are also useful for linear classification, which means that the
classification information must be linearly separable. Adaptive filtering can be achieved by adding a
Tapped Delay Line (TDL). The TDL cause the input to pass through a number of delays before it is
entered to the neuron, shown in Figure 3.15. If the activation function in this example is linear, it
represents an adaptive linear filter, which is used in many physical applications. The TDL can be in-
cluded in any network type, and such a network is called a Time Delay Neural Network (TDNN). The
function of a TDNN is to model a time series resulting from the inclusion of temporal (time) informa-
tion.

y n(t),, f ——»a(t)

p(t-3)

Figure 3.15: Neuron input with a TDL [196]

Neurons can also be combined in multiple layers, and in this way very complex non-linear models can
be created. These can be either Multilayer Perceptron (MLP) networks or Multilayer Feedforward (FF)
networks. An example of a network with multiple layers is shown in Figure 3.16. Normally, a non-
linear activation function should be used in the first layer and a linear neuron in the subsequent layers.
In the case of the FF networks, the backpropagation algorithm is used to train the networks. Back-
propagation can generally be described as an optimisation algorithm based on steepest gradient de-
scent. The algorithm is quick and efficient, but it is obvious that it can only be used if the gradient of
all the activation functions can be determined analytically. If not, for example when using perceptron
neurons, other training methods must be used. Delay elements can also be included in multilayer net-
works, for example the FF network with two input delays, depicted in Figure 3.17.

Figure 3.16: Multilayer FF network
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There are many variants on the basic NN formulation. One is the Radial Basis Function (RBF) net-
work. These networks may require more neurons but training is much faster. An RBF neuron is de-
picted in Figure 3.18. Note that the input of the neuron differs from the FF type. In this case, the input
is the vector distance between the input vector p and the weight vector w. The activation function is
called a RBF and resembles a normal distribution. The user normally selects the spread of the distribu-
tion.

P4
P2

|dist]| o\

P b

Figure 3.18: RBF neuron [196]

Recurrent NNs have feedback connections from their output to the input. There are various types of
recurrent NN that are useful for specific applications. A simple example of a multilayer network with
a feedback connection is shown in Figure 3.19a. Of course, more than one delay or feedback connec-
tion can be used. The Elman network type is quite interesting. Generally, it is a two-layer network with
feedback from the first layer output to the first layer input. This type of network can be used to learn
and model temporal patterns. A schematic example of an Elman type network is shown in Figure
3.19b. For further reading on the theory of NNs, the reader is referred to [196], which also lists many

other useful references.
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Figure 3.19: Recurrent networks: Feedback connection a) and Elman network b)

Dimla et al. [197] presented an overview of using NNs for TCM in 1997. Recently, Sick [6] presented
an overview of more than a decade of research of using NNs for tool wear monitoring in turning. This
exhaustive overview is the most comprehensive overview of NNs for tool wear monitoring up to date,
and includes more than 200 references. Thus, for more in-depth information regarding previous re-
search in using NNs for TCM, the reader is referred to [6]. A short overview of different NN para-
digms for TCM is presented here.

C.1 Unsupervised networks
There are two basic network paradigms for unsupervised classifications, namely Adaptive Resonance
Theory (ART) and the Self-Organising Map (SOM), also known as the Kohonen Feature Map (KFM).
There are many practical advantages for using unsupervised networks. One is the fact that the machin-
ing operation is not interrupted for wear measurements. There is also the advantage of practical im-
plementation if machining conditions change very often and appropriate training samples for super-
vised learning cannot be collected. Furthermore, the numerous different combinations of tool and
workpiece materials and geometries can make supervised learning impossible. It should be mentioned
that other methods exist to assist in handling tool and workpiece influences but these are subject to the
disadvantages of analytical and empirical models. Normally, unsupervised NNs are used to identify

discrete classes and cannot be used for a continuous estimation of tool wear.

ART is based on competitive learning, addressing the stability-plasticity dilemma (i.e. overfitting ver-
sus generalisation) of NNs. The main advantage is its ability to adapt to changing conditions. ART
networks also have self-stability and self-organisation capabilities. The SOM is actually a data-mining
method used to cluster multi-dimensional data automatically. A high dimensional feature matrix can be
displayed on a two-dimensional grid of neurons that are arranged in similar clusters. Clusters for new
and worn tools can be formed and these are used for automatic classification of the tool condition. A
SOM is schematically depicted in Figure 3.20 (also refer to Appendix H).
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Figure 3.20: Schematic representation of the SOM

Silva et al. [9] investigated the adaptability of the SOM and ART methods for tool wear monitoring
during turning with changing machining conditions. It was found that with appropriate training the
methods have enough adaptive capabilities to be employed in industrial applications. Govekar and
Grabec [198] used the SOM for drill wear classification, where the SOM is used as an empirical mod-
eller. It was found that the adaptability of the SOM and its ability to handle noisy data makes the tech-
nique feasible for on-line TCM. Jiaa and Dornfeld [199] used the SOM for prediction and detection of
tool wear during turning. Scheffer and Heyns [165,200] showed how a TCMS can be adaptable using
SOMs. Different network sizes were compared to define discrete classes of new and worn tools. Lar-
ger networks yielded more continuous results. The TCMS using SOMs was applied to monitoring syn-
thetic diamond tools for a turning operation in industry, and data mining by using the SOM was also
carried out to assist in feature selection. It was found that the SOM can be used for industrial applica-
tions, especially if tool wear measurements are not available. Examples from [165] are shown in
Figure 3.21 and Figure 3.22. If an accurate value of the tool wear is required, supervised networks can
be used, but these will require suitable training data.
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Figure 3.21: Data mining with SOM [165]
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Figure 3.22: Wear classification with SOM [165]

C.2 Supervised networks

The most common supervised NNs for TCM is the Multilayer Perceptron (MLP), Recurrent Neural
Network (RNN), Supervised Neuro-Fuzzy System (NFS-S), Time Delay Neural Network (TDNN),
Single Layer Perceptron (SLP) and the Radial Basis Function (RBF) network. The use of an SLP for
TCM is described by Dimla [178], using the perceptron learning rule. The SLP can only be used to
identify discrete classes of the tool condition. MLPs are usually trained with the backpropagation algo-
rithm, for example [101]. However, backpropagation should not always be the preferred choice be-
cause other methods are known that outperform this technique in terms of training time and generalisa-
tion capabilities. The size of the hidden layer of the MLP network should be optimised or at least in-
vestigated for performance [180,187]. Many contradictory statements about the use of MLP networks
can be found in the literature. One of the main problems is the choice of the number of input features,
size of the network and the number of training samples. In fact, the structure of an MLP network
should always be optimised for performance [6].

The use of FF networks with the backpropagation training rule are reported by authors such as Zhou et
al. [47], Das et al. [181,183] and Zawada-Tomkiewicz [193]. The sigmoid is often used as the activa-
tion function in the hidden layer and the linear function in the output layer. Cutting conditions can also
be included in FF networks. Lou and Lin [201] describe the use of a FF network using a Kalman filter
to avoid training problems encountered with backpropagation training for a TCM application. The
method is less sensitive to the initialisation values of the weights and biases that often cause conver-
gence problems with backpropagation. Lui and Altintas [189] report on the use of a FF network using
a combination of TDLs and feedback connections. Machining conditions are also included. It is stated
that the system was integrated into an industrial TCMS, but no results are reported, due to “the avail-
ability of robust, practical cutting force sensors...” [189]. It can thus be concluded that the system is

not operational in industry yet. However, the NN formulation is quite unique and is depicted in Figure
3.23.
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Figure 3.23: NN formulation with TDLs and feedback [189]

Recurrent NNs can be classified as dynamic systems due to the use of feedback connections. Gener-
ally, -monitoring a dynamic system such as cutting processes should be done through a dynamic model-
ling technique such as dynamic NN paradigms. Using recurrent networks, or even combining recurrent
networks with other NN types can achieve this. Luetzig et al. [182] reported the use of recurrent net-
works for TCM, using a two-layer perceptron in combination with a SOM and RBFs. Ghasempoor et
al. [8,34,192] reported the use of a non-linear observer technique based on NNs for TCM under vari-
able cutting conditions for estimating two wear modes. It was shown that the technique works quite
well for the range of cutting that was considered. One drawback was that the technique was only ap-
plied to a laboratory setup and no significant feature generation and selection is employed.

Neuro-Fuzzy Systems (NFS-8) attempts to combine the learning ability of NNs with the interpretation
ability of fuzzy logic. A TCMS using NFS-S can be generated almost automatically because the gener-
ated fuzzy rules can be learned by the NN. A combination of supervised and unsupervised training is
used for NFS-S. An in-process NFS-S system to monitor tool breakage were designed and imple-
mented successfully by Chen and Black [202], concentrating on end milling operations. Xiaoli et al.

[97] as well as Chunchoo and Saini [195] also propose some of the advantages of using a NFS-S for
TCM.

TDNNSs are also dynamic systems, for example the formulation shown in Figure 3.24 (also refer to
Figure 3.15). One advantage of TDNNs above RNNs is that stability problems are avoided. An inves-
tigation towards the inclusion of one and two phase delays for a TCM application was reported by
Venkatesh [179]. Different network sizes were also investigated, and it was found that the NNs with
temporal memory (time delays) generally perform better than those without memory. It is also stated

that new algorithms should be investigated for training (refer to Chapter 4 and Appendix D). Sick and
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Sicheneder [174] also describe the use of TDNNs for TCM in turning. The TDNN is compared to the
MLP and a significant improvement was found when using TDNNSs. In another paper, Sick e? al. [173]
compares the SOM, Fuzzy ART, NFS-S and MLP networks for wear estimation. The following critical
questions are used to evaluate the different NN paradigms [173]:

e Are the generalisation capabilities of the NN sufficient (test on previously unseen data)?

e What rate of correct classification can be achieved for different wear stages?

e Are the results repeatable (e.g. with a new initialisation)?
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Figure 3.24: TDLs for a TCM application [171]

In the case of [173], MLPs were found to yield the best results. It is stated however that the results can
be improved when using TDNNs, which is just a different formulation of MLPs. Such results are re-
ported in [172]. Furthermore, a very novel combined approach is suggested by Sick [171,172] to han-
dle the effect of machining parameters on TCM data. An empirical model is used to normalise the data
with respect to machining conditions before the data is entered to the NN. Thus, machining conditions
are not included within the NNs. This approach solves the problem of extrapolation of NN to classify
with previously unseen machining parameters. Although many authors test their NNs paradigms in
such a way, NNs cannot be expected to extrapolate in this way. The NNs should be tested with previ-
ously unseen data under the same conditions (hence interpolate instead of extrapolate — refer [6]). This
1s a huge problem because training and testing patterns for each condition must be supplied. However,
if the data can be normalised with respect to machining conditions, the NN only requires training for
the normalised condition. This was in effect achieved by Sick [6], and the method is shown diagram-
matically in Figure 3.25. A difficulty still lies with establishing an appropriate model to achieve this,
and in many cases it will still require many experiments to develop such a model. However, if an accu-
rate and reliable model is available, the combined approach presents the best solution. The model

should preferably be completely analytical to avoid excessive experimentation. An overview of com-
bined techniques for wear monitoring can be found in [203].
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Figure 3.25: TCM method including process model as a pre-processing step [6]

RBF networks are often preferred because of the convergence properties of the training algorithm. In
essence, convergence can be guaranteed and is often achieved much faster than with MLPs. However,
the accuracy of RBFs depends on the choice of the centres for the basis functions, and should be
treated with care. Pai et al. [191,194] reported the use of a Resource Allocation Network (RAN) for
TCM. The RAN is a RBF network with sequential learning. The RAN is compared to the MLP for
wear estimation during face milling. It was found that the RAN has faster learning ability but the MLP
is more robust.

In summary, it could be stated that many supervised NN paradigms yield good results for TCM appli-
cations, but dynamic paradigms are preferred. Despite a decade of research, an industrial TCMS using
the advantages of NNs does not exist. There are a number of possible reasons for this, one being the
fact that a laboratory setup differs significantly to an industrial situation. Furthermore, some of the
methods and results presented in the literature are not very realistic — for instance the training, valida-
tion and testing data sets are not treated properly. The reason for this can probably be contributed to
the expense of conducting tool life tests. A cutting test should be repeated at least three times under the
same conditions for adequate training, validation and testing. Unfortunately, this is rarely possible.

Also, in many cases, the NNs are not subjected to repeatability tests and methods of testing are ques-
tionable in some cases.

D. Fuzzy logic
Many authors [204-208] have investigated the use of fuzzy logic to classify tool wear. It has been
shown that fuzzy logic systems demonstrate great potential for use in intelligent manufacturing appli-
cations. While NN models cannot directly encode structured knowledge, fuzzy systems can directly
encode structured knowledge in a numerical framework. Additionally, fuzzy control systems are capa-
ble of estimating functions of systems with only a partial description of the systems’ behaviour. This is
very difficult to construct by simply using NNs.
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Du et al. [209] propose a very interesting method called transition fuzzy probability, which was ap-
plied to a boring process. This formulation can handle the uncertainty of process conditions. The rea-
son why the method performs well is because TCM has two uncertainties: that of occurrence and that
of appearance. The transition fuzzy probability solves this issue also through the use of temporal in-
formation, similar to dynamic NNs. The method was shown to outperform a backpropagation NN al-

though only minor details are given. It would be interesting to compare this method with dynamic
NN, such as TDNNs or the method proposed in Chapters 4 and 5.

Fu et al. [205] combined force, acceleration and AE in a fuzzy classifier for TCM during milling. Time
and frequency domain features were used, and it was found that combining the sensory information
achieved the best result, and this is done within the fuzzy classifier. Li and Elbestawi [206], Kuo [190]
and Kuo and Cohen [207,208] combine fuzzy modelling steps with NNs at different levels for TCM.

E. Other methods
There are also a number of other decision-making and modelling methods that have been applied to
TCM, and these include:
e Knowledge Based Expert Systems (KBES) [33,39].
e Pattern recognition algorithms [149].
e Dempster-Shafer theory of evidence [210].
e Hidden Markov Models [211,212].

Of these four approaches, only Hidden Markov Models have the potential to possibly outperform NNs

and fuzzy systems. However, not enough comparable research has been conducted in this area and is
certainly a worthwhile topic for future research.

3.5 Conclusion

In this chapter, the most important issues regarding sensor-based tool wear monitoring were discussed.
The advantages and disadvantages of various sensor systems were discussed with relevance to TCM.
Furthermore, an in-depth investigation of different signal processing methods for TCM were given and
these will be encountered in further chapters. The formulation of NNs and different NN paradigms
were discussed in detail and are especially relevant with respect to this research. From the overviews
in Chapters 2 and 3 it can be concluded that sensor-based monitoring using an Al modelling scheme
such as NN is the only way to achieve reliable and accurate TCM. Other approaches cannot achieve
the objectives of effective TCM stated in Chapter 1. In the remaining chapters, the focus is on the
development of a industrial TCMS using the best techniques available in a unique way.
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CHAPTER 4

4. Using Al for tool wear monitoring during hard turning
4.1 Preface

This chapter describes the development of a tool wear monitoring method for hard turning. Hard turn-
ing is used in the manufacturing industry as an economic alternative to grinding. Unfortunately, the
reliability of hard turning processes are often unpredictable. One of the main factors affecting the reli-
ability of hard turning is tool wear. Conventional wear monitoring systems for turning operations can-
not be used for monitoring hard turning tools because a conglomeration of phenomena like chip forma-
tion, tool wear and surface finish during hard turning exhibit unique behaviour compared to regular
turning operations. During this research, various aspects connected to hard turning were studied with
the aim to design an accurate and reliable tool wear monitoring system for hard turning. From this ex-
perience it was clear that the best method to monitor tool wear during hard turning is by means of an
Artificial Intelligence (AI) approach.

4.1.1 Introduction to hard turning

Accurate monitoring of the hard tuming process is essential to ensure part quality. Experience from
industry and various research papers have shown that reliable tool wear monitoring during hard turning
processes is even more difficult to achieve than wear monitoring during regular turning operations. In-
fluences of changing machining parameters and disturbances on the process are unpredictable. It is the
aim of this chapter to present a new methodology for monitoring tool wear during hard turning. To at-
tain a deeper understanding of the hard turning process, some general observations are necessary: It is
known that the tool flank wear in hard turning has a major influence on the surface- and subsurface
quality of the workpiece, but crater wear governs the reliability of the operation. Crater wear eventu-
ally leads to fracture of the tool. Diffusion and chemical reactions are responsible for the crater wear in
hard turning. Major wear on the tool flank can also cause formation of the so-called white layer. White
layers are the result of microstructural alteration in the workpiece subsurface. It is called the ‘white’
layer because it appears white under an optical microscope, and has higher hardness than the bulk ma-
terial [140,213]. Another phenomenon common to hard turning is material side flow, and is caused by
tool wear. Material side flow is the flow of workpiece material opposite to the feed direction due to the
high temperatures caused by the process. This affects the quality of the finished workpiece. Material
side flow is also influenced by cutting speed, and will increase with increasing tool wear [214].

4.1.2 Tool wear with relevance to hard turning

Dawson and Kurfess [215] investigated the wear trends of CBN cutting tools in hard turning. Experi-
ments with different grades of CBN tools were conducted under different cutting conditions. It was
found that the specific geometry of the wear on the tool is very important, especially to improve cur-
rent FEM models of hard turning. It was found that crater wear changes the nominal cutting geometry.

It was also found that the flank wear on the same grade of CBN tools under the same conditions differ.
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It is unfortunate that experiments were not repeated with the same tools. It was concluded that cutting
speed had the most dramatic effect on the tool life, which improved with slower cutting speeds. Sig-
nificant changes in the cutting geometry were recorded due to flank and crater wear. Zimmermann et
al. [216] investigated the wear of CBN tools during hard turning using Spectroscopy and X-Ray tech-
niques. In this case, it was concluded that the wear mechanism of the initial crater wear is due to a tri-
bochemical mechanism. The remaining region is then abraded. The wear mechanism for flank wear
could not be positively identified.

Chou and Evans [140] also made investigations towards the tool wear mechanisms during hard turn-
ing, and found that the carbide sizes of workpieces have a significant effect on fine scale attrition,
which appears to have a dominant effect on low CBN content tools. The work was extended to inter-
rupted hard turning and it was shown that tool life is sensitive to cutting speed and rate of interruption
[217]. Experiments also revealed that depth of cut has the least influence on surface roughness in hard
turning. Generally, it has been found that the thrust force is a good indicator of tool wear in hard turn-
ing.

Ozel and Nadgir [218] propose the use of backpropagation NNs for prediction of the flank wear during
hard turning. Orthogonal cutting tests were performed using a dynamometer that can collect the torque
and the three component cutting force. A force ratio and cutting conditions are included in the input
layer; the hidden layer has 30 neurons and the output layer consist of 8 neurons, which is a binary rep-
resentation of the experimentally measured flank wear. Interestingly, the use of a predictive model is
also described to calculate the force ratios for cutting conditions that were not included in the experi-
ment. Good results for flank wear predictions were obtained using the NN approach. The authors want
to extend the work to a sensorless approach for on-line TCM, which in the opinion of this author will
yield only a tool life equation based on NNs, and will be of limited use.

The scope of this chapter is to develop a monitoring system for hard turning by using a dynamic Al
technique, such as dynamic NNs. Passive modelling of manufacturing operations does not meet the
requirements for an industrial system. Kothamasu and Huang [219] identified the same problem and
developed a dynamic method for hard turning using Neuro-Fuzzy modelling. In this chapter, another
method 1s proposed based on a combination of static and dynamic NNs.

4.2 Experimental setups

4.2.1 Physical configurations

A total of eight experiments were conducted, all with the same basic configuration. However, in order
to isolate disturbances and to identify appropriate features for monitoring, some of the experimental
conditions were varied. Thus, care was taken to ensure that all experimental conditions remain the
same, except parameters that were controlled changes. The basic configuration is shown diagrammati-
cally in Figure 4.1. It consisted of a CNC turning machine equipped with a tool holder dynamometer
for 3-component cutting force measurements. In some experiments, Acoustic Emission (AE), 3-

component acceleration and temperature measurements were also made.
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Figure 4.1: Schematic representation of experimental setup

A detailed description of the hardware is given in Table 4.1, with the conditions for each channel in
Table 4.2. The variables that were measured during each experiment are summarised in Table 4.3. It is
known that the static cutting forces are good indicators of tool wear, but a proper dynamic analysis of
the cutting forces can also generate reliable features for wear monitoring. To achieve this, a high sam-
pling rate and analogue low-pass filtering must be used. AE and acceleration also possess properties
for wear monitoring during hard turning and these were included during some experiments.

Temperature measurements were made to investigate the effect of fluctuating temperatures on the ex-
perimental results. From an industrial point of view, the surface finish of the turned components is the
most important feature of the workpiece, and consequently the surface finish of all the workpieces

were also measured with a stylus. This enabled an investigation into the effect of tool wear on the sur-
face finish.

In all experiments an analogue trigger was used to start the recordings. In the event where two PCs
were used simultaneously the same trigger channel and threshold level were used to ensure alignment
of the data. The accelerometer and AE sensor were attached close to the tool tip on the tool holder. The
dynamometer was attached on the index turret, and the tool holder containing the CBN insert was
clamped in the dynamometer. All sensors are piezo-based, with the dynamometer a special arrange-
ment that can measure both DC and AC signals reliably up to about 1.2 kHz. Many previous studies
have found that it is important to mount the AE and vibration sensors as close as possible to the tool

tip. In fact, this is more important than the actual mounting orientation, especially in the case of AE.
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Table 4.1: Sensors, amplifiers and filters

Description Fabricator Type

AF sensor KISTLER Type 8152A111

3-component dynamometer | KISTLER Type 9121

3-component accelerometer | KISTLER K-shear 8794 A500
Accelerometer amplifier KISTLER 4-Channel coupler type 5134A1
Dynamometer amplifier KISTLER Type 5807A

AFE amplifier KISTLER Type 5152

Filters KEMO Type VBF804

Temperature TESTO-THERM | Testo 901

Surface roughness MAHR Pethometer S8P

Table 4.2: Channel setup

Channel Sensor Calibration Gain | Sampling rate Filter bandpass
1 AE ., STdBret 1v/mss) 10 400 kHz 50 kHz -100 kHz
2 AE, ., 57dBres 1vigmys) 1 20 kHz 50 kHz -100 kHz
3 Fx 50 N/V 1 20 kHz DC -3 kHz
4 Fy 50 N/V 1 20 kHz DC -3 kHz
5 Fz 50 N/'V 1 20 kHz DC -3 kHz
6 Ax 10 mV/g 100 20 kHz 10 Hz - 6 kHz
7 Ay 10 mV/g 100 20 kHz 10 Hz - 6 kHz
8 Az 10 mV/g 100 20 kHz 10 Hz - 6 kHz

Table 4.3: Measurements per experiment

1| Exp.2 | Exp.3 | Exp.4 | Exp.5 | Exp.6 | Exp. 7 | Exp. 8

AE .

AEqm;
Three cutting forces

'\\‘\‘gj

Three cutting vibrations
Surface roughness

Workpiece diameter

<l 8l
NIRNIRVIEN
4 4 ¢ <

Machine temperature

Room temperature

Ll s

Workpiece temperature

In the following pages, pictures of the experimental setups are shown. Figure 4.2 is a picture of the
machine and the electronic equipment for experiments 1-4. In Figure 4.3 and Figure 4.4 the sensors
and workpiece for experiments 1-4 can be seen. The machine used for experiments 4-8 is shown in

Figure 4.5. The layout of the workpiece and the dynamometer for experiments 4-8 is depicted in
Figure 4.6.
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Figure 4.6: Layout of workpiece and dynamometer experiments 4-8
4.2.2 Procedure and process parameters

The experimental procedure consisted of several steps. With each new workpiece, a preparation cut
with depth 0.1 mm was made with a preparation tool. This was to ensure that during subsequent runs, a
constant depth of cut is maintained. After the preparation cut the workpiece remains in the chuck and
the preparation tool is replaced with the tool under test. Also, before each machining test, the tempera-
ture of machine, workpiece and room were measured with a temperature probe. Care was taken to
measure in the same positions every time. After the runs were completed, the temperature of the ma-
chine and workpiece (still clamped) were measured again. Then, the tool was removed for wear meas-
urement under a tool maker’s microscope. As a last step the surface roughness of all the workpieces
were measured with a stylus. The tempo of the experiments varied somewhat, with some running over
several days and others running over a single day.

The machining parameters were selected to resemble industrial practice. The machining parameters for
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strategy, experiments were repeated with the same parameters. In essence, the cutting speed and feed
rate was varied, and experiments were conducted on two different lathes and workpiece types. Hence,
the effect of the machine type, workpiece hardness and geometry can be investigated. The type of tool
insert (CBN 10) was not varied, and the depth of cut was kept constant and continuous at 0.1mm for

all experiments.

Table 4.4: Experimental parameters

Description Exp. 1

Exp. 2 Exp. 3

Exp. 4

Exp. 5

. Exp. 6

Exp. 7

Exp. 8

Machine INDEX GUS800

Montforts RNC 400 plus

Holder SECO PDJNR/L 2525M11

SECO PDJNER/L 25 25M11

Insert SECO DNGA 150612SL1 (CBN 10)

Depth of cut
[mm]

0.1mm

Speed

140
[m/min]

160

Feed rate
[mm/rev]

0.04 0.08 0.16

0.08

0.16

Worlkpiece 100Cr6

51Crv4

Passes 210 256 210 216

76

Total time
[min]

74.4 43.0 50.2 50.3 187.0 91.7

157.4

77.1

Total length
[km]

10.42 6.01 7.03 7.04 26.18

12.84

25.18

12.34

Diameter

[mm]

41.7 40.7 41.8 40.6 72.8 72

1.2

70.4

Pass length
[mm]

15 20

120

4.2.3 Method for tool wear measurement

A combination of flank and crater wear governs the hard turning process. In order to correlate the sen-

sor information with the formation of tool wear, tool wear measurements were made between each

new workpiece. The shape of the wear was described with the parameters depicted in Figure 4.7. These

are:
VBaw, - Average flank wear
VBumax - Maximum flank wear
VBL - Approximate length of the flank wear
Kw - Width of the crater wear
Kp - Depth of the crater wear
Kp - Approximate length of the crater wear
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Figure 4.7: Tool wear parameters

For the purpose of the NN implementation, it was decided to attempt to describe to flank wear in terms
of an approximate area of flank wear, and the crater wear in terms of an approximate volume of crater
wear. Though these are very crude approximations, it is a step in the right direction for more accurate
monitoring of tool wear during hard turning. The parameters were formulated as follows:
Area of flank wear:
VB4 = VByy X VBL (4.1)
Volume of crater wear:

Ky =Ky xKpx K, (42)
4.2.4 Discussion

The experimental procedures were selected to enable the design of a proper methodology for monitor-
ing tool wear during hard turning that can eventually be treated as a general case. A further reason for
the selected experiments was to properly identify and isolate disturbances on the process and experi-
mental setup. The identification of disturbances is a very important issue when monitoring systems for
tool wear are concerned. It is known that tool wear will cause a change in sensor signals, but it is ex-
tremely difficult to establish whether a change is caused by the tool wear or some other influence on
the process (or even something inherent to the experimental setup). Disturbances often have a large
influence on the measured signals, whereas the effect of tool wear is relatively small. Several process-
ing methods were used, and are discussed in the following sections.

4.3 Experimental results - disturbances
4.3.1 Introduction

Due to the very small depth of cut, the cutting forces during hard turning are low compared to regular
turning. Many studies only consider optimising the hard turning process, such as investigating the life-
time of different tools, analysing the surface and subsurface of hard turned pieces, investigating the
influence of interrupted cutting on tool life, efc. The purpose of these experiments was to determine
which parameters could be used to monitor the tool wear, and identify disturbances on the tool wear
data. Methods to treat the effects of disturbances should then be employed.

Disturbances are not only phenomena common to the shop floor but can also be caused by the way in
which experiments are conducted in the laboratory. Internal disturbances are caused by known settings
inherent to the process, e.g. machining parameters. Internal disturbances can be modelled because they
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can be controlled, and their influence on the data can be investigated. Tool wear can be treated as an
internal disturbance because it can be measured and controlled by replacing the tool. External distur-
bances are caused by factors such as floor vibration from nearby machinery, the workpiece clamping
and temperature conditions within the machine.

4.3.2 Normal conditions

Figure 4.8 shows a typical measurement of cutting forces, with the corresponding Gabor spectrogram
(up to 40 Hz) presented in Figure 4.9. It is clear that the forces consist of a static part (DC value) and a

dynamic part (AC values). Both the static and dynamic parts of cutting forces are important for TCM
[41].

force [N]

0 5 10 15 20
time [s]

Figure 4.8: Response history of forces under normal conditions
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Figure 4.9: Gabor spectrogram of thrust force under normal conditions

4.3.3 External disturbance - clamping condition

In some cases, the workpieces were clamped marginally skew, and this has a big influence on the cut-
ting forces. This influence was taken into account during analysis of the signals. The effect can be
monitored by a frequency domain analysis of the cutting force, and was removed from the signal with

digital filters. An example of such a measurement is presented in Figure 4.10, with its Gabor spectro-
gram shown in Figure 4.11.
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Figure 4.10: Response history of cutting forces when workpiece is clamped skew
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Figure 4.11: Gabor spectrogram of thrust force when workpiece is clamped skew

4.3.4 Internal disturbance - chatter

In some cases, tool chatter appeared due to tool wear effects. Chatter also caused a very irregular chip
formation. Upon analysing the data, it was found that chatter cause a high vibrations at about 800 Hz,
as depicted in Figure 4.12. The signal number / index in the figure refers to each new measurement.
The 800 Hz peak occurred in two experiments on different machines. The effect was removed from the
signals by using a digital notch filter.

4.3.5 Internal disturbance - chip formation

During all experiments, the cutting process was observed closely and notes were kept on the chip be-
haviour. In some cases, a very irregular formation of the chip was observed. Sometimes a very big and
irregular curled chip was observed, and in other cases a very smooth behaviour was observed. Some-
times the chips seemed to ‘stick’ to the tool. Figure 4.13 is a smoothed plot (logarithmic scale) of the
thrust force spectrum in the region influenced by chip formation. The behaviour of the chips seems to
be totally random, with no connection to tool wear or any other measurable process parameter. How-

ever, the instability of chip formation increases with increasing tool wear. This behaviour can also be
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seen in the recorded signals, where the force signals are dominated by the frequency related to chip
formation. For a very smooth cut, a higher frequency (approx. 26 Hz) with lower amplitudes was ob-
served. For an irregular cut, a lower frequency with higher amplitudes was observed (approx. 8 Hz).
Another important region for chip formation was found to be around 15 - 20 Hz.

force |N|

signal number 0 o 50 frequency [Hz]

increasing
tool wear

Figure 4.12: Spectra of thrust forces experiment 1

An example of a measurement where the chip suddenly changed from a smooth formation to an irregu-
lar formation with big curls is presented in Figure 4.14. A Gabor spectrogram of the thrust force re-
veals the frequency domain behaviour in Figure 4.15. It is clear that the dominant frequency jumps
quite suddenly from 26 Hz to 8 Hz. Another example of cutting forces when the chip curl was visibly
big and unstable is plotted in Figure 4.16 with its Gabor spectrogram in Figure 4.17.

signal index

10 20 30
frequency [Hz]

Figure 4.13: Chip formation from forces - thrust force experiment 4
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Figure 4.14: Response history of forces during irregular chip formation
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Figure 4.15: Gabor spectrogram of thrust force during irregular chip formation
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Figure 4.16: Cutting forces with big and unstable chip curl
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Figure 4.17: Gabor spectrogram of thrust force with big and unstable chip curl

It was concluded that time-frequency analysis can be used to monitor the behaviour of the chip, but
cannot be used to enhance the performance of the tool wear monitoring system. No reliable features for
wear monitoring could be derived with this technique, and the behaviour of the chip is chaotic with
respect to tool wear. It is however important to identify stationary sections in the signals with the aim
towards further analysis in the frequency domain (to follow).

4.3.6 External disturbance - electrical noise

Another external disturbance is that caused by the environment. Environmental disturbances are usu-
ally due to electromagnetic energy emitted from nearby machinery or even the machine under test. In
this case, a 50 Hz (corresponding to the electrical transmission frequency in Germany) peak was found
in the force data. The disturbance amplitude is low in the morming and grows as the day progresses.
This could be the influence of nearby machinery as more machines are switched on during the day. An
example from experiment 2 is shown in Figure 4.18, where data over two days is shown. The distur-
bance is shown in terms of volts. This effect was removed from the data with digital filtering.

magnitude [V]

increasing
tool wear

400 O signal number

Figure 4.18: Spectrum of feed force data experiment 2
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4.3.7 Internal disturbance - tool wear

An inherent disturbance to the process is of course the tool wear. With all other disturbances identified
and isolated, it would be much easier to identify parameters influenced by the inherent disturbance of
tool wear. As can be seen in Figure 4.19, some regions on the frequency spectrum show a definite in-
crease with progressive tool wear. It was found by this (and previous) investigation that the frequency
regions most likely to increase due to tool wear are those corresponding to the tool holder natural fre-
quencies. In this case the 1% mode is near 1 kHz, which is the resonance frequency of the fixed dyna-
mometer clamping a tool holder.

The overhang length of the tool holder is another important consideration when searching for wear
sensitive frequencies. In the case of a dynamometer setup, there is a prescribed length (35 mm for the
Kistler 9121) prescribed by the sensor calibration specifications. The stiffness, geometry and overhang
length of the tool holder determines the values of the natural frequencies. Generally, it can be deter-
mined experimentally by an impact (with modal hammer) test, and verified analytically. Some authors
also suggest the use of finite element modelling [97].

wov....i.  increase with increasing tool wear

force [N]

r‘-m increasing
! tool wear

1500 2000 2500 3000 U signal number

frequency [Hz|
Figure 4.19: Filtered thrust forces experiment 1
4.3.8 External disturbance - spindle speed

Most CNC machines are programmed to keep the cutting speed constant during overruns. This means
that the spindle speed is adjusted according to the depth of cut. This adjustment of spindle speed has a
minor but notable influence on cutting test data. The results from two tests are shown in Figure 4.20
and Figure 4.21. The variation in cutting speed is clearly visible at about 120 Hz, corresponding to the
spindle rotational speed. Other related frequencies in the spectrum are also influenced, but the influ-
ence is very small. Figure 4.22 depicts the thrust force spectrum for all measurements during experi-
ment 4 on a logarithmic scale. The influence of the spindle speed on certain frequencies can be seen, as
well as the influence of chip formation in the low frequency region. It can be concluded that the spin-
dle speed does not have an influence on chip formation, because the cutting speed remains constant.
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Figure 4.22: Thrust force spectrum experiment 4 (logarithmic scale)
4.3.9 Discussion

An interesting external disturbance proved to be removal of the tool insert for wear measurements. The
slightly different clamping situation of the tool insert has an influence on vibration and the static and
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dynamic components of the cutting forces. These disturbances can be identified with ease by fre-

quency and / or joint time-frequency analysis of vibration and force signals. Furthermore, their influ-
ence on the signals can be removed by using appropriate digital filters. Further investigations revealed
that the identified disturbances had no apparent effect on the tool wear growth rate. It should be kept in
mind that the analysis results presented here is vital to practical tool wear monitoring. A generic moni-
toring approach can only succeed if the process is fully understood and the effects of the various dis-
turbances are compensated for.

4.4 Experimental results - general

4.4.1 Temperature measurements

During experiment 1, temperature measurements were taken to determine if external temperatures
(those not inherent to the process) have any influence on the operation. The results of temperature
measurements from experiment 1 are shown in Figure 4.23. The temperature measurements revealed
some interesting correlations that will be explored in a further section using Self Organising Maps
(SOMs). The vertical dotted lines on Figure 4.23 indicate the different days over which the experiment
was conducted. The start of each new day is apparent from a low temperature that increases as the day
progresses. The room and the machine temperatures follow the same trends. The temperature of the
workpiece after machining increase with increasing tool wear, as expected. However, investigations
showed that the room and machine temperature had no apparent influence on the rate of tool wear.
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Figure 4.23: Results of temperature measurements experiment 1
4.4.2 Acoustic Emission (AE) results

The results of the AE recordings during experiment 1 are shown in Figure 4.24 (the solid lines are N
order polynomial fits of the scattered data). The AE signals were treated with four different analysis
methods, all of which eventually displayed the same tendencies. It can be seen that the AE energy
starts at a high level, and then decreases to a minimum at about 0.04 mm flank wear. Then it starts to
increase again and reaches the highest levels towards the end of the experiment. This result corre-

sponds to that of a very recent study by Tonshoff et al. [220]. They provide the following explanation:
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"A tool without flank wear generates high AE amplitudes from the sharp-edged tool and the lower

damping rate of the tool-workpiece system. With increasing flank wear, the damping rate grows and
the generated AE amplitude of the process decreases to a lower bound. If the mechanical and thermal
load during machining increases in combination with the appearance of white layers and tempered

zones, a continuous increase of the amplitude can be recorded.” The same result was also found with
different machining parameters.

It can thus be concluded that AE can be used to identify the moment during hard turning where me-
chanical and thermal loads start to increase. An added result of this case study to that of Tonshoff et al.
is the fact that the AErms, directly recorded from the rms sensor output without filtering, can also be
used to trend the AE energy. The AErms is much easier to record and process compared to the real-
time AE signal that requires a sampling rate above 400kHz. Parameters calculated from frequency and
time domain analysis did not show significant improvement of the results compared to the AErms. A
difficulty with the AE and AErms signal is the fact that it exhibits a lot of variance, and is therefore
prone to create false alarms in a production environment. It was decided to omit monitoring of AE dur-
ing further experiments.
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Figure 4.24: Acoustic Emission (AE) results from experiment 1

4.4.3 Surface finish and diameter

Measurements of the surface roughness and diameter of the machined workpieces revealed some inter-
esting facts. It was found that there is not a very clear relationship between the tool wear and the
workpiece geometry. The reader is referred to Appendix I for notes on surface roughness measurement
and analysis. As general rule the following behaviour is expected:

e Surface roughness will increase initially, then reach a maximum, then decrease suddenly and then

start to increase again towards the end of the tool life. This is caused by micro-breakage of the cut-
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ting edge after a considerable length of cut. The breakage caused the creation of a new, sharper cut-

ting edge. This process can repeat a few times, after which the edge will deteriorate until complete

failure. Thus, more unstable behaviour can be expected towards the end of the tool life.

e The diameter of the workpieces after machining will increase with increasing tool wear, due to the

fact that tool material is removed from the cutting edge.

The behaviour of the surface roughness, displayed as the measured Ra values with respect to tool wear

in Figure 4.25 (grouped into experiments with the same and different machining parameters), seemed

to follow the above-mentioned assumptions. However, the workpiece diameter measurements, shown

in Figure 4.26, did not clearly exhibit the expected behaviour. This was due to the fact that the tool was

regularly removed from the holder for wear measurements, and it was concluded that this is also re-

sponsible for the large variation in the surface roughness values. Although the surface roughness gen-

erally increases with increasing tool wear, the relationship is very complex and difficult to generalise.

The surface finish of hard turned components can be improved by a secondary process called roller

burnishing. However, worn tools will cause weaknesses in the workpiece subsurface and therefore tool

wear monitoring is still very important. From the figures it is obvious that it will be extremely difficult

to estimate the degree of wear using surface finish information only (and vice versa).
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Figure 4.25: Surface finish results
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Figure 4.26: Workpiece diameter deviation
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4.4.4 Tool wear

The area of the flank wear for the different experiments is plotted in Figure 4.27, with the volume of
the crater wear in Figure 4.28. A very interesting fact is revealed in these figures: Experiments 2 and 3
were conducted with the exact same machining parameters, tool type and workpieces, but the wear be-
haviour is completely different. The only difference between the two experiments is the number of en-
gagement impacts on the tool, which were more during experiment 2. Also, the time delays between
overruns were a little longer during experiment 3. Thus, the number of engagements and cool-down
time allowed between overruns is an important consideration when considering the life of hard turning
tools. A slight difference in quality of the tool coating and workpiece material could also have an in-
fluence on the tool life, but the margin of difference is very small.
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Figure 4.28: Volume of crater wear

The growth of tool wear was slower for experiment 1 due to the lower feed rate. The tool wear is also
influenced by the higher feed rates and cutting speeds used in experiments 7-8. The machining pa-
rameters for experiment 5 are exactly the same as during experiments 1-4 (besides the workpiece hard-
ness which is slightly different) but the rate of tool wear is much slower.
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Scanning Electron Microscope (SEM) pictures of the cutting edges from experiments 1-3 are shown in
Figure 4.29. The big differences in the wear geometries of flank and crater wear from the different ex-
periments are clear from these images, especially when comparing the crater wear which was formed
under the exact same machining parameters (experiments 2 and 3). Further pictures of the wear on the
tools used in experiments 7 and 8 are shown in Figure 4.30 and Figure 4.31, respectively. These pic-
tures were taken with an optical microscope with a digital camera attachment. The geometries of the
flank and crater wear in each case can be compared, and it is clear that the particular geometry is
unique in each case. Both the flank and crater wear have an influence on the stability of the process.
The influence of the wear geometry on the parameters for wear monitoring will be discussed in a fol-
lowing section.

Figure 4.29: SEM pictures of cutting edges

experiment 7

Figure 4.30: Crater wear and flank wear insert experiment 7

Figure 4.31: Crater wear and flank wear insert experiment 8
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4.4.5 Static forces

The static cutting forces are commonly used as tool wear monitoring features. The results of this and
previous studies show that the thrust force is the most reliable static force direction to monitor tool
wear during hard turning. However, the static parameters alone are not sufficient for a reliable moni-
toring system. This is due to the fact that they display much variation and are influenced by the distur-
bances described earlier. The behaviour of the static forces is depicted in Figure 4.32. Apart from
changes in machining parameters, there were two major influences on the static forces. The first influ-
ence is the removal of the tool for wear measurement. The second major influence seems to be the 3-D
geometry of the tool wear itself. When referring to a direct comparison of the static cutting forces,
such as the thrust forces in Figure 4.33, it can be seen that there is not a consistent relationship be-
tween VBavg and the thrust force for the four experiments. Even the comparison of different machin-
ing conditions in Figure 4.34 does not reveal a simple relationship due to the large degree of variance
in the measurements. Further comparisons of the static feed force are plotted in Figure 4.35 and Figure
4.36, and the cutting force in Figure 4.37 and Figure 4.38.
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Figure 4.33: Static thrust forces (1)
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Figure 4.34: Static thrust forces (2)

Due to the fact that all controllable parameters during experiments 2, 3 and 4 remained the same, it can
be postulated that the shape of the crater can cause the process to be more unstable and thus cause
more random variations in the static (and dynamic, discussed in the following section) forces. The

variation in the static cutting forces creates major difficulties from a modelling point of view.
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Figure 4.35: Static feed forces (1)
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Figure 4.36: Static feed forces (2)

81



CHAPTER 4: Hard turning

100

1S

force [N]
=~
(=]

B exp 2: f=0.08 mm/rev V= 140 m/s
—— exp 3: f=0.08 mmdrev Y = 140 mis

50F —— exp 4 f=0.08 mmJ/revV = 140 m/s
—&— exp 5: f=0.08 mm/rev vV = 140 m/s
40 i : i |
0 0.05 0.1 0.15 0.2
VBayy [mm]

Figure 4.37: Static cutting forces (1)
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Figure 4.38: Static cutting forces (2)

4.4.6 Vibration analysis

A typical response history of acceleration during experiment 2 is shown in Figure 4.39. It can be seen
that the vibration levels are fairly low, especially in the thrust direction. The basic method of analysing

vibration signals in TCM is to check the vibration frequency spectrum for regions sensitive to tool

wear.
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Figure 4.39: Typical acceleration signals experiment 2
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Figure 4.40 depicts the thrust vibration measurements for the 5 overruns per workpiece during experi-
ment 4 in a wear sensitive region of the frequency spectrum. Note the increase in vibration amplitudes
at 1.2 kHz from measurement 1 to 180. The influence of the adjustment in cutting speed (due to de-
creasing workpiece diameter) is visible, but is small enough to ignore when looking at spectral energy
values in a certain bandwidth. The results from the vibration analysis revealed that certain features de-
rived from the vibration signals are sensitive to tool wear. However, it was difficult to determine fea-
tures that were consistent for all the experiments. Furthermore, vibration is also sensitive to distur-
bances, and it is often difficult to explain why a particular vibration feature is influenced by tool wear.
More results of the vibration signals are included in a further section.
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Figure 4.40: Thrust vibration spectra experiment 4 (linear scale)
4.5 Experimental results - correlation analysis with SOMs

4.5.1 Purpose of SOM analyses

To investigate the effect of all the different variables described in the previous section, several Self-
Organising Map (SOM) analyses were conducted. The SOM is an unsupervised NN, also known as a
Kohonen map, after their inventor [221], and is rapidly becoming a well-known tool for data explora-
tion. The SOM automatically arranges multi-dimensional observation data on a two dimensional grid
of neurons where similar observations are placed close to one another and dissimilar ones further
away. In this way, hidden relationships in multi-dimensional data can be identified with a SOM analy-
sis. In the case of the hard turning experiments, it was necessary to identify possible relationships in all
the measured parameters. These relationships or correlations in the sensor information can also assist
in the identification of disturbances in the data. Due to the large amount of sensory information, a
SOM analysis is an appropriate method to explore the data. For instance, it was necessary to determine
if the temperature of the machine or its surroundings have an effect on the process performance.
Furthermore, the effect of tool wear on the surface finish of the components can also be investigated in
this way. A detailed formulation and help on interpreting the SOM is included in Appendix H. For
help on the interpretation of SOMs, refer to the recent work by Vesanto [222].
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4.5.2 Results

A SOM analysis with data from experiment 1 is shown in Figure 4.41. The SOM reveals the relation-
ship between surface finish (Ra), tool flank wear (VB), entropy (refer to Appendix F) of the Acoustic
Emission (AE) signal, the static thrust force (Fz) and the temperature of the machine. From the SOM
analyses it can be concluded that Ra does not degrade linearly with tool wear. It rather seems to reach
a maximum value during medium wear conditions, and then decrease again. However, VB > 0.1 mm
generally induces the formation of white layers, and should be avoided. Other observations are that the
machine temperature has no influence on the workpiece surface finish, and that the static thrust force
correlates well with tool wear. The results from the AE signal shows that AE reaches a minimum value
at about 0.05 mm flank wear, and then start to increase again towards the end of the tool life, as shown
in Figure 4.24. A sharp edged tool will cause high values of AE. During the normal worn phase of the
tool, there is more damping present in the process, which cause the AE to decrease. During the final
stage of the tool’s lifetime, very high temperatures in the deformation zones and the onset of white
layers cause an increase of AE.

machine temperature

0.5

05

Figure 4.41: SOM analysis experiment 1 (1)

The result of a SOM analysis involving all the significant parameters from experiment 1 is shown in
Figure 4.42. The SOM analysis basically confirms what was mentioned in the previous paragraphs
dealing with experiment 1. From this analysis, the influence of (for example) tool wear on the other

measured parameters can be derived. These influences are summarised in Table 4.5.

Table 4.5: Influence of VB on other variables:

VB low VB high
Surface Rz Lower Higher
Surface Ra Lower Higher
Workpiece diameter | Low and high values More high values
Temp WP after Towards lower values Towards higher values
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Figure 4.42: SOM analysis experiment 1 (2)

Furthermore, the influence of the machine temperature on the other parameters can also be derived.

These results are summarised in Table 4.6.

Table 4.6: Influence of machine temperature on other variables:

Temperature Machine low Temperature Machine higher
Surface Rz No apparent influence No apparent influence
Surface Ra No apparent influence No apparent influence
Workpiece diameter | Show generally high values High and low values

Another important conclusion from the SOM analysis is that the workpiece diameter is not influenced
much by tool wear or the temperatures. Some recommendations resulting from this analysis were that
the measurements of the workpiece and room temperatures be omitted for further experiments. The
room temperature does not play a significant role, and the workpiece temperatures are difficult to
measure accurately because the workpieces cool down very quickly after machining. The workpiece
temperatures are also more governed by the time delay between two overruns than tool wear. Signal

features were also investigated for sensitivity towards tool wear with SOM analyses.
4.6 Al approach for wear monitoring

4.6.1 Introduction

In order to establish a reliable method for monitoring the tool wear during hard turning, an appropriate
wear model is required. During the course of this research many different types of modelling methods
were investigated for their feasibility towards hard turning. Analytical and empirical methods have
been developed through the years that can model many different machining operations. Analytical
models are often deemed as too complex to be practical for a production environment. On the other

hand, recently developed analytical and combined models can accurately model the behaviour of quite
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complex tool / workpiece geometries. The problem with analytical methods is that they cannot model

the behaviour of worn tools, and tool wear is a fact that cannot be avoided with present technology.
Recently, a mechanistic approach for modelling worn tool forces appeared, which is probably the most
novel combination approach developed up to date [223]. However, implementation of the method
proved unsuccessful for hard turning due to some of the assumptions that do not apply to hard turning
operations. This is described in more detail in Chapter 6 and Appendix G.

Hard turning experiments revealed that a combination of crater and flank wear govern the stability of
the process. A worn tool force model for hard turning not including crater wear will not succeed. Con-
sidering this experience with hard turning it was decided to develop an Artificial Intelligence (AI)
method with NNs to monitor tool wear. Al models resemble non-parametric empirical models, but
have some advantages above conventional empirical equations. With the aim to ultimately estimate
tool wear on-line with force measurements, it was decided to develop a NN monitoring strategy that
utilises sets of static and dynamic NNs. The advantages of various NNs paradigms above other meth-
ods were described in Chapter 3. However, before the Al monitoring method can be described, certain

signal features should be identified by means of signal processing and feature selection.
4.6.2 Signal processing

The usual signal processing procedure for TCM is to generate many signal features and then apply
some kind of feature selection strategy to identify features that are most sensitive to tool wear. There
are four domains from which features from sensor signals can be generated:

1. Statistical analysis

2. Time domain analysis

3. Frequency domain analysis

4

. Joint time-frequency analysis (e.g. spectrograms and wavelet analysis)

Before choosing any of the domains for feature extraction, the following critical questions should be
considered:
e Can the signal be approximated as stationary?

e Isalocalisation of events in the time series important?

Signals taken from a cutting process will rarely be stationary, and hence simple time-frequency analy-
ses with spectrograms are always necessary to identify the most stationary parts of the signal for fre-
quency domain analysis (refer to Section 4.3). Investigations revealed the force signals are fairly sta-
tionary above about 50 Hz. In the lower frequency range, unstable chip formation causes chaotic fre-
quency shifts. The type of chip that forms is governed by the severity of wear on the cutting edge, and
there is no apparent ‘reverse’ effect. For the purpose of tool wear monitoring, a localisation of an event
in the time series is of no importance. For monitoring tool breakage or other events, an accurate local-
isation could be of more importance. Therefore, for the purpose of a wear monitoring strategy for hard
turning, time-frequency analysis was only conducted to investigate the general dynamic behaviour of
the signals. No signal features were extracted from the time-frequency analysis.
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The static components of the force signals are often used for TCM purposes, because static forces in-

crease due to increasing friction between the tool and workpiece when wear is present. The static com-

ponent is the mean of the force signal. The mean value of a signal s(#) ever an interval T is:

>

S = M (4.3)
i

The dynamic component of the force signal contains very useful information about the tool wear as

well. The reason is because tool wear causes increasing vibration amplitudes in certain frequency

ranges due to the larger frictional forces when the tool is worn. Previous research has suggested four

possibilities from dynamic analyses that could be used to monitor tool wear:

1. Response at the natural frequencies of the tool holder.

2. Frequencies related to chip formation (e.g. chip serration and chip curl frequencies).

3. Natural frequencies of the dynamometer.

4. Vibration frequency of the tool insert when fixed in the tool holder.

Only option 1 is a practical possibility, especially when considering an industrial implementation of

the TCMS. Investigations of option 2 did not reveal useful information, and option 3 is dependant on

the presence of a dynamometer. Option 4 is subject to disturbance due to removal of the insert. Exam-

ples of FFTs of the force signals are shown in Figure 4.43. It is possible to identify certain frequency

ranges in the FFT that are sensitive to tool wear, and the energy in such a range can be used as a signal
feature with:

v = J:”SS (f) df 4.4)
where S, (f ) is the one-sided Power Spectral Density (PSD) function of the signal and f/ and fh chosen

to reflect the energy in the regions of interest. The values of f/ and fh should be chosen to correspond
with a frequency range that will be sensitive to tool wear, and must be independent of the type of the
workpiece and machine type. Investigating the tool holder response with the different experiments
identified such a range between 1.20 — 1.25 kHz. This range is a natural frequency of the clamped tool
holder. Figure 4.44 shows the result of the vibration (from accelerometer) energy in this range with
respect to tool wear for one of the experiments. Though this feature is better measured with the accel-
erometer (high frequencies generate high acceleration levels), it can be extracted from the force signals
as well (which is more related to displacement and hence lower amplitudes). However, to simplify an
industrial implementation, it was decided to extract all the features for the method from the force sig-

nals only, and hence only one sensor would be required.
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Figure 4.43: FFTs of force signals
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Figure 4.44: Vibration energy in the 1.20 — 1.25 kHz range (normalised)

Further signal features were generated by means of time domain and statistical analysis, but none re-
vealed a consistent correlation with tool wear for all the experiments (typical features that were tested
for feasibility are described in Section 5.6.3). Hence, based on linear correlation analyses between tool
wear (crater and flank) and the various signal features, the following features were used as inputs to
the NN that showed the best correlation with wear:

e static thrust, feed and cutting force (Fx, Fy and F2)

e dynamic energy around the natural frequency (1.20 — 1.25 kHz) of the tool holder in the thrust

force direction (Fxd)

These four features showed consistently increasing trends with tool wear for all the experiments (as
shown previously). Linear or exponential models relating the static cutting forces with feed, speed,
depth of cut and tool wear could be constructed. Such models could assist in selecting one of the static
cutting forces as a feature for wear monitoring through a sensitivity analysis. Consequently a single
static force component could be chosen for wear monitoring. However, for the purpose of this re-
search, the route of automated feature selection is more appropriate. The reason for this choice is the
fact that not enough data can always be gathered to construct and verify such models (also refer Chap-
ter 2), especially if typical shop floor conditions are to be considered (refer for example to Chapter 4).
Generally, features for NN models are selected through automated procedures such as correlation
analyses and not through empirical verification models (there is also no need for NNs if such models
are available or easily constructed). For this case study, the four features listed above were chosen be-
cause they displayed the best correlation with tool wear throughout the range of conditions investi-
gated. Automated feature selection methods attempt to select the best signal features for NN models

using the experimental results and the signal processing methods that are employed.

The results of the spectral energy of the thrust force are plotted in Figure 4.45. Once again, an increas-
ing trend is visible but the result is extremely noisy. The advantages of the selected four features are
that they showed good correlation with tool wear independent of the machine, workpiece, tool holder

and machining parameters. This independence is very important if the proposed method is to be con-
sidered for industrial implementation.
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Figure 4.45: Spectral energy for thrust force
4.6.3 Formulation of method

The monitoring strategy was formulated in such a way that it utilises a combination of static and dy-
namic NNs. The advantages of using dynamic NNs for TCM were discussed in Chapter 3. In this re-
search, a unique combination of static and dynamic NN is proposed and will be shown to outperform
other NN paradigms. The static NN are trained to each model a particular feature with the flank wear,
crater wear, cutting speed and feed rate as inputs. Early stopping is used to ensure generalised training,
and separate training, validation and testing data sets were used (by means of cross-training and valida-
tion). The static networks each consist of a three-layer FF network, with ten sigmoid neurons in the

middle layer and a tansig neuron in the output layer.

The dynamic NN are trained on-line to estimate the wear values. The training target of the dynamic
network is to minimise the difference between on-line force measurements and the output of the static
networks. The advantage of this method is the fact that any development of wear can be followed on-
line. The dynamic NNs use the previous three estimated wear values to estimate the next value of tool
wear. This creates the ability to estimate an accurate value for the tool wear even if the training does
not converge within the specified tolerance. This may happen if there was a problem with the meas-
urement or disturbances in the signal. The behaviour of the dynamic NNis is thus to follow the curve or
line of the present wear estimations, with the help of the on-line measurements and static networks.
However, the method is able to generalise if errors or random disturbances occur. Another advantage
is the fact that the dynamic NN are able to follow the unique development of wear on the tool insert

through on-line training. Thus, the dynamic NNs have delay and recurrent characteristics.

The method utilises sets of inner and outer steps or time-increments. The inner steps are training steps
of the dynamic NNs to achieve a specified convergence. During the inner steps, the tool wear is as-
sumed constant and the combined NNs attempt to estimate this value. When this is achieved, an outer
step is taken, and in this case it is an incremental step in the tool wear. A schematic representation of
the method is shown in Figure 4.46. There are two dynamic NNs: One to follow flank wear (DN1) and
the other to follow the growth of crater wear (DNy).

89



CHAPTER 4: Hard turning

University of Pretoria etd — Schetier C 2003
The typical behaviour of the dynamic NN for flank wear is depicted in Figure 4.47 (to be read from

left/right and up/down). In the beginning all wear values are set to zero. After training the dynamic
NN, it will estimate the first value of tool wear, which will probably not be very accurate. It will then
use this estimation in the next step as input and training will start again. After convergence, it will be
closer to the true tool wear than before. The process is repeated and normally after a few outer steps
the dynamic NN will follow the growth of tool wear with better accuracy (especially in the “regular”
wear stage). Towards the end of the tool life, the wear rate often increases but the dynamic NN will
react on this and again follow the growth of wear accurately. The advantage is that the growth of the
true tool wear will vary from the ideal case in the figure, but the dynamic NN will always attempt to
follow any development of tool wear accurately.

It is obvious that the dynamic NN will become more accurate if the outer steps are taken as close as
possible to one another. An outer step is taken each time a new force measurement becomes available.
This is advantageous for on-line applications, because a measurement can be taken during each over-
run, and hence there is enough data to keep the outer steps very close to one another.

measurement

rocess
P hardware

i = outer step

VB, = flank wear

K, = crater wear

Fx = static thrust force
Fy = static feed force
Fz = static cutting force
Fxd = 1.22kHz thrust force
€ = training goal
f=feed rate

d = time delay

v = cutting speed

DN = Dynamic Network
SN = Static Network

VB, (i-2) 4
VB,4(i-3)

€4

Figure 4.46: Schematic representation of monitoring method
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Figure 4.47: Typical behaviour of dynamic NN

Looking at the mathematical formulation, the problem can be described by considering a vector x con-
taining the network bias and weight values of DN1:

X=X X,...X, ] 4.5)
where n is the number of weight and bias values in DN4. In order to increment an outer step, the

following optimisation problem must be solved, which is the training goal of the dynamic NNs:

4
minimise f(x)= Zei such that f(x) < to/ (4.6)

J=1

with the initialisation space for a new tool starting at:
D={(%...x,) e R":-1< x, <1, i=1.n} (4.7)

and fol a suitable convergence tolerance on the function value. The design space for a worn tool is
taken from the solution of the previous outer step. Initially, all wear values are set to zero. The error
functions in Equation 4.6 are defined as:

> (4.8)
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Fx', Fy', Fz' and Fxd' are the outputs of the static networks SN, 4. When DNy reaches its training
goal, an outer step can be taken and new values for Fx, Fy, Fz and Fxd are measured on-line. The tool
wear values will be updated and the process repeats. Appropriate hardware would be required as well
as some on-line signal processing to filter the effects of disturbances and generate the signal features.
This could be achieved with a cost effective force sensor (or other technique — refer to Chapters 2 and
5) and a PC (refer to Chapter 5).

Note that all variables are normalised before they are entered into the NNs, and de-normalised at the
network output for interpretation of the results. Also, note that the function f(x) is much more complex
than it seems here, because the behaviour of the four static networks is contained within it. The static

and dynamic NNs are non-linear and extremely complex. Hence the need for a very robust and fast
algorithm for unconstrained global optimisation is evident.

4.6.4 Dynamic networks training algorithm

Initially, conventional methods were used to train the dynamic NNs. However, the conventional meth-
ods proved to be too slow for on-line implementation, and would often not achieve convergence. Nu-
merous different optimisation algorithms were tested for on-line training, including:

- Energy Trajectory Optimisation Program (ETOP)

- Spherical Quadratical Steepest Descent (SQSD)

- Leap Frog Optimisation Program (LFOP)

- Particle Swarming Optimisation Algorithm (PSOA)

A description and a more detailed formulation of the above-mentioned algorithms can be found in Ap-
pendix D. The algorithms listed above are all relatively new and unique methods for mathematical op-
timisation and are especially applicable to engineering-related problems. The formulation of the gen-
eral mathematical optimisation problem is also documented in Appendix D. After exhaustive investi-
gations, it was found that the Particle Swarming Optimisation Algorithm (PSOA) yielded the best re-
sult for training the dynamic NNs. The basic method of particle swarming optimisation was first sug-
gested by Kennedy and Eberhart [224]. Training NN is in essence an unconstrained global optimisa-
tion problem, and recent literature also states that the PSOA outperforms methods like Genetic Algo-
rithms (GAs) in unconstrained global optimisation. The algorithm does not utilise gradient evaluations
and its efficient use of random information is advantageous for training NNs. Furthermore the method
is easy to implement and computationally efficient. Consider a flock of p particles (or birds). For each
particle 7, Kennedy and Eberhart [224] proposed that the position x' be updated as:

Xio1 = X + Vi (4.9)
where x represents the position of each bird, v the velocity, and & a unit pseudo-time increment. The

velocity v' is updated with:

Vi =WV, + 6113 Py =X, )+ €1, (P — X, ) (4.10)
where p) represents the best ever position of particle i at time k, and pj represents the global best po-
sition in the swarm at time k. The numbersr, andr, are random uniform numbers between 0 and 1. The
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inertia term W is chosen as 1 and then decreased linearly during optimisation. The cognitive and social

scaling factors ¢, and ¢, are chosen as ¢, = C, =2 in order to allow a mean of unity.

With reference to equation 4.5, the dynamic NN biases and weights were taken as the position vector
x, and the PSOA solves the optimisation problem described with equation 4.6. In this way, on-line
training of the dynamic NN is achieved. On-line training is stopped when f(x) reaches the convergence
value rol. If the convergence criterion is not reached, the vector x is randomly re-initialised for a new
tool (refer equation 4.7). This is necessary for the case when an old tool is replaced with a new tool,
because the swarm moved with the wear of the older tool, and will be too far from the solution to con-
verge within limited steps for a new tool. The algorithm usually achieved convergence within ap-
proximately ten inner steps. This is possible in a matter of seconds on a Pentium III processor. If con-
vergence is not achieved within ten steps, the training also terminates and the vector x is randomly re-
initialised for a new tool. The same procedure is implemented for flank and crater wear.

4.6.5 Results

Results of wear estimations using this technique are shown in Figure 4.48 and Figure 4.49 for experi-
ments 3 and 7, respectively. In each case, the method was tested on previously unseen data. The cut-
ting speeds and feed rates were also included in the static NNs, but were not included in the dynamic
NNs. From the results it can be seen that the method estimates the wear values quite accurately, de-
spite the noisy nature of the training and testing data. Hence, the approximate shape and growth of the
flank and crater wear can be determined through this method. The effect of a certain quantity of tool
wear on the surface and subsurface quality of parts can be obtained from the literature, for example
[225]. Thus, a decision can be made whether it would it safe to continue machining or not. In this case,
only four estimation results are shown, but the method was successful in estimating the wear of the
other experiments (by means of cross-training and cross-validation).
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Figure 4.48: Estimation result experiment 3

o = measured values x = estimated values
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4.6.6 Accuracy
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Figure 4.49: Estimation result experiment 7

o = measured values x = estimated values

150

It is essential to evaluate the accuracy of the proposed method if it will be considered for industrial im-

plementation. The following terms and definitions are necessary to evaluate the overall accuracy of the

TCMS:

Full range of flank wear area VB, = 0.12mm’

rms deviation from true wear VB,

The rms deviation can be described as:

where:

n = the total number of tool wear measurements

VB

Alrue

Maximum deviation from true wear VB

Amd

0.01mm?*

=0.0025mm?>

These values were calculated from the results of experiments 1-8.

Z \/ (VBA TCMS ~— VBAtrue )

VB =42

2

i

Arms

= the measured tool wear

n

VB, rons = the wear estimated by the monitoring system

(4.11)
(4.12)
(4.13)

(4.14)

The following calculations are based on the average results of all the experiments. The average accu-

racy with respect to the full range of flank wear is:

The minimum accuracy with respect to the full range of flank wear can be calculated as:

VB
e =100 —~—Ams 100
Afr
=100 - 400> x 100
=97.9%
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VB

oy =100 ——27L
Afr1%
4.16
_10g._9-052 (4.16)
0.0031
=83%

where VB, ,., is one hundredth of the full range.

These calculations can be repeated for the volume of the crater wear estimations, using the following
definitions:

Full range of crater wear volume K, = 0.006mm> (4.17)
Maximum deviation from true wearK,, ,= 0.0004mm’ (4.18)

rms deviation from true wear K, = 0.0001mm’ (4.19)

The rms deviation can be described as:

C 2
_ ; \/(KVTCMS e KVtrue ),‘ (420)

Vrms

n
where

n = the total number of tool wear measurements

K\ e = the measured tool wear

K\rous = the wear estimated by the monitoring system

The following calculations are based on the average results of all the experiments. The average accu-
racy with respect to the full range of crater wear is:

7. =100 _Kims
YA 4.21)
~ 10099991 400 .
0.006
—08.4%

The minimum accuracy with respect to the full range of crater wear can be calculated as:
K
o, =100 -—9 100
K

Vifr
0.0004 (4.22)

=100 - x100
6

—93.3%

It can thus be stated that the method will estimate the area of flank wear correctly with an average ac-
curacy of 98%, and in extreme cases not less than 83%. For crater wear, the average accuracy is also
98%, and the minimum accuracy is 93%. These calculations are based on all the experiments described
in this chapter. It is possible that the accuracy might be lower during industrial implementations of the
method, which is described in the next chapter.
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4.7 Conclusion

A first important conclusion is that identification and isolation of disturbances on experimental data is
essential during hard turning. Furthermore, some parameters influence one another in an unknown and
complex manner, and these correlations were identified with a SOM analysis. This assisted in remov-
ing the effect of disturbances from the experimental data. The effect of disturbances could be removed
from the data with appropriate signal processing methods. Possible features for a wear monitoring
method were generated from the force signals after investigating numerous features from force, vibra-
tion and AE signals. The best features were selected after examining the effect of machining parame-
ters, machine type and workpiece type on the data.

This chapter also demonstrated how Al could be utilised to effectively monitor crater and flank wear
during hard turning. The method is formulated with a combination of static and dynamic NNs, and the
training of the dynamic NNs is done with the PSOA. The advantage of this formulation is the fact that
the dynamic NNs can follow any progression of wear, and protects the monitoring system against pos-
sible disturbances that may cause the system to estimate erroneous values of wear. The behaviour of
the dynamic NN is to follow on its present path, but use information from the force measurements to
update its path. Thus, the low signal to noise ratio common to cutting force data has a very small im-
pact on the accuracy of the method.

It was shown that the method is reliable and can be expected to operate with more than 90% accuracy
under laboratory conditions. For a shop floor implementation, data from an actual shop floor would be
required to verify the accuracy. The method is however applicable to the shop floor due to the low sen-
sitivity towards disturbances. The method was trained for different machining conditions on different
machines and it was shown that the method applies to the whole range of experimental conditions. Due
to the unique formulation of the proposed AI method, it provides an accurate solution for monitoring
crater and flank wear during hard turning. The suggested wear monitoring method is simple and flexi-
ble enough for on-line implementation, which will allow more reliable hard turning in industry.
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CHAPTER 5

5. Using Al for tool wear monitoring during interrupted turning of
Aluminium

5.1 Introduction

In the previous chapter it was shown how a new method of combining static and dynamic NNs can
achieve reliable wear monitoring during hard turning. Although the wear monitoring method is novel,
the laboratory setup is similar to other research efforts. The question remains if the method is applica-
ble to industry in terms of its accuracy, reliability and cost-effectiveness. In this chapter, the focus will
be on the implementation of the method in industry using cost-effective hardware and appropriate sig-
nal processing techniques.

Sick [226] proposed a generic sensor fusion architecture for TCM, consisting of various analogue and
digital processing steps. Many research efforts follow more or less this approach, focusing on one,
some, or all of the processing levels (described in Chapter 3). However, in recent surveys (see Appen-
dices A and B) of commercial hardware for TCM, it was found that no products are available in the
market utilising these techniques. Furthermore, it has been found that not one single commercial
TCMS is operational in South Africa. Most manufacturers deem the TCMSs developed up to date too
expensive and unreliable. One of the problems identified during the course of this research is the fact
that TCM strategies suggested up to date are almost without exception developed and tested on labora-
tory data. There are two major problems with this approach:

e Laboratory equipment cannot be used on the shop floor (for various reasons).

o The noisy shop floor causes false alarms in a monitoring system developed in a laboratory.

The solution to successful TCM lies in the development of the TCMS with the shop floor conditions in
mind. Suggesting a generic structure for the TCMS, and adopting the structure for the specific process,
machine, sensors and environmental conditions could achieve this. This chapter describes the experi-
ments and results of an Al monitoring method that was implemented on the shop floor of a piston
manufacturer. The method is in principle the same as described in chapter 4, with slight differences in
terms of hardware and signal processing. Hence, it will be showed that method described in Chapter 4
under laboratory conditions, can also be applied in industry with slight modifications. The process that
is considered here is interrupted turning of an Aluminium alloy during piston manufacture. There are
several reasons for this particular choice of operation, the main ones being:

e Industrial need

e It is aturning process with varying depth of cut

e Two different types of cuts are performed, namely facing and boring

e There are similarities between the mechanics of tool wear during interrupted turning and face

milling, meaning that the approach could possibly be extended to milling.
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5.2 Measurement system

5.2.1 General considerations

Apart from the fact that a TCMS must be designed with the shop floor environment in mind, a further
solution to successful TCM lies in “getting closer to the process”. The initial selection and placement
of sensors is of utmost importance. Tool wear induces very small changes in machining processes.
There are also many other obstacles such as diverse failure modes, changing machining parameters and
external disturbances that make the task of TCM very difficult.

A sensor that complies with all the TCM sensor requirements (refer to Chapter 3) does not exist. There
will always be a trade-off: if the sensor is designed to be as technologically advanced as possible, it
will be unaffordable. Manufacturers require a cost-effective solution in order to employ TCM on all
their processes. It is universally recognised that force and vibration monitoring can be used for the
TCM of turning operations. Often only the static components of the forces are used for TCM. How-
ever, using the dynamic components from the force and / or vibration signals can significantly enhance
the performance of the TCMS [227]. It has also been shown that some dynamic components are less
sensitive to changing machining conditions and external disturbances [6]. Force dynamometers are
commonly used in machining experiments (e.g. Chapter 4). Although they can measure the static and
dynamic forces very accurately, dynamometers are not suitable for the shop floor. Furthermore, their
frequency ranges are usually very limited, with a natural frequency f, (of the piezoelectric parts) at
about 3kHz, and a resonant frequency f; at about 1kHz when clamped. To avoid amplitude distortion,
the usable frequency range of a piezoelectric transducer is about 0.6 x f;. For dynamometers com-

monly used for turning experiments this amounts to about 1.8kHz.

Tramal and Opavsky [228] investigated the dynamics of a conventional force dynamometer for ma-
chining operations. It was found that the dynamometer has significant amplitude distortion in the fre-
quency range that is quoted as the operating range by the manufacturer. Unfortunately the authors did
not investigate the phase, but it can be assumed that there will be phase distortion as well. The authors
suggest that the dynamic characteristics of the dynamometer (while clamped like it would be during
measurements) be identified with a modal test and the effect of dynamometer dynamics be compen-
sated for after measurements are made.

Schulz et al. [229] recently presented a development of sensor-integrated tool holders. Currently, sys-
tems are developed for drilling and milling applications. Forces are measured directly with the mecha-
tronic tool holder with the advantage that the measurement is done close to the cutting edge. The in-
struments also make use of a flexible telemetric unit for wireless data transfer. Piezoresistive strain
gauges are used for estimation of cutting forces. Unfortunately, it is unclear how the system is cali-
brated and how the clamping and high-speed rotation of the tool holder affects its accuracy. Further-
more, no information about the operational frequency range is given, and it is assumed that the system
can only measure static forces. One advantage is an interface of the tool holder directly to the CNC

control, which will assist in fast reaction if an undesirable condition is encountered.
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It has been found by various authors that the frequencies useful for TCM can be as high as 8kHz, and
usually above 1kHz, depending on the experimental setup. A quite simple method to estimate both the
static and dyﬁamic components of cutting forces without any distortion is to use resistance strain
gauges. Strain gauges comply with most of the requirements for TCM sensors, and can accurately fol-
low the static and dynamic response of a system up to 50kHz. It was therefore decided to develop a
sensor-integrated tool holder using strain gauges for this research. Such a system would be cost-
effective and could be used on a shop floor. The reader is referred to Appendix C for relevant forma-
tion on strain gauges.

5.2.2 Experimental setup

Li and Ulsoy [230] showed how the exact displacement at the tip of a boring bar can determined using
strain gauges. Each vibration mode of a beam has its own characteristic gain for converting strain
components into displacement, and these are taken into account to determine the beam displacement
with submicron precision. The strain gauge measurements can thus be used to determine the exact tool
tip displacement during flexible line boring, by using a simulation model.

Santochi et al. [103] from the University of Pisa showed how a tool holder could be modified to create
a “sensor-integrated fool”. Strain gauges were adhered to a standard turning tool holder to estimate
cutting forces. The tool holder also contained an amplifying and infrared data transmission unit for
wireless data transfer. It was shown that the sensor-integrated tool could be used with relative ease and
yields accurate measurements for a range of cutting conditions. A further development of the same tool
appeared recently, where radio signals are used instead of infrared, and digital coding of the signal is
included [232]. A schematic representation of the sensor-integrated tool developed at the University of
Pisa is shown in Figure 5.1.

In this work it was also necessary to develop a similar sensor-integrated tool for use on the shop floor.
The main requirements for such a sensor-integrated tool are:

e cost-effective
e robust

e accurate

It will be shown in this chapter that all these requirements were met. Furthermore, in order to obtain a
large amount of shop floor data, it was decided to automate the system by making it a data logger that
can be controlled and monitored via the Internet. The complete measurement system is schematically
depicted in Figure 5.2. The system consists of the following:

e tool holder with strain gauges (3 half-bridges)
e strain gauge amplifiers

e anti-alias filters

e A/D conversion

e computer with data logging software
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Figure 5.1: Sensor integrated tool [232]
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Figure 5.2: Schematic layout of measurement system

The components of the measurement system were either custom designed and built in-house, or were
cost-effective commercial products. The complete development of the hardware forms a significant
part of the thesis, and more details about the hardware development are given in Appendix E.

5.2.3 Tool holder with strain gauges

Three half-bridges (refer to Appendix C) were constructed on different parts of the tool holder. This
creates three measurement channels that can be investigated for sensitivity towards tool wear. Fur-
thermore, channel information should be fused as described in Section 4.6. The tool holder (in this
specific case study a boring bar) had to be modified somewhat in order to create flat surfaces for the
strain gauges. There was no significant loss of stiffness of the tool due to this modification. The di-

mensions of the original boring bar are shown in Figure 5.3. An example of the typical modifications
is shown schematically in Figure 5.4.
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Figure 5.3: Boring bar dimensions, type S1I6QSCLPR09 [1]
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Figure 5.4: Modifications to boring bar ( m = removed material)

Although Failli ef al. [232] made a small hole in the tool holder to create larger strains (mechanical
amplification), it was not necessary in this case because initial tests showed that the strains in the tool
are quite large during machining (also refer to Section 5.2.3, paragraph G). Strain gauge rosettes were
simply adhered to the milled surfaces on the top, side, and bottom of the boring bar. After application
of the strain gauges, the tool is shielded for mechanical and electromagnetic protection. Five sensor-
integrated boring bars were manufactured during the course of this work. Pictures of some of the
physical layouts of the gauges and shielding material are shown in Figure 5.5. Further information
about the strain gauge circuits can be found in Appendices C and E. Some relevant issues with respect
to the measurement system are discussed in the following sections.

A. Frequency range of strain gauges
A strain gauge tends to give an integrated average of the strains imposed over its length. The smaller
the strain gradient across the element length, the closer the output will be to the true strain. To choose
a strain gauge, the desired accuracy of peak strain and frequency extension must be considered. For the
tool holder application, 5Smm gauges were used, which offer very good accuracy up to 50kHz on steel.
A detailed discussion on the electrical resistance strain gauge and how the gauge length should be se-
lected can be found in Appendix C.
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Figure 5.5: Strain gauges on boring bar

B. Hysteresis
By bending the boring bar in various directions and reading the output of the voltages on the channels,
the hysteretic accuracy of the system was determined. These experiments showed that the measure-

ment system had excellent hysteresis characteristics, with less than 0.5% offset due to hysteresis ef-
fects on all channels. This offset is removed with the method described below.

C. Temperature compensation and drift
Modern-day strain gauges are self-temperature compensated. The strain gauge amplifiers displayed
some drift with variations in room temperature. The drift due to temperature effects causes a DC offset
in the sensor signals. This offset can be digitally removed from the signal by subtracting the DC values
collected when the tool is not engaged in cutting. Care must be taken not to let the system drift into the
threshold value for triggering (refer to Section 5.2.7). Experiments were conducted to calculate the
drift of the system with variation in room temperature, and the result is shown in Appendix E.

D. Clamping condition

The layout of a typical tool-holder setup is shown in Figure 5.6. The tightening of the clamping screws
on the tool holder can cause the holder to bend and cause a DC offset on the measurement channels.

The system is zeroed each time when a new tool is clamped, thus removing this effect. The tool holder
1s in actual fact very seldom removed.

clamping screws

\.
C1 1 1]
2

— '

tool holder

Figure 5.6: Clamping of tool holder
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It is very important to determine the dynamic properties of a measurement system. An analytical ap-

proach is to model the boring bar as a cantilever beam. The first natural frequency of the cantilever is
also an important feature to consider for TCM applications. This can be calculated with [233]:

@, = f, % (5.1)

where:

n = the mode of vibration

S, = end condition parameter
E = the modulus of elasticity of the cantilever
| = the second moment of area

o =mass density of tool holder material
/. is dependant on the length of the overhang of the cantilever (7), and for the first mode in a fixed-free
configuration it is given by:

A =1.875104/1 (5.2)
For a fixed-pinned configuration it is given by:
£ =3.926602 /[ (5.3)

The physical difference between the two configurations is diagrammatically depicted in Figure 5.7.

fixed- free Y fixed-pinned

] ]

&

LLLL S LS
i

Figure 5.7: Cantilever models

Substituting o= 7850kg/m’, E = 200GPa, [ = 46mm, and tool holder radius » = 16 mm, the natural fre-
quencies of the cantilever model can be calculated (for the Fx direction) for each new value of /. The
result of Equation 5.1 for different values of / and a comparison between a fixed-free and a pinned-free
configuration is shown in Figure 5.8. According to this result, the first natural frequency of the boring
bar can be expected to be below 10kHz for typical values of /. The higher modes are too high to have
any significant influence on the system.
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frequency [kHz]
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Figure 5.8: Cantilever models natural frequencies
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E. Hammer tests
A simple method to experimentally determine the natural frequencies and verify the results described
above is to conduct a modal hammer test. When the holder is clamped in position, a modal hammer
can be used to dynamically excite the system, and the Frequency Response Functions (FRFs) from the
strain gauges can be determined. In this case, the first mode is dominant when excited on the tip of the
tool holder with the modal hammer. A picture of the experimental setup for hammer tests is shown in
Figure 5.9.

borine

| modal
hammer

Figure 5.9: Modal hammer experimental setup

Figure 5.10 is a summary of the results obtained during dynamic testing of the sensor-integrated tool.
The following conclusions can be made:

e the cantilever model is a rough yet valid estimation method
e the fixed-free cantilever model is the most accurate

e The first natural frequency can be expected to be below 5kHz, probably in the area of 3.5kHz

-
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Figure 5.10: Results of dynamic testing

F. Finite Element Analysis
As a further investigation into the dynamic properties of the boring bar, finite element analysis with
MSC Nastran was conducted. The automesh function of the software with tetrahedral 10 elements was

used. The result of the automesh is shown in Figure 5.11. The aim of the analysis was to:
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| e verify dynamic tests results

e determine if machining the boring bar has a big influence on the stiffness properties

e determine optimal position to apply strain gauges

¢ determine the mode shapes

Figure 5.12: Von-Mises stress distribution with load at tool tip

A result of the Von-Mises stress distribution with a typical load on the tool tip is shown in Figure 5.12.
Suitable positions for the strain gauges were identified in this way. The stress analysis showed that the
machining of flat surfaces had little impact on the properties of the tool holder. Unfortunately, the
natural frequencies could not be resolved very well with the model. This can be attributed to the
boundary conditions of the clamping which is difficult to model properly. Some of the mode shapes
from the finite element analysis are shown in Figure 5.13. The mode shapes also assisted in selection
appropriate positions for the strain gauges (refer to Section 4.6.2 on natural frequencies).

Figure 5.13: Modes three (left) and four (right)
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G. Calibration
With the dynamic properties identified, the next step to ensure proper measurements is to perform a
static calibration. A matrix of calibration factors for the system can be determined in order to convert
voltage into force. Applying known forces to the system and reading the output of the strain gauges
will accomplish calibration. In order to calibrate the sensor-integrated tool, a special static calibration
test rig was designed and assembled. Design drawings of the test rig are shown in Figure 5.14.

The calibration test rig was designed to calibrate the tool at different overhang lengths. This is possible
with an assembly of clamping devices that can also slide along the base plate. By means of a threaded
socket on the three mini towers on the rig, forces can be applied on the tool tip in the Fx, Fy and Fz
directions. The input forces are measured with Z-type load cells. Consequently, different forces can be
applied in the three directions on the tool simultaneously, and the test can be done for any overhang
length. The voltage output on the strain gauges is read and these are used to determine a matrix of cali-
bration coefficients. Pictures of typical load cases are shown in Figure 5.15.

Figure 5.15: Load in y-direction (left) and in x- and y-directions simultaneously (right)
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The strain on the tool holder can be related to the force through a linear system written as:

v Fx ki Ky ki
v, |=A | Fy | with A=|k, Kk, kK, (5.4)
Vs Fz ks ks ki

or v = Af (5.5)

Matrix coefficients k; for calibration matrix A can be determined by setting Fx to a known value, and
Fy and FZz to zero. For example, setting Fx to 200N:

v, Kint ot 1K 200 v, = 200k,
Vo |=| Ky Ky Kk ||O | yields v, = 200k,, (5.6)
Vi) [Kst ks ks ||O Vs = 200k,

The measured data can the be calibrated on-line with:
f=A"v (5.7)
The results of the calibration procedure showed that Fx and Fy could be determined with an accuracy
of about 1% for the static calibration range. Fz can be determined with limited accuracy (approxi-
mately 15% for static forces) due to the fact that longitudinal stiffness of the tool holder is higher in
this direction. The response of FZ is also somewhat non-linear. A number of sensor-integrated tools
were calibrated and tested during the course of this research, and a typical result is shown in Figure
5.16. The calibration of Fx and Fy always showed very good linearity for the calibrated range on all
| channels. The sensor-integrated tools were calibrated at full range, and the calibration matrix for each
too is unique due to the shape and location of the strain gauges on the tool holder.
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‘ Figure 5.16: Calibration result for one of the developed tools

5.2.4 Strain gauge amplifiers

The purpose of the amplifiers is to excite the Wheatstone bridge used for strain gauge measurements.
The amplifiers provide the voltage over the full-bridges and also have a zero-pod and a digital read-out
unit. One consideration when choosing a strain gauge amplifier is the frequency range of the amplifier.
The usable range of the amplifiers used for this application is DC — 6kHz. More information can be

found in Appendix E.
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5.2.5 Anti-alias filters

A very important consideration when sampling dynamic signals is the phenomenon of aliasing. Alias-
ing can only be prevented by:
e Using a sampling rate (F;) of at least twice the bandwidth (B) of interest.

e Using an analogue anti-alias filter with corner frequency at BW¥.

Versatile analogue filters are available commercially, though at a very high price. Furthermore, com-
mercial filters are usually designed for laboratory work and it cannot be afforded to leave them perma-
nently on the shop floor. Therefore it was decided to build an anti-alias filter in-house, with the help of
the Filterlab Low-pass software from Microchip [234]. More details on the filter development are
available in Appendix E.

Three identical channels were built to pass DC - 4000Hz, with the -3dB point at approximately
4350Hz. A sampling frequency of 20kHz is suggested when using the filter to prevent aliasing in the
DC — 4kHz band. However, the filter has significant phase distortion on analogue signals. This charac-
teristic can be rectified digitally by creating an identification model of the filter. An Autoregressive
(AR) time series model was made from identification data of the filter. This model is then saved and

all measured data are then reversed through the model to compensate for the phase distortion.

5.2.6 A/D conversion

A/D conversion was done with a 12-bit card from Eagle Technologies (PC-30). The card slots into a
Personal Computer (PC), and can sample at 100kHz, multiplexing through 16 single-ended or 8 differ-
ential channels. More details about the card can be found in Appendix E.

5.2.7 Data logging software

Special C++ software was developed for this research. The program starts automatically when the PC
is powered on, and will begin sampling in search for a trigger event. A trigger event will occur when
the tool engages into the workpiece. A trigger threshold was set on channel 0 at +0.05V. The trigger
can be selected to be either for a rising or declining slope on the selected channel. The user can ini-
tially set the sampling rates, sampling times, number of channels and trigger conditions on a web page.
During the search for a trigger event, data is sampled for a period three times longer than the selected
sampling length. The data is buffered in the PC memory, and the program checks it for a trigger event.
If a trigger event occurs, the program will save the data for the user-selected period. The program can
also be instructed to save only every 10", 20" or N™ trigger event, as not to save the data for every
workpiece. Each file is saved with a time stamp. As a last step, after a number of data files were col-
lected, they are stored in a compressed format to save disk space. The compressed files are then avail-
able for download through the Internet. The program settings can also be changed remotely via the
Internet. On the shop floor, a person is responsible for logging tool changes and safekeeping the tools
for later investigation under a microscope. For some tool inserts regular wear measurements were
made. Each machined part is also automatically logged and time stamped on the shop floor and can

thus be correlated with the recorded data. A flow diagram of the program is shown in Figure 5.17. The
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complete system was installed in a steel enclosure, shown standing on the shop floor in Figure 5.18. A
screen capture of the web page where the program setting are submitted in shown in Figure 5.19, and a
screen capture of the logger in operation is shown in Figure 5.20.
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Figure 5.17: Flow diagram of data logging program

Figure 5.18: Steel enclosure for monitoring electronics
5.3 Cost breakdown

Cost-effectiveness was a very important consideration for the development, due to the various reasons
stated in earlier chapters. The approximate cost of the individual components are summarised in Table
5.1. The total cost (hardware and software) of the system amounts to about €1000. This is significantly

lower than any commercial measurement system available today.
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Figure 5.19: Screen capture of settings page
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Figure 5.20: Logger in operation

Table 5.1: Cost breakdown of measurement system

boring bar € 80
strain gauges € 70
shielding material € 80
strain gauge amplifiers € 150
anti-alias filter € 20
A/D card € 100
computer (Pentium @ 200MHz) € 250
software € 100
miscellaneous costs € 150

| Total | €1000
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5.4 Experimental conditions

The basic experimental conditions are summarised in Table 5.2. All controllable conditions remained
the same except the feed rate, which was varied. Uncontrollable conditions refer to external distur-
bances such as shop floor vibrations, softer / harder workpiece material, tool quality efc. These distur-
bances were more chaotic than those encountered in Chapter 4 and it is virtually impossible to investi-
gate their individual effects on the force signals and tool wear. In Chapter 4 the effects of identified
disturbances were filtered from the signals. In this case was not possible. However, despite the noisy
nature of the environment, it will be shown in Section 5.7 that the proposed wear monitoring method is

robust towards these conditions.

Table 5.2: Experimental conditions

machine feed rate 0.3 mm/rev and 0.2 mm/rev
cutting speed 390 m/min
depth of cut variable 1.7 mm max
tool holder S16 QSCLPR 09
insert type CCGT 09T304 FN-ALU (carbide)
workpiece Aluminium alloy (confidential)
strain gauges 3 half-bridge configurations
type KYOWA KFG-1-120-D17-11
amplifier HBM clip® System
filter custom made cut-off at 4 kHz
A/D card Eagle Technologies PC-30
sampling rate 20 kHz per channel
sampling time 3 seconds per channel

The machine on which experiments were conducted is depicted in Figure 5.21, with a picture of the
sensor cable exit from the machine in Figure 5.22. Some pictures of the sensor-integrated tool in
operation are shown in Figure 5.23 and Figure 5.24. The operations that were considered consisted of a
facing and boring on the areas on the piston indicated in Figure 5.25. It is a crucial section on the
workpiece with respect to geometric accuracy and hence monitoring of the tool wear is essential. Due
to the interrupted character of the cut, the tools also tend to wear fast. More details on the tool wear

will follow in Section 5.5.

Figure 5.21: Turning machine
11
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Figure 5.22: Cable exit

Figure 5.23: Sensor-integrated tool in operation (1)

Figure 5.24: Sensor-integrated tool in operation (2)
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material removal

Figure 5.25: Workpiece
5.5 Tool wear

Before further analysis of the signals can be discussed, some remarks about the tool wear must be
made. During the course of the research, data from almost 100 tool inserts were collected. This implies
that force signals from the process were collected continuously from a new to a worn tool insert for
many tools. The experience from the operators on the shop floor is that the tool wear is unpredictable.
Sometimes a tool will last for thousands of components, and sometimes it will wear out after a few
hundred. A conservative approach is used to eliminate the possibility of scrapping a part and tools are
often replaced long before they have to be. The unpredictability of the tool wear was confirmed with
wear measurements on the shop floor. A comparison of the flank wear of several tools with respect to
the number of components that were machined with them is shown in Figure 5.26. It can be seen that
the rate of tool wear is slightly different for every case, despite the fact that controllable conditions
were kept constant.
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Figure 5.26: Tool wear with respect to number of machined workpieces

Reasons for this fluctuation in tool life can be attributed to conditions on the shop floor. More specifi-
cally, the rate at which components are manufactured plays a significant role. If the time allowed for
the tool to cool down between runs is not kept constant, large variations in tool life can be expected.
Fluctuations in the workpiece composition can also play a large role but is extremely difficult to quan-
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tify these effects. A very significant conclusion from this is that tool life equations (e.g. modified Tay-
lor equations [42]) cannot solve the problem in this case, hence justifying the need for an on-line
TCMS. For all wear measurements and subsequent wear estimation, the average flank wear over a se-
lected area of the cutting insert was chosen as a representative value of the tool condition. In order to
obtain a closer understanding of the tool wear, Scanning Electron Microscope (SEM) pictures were
taken of several used inserts. An SEM photo of a new insert is shown in Figure 5.27, compared to
worn inserts in Figure 5.28.

Figure 5.27: New insert

insert A insert B insert C

g

Figure 5.28: Worn inserts

Though the basic wear modes on the tools are similar, the geometry or shape of the wear land is differ-
ent for each case. Similar observations were made with other worn tools under the SEM. From the
SEM investigations it was concluded that the wear on the tools generally consisted of a plastic flow
and an elastic contact region. There are also signs of micro-chipping and cracking at the edge, espe-
cially with severely worn tools. It was furthermore concluded that the chosen wear parameter of flank
wear is adequate for describing the severity of wear on tool, because it has the most significant effect
on the workpiece quality. Micro-chipping occurs at a late stage of the tool life, and it is virtually im-
possible to determine the effect of different severities of micro-chipping on part quality due to the
large degree of flank wear also present. An example of the different wear modes on the tool is shown
in Figure 5.29. The plastic flow and elastic contact zones form the total flank wear.
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Figure 5.29: Different wear regions

5.6 Signal processing
5.6.1 Pre-processing

In the analogue form, the sensor signals are filtered and run through an overload protection unit. The
aim of the digital pre-processing is to obtain reliable three-component cutting forces from the voltage
values measured by the hardware. The following steps are taken:

e phase correction

e resampling

o DC offset compensation

e calibration

The phase correction is necessary due to the phase distortion caused by the analogue filter. Phase cor-
rection is done through an appropriate identification model of the filter, as discussed in Section 5.2.5.
A high sampling rate must initially be used to prevent aliasing in the analogue format, but resampling
makes the signals easier to process in digital format because of the lower file size. The process of re-
sampling also involves digital low-pass filtering at half the new sampling rate. The signals were re-
sampled to an effective sampling rate of 8kHz. The DC offset is removed with a reference signal col-
lected when the tool is not engaged into the workpiece. A typical force measurement after the pre-
processing step is shown in Figure 5.30. The cut essentially consists of two parts corresponding to a
facing (A in the figure) and boring process (B in the figure). The feed direction is thus in the y-
direction for A and in the z-direction for B. Due to the nature of the process, only section B of the sig-
nal contained information on the flank wear. The shape of the signals are due to the process, which is
an interrupted cut with varying depth of cut and effective angles (resulting from the workpiece geome-

try).

The frequency of interruption is exactly 50Hz. It can be seen that this particular section actually creates
positive and negative forces in the Fy direction, which is once again caused by convex shapes on the

workpiece during the boring process. The cutting forces can now be analysed digitally to assist in the
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design of a strategy to accurately monitor the process, with all possible internal and external distur-
bances. The system was set to store approximately 100 measurements during the life of a single tool.
This would represent about 10% of the total number of possible measurements, but is still a sufficient
amount of data.

time [s]

Figure 5.30: Typical cutting forces

5.6.2 Signal investigation

In order to identify possible signal features that might correlate with tool wear, several investigations
were conducted. The signal basically consists of a low frequency region that is an indication of the
static cutting forces. In the higher frequency range, the tool holder natural frequencies are observed
because the cutting process excites them. Such a distinction of the two frequency ranges is shown in
Figure 5.31. The spectrum in the lower range reveals many harmonics of the fundamental frequency of
interruption, which is expected due to the square shape of the signal caused by the interrupted cut.
Both these frequency ranges could contain information on the tool wear, but the type of analysis to be
performed would differ for each range. Other initial signal investigation included time-frequency
analysis to determine if there are certain frequencies increasing in amplitude with time. It is obvious
that this will be the case due to the increasing and decreasing depth of cut. Hence, a particular section
of the signal was selected for all subsequent analyses.

5.6.3 Feature extraction

The next step is to identify and extract features from the signals that are sensitive to tool wear. The
static component of the force signal is represented in the 50Hz (and harmonics) component of the FFT.
Thus, features representing the energy of the 50Hz component and its harmonics were generated as
possible features. From initial investigations, it seemed that especially the 100Hz and 150Hz regions
could be reliable features for TCM. A Cepstrum analysis was also carried out to see if the harmonics

of S0Hz can be represented in a single parameter, but this did not yield a significant improvement.
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Figure 5.31: Signal character

The high-pass filtering shows the most energy around 3kHz, which corresponds to the tool holder can-
tilever natural frequency in the direction of Fx. These frequencies are often useful for TCM. The fre-
quency spectrum was investigated in detail for frequency bands sensitive towards tool wear. This can

be done by selecting certain frequency bands and calculating the energy contained within it. The en-
ergy in a frequency band can be expressed as:

g oI
w =jj;ISydf (5.8)

with S, the one-sided PSD function of the force signal and /7 and fh chosen to reflect the energy in the
regions of interest. Some simple time domain parameters were calculated as possible features, such as
maximum and minimum values, peak-to-peak values, zero crossings and others. More common fea-
tures often used for TCM applications in the literature were also calculated, which include:

A. Mean
The mean value of a function x(f) over an interval T is:

" x(t)dt
%= j 0 (5.9)

T

B. Root mean square (rms)

The rms value of a function x(f) over an interval of T is:

T 2
Y f, xt)dt (5.10)
rms _T—
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C. Crest factor

The crest factor is the ratio of the peak level to the rms level:
X

CF Jitnx
7 (5.11)

rms

D. Variance

The variance is the mean square deviation about the mean:

ot = [T Ix(t)-%] ot (5.12)

E. Skewness

The skewness is the third statistical moment of a distribution:

P .
S= == jo x3dt (5.13)
F. Kurtosis
The kurtosis is the fourth statistical moment of a distribution:
e b il
Kl [, x*at (5.14)

G. Time series model features
Time series models can also be used to monitor a process, where the model coefficients are used as
features. The model coefficients represent the characteristic behaviour of the signal. Depending on the
order of the model, a number of model coefficients can be chosen. Normally only the first model coef-
ficient, or sometimes the first three to four model coefficients are chosen because they are most de-
scriptive of the signal [53,121,207]. Higher coefficients can actually become descriptive of noise
within the signal, and therefore they are not preferred as wear monitoring features.

For the purpose of this research, the first coefficients from the Auto Regressive (AR) model, Moving
Average (MA) model, and the Auto Regressive Moving Average (ARMA) model, were used as fea-
tures for tool wear estimation. The models are calculated directly from the calibrated force signals. A
brief discussion of each of the models follows [235-237]:

AR model
In a p-th order AR model for a time series X(n), where n is the discrete time index, the current value of
the measurement is expressed as a linear combination of p previous values:

x(n)=ax(n-1)+a,x(n-2)+...+a,x(n-p) (5.15)

wherea,,a,...a,are the AR coefficients. The first AR coefficient was chosen as a feature.

MA model
In a g-th order MA model, the current measurement is expressed as a linear combination of g previous

values from a sequence of Independent Identically Distributed (IID) random variables with a certain
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probability density function.

x(n) = bu(n —1)+byu(n—-2)+...+ b u(n-q) (5.16)
where b,,b,...b, are the MA coefficients and u(n) is assumed to be an IDD sequence. The first MA

coefficient was chosen as a feature.
ARMA model
The ARMA model is a combination of the above two models:

P q
x(n)=->"a,(x(n—k))+ b, (u(n-k)) (5.17)
k=1 k=1
The first two coefficients from this model were chosen as features.
5.6.4 Feature selection

A. Methods

With a list of possible features for TCM generated, a selection of the most reliable features must be
made. This is one of the most important steps in designing a TCMS. There are various methods for
feature selection and feature space reduction. In the case of feature space reduction, a method is ap-
plied that will reduce the dimensionality of the feature space. A popular way to achieve this is by
means of Principal Component Analysis (PCA) [6]. The method of PCA calculates the eigenvectors of
the feature matrix and re-aligns the feature matrix into its orthogonal dimensions. However, in the case
of TCM, the input space (or the original feature matrix) is often one-dimensional because the best fea-
tures tend to increase monotonically with tool wear. The PCA method was subject to further investiga-
tion and is discussed in Chapter 6.

Another method is to reduce the number of features by selecting the features that correlate the best
with the objective (tool wear). There are a number of methods to achieve this. A very simple method is
the use of the correlation function between the feature and the objective. If a particular feature displays
a repeatable tendency towards high correlation with tool wear it can be selected as a feature for TCM.

The correlation coefficient (expressed as a percentage) between the selected feature g and tool wear ¥
can be calculated as follows:

Zl—(qi_—f)(Vf —Vl Jxlog (5.18)
> -7z v -7) l

whereg and V" are the means of g and 7, respectively; pis the correlation coefficient of which the value

p:

indicates linearity between g and V. When p is approaching 100%, there exist a relationship between g
and V. The lower the value of p, the lesser the chance for the selected feature to show any trend to-
wards tool wear.

Another method that was investigated as a possible method for feature selection is by means of a Ge-
netic Algorithm (GA). The GA is an algorithm often used for discrete optimisation problems. Its for-
mulation is based on the principles of natural selection. A detailed discussion of GAs is beyond the
scope of this text, but more information can be found in [238]. For the purpose of feature selection, an

optimisation problem can be formulated with the objective to select the optimal population of features
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to estimate tool wear. Furthermore, the features can be automatically ordered from the best to the worst
choice.

Both methods for feature selection were used during the course of this research. The methods always
yielded similar results, but the GA is computationally much slower than the simple correlation coeffi-
cient approach. If feature selection must be done on-line, the GA approach is probably not the best
choice. Furthermore, a GA must always be run more than once. In fact, it must be run at least three
times to verify the result. The simple correlation coefficient approach is a simple alternative that is also
feasible for on-line implementation (refer to Chapter 6).

As a last step of feature selection, some engineering judgement is required. The reason for this is that
the automatic methods will often select features that are too similar or dependant on one another, and
thus not achieving the goal of proper sensor fusion. In this case, the rules for selecting features based
on engineering judgement can be stated as:

e Select features from the static and dynamic parts of the signal

e Select features from the different force directions

e Use time and frequency domain features

e Features based on simple signal processing methods are preferred

o There should be a reasonable physical explanation for the behaviour of a feature with respect to
tool wear

It should be mentioned here that features were not investigated for insensitivity towards changing ma-
chining parameters. It has been shown that machining parameters can be included in the method and
hence the behaviour of a feature with respect to machining parameters is irrelevant, the only require-
ment being that the feature remains sensitive towards tool wear when a machining parameter varies.

The chosen features remained sensitive towards tool wear irrespective of machining parameters.

B. Selected features
It was found that the data from the shop floor is extremely noisy and that most features do not display
any correlation with tool wear. However, a list of possible features was identified using the methods

described above. As a last step engineering judgement was applied in selecting the following features:

Table 5.3: Description of features

feature | description
Fxs standard deviation of Fx

Fxd spectral energy of Fx at mode one (approx 2kHz)
Fym mean of Fy

Fy50 | energy around 50Hz for Fy

A plot of the chosen features with respect to tool wear (interpolated) is shown in Figure 5.32. Note that
the features are always normalised for modelling purposes. It is clear from the figure that although the
features tend to increase with increasing tool wear, the trend is far from consistent. There is a large de-

gree of variance in the feature trend and the correlation with the true tool wear is rather poor.
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Figure 5.32: Normalised features

Some physical explanations for the increasing trend in the features are necessary. The standard devia-
tion of Fx represents the vibration energy contained within the signal. In this case, the static cutting
force will dominate this value, and one can conclude that the standard deviation increases due to an
increase of the static force and to a lesser extent an increase in higher frequency vibration. The forces
increase due to an increase of friction between the tool tip and workpiece when the tool flank is worn.
The dynamic parameters in this case are governed by the harmonics of the interruption frequency and
also by the dynamic behaviour of the tool holder in the Fx direction. The excitation from the cutting
process causes the holder to vibrate freely at its natural frequency, and the vibration amplitudes in this
range normally increase with increasing tool wear. The increase is once more caused by the larger im-
pacts on the tool tip due an increase of friction between the tool and the workpiece. The parameters
generated from the Fy force are both more representative of the static cutting forces, and the same ar-

guments apply. Some information about the vibration energy in the Fy direction is contained in the
Fym feature.

Due to the high degree of variance in the increasing trends of the features, a monitoring strategy based
on any one of the features alone will never yield an accurate estimation of the tool wear. For this rea-
son, an Al approach is used to estimate these values. The approach is exactly the same as that applied
to hard turning in Chapter 4. The selected four parameters are sufficient to monitor tool wear because
there are no other changes to the process, e.g. workpiece or tool type. If such disturbances were pre-
sent, it would in all probability be necessary to include other features as well. During the experiments,
two different feed rates were used, but the selected features applied for both feed rates.

5.7 Al method for TCM

The tool wear can be classified by using the selected features as inputs to an Al model. The principle
of the Al approach proposed in this work relies on the use of a series of NNs, one of which is trained
on-line and others that are trained off-line. The off-line networks are static networks that are trained to
model the feature values for known values of tool wear and cutting conditions. The on-line network is
a dynamic network that attempts to estimate the current wear on the cutting edge by using the previous

estimations of tool wear as inputs. The training goal for the dynamic network is to minimize the error
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between on-line measurements and the output of the static networks. This is the same method pre-
sented in Section 4.6.3.

The Al approach for the case of interrupted turning of Aluminium is diagrammatically depicted in
Figure 5.33. There are several advantages of this formulation. The most important is in the use of tem-
poral information to estimate the next value in the time series. It might seem possible to achieve a
similar result with a curve fitting procedure instead of a dynamic NN, but the problem is much more
complex. With this method, the current level of intelligence contained within the dynamic NN and
knowledge from the on-line sensors are combined to make the best possible decision about the severity

of wear on the tool. The dynamic network can also follow any progression of tool wear.

measurement

Rrogess hardware

i =time step

d = time delay

VB = flank wear

e = training goal

f = feed rate

DN = Dynamic Network
SN = Static Network
Fxd, Fxs,
Fym, Fy50

= force features

Figure 5.33: Monitoring strategy

5.7.1 Static networks

The static networks were trained, validated and tested for each of the chosen features. The data from
eight cases of tool wear from a new to a worn tool insert was used as the training set. Two different
cases of feed rate were considered and hence the feed rate was included in the static NN. The feed rate
was excluded from the dynamic NN, with the assumption that the feed rate will only be changed with a
new insert. Four relatively small static networks are used, all of which are FF networks with three lay-
ers. The middle layer consists of five ‘tansig’ neurons, and the output neuron has a linear activation
function. The ‘tansig’ function is a combined tan and sine function. The static networks were trained
with Levenberg-Marquardt backpropagation.

One of the most important considerations when training NN is to prevent overtraining. This will cause
the networks to memorise the training data and as a result they not be able to generalise when they are
presented with new data. In this case, a combination of using small networks and early stopping were
used to prevent this effect.
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5.7.2 Dynamic network

With the static networks trained, the dynamic network is trained on-line to estimate the on-line value
of the tool wear VB(i). One of the main reasons why this approach is so efficient for TCM applications
is the fact that tool wear almost never follows the same geometry and growth rate. If the static net-
works are trained appropriately, the dynamic network can follow any growth and geometry of tool
wear. The dynamic network estimates the unknown parameter, namely tool wear, by using recent in-
formation obtained from the process. For this application, machining parameters did not change during
the life of a tool and were consequently not included. However, any changing parameter that has a sig-
nificant influence on the features can be included, for instance cutting speed, workpiece material or
working angles. Another wear mode can also be included, for example flank wear and crater wear, as
was suggested for hard turning in Chapter 4.

The dynamic NN is of the same type as the static NNs, namely a FF network with three layers. The
training target of the dynamic network is to minimise the difference between actual measurements and
the output of the static networks. The dynamic NN uses the previous three estimated wear values to
estimate the next value of tool wear, which creates the ability to estimate a nearly correct value for the
tool wear even if the training does not converge within the specified tolerance. This may happen if
there was a problem with the measurement or high disturbance in the signal. The behaviour of the dy-
namic network is thus to follow the curve or line of the present wear estimation, with the help of the
on-line measurements and static networks, but it is programmed in such a way as to be able to general-
ise if errors or disturbances occur in the measurements or static networks. Another advantage is the
fact that the dynamic networks are able to follow the unique development of wear on the tool insert
through on-line training (also refer to Section 4.6.3).

The method utilises sets of inner and outer steps or time-increments. The inner steps are training steps
of the dynamic NN to achieve a specified convergence. Hence, during the inner steps, the tool wear is
assumed constant and the NNs attempt to estimate this value. When this is achieved, an outer step is
taken, and in this case it is an incremental step in the tool wear.

The problem can be described by considering a vector x containing the network bias and weight values
of the Dynamic Network (DN):

X=X X,...X,] (5.19)
In order to increment an outer step, the following optimisation problem must be solved, which is the
training goal of the DN:

4
minimise f(x)="e; such that f(x) < to/ (5.20)
j=1
with the initialisation space for a new tool starting at:

D={(x1...xn)eiR”:—1sx,. =7, i=1..n} (5.21)

and fol a suitable convergence tolerance on the function value. The initialisation space for a worn tool

is obtained from the solution of the previous outer step. The error functions in equation 5.20 are de-
123



m—

————— University-of Pretoria-etd—Scheffer C—2003-HAPTER 5: Aluminium turning
fined as:

e, = /(Fy50'- Fy50)°
e, = \/(Fym ' Fym)’
e, = /(Fxs'= Fxs)’

e, =+/(Fxd'- Fxd)*

(5.22)

Fy50', Fym', Fxs' and Fxd' are the outputs of the static networks SN; 4. When the DN reaches its
training goal, an outer step can be taken and new values for Fy50, Fym, Fxs and Fxd can be meas-
ured using the on-line hardware and software. Note that all variables are normalised before they are

entered into the NNs, and again de-normalised at the network output for interpretation of the results.

Similar to Chapter 4, it was found that the Particle Swarming Optimisation Algorithm (PSOA) yielded
the best result for training the DN. Training NNs is in essence an unconstrained global optimisation
problem, and recent literature also states that the PSOA outperforms methods like Genetic Algorithms
(GAs) in unconstrained global optimisation. Furthermore the method is easy to implement and compu-
tationally efficient. The PSOA simulates the physical movement of social creatures, for instance the
movement of a flock of birds. The algorithm does not utilise gradient evaluations and its efficient use
of random information is advantageous for training NNs. A detailed formulation of the training algo-
rithm is included in Appendix D. The algorithm usually achieved convergence within less than about
10 inner steps in a matter of seconds on a PIII computer. The convergence criterion was set on the
function value. If convergence is not achieved within 10 steps, the training also terminates.

5.7.3 Discussion

It should be kept in mind that the aim of NN modelling should never be to make estimations outside
the range of training. A NN should always be properly trained for its range of application. The most
important part of the training is to ensure proper generalisation capabilities of the network. The net-
work structure should be optimised to ensure that the network size and functions are chosen correctly
for the application. In the case of the network size, iterations with different network sizes were used to
choose the optimal network size. The result was quite small networks with adequate generalisation ca-
pabilities with respect to the problem. The network type and functions were selected by using proper
judgement and experience with different types of NNs. The same arguments apply to the static and the
dynamic networks. Further discussions can be found in Chapter 6.

5.8 Tool wear estimation results

5.8.1 From a new to worn tool insert

Results from the AI method with on-line estimations with previously unseen data for four tools is
shown in Figure 5.34. In each case, the estimation starts with a new tool and ends when the operator
removed the tool from the machine. The estimations are also compared with flank wear measurements
taken under a microscope. It can be seen that there is a very good agreement between the estimation
and the actual value of tool wear. Disturbances on the features also cause the estimated growth of tool
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wear to appear somewhat noisy, but much less than that compared to the features. In two of the cases
the flank wear exhibits the typical initial fast and regular wear stages. The tool is normally removed
before the accelerated final wear stage and subsequent tool breakage is reached. However, it can be

seen that the progression of tool wear, or the wear growth rate, is different for every case.
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Figure 5.34: Tool wear estimations for four tools

The output of the dynamic NN is reported in terms of a “sliding output window” which means that an
average value is taken that moves along with the outer steps. It was found that taking three averages is
adequate. The usage of a sliding output window also helps to eliminate the possibility of making a de-
cision based on only a single measurement that may contain errors. Many other examples of tool wear
estimations are available, but these can only be compared to the final value of tool wear, because regu-
lar tool wear measurements could only be made for a limited number of tools. Four examples of on-
line tool wear estimations are Figure 5.35. These can be compared to the final value of tool wear, and

again a very good agreement is visible. The same observations regarding the growth rate of the flank
wear can be made from these graphs.

5.8.2 Previously worn insert

In the previous section it was shown that the dynamic NN could estimate the tool wear accurately for a
new insert that is allowed to wear normally. It should be kept in mind that the dynamic NN would tend
to estimate the next value in the series of the previous three values of tool wear. The question then
arise how the dynamic NN would react in the following two cases:

e [f the tool is changed from a severely worn insert to a new insert

e Ifa worn insert is used from the start
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Figure 5.35: On-line tool wear estimations (VBf = final flank wear value)

When the TCMS is started, a random initialisation of the weights and biases of the dynamic NN is
used after which training commences. One solution to the above-mentioned issues could be that the
operator must reset the TCMS each time the insert is changed. A reset would cause the random initiali-
sation of the dynamic network. Another solution is automatic detection of a new insert. Checking the
output of the dynamic NN to see if it estimates a much lower value than before, towards 0 mm flank
wear, could do this. The automatic detection proved to work very well. However, a manual reset is
also included in the final implementation. An example of an estimation with the automatic detection
and reset during a tool change with a new insert is shown in Figure 5.36a). When a worn insert is
changed with a worn insert, the system must also react to quickly converge to the correct value of the
tool wear. An example of a tool change with a worn insert is shown in Figure 5.36b). It is clear from
the figure that the dynamic NN only requires a few steps to converge to the correct value of tool wear.
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Figure 5.36: Dynamic NN response

5.8.3 Accuracy and reliability

A very important aspect of this development is the accuracy and reliability of the complete system. In
terms of the reliability of the software, it was decided to also implement two additional functions that
the end user can easily interpret when making a decision about the tool wear. These two functions are:
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e rate of tool wear

e reliability of the estimation

The rate of tool wear function is a simple function based on the rate by which the estimated wear value
is increasing. The reliability function is somewhat more complex, because it is based on the rate of tool
wear and the criterion that terminates the training function. If an excessively high wear rate is esti-
mated, the reliability function will be somewhat lower because a very high wear rate can be estimated
if the input data is faulty or noisy. Furthermore, the convergence value of the training algorithm gives
an indication of the “confidence” of the training, and as a result increased reliability. The reliability
value, tool wear, and rate of wear are expressed in term of percentages for easy interpretation by the
machine operator. The tool wear and rate of wear are also displayed as block diagrams and are colour
coded for easy interpretation (green = low, yellow = medium and red = high). The percentages and
block diagrams are updated with each outer step. As explained before, the user can select the tempo of
outer steps with one outer step per workpiece the maximum. An example of the on-line software out-
put is shown in Figure 5.37. Typically, when “flank wear” reaches 80% deviations in product quality
can be expected.

certainty =75 %
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Figure 5.37: Example of typical software output

Using the wear rate function, the remaining number of parts that can be machined with the tool insert
can be calculated. This value will of course depend on an acceptable maximum value of tool wear, and
this will have to be negotiated with the manufacturer. It would seem that a flank wear of up to 0.25mm
would be the maximum allowable wear for the roughing operation. Hence, using the estimated wear
rate and 0.25mm as the maximum allowable wear, the remaining life of the tool can be calculated and
updated with each outer step.

The accuracy of the tool wear estimations can be compared to the full range of observed flank wear, or
to the current range of the particular tool. Furthermore, the average accuracy of the system can be
compared to the minimum accuracy, thus the average deviation from the true tool wear and the maxi-
mum deviation. The following definitions can be made to describe the accuracy of the TCMS:
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Full range of flank wear VB, = 0.31mm (5.23)
Maximum deviation from true wearVB, ,= 0.052mm (5.24)
rms deviation from true wear VB, .= 0.085mm (5.25)
1% of full rangeVB,.,, = 5o/ ' =0.0031mm (5.26)

These values were obtained from the results of all the data.

The rms deviation can be described as:

z \/ (VBTCMS - VBrrue ),2
VB,,, =L

ms

(5.27)

n
where
n = the total number of tool wear measurements

VB, the measured tool wear

VB, s = the wear estimated by the monitoring system

The following calculations are based on the average results of all the experiments. The average accu-
racy with respect to full range of wear is:

Tay =100~ Oms.

VBf."‘1%

_0.0085 (5.28)
0.0031

=97%

where VB, .,,, is one hundredth of the full range.

The minimum accuracy with respect to full range of wear can be calculated as:

T =100~ 2
fr1% 5 29)
_100.0:052 (5.
0.0031
=83%

The average accuracy with respect to current range of wear is somewhat more complex but can be cal-
culated with:

1] & y(VBroys = VB, )’ x100
i]Acr =1OO—E Z'\f TCMS I

= (VBtrue ),- (5.30)
=92%
The minimum accuracy with respect to current range of wear can be written as:
T VB_,x100
VBtrue
0.16
=100-32.5

=68%
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From the accuracy calculations the conclusion can be made that the system will estimate the true tool
wear with an accuracy of above 92% as an average, and in extreme cases with accuracy not lower than
68%. The extreme cases rarely happen and in these cases the reliability index on the computer imple-
mentation will advise the user that the estimation could be inaccurate. It is important to mention here
that the approach of measuring and monitoring was tested under shop floor conditions with different
clamping conditions of the tool and workpieces over several months. Furthermore, the machines was
completely stripped and serviced during tests. Different sensor-integrated tools were tested and none of
these changes had a significant influence on the system. It can thus be concluded that the method is
insensitive towards such changes and can be expected to always operate within the calculated range of
accuracy.

5.9 Conclusion

This chapter described the implementation of a TCMS on the shop floor using Al It was shown that
the technique proposed is very effective for estimating the flank wear of tool inserts using features de-
rived from strain gauge measurements. Features representative of tool wear are generated from both
static and dynamic parts of the force signals. A combined static and dynamic NN technique was used
with the PSOA method to train the DN. The method proved to be a very effective algorithm for train-
ing the DN. The system was developed and tested in a production environment, proving that such sys-
tems could run effectively on shop floor situations, despite the many disturbances present on the shop
floor. An advantage of the system is its cost-effectiveness, due to the use of simple sensors and elec-
tronics. Another advantage of this approach is the fact that the tool wear is not accelerated, but it is al-
lowed to run through its normal life, and hence it describes a normal wear pattern. It was also shown
that the system is exceptionally accurate in estimating the true wear on the cutting tool. This approach
proposed here can be modified to include any other parameters that might influence the features or
growth of tool wear, and can also be applied to other machining operations if appropriate features can
be generated. The method is not sensitive towards the clamping condition of the tool or other vibra-
tional effects of the machine tool.
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CHAPTER 6

6. Further investigations towards improvement of Al method

6.1 Introduction

In the previous chapters it was shown how a tool wear monitoring system can be designed using Al
The formulation of the AI method is such that it is not sensitive to the noisy shop floor conditions and
other typical influences. The method was shown to be applicable to different turning operations and
with different machining parameters. An important component of the research was that it was shown
that a TCMS using Al could be implemented on the shop floor in a cost-effective way. The purpose of
this chapter is to discuss some further results into the improvement of the TCMS. The investigations in
this chapter are mainly concerned with improving the Al, signal processing and feature selection meth-
ods.

6.2 Signal processing

6.2.1 Coherence function

The coherence function is commonly used as a measure of the integrity of frequency response func-
tions in vibration analysis. It can also be used to detect non-linearities in a system with an input-output
relationship. Coherence is a function of frequency with values between 0 and 1 that indicate how well
input corresponds to the output at each frequency. The coherence between an input X and an output Y
is defined as:
2
> _ |l

}/ p—
PPy

(6.1)

where:

P, = the power spectral density of x

P, = the power spectral density of y

P, = the cross spectral density of x and y

It follows that if x and y are completely correlated at a particular frequency the coherence will be 1 at
that frequency. In practice, a value near one is reached for correlation and a value near zero is reached
when there is no correlation. The coherence is typically calculated for a force input with a vibration
output. However, the coherence can be calculated for any two sensors, and the coherence function can
assist as a feature for condition monitoring. The coherence function between two acceleration signals
was used by Li et al. [109] to detect tool wear and chatter during turning. They established that the
value of coherence at certain frequencies could be used to trend tool wear or to detect the onset of chat-
ter. Because the coherence is easy to calculate and interpret, it might be useful for on-line implementa-
tion, and it was decided to investigate the coherence function as a possible feature for TCM.
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If force and vibration measurements are present, the coherence function is particularly useful to inves-
tigate the dynamics of the system. In Chapter 4, an accelerometer was attached to the tool holder dy-
namometer, as shown in Figure 6.1. The coherence function can now be used to determine the coher-
ence in the response of the dynamometer over a range of frequencies. The coherence functions be-
tween force and acceleration in the three principal directions for various experiments with increasing

tool wear was investigated over the range 8Hz — 2kHz.

accelerometer
clamping screws workpiece

1 1 1
i Il 11 11 1 ‘ =
/
/ l
tool holder
dynamometer

Figure 6.1: Sensor configuration (Chapter 4)

Examples of the coherence functions for experiment 2 are shown in Figure 6.2 and Figure 6.3. The
vertical red lines on the figure indicate a high level of coherence. It is interesting to see that there are in
fact quite a few areas in both figures where the coherence is very low, especially in the low frequency
range. There are several possible reasons why coherence could be low:

e noise in the measurements

e resolution bias errors in the spectral estimates

e the output is due to other inputs besides the measured input

e non-linearity of the system

frequency [Hz]

Figure 6.2: Coherence between thrust force and vibration (hard turning)
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Figure 6.3: Coherence between cutting force and vibration (hard turning)

The areas where coherence is low probably indicate non-linearities and non-measured inputs. The ar-
eas with high coherence indicate frequencies that can be used for TCM because they are due to the ac-
tual dynamic force inputs and the dynamics of the tool holder. Closer investigations revealed that the
average coherence function in the cutting force direction shows a slight increase due to tool wear, but
would not suffice as a feature for TCM. There were also no particular frequencies that showed a sig-
nificant correlation with tool wear.

The investigation was then moved to the coherence between two acceleration signals in the different
directions, hence the method proposed by Li ef al. [109]. Some of the results from experiment 2 are
shown in Figure 6.4 and Figure 6.5. Again, there are certain regions where the coherence is very low,
but in this case it is expected because different directions are used. However, in contrast with the find-
ings in [109], there were no frequencies in the different coherence functions with a useful agreement
with tool wear. From this it can be concluded that the usefulness of the coherence function is limited to
the particular experimental setup, and is thus not a general solution for TCM.

frequency [Hz]

Figure 6.4: Coherence between feed and thrust vibration (hard turning)
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frequency [Hz]

Figure 6.5: Coherence between cutting and thrust vibration (hard turning)

The results from the coherence function investigations with the data from Chapter 4 also raised an im-
portant question — does the dynamometer measure the actual dynamic force inputs or is it measuring its
response to these inputs, which may contain non-linearities within the measuring range? This can only
be answered if proper dynamic tests are conducted. However, the use of resistance strain gauges
(Chapter 5) offered a cost-effective alternative that had no effect on the dynamic characteristics of the
system. The dynamic properties of the sensor-integrated tool holder were characterised in Section
5.2.3. Consequently, coherence functions were also calculated on the force data from the strain gauges
for the Aluminium turning experiments. A result for the coherence between forces Fx and Fy (refer to
Chapter 5) is shown in Figure 6.6. It can be seen that in this case, the coherence is high for most of the
frequencies. However, the coherence is influenced by the tool wear in the lower frequency range up to
about 800Hz, and also at the tool holder natural frequency near 3kHz. In this case, increasing tool wear
generally cause lower coherence values, except for the very low frequencies near 0 Hz where an in-
crease is present. The mean value of the coherence over the whole frequency with respect to tool wear
1s shown in Figure 6.7. In this case the coherence could be used as a feature for TCM. Further investi-
gations revealed that the features chosen for wear monitoring in Chapter 5 are more reliable than the
coherence function.

a 1000 2000 3000 4000
frequency [Hz]

Figure 6.6: Coherence between Fx and Fy (Aluminium turning)
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Figure 6.7: Mean of the coherence function between Fx and Fy (Aluminium turning)

6.2.2 Wavelet analysis

As a further step towards generating more reliable features for wear monitoring, wavelet analyses were
conducted on the data sets. Some authors state that wavelet analysis is the key to successful TCM (re-
fer to Section 3.4.2). However, the usefulness of wavelet analysis in TCM applications is debatable.
Wavelet analysis cannot be used effectively to detect temporal information in data because they are not
time invariant. In the case of TCM, this is not always important, depending on the aim of monitoring
system. They only way that wavelet analysis can really assist in TCM applications is to act as a filter to
enhance the signal-to-noise problem common to tool wear data.

The reader is referred to Appendix F for a more detailed discussion on wavelet analysis. During this
research, wavelet packet analyses were performed with various types of wavelets to act as digital fil-
ters. With the wavelet packets calculated, certain packets may contain useful information on tool wear
with little noise present. A simple method is to select the packets containing the most energy by means
of an energy function (e.g. rms or entropy) for a second phase of processing. The second phase is gen-
erally a repeat of the initial signal processing in the time and frequency domains, such as rms, variance
and crest factor values.

The purpose of the wavelet analysis is to act as a filter, which automatically identifies certain fre-
quency ranges and bandpass filter the signal through these ranges. When the signal is reconstructed
with the wavelet coefficients from the selected wavelet packets, it can be compared with the original
signal. During this research, it was often observed that the reconstructed signal is just a filtered repre-
sentation of the original. Hence, the same result can be obtained by using an appropriate digital filter.
In fact, the wavelet packet type of filtering is a “black box” type filter because there is no indication
beforehand or afterward which frequencies are attenuated. In the case of digital filtering, this can be
controlled and explained. A result from the wavelet packet analysis from experiment 4 is plotted in
Figure 6.8. In this figure, the rms trend with increasing tool wear are compared for a selected wavelet
packet, a digital filtered signal and an unfiltered signal. It can be seen from this figure that although the
wavelet packet rms trend is more consistent than the unfiltered signal, the digital filter yielded the best
result. A similar result can be observed in Figure 6.9, where the trends of the variance with increasing

tool wear are compared.
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Figure 6.8: Comparison of rms trend with tool wear (hard turning)
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Figure 6.9: Comparison of variance trend with tool wear (hard turning)

The wavelet analysis was also conducted on the TCM data for Aluminium turning. Exhaustive investi-
gations were conducted with different types of wavelets and threshold values. One of the results is
shown in Figure 6.10, where the rms values of the best wavelet packets are compared to the rms of the

digital highpass filtered signal and unfiltered signals. In this case, it is again clear that the digital filter
yields the best results.
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Figure 6.10: Wavelet packet rms comparison (Aluminium turning)
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It was found that wavelet analysis sometimes yielded an improvement in the trend, but the improve-

ment is small and the same result can be achieved with digital filtering. Furthermore, wavelet analysis
is computationally much slower than regular digital filtering, which hampers it as a possibility for on-
line implementation. It should be kept in mind that this conclusion was only reached for TCM applica-
tions and not for other applications of wavelet analysis. Consequently, the features generated by wave-
let analysis were discarded from the feature selection step because the improvement was too small to
make it worthwhile for on-line implementation. It should be mentioned here that there exists a TCMS
for ball-end milling which is using wavelet packet analysis as a filter, and the method is successfully
running as a demonstration system [239]. It would nevertheless be interesting to investigate the neces-
sity of wavelet packet analysis to make the system run effectively.

6.2.3 Feature selection and feature space reduction

In Chapters 4 and 5 the methods for feature selection were described. A combination of engineering
judgment and automated feature selection methods were used. The automated feature selection meth-
ods were based on the agreement between a feature’s trend and tool wear. The methods were employed
to quantify this agreement, namely the correlation function and difference minimisation by means of
GAs. Both methods usually yielded more or less the same results and as a last step engineering judge-
ment was used to select particular features. Normally, only four signal features were chosen for moni-
toring purposes.

Another method of verifying that the best features have indeed been selected is by calculating the Sta-
tistical Overlap Factor (SOF). The SOF determines the degree of separation of a feature between the
new and worn tool conditions. Ideally, a feature should show a high degree of separation due to the
worn condition and a low degree of variance due to noise. The SOF is one method that can assist in
investigating the behaviour of a feature. The SOF is defined by:

X — X,

SOF =|———=—
(0'1 +O'2)/2

(6.2)

where X is the mean and ois the standard deviation of vector x;. Vector x; should be data col-
lected from new tools and x, should be data collected from worn tools. As a consequence the SOF

will yield a value that is an indication of a feature’s ability to separate between new and worn condi-
tions. Comparisons between the correlation coefficient approach and the SOF were made for several
experiments (correlation coefficient approach described in earlier chapters: The correlation is calcu-
lated between tool wear and the feature vectors). One result is shown as a bar graph comparison in
Figure 6.11 for 30 different features calculated from the Aluminium turning data. Ideally, features
should be chosen that exhibit a high degree of SOF and correlation.

One problem with the SOF method is that it will not separate between linearly dependant features.
Thus, there is the risk of selecting linearly dependant features when only the SOF method is employed.
Another method that can assist to remove linear dependency is Principal Component Analysis (PCA).
However, it is known that TCM problems are often one-dimensional (all the signal features increase

when tool wear increase), and thus features that are linearly dependant to some degree will have to be
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selected. Consequently, as a last step, engineering judgement must be used to select features that are
not completely linearly dependant and also have high SOF and correlation values. Referring to Fi 1gure
6.11, features 7, 14, 17 and 25 were selected.

B correlation

01 2.8 4)5,6 7819 10111213 1415161718192021222324252627282930

Figure 6.11: Comparison of correlation coefficient and SOF

In many cases, choosing many features and then using a feature space reduction method such as PCA
to reduce the feature space can achieve a better result. Fortunately in data sets with many features,
groups of features often move together. One reason for this is that more than one variable may be
measuring the same driving principle governing the behaviour of the system. In many systems there
are only a few such driving forces. But an abundance of instrumentation allows us to measure dozens
of system variables. When this happens, the problem can be simplified by replacing a group of vari-
ables with a single new variable. PCA is a one method for achieving this simplification. The method
generates a new set of variables, called principal components. Each principal component is a linear
combination of the original variables. All the principal components are orthogonal to each other so
there is no redundant information. The principal component as a whole forms an orthogonal basis for
the space of the data, and is essentially based on the statistical representation of a random variable.

Suppose there is a random vector population x where:
I
x=(x,005 %) (6.3)
and the mean of that population is denoted by
#y = E{x) (6:4)

and the covariance of the same data set is

T
C, =E{(x—yx)(x—,ux) } (6.5)
The components of C,, denoted by ¢;j » Tepresent the covariances between the random variable com-

ponents x; and x;. The component c;;is the variance of the component x;. The variance of a compo-

nent indicates the spread of the component around its mean. If two components x; and x 7 of the data

are uncorrelated, their covariance is zero (Czj =cj = O). The covariance matrix will always be sym-

metric. From a sample of vectors x;,...,x;;, the mean and covariance matrices can be calculated.
From the covariance matrix, an orthogonal basis can be calculated by determining eigenvalues and ei-
genvectors. The eigenvectors ¢;and the corresponding eigenvalues J; are the solutions of the follow-
ing equation:
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Cxei = /'L,-ei with i = 1,...,” (66)

For simplicity it is assumed that ;is distinct. These can be determined by solving the characteristic
equation:

I, —2,1|=0 6.7)
where I is the identity matrix of the same order as C, . If the data vector has » components, the charac-

teristic equation will have order #. By ordering the eigenvectors in the order of descending eigenval-
ues (largest first), an ordered orthogonal basis can be established where the first eigenvector has largest
variance of the data. In this way, the directions where the data has the most energy can be found. If the
data is transformed with these principal components, it reduces the amount of data but retains the in-

formation containing the most energy.

Principal component analyses were performed on the hard turning and Aluminium turning experi-
ments. The results of the 1™ two principal components, together with the features chosen for the Al
monitoring method in the previous chapters, are plotted in Figure 6.12 and Figure 6.13. It can be seen
that the 1™ principal component follows the increasing trend of features with less noise than features
themselves. The 2™ principal component is unfortunately only noise, because the TCM problem is
one-dimensional. Features generally increase (or sometimes decrease) with increasing tool wear. The
tool wear is also a monotonically increasing variable. As a result, the 1% principal component contains
the information along the increasing axis, and the 2" principal component is generated by the inherent
noise in the data. An advantage of PCA is that the 1* principal component is less noisy than the feature
values themselves. Care must be taken not to contaminate the principal components with noise from
redundant data.
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Figure 6.12: Principal component analysis Hard turning (data normalised)
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Figure 6.13: Principal component analysis Aluminium turning (data normalised)

It is clear from the examples from the two different turning processes that a PCA can actually increase
the reliability of the TCMS, despite the fact that the problem is one-dimensional. One possibility
would be to keep the existing four features and just add a fifth, namely the 1** principal component of
the data. Another possibility would be to base the TCMS only on the 1™ principal component. This was
done with data from Aluminium turning and the results are compared in Figure 6.14. It can be seen
from the figure that adding the 1¥ principal component achieved a slight increase in the reliability of
the TCMS. However, using the 1* principal component only did not work very well. This is an impor-
tant result, because it shows that using data that are linearly correlated to some degree yields better re-
sults than using only the principal component.
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Figure 6.14: Tool wear estimation with / without PCA
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The conclusion from the investigations into feature selection is that available techniques can be used to
assist in the decision but the engineer should make the final decision. The correlation coefficient, the
SOF and PCA are three useful techniques that can help to identify the best features. The problem of
selecting linear dependant data should always be kept in mind, but it was shown that selecting features
that are linearly dependant to some degree would have to be selected for TCM. Adding the 1* principal
component as an addition feature could increase the accuracy and reliability of the TCMS.

6.3 Alternative modelling techniques

6.3.1 Introduction

One of the advantages of the proposed Al method in this research is that certain parts of it can be re-
placed by other methods - should a method become available that is more accurate and fit for shop
floor implementation. The dynamic NN will remain a crucial part of the method, but the static NNs
can be replaced by some other method, if such a method can model a chosen signal feature. Models
that can calculate static cutting forces for sharp tools are common. However, due to the complex nature
of tool wear, it is difficult to estimate the worn tool forces with most other methods. Features such as
those derived from the frequency spectrum would be very difficult if not impossible to determine by
means of theoretical models only.

One possibility would be to combine available theoretical models with the Al approach. An advantage
of theoretical approaches is that they can handle changing machining conditions with more ease and
accuracy than AI models. The reason for this is the a priori knowledge of the theoretical models of
what the effect of changing conditions would be, whereas the AI model needs appropriate training
samples to obtain this knowledge. In this section, some promising theoretical methods are discussed
that may enhance the accuracy of a TCMS.

6.3.2 Finite Element Method (numerical models)

The use of the FEM to model machining operations was discussed in Section 2.5. Besides the FEM,
various other numerical computer simulation methods are available or are under development. This
approach, though still in the development stage for many machining operations, seems to be one of the
most promising to assist is sensor-based TCM. A numerical model can be used instead of the static NN
for TCM. This is what makes the new formulation proposed in this work particularly useful: Instead of
modelling the tool wear as an output of the model it is actually used as input to the static NN. Hence,
with tool wear as an input, a numerical method such as the FEM can estimate the static cutting forces
for many combinations of tools, workpieces and machining parameters. The dynamic NN will still be
included to follow the development of wear, but will be trained with error between the FEM model

simulation and on-line measurements.

One problem is that this approach will be computationally very slow with available computing power.
In future years computers might become fast enough to use the FEM model iteratively to train the dy-
namic NN. In fact, with available computing speed, it might not be extremely slow because the dy-

namic NN usually requires less than ten iterations. The use of response surfaces could also prove very
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useful to lessen the number of FEM simulations. Unfortunately, the FEM approach could not be inves-
tigated for this work but is suggested for further research. FEM models could also be used to normalise
data with respect to machining conditions. To achieve this will require intensive research and collabo-
ration between various research groups.

6.3.3 Theoretical models

The basics of theoretical models to predict cutting forces were discussed in Chapter 1. A pure theoreti-
cal model that can accurately predict wormn tool forces does not exist and establishing such a model
would be virtually impossible. The only possible use of these models is to assist another method, such
as the Al approach. For instance, an accurate theoretical model can be used to:

e Predict the sharp tool cutting forces

e Normalise the Al approach for cutting conditions

e Assist as a validation procedure

In this research, the analytical method described in Section 2.2.3 was evaluated as a possible method
of calculating the sharp tool forces and then adding the wormn tool forces by means of the Al approach.
The analytical procedure involves determining the oblique cutting constants through orthogonal cut-
ting tests. When this is found, an oblique cutting transformation is applied to two regions along the ra-
dius of the tool insert. The complete model relies on the accuracy in determining certain constants
(some of which will be available from a database for some tool and workpiece combinations [240])
and the validity of a few assumptions. Because this and other theoretical models rely on cutting tests
and underlying assumptions, it raises the question if it is worthwhile to implement the method if it can
only assist with TCM in part, namely predicting sharp tool cutting forces. Also, the dynamic behaviour
of the tool is not included in the model. After careful consideration it was decided that it is not worth-
while to attempt a shop floor implementation of the method because it will raise the complexity of a
problem that the Al approach can already handle to satisfaction.

6.3.4 Mechanistic models

The underlying assumption of mechanistic cutting models is that the cutting forces are proportional to
the uncut chip area. The constants of proportionality depend on the cutting conditions and geometry
and material properties. Kapoor et al. [241,242] also described a method that can be incorporated into
a basic mechanistic approach that can predict dynamic cutting forces. This could be achieved by im-
pact tests on the machine structure. They also describe a worn tool force model [223,243] for turning
operations. This is the first model based on theoretical foundations for predicting worn tool forces. Of

course, other experimental models exist that rely on the accurate determination of certain empirical

constants.

Because the mechanistic worn tool force model is a possible complete replacement of the static NN, it
was decided to attempt an implementation of the model. The complete mechanistic approach for pre-
dicting worn tool forces is described in Appendix G. The method was applied to the hard turning data

after personal correspondence with Kapoor and DeVor from UIUC indicated that the method would

141



University of Pretoria etd — Scheffer C 2003  CHAPTER 6: Investigation

after personal correspondence with Kapoor and DeVor from UIUC indicated that the method would
possibly be applicable to the type of processes investigated in this research. To determine the sharp
tool forces is basically a matter of calculating empirical constants from cutting experiments. With this
a calibration procedure is carried out that will yield the mechanistic constants. The part of model that
deals with determining the worn tool forces relies on a number of assumptions, the most important be-
ing:

e There is a linear growth of the plastic flow region on the tool flank

e There exists a critical value of flank wear after which plastic flow will be observed

e The worn tool forces are governed only by flank wear

e An accurate calculation of the maximum effective stress in the workpiece is possible

It was found that for most of the hard turning experiments, the critical value of flank wear could not be
determined. Even after extensive testing, it was not always observed. Attempts were made to calculate
the maximum contact stress in the workpiece by the method described in Appendix G, and a result is
shown in Figure 6.15. When this is accurately established and verified, the 3-D womn tool forces can be
calculated by the equations described in Appendix G. However, the maximum contact stress could not
be verified because the assumptions made for the mechanistic model does not seem to apply for hard
turning. It was mentioned several times in Chapter 4 that the stability of hard turning is governed
largely by crater wear. During hard turning, the crater wear also has an influence on the cutting forces,
but crater wear is not included in the mechanistic approach. In fact, a theoretical inclusion of the crater
wear is rather difficult because the mechanics of cutting with crater wear is not as clear as the case
with flank wear.

150
100 4 IR

504

stress [MPal

“0.1

0.1 = workpiece length [mm
workpiece depth [mm] 0.15 02z 01 ; ghilmel

Figure 6.15: Calculating maximum contact stress in workpiece (hard turning)

The linear growth of the plastic flow and the critical flank wear was also not so clearly observed with
the CBN tools, and as a result the maximum contact stress could not be determined. However, the plas-
tic and elastic zones were better observed in the Aluminium turning experiments. Because the aim of
this work is to determine a method of TCM that can be treated as a general methodology for turning, it
was decided not to attempt an implementation of the model on Aluminium turning because the method

did not apply to hard turning as well.
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6.3 Al approach improvement

6.3.1 Introduction

In this section, some aspects regarding the improvement of the Al methodology are investigated. In the
opinion of the author, the improvement that can be obtained by optimising the network type, structure
and activation functions are relatively small compared to selecting the correct measurement procedure,
signal processing and feature selection steps. In this case, same aspects of the NN structure were

investigated in order determine if it yields a worthwhile improvement or not.
6.3.2 Type of network

Many different types of network were compared for the best results. This included FF networks, FF
networks with time delays, radial basis function networks, perceptrons, recurrent networks and unsu-
pervised networks. In the case of the FF backpropagation networks, different activation functions and
networks sizes were also compared. A comparison of the FF network as formulated in Chapter 5 and
FF networks with time delays are shown Figure 6.16. The time delay networks required more training
steps and when the convergence criteria were kept the same, the time delay networks did not yield very
good results. Investigations only apply to the static NNs. If more training steps were taken, the time
delay networks improved but did not yield better results than the initial formulation of the FF net-
works. Sick [171] has shown that time delay NNs should be used for TCM, because the TCM problem
requires temporal information for accurate estimation. In the case of a the Al implemented in this re-
search, the temporal information is already built into the time delay of the dynamic networks, and is
not required for the static NNs. It was decided not to attempt to optimise time delays in the static NNs

because it requires more training and also slows the training of the dynamic NNs down.
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Figure 6.16: Time delay comparison (Aluminium turning)

In Figure 6.17 the result of using different network types is shown. The FF and the cascade forward
networks yielded similar results. The Elman network requires longer training but the smooth response
of the Elman network is a very nice attribute. The Elman network utilise feedback connections, and
thus doubles the use of temporal information in the Al approach. The last investigation into network

143



University of Pretoria etd — Scheffer C 2003 CHAPTER 6: Investigation

formulation was to compare different activation functions. The results of using three different activa-
tion functions are shown in Figure 6.18. The tansigmoid and radial basis function yielded the best re-
sult.
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Figure 6.17: Different network types (Aluminium turning)
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Figure 6.18: Different activation functions (Aluminium turning)

The results presented in this sub-section are only a fraction of the many investigations into formulating
the best method for TCM. Unfortunately, only a few results can be shown and discussed here. In con-
clusion it can be stated that the FF network with a tansigmoid and linear layers yielded the best results
and requires the least amount of time for adequate training. The Multilayer Perceptron (MLP) also ex-
hibits good results, but requires a larger network. Elman type networks can also be considered due to

their smooth response but training is very time consuming.

An important contribution of this research lies in the use of the dynamic NN for on-line monitoring.
However, using only static NNs can also model the tool wear with the chosen features. For this reason
a comparison of the two methods are included here to show that the proposed formulation of using
static and dynamic networks is indeed the better one for practical applications. An example is shown in
Figure 6.19, where simulations of a regular FF network is compared with that of the new formulation
proposed in this study (without a sliding window output). The data is from three tools that wear from
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new to approximately 0.1lmm flank wear. It can be seen that the performance of the combined static

and dynamic formulation is better than the FF network (static only). A much smoother network re-
sponse is noted and the network has no difficulty to return to zero (automatic re-initialisation was

used).
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Figure 6.19: Comparison of formulations (Aluminium turning)

The new formulation was also compared to other conventional formulations, some of which performed
well but do not hold the advantages of the combined formulation. No other NN formulation that was
investigated outperformed the proposed combined formulation on the noisy shop floor data. Some of
the results are reported in the figures that follow. The results are based on networks trained on the
same data and tested on a previously unseen set of data. Where possible, the same network training
tolerances were used. As a result, the sizes of the networks are not exactly the same for all the cases.
The results of using of a Single Layer Perceptron (SLP), Adaptive Linear Neuron Networks
(ADELINE) and adaptive linear filter network (linear layer with input delays) are plotted in Figure
6.20. The SLP can only be used for classification and is not recommend for continuous estimation. The
ADELINE and linear adaptive filter display more or less the same result.
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Figure 6.20: SLP, ADELINE and linear adaptive filter result

A Radial Basis Function (RBF) network is compared with a Generalised Regression Neural Network
(GRNN), which is a RBF with an added linear layer at the output), and a two-layer FF network trained
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with backpropagation in Figure 6.21. Again, the results are very similar.
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Figure 6.21: RBF, GRNN and FF backpropagation network result

A recurrent network (Elman formulation) is compared with the new formulation of combining the
static and dynamic networks in Figure 6.22. The Elman network performs well but the new combined
network still outperforms the Elman network.
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Figure 6.22: Recurrent (Elman) and new formulation with static and dynamic networks result

The results for this case study are summarised in Table 6.1. It should be kept in mind that the result
reported here is for one case study although many more were performed to ensure that the newly pro-
posed dynamic formulation does indeed outperform “static only” networks. From the graphs it can also
be seen that besides increased accuracy, the response of the dynamic network is smoother and more
stable. Training and stability problems were not encountered when using the PSOA.

As a last step the use of an unsupervised NN were investigated, one again in the form of the SOM (re-
fer to Appendix H). The normalised training features were subjected to SOM training, and the result is
shown in Figure 6.23. From the figure it can be seen that the features are automatically arranged in low
and high regions.
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Table 6.1: rms errors on training data

network type rms error [mm]
SLP 0.0167
ADELINE 0.0097
linear adaptive filter 0.0092
RBF 0.0106
GRNN 0.0106
FF 0.0109
Elman 0.0106
combined static and dynamic 0.0057
mFy

Figure 6.23: SOM result of training data

The labels of the training data, (in this case the flank wear values in mm) are plotted on the left hand

side on Figure 6.24. A separate independent data set was labelled as “brand new”, “new”, “medium”,
“worn” and “replace”. The Best Matching Units (BMUs) for this data were calculated the trajectory is

plotted in Figure 6.25, together with the classification labels. From this it can

be established that the

SOM is very useful for interpreting the multi-dimensional data, but should rather be used for discrete

classification (e.g. “new” or “worn”) than continuous estimation. In this example, the SOM yielded

very good results in terms of classification.
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Figure 6.24: Training labels and testing classification
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6.3.3 Size of networks

Although no mathematical optimisation procedure was performed, the size of the static and dynamic
networks was optimised with manual iterations. To improve network generalisation, the networks were
kept as small as possible to avoid overtraining. This also helps to improve training speed. If larger
network sizes were used, the training was slow and the network could not generalise properly. If feed
rate or cutting speed was included in the networks, a larger network size had to be used. In general, a
middle layer of five neurons sufficed for a network with no machining parameters. If machining pa-

rameters were included, a middle layer of approximately ten neurons had to be used.

As an example, a result of three different static NN sizes is shown in Figure 6.25. A FF network with
five neurons in the middle layer is compared to the same type of network with 15 neurons in the mid-
dle layer. The result from another network, with two large hidden layers is also shown in the figure. It
can be seen from the figure that despite the fact that the larger networks can also follow the tool wear,
they are much more prone to noise and can even become unstable if it encounters a noisy measure-
ment.
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Figure 6.25: Different network sizes (Aluminium turning)
6.3.4 Training algorithm

The static networks were FF networks with backpropagation as a training procedure. The method was
fast and accurate enough for the application without any convergence problems. In the case of the dy-
namic algorithms, a number of different algorithms had to be investigated to achieve fast on-line train-

ing. With conventional training procedures, convergence was slow or not at all.

The different optimisation algorithms that were investigated are discussed in Appendix D. These are
ETOP, SQSD and LFOP. It was found that the gradient methods are fast but it is difficult to determine
the gradient function with the correct step size due to the dynamic nature of the network. This is be-
cause the input data is always changing. The gradient must be determined by a finite difference
method and the step size for finite differences is very important to ensure an accurate estimation of the
gradient, especially with noisy functions. It was found that the gradient methods improve for dynamic
training when the step size is decreased linearly when the objective function approach zero.

148




University of Pretoria etd — Scheffer C 2003  CHAPTER 6: Investigation

It was then decided to investigate another method that does not utilise a gradient calculation, and this
was found in the PSOA. It was found that the PSOA provided quick and accurate training and rarely
fails to converge. Furthermore, the PSOA does not have the problem of calculating gradient functions,
and the random nature of the algorithm is ideal for this application. It was concluded that the PSOA is
the best choice for on-line training of dynamic NNs.

6.3.5 Repeatability of simulations

Another important test for any implementation of NN is to determine the repeatability of simulation
results. This involves re-initialising and re-training all the networks and repeating the simulation on the
same data. This was repeated for several data sets, and an example is plotted in Figure 6.26. Due to the
nature of the PSOA and various convergence criterions to enforce generalisation, the simulations are
not expected to be exactly the same every time, but should at least be very similar. This can be ob-
served from the various simulations in Figure 6.26. Each follows the same progression of tool wear but
they are not numerically the same. It can thus be concluded that the simulations are repeatable with

newly trained networks.
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Figure 6.26: Repeated simulations with newly trained static NN
6.4 Conclusion

In this chapter, it was shown that:

e The coherence function is a method that can assist in TCM but is not universally applica-
ble.

e Wavelet analysis can sometimes improve the accuracy of a TCMS but the same result (if
not better) can be reached by simple digital filtering procedures.

e TFeature selection could be done by the correlation function method and the SOF. PCA is
another useful method and including the 1% principal component as another data feature
can improve the accuracy of a TCMS.

e Engineering judgement remains the most important step of feature selection and care must
be taken to avoid 100% linearly correlated data.

e Different modelling methods can assist in the Al method of TCM, but not all methods are

universally applicable and often increase the complexity of required experiments and
149



CHAPTER 6: Investigation

2002

University of Pretoriaetd—=-Scheffer€—2003
mathematical formulation unnecessarily, making these methods insufficient for on-line
implementation.
- Attempts were made to improve the formulation of the NNs in the Al approach for TCM
by investigating network type, activation functions, network size and training algorithms.
Comparisons between formulations were made and it was also shown that the result of the
new formulation is repeatable.
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7. Conclusion and recommendations

7.1 Preface

In this chapter, the final conclusions of the research are represented in a bulleted manner to make the
conclusions and contributions clear and concise. The conclusions are grouped into sections dealing
with measurement, signal analysis and modelling issues. The conclusions are measured against the
specific objectives, listed in Section 1.5. After the conclusions, some recommendations for future re-
search in this area are made. The recommendations are specifically aimed to continue the current suc-
cess with employing NNs for TCM in industry. Recommendations are also made on the broad scope of
hardware and software issues related to this work.

7.2 Conclusions

7.2.1 Summary of conclusions

A new Al approach for TCM is proposed. It was shown that the method:

* can monitor two wear modes accurately during hard turning with inclusion of machining parame-
ters,

e monitor flank wear in interrupted cutting of Aluminium on a shop floor with varying feed rate.

e utilises the advantages of Al using a combination of NN that estimates the wear values based on
basic knowledge (static networks), past knowledge (dynamic networks) and present knowledge
(on-line sensors) and can be used with cost-effective hardware instead of expensive laboratory
equipment

e is the first industrial implementation of an Al approach to TCM, and provides a useful solution to
industry,

e provides significant new knowledge as to how to solve the problem of TCM.

When measured against the general objectives in Section 1.5.1, it can be stated that the objectives were
met adequately.

7.2.2 Signal measurement

In this research, several sensor approaches were investigated. An exhaustive survey of research and
industrial developments was also included and the following conclusions are made:

o Sensors for TCM in industry must be cost-effective, robust and reliable. A measurement as close
as possible to the point of metal removal is absolutely essential for continuous tool wear estima-
tion.

o AE sensors can be used on a shop floor situation because they are robust, small and easy to in-

stall. However, they are not reliable for continuous wear estimation due to a lack of physical in-
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terpretation of the obtained signal and their sensitivity towards unrelated process noise. AE sen-

sors are however very efficient for tool breakage detection and other applications in machining
process monitoring.

Vibration monitoring assist in collecting the dynamic behaviour of the machine tool and if vibra-
tion signals are processed by an expert a continuous wear estimation can be achieved. A difficulty
still lies with appropriate interpretation of vibration signals and some basic ways of analysing the
vibration signals were presented in this work. An advantage is that wideband accelerometers spe-
cifically for machine tools are available although they are somewhat expensivé.

It was shown that measuring a parameter related to the cutting force can achieve cost-effective
and reliable TCM in industry. This was accomplished using strain gauges. The strain gauge ap-
proach has several advantages:

low cost

robust

small

measurement close to point of metal removal

wireless signal transmission possible

does not change dynamic properties of machine

9 O o O Q 0O

3-D cutting force can be determined with reasonable accuracy

o wideband frequency analysis possible
Thus, the strain gauge combines the advantages of force and vibration sensors in one simple
package. The optimal position of strain gauges on the tool holder was determined using the FEM.
Furthermore, static and dynamic testing procedures were presented to calibrate the strain gauge
system to reconstruct the cutting forces. The measurements were insensitive to clamping condi-
tions, materials and other vibrational effects.
It was shown how an automated data logger can be built cost-effectively. The data logger utilises
an overload protection device, amplifiers, filters, A/D conversion and a computer with C++ soft-
ware. Drift (due to temperature effects) compensation is provided and the system could be moni-
tored though the Internet.
Another advantage of the data logger approach is that the tool wear is recorded under realistic
conditions (hence not an accelerated tool life test).
Care must be taken to avoid electrical disturbances when applying sensors on machine tools.
Proper earthing and cable shielding are essential.
Other methods besides force and vibration based approaches have yet to show that they can pro-

vide an acceptable solution for continuous wear estimation in industry.

Measured against the signal measurement objectives in Section 1.5.2, these conclusions exceed the ex-
pectations set in the objectives. All objectives were met adequately.

7.2.3 Signal processing

Another important step for successful TCM is the signal processing that is employed. Appropriate sig-

nal processing methods must be used to generate signal features that correlate or indicate tool wear.
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The best features must then be selected to be used as an input to a wear model or decision-making

technique. The following conclusions regarding signal processing are made:

o The type of signal processing that will generate reliable features for TCM depends on the type of
operation, machine and sensors. As a general rule, the following analyses should be included
(when available):

o Static forces as features

o Frequency analysis of force and / or vibration to identify wear sensitive frequency
ranges as features

o AEmms as a feature (usefulness of AE frequency analysis is debatable)

o Time domain features

o Statistical features

o Time-frequency investigation for non-stationary behaviour

e Using one or several of the techniques listed above, wear sensitive signal features can be gener-
ated. The signal features do not have to be insensitive to controllable machining conditions.

e The usefulness of wavelet analysis for TCM is debatable. Using wavelets adds to the complexity
of the TCMS and using an appropriate selection of digital filters can achieve better results.

e A combination of features derived from time, frequency and statistical analyses will yield the best
results. A TCMS should not be based on features from only one of the domains.

e Identifying internal and external disturbances to the signal features can assist in interpretation of
the signals and features. Disturbances should be avoided, or their effect removed from the signals.
It was shown how a SOM analysis could assist in data mining for data collected from machining
processes. The result can be used to identify and avoid disturbances in experimental data.

e Feature selection or feature space reduction can be achieved through various automated methods.
Methods that were used in this study was:

o Correlation Coefficient Approach (CCA)
o Statistical Overlap Factor (SOF)

o Genetic Algorithm (GA)

o Principal Component Analysis (PCA)

e Combining the CCA and SOF for feature selection yielded the best results and is most suitable if
a quick and simple method is required. The GA is somewhat slower and requires more trial runs
(a GA procedure must always be repeated several times to ensure that the global optimum was
reached).

e Using only the Principal Components as features is generally not reliable for TCM. It was shown
that including the 1% principal component as an additional feature can improve the result some-
what. However, the adaptability of the PCA toward small changes in the process conditions must
be investigated before industrial application.

e The most important aspect of feature selection is engineering judgement. Care must be taken not
take 100% linearly correlated data. However, using features that show some degree of correlation
is not wrong, if the features were generated from different sensors and also using different signal
processing methods. Hence, an appropriate combination representing different sensors and proc-

essing methods yields the best results. However, care must be taken not to choose too many fea-
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tures. If a single sensor single feature approach works very well, adding more features will proba-

bly worsen the situation. In the case of TCM, it was found that the single feature approach is gen-
erally not reliable due to noisy conditions and therefore sensor / feature fusion is required. As a
general rule 4-10 features could be used.

The objectives listed in Section 1.5.3 were met adequately.

7.2.4 Modelling and monitoring

Different techniques of modelling were investigated during the course of this research. The following
conclusions are made:

Analytical / theoretical modelling is of limited use to TCM. The models suffer from many limita-
tions and might never reach the level of sophistication where a model is available for any process
without experimentation. Furthermore, tool wear cannot be described by these methods.
Numerical / simulation models are reaching a level of sophistication where most processes can be
modelled with any combination of materials and geometry. Because the methods require a lot of
expertise and time, they are not feasible for on-line implementation but can be considered as an
additional tool for either treating the effect of new cutting conditions or as verification of the ex-
perimental models.
Empirical / experimental modelling is the only remaining option. Many different approaches ex-
ist, for instance parametric or non-parametric approaches. Al modelling also has a non-parametric
empirical nature. In this research, it was shown for the first time that the AI method can work ef-
fectively on shop floor conditions.
The use of a mechanistic model proved unsuccessful due to some basic assumptions within the
model that do not apply to a diverse range of turning operations.
In this research, it was shown that the growth of tool wear is always unique and unpredictable. As
a result, the sensorless approaches to the tool wear problem will not be effective enough if optimal
tool use is required. The sensorless approaches yield a tool life equation that will only be an esti-
mation of the real tool life. With sensor-based methods, the tool life is monitored.
An Al method of monitoring is proposed based on Neural Networks (NNs). The method utilises
combinations of static and dynamic NNs. The method has several advantages:

o Excellent generalisation capabilities
Effective use of temporal information
Insensitive to noisy data
Machining conditions (e.g. feed rate and speed) can be included
Insensitive towards clamping conditions and other external disturbances
Combines the use of current and historical data as well as a knowledge basis
Same architecture applies to different turning operations

c O 0 0O © e ©

The method can follow any geometrical development of tool wear
o The method can follow more than one wear mode (e.g. flank wear and crater wear)
Several NN architectures were compared for use on the static NN level. It was found that the in-

clusion of time delays requires a slightly larger network with more training. The inclusion of the
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time delays did not yield a further improvement. Radial Basis Function (RBF) networks, Multi-

layer Perceptron (MLP), Elman type networks and FF networks with different activation functions
were compared. Most yielded acceptable results. It is suggested to use the Elman or FF network
with the “tansigmiod” activation function for best results.
The methods employed in this research to ensure generalisation capabilities of the static networks
were early stopping and using a small network. It was shown that a too large network or over-
trained networks cause instabilities.
Several new optimisation algorithms were investigated for training the dynamic NNs, because it
was found that conventional methods are too slow for on-line implementation and do not always
converge. The Particle Swarm Optimisation Algorithm (PSOA) was found to be best algorithm
for on-line training. The PSOA has the following advantages:

o Fast and reliable

o Simple formulation and implementation

o No gradient function evaluation required

o Random nature of optimising ideal for NNs

o The method outperforms other methods in unconstrained global optimisation
The Al monitoring method was trained, validated and tested on separate data sets. It was also
shown that the results are repeatable after re-initialisation and training of the static NNs. The dy-

namic NNs converge within a few outer steps after re-initialisation.

Measured against the signal measurement objectives in Section 1.5.4, most conclusions exceed the ex-

pectations set. In the area of numerical models more research is required, and this is explored in Sec-
tion 7.2.3.

7.3 Recommendations

7.2.1 Measurement

The following suggestions can be made for future research with respect to signal measurement:

optimise the number, size and position of strain gauges on tool holder.

investigate the possibility of an on-board strain gauge amplifier on tool holder

develop better mechanical protection for strain gauges

investigate the industrial implementation of wireless data transfer

attempt constructing a sensor-integrated tool for larger tool holders

use mechanical amplification on tool holder (e.g. holes that cause stress concentrations)

extend the Internet monitoring capabilities of the system

7.2.2 Signal processing

Many signal processing methods were investigated in this study. Future work should be directed to-
wards feature selection or feature space reduction. Other techniques that have been mentioned in the
literature but not considered in this work are for example octave analysis and bispectrum analysis.
These might prove useful for future research. It is however suggested that other types of machining
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operations be investigated. The type of operation also determines which signal processing technique
will be most effective. It might require the development of a custom technique.

7.2.3 Modelling

A significant improvement in the use of the on-line AI method would be to minimise the amount of
training data required for successful implementation. Future work should be mainly directed towards
this topic. The disadvantage of NNs (and many other experimental) models is that they require training
/ calibration data for the range of conditions they are expected to operate on. A NN cannot be expected
to yield accurate results for previously unseen machining conditions (although it might perform to sat-
isfaction, it cannot be expected a priori). Thus, methods of normalising data with respect to machining
conditions should be the main focus of future work. Consequently the NNs do not need to be trained
for every condition. The use of numerical models to achieve this is one attractive option and should be
investigated in future, such as a simulation model described by Weinert and Zabel [244]. The use of
any kind of experimental model will basically have the same influence as including the machining
conditions in the AI approach, as was done in this research. The advantage of a numerical model
would be that no experimental data is required, and therefore no adjustments to the TCMS would be
required when a machining condition change. Present analytical models will not provide a solution to
this problem.

Future work can of course also include the integration of the current system into the CNC machine,
instead of a separate stand-alone device. Additionally, the exact machining parameters and machining
profile could be provided to the TCMS in this way, and the machine can be automatically shut down
when excessive wear is detected.

7.4 Contribution

Despite exhaustive investigations, conversations and communications with researchers and industrial
representatives worldwide, the author could not find a single example of a TCMS using Al that was
proved to work on industrial data (also refer to Section 1.5.6). Thus, this research has overcome the
difficulties involved with a real implementation of the Al method for TCM. This was achieved by de-
signing, developing, and building the system from start to finish (hardware and software). This re-
quired insight into many different disciplines, e.g. electronics, structural dynamics, NNs, mathematics
(optimisation and statistics), manufacturing, signal processing, data acquisition and computer pro-
gramming. A suitable combination of knowledge from the different disciplines enabled a unique solu-
tion to the TCM problem, and is claimed to be the first practical implementation of a TCMS using AL
The formulation and application of the Al tool wear monitoring method proposed is unique in terms of
its formulation and application, and was shown to outperform other Al approaches. This contribution
provides a significant improvement towards more cost-effective, reliable and accurate tool wear moni-
toring.
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APPENDIX A

A. An overview of commercial sensors for TCM
A.1 Introduction

Although many researchers have considered the complex problem of TCM in many different ap-
proaches, a need still exists for adequate sensors for TCM. Many authors state that force and vibration
sensors yield the best results in a TCMS, although a number of different approaches proposed by oth-
ers also yielded satisfactory results. This includes methods like ultrasonic sensing, laser focus methods,
temperature measurements and optical methods and Acoustic Emission (AE) monitoring. However,
most of these sensors seem to be operational only in laboratory setups. In the case of AE, many authors
have had success in establishing a reliable AE methodology for TCM, overcoming the sensor prob-
lems. The use of AE for TCM has also found its way into industry. However, there is still a lack of un-
derstanding / interpreting the AE signals generated during machining. As was shown in Chapter 4, the
trends in the AE signal due to tool wear is not very consistent, and it will not always be possible to
utilise AE for any TCM problem.

As far as the other methods are concerned, they are not without their respective shortcomings. For in-
stance, the presence of cutting fluid and chips breaking away from the workpiece have a very large
impact on the performance of vision-based systems. Although tool wear and cutting temperature are
closely related, it will not be wise to design a TCMS based only on this feature. Also, the presence of
coolant will make this approach impossible. Figure A.1 shows a sensor selection table for TCM sug-
gested by Montronix [245]. The table suggests force measurement for tool wear monitoring. However,

the performance of any sensor is always process dependent, and therefore this table must not be used
as the ultimate sensor reference guide.

The sensor problem in the case of vibration and cutting force still require further developments. Dimla
[41] state that the monitoring of both vibration and cutting force is of indispensable value to successful
TCM. In the case of the cutting force, the static and dynamic component of the force is of importance.
The dynamic behaviour of the cutting process is embodied in the vibration and the dynamic cutting
force. In industry only the static cutting force is used for TCM, but this is mainly due to the fact that

the physical measurement, analysis and interpretation of the dynamic component is more complex.

Due to nature of the machining environment, very robust sensors are required to monitor tool vibra-
tions and cutting forces. Usually, a need exists to monitor as close to the machining process as possible
to minimise the effect of external influences on the sensor performance. However, cutting fluid and
chips breaking away from the workpiece can damage a sensor beyond repair.
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Figure A.1: Sensors for TCM, as suggested by Montronix
Key:

® Common, recommended application
©® Acceptable depending on application, but may not be preferred solution.

O Unusual application - generally not recommended.

Also, in order to develop a TCMS for use in industry, sensors must have a realistic lifetime of at least a
few years (also refer to sensor requirements listed in Chapter 3). Many modern sensors comply with
some of these requirements, but a vibration or force sensor that complies with all of these requirements
does not exist yet. This gives rise to another issue: Should a new sensor be developed specifically for
TCMS, or should the designer of the TCMS attempt to get best results with available sensors?

The difficulty with the first question is the fact that there are so many different processes. Thus, a proc-
ess specific sensor will probably not justify the costs involved. However, in the case of cutting force
monitoring, Kistler [246] developed a range of sensors to monitor cutting forces for particular
processes like turning, milling, drilling, grinding and even micro-machining. In the case of acceler-
ometers, a need still exists for more robust and smaller sensors that can be integrated into the tool
holder. A few sensors developed by Kistler and PCB are available that can be used for TCM applica-
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tions. The design of more reliable sensors to continuously monitor machining processes is a topic for
future research. Some researchers have already identified this niche market and are currently working

in this area [32,103, 232].

Despite the large number of research papers that have been presented on the subject of TCM, very lit-
tle found their way into industry [247]. This is mainly due to the practical limitations to obtain reliable
sensor data on the process. Modern machinery such as CNC lathes and milling machines are equipped
with relatively simple TCMS, such as monitoring of the spindle power consumption for detecting tool
breakage during unmanned machining. However, these methods are not nearly sensitive enough to es-
timate tool wear. An overview of commercial sensors for TCM follows, followed by an overview of
commercial TCMS in Appendix B.

A.2 Force-based monitoring

It is well recognized that worn tools cause an increase in the cutting force components. Many types of
sensors have been developed to monitor the cutting force in different directions for a number of proc-
esses. These include [5]:

A.2.1 Direct measurement dynamometers

These sensors are based on the piezoelectric effect and can measure static cutting forces very accu-
rately. However, these sensors are very expensive and in most cases not protected from overload, and
therefore not widely used in industry. There is also some difficulty in protecting the sensors against
cutting lubricants. Force-measuring tool turrets have been developed that can measure three force

components, but these still have a very high cost. Kistler is the leader in supplying force dynamome-
ters for machining processes.

Most academics active in the area of TCM have used the Kistler dynamometers for cutting force meas-
urements. These are usually two or three axis quartz dynamometers. Quartz is a natural crystalline ma-
terial with extreme ruggedness and ultrastability. The piezoelectric force measuring system differs
fundamentally from most other methods. The forces acting on the quartz elements are directly con-
verted into proportional electrical signals, and the resulting displacement amounts to a few thousands
of a millimetre. Dynamometers are very accurate and can measure quasi-static forces. Their frequency
range is unfortunately fairly low, allowing dynamic force measurements to about 1kHz. Many differ-

ent types of dynamometers exist, developed for specific machining operations.

The Kistler Three Component Dynamometer 9121, shown in Figure A.2, is a quartz three-component
dynamometer for measuring the three orthogonal components of a force. The force components are
measured practically without any displacement. The sensors are fitted so that they are ground isolated.
This largely excludes ground loop problems [246]. The dynamometer is corrosion-resistant and pro-
tected against penetration by spray water and cutting fluid. The control unit of the dynamometer is
easy to operate and contains a power pack and a keyboard with status displays together with a connec-

tor for signal input. The output voltages are proportional to the forces occurring at the tool tip. Figure
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A.3 shows a recently developed three-component dynamometer for hard turning [248].

Figure A.2: Kistler Three Component Dynamometer 9121 [246]

Figure A.3: Kistler 7914 dynamometer for hard turning [248]

The IntelliTool developed by Sandvik is a force sensor integrated tool holder for machining centres,
developed around 1995. A spokesperson from Sandvik confirmed the existence of the IntelliTool, but

stated that it is not in production anymore. Sandvik is currently not exploring further developments of
the IntelliTool concept.

A.2.2 Sensors in plates and rings

Force-measuring plates can be fitted relatively easy on turning machines between the turret housing
and the cross slide. These thin plates are fitted with piezoelectric force measuring sensors. This ap-
proach has some advantages, but is subject to many disturbing factors such as thermal expansion.
Montronix provide a fairly wide range of force sensors for TCM, primarily used for fixed tool applica-

tions such as lathes, presses, and broaches. Typical sensors from Montronix are shown in Figure A 4.
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Figure A.4: Montronix force sensors [245]

The Montronix RetroBolt is a retrofit force sensor typically used on turret and tool block lathes. This
single axis sensor is installed as a washer under a bolt head. The selected bolt must be in the load path.
The sensor measures the small changes in bolt tension resulting from cutting forces exerted on the tool.
Typical monitoring performance using the RetroBolt includes overload detection, machine protection
and detection of catastrophic tool breakage in roughing applications. Examples of ring-shaped force
transducers from Montronix that can be fitted on a CNC machine are shown Figure A. [245]. Kistler
also offers a number of ring-shaped sensors that can be fitted in a similar way onto CNC machines.
Some sensors offer the possibility for 3-component force monitoring. An advantage of using these sen-
sors is that their frequency range is higher than dynamometers, and the cost is lower. The disadvantage
is that force must be transmitted through the machine structure to the sensor, in contrast to dynamome-
ters, which measure the cutting forces directly. However, the sensors are very robust and can be used
for a wide range of machining operations. An example is shown in Figure A.6.

Figure A.6: Force sensor from Kistler [246]
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A.2.3 Pins, extension sensors

These sensors are suitable for tool breakage monitoring in rough machining. They are fitted on force-
carrying machine components to detect the cutting force indirectly. Transverse and longitudinal meas-
uring pins (e.g. Kistler 9243A/9241C) measure quasi-static and dynamic strains in the structure of ma-
chine components or fixtures. The sensors are installed in 5-10 mm holes. Owing to the larger measur-
ing range (length of pressure bar) an axial measuring pin creates a larger measuring signal than a radial
pin. Both sensors are insensitive to forces acting transverse to the chosen axis. In view of the unavoid-
able interference and the fact that these sensors generally possess a low level of sensitivity, they are
normally only suitable for breakage identification during rough machining and for press force monitor-

ing. The identification of a suitable fitting position can only be determined experimentally, which is
another disadvantage.

A.2.4 Measurement of displacement and strain

Non-contact sensors to measure the displacement or bending of tools can be mounted directly on the
tool holder. However, these sensors are subjected to the high risk of damage and disturbances due to
chips, dirt and cooling lubricant. It is relatively easy to retrofit various strain and displacement sensors.
Their working principle is indirect force measurement. A quartz strain transducer can be mounted on a
part of the machine where the mechanical stress is large and disturbances are low.

All force transmitting parts in machines and fixtures are deformed elastically by the forces acting on
them. As a result of this deformation, a detectable displacement occurs on the surface of the force
transmitting parts. Because of high machine rigidity, the elastic deformations are extremely small. A
strain sensor development for measuring dynamic and quasi-static forces on stationary and moving
machinery is the Kistler 9232A strain sensor. Its high sensitivity and acceleration-compensated design

allows a sensor application on fast running process machinery. The sensor is shown in Figure A.7.

Figure A.7: KISTLER strain sensor 9232A [246]

The PCB dynamic strain sensor has also proved its worth in TCM applications [165]. These are very
small sensors that can be adhered on the holder close to the tool tip. Another advantage of this sensor
is the fact that it is extremely sensitive and can measure dynamic strain accurately in the range of SHz -
10 kHz. One disadvantage though is the fact that they cannot estimate static strains, which would be
useful for estimating the static component of the cutting force. Induction-based distance sensors are
capable of resolving displacements of as little as 5 nm resulting from forces acting on machine parts.
Examples of such sensors from leading suppliers are shown in Figure A.8.
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Figure A.8: Induction-based displacement sensors

Resistance strain gauges are widely used for stress analysis, but are not often found in TCM applica-
tions. A standard design of such a sensor consists of a 0.025 mm layer of polyimide film that covers
the gauge except that portion of the tab necessary for lead attachment. The polyimide overlay provides
protection of the sensing element during installation handling, and promotes better long-term stability
with the foil grid protection from airborne contaminants or fingerprints. Figure A.9 shows how HBM
resistance strain gages are applied to the shaft of milling tools [248,239].

Sensor type:
HBM 350 LY 41/
350 XY 41

Figure A.9: HBM resistance strain gage application [248]
A.2.5 Force-measuring bearings

Bearings and bushes can be specially fitted with strain gauges in certain positions to measure cutting
forces. Force-measuring bearings require a low-pass filter due to disturbances from the ball contact
frequency, and therefore high frequency signal processing is not possible. The force-measuring bushes
are only accepted in special cases because they reduce the rigidity of the machine.

A.2.6 Force and torque at spindles

These systems can be very complex because they have to monitor the torque of the spindle with high
resolution and within the entire range of the motor. Furthermore, the signal must be transmitted on a
non-contact basis. The installation of such a system is not possible on most machines due to the limited
space available for sensor mounting. The Kistler two-component high-speed dynamometer type 9125A
is a part of a rotating cutting force measuring system and allows measurements of both the axial feed
force and torque on the rotating tool. The instrument consists of a two-component piezoelectric sensor,
a built-in charge amplifier and a built-in two-channel telemetry system for wireless data transmission.
The main advantages of such a machine tool integrated, rotating cutting force measuring system are:

e The force measurement is directly on the rotating tool holder, i.e. the signal is recorded close to
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the tool tip.

® A constant mass of the measurement unit is given, i.e. a steady resonance frequency of the dy-
namometer is realised, since the changing workpiece mass is not connected to the dynamome-
ter.

e Low and constant inertia forces are acting during the cutting process.

e Any orientation of the dynamometer is possible.

Much more accurate tool and process monitoring can be achieved by measuring mechanical torque di-
rectly instead of measuring the power consumed by the spindle motor. It is especially useful for tap-
ping and a multi-spindle application where power monitoring is insufficient. The sensor can monitor
tool wear, tool breakage, did-not-cut condition, thread depth, oversized or undersized pre-drilled holes,
and damaged or missing threads on taps.

A torque tool sensor that uses strain gauges for torque measurement and non-contact signal transmis-
sion 1s manufactured by Artis. This sensor consists of a rotor integrated in the tool shaft and a stator
mounted firmly on the machine frame. The rotor forms a tight ring in the upper part of the tool shaft or
of the clamping chuck and contains the full bridge strain gages and the electronics for acquiring and
transmitting the values measured. The stator is installed approximately 5 pm away from the rotor and
serves both as the transmitter of the power supply and as the receiver of the signal.

Montronix introduced a torque sensor based on magneto-elastic sensing methods (Accu-Torque),
which has magnetic properties that are affected by mechanical torque. The sensor includes a small
torque-sensing ring integrated onto the rotating spindle shaft, and non-rotating pick-up. The ring con-
verts mechanical shaft torque into a linearly proportional magnetic field. The pickup converts this field

into a linearly proportional electrical signal and acts as a non-contact means of gathering shaft torque
information.

Excellent rotating quartz four-component (Fx, Fy, Fz and Mz) dynamometers for measuring cutting
forces and torque on a rotating tool spindle are also available from Kistler. However, because of their
high cost they can be considered as laboratory tools only. Examples are shown in Figure A.10.

Figure A.10: KISTLER RCD 9123 sensor used in drilling and milling applications [246]
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A.3 Measurement of motor current

The measurement of motor current is an easy alternative to the above-mentioned systems and can be
installed without much difficulty. A wide range of sensors is available for this purpose. However, due
to fluctuations in the signal due to friction, this approach is not accurate. Furthermore, tool breakage is
not detected directly, but only after damage has occurred. Spindle power is also proportional to the cut-
ting force in the primary motion, which is not always sensitive enough for TCM. The cutting process
consumes only a small portion of the measured power of the spindle, which also makes monitoring dif-
ficult. However, monitoring systems based on the principle of spindle current can be successful when
used with an appropriate process. Such sensors are often found in the automotive industry in drilling

and tapping applications. A typical sensor for estimating the spindle power is shown in Figure A.11
[249].

Figure A.11: Hall-effect sensor for measuring spindle power [249]

A power sensor measures the spindle or axis drive power for AC, DC or variable frequency motors
(frequency range 0-200 kHz). In all commercial applications currently available, power is measured
directly by means of a voltage and current measurement. The power sensor is installed directly in the

electrical cabinet, and measures with 1-3 Hall effect sensors. A typical application is shown in Figure
A12.

control cabinet
of a standard machine tool

converter for
Hall-sensors of
pindle and slideway
drive conduction

Hall-sensor on

Hall-sensor on spindle conduction

slideway conduction

Figure A.12: True power sensor by Artis [250]

Use of three balanced Hall effect sensors eliminates large phase shift errors. When two sensors in two
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phases are used, the third current quantity results from the two that are measured, making it possible to
take the usual grid fluctuation between three phases into account. Effective power measurement has

the advantage over simple current measurements in that the idle current, which provides no informa-
tion about the motor load on the tool, is not measured. Power is linear, so that a change in motor load
is a change in power. Current is not a sensitive indicator of power at low loads in three-phase motors.
The sensor can provide an indication of a missing tool or tool wear in certain applications. Using an
additional logarithmic signal amplifier, small tools can also be monitored. If the power-measuring
curve is wavy, or displays ripples, peaks or even brief collapses (<1s), the power measuring value can
be smoothed. The quality of effective power monitoring depends largely on the relationship between
the cutting power and the nominal drive power of the motor. This means that small tools (such as drills
with a diameter of less than 1mm) can be monitored only on tight fitting spindle drives. Owing to the
inert masses, the output signal has a low-pass filter characteristic. Therefore, tool breakage is not de-
tected directly, but only after consequential damage has occurred. In many cases, force, vibration or
AE signals have to be used as complementary information to extend the capability of the monitoring
system.

A.4 Acceleration measurement

Piezoelectric accelerometers can measure the machine vibration caused by oscillations of the cutting
forces. It is known that vibration levels change with tool wear. Some accelerometers are inexpensive
and can measure vibration levels within a very wide frequency range. For these reasons, accelerome-
ters are often used for TCM [5,41]. Miniature accelerometers available on the market are not always
robust enough to withstand cutting fluid and chips for very long. The ones that may be able to with-
stand the environment are either too big or cannot measure in the frequency range of interest. The sen-
sor cables must also be watertight, and preferably inside a steel shielding. Hence, a dedicated acceler-
ometer must be used for machining process monitoring. The development of an accelerometer inte-
grated into a tool holder is definitely a worthwhile research topic. Such a system was recently pro-
posed by Lago [32]. Lately, there have been some interesting commercial developments as far as ac-
celerometers for machining process monitoring are concerned.

The Kistler Piezotran® 8694 is a miniature triaxial accelerometer with integrated impedance converter
and low impedance output for measuring dynamic accelerations, vibrations and shocks. The sensor is
shown Figure A.13. For power supply and signal processing each channel needs a Piezotron® coupler.
The accelerometer is especially well suited for applications where minimum mass, small mounting di-
mensions and high resonant frequencies are essential. The sensor can be glued directly to the object or
to mounting adapters. A contact adhesive is recommended for mounting, but double sided adhesive
tape or wax is also acceptable for some applications. Kistler also manufactures a range of other accel-
erometers that are suitable for machining process monitoring, and some are shown in Figure A.14.

These vary and size and specification, and hence there is a suitable sensor for almost any application.
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Figure A.13 KISTLER Piezotran® 8694 accelerometer [246]

Figure A.14: Kistler three-component accelerometers for TCM [246]

The IMI 356A11 miniature triaxial ICP® accelerometer, depicted in Figure A.15, is a miniature, four-
gram, hermetically sealed titanium accelerometer. The hermetic titanium case provides a rugged, reli-
able sensor for minimal mass loading during triaxial vibration measurements. The 10mV/g output from
ceramic shear mode sensing elements provides a wide measurement range from 2 to 10 000 Hz (£5%)
in the “Z” axis and 2 to 7 000 Hz (£5%) in the “X” and “Y” axes. The 10ft integral shielded cable

terminates in a four-pin connector. This robust and small sensor would work well for TCM
applications. @~ [ S v

Figure A.15: IMI 356A11 Miniature Triaxial ICP® Accelerometer [251]

An accelerometer that can be used in a corrosive environment compatible with 304 Stainless Steel
(SS), and survive long term submersion in water (including the cable) is ENTRAN’s EGS Series. Its
case is fabricated from 304SS with welded seals and its cable is sheathed with a 3.2mm diameter soft

annealed SS tube, which can be easily bent or shaped for routing around corners. The sensor is shown
in Figure A.16.
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Figure A.16: Entran EGS series [252]

Montronix supplies the BV100 sensor designed specifically for application on machining centres that
use a wide variety of tooling. The sensor is shown in Figure A.17. The sensor boasts an extremely
broad frequency range for improved sensitivity to the condition of small and large diameter tools. It is
easily to install: The 5 meter cable is rated to [P67 and NEMA 6 industrial standards and is shielded
against electro-magnetic interferences, hence 100% inner and outer shielding. An inner polyurethane
jacket protects against coolant damage and the stainless steel verbraid protects against hot chips and
sharp corners. It can be used to detect missing tools, broken tools, out-of-tolerance parts, machine col-
lision and severe process faults. It is also possible to monitor excessive vibration on bearings or spin-
dles. The vibration sensor is easy to install on new or existing machines.

Figure A.17: Montronix accelerometer BV 100-XA [245]

The Kistler 8730A500 miniature K-Shear® accelerometer combines a reliable, easy to handle connec-
tor with an integral stud to create a lightweight accelerometer that fits into narrow areas [246]. The
hermetically sealed titanium case and quartz sensing elements ensure proper mechanical protection.
The sensor is shown in Figure A.18

Figure A.18: Kistler 8730A500

Prometec supplies a number of sensors for TCM, optimised for use with their other TCM hardware.
These sensors include: force, torque, displacement, strain, position, hydraulic pressure, power, AE, and
vibration. All of these sensors are robust, and designed specifically for the purpose of TCM [253]. The
force and vibration sensors from Prometec are shown in Figure A.19.
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Figure A.19: Force and vibration sensors from Prometec [253]

The ICP compatible “Spindler” accelerometer from PCB, shown in Figure A.20, is especially designed
for machining process monitoring. The accelerometer is provided with a stainless steel cable shielding
that can withstand cutting fluids and chips. Furthermore, the sensor can swivel around its base, making

it easy to install in limited space applications.

Figure A.20: Spindler accelerometer from PCB piezotronics [251]
A.5 Acoustic Emission (AE) monitoring

Cutting processes produce elastic stress waves that propagate through the machine structure. Different
sources in the cutting process generate these stress waves known as Acoustic Emission (AE). AE is
defined to occur in the range of 50kHz - 250kHz. An AE sensor measures the high-frequency energy
signals produced by cutting processes. When a tool breaks, the sensor also measures the AE energy
resulting from the fracture. An AE sensor is best suited to applications where the level of background
AE is low compared to that of tool breakage. The sensor is easy to install on both new and existing
machines. In combination with true power, it increases the reliability of breakage monitoring signifi-
cantly. It is used especially with solid carbide tools, or very small tools on large machines and multi-
spindles. Most AE sensors have to be attached to the machine tool surface (sometimes with different
mounting variants, e.g. side, top, or bottom connection, and spring disk fixing). An example of mount-
ing for a drilling application is shown in Figure A.21.
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Figure A.21: Kistler AE 8152A1 sensor mounted

The primary and secondary cutting shear zones are important sources of AE. In the presence of flank
wear, the interface between tools and work materials becomes an additional zone of AE generation due
to intensive friction between the tool and the workpiece surface which move past one another at rela-
tive high velocities. Changes of cutting conditions also affect the behaviour of AE signals.

There are a number of ways through which AE waves are transmitted. The Prometec AEL 200 is a ro-
tating, wireless AE sensor. It is suitable for applications where signals from moving parts have to be
passed to a fixed receiver for analysis and monitoring. When applied in grinding, the sensor enables
precise detection of any sparking, which enables optimisation of the depth setting. Another approach is
the Prometec fluid sound sensor WAE100, an AE sensor that receives the acoustic waves via a jet of
cooling lubricant, which can be connected directly to the tool (or workpiece). The sensor and an exam-
ple of its mounting is shown in Figure A.22. Its advantage over the conventional AE sensors is that it
measures close to the tool tip. The fluid AE sensor allows detection of high frequency stress waves
from moving or rotating workpieces or components, or from materials with very rough surfaces. In
some cases the acoustic waves in the coolant stream are damped so much by the air bubbles that the

resulting measurement is too low. Particles of metal and dirt, on the other hand, do not cause problems.

Although announced a few years ago, a dual-mode sensor for the simultaneous measurement of AE
and one to three orthogonal force components never reached the production line. The advantage of this
dual-mode sensor would be to compliment the force measurement with AE.

Figure A.22: Prometec WAE 100 [253]
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A.6 Other methods

Other methods for indirect / direct tool wear monitoring are:

e non-contact capacitive sensors

® vision systems

e laser scatter methods

e stereo imaging

At the time of the review, none of these methods were available commercially, besides vision systems,

which are available for machining process monitoring in general, but not dedicated to TCM. However,
examples of these systems can be found in the literature (refer Chapter 3).

A.7 Latest developments

A.7.1 SeTac

The Sequoia Triaxial Acceleration Computer (SeTAC) is a device that includes three accelerometers
on each Cartesian axis and a microprocessor for the signal analysis and data communication. SeTAC
belongs to the category of smart sensors, which offer a direct connection between signal recording and
processing [239,248]. Regarding the signal understanding process, the SeTAC sensor aims at integrat-
ing the filtering functionality into the sensor. The SeTac functionality is schematically depicted in
Figure A.23.

Acceleratio Tool wear state

in three

directio = ~ant signal Wor.kpwce surface
: e R 2 :
| information about quality ...
i
| tool wear ...

Figure A.23: SeTAC ftri-axial accelerometer

The accelerometer signals are processed in the SeTAC by a built-in micro-controller that is program-
mable and fully customisable. It supplies simple digital output suitable for common devices, PLCs,
actuators efc. The SeTAC concept is very flexible because it is able to monitor and evaluate a wide
range of phenomena by only changing the installed software. A common Personal Computer (PC) can
be used to upload the programs in the internal memory. The PC can even operate as a user interface
where it is possible to display the waveform, change the filtering and set the thresholds. When the re-
quired behaviour is achieved the configuration can be saved in the memory and the SeTAC is able to
operate without connection with the PC.
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A.7.2 Intelligent tool coating

Various new developments are based on the notion to integrate sensors into the tool coating, e.g. Ger-
man BMBF project IDEE or the EMO 2001 presentation of Kyocera Fineceramics Gmbh. Such a di-
rect measurement would offer the advantage to exclude a large degree of external disturbances that are
normally reflected in any indirect measured signal pattern. The tool coating has to be restructured by
adding several layers of different materials without changing the quality of the coating. By integrating
the sensor in the tool coating the conversion of signal data to process knowledge is extremely simpli-
fied. An example is shown in Figure A.24.

Isolator

¥

conductor

ructure

Laser / Lithography

Layer Il
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T‘c‘)'nl‘ vear protection

Figure A.24: Intelligent tool coating — direct tool wear and temperature measurement [254]

A.7.3 Magnetostricitve torque sensor

A torque sensor based on the magnetostrictive effect was developed by cooperation between Keio
University and Mitsubishi Materials. A diagram of the sensor is shown in Figure A.25. Magnetostric-
tive films are formed onto the sensor shaft. Two circular coils located around the films measure the
torque, since the magnetic permeability of the magnetostrictive films changes with the variation of
torque. Based on the mentioned phenomenon, the torque signal can be transmitted from the rotating
shaft to the fixed coils without any electrical contact. Furthermore, because the detecting elements are
close to the cutting point of the tool, the magnetostrictive torque sensor provides a high quality cutting
torque signal being independent of the workpiece location.

In order to simplify application of the sensor system, the torque sensor is applied to the tool holder. A
prototype of the system together with example signals from a drilling application is shown in Figure
A.26. The development of a magnetostrictive sensor that additionally sense a three component cutting
force being applied on the cutting edge of a rotating tool is also under way.
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Figure A.26: Magnetostrictive torque sensor prototype [248]
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B. Overview of commercial Tool Condition Monitoring Systems
B.1 Introduction

Numerous researchers worldwide have investigated the problem of TCM. However, due to many prac-
tical limitations, not many TCMS are found in industry. The objective of this appendix is to give an
overview of commercial TCMS.

B.2 U.S.A. Patents

Table B.1 lists a number of U.S. patents in the area of TCM that was registered within the last ten
years [255]. The most recent patent was registered in May 2000. During the last 15 years, more than
50 inventions related to the monitoring of machine tool wear have been patented in the U.S.A. These
inventions include monitoring strategies, physical hardware, signal processing techniques and even
mathematical models. However, despite the large number of patents in this field, only a few commer-
cial versions exist. Most of these patents belong to well-known researchers within the field of TCM,
and most of the patents relate to TCM methodologies, and not specific hardware. When looking at this
list of patents, it is unclear why there still exists such an industrial need for TCMSs. The only reason-
able explanation is that the patents were never developed into commercial products, either due to the
costs involved or limited accuracy or applicability in industry. It is also often unclear if these methods
were tested under conditions resembling a realistic industrial environment. If the systems were not

tested under typical shop floor conditions, it remains a question whether they will be effective in
industry.

Table B.1: U.S.A. patents related to TCM in the last 10 years

no. Description

6059494 Tool bit monitoring system for machine tools (2000)

6055484 Tool monitor and assembly qualifier

5904457 Detecting tool wear by thermal monitoring of workpiece

5773949 Cutter fracture detecting system

5587931 Tool condition monitoring system

5542304 Magnetostrictive torque sensor magnetostrictive torque measuring apparatus and condition-monitoring
apparatus for a cutting tool using the same

5414632 System and method for predicting failure in machine tool

5361308 3-D measurement of cutting tool wear

5266929 Metal cutting tool wear indicator method and system

5251144 System and method utilising a real time expert system for tool life prediction and tool wear diagnosis

5212645 Flexible real-time multi-tasking architecture for tool condition monitoring

5076102 Tool monitor (1991)
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B.3 Commercial TCMS
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B.3.1 Montronix

Montronix supply a fairly wide range of TCM products that can be used with most CNC machines.
However, the signal processing methods proposed by Montronix do not employ the state-of-the-art
methods available today. A comparison between the on-line and a reference signal is generally used as
a tool state classification strategy. Furthermore, the positioning of the sensors on machines not always
justified properly. Although the systems supplied by Montronix seem to be the best available on the

market, it lacks the use of modern signal processing techniques that will enhance the capabilities of the
system.

- The systems supplied by Montronix are either stand-alone systems, or integrate with the CNC ma-
chine. A diagrammatic representation of a Montronix system is shown in Figure B.1. In Figure B.2,
some of the hardware for process monitoring is shown. The integrated process monitor works with
open architecture or PC-based machines where the Montronix software directly loads into the operator
interface. A monitoring unit without graphical display is available for other machines (without open
architecture), or an LCD display unit can be used. These systems are mounted on top of the machining
centres. A remote display unit is also available [245].

i

kProcess
shalus

L t © Components suppiled by kontrorix

Figure B.1: Montronix TCM scheme for lathes [245]

B.3.2 Ovation

Ovation engineering developed a CNC tool monitor that can monitor the state of a range of tools that
must be pre-programmed. The features of the Ovation CNC Tool Monitor includes [256]:

e Easy to use and program.

e Very fast response time (less than 10msec).

e Upload and download of all limits via RS232.

e Saves the last 300 alarms with date and time stamp.

e Exfreme, wear and undercut limits for every tool and section.

e Up to 99 tools and 5 sections per tool.

e Parallel or serial machine interface.
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e Monitoring of coolant flow and spindle speed.

e GE Specification Power monitoring.

Integrated process TSIO Pro 7
monitor

Figure B.2: Some of the TCM products from Montronix [245]

Additional transducers can be added to allow a different range to be used for smaller tools or for live
tooling on lathes, and adaptive control can be added. The system only uses spindle power monitoring
to determine the tool state. There is also no information available on the kind of processing that the

system uses. The Ovation system is shown in Figure B.3.

Figure B.3: Ovation Engineering CNC Tool Monitor [256]
B.3.3 Artis Systems Inc.

Artis Systems specialises in tool and process monitoring. Their ranges of equipment for monitoring
and diagnosis technology are used in the automotive industry worldwide. Artis supplies sensors, moni-
toring modules and data handling hardware. In Figure B.4, the range of hardware supplied by Artis is
shown. The data visualisation can take place either through the CNC (open architecture) or a PC [250].
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Figure B.4: Artis hardware for TCM [250]

Figure B.5 shows a diagrammatical layout of the Artis approach to TCM. The supported sensors are
power, torque, force, AE, cameras and lasers. The tool control modules can be programmed for certain
cuts.

CNC CONTROL ' KINDOF SENSOR
Using online wsuaﬁrahon
from &n

KLCD
Optional when not
using CNC control

P for contral analysis and
diagnosis as well as tor
documentation of process data
asecording 1SO 5000

Figure B.5: Schematic representation of Artis TCM methodology [250]

B.3.4 Brankamp

Brankamp is a well-established German company that focuses on process control and monitoring.
They offer a wide range of hardware for product quality, computer aided quality control software, and

monitoring units mostly with large LCDs to allow process observation. The units are designed for all
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cutting processes: presses, stamping machines, cold forming and general assembly and manufacturing
equipment. A range of hardware for TCM is also available. Brankamp systems are either open archi-
tecture type of controllers, or stand-alone systems that boasts various characteristics. The Brankamp
C8060 process controller, shown in Figure B.6, is one of their most advanced systems. The LCD dis-

play can show a variety of information on the machine tool. Multiple tools can also be monitored
[249].

Figure B.6: The Brankamp C 8060 process controller [249]

This monitoring system has four sensors or monitoring channels. The system presents a lot of different
process visualisations, for instance the envelope curve on multistage production machines. The whole

process is wrapped up and monitored against the envelope limits. The following screens can be seen
on the LCD display:

e Actual process values
e Process memory

e Tool life counter

e Productive counter

e Stop/Go-diagram

e Stop-code-memory

Brankamp offers sensors to monitor a range of machining operations. Brankamp sensors are also de-
veloped to work optimal with their process control systems, and the company attempts to emphasise
the advantages of sensor fusion. Their range of sensors include [249]:

e Piezoelectric sensor: Measures the strains on the surface of the machine body

e One/Three- component-quartz: Measures the lateral force flow in one or three directions
e Magnetic inductive sensor: Measuring on the machine structure

e Vario sensor: Measures the force within a borehole

e Acoustic emission sensor: Measures high frequency noises

e Brankamp power sensor: Measures the power of motors on machine tools

e Micro sensor: Measures the strains on the surface of the machine body

B.3.5 Prometec

Prometec is a German company specialising in the fields of tool and machine monitoring, as well as

process analysis for turning, drilling, milling, and grinding. Their systems are widely used in the auto-
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motive industry. Their tool monitoring systems are also complemented by new systems for the detec-

tion of oscillations and imbalance. Prometec supplies a number of sensors for TCM, optimised for use

with their other TCM hardware. These sensors include: force, torque, displacement, strain, position,
hydraulic pressure, effective power, AE, structure-borne sound and vibration. All of these sensors are
robust, and designed specifically for the purpose of TCM [253].

The TCMS supplied by Prometec consist of operator panel modules, machine interface modules and
monitoring modules. The processing of the sensor signals are conducted by the monitoring modules,
which work independently of one another and are assigned to a machining station. Various monitoring
modules are available for differing extents of monitoring or numbers of cycles (tools or cuts). All
monitoring modules are supplied in a compact housing for mounting in switch cabinets. Single dual
channel monitoring modules are available. This allows, for example, a cost-effective solution for a
twin-turret drilling machine by using a dual-channel monitoring module.

The monitoring module’s notification of breakage, wear efc. are transmitted via a machine interface
module. The display of the changes in the signals occurs over time, and an operator panel module is
necessary for data visualisation. This allows for the adjustment of the monitoring parameters to the
process at hand. This is done first of all during the teach-in where the progression of the signals is
learned and the limits then defined. The characteristics of these systems are shown in Figure B.7.
Figure B.8 shows the monitoring module, the machine interface module, the operator panel module
and the PROVIS visualisation tool supplied by Prometec [253].

Operator panel module OPM12 OPM 20 with PROVIS  Open CNC with
PROVIS

Display LCD, 4 x 20 characters VGA, color

RS 232 terminal for
notebook, modem etc.

Pr
Terminal for PC
keyboard

MiDI FROFI-BAPSI
INTER-BAPSI

C\_;déé per channel 2 30 250

Qutput messages per 1 3 7
channel Plus Two BAPSI
supplementary, joint interface modules

output for collision
message

are 1o be used for

Figure B.7: Prometec TCMS [253]
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Visualisation software

Machine interface
modules

Operator
panel module Monitoring modules

Figure B.8: TCM modules by Prometec [253]
B.4 TCM software

B.4.1 Introduction

A number of companies supply Windows supported software for TCM. Most of these software pack-
ages only enable relatively simple data processing. The software programs are usually graphical inter-
faces displaying the sensor signals and a statistical summary of events. Normally, these packages are
used to view trends in sensor signals over a period of time, and to perform comparative TCM studies.
Table B.2 summarise the visualisation methods supplied by various companies (from Jemielnaik
[247]). Some are discussed in more detail.

Table B.2: Visualisation methods applied in TCM systems [247]

e Supplier
Visualisation method - - -
Artis Brankamp  Kistler =~ Montronix ~ Nordmann Prometec
Simple digital / bar display ® @ ® @ L
Graphic display ® ® @ ® ]
Via open CNC control system ® i ] @ ]
Via PC / Notebook computer ® [ ] @ @ o

B.4.2 Montronix

The M-View package from Montronix was developed to enhance the performance of the Montronix
range of TCM products. M-View is a typical visualisation tool for trends and comparative TCM stud-
ies. Typical windows from the M-View package are shown in Figure B.9.
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Figure B.9: M-View windows [245]

B.4.3 Kistler

DynoWare is a software package developed by Kistler. It is particularly suitable for force measure-
ments with Kistler dynamometers and force sensors. DynoWare may be used to analyse, optimise and
document cutting force measurements in a simple and efficient way. Programmed in the Windows en-
vironment, DynoWare is a powerful data acquisition system that can be used universally. Eight free
selectable measuring signals may be displayed and analysed in several windows. DynoWare contains
an easy to use integrated database containing default set up values for the most common factors. (sen-
sitivity, scale, efc.). DynoWare also features [246]:

e 8 measuring channels with 12-bit resolution each.

e Measuring range per channel: £10 V.

e Max. sampling rate of A/D card, divided by number of channels selected.

e 100 kHz/ number of channels.

e Remote control of Kistler electronics via RS-232C or IEEE-488 interface.

e Several measuring cycles can be recorded during a trial.

e Import / Export of measured data in ASCII format (Labview, Dia Dago, Excel).

e Trigger with keyboard, analogue, digital.

B.4.4 Prometec

The PROVIS software by Prometec offers facilities for visualisation of the process signal to enable the
diagnosis and optimisation of machining operations. PROVIS software are available in Windows or
DOS versions for all of the leading control manufacturers including Siemens, Indramat, GE-Fanuc,
Schleicher etc. Figure B.10 shows an example of a PROVIS window [253].

B.5 Monitoring strategy

Monitoring strategies applied by different suppliers can be grouped into six approaches, summarised in
Table B.3 (after Jemielniak [247]). Most of these are based on static limits. Static parameters are proc-
ess parameters that remain fixed during the processing of the current workpiece. The basic monitoring
strategies will be discussed in more detail.
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Figure B.10: PROVIS software by Prometec, in operator display panel [253]
Table B.3: Strategies applied in TCMS [247]

Strategy Sup.plier . :
Artis Brankamp  Kistler Montronix ~ Nordmann Prometec

Simple fixed limits @ L ®
Time defined limits o @ L
Part signature ® @ L o ©

Pattern recognition o

Wear estimator e

Dynamic limits ®

B.5.1 Simple fixed limits

This simple strategy is based on fixed limits that apply to the signals from the sensors (after simple
pre-processing). During machining of the first workpiece, the monitor reference signal is constructed,
by normalising it between 0 and 100 % for each cut and each tool. The positions of limits relative to
the set standards are defined (manually or automatically). For example, three limits can be set, one for
a worn tool, one for a broken tool, and one for collision. Instead of fixed limits, floating limits can also

be used which track cycle-to-cycle trends by using information from the current cycle to adjust the
limits of the next cycle automatically.

B.5.2 Time defined limits

Fixed limits for a machining process can also be time displaced, which means that limits for certain
sub-areas of the signal are set. This can enhance the performance of the fixed limit strategy to detect
sudden tool wear, a premature cut, incorrect adjustments or sudden tool fracture.

2.5.3 Part signature

The cutting of a certain part is divided into segments using stepped limits based on time and / or posi-
tion. This can create a “part signature™ that can more closely track a complex cutting cycle than a sin-
gle set of fixed limits. The part signature is like a combination of floating and time defined limits.
Whenever the current signal has higher or lower values of the reference signature, an alarm goes off.

Figure B.11 shows an example of the part signature concept from Montronix [245].
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Figure B.11: Part signature concept from Montronix [245]
B.5.4 Pattern recognition

Montronix developed a tool breakage monitoring strategy based on pattern recognition for turning. The
system stores a number of reference signals indicative of tool breakage, such as breakage of a carbide
or ceramic tool. The system continuously monitors the current signal for one of the breakage patterns.
When the pattern occurs, the machine stops. This method has the advantage that the pattern is inde-
pendent of the process signal value, and therefore it can be applied to a number of different cuts. It is
therefore also independent of the tool condition and other machining parameters. Figure B.12 displays
an example of the pattern recognition process by Montronix [245].

Pattenm _’flﬂ‘_

rEoognition

Figure B.12: Pattern recognition for tool breakage detection in turning form Montronix [245]

B.5.5 Wear estimator

The wear estimator is a proprietary technique developed by Montronix used for turning tool flank wear
estimation. The method uses the relationship between all three cutting force components, and requires
a three-component force sensor. The technique can distinguish between normal tool wear and varia-
tions in process parameters. These variations, such as workpiece hardness or runout, can adversely af-
fect other techniques such as part signature analysis. Figure B.13 shows the wear estimator concept
from Montronix [245].
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Figure B.13: Wear estimator from Montronix [245]

B.5.6 Dynamic limits

The PROMOS system for Prometec incorporates the use of dynamic limits for tool breakage detection.
Two dynamic limits, above and below the monitoring signal, follow the signal continuously for every
load level. In the case of an extremely fast crossing of one of the two dynamic limits, the tool state is
determined by visual comparison of the monitoring signal. Another version of the dynamic limit by
Prometec, is when a special feature is generated from the force signal. The monitoring strategy then
combines the feature generation with dynamic limits, to enhance the performance of the TCMS to

automatically adjust over a range of sensor signals in different machining situations.
B.6 Conclusion

The most commonly used sensors for TCM in commercial systems are sensors measuring force or
quantities related to the cutting force. Most suppliers also have AE, vibration and optical sensors avail-
able for some applications. Most of these sensors are well adjusted to the machining environment. De-
spite the fact that much research has been done in signal processing for TCM, (such as spectral analy-
sis, statistical analysis and time series modelling), the signal processing done by commercial suppliers
of TCM hardware and software is filtering (high- and low-pass), averaging and rms calculations.

Since constant limit methods only work when all restrictions remain constant, the use of self-adjusting
limits is more appropriate. Only Prometec with its “dynamic limit” method and Montronix with the
pattern recognition and wear estimator use more sophisticated signal processing, although these are not
nearly the state-of-the-art methods in modern signal processing and data classification. Monitoring
strategies developed by researchers nowadays almost always incorporate more sophisticated signal
processing where features are extracted from sensor signals. In commercial systems, the one-sensor,
one process approach dominates. The processing and fault detection techniques on the sensor signals
in commercial TCMS primarily remain independent. Only the Montronix wear estimator uses more
than one signal to classify the tool condition.
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APPENDIX C

C. The electrical resistance strain gauge

C.1 Introduction

The most common type of strain transducer is the electrical resistance strain gauge. Strain gauges are
extremely versatile due to their small size, low cost and the fact that they are available in a wide range

of configurations for different applications. A diagram of the single element strain gauge is shown in
Figure C.1.

gauge
length

Figure C.1: Typical single element strain gauge

Strain gauges are usually connected in a Wheatstone bridge configuration. A basic Wheatstone bridge
configuration is shown in Figure C.2.

0
L il ot g

Figure C.2: Strain gauge bridge configuration

In Figure C.2, four strain gauges are represented by A, B, C and D, and their resistances would typi-
cally be 120€ each. A voltage V is supplied across the bridge, and this is typically 10V. The signal S
is then measured across the other ends of the bridge. A change in resistance of the gauge is caused by
the base strain (elongation or compression) of the surface it is adhered to. If all four gauges (A, B, C
and D) are adhered to the surface it is called a full-bridge configuration. If two gauges are attached to
the surface, the other two are “dummy” gauges, and this is called a half-bridge configuration. If only

one is adhered to the surface it is called a quarter bridge. Many other configurations are possible and
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are used for particular applications. The types of strain gauge configurations and their applications are
beyond the scope of this text. However, there are at least three significant considerations when using
strain gauges for measuring dynamic signals. The following limitations should be considered before
choosing a strain gauge:

e Frequency resolution of the gauge
e Spatial resolution of the gauge

e The so-called rise time of the gauge
C.2 Frequency resolution

The ability to resolve a wave spatially becomes limited for pulses near the order of the gauge length.
As the gauge length increases, so does the ability to resolve the spatial location of the pulse decrease.
Therefore the total length of the pulse of concern must be much greater than the gauge length. The
output of a strain gauge tends to give an integrated average of the strains imposed over its length. Con-
sider the three different wavelengths and three different gauge lengths, shown in Figure C.3. What
would the average strain over the gauge length be for each case?

gauge 1 gauge 2

:
)
i
i
i
]
i
1
1
'
¥
]
'
]
'
1

Figure C.3: Wavelength and gauge length

The smaller the strain gradient across the element length, the closer the output will be to the true strain.
For the special case where the wavelength is equal to the gauge length, the average output would be
zero, but the actual strain is not! This will occur for integer multiples of the wavelength. As the wave-
length decreases, so too does the ability to resolve the peak strain due to the averaging effect over the
gauge length. The peak strain is consequentially always estimated low. The concept is illustrated in

Figure C.4 - the steeper the gradient (i.e. short wavelength), the less the peak strain can be resolved
[257].

C.3 Spatial Resolution

For harmonic waves propagating through a strain gauge, the peak output from the gauge will always
occur when the peak strain is centred in the gauge. To determine the closed form solution for the peak
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strain reported by a strain gauge, the harmonic wave must be integrated over the gauge length.

ae—

— Peak
Strain

Average
Strain

Strain

Axial Distance

Figure C.4: Averaging effect on peak strain [258]

By recognizing that the peak of a cosine wave coincides with the centre of the gauge, the following
expression yields the peak strain reported by the strain gauge (remember the peak output of the gauge
is always less than the true peak strain):

Li2C,

£y = % Jcos(27r-f-t)dt (C.1)

-Li2C,

Co, L, and f are the wave velocity, gauge length, and frequency of interest, respectively. The evaluation
of this integral yields an expression for the peak strain reported by a strain gauge:

& sm(i”'L'f]
" C, (C.2)

- Tl

A plot of the reported peak strain versus frequency for a harmonic input of amplitude one for steel is

&

shown in Figure C.5. Notice that the shorter gauges are more accurate at measuring high frequency
strains.
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Figure C.5: Reported peak strain from various gauge length strain gauges
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Also note that accurate static (DC) strain values are reported. As frequency increases, however, the
reported strain becomes drastically attenuated. As was expected, shorter gauges offer better frequency
response. The effect of the averaging dominates the output of the strain gauge for high frequencies.
The output from the gauge is zero when the wavelength is equal to the gauge length. To choose a strain
gauge, the desired accuracy of peak strain and frequency extension must be considered. Looking at the

0-50kHz region of the plot, Figure C.6, it can be seen that up to 10mm gauges can be used on steel
with reasonable accuracy.
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Figure C.6: Reported peak strain from various gauge length strain gauges

Another condition (related to the physics of the strain gauge) exists that distorts the output of strain
gauges. This is a windowing effect that distorts the actual strain pulse. The effective gauge length
represents a rectangular window that in effect changes the shape of the true strain pulse. To calculate
the effect of windowing requires convolution. Recall that convolution in time is equal to multiplication
in frequency. Hence, the inverse Fourier transform of the product of two functions of frequency is
equal to the convolution of the two same functions in the time domain. Consider a square pulse of
magnitude B and length P, / 2, measured by a rectangular window of magnitude 4 and length G; / 2,
and both pulses having period 7. The Fourier series of the pulses and window are:

B- ot
pulse(w) = TPL -sinc[%} (C.3)

window(w) = 4 .TGL -sinc(%ﬂj (C.4)

The frequency domain representation of the convolved output signal is given by:

&,.(@) = windowx pulse (C.5)

The convoluted time domain signal can thus be calculated from the inverse Fourier transformation:

ey B_Sin(GL_;ﬁJ.Sm(PL-an]
gaur(t): z TZ '1’12 '0)2
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C.4 Rise time of strain gauge

By plotting this rather complex equation, the windowing effects of the strain gauge can be seen, as
shown in Figure C.7. This assists to predict gauge output for many configurations of gauge lengths
(Gr) and pulse lengths (Pr). Figure C.7 is a plot of the convolved output of various pulse lengths to
gauge length ratios. Notice that all of the convolved pulses exhibit increased rise time, not characteris-
tic of the square input pulse. This rise time is due to the period of time when the pulse just begins and
just exits the strain gauge. Just before entering the gauge, the strain gauge output is zero. As the pulse
progresses through the gauge, more and more of the gauge length is deformed, until the point when all
of the gauge length is being deformed.
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Figure C.7: Convolved output of strain gauges

In the limiting case where the gauge length equals the pulse length, the maximum value is only
reached only once because there exists only one time when the gauge window and pulse window per-
fectly overlap. It can be seen that the windowing effect can be minimized by selecting a sufficiently
large P, / Gy, ratio. However, with the measured strain signals in hand, corrections for the windowing
effect of the gauge can also be employed by dividing the Fourier transform of the strain signal by the
Fourier transform of the gauge measurement window [257].

C.5 Conclusion

With reference to the strain gauges selected for measurements as described in Chapter 4, these consid-
erations were taken into account when selecting the gauges and also when analysing the signals ob-
tained from them. In essence, very small gauge lengths were used compared to the fairly low fre-
quency range that was investigated. Thus, the effects of rise-time and frequency distortion were mini-
mal. Furthermore, it should be mentioned that the selected strain gauges were self-temperature-

compensated, which means that the traditional use of dummy gauges was not necessary.
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APPENDIX D

D. Mathematical Optimisation

D.1 General formulation

Training neural networks is in actual fact nothing but solving an unconstrained optimisation problem.
Many algorithms exist whereby Neural Networks (NNs) can be trained. During the course of this re-
search, different algorithms were investigated for their feasibility to train the dynamic NNs. For on-
line implementation, the algorithm must be robust, quick and stable. The general formulation of the

mathematical optimisation problem with constraints is:

find x=(x;,X2,...,Xp) € R" (D.1)

that minimizes f(x) subject to the constraints:
g2=0,: =1,2,...m (D.2)
h(x)=0, =1,2....r (D.3)

where f(x), gj(x) and h;(x) are scalar functions of the variables x. The function f is called the objective
function and g; and h; are respectively the inequality and equality constraint functions. A local opti-
mum solution is denoted by x . In the case of training NNs there is no constraints and thus no g and h
functions.

Over the past thirty years many powerful iterative numerical algorithms have been developed to solve
the above-mentioned general problem. It is however true to say that no single algorithm dominates in
being superior to all others when applied to different subclasses of the general problem. Depending on
the degree of non-linearity, the presence of noise or discontinuities in the functions, the number of
variables involved and the time required to evaluate the functions, some methods will be preferred
above others depending on the efficiency, accuracy or reliability required. Difficulties were experi-
enced with conventional methods, and for this reason new methods were investigated for training the
dynamic NNs.

D.2 Algorithms

D.2.1 SQSD

The Spherical Quadratic Steepest Descent (SQSD) Method [259] was employed to train the dynamic
network. The method is a gradient-only algorithm for unconstrained minimisation, which applies the
steepest descent method to successive spherical quadratic approximations of the objective function. No
explicit line searches are preformed which makes the method computationally very efficient. It has
also been shown that method performs extremely well with ill-conditioned problems, which is some-
times the case with neural networks. The gradient functions of the neural networks were calculated
with finite differences. The selection of the step size when using this technique requires some care, es-
pecially if the functions are not analytical (e.g. NNs). The algorithm provided excellent results in less

time than conventional training procedures.
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The algorithm can be described as follows by specifying the convergence criteria &5 €, » Steplimit
d > 0and selecting a starting point X°. Set ¢, := HVf (x0 )Hl d. Let k :=1 and proceed to (1).
() If HV’)"()("‘1 )” <¢g,,then X =x° =x*" and stop; otherwise set:

Ko gkt _ VF(x*")

xk = (D.4)
Ck—‘l
2)If “xk —x"’1u >d , then set
kA Ui
X =X —_i[Vf(x"" )” (D.5)
if ”x" —x“‘1|| <&, then X = x° =x*" and stop.
3) Set
21 Flx" M) =l )= VI " Yo" —x*
)1 )-r{x ) o

e x|
if ¢, <0, then set ¢, =107,

4) Let k := k +1 and then go to step 1 for next iteration.

The algorithm was programmed in Matlab for training the neural networks.

D.2.2 ETOPC

The ETOPC algorithm can solve unconstrained and constrained problems by means of the conjugate
gradient method. Constrained problems are solved via a penalty function formulation. The specific im-
plementation used is that of Snyman [260] which is unique in the sense that it employs no explicit line
searches. With the ETOPC conjugate gradient program the user may select either a Fletcher-Reeves or
a Polak-Ribiére implementation. The ETOP (unconstrained) algorithm is formulated as follows [261]:

Assume X;, At given and set v, - -V Af = s;At. Do for k =0,1,2,.... until convergence:

1) Set
Xy < X, + VAl = X, +8, At (D.7)
2) Determine:
AF, =-v]a, At (D.8)
where:
a, =(a, +a,,)/2 (D.9)
a, =-VF(x,) (D.10)
8=—pl(AF, - p) (D.11)

X1 = X, +OAX, |2 (D.12)
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3) Set:
Xst € X (D.13)
4) Determine:
Vs < (—VFr + BV | At) At = 5, At (D.14)
with the Polak-Ribiere formula:

(VF-VF_) VF . .
= VF "2 for i =12,... (D.15)
i-1

i

The algorithm was implemented in Matlab for training the dynamic networks.

D.2.3 LFOP

This algorithm is the LFOPC algorithm of Snyman [261-263]. It is a gradient method that generates a
dynamic trajectory path from any given starting point towards a local optimum. This method differs
conceptually from other gradient methods, such as SQP, in that no explicit line searches are performed.

The original leap-frog method [262-263] for unconstrained minimization problems seeks the minimum
of a function of » variables by considering the associated dynamic problem of a particle of unit mass in
a n-dimensional conservative force field, in which the potential energy of a particle at point x(t) at time
t is taken to be the function f(x) to be minimized. The reader is referred to [261-263] for a mathemati-
cal formulation of LFOP.

The optimisation is terminated when either of the convergence criteria becomes active:
|Ax| <, or |[Vix)| <& (D.16)

It is recommended that the step size, 3, be of the same order of magnitude as the “diameter of the re-

gion of interest”, hence:
I ]$ 2
&= o }Z(rangei)' (D.17)

where range; is the size of the region of interest in the i-th variable direction. In practice the choice of

uand p, . should be coupled to the accuracy required.

D.2.4 PSOA

The PSOA simulates the physical movement of social creatures, for instance the movement of a flock
of birds. Consider a flock of p particles of birds. For particle i, Kennedy and Eberhart [224] proposed
that the position x' be updated as:

X, =X} +V, (D.18)
where x represents the position of each bird, v the velocity, and k a unit pseudo-time increment, and

would in this case be an inner step. Shi and Eberhart [264] proposed that the velocity v’ be updated
with:
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Vi =WV, +c7,(P) =X, )+ &f; (P§ — X4, ) (D.19)

~ where p| represent the best ever position of particle i at time k, and p{ represents the global best posi-
tion in the swarm at time k. The numbersr, andr, are random uniform numbers between 0 and 1. The

inertia term w, is chosen as 1 and then decreased linearly during optimisation. The cognitive and social

scaling factors ¢, and ¢, are chosen as ¢, = ¢, = 2 in order to allow a mean of unity.

In the case of the training of the dynamic networks, the network biases and weights were taken as the
position vector x. The algorithm is stopped when it reaches a suitable convergence tolerance on the
objective function value. If the algorithm does not reach the tolerance value, the vector x is re-
initialised. This is necessary for the case when an old tool is replaced with a new tool, because the
swarm moved with the wear of the older tool, it will be too far away from the solution to converge
within limited steps for the new tool. The number of particles that were used was 25, and the maxi-
mum number of steps 40. The random initialisation for bias and weight values was made between -1
and +1. The algorithm usually achieved convergence within less than about 15 inner steps in a matter
of seconds on a PIIl computer.
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E. Custom hardware specifications

E.1 Introduction

As mentioned in the main text of the thesis, a special measurement system was developed in-house for
cost-effective strain gauge measurements on the tool holder. The details of the system are described
here. The system was developed to measure strain with three strain gauge rosettes, each connected in a
half-bridge configuration. Note that 120Q self-temperature compensated strain gauges should be used.
The basic components of the system are:

e HBM clip strain gauge amplifiers type AE101

e HBM clip voltmeter type DA101

e HBM clip power supply type NT101

e variable “dummy” gauges

e low-pass filter with power supply

e user interface for Eagle A/D cards (PC-30U)

All of these components will be described in more detail, besides the particular details of the HBM
hardware, which could be sourced from HBM directly. The user interface for the Eagle card is very
simple, and only brief details are given. A special connection cable was made for the strain gauge
measurement system, and only this cable should be used to connect the custom hardware to Eagle
cards. The complete system was built into a robust steel enclosure, depicted in Figure E.1. A picture of
the enclosure with the front panel open is shown in Figure E.2.

Figure E.1: Strain gauge measurement system
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Figure E.2: Enclosure with front panel open

E.2 PC-30U

The PC-30U card is a simple analogue card that protects the PC-30 A/D card against high voltage
peaks. A brief description follows:

- External adapter board to be used with any PC-30xx DAQ Card

- High degree of protection from high voltage spikes, accidental shorts and overloads.

- Internal PSU is assumed (thus PC-30xx card must be configured with £12V and +5V line en-

abled).

- Fuses F1, F2, F3 rated @ 125mA.
Only use the supplied cable to connect the strain gauge box to the PC-30 card. Contact Eagle Tech-
nologies [265] for additional information. The PC-30U is shown in Figure E.3.

Figure E.3: PC-30U

E.3 Overall configuration

For simplicity, the overall configuration of the system can be divided into three parts:
- power supply configuration
- channel configuration

- cable screening configuration
E.3.1 Power supply configuration

The setup of the power supply is graphically depicted in Figure E.4. One normal South African mains
plug is provided for the complete system, and it is shared with the HBM power supply and the power

supply for the low-pass filter.
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Figure E.4: Power supply configuration

E.3.2 Channel configuration

The three channels are formed from the output of the AE101 amplifiers. From this point, a single ana-
logue ground and three channels are formed. Hence, the system is single-ended and the A/D card
should be configured likewise. From the amplifiers the outputs pass through the low-pass filter, and
then to the PC-30U. The output cable from the PC-30U is fastened on the front panel of the box and
can be connected directly to an Eagle A/D card with the provided cable. The setup of the channels is

shown schematically in Figure E.5.

==

50-pin
connector

N —s

low-pass filter

Figure E.5: Channel configuration

E.3.3 Cable screening configuration

All cables carrying very low voltage signals should be screened. The screenings can be connected to
the appropriate pins on the AE101 amplifiers. Note that the actual strain gauges and the dummy resis-
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tors must be screened to protect the data from electrical disturbances. The configuration of the screen-
ing is shown in Figure E.6. The configurations of the screens depend on the application: In some cases

it might be necessary to screen each channel separately.

HUH e

144

dummy resistors

Figure E.6: Cable screening configuration
E.3.4 Per-channel configuration for half-bridges

The per-channel configuration for each half-bridge is graphically depicted in Figure E.7. Each half-
bridge within the system is connected in the exact same way. The physical colours of the cables are

also indicated on the figure.
R, R,
R, R,
L1 i
HBM clip
AEL01
cable screen
green
HinBE
strain
gauge red A
white 0 m
2
™

red

orange

Figure E.7: Detailed per-channel bridge configuration
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E.3.5 Dummy gauge configuration

The dummy gauges must be set to the exact same resistance as the strain gauges. The resistance of the
strain gauges should be measured with their cables included. Use the multi-turn potentiometer to
change each dummy resistance to the exact same value. The theoretical configuration of the system is
shown in Figure E.8, and the physical configuration is depicted in Figure E.9. Measure the dummy re-
sistances with a multimeter over the dummies as shown in Figure E.9. After setting the dummy resis-
tances to the correct values, the real gauges can be connected as shown in Figure E.7. Switch the sys-

tem main power on and finally balance the bridges with the AE101 amplifiers for each channel (see

user manual for HBM clip).
o
Set to 120.0Q
or match gauge
resistance
560Q
% 150Q2
1009/%'
o

Figure E.8: Theoretical layout of dummy resistance

|

measure resistance between these positions

10082

Figure E.9: Physical layout of dummy resistors
E.4 Temperature drift of complete system

The complete system is known to drift somewhat with variations in temperature. Experiments were
conducted to determine the temperature drift, and the result is shown in Figure E.10. The drift of the
system is approximately linear, and was calculated as:

e channel 0=0.0133 V/°C

e channel 1 =0.0278 V/°C

e channel 2 =0.0022 V/°C
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The effects of temperature are compensated for (refer Chapter 5).

0.2
D
0.1 -fx,/‘
_,__,___-c/
AR
— 0 - ——immtomtest SO
=
?-é-m A
/'/ —e— channel 0
-0.2 v —<— channel 1 7
« —=— channel 2

18 20 22 24 26 28
temperature [°C]

Figure E.10: Temperature drift of system

E.5 Low-pass filter

The low-pass filter to prevent aliasing in the dynamic signals was built in-house, and is part of the
complete strain measurement system. The filter channels each implements a 4™ order Chebyshev type
filter designed with the FilterLab Low pass program [234]. The physical layout of the filter is shown in
Figure E.11. The circuit of a single channel within the filter is depicted in Figure E.12:

R s

Figure E.11: Low-pass filter

13.'1 uF 00063 uF

R3 R4
8.65k 343k
VNV NI EEPAVAVN iy e
G:L — Ciut

Figure E.12: Filter circuit (one channel)

Herewith some basic details of the filter:
e Three identical channels were built to pass DC - 4000Hz.

e The -3dB point is reached at approx. 4350Hz.
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e All components are standard:

LM324 op-amps

Standard capacitors

Resistors are standard potentiometers set on the specified values.

e BNC connectors in and out, with an option for loose cables on the right of the panel. The number-

ing is as shown in Table E.1:

Table E.1: Input/output numbering on filter

designation

channel 3 out
channel 3 in
channel 2 out
channel 2 in
channel 1 out
channel 1 in
not used

o N Oy L B W N

analogue ground (0 V)

e A custom-built power supply is supplied with the unit, and is connected with the special 7-pin

socket connector to the unit.
e The power supply supplies a 0 V, +12V and -12V DC to the unit from 220V 50 Hz AC power.
e Batteries can also power the unit.
e Maximum range of the filter is -10V and +10V.

e A sampling frequency of 20kHz is suggested when using the filter to prevent aliasing in the DC -

4000 Hz band.

The real characteristics of the channels, together with a comparison to the theoretic characteristic of

the circuit, are shown in Figure E.13. The transfer function of the filter was constructed by using a

wideband random signal generated with the Siglab from Spectral Dynamics. The transfer was also

measured with the Siglab in real time.
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Figure E.13: Filter characteristics
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APPENDIX F

F. Wavelet analysis

F.1 Introduction

The wavelet transform is a relatively new method of signal processing that has been applied to many
engineering studies with great success. Recent studies also proved that wavelet analysis could be util-
ised for monitoring of machining processes [161-163]. The success of the wavelet transform is gener-
ally attributed to the natural shape of the wavelet, which is said to be more descriptive of natural phe-
nomena than the sine and cosine functions used in Fourier analysis. Signals with sharp and sudden
changes might be better analysed with an irregular wavelet than with a smooth sinusoid. Wavelet
analysis is capable of revealing aspects of data that other signal analysis techniques miss, like trends,
breakdown points, discontinuities in higher derivatives and self-similarity [266]. In this research,
wavelet packet analysis was used to generate features that may show consistent trends towards tool

wear. In this appendix, the basic principles of wavelet analysis are discussed.
F.2 Wavelet analysis background

Fourier analysis breaks a signal down into constituent sinusoids of different frequencies, which trans-
forms our view of the signal from the time to the frequency domain. The drawback of Fourier analysis
is that the time information is lost, which may be important if the signal contains non-stationary char-
acteristics. This drawback may be overcome by the Short-Time Fourier Transform (STFT), but is of
limited precision and not very flexible. These methods are based on windowing the signal and analys-
ing each short time window separately. The signal can then be mapped onto a two-dimensional display
of time and frequency [266].

To overcome the limitations of the STFT, wavelet analysis is based on a windowing technique with
variable-sized regions. Wavelet analysis allows the use of long time intervals where more precise low
frequency information is desirable and shorter regions for high frequency information. A wavelet is a
sometimes irregular and asymmetric waveform of effectively limited duration that has an average
value of zero. A variety of wavelets exist, and an analyst can choose the wavelet that suits his applica-
tion best. A typical wavelet function, Daubechies (db) 10, is shown in Figure F.1.

Similar to Fourier analysis, wavelet analysis is breaking a signal into pieces of shifted and scaled ver-
sions of the original wavelet. The Continuous Wavelet Transform (CWT) of a function f{t) is defined
as the sum over all time of the signal multiplied by scaled and shifted versions of the wavelet func-
tiony [266]:

C(scale, position) = J: f(t)y(scale, position, t)dt (E.1)

The result of the CWT is many wavelet coefficients C, which are functions of scale and position.
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Daubechies 10

Scaling function
T T T

2 4 B 8 10 12 14 16 18 20
Wavelet function

Figure F.1: Typical wavelet function, the db10
F.3 Scaling and shifting

Scaling a wavelet means stretching or compressing it, which is denoted by the scale factor a. The
smaller the scale factor, the more “compressed” the wavelet, therefore the scale factor is related to the
frequency of the signal. In wavelet analysis the low and high frequency contents of the signal are re-
ferred to as Approximations (A) and Details (D), respectively:

* Low scale/ Compressed wavelet / High frequency / Details.

e High scale / Stretched wavelet / Low frequency / Approximations.
Shifting a wavelet simply means delaying or hastening its onset. For example, delaying wavelet func-
tion y/(t)by k will be represented by y(t — k) [266].

F.4 The Discrete Wavelet Transform (DWT)

If the scales and positions are chosen based on powers of two, the analyses are much more efficient
and just as accurate. This is called the Discrete Wavelet Transform (DWT). An efficient way to im-
plement the DWT is by using filters. The filtering process is actually very complex, and will only be
discussed in principle. At its most basic level, the filtering process can be illustrated as shown in
Figure F.2.

Original
signal
S

h h 4

Lowpass Highpass

: Filters :

Figure F.2: DWT at its most basic level, using filters
214



—— APPENDIX F: Wavelet Analysis
university or Fretoria etd — Schefier C 2003

The original signal, S, pass through two complementary filters to separate the approximations and the

details. This causes computation to end up with twice the number of data points of the original signal.
To correct this, the signals are downsampled, and the aliasing caused by the downsampling is ac-
counted for later in the process. The whole process, including downsampling, produces the DWT coef-
ficients as diagrammatically illustrated in Figure F.3.

Downsample
Highpass
> Z: 0 500 coeffs

S 1000 samples

Downsample

Lowpass
il 0 500 coeffs

Figure F.3: DWT with downsampling

F.5 Multiple Level Decomposition and Reconstruction

The decomposition process can be iterated, with successive approximations being decomposed in tum,
so that one signal is broken down into many lower-resolution components. This is called the wavelet
decomposition tree, which in theory can be calculated to an infinite level, but in practice can only con-
tinue until the details consist of a single data point. In most cases, the optimal level of decomposition
can be calculated based on an energy approach, such as entropy. The wavelet decomposition tree, as

shown in Figure F.4, illustrates the multiple-level decomposition diagrammatically [266].

S

CcA;4 cD;,

CA; cD,

CAs cD3

Figure F.4: Wavelet decomposition tree

The wavelet decomposition tree can now be used to reconstruct the original signal, which is called the
Inverse Discrete Wavelet Transform (IDWT). The IDWT process consists of upsampling and filtering.
A specific choice of filters for IDWT will cause the effect of the previously mentioned aliasing to
‘cancel out’. During the IDWT, the Approximations and Details are reconstructed with the wavelet
coefficients, as illustrated in Figure F.5 [266].
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The original signal can now be reconstructed with a number of combinations from the Approximations

and Details on the decomposition tree, for example:

S=A+D,

=A,+D, +D,
=A,+D,+D, +D,
The wavelet tree with reconstructed components is illustrated in Figure F.6 [266].

Upsample
Highpass
500 coeffs 0
v
D
Upsample
A
Lowpass
500 zeros
Upsample
Highpass
500 zeros 0
h 4
Aq
Upsample
Lowpass »
500 coeffs a

1000 samples

1000 samples

Figure F.5: Reconstruction of Approximations and Details

Dy

Az

D;

>
bl

Figure F.6: Wavelet tree with reconstructed Approximations and Details

F.6 Wavelet Packet Analysis

(F.2)

The wavelet packet method offers a wider range of possibilities for signal analysis. With normal wave-
let analysis, only the approximations are split in every step. In wavelet packet analysis, the details as
well as the approximations are split in every step, illustrated in Figure F.7 [266]. The signal can be re-

constructed using any number of packets on the wavelet packet decomposition tree, for example:
S=A,+AAD, + DAD, + DD,
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S

Af Df

AA, DA, AD, DD,

T | e N s

AAA; DAA; ADA; DDA3 AAD; DAD; ADDj, DDD;

Figure F.7: Third-order wavelet packet decomposition tree

Choosing one out of all these possible encodings presents an interesting problem. An entropy-based
criterion can be used to select the most suitable decomposition of a given signal. The entropy is an in-
dication of the information gained by performing each split. A number of entropy types exist, like
Shannon, Threshold, Norm, Log energy and SURE (Stein’s Unbiased Risk Estimate). In this research,
the Shannon entropy formula was used, which is a non-normalized entropy involving the logarithm of
the squared value of each signal sample. For signal s, this is defined as [266]:

E=-) s/ log(s?) (F.4)

The wavelet packets with the highest entropy contain the most information about the process. By ne-
glecting the packets with low entropy values during signal reconstruction, the signal can be de-noised
or compressed effectively. This is also the reason why the packets with high entropy values were cho-
sen for feature extraction. This ensures that only the most significant information from the signal is

extracted, and any changes in the signal due to tool wear can be identified with ease.
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G. Mechanistic model

G.1 Introduction

The underlying assumption of mechanistic models is that the cutting forces are proportional to the un-
cut chip area. The constants of proportionality are determined by the cutting geometry, material prop-
erties and machining conditions. The procedure for calculating the worn tool cutting forces is based on
calculating the sharp tool forces and adding the forces caused by the worn tool. The complete model is
built around a combination of models for estimating several unknowns, and also relies on a calibration
procedure via selected experiments. The references for this entire appendix are the research papers by
DeVor, Kapoor and their colleagues at UIUC [45,223,242,243,267,268].

G.2 Procedure for modelling the sharp tool forces in turning

G.2.1 Basic mechanistic relationship

The magnitudes of the normal and friction forces are modelled as being proportional to the process ge-
ometry characteristics that represent the amount of material being removed. These relations are:
F =K, -A (G.1)
Fy=K; 4 (G.2)
where:

F_is the normal cutting force

F',is the frictional cutting force

K is the normal cutting pressure
K ,is the frictional cutting pressure

A, is the area of chip load

G.2.2 Force transformation relations

For turning, an equivalent oblique cutting geometry can be obtained by taking the nose radius of the
tool into account. The associated geometrical parameters can be obtained by integrating along the

curved cutting edge. The local tool cutting forces can be determined by:
F

F, |=[4]-F,+[B]-F, (G.3)
F

a

where:
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cos(aen )cos(ie )
[A] = Cos(aen )Sin(ie )Sin(]/el. )— Sin(aen )COS(J@L ) (G.4)

= cos(aen )sin(ie )cos o ) - Siﬂ(a e )sin(]/d )

sin(7, Jsin(i, )+ cos(z, Jsin(, )sin(, )
[B]=| cos(7. )cos(a., )eos(r; )~ [sin(z. )cos(i, )~ cos(7. )sin(az, )sin(i, Jsin(y, ) (G:5)
[sin(7. Joos(z, ) - cos(z, Jsin(a,, )sinGi, lcos(y., ) + cos(. Jeos(a, )sin(y., )
and:
7., 1s the effective lead angle
i,1s the effective inclination angle

a,,1s the effective normal rake angle

77, 1s the chip-flow angle

For turning operations, these force components coincide with the external coordinate system:

FI F{.‘
F,|=|F, (G.6)
F, B

G.2.3 Chip load model

To calculate the area of chip load, a numerical integration along the edge of the cutting tool intersect-
ing with the workpiece is performed. The uncut chip thickness is also calculated during this procedure.

G.2.4 Chip flow model

The direction of chip flow is computed by dividing the round cutting edge into a large number of

smaller straight edges and assuming oblique cutting on each (Stabler rule). The unified chip flow di-

rection is then computed as the weighted average of all the individual chip flow directions, where the

weighting for each is determined by the magnitude of the friction force at that edge. This process is

done iteratively by initially guessing the friction force at each edge. The unified chip flow direction,

measured with respect to a line on the rake face normal to the equivalent cutting edge is given by:
) (»»)Z- 2 ((Z))y e, o

1

G.2.5 Model calibration

Model calibration is achieved by conducting experiments over a range of machining conditions. Em-
pirical equations are used to capture the effects of machining parameters on the normal and friction
pressures:

ln(K" ) =g, +a, ln(tc ) +a, 1n(V)+ a,a, +a, ln(V)ln(tc) (G.8)
ln(K P )= b, + b, ln(tc ) +b, ln(V)+ b, +b, In(V)ln(tc) (G.9)
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where:

t.1s the uncut chip thickness
V is the cutting speed

@, is the normal rake angle

G.3 Basic procedure for modelling the worn tool forces
G.3.1 Introduction

The basic assumption of this model is that for three-dimensional cutting operations, the plastic flow
region grows linearly as the total wearland width of the tool increases, and this growth can be mod-
elled independent of the cutting conditions. The width of the plastic flow region is of importance be-
cause the tool flank stresses (and consequently the cutting forces) depend on it. An integral part of de-
termining the tool flank stresses is the development of a contact model for determining the normal
stress at the tool tip. The three-dimensional cutting forces due to tool flank wear can then be deter-
mined by discretisising the rounded flank face into two-dimensional elements and adding the forces
from all the elements.

G.3.2 Linear growth of plastic flow region

It has been shown that the plastic flow region on worn tools increase linearly with respect to the length
of cut for a range of materials. Based on this, a piecewise linear function is proposed to model the
growth of tool flank wear:

VB, =c, +c,VBif VB <VB, thenVB, =0 (G.10)
where:
-c
VB, =—" (G.11)
£

VB is the total wearland width
VB ,is the width of the plastic flow region

¢y, ¢, are linear coefficients that can be obtained by fitting the function through experimental data. It

has been shown that this model is independent of cutting conditions which means that only one wear

experiment is required to obtain a model for the growth of the plastic flow region.
G.3.3 Two-dimensional stress on the tool flank

The cutting force and thrust force due to tool flank wear can be determined by integrating the normal
and shearing tool flank stresses over the flank wear width:

VB
F, =w [o, (x)dx (G.12)
0

F, =w j z, (x)dx (G.13)
0

where:
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F,, is the thrust force due to tool flank wear

F,,,is the cutting force due to tool flank wear
o, 1s the normal tool flank stress
7, 1s the shearing tool flank stress

wis the width of cut

xis the distance from tool tip

In the plastic flow region at the tool tip, the stresses are equal to the tool tip stresses, o, and z,. By

applying the linear growth of the plastic flow region, the following functions can be derived:

o
if = VBP{TW_ r ’ Plastic flow (G.19)

w o

* \vB-7B,
if x>VB,; , [Elastic contact (G.15)

VB —x
=, ——
| [VB—VBP

2
[VB—-x
c,=0," | ———

where:

o, 1s the tool tip normal stress

7,1s the tool tip shear stress

G.3.4 Contact model to predict the normal tool tip stress

Since plastic deformation of the workpiece occurs under the flank of the tool, the maximum effective
stress in the workpiece must be equal to the yield strength of the workpiece material. It is therefore as-
sumed that the stresses in the tool flank are limited by the yield stress of the workpiece material. The
contact model presented here calculates the maximum effective stress in the workpiece to be equal to
the yield strength of the workpiece material. A plane strain assumption is followed because it has been
shown that the tangential stress does not play an important role. The contact model is only applied

once to a workpiece material, and the value of & is assumed to remain constant for all values of VB .

The stresses in the workpiece at an arbitrary point A due to the load can be found by integrating a set
of concentrated loads over the loaded region. The following equations can be used to obtain the effec-
tive stress in the workpiece:
2z Toy (sYx—s)ds
7 [()C—S)2 +22 ]2
22 ¢ o, (s)ds
x —a[x—s)2 +2* |
W o, (s)x—s)ds

Ty = T G.18
Z -a[(x—s)2+zz_ g

o

(G.16)

4

(G.17)

=]

where:
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O'W(S)=O'O(S_aj- (G.19)
2a

and s,xand z are defined in the Figure G.1.

To obtain the effective stress o ; the Von Mises criterion can be used:

oy =0, -0,) +0? +0? (G.20)
where:
O-I : O-z O-x =. Uz : 2
Gya = * T (G.21)
: 2 2:

To find the maximum effective stress in the workpiece, the workpiece is divided into small square
elements. The effective stress is calculated at all four corners of the squares and the maximum effec-
tive stress is the maximum of all these calculated values. To find the normal stress that causes the
maximum effective stress to be equal to the workpiece yield strength, an iterative approach is used. A
value for normal stress is chosen and the maximum effective stress is calculated. When the maximum
effective stress is equal to the yield strength, the correct value for the normal stress is found.

e

/
hy

“‘—>J B

Figure G.1: Stress distribution on workpiece

A
\ &

workpiece

G.3.5 Prediction of shearing tool tip stress

The shearing tool tip stress is found by assuming that the friction on the flank of the tool is adhesive in
nature. Thus, the calculated value for the normal stress can be used to determine the shearing tool tip
stress, using:
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Q

T

o

(G.22)

G.3.6 Calculating the three-dimensional forces

Once the tool tip stresses are known, the tool flank stresses can be found as described earlier. The
three-dimensional forces are found by dividing the tool flank into small two-dimensional elements. For

the straight edge section, the width of each two-dimensional element is found by choosing the number
of elements, N :

Ay doc—r, (G.23)
N cos(}q) ’
where:
Awis the width of the element
docis the depth of cut

r, is the tool nose radius

7, 1s the lead angle of the tool

The individual element’s VB values are given by:
(u+0.5Aw)VB—0.5-VB)

AVB =
doc +r, (Z - 2] (G.24)

where u is the distance from A as defined in Figure G.3.

straight
cutting edge

elastic
contact

rounded
cutting edge

2-D element

Figure G.2: Analysis of tool (1)
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|

0.5xVB

rounded section

straight section

Vs : : doc—r,
vl == —_—

2 cC'S(]"L)
Figure G.3: Analysis of tool (2)

SR

For the rounded nose section, Aw can be found by dividing the total included angle on the nose of the
tool into A sections:

==
A& = 2N Aw=2r sm(A—fJ (G.25)

For £< %— 7, (between points B and C):

doc+r,(£-0.5A8)-0.5-VB
doc +r, [% -1- 71} K525)

AVB=0.5-VB +

For &> % — 7, (between points C and D):

[g—f—o.sagj-o.s-m

AVB=VB -~ 4 (G.27)
7
4

The values for Aw and AVB are applied in the stress equations to determine AF,, and AF, for each

element. To find the three dimensional wear forces for each element, the following equations apply:

AF.w =AF,, (G.28)
AF:’onW = AFM COS(;‘I/) (G29)
AF, .,y = AF,, sin(y) (G.30)

where:

w =y, for the straight edge section (A-B)
w=&+y, with £=0— (%—-}/1) for the nose (B-D)
Once these forces are known, the total cutting forces due to tool wear can be calculated by adding all
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the elemental forces:

B = OB (G.31)
B = 2 AR L (G.32)
Froaw = ZAFde (G.33)

G.4 Obtaining the total cutting forces

To obtain the total cutting forces for worn tools, the sharp tool forces described in section G.2 must be
added to the forces caused by tool wear, described in section G.3.

G.5 Conclusion

Despite the fact that the model described in this appendix seems to be the most novel approach up to
date for calculating worn tool forces using basic theoretical principles and combining experimental
data, the implementation of the model proved unsuccessful due to reasons described in Chapter 6.
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H. The Self-Organising Map (SOM)

H.1 Introduction

The Self-Organising Map (SOM), developed by Kohonen [212], is a fairly new and effective software
tool for data analysis. The SOM has been implemented successfully in numerous applications in fields
such as process analysis, machine perception, control and communication. The SOM implements the
orderly mapping of high-dimensional data onto a two-dimensional grid of neurons. Thereby the SOM
is able to identify hidden relationships between high-dimensional data with simple geometric relation-
ships that can be displayed on a single figure [269]. The SOM can be described as a NN with self-
organising capabilities. Most NNs require information and interaction from the user for classification.
The training of the SOM is based on unsupervised learning, which means that the data is automatically
arranged without output patterns. Although the SOM was originally intended as a data visualisation
tool, it can be used for data classification as well. Cho [270] describes how the SOM can be used as a
high-performance classifier for noisy data sets. The SOM automatically arranges the data on a two di-
mensional grid of neurons where similar observations are placed close to one another and dissimilar
ones further away. If the classes of the training observations are known, certain regions on the grid
could be allocated for these classes.

H.2 Computation of the SOM

H.2.1 Structure of the SOM

A SOM is formed of neurons on a 2-dimensional grid. Higher dimensional grids can also be used, but
their visualisation is very problematic. Each neuron i of the SOM is represented by an n-dimensional
weight or reference vector m; = [m;; my; ... m;], where n is equal to the dimension of the input vectors.
The map shape is usually rectangular, but other shapes have also been used successfully. The number
of neurons is fixed before training. The number of neurons affects the accuracy and the generalisation

capability of the SOM. As the size of the map increases, training becomes very time consuming.

H.2.2 Neighbourhood relation

The neurons on the map are connected to adjacent neurons by a neighbourhood relationship. Immedi-
ate neighbours belong to the 1-neighbourhood Nj; of the neuron /. In the 2-dimensional case the neu-
rons of the map can be arranged either on a rectangular or a hexagonal lattice. Neighbourhoods of dif-
ferent sizes in rectangular and hexagonal lattices are illustrated in Figure H.1 [269].

H.2.3 Initialisation

Before the training phase initial values are given to the weight vectors. The SOM is robust with respect

to initialisation, but a proper initialisation allows the algorithm to converge faster to a reliable solution.
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One of the three following initialisation procedures can be used [269]:
* Random initialisation, whereby the initial values of the weight vectors are selected randomly.
e Sample initialisation, whereby the initial values of the weight vectors are selected based on
samples from the training data.
e Linear initialisation, whereby the initial values of the weight vectors are generated linearly
from the lowest to the highest value of the training data.

O OO0 0 Q0D
7&050%0‘3 GO O 00 0|00 D
CAOO0 DN QO .
LIS Jolo 8 olololo 5
0©oo®§oo
O\D\G“OC/ GOOO?OOOO
SO 0 /O/0 QO wiisjelsTule]lelloRe
0 0COCOOOD CD0O0C 000
Hexagonal grid Rectangular grid

Figure H.1: Neighbourhood structures

H.2.4 Training the SOM

The computation of the SOM is a nonparametric, recursive regression process. In each training step,
one sample vector X from the input data set is chosen randomly and a similarity measure is calculated
between it and all the weight vectors of the map. The Best-Matching Unit (BMU), denoted as ¢, is the
unit whose weight vector has the greatest similarity with the input sample X;. The similarity is usually
defined by means of a distance measure, typically the Euclidian distance. F ormally the BMU is de-
fined as the neuron for which [221]:

Vi, [x(t)- mo )] < ) - m 0 H.1)
which means that m(t) is the model that matches best with x(%). This is the BMU.

After finding the BMU, the weight vectors of the SOM are updated. The weight vectors of the BMU
and its neighbours are moved closer to the input vector in the input space. This adaptation procedure
stretches the BMU and its neighbours towards the sample vector. This is illustrated in Figure H.2,
where the input vector given to the network is marked by an x [269]. The SOM update rule for the
weight vector of the unit / is:

mi(t +1) = m;()+ o (x(t) - my (1)) (H.2)
where { is the index of the learning step, and learning is performed recursively for each presentation of
a sample of X, denoted x(f). The scalar multiplier he(x),i 18 called the neighbourhood function, which

causes similar observations to be placed in the same region on the map.
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Figure H.2: Updating the SOM in each learning step

H.2.5 Neighbourhood function

The neighbourhood function is a non-increasing function of time and of the distance of unit i from the
winning unit €. It defines the region of influence that the input sample has on the SOM. The function

consists of two parts: The neighbourhood function h(d,f) and the learning rate function a(t) :

hc,-<r)=n[ e =11 ,:] () e

where r; is the location of unit / on the map grid.

The simplest neighbourhood function is the Bubble: It is constant over the whole neighbourhood of the
winner unit and zero elsewhere. Another is the Gaussian neighbourhood function. It gives slightly bet-
ter results, but is computationally slower. Figure H.3 displays the two common neighbourhood func-
tions [269].

Gaussian

Figure H.3: Two common neighbourhood functions

H.2.6 Learning rate

The learning rate o(t) is a decreasing function of time. Two commonly used forms are a linear function

and a function inversely proportional to time, such as:

a(t)= 0 fB) (H.4)

where A and B are selected constants.
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H.2.7 Training phases

Training is usually performed in two phases. In the first phase, relatively large initial o values and
neighbourhood radii are used. In the second phase both the ¢ values and the neighbourhood radii are
small from the beginning. If the linear initialisation procedure is used, the first training phase can be
skipped.

H.2.8 Batch-algorithm

Another variant of the basic SOM training rules is the batch algorithm. In this case the whole training
set is used at once and after which the map is updated. The algorithm usually converges after a couple
of iterations, and is much faster to calculate in MATLAB than the normal sequential algorithm.

H.3 Examples of SOMs

The SOM is best explained with simple examples. Two examples are discussed here in order to clarify
the use of SOMs. For more information on SOMs, see references [221,198,199,269-274].

H.3.1 Speech data

The SOM in Figure H.4 was calculated with speech data (Finnish) [269]. The model vectors are shown
on each neuron. Note that similar patterns are arranged close to one another on the map. This tech-
nique can be used for voice or word recognition.
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Figure H.4: SOM with speech data showing model vectors [269]
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H.3.2 Simple 2-dimensional scenario

The principles of a SOM can easily be explained by considering a 2-dimensional case. Say, for in-
stance, that a data set exists which clearly displays two clusters, as shown in Figure H.5. The one clus-
ter may correspond to an error (err) situation, and the other to an acceptable (OK) region, for example:
W=[xyf
W=[0.3 0.3] -err (H.5)
W=/[0.7 0.7] - OK
Figure H.6 shows the SOM after linear initialisation of the model vectors, on a rectangular grid. Figure
H.7 shows the SOM after training, which resembles a ‘net’ folding over the ‘cloud’ of data. The neu-
rons move closer to one another where the data is dense.
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Figure H.7: Grid after training

Figure H.8 shows the SOM for variables x and y. Note that the SOM is only one entity, but a graph in
the direction of each variable (dimension) can be shown. Also note that the colours of the neurons are
an indication of the value of the variable, as shown on the colour map axis on the figure. The labels of
the training data are also shown in Figure H.8, and it is clear that the ‘err’and ‘OK’ regions have been
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identified. Figure H.9 shows the BMUs for a test data set:
W=[ 03 03 (err)
0.5 0.5
0.7 0.7] (OK)

(H.6)

The three BMUSs for this test data, have each been marked on Figure H.9. A trajectory, showing how

the test data moves through the SOM, is also shown.

0.7

Figure H.9: BMUs for test data
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l. Surface roughness analysis

.1 Surface texture

A surface that is nominally smooth and flat will always reveal some roughness, which may vary from

fine to coarse depending on the finishing operation used. Some surfaces have roughness and waviness,
and may also be curved, as shown in Figure I.1 [275].

Waviness
Direction of lay ¢ spacing
“ e T, Waviness
Profile
Roughness
Roughness
spacing

Figure I.1: Roughness and Waviness

Figure 1.2 illustrates the two components of surface texture, which are:

e Roughness: The irregularities in the surface texture that is inherent to the production process, ex-
cluding waviness and errors of form.

e Waviness: This is the component of surface texture upon which roughness is superimposed. Wavi-

ness may result from such factors such as machine or workpiece deflections, vibrations, chatter or
heat treatment.

Each pattern is characterised by the lay (the principal direction of the predominant surface pattern), the
spacing of the principal crests, and in height (with respect to a reference line).

I.2 Assessment of surface roughness

The standard method for assessing surface texture is based on traversing a stylus across the surface to
produce an electrical signal, which can generate the surface profile on a chart or an average reading on
a meter. Roughness average, R, is defined as the arithmetical average of the profile above and below
the reference line throughout the prescribed sampling length. This is illustrated in Figure 1.2. Surface

roughness values are normally assessed as mean results of several sampling lengths taken consecu-
tively along the surface.
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Figure I.2: Definition of the centre line

Over a length of surface L, the centre line is a line such that the sum of the areas embraced by the sur-
face profile above the line is equal to the sum of those below the line, thus:
areaSA+C+E+G+1 =areas B+D+F+H+ J+K (L1)

Ra is the average height of the profile above and below the centre line [275]:
e
'L

R, =
qL (1.2)
=—ﬂ h|dL
LG

where h is the height of the profile above or below the centre line at unit distances apart. The units of L
is not added into the equation - R, is normally expressed in pm.

R, is the rms value for Rz:
R.= J-L_[hz(x)dx (13)
4 L 5 i

These are the basic parameters used for surface roughness assessment. The same type of parameters
can also be derived to quantify the waviness of the surface profile.
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